Comments
Description
Transcript
大容量フォトニックネットワークのアーキテクチャ
一般社団法人 電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report 大容量フォトニックネットワークのアーキテクチャ 長谷川 浩 佐藤 健一 名古屋大学 大学院工学研究科 電子情報システム専攻 〒464-8603 愛知県 名古屋市 千種区 不老町 E-mail: {hasegawa,sato}@nuee.nagoya-u.ac.jp あらまし 本稿では、超大容量通信を実現するためのフォトニックネットワークのアーキテクチャについて解説 する。従来の IP 技術をベースにしたネットワークでは、パケット単位での経路制御を電気処理にて行うため、宛先 検索にかかるオーバーヘッドが通信容量を制限しかつ膨大な消費電力に直結していた。光ファイバ中の波長多重信 号の経路制御を、波長をラベルとし光信号のまま行うことにより、超低消費電力と大容量を実現するフォトニック ネットワークが導入されつつあるが、コスト面やハードウェア規模の面から多数の光信号の経路制御処理は容易で はなく、更なる大容量化は困難であった。本稿ではフォトニックネットワークの現状と課題について述べ、ボトル ネックであるフォトニックノードの容量を向上させるためのアーキテクチャを解説する。 キーワード チャ フォトニックネットワーク 階層化光パス エラスティック光パス フォトニックノードアーキテク Architectures of Bandwidth Abundant Photonic Networks Hiroshi HASEGAWA Ken-ichi SATO Dept. Electrical Engineering and Computer Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan E-mail: {hasegawa, sato}@nuee.nagoya-u.ac.jp Abstract In this manuscript, we present architectures of photonic networks to realize bandwidth abundant optical transport. Current IP-based networks are suffered from the energy consumption and the capacity limitation caused by the packet-by-packet forwarding in the electrical layer. This fact motivates the introduction of photonic networks that utilize wavelength routing in the optical layer. The elimination of costly E/O and O/E conversion and the routing in the optical layer makes photonic networks energy efficient and capacity abundant. However, due to the difficulty in realizing large scale optical switches, further capacity enhancement is not straightforward. We elucidate the current situation and issues in photonic networks and then show novel node architectures that can achieve larger capacity cost-effectively. Keyword Photonic Network, Hierarchical Optical Path, Elastic Optical Path, Photonic Node Architecture This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere. Copyright ©2013 by IEICE ⫼ᬒ –ቑຍ䛧⥆䛡䜛㏻ಙ䝖䝷䝣䜱䝑䜽ୗ䜚䝖䝷䝣䜱䝑䜽 1.696Tbps (2011/11) ୖ䜚䝖䝷䝣䜱䝑䜽 0.669Tbps (2011/11) 1998 2000 2002 2004 2006 2008 2010 2012 JPIX (Japan Internet Exchange)䛷䛾䝖䝷䝣䜱䝑䜽ኚື(1998-2012) 90,000 VoIP Online gaming 80,000 70,000 ⫼ᬒ 2003 2004 2005 2006 2007 2008 2009 2010 2011 ᪥ᮏᅜෆ䛾⥲㏻ಙ㔞(⥲ົ┬Ⓨ⾲㈨ᩱ䜘䜚) PB/Month 60,000 • 䝖䝷䝣䜱䝑䜽䛿౫↛䛸䛧䛶ቑຍ (+30-40%/ᖺ). 50,000 40,000 • ᫎീ୰ᚰ䛾䝃䞊䝡䝇䛜ቑຍ Web/e-mail/data 30,000 20,000 Internet Video • ྛ✀⛣ື➃ᮎ䛾ቑຍ 10,000 File Sharing 0 2011 2012 2013 2014 2015 2016 Cisco VNI, “Global Consumer Internet Traffic, 2011-2016” 3 䝕䜱䝇䝥䝺䜲䛾㧗⢭⣽ ㏻ಙ⏘ᴗ䛾Ⓨᒎ䠄᪥ᮏ’10ї’11䠅 䝇䝬䞊䝖䝣䜷䞁 ಖ᭷⋡ 䜽䝷䜴䝗䝃䞊䝡䝇 ⏝⋡ (ᴗ) ᵑᵌᵎಸ ᵏᵌᵓಸ 9.7ї29.3% 14.1ї21.6% 䝖䝷䝣䜱䝑䜽䛾ᛶ㉁䛾ኚ 䝕䞊䝍㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 ᫎീయ䜈 9䝤䝻䞊䝗䝞䞁䝗䜰䜽䝉䝇ᢏ⾡䛾㐍ᒎ (ADSL, FTTH) ᫎീᢏ⾡䛾㐍ᒎ iPhone3 : 480 x 320 iPhone4 : 960 x 640 (DVD : 720 x 480) HDTV: 1920 x 1080 2560 x 1600 (6.1inch) 䜲䞁䝍䞊䝛䝑䝖 ᥋⥆ྍ⬟ 䝔䝺䝡ಖ᭷⋡ ື⏬㓄ಙ䝃䞊䝡䝇 ⏝⪅ᩘ(YouTube) 3840 x 2160 (Sharp 32inch) 4K Cinema ᫎീ㓄ಙ䝃䞊䝡䝇 䛾ᐇ⌧䜈 Raw data: 72Gbps ᵏᵌᵑಸ ᵏᵌᵐಸ 26.8ї33.6% 2360ї2900ே Introduction of 3D tech. Ultra HDTV : 7680 x 4320 (NHK, 145inch PDP) 4 ฟ䠖⥲ົ┬㻌 ㏻ಙ⏝ືྥㄪᰝ 5 ḟୡ௦䛾䝛䝑䝖䝽䞊䜽䝃䞊䝡䝇䜈 ᑗ᮶䛾䝖䝷䝣䜱䝑䜽 Ultra-High Definition TV 72Gbps(㠀ᅽ⦰) ᫎീయ䛾䝃䞊䝡䝇 -ᫎീᢏ⾡䛾㐍ᒎ ex. UHD-TV, 3D-TV, 8k/4k Digital cinema 9Layer one VPN㻌 䠄ᑓ⏝⥺䝃䞊䝡䝇䠅 8k/4k Digital cinema ex. Just-in-time, Optical mesh network 䝛䝑䝖䝽䞊䜽䜈䛾せㄳ 9ᐜ㔞䜰䝥䝸䜿䞊䝅䝵䞁 㧗ಙ㢗䞉㉸ᐜ㔞 䝝䞊䝗䜴䜵䜰つᶍ๐ῶ 2010’s 2020’s 1990’s web 2000’s ᖺ⋡䠖+30-40% = 15ᖺ䛷ᩘⓒಸ ග䝣䜯䜲䝞㏻ಙ=㉸ᐜ㔞 9䝸䜰䝹䝍䜲䝮/䜸䞁䝕䝬䞁䝗 䜰䝆䝸䝔䜱䛾ᐇ⌧ 7 ග䝣䜯䜲䝞㏻ಙ䛸↓⥺㏻ಙ䛾ẚ㍑ ග䝣䜯䜲䝞㏻ಙ䛻䜟䜜䜛Ἴ㛗䠋࿘Ἴᩘ㡿ᇦ 䢵䢲䢲䢲䢢 䢳䢲䢲䢲䢢 䢸䢲䢲䢢 䢷䢲䢲䢢 䢶䢲䢲䢢 䢵䢲䢲䢢 䢴䢲䢲䢢 ࿘Ἴᩘ䣝䣖䣊䣼䣟䢢䢢 ಙྕ䛜✵㛫䛻Ⓨᩓ䛧䛶䛧䜎䛖䛯䜑䚸 ຠ⋡䛜ᝏ䛟䚸➃ᮎ㛫䛾ᖸ΅䛜Ⓨ⏕ ග䝣䜯䜲䝞ෆ䛻ಙྕ䛜㛢䛨䛣䜑䜙䜜䛶 ఏ㏦䛥䜜䜛䛾䛷ຠ⋡䛜㧗䛔 䝣䜯䜲䝞䜢ቑ䜔䛩䛣䛸䛷㏻ಙ㊰䜢ከᩘ ☜ಖ䛩䜛䛣䛸䜒ᐜ᫆ ྍどග䢢 凚䢲䢰䢵䢺到䢲䢰䢹䢹䪱䣯凛䢢 ⣸䢢凚⸛凛䢢 㟷䢢 ⥳䢢 㯤䢢 ᶳ䢢 ㉥䢢 儹儅儈儴僔ᦆኻ䣝䣦䣄䢱䣭䣯䣟䢢 䢲䢰䢳䢢 䢲䢰䢴䢢 䢲䢰䢵䢢 䢲䢰䢶䢢 䢲䢰䢷䢢 䢲䢰䢸䢢 䢲䢰䢹䢢 䢲䢰䢺䢢 䢲䢰䢻䢢 䢳䢰䢲䢢 䢳䢰䢳䢢 䢳䢰䢴䢢 䢳䢰䢵䢢 䢳䢰䢶䢢 䢳䢰䢷䢢 䢳䢰䢸䢢 䢳䢰䢹䢢 䢳䢰䢺䢢 䢳䢰䢻䢢 䢴䢰䢲䢢 Ἴ㛗䣝䪱䣯䣟䢢䢢 䣙䣆䣏㏻ಙ䢢 凚䢳䢰䢶䢴到䢳䢰䢸䢴䪱䣯凛䢢 䢳䢢 䣕䢭䢢 䣕䢢 䣅䢢 䣎䢢 䣎䢭䢢 䢢 䢢 䢢 䢢 䢢 䢢 䢢 䢢 䢢 䢢 䢲䢢 䢲䢰䢵䢺䢢 䢲䢰䢶䢵䢢 䢲䢰䢶䢻䢢 䢲䢰䢷䢷䢢 䢲䢰䢷䢻䢢 䢲䢰䢸䢶䢢 䢲䢰䢹䢹䢢 䢳䢰䢲䢢 䢳䢰䢳䢢 䢳䢰䢴䢢 䢳䢰䢵䢢 Ἴ㛗䣝䪱䣯䣟䢢 䢳䢰䢶䢢 䢳䢰䢷䢢 䢳䢰䢸䢢 䢳䢰䢹䢢 Ἴ㛗䣝䪱䣯䣟䢢 (䝅䝱䝜䞁)䛂㏻ಙᐜ㔞䛿䚸⏝ྍ⬟䛺ᖏᇦᖜ䛻ẚ䛩䜛䛃 & ග䝣䜯䜲䝞䛿ᴟ䜑䛶ᗈᖏᇦ 10 9 ⌧ᅾ䛾㐩ᡂᗘ z Ἴ㛗ከ㔜䛻䜘䜛ᐜ㔞䛜ඛ⾜䛧䛶䛔䛯䛜䚸↓⥺㏻ಙ䛷䛿ᙜ↛䛾䛣䛸䛸䛺䛳䛶䛔䜛 䝕䝆䝍䝹䝁䝠䞊䝺䞁䝖 (DSP䛻䜘䜛ఏ㏦㊰➼౯䜔ከ್ุᐃ)ᢏ⾡䛜ᑟධ䛥䜜䛯䛣䛸䛷 100Gbps/Ἴ㛗䛜ၟ⏝䝺䝧䝹䛷ᐇ⌧䛥䜜䛯 z 䛩䛷䛻ᐇ㦂ᐊ䝺䝧䝹䛷䛿䚸100+Tbps/䝣䜯䜲䝞䛜ᐇ⌧ 䛥䜜䛶䛔䜛 D. Qian, “101.7-Tb/s (370㽢294-Gb/s) PDM-128QAM-OFDM Transmission over 3㽢55-km SSMF using Pilot-based Phase Noise Mitigation, ” OFC/NFOEC, PDPB5, Mar. 2011. J. Sakaguchi et.al., “19-core fiber transmission of 19x100x172-Gb/s SDM-WDMPDM-QPSK signals at 305Tb/s,” OFC/NFOEC,PDP5C.1, Mar. 2012. z ୍᪉䛷ග䝣䜯䜲䝞䛾㠀⥺ᙧᛶ䜔ᢞධ䛷䛝䜛ග䝟䝽䞊䛜㝈䜙䜜䜛䛣䛸䛛䜙䚸ග䝣䜯䜲䝞 䛾ᐜ㔞䛻䛿㝈⏺䛜ぢ䛘䛶䛝䛶䛔䜛 (“Capacity Crunch”, 䛂㠀⥺ᙧ䝅䝱䝜䞁㝈⏺䛃) 䝣䜷䝖䝙䝑䜽䝛䝑䝖䝽䞊䜽 z 䝬䝹䝏䝁䜰䞉䝬䝹䝏䝰䞊䝗䛾᳨ウ䛾䚸ග䝣䜯䜲䝞䛾ᐜ㔞䜢䛔ษ䜛Ⅽ䛾OFDM / Nyquist WDM 䛾ᑟධ䜔䚸㏻ಙ㟂せ䛻ᛂ䛨䛯䝎䜲䝘䝭䝑䜽䛺Ἴ㛗㈨※䛾䜚ᙜ䛶䛜◊ ✲䛥䜜䛶䛔䜛䚹 11 ⌧ᅾ䛾䝛䝑䝖䝽䞊䜽䛾䜲䝯䞊䝆 Ver.2013.06.06 10 䝜䞊䝗 㛵すᣑᅗ 180 210 260 280 250 230 270 290 240 300 䝸䞁䜽 20 50 150 60 170 160 200 70 310 180 100 90 260 210 190 110 350 340330 80 280 400 131 370 270 250230 132 120 410 380 360 300290240 220 140 420 430 440 390 320 460 470 450 ㏻ಙᣐⅬ(䝜䞊䝗)䛜䝸䞁䜾≧䜒䛧䛟䛿 ⥙┠≧䛻ᙇ䜙䜜䛯䝸䞁䜽䛷᥋⥆䛥䜜䛶䛔䜛䚹 30 40 ᡫ̮ܾỉỶἳὊἊᴾᵆἼὅἁᵜᵜἠὊἛᵇᴾ 㛵ᮾᣑᅗ 200 100 190 220 90 110 80 131 132 140 120 JPN48 13 ᖜ䛜ᗈ䛔㧗㏿㐨㊰䛜䚸ᑠ䛥䛺ᕪⅬ䛷 ᥋⥆䛥䜜䛶䛔䜛䜘䛖䛺≧ἣ (䝪䝖䝹䝛䝑䜽䠙䝜䞊䝗) 15 䝣䜷䝖䝙䝑䜽䝛䝑䝖䝽䞊䜽 㟁Ẽฎ⌮䛾㝈⏺䜢㉸䛘䛶 䡚Ἴ㛗䝹䞊䝔䜱䞁䜾䡚 㹇㹎࣮ࣝࢱ Ἴ㛗ከ㔜ࣜࣥࢡ 㸻㌴⥺ 㹇㹎ࣃࢣࢵࢺ 䝟䜿䝑䝖䝺䝧䝹䛷䛾㟁Ẽ ฎ⌮䝹䞊䝔䜱䞁䜾㻌 䊻䞉㐜ᘏ䛝䛔㻌 㻌 䞉㐜ᘏ䜖䜙䛞䛒䜚㻌 㻌 䞉ᐜ㔞ᅔ㞴㻌 Ἴ㛗ࣃࢫ 㟁Ẽ䝹䞊䝍 ྛ䝜䞊䝗䛷䛾㟁Ẽ䞉ගኚ䜢ᴟຊ䛧䛶䚸䝪䝖䝹䝛䝑䜽䛸䛺䜛㟁Ẽฎ⌮䜢๐ῶ z Ἴ㛗䛭䛾䜒䛾䜢䝷䝧䝹䛸䛧䛶ಙྕ䜢㆑ู䛧䚸䝹䞊䝔䜱䞁䜾 z ప㐜ᘏ z ㉸ᐜ㔞 (䜲䞁䝍䞊䝣䜵䞊䝇㧗㏿䛻䜘䜚䝇䜿䞊䝹䛩䜛) z ㉸పᾘ㈝㟁ຊ ග䛾䜎䜎䛾䝹䞊䝔䜱䞁䜾㻌 䊻䞉ప㐜ᘏ㻌 㻌 䞉㐜ᘏ䜖䜙䛞䛺䛧㻌 㻌 䞉ᐜ㔞䛾ᐇ⌧㻌 Ἴ㛗ከ㔜ࣜࣥࢡ ㏻㐣䝖䝷䝣䜱䝑䜽䜢㻌 ග䛾䜎䜎⤒㊰ไᚚ㻌 O/E O/E O/E O/E 㹇㹎࣮ࣝࢱ E/O E/O E/O E/O LSR WXC LSR: Label Switch Router ගಙྕ䛾┤᥋ฎ⌮䛾㞴䛧䛥 z ග䝇䜲䝑䝏䛾㧗䝁䝇䝖 z 㧗ḟ䝇䜲䝑䝏䛾〇㐀䛾㞴䛧䛥 z ග䝞䝑䝣䜯䛿㝈ᐃⓗ (䝟䜿䝑䝖䛻䜘䜛⤫ィከ㔜ຠᯝ䛜ᚓ䛻䛟䛔) Ἴ㛗࣮ࣝࢸࣥࢢ 㻵㻼䝖䝷䝠䝑䜽ኚື䛸㐃 ື䛧䛯䝎䜲䝘䝭䝑䜽䛺 䝺䞊䞁䛾ቑタ䞉๐㝖㻌 WXC: Wavelength Cross-Connect “HIKARI”䝹䞊䝍 16 17 䝖䝷䝣䜱䝑䜽ቑ䛻䜘䜛䝁䝇䝖ቑ Node cost Link cost OXC OXC /ROADM /ROADM OXC OXC /ROADM /ROADM OXC OXC /ROADM /ROADM Traffic increase Traffic increase Traffic increase 1. Link cost ๐ῶ (䝣䜯䜲䝞䛾࿘Ἴᩘ㈨※䛾᭱⏝) 䜶䝷䝇䝔䜱䝑䜽ග䝟䝇䝛䝑䝖䝽䞊䜽 = OFDM䛾ᑟධ䞉ᐦ䛺࿘Ἴᩘ䜾䝸䝑䝗䛾ᑟධ 䝣䜷䝖䝙䝑䜽䝛䝑䝖䝽䞊䜽䛾ᐜ㔞 2. Node cost ๐ῶ (ග䝇䜲䝑䝏つᶍ䜢๐ῶ) 㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 =䝟䝇䜢ㄽ⌮ⓗ䛻᮰䛽䜛䛣䛸䛻䜘䜛䝇䜲䝑䝏つᶍ๐ῶ ᪂䛯䛺䝹䞊䝔䜱䞁䜾ᡭἲ䛻ᇶ䛵䛟䝁䞁䝟䜽䝖䛺䝜䞊䝗 Conventional ITU-T Grid 50GHz 10Gbps 40Gbps frequency 9 Elastic channel spacing 9 Adaptive modulation Elastic Optical Path Network frequency 12.5 GHz ͤ 400Gbps, 1Tbps䜒ど㔝䛻 Designate a set of frequency slots 10 # of frequency slots Residual bandwidth wasted 100Gbps Bandwidth ㊥㞳䛻ᛂ䛨䛯ኚㄪ᪉ᘧ䛾㑅ᢥ 䜶䝷䝇䝔䜱䝑䜽ග䝟䝇䝛䝑䝖䝽䞊䜽 40Gbps 19 1 slot : 12.5GHz 8 By introduction of frequency slot and OFDM 6 QPSK 44 By introduction of distance adaptive Modulation QPSK QPSK 16QAM 2 ITU-T nonDA-SLICE DA-SLICE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 # of hops Transmission distance 22 Ἴ㛗(⤒㊰)䜚ᙜ䛶ၥ㢟 ⤒㊰䞉࿘Ἴᩘ䝇䝻䝑䝖ᙜၥ㢟 • ᚑ᮶ᆺ䝛䝑䝖䝽䞊䜽䛻䛚䛡䜛“⤒㊰䞉Ἴ㛗 ᙜၥ㢟(RWA)” 䛿“⤒㊰䞉࿘Ἴᩘ䝇䝻䝑䝖 ᙜၥ㢟(RSA)”䜈 B A No.2 D • Ἴ㛗䜔࿘Ἴᩘ䝇䝻䝑䝖䛾䜚ᙜ䛶䛿䚸䜾䝷䝣 ⌮ㄽ䛻䛚䛡䜛ᙬⰍၥ㢟䛻┦ᙜ • ⏝࿘Ἴᩘ䛾᩿∦䛜䛝䛺ၥ㢟䛻 ⤒㊰ᅛᐃ䛾ሙྜ No.1 C No.1 No.3 No.3 No.2 㞄᥋㡿ᇦ 㐪䛖Ⰽ䛷ሬ䜛 䠎Ⰽ ᚲせ Fiber ୍᪉䚸⤒㊰ᙜၥ㢟䛿ẚ㍑ ⓗᐜ᫆䛻ゎỴྍ⬟䛷䛒䜛 ⣽䛛䛺༢䛷䛾䜚ᙜ䛶䞉ᆒ୍䛺⏝ᖏᇦ Wavelength collision 㟼ⓗタィ䞉ືⓗไᚚ䛾᪉䛷ᅔ㞴䛥䜢⏕䜐 23 24 Ἴ㛗(⤒㊰)䜚ᙜ䛶ၥ㢟 No.1 No.2 C D • ㊥㞳䛻ᛂ䛨䛯ኚㄪ᪉ᘧ䜢᥇⏝䛩䜛䜶䝷䝇䝔䜱䝑䜽ග 䝟䝇䝛䝑䝖䝽䞊䜽䛾タィἲ ⤒㊰ᅛᐃ䛾ሙྜ (i.e. Ἴ㛗ᙜ䛾䜏) B A Iterative ILP based Route Assignment [T.Takagi et.al., ECOC2010] • 䛘䜙䜜䛯ග䝟䝇タ❧㟂せ䛾ྛ䚻䛻䛴䛔䛶䚸 ᭱▷ 䛾⤒㊰䛷ᚲせ䛸䛺䜛࿘Ἴᩘ䝇䝻䝑䝖ᩘ䜢ィ⟬ No.1 No.3 No.3 No.2 㞄᥋㡿ᇦ 㐪䛖Ⰽ䛷ሬ䜛 䠎Ⰽ ᚲせ • ୖグ䛾࿘Ἴᩘ䝇䝻䝑䝖ᩘ䛾ぢ✚䜒䜚್䛜ྠ୍䛻䛺䜛 ග䝟䝇㞟ྜ䜢䚸䝇䝻䝑䝖ᩘ䛜ᑠ䛥䛔㡰䛛䜙㡰ḟ⤒㊰ 䜚ᙜ䛶 => ࿘Ἴᩘ䜚ᙜ䛶 Ἴ㛗ᙜ䛿䛹䛾⛬ᗘᅔ㞴䠛 z Finding a coloring that minimizes the number of colors used. => NP-hard z Finding a coloring that minimizes the number of fibers used subject to given color set. => NP-complete 25 29 Ratio of Accommodated Traffic Link cost reduction by path elasticity (static) The degradation due to the non-uniform path capacity is marginal. # of slots necessary for shortest route ITU-T grid method ITU-T grid spacing nonDA-SLICE method 1000 DA-SLICE method 50% 800 nonDA-SLICE : elastic optical path networks without distance adaptive modulation 18% 600 400 z z z z 200 6x6 mesh network Bandwidth of one fiber : 4, 400 GHz ITU-T grid bandwidth : 100 GHz Frequency slot : 12.5 GHz 0 1 2 3 4 5 6 7 8 9 Average number of connection demands 10 30 Accepted traffic demand (normalized) 1200 Number of fibers [T.Takagi et.al., OFC2011] 7x7 polygrid topology 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 ITU-T nonDA-SLICE DA-SLICE Accepted traffic demand (normalized) Without fragmentation 1400 [T.Takagi et.al., ECOC2010] COST266 topology 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 ITU-T nonDA-SLICE DA-SLICE Because of the increase in # of wavelength candidates 32 䝣䜯䜲䝞ᐜ㔞ᣑ䛾㝈⏺ ග䝣䜯䜲䝞୰ 䛾Ἴ㛗䝟䝇ᩘ Available bandwidth (ex. C+L) 100 100G x 100 = 10T Nonlinear Shannon limit Nonlinear impairments 80 40G x 80 400G x 60 =24T = 3.2T Transparent optical reach? Transponder cost? 1 ㉸ᐜ㔞䝣䜷䝖䝙䝑䜽䝜䞊䝗 䝟䝇ᐜ㔞 10G 40G 100G 400G 䝛䝑䝖䝽䞊䜽య䛾᭱㐺䛻䜘 䜛䚸ᐇ㉁ⓗ䛺ᐜ㔞ᣑ➼䛜ᚲ㡲 Traffic: +30%/year 33 ୍㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 Ἴ㛗㑅ᢥ䝇䜲䝑䝏 (Wavelength Selective Switch) ᐜ㔞䞉పᾘ㈝㟁ຊ : 1st stage :୍㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 WSS䛾䜏䛷ᵓᡂ䛥䜜䛯 1㝵ᒙ䝜䞊䝗 add Bottleneck and prevent the constructing costeffective networks WSS䛾ᵓ㐀 ᅇᢡ᱁Ꮚ ධຊ䝣䜯䜲䝞 ฟຊ䝣䜯䜲䝞 drop … … … … ᑠᆺ䝭䝷䞊 O/E O/E O/E O/E LSR : WSS E/O E/O E/O E/O LSR: Label Switch Router (LCOS➼䜒⏝) WXC WXC: Wavelength Cross-Connect ⌧ᅾ 1x20䜎䛷䛜ၟ⏝䛥䜜䛶䛔䜛䛜䚸 䜘䜚㧗ḟ䛺WSS䜢〇㐀䛩䜛䛾䛿ᐜ᫆䛷 䛿䛺䛔 37 ୍㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 z 䝛䝑䝖䝽䞊䜽ෆ䛾ග䝟䝇䛿ቑຍ z ග䝣䜯䜲䝞ᩘ䛿䛭䜜䛻ᛂ䛨䛶ቑຍ & z 䝛䝑䝖䝽䞊䜽ᙧ≧䛿ᅛᐃ 9 ᴟపᾘ㈝㟁ຊ WXC / ROADM 9 ㉸ᐜ㔞 9 ᭱ᑠ㐜ᘏ㻌 ྠ୍⤒㊰ୖ䜢⛣ື䛩䜛ග䝟䝇䛜ቑ䛘䜛 WXC: Wavelength Cross-Connect optical fiber WXC / ROADM 38 䝖䝷䝣䜱䝑䜽ቑ䛻ᛂ䛨䛶㉳䛣䜛䛣䛸 䝜䞊䝗ᣑᙇ䛾㝈⏺ optical fiber Finisar♫〇 1x9 WSS (140mm x 220mm) A possible solution The issues 㐣ཤ䛾ゎỴ⟇䠖㧗ḟ䝟䝇䜢ᑟධ䛩䜛 Ex.) VC-3/4 in SDH/SONET 9 ග䝇䜲䝑䝏䝫䞊䝖ᩘ䛜⭾䛻 9 ᕧ䛺ග䝇䜲䝑䝏䜢ᵓᡂ䛩䜛䛾䛿ᴟ䜑 䛶ᅔ㞴 VC-3/4 39 VC-1/2 䝹䞊䝔䜱䞁䜾䛾ຠ⋡ྥୖ 䜽䝻䝇䝁䝛䜽䝖䛾ຠ⋡ྥୖ 䝸䞁䜽ୖ䛾ග䝣䜯 䜲䝞ᩘ䛜ቑຍ 㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 ᑠつᶍග䝇䜲䝑䝏䛻䜘䜛ᐜ㔞䝜䞊䝗ᵓ⠏ 」ᩘἼ㛗䛾䜾䝹䞊䝥 (㧗ḟ䝟䝇䛾ᑟධ) 䝛䝑䝖䝽䞊䜽䛾ศ ୍㒊䛾Ἴ㛗䝟䝇䛾䜏䛜WXC䜢⏝ Subsystem modular OXC Node Architecture (2011ᖺ~) 㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 (2000ᖺ㡭~) z 」ᩘ䛾Ἴ㛗䜢ㄽ⌮ⓗ䛻䜾䝹䞊䝥(䛂Ἴ㛗⩌䝟䝇䛃) z ྍ⬟䛺㝈䜚䜾䝹䞊䝥༢䛷䝹䞊䝔䜱䞁䜾 z Ἴ㛗⩌䝟䝇䜢䜚䛘䜛䛸䛝䞉add/drop䛾䛻୍㝵ᒙ ᆺ䛸ྠᵝ䛾ฎ⌮䜢ᐇ z つᶍ䛻㝈⏺ optical fiber z ྛ䝛䝑䝖䝽䞊䜽䝜䞊䝗䜢䚸ᑠᆺ OXC䝃䝤䝅䝇䝔䝮䜢୪䜉䛯䜒 䛾䛷ᵓᡂ z ྛ䝃䝤䝅䝇䝔䝮䛿ᐜ᫆䛻ᵓ ᡂྍ⬟ WXC waveband path BXC wavelength path Grouped Routing Entity based Optical Networks (2011ᖺ~) z Ἴ㛗⩌༢䛷䛾⤒㊰ไᚚ䛸Ἴ㛗༢䛾add/drop䜢 ⤌䜏ྜ䜟䛫䛶䛔䜛 z Ἴ㛗⏝䜽䝻䝇䝁䝛䜽䝖䛿せ䛷䝜䞊䝗䛜䝁䞁䝟䜽䝖 BXC: WaveBand Cross-Connect Waveband Path = a group of wavelength paths z ྍ⬟䛺㝈䜚Ἴ㛗⩌䝟䝇༢䛷䝹䞊䝔䜱䞁䜾 2-stage Routing Optical Networks (2011ᖺ~) z ḟ䛾⤒⏤䝜䞊䝗䛻ᛂ䛨䛶䚸Ἴ㛗䜢ືⓗ䛻䜾䝹䞊䝥 z ⥆䛟ᑠᆺ䛾ග䝇䜲䝑䝏䛷䚸ග䝣䜯䜲䝞䜢㑅ᢥ䛩䜛 z WXC䛿౫↛䛸䛧䛶䛝䛟䚸つᶍ䛻㝈⏺ 41 Hierarchical Optical Path Network Benefit of Wavebands Waveband Path = a group of wavelength paths Optical Fiber Waveband Path 42 Ratio of the total number of switch ports in the networks (R: Hierarchical/Single Layer) WXC Wavelength Path bandwidth, W 2.5 waveband hops, H 2 2.5 BXC • Reduce port counts • Large capacity optical paths 1.5 BXC: WaveBand Cross-Connect 1 wavelength path Single-layer 2 1.5 1 0.5 0.5 0 WXC WXC WXC WXC WXC WXC 0 4 Hierarchical waveband path BXC BXC Number of optical switch ports decreases over a wide area 8 12 16 1 BXC 2 3 4 5 6 7 8 43 Normalized network cost 䠄Hierarchical / Single-layer network䠅 Performance Evaluation [I.Yagyu et.al. 2008] 1.0 㝵ᒙග䝟䝇䜽䝻䝇䝁䝛䜽䝖䝜䞊䝗䛾ヨస 㛗㇂ᕝᾈ㻌 బ⸨୍ (ྡྂᒇᏛ)㻌 㧗ᶫᾈ(NTT䝣䜷䝖䝙䜽䝇◊✲ᡤ)㻌 ዟ㔝ᑗஅ(NTT䜶䝺䜽䝖䝻䝙䜽䝇) 㟁Ꮚሗ㏻ಙᏛ䝋䝃䜲䜶䝔䜱2010 ᣍᚅㅮ₇ 2.0 1.5 44 end-to-end BPHT (ͤ) Proposed Single-layer 0.5 0 0 1 2 3 4 5 6 7 8 Average number of wavelength paths between node pairs ͤ) BPHT : X.Cao et al., IEEE J-SAC ,2003 OFC2010 Post-deadline Paper 4/6䝥䝺䝇Ⓨ⾲㻌 䠄᪥⤒⏘ᴗ᪂⪺, ᪥หᕤᴗ᪂⪺, 䝣䝆䝃䞁䜿䜲䝡䝆䝛䝇䜰䜲, ୰᪥᪂⪺, ⛉Ꮫ᪂⪺䛻ᥖ㍕䠅 㝵ᒙග䝟䝇䝛䝑䝖䝽䞊䜽 Grouped Routing Scheme Dropped Wavelength path ୍㒊䛾Ἴ㛗䝟䝇䛾䜏䛜WXC䜢⏝ Added Wavelength path 䝹䞊䝔䜱䞁䜾䛿䛺⢏ᗘ䛷ᐇ (Ἴ㛗⩌䝟䝇䛸ྠᵝ) ¾ 䝣䜯䜲䝞୰䛾Ἴ㛗䝟䝇䛿䚸ᗄ䛴䛛䛾䜾䝹䞊 䝥䛻ㄽ⌮ⓗ䛻ศ (GRE). ¾ BXC䛿GRE༢䛷䛾䝹䞊䝔䜱䞁䜾䜢ᢸᙜ Grouped Routing Entity (GRE) BXC wavelength path … … WXC waveband path … optical fiber … GR-OXC = The bundle of wavelength paths used for coarse granular routing GRE BXC: WaveBand Cross-Connect Waveband Path = a group of wavelength paths 1x2 WSS 1x2 WSS or SC Coupler 1xN WBSS z ྍ⬟䛺㝈䜚Ἴ㛗⩌䝟䝇༢䛷䝹䞊䝔䜱䞁䜾 Grouped Routing z WXC䛿౫↛䛸䛧䛶䛝䛟䚸つᶍ䛻㝈⏺ = Coarse granular routing with Fine granular add/drop Add/drop᧯స䛿⣽⢏ᗘ䛷ᐇ (Ἴ㛗༢) ¾ ௵ព䛾Ἴ㛗䜢GRE䜘䜚ᢳฟ䞉ᤄධྍ⬟ ¾ ᢳฟ䞉ᤄධ䛻䛿䚸GRE䛜⤊➃䛩䜛ᚲせ 䛿↓䛔 (“GRE䝟䜲䝥”) 47 48 Grouped Routing Scheme Destination GRE pipe 9 No termination functions are defined 9 GRE pipe is NOT “path” of ITU-T definition Source GRE pipe fiber GR-OXC ᐜ㔞ග䝹䞊䝔䜱䞁䜾⏝䝕䝞䜲䝇 Wavelength path ¾ Virtual Any pipes carrying multiple wavelength paths connectpaths multiple nodes. node can accommodate multiple wavelength ¾ Wavelength pathsdifferent can be added/dropped to/from virtual pipes at any having s-d node pairs into a GRE pipe. arbitrary node. 51 Ἴ㛗㑅ᢥ䝇䜲䝑䝏 Req. on WBSS’s spec [K.Takaha et.al. 2013] Higher degree ¾ Pan-European network (COST266) Ἴ㛗㑅ᢥ䝇䜲䝑䝏 Wavelength Selective Switch, WSS Min 26 Min 2 Link distance Max 1712 Node degree Max 8 Ave. 627.2 Ave. 3.92 Number of links z ධຊ䝫䞊䝖䛛䜙䛾Ἴ㛗ಙྕ䜢䚸Ἴ㛗ẖ䛻ᡤᮃ䛾ฟຊ䝫䞊䝖 䜈䝹䞊䝔䜱䞁䜾䛩䜛 51 Hop count Max degree 200 Number of nodes Min 1 Max 6 Ave. 2.76 Brussels COST266 network M : wavelengths of GRE capacity More wavelength paths ¾ 88 + 8 wavelengths 50GHz spacing ( C-band + a part of S-band, L-band ) Broader WB/GRE capacity Compact implementation z 䝟䝽䞊ㄪᩚ➼䚸ᵝ䚻䛺ᶵ⬟䜢୍䛴䛾⟽䛻ワ䜑㎸䜣䛷䛔䜛 z ఱྎ䛛䛾WSS䜢᥋⥆䛩䜛䛣䛸䛷䚸ග䜽䝻䝇䝁䝛䜽䝖䛜ᵓᡂྍ⬟ z 2005ᖺ㡭䛛䜙Ⓩሙ䚸⌧ᅾᛴ⃭䛻ฟⲴ㔞䜢ఙ䜀䛧䛶䛔䜛 52 Ratio of requred path # of selective switch † Y.Taniguchi et al., JOCN 2013 † 54 Proposed 8x8 WBXC Proposed 1x8 WBSS Four WBSSs module 8x8 WBXC WBSS WB1 switch WB2 switch WB3 switch WB4 switch z WB5 switch WB6 switch WB7 switch WB8 switch 1x8 cyclic AWG チップサイズ 74.6mm x 48.4mm チップサイズ 74.6mm x 48.4mm Transmission characteristics 1x8 Optical switch Property center wavelength error insertion loss channel loss deviation in each output loss polarization dependent loss 1dB channel bandwith 3dB channel bandwith adjacent crosstalk non‐adjacent crosstalk coherent crosstalk 30 mm Value ‐0.04 to 0.02 (nm) 4.47 to 7.69 (dB) Specifications 1.56 to 2.10 (dB) 0.02 to 0.41 (dB) > 0.10 (nm) > 0.18 (nm) < ‐ 37.03 (dB) ≤ ‐ 37.67 (dB) ≤ ‐ 32.19 (dB) Adaptation to 50 GHz spacing signals Larger WBSS Scale (1x5 WBSS → 1x8 WBSS) by very small increase of WBSS PLC chip’s size 1x8 WBSS chip Optical coupler 55 WBSS 8x8 WBXC 96 wavelengths / fiber •50 GHz spacing on ITU-T grid • 8 wavebands / fiber •12 wavelengths / waveband Throughput 7.68 Tbps Compared to previous device (5x5 WBXC) Number of ports : 1.60 times Size of WBXC module : 0.68 times Capacity of wavelengths : 1.50 times 56 Experiment:spectra まとめ 57 58 結論 通信量は依然として増加している(+30‐40%/年)。 エネルギー消費・装置コストには限度がある。 超低消費電力かつ超大容量を実現する上では、フォト ニックネットワークを導入していくことが必要である。 フォトニックネットワークの導入では、依然として高価な装 置コストをどのように抑制するかが鍵である。 ご清聴ありがとうございました!! 限定的な能力しか持たない装置・ネットワークと、その特 性を考慮した最適化手法を組み合わせることで大きな性 能アップを実現できる。 ネットワークアーキテクチャ・新たな光デバイスの開発に より、大幅な容量拡大が可能となった。 59 謝辞:本研究の一部は KAKENHI (23246072) およびSCOPE により実施された。 60