Comments
Transcript
Universal SAX: 空間充填曲線を利用した SAX の多次元時系列データへ
DEIM Forum 2012 D4-4 Universal SAX: SAX … 112-8610 2-1-1 {onishi.ayaka, chiemi}@is.ocha.ac.jp E-mail: E-mail: Lin Symbolic Aggregate Approximation (SAX) SAX Universal SAX SAX Symbolic Aggregate approximation 2 1. 1 1 SAX Universal SAX U-SAX Lin 1 Symbolic Aggregate 1 Approximation (SAX) [6] SAX 1 [9] xyz 3 3 SAX SAX x [6] 1 SAX 1 2 SAX 3 3 SAX x 4 Universal SAX 5 6 [3][10] 2. SAX SAX 1 w 1 a 2 SAX 1 1 SAX 2: SAX dist(qො, cො) qො cො 3 SAX [1][8] 4 dist(a,d) -0.67 d 0.67 1.34 SAX 1: SAX SAX (1) SAX (2) (3) a b 3 c 2 2 (4) (2) SAX (3) SAX SAX 2 Q C 3: SAX 2 2 SAX 2 dist(qො, cො) (A) Q C (B) n SAX a 3. SAX SAX Universal SAX 4. SAX [7] Universal SAX Li [12] SAX … Universal SAX [7] 2 SAX 1 Li 1 … SAX SAX 1 4.1 4.2 Universal SAX [12] SAX 4.1… … … 1 [4] 4 Z-ordering[5] 4 3 1 1 SAX SAX SAX 4: Z-ordering 2 … 1 1 2୩ × 2୩ (1) (2) (1) 1 (2) 2୩ × 2୩ (3) (2) k resolution 5 … 2 X k=2 Y (3) (2) (51,46,40,38,27,28,… 10,17,15,1) a , aଵ , aଶ , aଷ 5 (4) 6 6 (4) (4) (4) 5: … a 5 aଵ a aଶ a aଷ Z-ordering Z-ordering Z-ordering … k[3] 4.2 … SAX Universal 6: 2 Universal SAX 2 SAX Universal SAX 2 Universal SAX … 6 (2) … SAX (1) t , tଵ , … , t ୬ 6 2 x , xଵ , … , x୬ିଵ 7 2 7 (4) 8: (1)Br 2 (2)Br 2 … Universal SAX SAX 9 x, y dist(x, y ) dist′("d", "b") 1 1 xଵ, yଵ 2 dist(xଵ, yଵ ) dist′("c", "b") 0 SAX dist൫x, y ൯ ≧ dist′("d", "b") 9 SAX 7: Universal SAX … 2 … 8 (2) k 7 a 49 k=7 2 7 =128 128 9: Universal SAX Block resolution Br 1. 2. 8 a=49 Br 5 25 2 k=7 3. 1 Learning Repository … 1 Character Trajectories Data Set 2858 1 SAX 3 … 2 6 Z-ordering 1 x Z-ordering 3 y 2 11 (4) {data1, data2, 10 data3}, {data11,data12,data13}, {data21, data22, data23}, {data101, data102, data103}, {data171, data172, data173}, 10 {data226, data227, data228} 2 0 1 SAX 12 … (1) (2) Z-ordering SAX k = 10 MdSAX (4) a = 20 k = 10 MdSAX Universal SAX k = 10 a = 53 a=20 MdSAX a=7 MdSAX SAX 2 7ଶ = 49 10: Z-ordering 3 SAX 1 SAX 11: 5. UCI[11] Machine (3) a=7 20ଶ = 400 Universal SAX SAX Universal SAX … … … 12: (1) (2) (4) (2) (4) (2) (2) 53 20, (4) (2) 400 7 MdSAX (3) 2 49 (4) SAX 6. … SAX … … [1] Apostolico A, Bock M. E, and Lonardi, S. : Monotony of Surprise and Large-Scale Quest for Unusual Words. In proceedingsof the 6th Int’l Conference on Research , " In Computational Molecular Biology, 2002 Washington, DC, April 18-21. pp 22-31. [2] Christos FALOUTSOS. : 5.1 SPACE FILLING CURVES, " In SEARCHING MULTIMEDIA DATABASES BY CONTEXT , 1996, pp27-34 [3] Dengsheng Zhang and Guojun Lu. : Review of shape representation and description techniques, " In Pattern Recognition, Vol. 37, 2004. [4] D. Hilbert. :Über die stetige Abbildung einer Linie auf ein Flächenstück, " In Math. Ann. 38, 1891, pp459-460. [5] J.A. Orenstein. :Spatial query processing in an object-oriented database system, " In SIGMOD, 1986, pp326-336. [6] Jessica Lin, Eamonn Keogh, Stefano Lonardi and Bill Chiu. : A Symbolic Representation of Time Series, with Implications for Streaming Algorithms," In SIGMOD workshop, 2003. [7] Li Wei, Keogh, E. and Xiaopeng Xi. : SAXually Explicit Images: Finding Unusual Shapes," In the IEEE International Conference on Data Mining series (ICDM), 2006. [8] Lonardi, S. : Global Detectors of Unusual Words: Design, Implementation, and Applications to Pattern Discovery, " In Biosequences. PhD thesis, Department of Computer Sciences, Purdue University, August, 2001. [9] and . : SAX , " In deim2011, March 2011 [10] Sven Loncaric. : A survey of shape analysis techniques, " In Pattern Recognition, Vol. 31, 1998. [11] UCI. : http://archive.ics.uci.edu/ml/index.html," February 2012 [12] Yoshiki Tanaka and Kuniaki Uehara. : Discover Motifs in Multi Dimensional Time-Series Using The Principal Component Analysis And The MDL Principle, " In Workshop on Machine Learning and Data Mining in Pattern Recognition(MLDM), 2003.