Comments
Description
Transcript
アトミックGS 12
FOLD / DWHI を使う 巨大共鳴の計算 野地 俊平 東京大学大学院理学系研究科物理学専攻 物理学教室原子核実験グループ 2009 年 4 月 16 日 於 本郷理学部 1 号館 314 号室 この資料には 1. fold/dwhi 計算のための準備 (a) Z 係数 (OBTD) の計算 (1) ckz (2) oxbash (3) normod (b) oxbash-dens: 1 粒子軌道エネルギーの計算 2. fold/dwhi 計算 (a) wasw: 1 粒子殻模型波動函数の動径方向成分の計算 (b) fold: 遷移密度と形状因子の計算 (c) dwhi: 微分散乱断面積の計算 をこの順に書いた Z 係数の計算 (1) p-shell 模型空間, Cohen-Kurath 相互作用 (Nucl. Phys. 73 (1965) 1) 例) • • • • 実行例 N(1+ , gs) → 12 C(0+ , gs) 12 B(1+ , gs) → 12 C(0+ , gs) 10 C(0+ , gs) → 10 B(0+ , IAS) 10 Be(0+ , gs) → 10 B(0+ , IAS) 12 $ g77 ckz.for -o ckz $ ./ckz 12 7 5 T = 1 J = 1 1 EX = 0.000 ⇒ CKZ (K. Muto (TITech)) を用いるのが簡便 • 始状態の (A, Z , T , J, #) を指定 • 終状態の Z を指定 • Cohen-Kurath 相互作用を指定 ((6-16)BME, (8-16)POT, (8-16)BME) 指定した始状態から全ての可能な終状態への Z 係数が計算される PROGRAM MAIN IMPLICIT REAL*8 (A-H,O-Z) CALL ZCOUT(12,7,3,3,1,6,2) ! STOP END C C C C C C C C C C C C C C C C : : : : : 12 MASS NUMBER OF THE INITIAL AND FINAL STATES ATOMIC NUMBER OF THE INITIAL NUCLEUS 2T+1 OF THE INITIAL STATE 2J+1 OF THE INITIAL STATE ASCENDING SERIAL NUMBER OF THE INITIAL STATE AMONG STATES WITH THE SAME A, T AND J NZ2 : ATOMIC NUMBER OF THE FINAL NUCLEUS IPOT : PARAMETER WHICH SPECIFIES ONE OF THE THREE COHEN-KURATH INTERACTIONS IPOT = 1 : (6-16)2BME IPOT = 2 : (8-16)POT IPOT = 3 : (8-16)2BME 以下省略 C 6 6 0 0 2) 13.458 COHEN-KURATH (8-16)POT INTERACTION 3) 22.763 1 1 1 1 3 3 1 1 3 1 3 1 4) 28.907 5) 29.583 -0.024826 -0.076292 -0.060119 0.030587 -0.064947 -0.034098 -0.001696 -0.052878 N(gs) → 12 C(gs) N 7 5 T = 1 1 EX = 0.000 1 1 1 1 12 J 2J->2J' 1 3 3 -0.044084 -0.003437 -0.042137 1 3 1 0.195925 0.172568 0.145348 1 1 3 0.398462 -0.301410 0.040239 1 1 1 -0.033553 -0.008460 -0.065921 N(gs) → 12 C を (8-16)POT を用いて計算 SUBROUTINE ZCOUT(NA,NZ1,ITZ1,JJZ1,NOZ1,NZ2,IPOT) THIS SUBPROGRAM CALCUALATES AND PRINTS Z-COEFFICIENTS OF THE SPECIFIED TRANSITIONS. INPUT; NA NZ1 ITZ1 JJZ1 NOZ1 T 1 1 1 1 --> 1) 0.000 12 12 N --> 12 C 6 6 1 1) 2) 19.591 35.911 -0.093603 0.049688 0.011794 -0.036449 -0.057377 -0.010339 0.024495 0.028870 COHEN-KURATH (8-16)POT INTERACTION 以下省略 • サブルーチン zcout の呼び出し部分を書き換え, その度ごとにコンパイルして実行 • GNU Fortran Compiler (g77), Intel Fortran Compiler (v11) で動いた • 計算結果は標準出力に • 出力された Z 係数はそのまま DWBA コードに入力できる Z 係数の計算 (2) OXBASH を使う 実行例 12 Linux 版: ftp://ftp.nscl.msu.edu/以下略 Windows 版: http://www.nscl.msu.edu/以下略 Oxbash for Windows PC を Linux で使う Wine (Linux における Windows の互換レイヤー) を使う 準備 0. Wine では ~/.wine/drive_c/ が Windows の C:\ に相当する 1. ~/.wine/drive_c/aaa/ というディレクトリを作り、 この下に oxbash.zip を unzip する 2. ~/.wine/drive_c/aaa/oxbash/help/help.pdf を読む 3. ~/.wine/drive_c/aaa/oxbash/login/ 以下のファイルを修正 • login/login.bat set disk=c: set oxarea=\aaa\oxbash\ set nudir=\aaa\oxbash\ set path=%path%;%oxarea%exe\ copy oxbash-dir.dat %disk%\oxbash-dir.dat • login/oxbash-dir.dat 1 !c:\aaa\oxbash\exe\ ! directory with the exe files !c:\aaa\oxbash\sps\ ! directory with old sps and int files !c:\aaa\oxbash\spsn\ ! directory with new sps and int files default では drive letter が h になっていた C の基底状態波動函数の計算 (p-shell 内で実現される A = 12, J = 0, T = 0 である全状態の波動函数の計算) ~$ cd ~/.wine/drive_c/aaa/oxbash/login ~/.wine/drive_c/aaa/oxbash/login$ wine cmd CMD Version 1.0.1 C:\aaa\oxbash\login\へ移動 command prompt を起動 C:\aaa\oxbash\login>login login.bat を実行 C:\aaa\oxbash\login>set disk=c: C:\aaa\oxbash\login>set oxarea=\aaa\oxbash\ C:\aaa\oxbash\login>set nudir=\aaa\oxbash\ C:\aaa\oxbash\login>set path=C:\windows\system32;C:\windows;\aaa\oxbash\exe \ C:\aaa\oxbash\login>copy oxbash-dir.dat c:\oxbash-dir.dat C:\aaa\oxbash\login>sd rsh cd ../rsh/ C:\aaa\oxbash\rsh>md c12 mkdir c12 C:\aaa\oxbash\rsh>sd c12 C:\aaa\oxbash\rsh\c12>copy c:\oxbash-dir.dat . 対話的に batch file を作成 C:\aaa\oxbash\rsh\c12>shell found oxbash-dir.dat in current directory this is oxbash for windows ( using label.dat from area c:\aaa\oxbash\sps\ ) directory for exe files > c:\aaa\oxbash\exe\ directory for old sps and int files > c:\aaa\oxbash\sps\ directory for new sps and int files > c:\aaa\oxbash\spsn\ |------------ oxbash (hpc version 2005-12) -----------| this version allows up to 248 m-states and 42 j-states name for batch file : c12 option (lpe, den, st or h) : lpe 波動函数の計算 single-particle state file : p 詳細は sps/label.dat に ( using p.sps from area c:\aaa\oxbash\sps\ ) core は 4 He ゆえ価核子は 8 個 total number of valence particles : 8 any restrictions ? (y/n) : interaction filename : ckpot min. j, max. j : (2f) : 0.,0. スピン min. t, max. t : (2f) : 0.,0. アイソスピン bad j, t values (2f) (or <cr> for no more) : parity (0=+ve, 1=-ve, 2=both) : 0 パリティは正 ( using label.dat from area c:\aaa\oxbash\sps\ ) a0008a :basis +proj +oper +matrix +lanczos option (lpe, den, st or h) : st file c12.bat has been created C:\aaa\oxbash\rsh\c12>c12 stop 12c.bat を実行 Z 係数の計算 (2) 実行例 12 N(1+ , gs) → 12 C(0+ , gs) への 1 粒子遷移密度 (OBTD) の計算 1. 12 N(1+ , gs) の波動函数を計算 2. 12 C(0+ , gs) の波動函数を計算 3. 2 個の波動函数を用いて OBTD を計算 ~/.wine/drive_c/aaa/oxbash/login$ wine cmd name for batch file : n12c12 option (lpe, den, st or h) : lpe single-particle state file : p ( using p.sps from area c:\aaa\oxbash\sps\ ) total number of valence particles : 8 any restrictions ? (y/n) : interaction filename : ckpot min. j, max. j : (2f) : 1.,1. min. t, max. t : (2f) : 1.,1. bad j, t values (2f) (or <cr> for no more) : parity (0=+ve, 1=-ve, 2=both) : 0 ( using label.dat from area c:\aaa\oxbash\sps\ ) a2208a :basis +proj +oper +matrix +lanczos option (lpe, den, st or h) : lpe single-particle state file : p total number of valence particles : 8 any restrictions ? (y/n) : interaction filename : ckpot min. j, max. j : (2f) : 0.,0. min. t, max. t : (2f) : 0.,0. bad j, t values (2f) (or <cr> for no more) : parity (0=+ve, 1=-ve, 2=both) : 0 a0008a :basis +proj +matrix +lanczos option (lpe, den, st or h) : den d,c,1,2,t,4,is,iv,it,at,bt or h for help ? : t initial state m-scheme eigenfunctions filename : a2208a min.,max. vectors reqd. (-1 for all) :1,1 final state m-scheme eigenfunctions filename : a0008a min.,max. vectors reqd. (-1 for all) :1,1 a2208a min. j, max. j : (f) : 1.,1. a2208a min. t, max. t : (f) : 1.,1. bad j, t values (2f) (or <cr> for no more) : a0008a min. j, max. j : (f) : 0.,0. a0008a min. t, max. t : (f) : 0.,0. bad j, t values (2f) (or <cr> for no more) : restrict coupling for operator : mvec a2208a mvec a0008a tramp a2208a a0008a a2208a000.trd option (lpe, den, st or h) : st file n12c12.bat has been created C:\aaa\oxbash\rsh\n12c12>n12c12 実行結果 ~/.wine/drive_c/aaa/oxbash/rsh/n12c12$ cat a2208a000.obd dt format, made from oxbash binary output file: a2208a000.trd ! model-space name = p ! interaction name = ckpot ! ! ---------------------------------! | ai <-> af = 12 <-> 12 | ! | ji <-> jf = 1 <-> 0 | ! | ti <-> tf = 1 <-> 0 | ! | pi <-> pf = + <-> + | ! | #i <-> #f = 8 <-> 5 | ! ---------------------------------! ! one-body transition densities a(dj,dt) = ! = <f||| [a+(k1)a(k2)]^(dj,dt) |||i>/sqrt[(2dj+1)(2dt+1)] ! for input to some dwba codes ! z = a(dj,dt) * <ti,tiz,dt,dtz|tf,tfz>sqrt(2dt+1)/sqrt[(2ji+1)(2tf+1)] ! where <|> is the clebsch-gordan and dtz=tf-ti ! with edmonds (de-shalit talmi) reduced matrix element convention ! ! for n,l,j = 1.0 1.0 1.5 label k = 2 ! for n,l,j = 1.0 1.0 0.5 label k = 3 ! ! ji, jf, ti, tf, ! dj, ni, nf, ef, ei, exi, exf, ! 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1., 1., -71.045, -55.960, 0.000, 0.000, 3, 3, 0.00000, -0.05824, ! k1,k2,a(dt=0),a(dt=1) 3, 2, 0.00000, 0.33933, 2, 3, 0.00000, 0.69022, 2, 2, 0.00000, -0.07627, 0, Z 係数 (CKZ) ↔Wildenthal 遷移振幅 (OXBASH) の変換 Zj∆J,∆T p ,jh = Jf Tf ||| [a†jp × ãjh ]∆J,∆T ||| Ji Ti 2∆T + 1 √ √ Ti T3i ∆T ∆T3 |Tf T3f (2Ji + 1)(2Tf + 1) 2∆T + 1 2∆J + 1 ∆T 1 1 1 1 ∆J 1 1 1 1 1 2·1+1 1 1 1 −1|0 0 = √ (2 · 1 + 1)(2 · 0 + 1) 3 initial p3/2 p3/2 p1/2 p1/2 final p3/2 p1/2 p3/2 p1/2 CKZ −0.044084 0.195925 0.398462 −0.033553 OXBASH −0.07627 1 0.33933 ×√ 3 0.69022 −0.05824 2 +2 2 +1 +1 1 +1 1×1 1 +1 + 1 0 1/2 1/2 0 + 1 1/2 − 1/2 2 0 1 0 0 0 + 1 − 1 1/6 1/2 1/3 0 0 2/3 0 − 1/3 2 − 1 + 1 1/6 − 1/2 1/3 − 1 1 −1 0 − 1 1/2 1/2 2 − 1 0 1/2 − 1/2 − 2 −1 −1 1 Z 係数の計算 (3) Normal mode 波動函数による集団励起の記述 (Bohr&Mottelson) µ 励起状態 |LJM を IS/IV 型 tensor 演算子 OLJM の作用への応答とし, † これを 1p1h 状態 [ap ah ]LJM |0 で展開: |LJM = ph LJM † Zph [ap ah ]LJM |0 展開係数が Z 係数 (OBTD) であり µ ph; LJM|OLJM |0 µ 2 ph |ph; LJM|OLJM |0| LJM Zph = µ Tensor 演算子 OLJM • non-spin-flip 遷移 µ O(L=J)JM = riJ YJM (r̂i )tµ (i) i • spin-flip 遷移 µ = OLJM i riL [Y (r̂i ) ⊗ σi ]JM tµ (i) Remark: • The normal modes exhaust the full multipole strength (Non-energy-weighted sum rule is exhausted). • Only part of residual interactions between valence nucleons are taken into account → over prediction of strength computer code NORMOD by S. Y. van der Werf (KVI) PROGRAM TO CALCULATE SCHEMATIC COLLECTIVE WAVE FUNCTION OF R**(L+M)*YL OR R**(L+M)*[SIGMA*YL]. CARD 1: IRCONV = 0 FOR DW81, =1 FOR DWBA98. SINGLE PARTICLE RADIAL WAVE FUNCTIONS ARE DEFINED TO BE POSITIVE TOWARDS INFINITY IN DW81. IN DWBA91 THEY ARE DEFINED TO BE POSITIVE NEAR THE ORIGIN. CARD 2: NUMP= NUMBER OR PARTICLE SHELLS CARDS o o o o o o o 3: ( x NUMP) FNP = NUMBER OF NODES IN PATICLE RADIAL WAVEF. FLP = ANGULAR MOMENTUM OF PARTICLE F2JP = TWICE TOTAL ANG. MOM. OF PARTICLE U2= EMPTINESS OF PARTICLE-SHELL. NPTYPE=0 FOR NEUTRON, 1 FOR PROTON NPFLAG = MAJOR SHELL NUMBER OF PARTICLE ISHELP = NUMBER OF THE SHELL, USED TO WRITE THE WAVE FUNCTION TO DEVICES # 7-10, IN THE FORMAT : ISHELP, ISHELH, COEFF CARD 4: NUMH= NUMBER OR HOLE SHELLS CARDS o o o o o o o 5: ( x NUMH) FNH= NUMBER OF NODES IN HOLE RADIAL WAVEF. FLH= ANGULAR MOMENTUM OF HOLE F2JP(H)= TWICE TOTAL ANG. MOM. OF HOLE V2= FULLNESS OF THE HOLE -SHELL. NHTYPE=0 FOR NEUTRON, 1 FOR PROTON NHFLAG = MAJOR SHELL NUMBER OF PARTICLE ISHELH = NUMBER OF THE SHELL, USED TO WRITE THE WAVE FUNCTION TO DEVICES # 7-10, IN THE FORMAT : ISHELP, ISHELH, COEFF CARDS 6: CHARACTERISTICS AND RESTRICTIONS OF THE TRANSFER OPERATOR (READS CASES UNTIL EOF) o M= EXPONENT OF R IS (L+M), WHERE L=JTRAN FOR NATURAL PARITY AND L=JTRAN-1 OR L=JTRAN+1 FOR UNNATURAL PARITY TRANSITIONS o JTRAN= TRANSFERRED TOTAL ANG. MOM. o PARITY= PRODUCT OF PARITIES OF INITIAL AND FINAL STATE o AMASS = MASS OF TARGET, o ISPIN = ISOSPIN TRANSFER, ISPIN3 =3-COMPONENT OF ISPIN o REACTION: TYPE ISPIN ISPIN3 (P,P) T=0 0 0 (P,P) T=1 1 0 (P,N) 1 1 (N,P) 1 -1 o IDIFL= MINIMUM DIFFERENCE BETWEEN MAJOR SHELL NUMBERS o IDIFH= MAXIMUM DIFFERENCE BETWEEN MAJOR SHELL NUMBERS Z 係数の計算 (3) 計算例 計算結果 IVSM via the 90 Zr(12 B, 12 C)90 Y(1+ ) reaction 2ω, ∆J π = 1+ , ∆T = ∆S = 1, ∆L = 0 0i 2p 5ω odd 1f 0h 4ω even 3ω odd 2ω even 1ω odd 0 even 2s 1d 2p1/2 2p3/2 0h9/2 0h11/2 1d3/2 1d5/2 0g 1p 0f 1s 0d 0p 0s 1p1/2 1p3/2 1s1/2 0i 13/2 14 126 2 112 1f 5/2 1f 7/2 4 110 6 106 2s1/2 0g7/2 0g9/2 0f 5/2 0f 7/2 0d3/2 0d5/2 0p1/2 0p3/2 0s1/2 Possible 1p1h configurations ν ν π π −1 1d5/2 0d5/2 1f 7/2 0f 5/2−1 1d3/2 0d5/2−1 1f 5/2 0f 5/2−1 1d5/2 0d3/2−1 2p3/2 1p3/2−1 1d3/2 0d3/2−1 2p1/2 1p3/2−1 2s1/2 1s1/2−1 2p3/2 1p1/2−1 1f 7/2 0f 7/2−1 2p1/2 1p1/2−1 1f 5/2 0f 7/2−1 8 100 10 92 12 82 2 70 4 68 6 64 8 58 10 50 2 40 6 4 8 2 2 0 3 3 1 1 28 2 16 2 8 4 6 5 3 1 5 7 1 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 0 0 0 0 4 4 4 5 5 5 5 1 2 3 4 5 6 7 ν(1d5/2) ν(1d3/2) ν(2s1/2) ν(1f 5/2) ν(1f 7/2) ν(2p1/2) ν(2p3/2) 2 5 1.0 1 2 8 π(0d5/2−1 ) −1 2 3 1.0 1 2 9 π(0d3/2−1 ) 0 1 1.0 1 2 10 π(1s1/2−1 ) 3 7 1.0 1 3 11 π(0f 7/2 ) 3 5 1.0 1 3 12 π(0f 5/2−1 ) 1 3 1.0 1 3 13 π(1p3/2−1 ) −1 1 1 1.0 1 3 14 π(1p1/2 ) 1 1 90 1 -1 2 2 ./normod < zrnpivsm.inp > zrnpivsm.out cat zrnpivsm.out M= 2 JTRAN= 1 PARITY= 1 ISPIN= 1 ISPIN3=-1 AMASS= 90 IDIFL= 2 and IDIFH= 2 hbar w 32 20 2 cat zrnpivsm.inp 38 4 6 $ 1 7 1 1 2 1 1 2 2 7 0 0 1 0 0 1 1 2 $ $ 14 2 NP LP 2JP TYPE NH LH 2JH TYPE S=0 L=1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 2 2 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STREN STREN STREN STREN 2 2 2 2 2 0 0 3 3 3 3 3 1 1 1 1 1 5 5 3 3 3 1 1 5 5 5 7 7 1 1 3 3 3 (1) (2) (3) (4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = = = = 0.0000E+00 0.7192E+03 0.0000E+00 0.1127E+07 OVERLAP <1!1> OVERLAP <2!2> OVERLAP <3!3> OVERLAP <4!4> OVERLAP <1!3> OVERLAP <2!4> <T=0!T=1> <1! <T=0!T=1> <2! <T=0!T=1> <3! <T=0!T=1> <4! 1 2 2 2 2 0 2 0 3 3 1 3 3 1 1 3 1 1 = = = = = = = = = = 5 3 5 3 1 3 1 7 5 3 7 5 3 1 5 3 1 EL EL EL EL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.0000E+00 0.1000E+01 0.0000E+00 0.1000E+01 0.0000E+00 -.1267E-06 0.0000E+00 -.1000E+01 0.0000E+00 -.1000E+01 = = = = 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 S=1 L=0 -0.2556 0.2733 -0.2733 0.1366 0.0000 0.0000 -0.2582 -0.3703 0.2070 0.0000 -0.3207 0.3703 -0.2880 0.1018 0.0000 -0.3220 0.2880 FM** FM** FM** FM** S=1 L=1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 S=1 L=2 -0.1052 -0.0984 0.0984 0.1968 0.2899 -0.1941 0.0000 0.1630 0.2916 0.5915 -0.1882 -0.1630 0.1268 0.3586 -0.3348 -0.1134 -0.1268 6 4 6 8 1 粒子殻模型波動函数の, 動径成分の境界条件は DW 81: 漸近的に正 FOLD: 原点付近で正 (WASW の出力する波動函数がそうなっている) であり, 双方とも • Y と σ s の結合順は + s = j • 角度成分には Ym の他に i を含まない ことから, FOLD と DW 81 とでは, 入力する Z 係数の位相が逆らしい (要確認!) 1 粒子軌道エネルギーの計算 実行例 実行結果 Zr(12 B, 12 C)90 Y 反応 ((n, p) 型) を念頭に置き, 90 Zr の陽子, 90 Y の中性子, の 1 粒子軌道エネルギーを計算する (OXBASH の dens で基底状態密度を計算する) ~/.wine/drive_c/aaa/oxbash/rsh/zr90$ cat dens.dao (type of potential),x = ( sk20 ), 0.0000 90 ~/.wine/drive_c/aaa/oxbash/login$ wine cmd C:\aaa\oxbash\rsh\zr90>dens initialized with ws2 potential and ia,iz = initialized from hbwtab, hbw = (previous input option = 16 8 13.260 ) new tty option (h for help) : cp cp : change type of potential [ type of potential: ws,ho,ht,hr,hl,skn,bh,wq,wen (h for help) ], x sk20 skn,x : (x=0) skyrme(n) n=20=(skx) bab prc58 220, 1998 initialized from hbwtab, hbw = (previous input option = cp ia,iz 90,40 13.260 ) new tty option (h for help) : az az : read ia,iz (default previous values = 16 8) ia,iz = 90 40 ----- proton bound state results ----k n l j e ie occ 1 1 s 1/2 -34.404 1 2.00 52.26 53.54 6.00 2 1 p 3/2 -28.984 1 4.00 52.26 53.34 6.00 3 1 p 1/2 -27.576 1 2.00 52.26 53.29 6.00 4 1 d 5/2 -22.295 1 6.00 52.26 53.09 6.00 5 1 d 3/2 -19.262 1 4.00 52.26 52.98 6.00 6 2 s 1/2 -17.428 1 2.00 52.26 52.91 6.00 7 1 f 7/2 -14.610 1 8.00 52.26 52.80 6.00 8 1 f 5/2 -9.644 1 6.00 52.26 52.62 6.00 9 2 p 3/2 -8.464 1 4.00 52.26 52.58 6.00 10 2 p 1/2 -7.035 1 2.00 52.26 52.52 6.00 11 1 g 9/2 -6.107 1 0.00 52.26 52.49 6.00 12 1 g 7/2 -0.200 3 0.00 53.47 53.47 6.00 13 2 d 5/2 -0.200 3 0.00 53.11 53.12 6.00 14 2 d 3/2 -0.200 3 0.00 56.06 56.06 6.00 15 3 s 1/2 -0.200 3 0.00 56.04 56.05 6.00 16 1 h11/2 -0.200 3 0.00 56.62 56.62 6.00 17 1 h 9/2 -0.200 3 0.00 67.73 67.73 6.00 18 2 f 7/2 -0.200 3 0.00 66.44 66.45 6.00 19 2 f 5/2 -0.200 3 0.00 70.59 70.60 6.00 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.268 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 ia,iz = 90 39 ----- neutron bound state results ----k n l j e ie occ 1 1 s 1/2 -40.288 1 2.00 45.28 44.16 6.00 1.251 1.100 0.731 0.650 1.222 (previous input option = az ) new tty option (h for help) : gd 2 1 p 3/2 -33.932 1 4.00 45.28 44.34 6.00 1.251 1.100 0.731 0.650 1.222 gp : calculate wf and ground state (gs) point densities 3 1 p 1/2 -32.696 1 2.00 45.28 44.37 6.00 1.251 1.100 0.731 0.650 1.222 gd : "gp" plus folding of finite nucleon size into gs densities 4 1 d 5/2 -26.880 1 6.00 45.28 44.53 6.00 1.251 1.100 0.731 0.650 1.222 途中の標準出力を省略 5 1 d 3/2 -24.062 1 4.00 45.28 44.61 6.00 1.251 1.100 0.731 0.650 1.222 ----- (type of potential,x) = (sk20, 0.0000) ------- a,z = 90 40 6 2 s 1/2 -23.760 1 2.00 45.28 44.62 6.00 1.251 1.100 0.731 0.650 1.222 7 1 f 7/2 -19.219 1 8.00 45.28 44.75 6.00 1.251 1.100 0.731 0.650 1.222 (previous input option = gd ) new tty option (h for help) : az 8 1 f 5/2 -14.444 1 6.00 45.28 44.88 6.00 1.251 1.100 0.731 0.650 1.222 9 2 p 3/2 -15.063 1 4.00 45.28 44.86 6.00 1.251 1.100 0.731 0.650 1.222 ia,iz (default previous values = 90 40) 10 2 p 1/2 -13.485 1 2.00 45.28 44.91 6.00 1.251 1.100 0.731 0.650 1.222 90,39 11 1 g 9/2 -11.002 1 10.00 45.28 44.98 6.00 1.251 1.100 0.731 0.650 1.222 12 1 g 7/2 -4.289 1 0.00 45.28 45.16 6.00 1.251 1.100 0.731 0.650 1.222 initialized from hbwtab, hbw = 8.797 13 2 d 5/2 -6.480 1 1.00 45.28 45.10 6.00 1.251 1.100 0.731 0.650 1.222 14 2 d 3/2 -4.302 1 0.00 45.28 45.16 6.00 1.251 1.100 0.731 0.650 1.222 (previous input option = az ) new tty option (h for help) : gd 15 3 s 1/2 -5.086 1 0.00 45.28 45.14 6.00 1.251 1.100 0.731 0.650 1.222 途中の標準出力を省略 16 1 h11/2 -2.222 1 0.00 45.28 45.22 6.00 1.251 1.100 0.731 0.650 1.222 17 1 h 9/2 -0.200 3 0.00 54.43 54.43 6.00 1.251 1.100 0.731 0.650 1.222 ----- (type of potential,x) = (sk20, 0.0000) ------- a,z = 90 39 18 2 f 7/2 -0.200 3 0.00 49.21 49.20 6.00 1.251 1.100 0.731 0.650 1.222 19 2 f 5/2 -0.200 3 0.00 53.38 53.38 6.00 1.251 1.100 0.731 0.650 1.222 (previous input option = gd ) new tty option (h for help) : st 20 3 p 3/2 -0.200 3 0.00 51.88 51.88 6.00 1.251 1.100 0.731 0.650 1.222 the output file is dens.dao 21 3 p 1/2 -0.200 3 0.00 53.11 53.10 6.00 1.251 1.100 0.731 0.650 1.222 22 1 i13/2 -0.200 3 0.00 56.56 56.56 6.00 1.251 1.100 0.731 0.650 1.222 initialized from hbwtab, hbw = 8.797 1 粒子軌道エネルギーの計算 N USHELL の speplot を使うと, dens.dao から 1 粒子軌道エネルギーを読んで plot することができる C:\aaa\nushell\rsh\zr90>ren dens.dao zr90.spe C:\aaa\nushell\rsh\zr90>speplot zr90 90 40 sk20-skx found proton data s 1 -34.404 p 3 -28.984 p 1 -27.576 d 5 -22.295 40 d 3 -19.262 s 1 -17.428 f 7 -14.610 f 5 -9.644 p 3 -8.464 p 1 -7.035 g 9 -6.107 g 7 -0.200 d 5 -0.200 d 3 -0.200 s 1 -0.200 h11 -0.200 h 9 -0.200 f 7 -0.200 f 5 -0.200 0 0.000 found neutron data s 1 -41.081 p 3 -34.642 p 1 -33.452 d 5 -27.465 d 3 -24.678 s 1 -24.161 f 7 -19.722 f 5 -14.958 p 3 -15.648 p 1 -14.112 g 9 -11.461 g 7 -4.741 d 5 -7.076 d 3 -4.878 s 1 -5.403 h11 -2.652 h 9 -0.200 f 7 -0.200 f 5 -0.200 protons p 3 -0.200 出力を適当に抜粋 0 0.000 10 90 Zr E (MeV) -20 -30 90 Y sk20−skx sk20−skx 50 0 -10 http://www.nscl.msu.edu/ (中略) NuShell (後略) http://www.nscl.msu.edu/以下略 http://www.nscl.msu.edu/以下略 h11 d3 g7 s1 d5 g9 p1 p3 f5 f7 s1 d3 d5 g9 p1 f5 p3 f7 f7 s1 d3 f7 d5 s1 d3 d5 d5 p1 p3 p1 p3 s1 h11 d3 g7 s1 d5 p1 f5 p3 s1 d3 p1 p3 d5 51 g9 p1 p3 f5 g9 -40 -50 39 p1 p3 s1 s1 s1 − parity + parity neutrons protons − parity + parity neutrons 1 粒子殻模型波動函数の動径方向成分の計算 • Woods-Saxon ポテンシャルを用いて計算. • 1 粒子束縛エネルギーを入力. ポテンシャルの深さが fit される. • “参加” する軌道の波動函数を全て求めておく. B → 12 C p 1p3/2, 1p1/2 n 1p3/2, 1p1/2 – 12 – 208 Pb → Tl n 3s1/2, 2d5/2, 2d3/2, 1g9/2, 1g7/2 p 2s1/2, 1d5/2, 1d3/2, 0g9/2, 0g7/2 208 $ cat wsaw12b12c.inp 0.1 20. 1 B12C12 11. 5. 60. 15.9570 1. 1. 11. 5. 60. 15.9570 1. 1. 11. 5. 60. 3.3704 1. 1. 11. 5. 60. 3.3704 1. 1. -1. $ cat wsaw208pb208tl.inp 0.1 20. 1 PB208TL 207. 81. 60. 0.654 1. 0. 207. 81. 60. 1.192 1. 2. 207. 81. 60. 0.405 1. 2. 207. 81. 60. 3.462 1. 4. 207. 81. 60. 1.000 1. 4. 207. 81. 60. 7.692 1. 0. 207. 81. 60. 10.070 1. 2. 207. 81. 60. 8.513 1. 2. 207. 81. 60. 12.190 1. 4. -1. 150 0 .65 0. .65 0. .65 0. .65 0. 150 1.25 1. 1.25 1. 1.25 0. 1.25 0. 1.25 0.5 1.25 1.5 1.25 0.5 1.25 1.5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 1.25 0. 1.25 0. 1.25 0. 1.25 0. 1.25 0. 1.25 1. 1.25 1. 1.25 1. 1.25 1. 1.25 0.5 1.25 2.5 1.25 1.5 1.25 4.5 1.25 3.5 1.25 0.5 1.25 2.5 1.25 1.5 1.25 3.5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 7.0 .5 0 .65 3. .65 2. .65 2. .65 1. .65 1. .65 2. .65 1. .65 1. .65 0. • 1 粒子軌道のエネルギーは – Sp (12 C), Sn (12 B) の実験値を用いる – OXBASH , などする N USHELL の dens を用いて計算する 1 粒子殻模型波動函数の動径方向成分の計算 計算結果 0.6 12 Rn(r ) 0.4 B, 12 C 208 Pb, 208 Tl 0.2 0.0 となって, -0.2 ϕnm (r) = Rn (r)Ym(θ, φ) と変数分離し, size parameter 0.5 rRn(r ) b≡ を導入すれば, 動径方向成分は 0.0 -0.5 ∞ 0 1 Rn (r) = (2 + 1)!! dr r 2 (Rn (r ))2 = 1 0.0 2.5 5.0 7.5 10.0 12.515.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 r (fm) r (fm) 参考: 3 H, 3 He の 1s 波動函数 1.0 Green’s function Monte Carlo Woods-Saxon (J. Carlson, PRC 36, 2026 (1987), etc.) Rn(r ) 参考: 調和振動子ポテンシャルに対する厳密解 調和振動子ポテンシャル 1 U(r) = mω 2 r 2 2 に対しては, Schrödinger 方程式は 1 mω 2 2 ∇ + r ϕ(r) = Eϕ(r) Hϕ(r) = ω 2 mω mω 1/2 r b 3 r2 −r 2 /2b2 ×e 1 F1 1 − n, + ; 2 2 b 2−n+3 (2n + 2 − 1)!! b3 π 1/2 (n − 1)! となる. 1 F1 は Kummer の合流型超幾何函数で, 級数展開は 3 r2 F 1 − n, + ; 1 1 2 b2 n−1 (2 + 1)!! r 2k (n − 1)!2k (−1)k = (n − k − 1)!k! (2 + 2k + 1)!! b k=0 である. エネルギー固有値は 3 1 ω = N + ω En = 2n + − 2 2 0.5 0.0 0.0 5.0 r (fm) 10.0 15.0 0.0 5.0 r (fm) 10.0 15.0 である. 遷移密度, 形状因子の計算 軌道の名前 (番号と軌道の対応) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 = = = = = = = = = = = = = = = 0s1/2 0p1/2 0p3/2 1s1/2 0d3/2 0d5/2 1p1/2 1p3/2 0f5/2 0f7/2 2s1/2 1d3/2 1d5/2 0g7/2 0g9/2 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 = = = = = = = = = = = = = = = 2p1/2 2p3/2 1f5/2 1f7/2 0h9/2 0h11/2 3s1/2 2d3/2 2d5/2 1g7/2 1g9/2 0i11/2 0i13/2 3p1/2 3p3/2 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 = = = = = = = = = = = = = = = 2f5/2 2f7/2 1h9/2 1h11/2 0j13/2 0j15/2 4s1/2 3d3/2 3d5/2 2g7/2 2g9/2 1i11/2 1i13/2 0k15/2 0k17/2 有効相互作用 $ cat franey_270 4 3 4 .25 5890.37 .40 -1361.95 .55 -229.750 1.4 -10.5000 .25 -6999.55 .40 349.040 .55 -68.9521 .15 80527.5 .25 -7432.99 .40 -29.5714 .70 -60.2151 3 3 4 .25 2212.64 .40 -900.238 .55 85.9426 .25 -807.467 .40 559.786 .55 -4.87654 .15 127002. .25 -10469.4 .40 385.365 .70 -4.85957 1.00 1.00 3470.90 -1347.93 104.810 -10.5000 -3321.20 -294.795 22.3046 15605.2 -1091.07 177.657 16.1522 -51517.2 16778.0 -2599.18 31.5000 5809.93 -1035.73 -50.7069 3.50000 3629.68 -676.925 -279.248 424.916 -61.2376 9.69778 -108413. 7476.58 -284.082 3.72577 -2206.25 -351.375 -6.27354 -2866.75 228.178 -50.1090 実部 虚部 103 1.00 1.00 |t(q)| (MeV · fm3 ) $ cat fold12b208pbjp1jt1.inp 1 1PBBIVSM 600 0.03 3000. 12. 1 1 1 0.0+ 1.0+ 0.0 +0.0 1.0 +1.0 3 3 0.000 2 2 1 0.0 -0.033553 Cohen-Kurath 2 3 1 0.0 0.195925 3 2 1 0 0 0.398462 (8-16)POT 3 3 1 0.0 -0.044084 -1 -1 B12C12 1.0+ 0.0+ 23.0 +23.0 22.0 22.0 3 3 0.000 22 11 1 0.0 -0.3681 24 13 1 0.0 -0.4032 24 12 1 0.0 0.4311 23 13 1 0.0 -0.4311 Normal Modes 23 12 1 0.0 0.2155 26 14 1 0.0 0.4586 25 14 1 0.0 0.2713 -1 -1 PB208TL 0.897 3.67 1.000 franey_270 2 0 1 1 -1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 1 1 -1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10 2 C tστ tτC tτT 101 10 0 10−1 0 Fourier 変換されて 遷移密度計算に用いられる (inter.for) tτLS 2 4 6 q (fm) 8 Love and Franey, PRC 24 1073 (1981) 遷移密度, 形状因子の計算 形状因子とそのノルム 遷移密度とその Fourier 変換 0.01 0.00 -0.01 -0.02 12 ρ(r ) -0.04 -0.05 0.02 B→ 12 C ρ(q) -0.03 0.01 0.00 -0.01 -0.02 -0.03 208 -0.04 -0.05 4πr 2 ρ (fm−1 ) 4 2 Pb → 208 Tl 0 1 2 3 4 5 6 7 8 9 10 r (fm) 208 Pb → 208 Tl -4 1.0 12 B→ 12 C Im 0.0 dr r ρ(r ) = 0 0 1 2 3 4 5 6 7 8 9 10 r (fm) Im Re 101 208 10 Pb(12 B, 12 C)208 Tl 10−1 10−2 208 0 1 10−3 Pb → 208 Tl 2 3 −1 q (fm ) 4 v (q) = 4π 4π Re 0 0 2 Pb(12 B, 12 C)208 Tl 0.5 K 208 1.5 5 10−4 0 2 角運動量代数を除いて ∞ F (r ) ∼ dq q 2 jJr v (q)ρab (q)ρAB (q) 0 -2 3 2 1 0 -1 -2 -3 -4 -5 3 2 1 0 -1 -2 -3 -4 -5 |F (r )| 0.02 ρL (q) = 4π ∞ 0 ∞ 0 4 6 8 10 12 14 r (fm) 形状因子 ds s 2 jK (qs)v K (s) 有効相互作用 dr r 2 jL (qs)ρL (r ) 遷移密度 正しい定式化は J. Cook, K. W. Kember, et al., PRC 30, 1538 (1984) を参照のこと 微分散乱断面積の計算 微分散乱断面積の計算結果 0. 0.991 0. 1.186 0. 0. 0. 0.991 0. 1.186 0. 0. • Reaction Q-value (Qgg ) for 208 Pb + 12 B: 8369.92 keV (208 Tl + 12 C) • IVSM の励起エネルギーを 8369.92 keV とした (IVSM の Q-value を 0 MeV とした) 光学模型ポテンシャル 101 Pb(12 B, 12 C)208 Tl Ex = 8369.92 keV 208 100 dσ/dΩ (mb/sr) $ cat dwhi12b208pbjp1jt1.inp 1210000041000000 208PB(12B,12C)208TL PBBIVSM 161. 0. 0.05 300 2 2 0 0 2 0.03 600 3000. 12. 5. 208. 82. 1.00 1. -10. 0.803 0.815 0. -35.82 0. 0.0 12. 6. 208. 81. 1.00 1. -10. 0.803 0.815 0. -35.82 0. 0 2 2 0. 0. 0. 1. 2 2 2 0. 0. 0. 1. 12b208pbjp1jt1.plot 011 10−1 211 10−2 10−3 (Jr Jp Jt ) 0 J. Y. Hostachy, et al., “Elastic and inelastic scattering of 12 C ions at intermediate energies” Nucl. Phys. A490 (1988) 441-470. (Experiment at the Lboratoire National Saturne at Sacley) 1 2 3 4 Θcm (deg) 5 6