...

spin 1 - Indico

by user

on
Category: Documents
115

views

Report

Comments

Transcript

spin 1 - Indico
Non-SUSY, Exotic の今後
阿部智広
名古屋⼤学⾼等研究院
KMI
!
!
新学術領域研究 (研究領域提案型)
ヒッグス粒子発見後の素粒子物理学の新展開
∼LHCによる真空と時空構造の解明∼
キックオフ会合
!
2016.8.31
世話人からの要望
• 今後5年くらいを俯瞰してnon-susy のレ
ビューをしてほしい
• diphoton についても触れてほしい(ICHEP
の結果が出る前の依頼)
750 GeV
• more than 400 papers!!!!
• 飢えた理論屋と統計の罠
(local ~4σ , global ~2σ )
• global が重要ってヒッグスの発⾒の前に
強調されたいたのに…
• ⾊々アイデアが出たのは良かった
ICHEP2016でのrappoccio氏のスライドより
ZV Limits : 2015 data
• #650isthenew750?
• Deja vu all over again?
• ATLAS talk up next!
• Remember LookElsewhere Effect accounts
only for other masses in
THIS plot
• Does not account for the
>1000 other LHC
searches ;)
• Stay tuned for 2016 data
on the way
5 Aug 2016
3.9 sigma local, 3.5 sigma global
(global = other masses in this plot)
21
Why BSM?
SMで説明できないもの
• 暗⿊物質 (?)
• バリオン数⽣成
• ニュートリノの質量の起源
•…
Why BSM @ TeV scale?
階層性問題 (electroweak scale << Planck scale)
• TeV scale SUSY
• Warped extra dimension
• Little Higgs
• Gauge Higgs unification
• composite Higgs
• technicolor
•…
昨今、どれも厳しい雰囲気が漂う。微調整などが必要。
!
TeVスケールに新物理があるというロジックが他に何かあるとうれしい
歴史に学ぶ
Fermi theory
⌫µ
⌫µ
µ
⌫¯e
e
/ GF E 2
Λ ~ 300GeV ?
µ
⌫¯e
W
mW = 80 < 300GeV
e
WW scat
W
W
Λ < 1TeV ?
W
W
2012年ヒッグス粒⼦発⾒
mh = 125 GeV < 1TeV
amplitude. In the SM, the Higgs boson contr
are proportional to E 4 E −2 = E 2 , where E −2
WL
WL
WL
4
terms which are proportional to E .
hVV coupling がもしずれていたら
= ig
W
W
WL
WL
=
+
=
WL
W
WL
WL
WL
W
4E 2
M ' 2 (1
v
WL
10
2V ) < 32⇡
L@TeVD
= ig 2
WL
WL
WL
6
4L
W
WL
WL
WL
2
0.80
WL
0.85
WL
WL
4
m4
f
WL
WL
abe cde
f
!
" #s
2
(−4 − x)c=+ −iδ
O(xab)δ cd,
v
WL
WL
#
$ #
4
4
E
E
15
2
ace bde
ac bd c −
−ig 2 4 f abe f cde (−4 + 4x)c
=
ig
f
f
(1
−
c)(3
+
c)
+
=
−iδ
δ
m
+ m4
+…2
4
2E
ace bde
−ig
+L2x(c − 1)] WL
WL m4 f f [(1
WL− c)(3 + c)W
4
WL
WL
2E
ade bce
−ig
f
f
[(1
+
c)(3
−
c)
+
2x(c
+
1)]
,
#
WL m4
WL
# (2.1.2) = −iδ ad
$δ bc −
4
E
15
= ig 2 4 f ade f bce (1 + c)(3 − c) + − c
m
2
W
W
L
WL
8WL
WL
2E
WL
WL
L
WL From eqn.(2.1.7) and eqn.(2.1.11)–(2.1.12), we
"
E abe cde !
2
f
f
(−4
−
x)c
+
O(x
)
,
m4
where
4
(2.1.3)
m2h % ab cd
i 2 δ δ + δ ac δ bd +
v
This is not a monotonically
increasing function
m2
≡ high
, c ≡&cosinθ,the SM.
#
can$be keptx %
at
2 energy
4
E
E
15
3
= ig 2 4 f ace f bde (1 − c)(3 + c) +
c−
x + O(x2 ) ,
m and where cos θ is the scattering
2
2 angle. As we can see from eqn.(2
9
dependence is canceled among the diagrams, and the leading term
(2.1.4)
#
$
%
&
4
E
15
3
2
= ig0.90
f ade f bce 0.95
(1 + c)(3 − c)
+ − c−
x + O(x2 ) ,
1.00
4
m
2
2
kV
8
(2.1.5)
ヒッグス粒⼦の精密測定は今後重要!!
where
m2
x ≡ 2 , c ≡ cos θ,
E
(2.1.6)
歴史に学ぶ
Fermi theory
⌫µ
⌫µ
µ
⌫¯e
e
/ GF E 2
Λ ~ 300GeV ?
µ
⌫¯e
W
mW = 80 < 300GeV
教訓
•
現象をとにかく式で書き下す
•
カットオフ(Λ)が出てくる
•
Λ以下に新物理があるはず!
•
アノマリーがあったら同じことをやってみよう!!
e
e anomalous magnetic moment of the muon aµ ⌘ (g
2)/2, so-called muon g
2,
やってみよう
a very precisely measured observable. The latest measurement of aµ by the E821
laboration [1] gives
アノマリー
exp
• ミュオン ag-2
µ = 11 659 208.0 (5.4)(3.3) ⇥ 10
10
.
(1)
• フレーバー (B → D(*)τν、Br(B → K μ μ)/Br(B → K e e))
it has been well known that there is a discrepancy between the experimental value
•…
d the prediction of the standard model (SM). According to the calculation evaluated
Refs. [2, 3]
ミューオン g-2: 3σ以上のずれ
aexp
µ
aSM
µ = (28.7 ± 8.0) ⇥ 10
10
aexp
µ
aSM
µ = (26.1 ± 8.0) ⇥ 10
10
,
Davier
et.al. et.
(2011)
(Davier
al.)
,
Hagiwara
et.al. (2011)
(Hagiwara
et. al.)
!
discrepancy
more由来なら、そのスケールはどこ?
than the 3 level, which can be considered as an indirect evidence
これがisBSM
the existence of a new physics model. This discrepancy will be further probed at
rmilab [4] and J-PARC [5] in the near future. Since the size of the deviation is the
me order as the electroweak contribution aEW
= 15.4 ⇥ 10
µ
10
[6], we expect that new
ysics exists at the electroweak scale if the strength of new interactions is as large as
ミュオン g-2
SM 次元6演算⼦
c0 g 0 ¯
+
`L
2
2
(4⇡) ⇤
aµ
µ⌫
Amp ⇠ ūi
q⌫ ✏ µ
u
2mµ
µ⌫
HeR Bµ⌫
c
g ¯
`L
2
2
(4⇡) ⇤
v
1
aµ = 2mµ p
2 (4⇡)2
✓
µ⌫
Wµ⌫ HeR + (h.c.)
c
c
2 02 + 2
⇤
⇤
◆
0.01
1.3
0.001
0.42
0
例)c = 0 のとき
c
Λ [TeV]
1
13
TeV スケールが強く期待できる!
0.1
4.2
実験スケジュール
2016
2017
2018
2019
2020
2021
LHC
E989@FNAL
1512.07214
E34@JPARC
1512.07214
?
?
?
http://agenda.linearcollider.org/event/6772/contributions/33275/attachments/27394/41633/muon_g-2EDM_MS.pdf
今まさにやるべき。
?
模型あれこれ
spin 0
• charged Higgs
• two-Higgs doublet
•…
ミュオンg-2
spin 1/2
• new vector-like leptons
•…
spin 1
• abelian
• non-abelian
…
•…
spin-0 の寄与
1-loop
• δaμ > 0 for CP-even
• δaμ < 0 for CP-odd, charged.
2-loop (1-loop と逆転)
• δaμ < 0 for CP-even
• δaμ > 0 for CP-odd, charged.
単純に荷電スカラーを⼊れるだけだと、より実験との乖離が⼤きくなる
c
¯
`L `L
+
++
c
µR µR
spin-0 でうまくいく例
[TA, Sato, Yagyu (2015)]
lepton specific two-Higgs doublet model
• SM + one more Higgs doublet
• two Higgs : H1 and H2
★
★
SM-like Higgs (h)
new scalars (H0, A0, H±)
• important parameter: tanβ ( 1 < tanβ < 100)
• the lepton Yukawa interactions are enhanced by tanβ
u, d
ℓ
0
0
±
H ,A ,H
u, d
⇠
SM
yu,d
1
⇥
tan
H0, A0, H±
ℓ
⇠ y`SM ⇥ tan
lepton physics
• new particles affect to all the
physics with leptons
ℓ
H0, A0, H±
ℓ
• good point : muon g-2
f
f
0
0
±
A
0 , 0H ,±H
A ,H ,H
µµ
★
★
0
0
±
± ,A ,H
H 0 , A0 , H H
, Z, W ±
µ, ⌫µ
µµ, ⌫µ
µ
µ, ⌫µ,
µ ⌫µ
tanβ
• On the other
are important
⇠ y`SM ⇥ tan
tanβ
,Z
tanβ
Figure 1:
1: One-loop
One-loop (left)
andand
two-loop
Barr-Zee
(right) (right)
diagramsdiagrams
which givewhich
correc
Figure
(left)
two-loop
Barr-Zee
to the muon g 2.
to
muon g 2.
hand,theconstraints
on the lepton couplings
From the kinetic terms of the scalar fields, the ratios of the coupling constant am
the scalars
kineticand
terms
the scalar
fields, asthe ratios of the coupling
theFrom
CP-even
gaugeofbosons
are extracted
⌧!
µ⌫
¯µbosons
, ⌧ !aree⌫extracted
¯e
lepton coupling universality!
⌧⌫
⌧⌫
the CP-even scalars
and
gauge
as
ghV V
gHV V
= s ↵,
= c ↵.
(V = W, Z)
LHC signature!
ghV V,SM
ghV V,SM
ghV V
gHV V
= c ↵.
(V = W, Z) ¯
ghV
As it is seen in Eqs.
(22),
(23) and (24), in gthe
limit of sin(
a) ! 1, both hf f
V,SM
hV V,SM
=s
↵,
hV V couplings become the same as those in the SM, so that we can call this limit a
As it is seen in Eqs. (22), (23) and (24), in the limit of sin(
SM-like limit.
a) !
hV V couplings become the same as those in the SM, so that we can call
Result: g-2 with constraints
mH0 = mH+ = 250 GeV
70
1σ
d by
exclude
lietcy
rbsy a
ay
e
v
i
d
n
τ
u
d
n
lepto Exclude
σ
2
Exc
lud
ed
50
parameters for the muon g-2
40
30
20
Excluded by Bs → µµ
tanβ
tanβ
60
→ττ
lud
by +
e e →
ττA
Exc
yZ
ed b
10
20
30
40
50
60
★
10 GeV < mA < 30 GeV
★
250 GeV < mH± < 350 GeV
★
mH0 = mH±
★
30 < tanβ < 40
もっと広いパラメータでもできるという議論もある
(aligned 2HDM) [Han, Kang, Sayre (2016)]
mA [GeV]
mA [GeV]
mH0 = mH+ = 350 GeV
• g-2 within 1σ region (dark blue) is completely excluded!
• g-2 within 2σ region (light blue) is survive!
• constraint from lepton universality is strong.
by +
e e →
ττA
70
40
30
Exc
tanβ
50
lud
ed
60
y
ded b
Exclu
τ
Z →τ
y
y τ deca
db
Exclude
mH+ [GeV]
fb.
take
=other
20 GeV,
mHonce
m
= 1 and
sin( We ↵)
!m
1. AIn
words,
sin(
↵)than
6 1 ↵)
=
is given,
bothtan
the = 35.
H ± , sin(
•
hττ
: =more
10%
deviation
couplings deviate from those of the SM values. In our scenario, the value
240
3%
302, the value
30(65),
ssed
in Sec.sections
of sin(
↵) describes
“SM-like ness”
of h, namely,
: Cross
of the
electroweak
production
processes
expressed
in
Eq.
200 220
240
260
280
300 320
340
360
200 220
p
se oftothe
processes
expressed
Eqs.
at s = 14 TeV in the
ngs
the multi-tau
SM particles
become the
same as in
those
in (67)-(70)
the SM prediction
0.0
h(125) couplings (1)
1.7
%
0.9
.04
13.0
−0
2.6−0.3%
1.1Higgs 16.2
o0determine2.1
the structure
of the
sector4 . 8.2
6%
−0.25%
0
4.8the deviation
2.3
28.2
14.9 h couplings
23.2 2.3
tudying
the3.9
pattern of
in
the various
can be4.3
a
72.5 35
37.4
39.4 20.6
22.9 12.0
.0
−0
tant
the property
h from the
0 to study
9.7 in4.7
53.5 of 29.5
45.1SM prediction.
7.2 12.8
358.0the deviation
260
280
300
mH+ [GeV]
320
340
from the SM prediction
edetermined
importantfrom
to study
theThus,
deviation
the
property
of h from
the SM prediction.
Eq. (62).
a smallinbut
non-zero
deviation
from the
-1
cular,
given. studying the pattern of the deviation in the various h couplings can be a
SM
SM
ghττκ/g
l hττ
4
-1.1 sector
describe
thedetermine
deviation inthe
thestructure
h couplings,
the so-called
scaling
l tool to
of we
theintroduce
Higgs
.
as discussed
its deviation
X = “SM-like
X 1. From
X = ghXX /g
we
inhXX
Sec.and
2, the
value offrom
sin( unity;
↵) i.e,
describes
ness”
2σ bound
from µττ at the
LHCof h, namely,
-1.2
and the approximate formulae given in Eqs. (28) and (29), we obtain
h24)couplings
to the SM particles become the same as those in the SM prediction
-1.3
◆
2 1. In other words, once sin(
imit of sin(V ' ↵) !
↵) 6= (71)
1 is given, both the
1+
,
2
tan
-1.4
¯
✓
nd hf f couplings deviate
from
2
m2h those of the SM values. In our scenario, the value
q '
(72)
-1.5
2
tan2from2m
↵) is determined
Eq.
(62).
Thus,
a
small
but
non-zero
deviation from the
H±
m2h
2m2A
-1.6
limit is given.
` ' 1
+ 2 .
(73)
2
mH ± mH ±
✓
m2h
m2H ±
2m2A
m2H ±
◆
m2A
,
m2H ±
rder to describe the deviation in the h couplings,
we introduce the so-called scaling
-1.7
r panels of Fig. 8, we show
the contour plots for
SM
V and
q , where
defined as X = ghXX /ghXX and its deviation
-1.8 from unity; i.e,
on the mH ± -tan
 = X 1. From
X
± dependence
plane. In the lower panel, we show
the
m
H
200 220 240 260
280
300
320
3) and (24) and the approximate formulae given in Eqs. (28) and (29), we obtain
he pattern of the deviation was investigated in various extended Higgs sectors; m
e.g.,
[GeV]
H+
✓
◆
n singlets, doublets and triplets at the tree level. For example,
it was
2 shown that the
2
2
m
2m
A the correlation
h
awa interactions in the 2HDM
can be well discriminated
by measuring

'
1
+
,
(71)
V
2
2
2 [71] that even if
tion in hdd¯ and h`` couplings [70]. Intan
addition,
it wasm
clarified
in
Ref.
m
H±
H±
✓ discrimination
◆
unt the one-loop corrections to the hf f¯ couplings,
of
the 2HDMs is still
2
m2h
m2A
q '
,
(72)
tan2
2m2H ± Vm2H ±
2
2
m
2m
h
±
1 X 2 + 2A.
(73)
X ` ' 27
H
mH ± mH ±
±
340
360
Contour plots for  (upper left) and q (upper right) on
here  = 
1. The m
dependence of ` is shown in t
= 35. We take m = M = m
and m = 20 GeV in all th
h(125) couplings (2)
• hγγ : more than 10% deviation from the SM prediction
γγ)SM
0.9
0.85
GeV
0
3
=
mA
20 GeV
γγ)/Br(h
↑
Br(h
↑
10 GeV
0.8
2σ bound from µγγ at the LHC
0.75
0.7
200
220
240
260
280
300
mH+ [GeV]
320
340
360
Figure 10: Ratio of the branching fraction Br(h !
)/Br(h !
)SM in our scenario
with tan = 35. The solid, dashed and dotted curves show the cases with mA =10, 20
and 30 GeV, respectively. The horizontal dashed line shows the bound from µ given in
0
H,
0
A,
±
H
at the LHC
many tau leptons are produced at the LHC 14TeV
q
⌧
⌧
0
W, Z
A
⌧
H 0, H ±
xsec [fb]
mH ± [GeV]
200
250
300
350
q̄
H+H
18.6
8.0
3.9
2.1
H+H
22.0
9.7
4.8
2.6
A0
⌧
W, Z
H H
11.3
4.7
2.3
1.1
H+A
116
53.5
28.2
16.2
H A
67.0
29.5
14.9
8.2
AH
101
45.1
23.2
13.0
4⌧
29.3
7.2
2.3
0.9
3⌧
50.1
12.8
4.3
1.7
4⌧ W
4⌧ Z
143
72.5
39.4
22.9
70.7
37.4
20.6
12.0
Table 2: Cross sections of the electroweak production processes expressed
in Eq. (65),
p
and those of the multi-tau processes expressed in Eqs. (67)-(70) at s = 14 TeV in the
unit of fb. We take mA = 20 GeV, mH = mH ± , sin(
↵) = 1 and tan = 35.
be quite important to study the deviation
in the
property
of h Tsai
from(2016)])
the SM prediction.
(断⾯積以外にも議論している論⽂としては
[Chun,
Kang,
Takeuchi,
In particular, studying the pattern of the deviation in the various h couplings can be a
spin-1/2 の例
extra heavy lepton
[Kannike, Raidal, Straub, Strumia (2012)]
Name U(1)Y SU(2)L SU(3)c Q = T3 + Y Lepton number couplings
L0
L3/2
E0
Ea
Na
N0
1
2
3
2
1
1
0
0
2
2̄
1
3
3
1
1
1
1
1
1
1
0, 1
1, 2
1
0, 1, 2
1, 0, +1
0
EL0 H ⇤
E(L3/2 ✏H)
E 0 LH ⇤
E a (H ⇤ ⌧ a L)
N a (H✏⌧ a L)
N 0 LH
+1
+1
1
1
1
1
Table 1. List of new leptons that can couple to the SM lepton doublet L = (⌫µ , µL ) or singlet
0
0
E = µR (with
the
same
gauge
quantum
numbers
as
L
and
E
) and to the Higgs doublet H =
p
カイラリティー
muon
ではなく新しいパラメタでフリップできる
SU(2)
doubletYukawa
with Y = 1/2).
For each new complex field we also add the
(0, v + h/ 2) (an を
corresponding conjugate representation: e.g. L0 is accompanied by L̄0 in the 2̄ representation with
なので one-loop で説明可能。計算が楽。
hypercharge +1/2.
In this paper we assume that:
a) The aµ anomaly [1, 2]
exp
aexp
µ = aµ
aSM
µ ⇡ (2.8 ± 0.8) 10
9
(1.1)
where the first term comes from the usual SM relation
between fermion masses and their couplings to the Higgs
boson, and the second term represents contributions from
the ML;E terms.
In the limit (6), the approximate analytic formulas for all
the couplings of Z, W, and h can be easily obtained from
diagonalization matrices (7) and (8).
spin-1/2 の例
extra heavy lepton
#aZ!
m! X
b 2
b 2
¼" 2 2
½ðjgZ!e
j þ jgZ!e
j Þm! FZ ðxZb Þ
L
R
8$ MZ b¼4;5
b Z!eb ,
gR
Þmeb GZ ðxZb Þ*;
þ ReðgZ!e
L
(32)
where xZb ¼ ðmeb =MZ Þ2 , the couplings are given in
Eqs. (12) and (13) with index ! + e2 , and the loop
functions are as follows: [Dermisek, Raval (2013)]
NATION OF THE MUON g ! 2 ANOMALY WITH . . .
PHYSICAL R
FIG. 1. Feynman diagrams contributing to the muon magnetic moment that involve loops of extra fermions and the Higgs, Z and W
bosons.
0.5 < κμ <24
013017-5
mL < 200 GeV
ALTAS bound: κμ <3.5
[ATLAS-CONF-2016-041]
spin-1 の例
flavor blind
flavor dependent
U(1)
hidden photon
Lμ-Lτ
non-diagonal
…
non-abelian
…
…
• non-abelian はフレーバ物理など⽭盾する
• hidden photon もダメ。
[Biggio, Bordone, Luzio, Ridolfi (1607.07621)]
hidden photon 2015
Status%in%2015
遠藤基さんの益川塾でのトークスライドより
http://www.cc.kyoto-su.ac.jp/project/MISC/slide/seminar-s/2015/150521-Endo.pdf
electron
g-2
KLOE
electron
g-2
BaBar
WASA
HADES
PHENIX
APEX
test
MAMI
NA48
KLOE
BaBar
E774
Beam
-dump
Flavor
factories
Muon g-2
2015 update:
NA48
→ exclude g-2
E141
E137
[Endo,Hamaguchi,Mishima w/ updates]
Fixed
target
遠藤基さんの益川塾でのトークスライドより
http://www.cc.kyoto-su.ac.jp/project/MISC/slide/seminar-s/2015/150521-Endo.pdf
Lμ:Lτ%Gauge%Symmetry
• (broken) U(1) symmetry: anomaly-free
• interact only with 2nd & 3rd generation leptons
g-2 =
+
SM
Lμ-Lτ gauge boson
遠藤基さんの益川塾でのトークスライドより
http://www.cc.kyoto-su.ac.jp/project/MISC/slide/seminar-s/2015/150521-Endo.pdf
Viable%in%low:mass%region
8
und e.g. in [43].
muon-neutrino
Therefore, the
s is e↵ectively
q
µ
Z
µ
severely constrainedµ by m ) .
(33)
q
µ
neutrino-trident
production:
s and coupling
Z
0
Z0
sults from LEP
ptons and neurelations. We
gray in Fig. 3.
arameter space
tic mixing [45].
th ATLAS and
measurement of
ur charged lepnalysis [47] has
C data set and
o be compared
7 ± 0.03)10 6 .
on to the prom the Feynman
ediate on-shell
Z (see also [19]
in [47], genernterfaced with
ts should have
ding three with
n is an electron
cation efficienant mass of the
CCFR
Z→4l
LHC
FIG. 5. The main NP contribution to the Z ! 4` process at
the LHC.
⌫
⌫
Z0
µ
µ+
g-2 [±2σ]
N
N
FIG. 6. The leading order contribution of the Z 0 to neutrino
trident production. This diagram interferes constructively
(destructively) with the corresponding SM diagram involving
a W -boson (Z-boson).
[Altmannshofer,Gori,Pospelov,Yavin]
II.
A SIMPLIFIED MODEL
kinetic Z
thus
removi
Our simplified model Lagrangian for the Z 0 coupling
straints, e.g
non-diagonal
model
exclusively to the muon and tau sector of the SM is given
beam dump
[Altmannshofer, Chen, Dev, Soni (1607.06832)]
by
0
LZ 0 = gL
µ̄
↵
PL ⌧ + ⌫¯µ
0
+ gR
µ̄
↵
↵
PL ⌫⌧ Z↵0
PR ⌧ Z↵0 + H.c. ,
where PL,R = (1 ⌥ 5 )/2 are the chirality projection operators. Due to SU (2)L invariance, the couplings of the
left-handed neutrinos and charged leptons are identical,
whereas we do not introduce right-handed neutrinos in
order to⌧ keep the
⌧ model minimal. The left-handed and
0
0
right-handed 0couplings gL
and gR
could in principle conZ
taindiagram
CP violating
phases.
We will take into account the
1. Feynman
for the Z contribution
to the
alous magnetic moment of the muon in our model.
complex
nature of these
couplings in all the equations
µ
µ
below; in our numerical
analysis however, we will take
4
en by the general expression [70]
0 simplicity. We allow di↵erent LFV
them
to
be
real
for
Feynman
diagram
for
the
Z
contribution
to the
"
⇢
✓
◆
2 Z 1
0 2m⌧ in our model.
mcouplings
µ
2
2 the
ous
magnetic
moment
of
muon
of
the
Z
to
leftand
right-handed
charged
lepdx
C
(x
x
)
x
+
2
µ =
V
4⇡ 2 0
mµ
tons,
which✓will be crucial
for the (g 2)µ explanation.
◆
2
x
m⌧
0
2
(m
m
)
x
1
We
assume
the
Z
can acquire mass from the spon⌧
µ
2m2Zgeneral expression
mµ [70]4
n by the
#
⇢
taneous
breaking
of some extra U (1)0 symmetry, under
0
0
3III.
(2)
M
The flavo
a new contr
2
This can b
gauged U (1
the only an
ments to SM
light Z 0 wit
Another po
tau number
der both SU
模型あれこれ
spin 0
• charged Higgs
• two-Higgs doublet
•…
ミュオンg-2
spin 1/2
• new vector-like leptons (~O(100)GeV)
•…
spin 1
• hidden photon
• flavor dependent (100MeV, 100GeV, …)
…
• non-abelian
•…
Summary
• テラスケールの物理を期待する根拠の1つ、ミュオンg-2
!
• spin-0, two-Higgs doublet model
★ hττ κγγ 10%以上ずれる
★ tau rich なシグナル
!
• spin-1/2, O(100)GeV の新しいレプトン
!
• spin-1, flavor dependent なやつ
★ Lμ - Lτ : O(100) MeV
★ non-diagonal (μ-τ-Zʼ coupling) : ~ O(100)GeV
29
Fly UP