...

Vol.12 - 大阪大学 産業科学研究所

by user

on
Category: Documents
20

views

Report

Comments

Transcript

Vol.12 - 大阪大学 産業科学研究所
Vol.12
研究成果報告書
第12巻(2013年)
Nanoscience and Nanotechnology Center
ISIR, Osaka University
大阪大学産業科学研究所
産業科学ナノテクノロジーセンター
目
次
センター長の挨拶 ------------------------------------------- 1
産業科学ナノテクノロジーセンター 概念と組織図 ------------- 2
専任分野
ナノ機能材料デバイス研究分野 ----------------------------- 4
ナノ極限ファブリケーション研究分野 ----------------------- 6
ナノ構造・機能評価研究分野 ------------------------------- 8
ナノ機能予測研究分野 ------------------------------------ 10
ソフトナノマテリアル究分野 ------------------------------ 12
バイオナノテクノロジー研究分野 -------------------------- 14
客員・兼任分野
環境・エネルギーナノ応用分野
---------------------------- 16
ナノ知能システム分野 ------------------------------------ 17
ナノ医療応用デバイス分野 -------------------------------- 18
ナノシステム設計分野 ------------------------------------ 19
ナノデバイス評価・診断分野 ------------------------------ 21
ナノテクノロジー産業応用分野
---------------------------- 26
業績
ナノ機能材料デバイス研究分野 ---------------------------- 31
ナノ極限ファブリケーション研究分野
---------------------- 35
ナノ構造・機能評価研究分野 ------------------------------ 39
ナノ機能予測研究分野 ------------------------------------ 41
ソフトナノマテリアル究分野
------------------------------ 44
バイオナノテクノロジー研究分野 -------------------------- 47
環境・エネルギーナノ応用分野
---------------------------- 50
ナノ知能システム分野 ------------------------------------ 52
ナノ医療応用デバイス分野 -------------------------------- 54
ナノテクノロジー設備供用拠点
---------------------------- 58
共同研究 -------------------------------------------------- 57
外国人・国内客員教員
-------------------------------------- 59
附属施設
ナノ加工室 ---------------------------------------------- 60
ナノテク先端機器室 -------------------------------------- 61
ナノテクノロジー設備供用拠点
編集後記
---------------------------- 62
センター長の挨拶
吉田 陽一
「産業科学ナノテクノロジーセンター」は、原子・分子を積み上げ
材料を創製するボトムアップナノテクノロジー、材料を極限まで削り
ナノデバイスを作製するトップダウンナノテクノロジー、さらにそれ
らの融合による産業応用を目指したナノサイエンス・ナノテクノロジ
ーを推進することを目的として、2002 年に産業科学研究所に設置さ
れた全国初のナノテクノロジーセンターで、今年度で 11 年目を迎え
ました。
設立当初は、専任 3、所内兼任 7、学内兼任 3、国内・外国人客員 3
の 16 研究分野からなる 3 研究部門制で発足した当センターですが、
2003 年にはナノテクノロジー総合研究棟が完成し、全学のナノテクノロジー研究を推進する
ためのオープンラボラトリーの運用も開始されました。さらに、2006 年にナノ加工室が設置
され、2009 年の産業科学研究所の大幅な改組に伴い、専任 6 研究分野を中心とした新しい組
織に充実強化されました。さらに、2010 年には文部科学省の低炭素研究ネットワークの大阪
大学サテライト拠点が設置されました。
また、産学官の学外ナノテクノロジー研究者のための共同施設として、2002 年のセンター
設立当初に、ナノテクノロジープロセスファンドリーが設置され支援活動を開始しました。
この活動は、2007 年には阪大複合機能ナノファウンダリへ、さらに 2012 年には、ナノテク
ノロジープラットフォームに引き継がれており、現在、
「微細加工」および「分子・物質合成」
の2つの重要な役割を果たしています。
現在の産業科学ナノテクノロジーセンターは、専任 6 研究分野を中心として、所内兼任 3、
学内兼任 6、国内・外国人客員 3 の 18 研究分野からなり、さらに、ナノテクノロジーに特化
した供用最先端機器を設置するナノテク先端機器室が設けられています。幅広くハード、ソ
フト、生体材料分野においてトップダウンとボトムアップナノプロセスの融合によるナノシ
ステムの創成、さらに、理論および評価との研究融合による新たな展開を図ることで、ナノ
テクノロジー研究を学際融合基盤科学技術へと発展させ、同時に学内・国内・国外の多彩な
ネットワークを構築して、ナノテクノロジー研究の拠点となることを目指しています。
-1-
―2―
ナノテクノロジー設備供用拠点
Nanotechnology Open Facilities
―3―
ࢼࣀᶵ⬟ᮦᩱࢹࣂ࢖ࢫ◊✲ศ㔝
ᩍᤵ
⏣୰ ⚽࿴
෸ᩍᤵ ⚄ྜྷ ㍤ኵ
ຓᩍ ᭹㒊 ᱻࠊ⸨ཎ ᏹᖹ
≉௵◊✲ဨ
ᒸ⏣ ᾈ୍
኱Ꮫ㝔Ꮫ⏕ 㧗ぢ ⱥྐࠊNguyen Thi Van AnhࠊWei Tingtingࠊᕝ㇂ ೺୍ࠊᕷᮧ ᪸ኈࠊ
ᒣᓮ ⩧ኴࠊᇼ ❳ஓࠊబࠎᮌ ⩼
Ꮫ㒊Ꮫ⏕ ᕥᾏ ᗣኴ㑻ࠊ୰ᮧ ᣅ㑻
ᢏ⾡⿵బဨ
ᒾᇛ ᩥ
஦ົ⿵బဨ
ዟᮏ ᭸Ꮚ
a) ᴫせ
ᵝࠎ࡞እሙ(ගࠊ☢ሙࠊ㟁ሙࠊ ᗘ)࡟ᑐࡋᕧ኱࡟ᛂ⟅ࡋከᙬ࡞≀ᛶࢆ♧ࡍ㑄⛣㔠ᒓ㓟໬≀ᮦᩱ⩌ࢆᑐ
㇟࡜ࡋࠊࢺࢵࣉࢲ࢘ࣥࢼࣀࢸࢡࣀࣟࢪ࣮(㉸ᚤ⣽ࢼࣀຍᕤᢏ⾡)࡜࣎ࢺ࣒࢔ࢵࣉࢼࣀࢸࢡࣀࣟࢪ࣮(㉸ⷧ
⭷࣭࣊ࢸࣟ᥋ྜ࣭ேᕤ᱁Ꮚ⤖ᬗᡂ㛗)ࢆ⼥ྜࡍࡿࡇ࡜࡟ࡼࡗ࡚ࠊᮃࡳࡢ఩⨨࡟ࠊᮃࡳࡢ≀㉁࣭㟁Ꮚ≧ែࡢ
✵㛫ⓗ㓄⨨࡜ḟඖᛶࢆࢼࣀࢫࢣ࣮࡛ࣝ௵ព࡟ไᚚࡍࡿᢏ⾡᪉ἲㄽ࡜ࡑࡢ㓟໬≀ࢼࣀᵓ㐀ࡀ♧ࡍᇶ♏≀
ᛶࡢ⌮ゎࢆ㏻ࡋ࡚ࠊ㧗ᶵ⬟࠿ࡘ┬࢚ࢿࣝࢠ࣮㥑ືࡢ᪂ཎ⌮ࢹࣂ࢖ࢫࡢᵓ⠏࡟ྲྀࡾ⤌ࢇ࡛࠸ࡿࠋ௒ᖺᗘࡢ
୺࡞ᡂᯝࢆ௨ୗ࡟ヲ㏙ࡍࡿࠋ
b) ᡂᯝ
࣭஧㓟໬ࣂࢼࢪ࣒࢘㸦VO 2 㸧ࡢ㟁Ꮚ┦ࢻ࣓࢖ࣥほᐹ࡜㟁Ẽఏᑟ≉ᛶࡢྠ᫬ ᐃ
VO 2 ࡣࠊᐊ ௜㏆࡛㟁ሙࠊ☢ሙࠊග࡞࡝ࡢእ㒊่⃭࡟ࡼࡗ࡚ࠊᩘ
᱆࡟ࡶཬࡪ㟁Ẽఏᑟ⋡ࡢኚ໬ࢆకࡗࡓ㔠ᒓ-⤯⦕య㟁Ꮚ┦㌿⛣ࢆ㉳ࡇ
ࡍࡓࡵ᪂つࢹࣂ࢖ࢫ๰ฟ࡟ྥࡅࡓ᭷ᮃ࡞ᮦᩱ࡛࠶ࡿࠋࡇࡢ≀㉁ࡢ┦
㌿⛣Ⅼ㏆ഐࡣࠊࢼࣀ㹼࣐࢖ࢡࣟࢫࢣ࣮ࣝࡢ⤯⦕యࠊ㔠ᒓ㟁Ꮚ㞟ᅋࡀ
ධࡾΰࡌࡗࡓ┦ΰྜ≧ែ࡜࡞ࡗ࡚࠸ࡿࠋࡇࡢ✵㛫ⓗ࡟ࣛࣥࢲ࣒࡟ฟ
⌧ࡍࡿ㔠ᒓ㟁Ꮚ┦ࢻ࣓࢖ࣥ࡟ᑐࡋ࡚ࠊಶࠎ࡟┦㌿⛣࣭఩⨨ไᚚࡀྍ
⬟࡟࡞ࢀࡤࠊ㟁Ꮚ┦ࢻ࣓࢖ࣥࢆࣅࢵࢺ࡜ࡍࡿ᝟ሗグ᠈ࠊ㟁Ꮚ┦㓄ิ
ࢆไᚚࡋࡓ㟁Ꮚ┦ࢧ࣮࢟ࢵࢺ➼ࠊ᪂つ࢚ࣞࢡࢺࣟࢽࢡࢫ࡬ࡢᒎ㛤ࡀ
ᮇᚅ࡛ࡁࡿࠋᮏᖺᗘࡣࠊ㓟໬≀࢚ࣞࢡࢺࣟࢽࢡࢫᒎ㛤ࡢ࣮࢟࡜࡞ࡿ
㟁Ꮚ┦ࢻ࣓࢖ࣥࡢ᣺ࡿ⯙࠸࡜㟁Ẽఏᑟ≉ᛶ࡜ࡢ㛵ಀ࡟↔Ⅼࢆᙜ࡚◊
✲ࢆ⾜ࡗࡓࠋTiO 2 (001)ᇶᯈୖࡢVO 2 ࡢ࣐࢖ࢡࣟࢫࢣ࣮ࣝࢻ࣓࢖ࣥࢆ
฼⏝ࡋࡓගᏛ㢧ᚤ㙾ほᐹ࡜㟁Ẽఏᑟ ᐃࡢྠ᫬ホ౯ࢆ⾜࠸ࠊ㔠ᒓ㟁
Ꮚ┦ࢻ࣓࢖ࣥࡢ㓄⨨㸦୍ḟඖ࣭஧ḟඖࢻ࣓࢖ࣥ㓄ิ(ᅗ 1(a)-(c)㸧ࡢ㐪
࠸࡟ࡼࡾ኱ࡁࡃ㟁Ẽఏᑟ≉ᛶࡀኚ໬ࡋࠊಶࠎࡢ㟁Ꮚ┦ࢻ࣓࢖ࣥࡢ┦
㌿⛣࡟ࡼࡾᛴᓧ࡞᢬ᢠ⋡ኚ໬ࡀ☜ㄆ࡛ࡁࡓ㸦ᅗ 1(d)㸧[ㄽᩥ 1]ࠋ
ࡲࡓࠊAl 2 O 3 (0001)ᇶᯈୖࡢVO 2 ⷧ⭷࡟࠾࠸࡚ࡣࠊᩘ༑㹼ᩘⓒࢼࣀ
࣓࣮ࢺࣝࡢࢻ࣓࢖ࣥࡀᏑᅾࡋ࡚࠸ࡿ࡜ゝࢃࢀ࡚࠾ࡾࠊࢻ࣓࢖ࣥࢧ࢖
ࢬ࡜ྠ⛬ᗘ࡟࡞ࡿ 200 nmᖜࡢVO 2 ⷧ⭷ࢼࣀ࣡࢖࣮ࣖ࡟࠾࠸࡚ࡶࠊ
ಶࠎࡢࢼࣀࢫࢣ࣮ࣝ㟁Ꮚ┦ࢻ࣓࢖ࣥࡢ┦㌿⛣ࡀほ ࡉࢀ [ㄽᩥ 5]ࠊ
ࢻ࣓࢖ࣥࡢ┦㌿⛣࣭㓄⨨ࡀࢹࣂ࢖ࢫ≀ᛶᕥྑࡍࡿ㔜せ࡞せᅉ࡛࠶ࡿ
ࡇ࡜ࢆぢฟࡋࡓࠋ㓟໬≀࢚ࣞࢡࢺࣟࢽࢡࢫࡢⓎᒎ࡟࡜ࡗ࡚㔜せ࡞ࡇ
ᅗ 1 TiO2(001)ᇶᯈୖࡢ VO2 ⷧ⭷ࡢ㔠ᒓࢻ
࣓࢖ࣥ(a)஧ḟඖ㓄⨨ࠊ(b)୍ḟඖ┤ิ㓄⨨ࠊ
࡜ࡣࠊࡇࡢ⮬↛࡟୚࠼ࡽࢀࡓ࢔ࢻࣞࢫ✵㛫ࢆዴఱ࡟฼⏝ࡋ࡚࠸ࡃ࠿
(c)୍ḟඖ୪ิ㓄⨨ࠊ(d)ࢻ࣓࢖ࣥ㓄⨨ࣃࢱ
࡜࠸࠺ࡇ࡜࡛࠶ࡾࠊࡇࡢᚓࡽࢀࡓ▱ぢࢆ௒ᚋࡢࣔࢵࢺࢹࣂ࢖ࢫస〇
࣮ࣥࡢ㐪࠸࡟ࡼࡿ᢬ᢠ- ᗘ᭤⥺ࠊཬࡧ㔠
ᒓࢻ࣓࢖ࣥ㓄⨨㢧ᚤ㙾ീ
―4―
࡟ά࠿ࡍࠋ
࣭ࢫࣆࢿࣝࣇ࢙ࣛ࢖ࢺⷧ⭷࡟࠾ࡅࡿ୙᥹Ⓨᛶ࣓࣮ࣔࣜ⌧㇟
ḟୡ௦┬㟁ຊ࢚ࣞࢡࢺࣟࢽࢡࢫࡢᢸ࠸ᡭ࡜ࡋ࡚ᮇᚅࡉࢀࡿ㑄
⛣㔠ᒓ㓟໬≀ࡢ㟁Ꮚ≉ᛶࢆእ㒊㟁⏺࡟ࡼࡾኚㄪࠊไᚚࡍࡿ◊✲ࡀ
┒ࢇ࡟⾜ࢃࢀ࡚࠸ࡿࠋ≉࡟㏆ᖺࠊ㟁⏺ຠᯝࢺࣛࣥࢪࢫࢱᵓ㐀ࡢࢤ
࣮ࢺ⤯⦕ᒙ࡟㟁⏺㉁ࢆ⏝࠸ࡓ㟁Ẽ஧㔜ᒙࢹࣂ࢖ࢫ࡟࠾࠸࡚ࠊ㟁⏺
ㄏ㉳㉸ఏᑟࠊ☢ᛶࢫ࢖ࢵࢳࣥࢢ࡞࡝ࡢ᪂ወ≀⌮⌧㇟ࡢⓎぢࡀ┦ḟ
ࡄ࡞࡝ࠊ㟁⏺ຠᯝࢆ⏝࠸ࡓ◊✲ࡀ኱ࡁ࡞㐍ᒎࢆ♧ࡋ࡚࠸ࡿࠋᮏ◊
✲࡛ᡃࠎࡣࠊࡇࡢ㟁⏺ຠᯝᡭἲࢆࣇ࢙ࣛ࢖ࢺ☢ᛶయ࡛࠶ࡿ
Zn x Fe íx O 4 ࡢⷧ⭷࡟㐺⏝ࡋࡓ࡜ࡇࢁࠊ㏻ᖖࡢ㟼㟁࢟ࣕࣜ࢔ࢻ࣮ࣆ
ࣥࢢຠᯝ⏤᮶࡜ࡣ␗࡞ࡿ୙᥹Ⓨᛶࡢ㟁⏺ຠᯝࡀ⏕ࡌࡿࡇ࡜ࢆぢ
ฟࡋࠊ㟁Ꮚ㍺㏦≉ᛶࢆྍ㏫࣭୙᥹Ⓨⓗ࡟ࢫ࢖ࢵࢳࣥࢢ࡛ࡁࡿࡇ࡜
ࢆᐇドࡋࡓ[ㄽᩥ 2,3]ࠋ࢖࢜ࣥᾮయ㟁⏺㉁ࢆ௓ࡋࡓṇ㸭㈇ࡢࢤ࣮ࢺ
㟁ᅽࡢ༳ຍ࡟ࡼࡾ㸦ᅗ 2 (a)㸧ࠊ㟁Ẽఏᑟ࠾ࡼࡧ☢Ẽ᢬ᢠ㸦ᅗ 2 (b)㸧
ࡢ୙᥹Ⓨⓗ࡞ቑຍ㸭ῶᑡࡀࣇ࢙ࣛ࢖ࢺࢳࣕࢿࣝ࡟ㄏ㉳ࡉࢀࡿࡇ
࡜ࡀศ࠿ࡗࡓࠋࡇࢀࡽ㍺㏦≉ᛶࡢኚ໬ࡣࠊࢳࣕࢿࣝ෌⾲㠃࡛ࡢ㓟
⣲⤌ᡂࡢኚ໬࡟ࡼࡾ༙ᐃ㔞ⓗ࡟ㄝ᫂ࡍࡿࡇ࡜ࡀ࡛ࡁࡓࠋ㟁⏺㉁ࡀ ᅗ 2 (a) 㟁Ẽ஧㔜ᒙࢹࣂ࢖ࢫᵓ㐀ࠋG, D, S, IL
ࡣࡑࢀࡒࢀࠊࢤ࣮ࢺࠊࢻࣞ࢖ࣥࠊࢯ࣮ࢫ㟁ᴟࠊ
⏘ࡳฟࡍᕧ኱㟁⏺࡟ࡼࡿ㓟໬㑏ඖ཯ᛂࢆ୙᥹Ⓨᛶ㟁⏺ຠᯝࡢ㉳ ࢖࢜ࣥᾮయࢆ♧ࡍࠋ (b) 300 K ࡟࠾ࡅࡿ☢Ẽ
※࡜ࡋ࡚ᥦၐࡋ࡚࠸ࡿࠋ
᢬ᢠ್ࡢ୙᥹Ⓨᛶࢫ࢖ࢵࢳࣥࢢຠᯝࠋ
࣭㔠ᒓ㓟໬≀ 3 ḟඖࢼࣀ㉸ᵓ㐀๰〇࡜᪂ወࢼࣀ≀ᛶࡢゎ᫂
ᶵ⬟ᛶ㔠ᒓ㓟໬≀ࡢࢼࣀᵓ㐀໬࡟ࡼࡿ㧗ᶵ⬟๰ฟࢆ┠ⓗ࡜ࡋ࡚ࠊᑐ㇟≀㉁ࡢᡂ㛗఩⨨ࠊᙧ≧ࠊࢧ࢖ࢬ
ࢆ 3 ḟඖ᪉ྥ඲࡚࡛⢭☜࡟ไᚚࡋ࡚స〇ࡍࡿ⊂⮬ࢼࣀ㉸ᵓ㐀๰〇ᢏ⾡ࠕ3 ḟඖࢼࣀࢸࣥࣉ࣮ࣞࢺPLDἲࠖ
[ㄽᩥ 4,6]ࢆ☜❧ࡋ࡚ࡁࡓࠋ
ᅗ 3 ࡟ 3 ḟඖࢼࣀࢸࣥࣉ࣮ࣞࢺPLDἲ࡛స〇ࡋࡓᐊ ᙉ☢ᛶ༙ᑟయ(Fe,Zn) 3 O 4
(FZO)༢⤖ᬗࢼࣀ࢛࣮࢘ࣝ⣽⥺ᵓ㐀࡜ࡑࡢ᩿㠃㏱㐣㟁Ꮚ㢧ᚤ㙾(TEM)ീࢆ♧ࡍࠋTEMീࡼࡾࠊFZOࢼࣀ࢘
࢛࣮ࣝࡀᇶᯈ࡛࠶ࡿ 3D-MgOഃ㠃࠿ࡽ㠃ෆ᪉ྥ࡟࢚ࣆࢱ࢟ࢩࣕࣝᡂ㛗ࡋ࡚࠾ࡾࠊ㧗ရ㉁࡞⤖ᬗᵓ㐀ࢆ᭷
ࡋ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡿࠋࡇࡢᡭἲ࡛
ࡣࠊ௵ពᙧ≧ࡢ㑅ᢥࠊ㠃ෆ࡛ཌࡳࢆ
ไᚚࡋࡓࢼࣀᵓ㐀ࡢస〇ࡶྍ⬟࡛࠶
ࡿࠋᅗ 4(a)࡟㉸ᕧ኱☢Ẽ᢬ᢠຠᯝࢆ♧
ࡍ ࣌ ࣟ ࣈ ࢫ ࢝ ࢖ ࢺ Mn 㓟 ໬ ≀
(La,Pr,Ca)MnO 3 (LPCMO)ࡢࠊࢼࣀ࣎
ࢵࢡࢫᵓ㐀ࢆ♧ࡍࠋࢼࣀ࡛ࣞ࣋ࣝ⢭
ᐦ࡟✵㛫ไᚚࡉࢀࠊ⮬ᅾ࡟ࢧ࢖ࢬࢆ
ㄪᩚࡋࡓࢼࣀ㉸ᵓ㐀యࡢ๰〇ࢆᐇ⌧
࡛ࡁࡿࠋ◳X⥺ග㟁Ꮚศගࢆ⏝࠸ࡓ㟁
Ꮚ≧ែゎᯒ࠿ࡽࠊࢼࣀ࣎ࢵࢡࢫヨᩱ
࡛ࡣ㏻ᖖࡢⷧ⭷ヨᩱࡼࡾ 50 K௨ୖ㧗
࠸ ᗘ࠿ࡽ⤯⦕┦࡬ࡢ㌿⛣ࡀ⏕ࡌࡿ
ࡇ࡜ࢆ᫂ࡽ࠿࡟ࡋࡓࠋ㌿⛣Ⅼࡢୖ᪼
ࡣ 3 ḟඖࢼࣀᵓ㐀ᙧ≧࡟⏤᮶ࡍࡿࡇ
࡜ࡀ♧၀ࡉࢀࠊࢼࣀᵓ㐀໬ࡀ㑄⛣㔠 ᅗ 3 ⊂⮬ࢼࣀᵓ㐀๰〇ᢏ⾡࡛స〇ࡋࡓᐊ ᅗ 4 (a) LPCMO ࢼࣀ࣎ࢵࢡࢫࡢቨ
ᒓ㓟໬≀ࡢ࢚ࣞࢡࢺࣟࢽࢡࢫᶵ⬟㛤 ᙉ☢ᛶ༙ᑟయ(Fe2.5Zn0.5)O4 ࡢ(a)࢚ࣆࢱ࢟ ཌไᚚᛶࠋ (b) ග㟁Ꮚࢫ࣌ࢡࢺࣝ
ࢩࣕࣝࢼࣀ⣽⥺ᵓ㐀࡜ࠊ(b)FZO ࢼࣀ⣽⥺ࠊ ࡢࢧࢸࣛ࢖ࢺࣆ࣮ࢡᙉᗘࡢ ᗘ
ᣅ࣭≉ᛶྥୖ࡟᭷⏝࡛࠶ࡿࡇ࡜ࢆ♧ (c) FZO/3D-MgO ࡢ᩿㠃 TEM ീࠋ
౫Ꮡᛶࠋ
ࡍⓎᒎⓗᡂᯝ࡛࠶ࡿࠋ3 ḟඖࢼࣀ㉸ᵓ
㐀యࢆᇶ┙࡜ࡋ࡚ࠊࢼࣀ≉ᛶࡢホ౯࡜ࡑࢀࢆ᭱኱㝈࡟ά⏝ࡋࡓ᪂つࢼࣀ㟁Ꮚࢹࣂ࢖ࢫᶵ⬟ࡢ㛤ᣅࢆヨࡳ
࡚࠸ࡿࠋ
―5―
ࢼࣀᴟ㝈ࣇ࢓ࣈࣜࢣ࣮ࢩࣙࣥ◊✲ศ㔝
ᩍᤵ
෸ᩍᤵ
ຓᩍ
≉௵◊✲ဨ
ᐈဨᩍᤵ
ᐈဨ෸ᩍᤵ
኱Ꮫ㝔Ꮫ⏕
Ꮫ㒊Ꮫ⏕
஦ົ⿵బဨ
ྜྷ⏣ 㝧୍
᳿ 㔠ᓠ
㏆⸨ ᏕᩥࠊⳢ ᫭୍
⚄ᡞ ṇ㞝
ᑠ᪉ ཌࠊᑠᯘ ோ
ᰘ⏣ ⿱ᐇ
ᵽᕝ ᬛὒࠊబࠎᮌ Ὀࠊ஭Ἑཎ ኱ᶞࠊ㔝⃝ ୍ኴࠊᮤ ு
す஭ ⪽ᚿࠊᒣᒽ ඃ
༓௦ Ᏻዉ
a) ᴫせ
ᴟ㝈ࢼࣀࣇ࢓ࣈࣜࢣ࣮ࢩࣙࣥࢆᐇ⌧ࡍࡿࡓࡵ࡟ࠊ᫬㛫࣭✵㛫཯ᛂゎᯒᡭἲࢆ⏝࠸࡚㔞Ꮚࣅ࣮࣒ᴟ㝈ࢼ
ࣀࣇ࢓ࣈࣜࢣ࣮ࢩࣙࣥࡢᇶ♏㐣⛬ࢆゎ᫂ࡋࠊ㔞Ꮚࣅ࣮࣒ㄏ㉳཯ᛂࡢไᚚ᪉ἲࡢ㛤Ⓨࢆ┠ᣦࡋ࡚࠸ࡿࠋࡑ
ࢀࡽࢆᨭ࠼ࡿࡓࡵ࡟ୡ⏺᭱㧗᫬㛫ศゎ⬟ࢆ᭷ࡍࡿࣇ࢙࣒ࢺ⛊࣭࢔ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࢩࢫࢸ࣒࠾ࡼ
ࡧࣇ࢙࣒ࢺ⛊᫬㛫ศゎ㟁Ꮚ㢧ᚤ㙾࡟ࡼࡿࠊࢼࣀ✵㛫ෆࡢ㔞Ꮚࣅ࣮࣒ㄏ㉳㧗㏿⌧㇟ࡢゎ᫂࡟㛵ࡍࡿ◊✲ࢆ
⾜ࡗ࡚࠸ࡿࠋ
b) ᡂᯝ
࣭࢔ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ྥࡅࡓ㉸▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒Ⓨ⏕ࡢ◊✲
ᴟ㝈᫬㛫ศゎ⬟ࢆ᭷ࡍࡿ࢔ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫᐇ⌧࡟ྥࡅࡓࠊ10 ࣇ࢙࣒ࢺ⛊௨ୗ㉸▷ࣃࣝࢫ㟁Ꮚ
ࣅ࣮࣒ࡢⓎ⏕࣭ィ ἲࡢ☜❧ࢆ⾜ࡗࡓࠋ㉸▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒ࢆⓎ⏕ࡍࡿࡓࡵ࡟ࠊࣇ࢙࣒ࢺ⛊㟁Ꮚ㖠ࠊ
㧗ḟ཰ᕪ⿵ṇ☢Ẽࣃࣝࢫᅽ⦰ჾࡢᑟධࢆ⾜ࡗࡓࠋⓎ⏕ࡋࡓ㉸▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒࠿ࡽᨺᑕࡉࢀࡿ࣐࢖ࢡ
࣓࣮ࣟࢺࣝ㡿ᇦࡢἼ㛗ࢆࡶࡘ㉥እගࢆࠊ࣐࢖ࢣࣝࢯࣥᖸ΅ィ࡟ࡼࡾᚓࡽࢀࡿ᫬㛫Ἴᙧࢆゎᯒࡋࠊ㟁Ꮚࣅ
࣮࣒ࣃࣝࢫᖜࢆィ ࡋࡓࠋᖸ΅ィ࡛ࡣࠊMCT㸦HgCdTe㸧᳨ฟჾࢆ⏝࠸࡚ࠊ▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒ࢆ ᐃ
࡛ࡁࡿࡼ࠺࡟▷Ἴ㛗ࡢ㟁☢Ἴࢆィ ࡛ࡁࡿࡼ࠺࡟ࡋࡓࠋࡑࡢ⤖ᯝࠊ㟁Ⲵ㔞㸸2.1 pC ࡢ᫬ࠊ1 fs ࡢ rms 㟁
Ꮚࣅ࣮࣒ࣃࣝࢫࡢⓎ⏕࣭ィ ࡟ᡂຌࡋࡓࠋ௒ᚋࠊ࢔ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡬ᛂ⏝ࢆ⾜࠺ࠋ
࣭⣸እࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡿࢻࢹ࢝ࣥ୰ࡢ࢔ࣝ࢟ࣝࣛࢪ࢝ࣝ⏕ᡂ㐣⛬ࡢ◊✲
᰾⇞ᩱ෌ฎ⌮ࡢᢳฟ๣⁐፹࡛࠶ࡿࢻࢹ࢝ࣥࡣࠊᨺᑕ⥺ศゎࡢほⅬࡸࠊࣞࢪࢫࢺᮦᩱࡢࣔࢹࣝ໬ྜ≀࡜
ࡋ࡚ᨺᑕ⥺໬Ꮫึᮇ㐣⛬࡜ศゎ㐣⛬ࢆゎ᫂ࡍࡿᚲせࡀ࠶ࡿࠋᮏ◊✲ࡢ┠ⓗࡣࠊࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜
ࣜࢩࢫࢩࢫࢸ࣒ࢆ⣸እ㡿ᇦ࡟ᣑᙇࡋ࡚ R·ࡢ㐣Ώ྾཰᫬㛫ᣲືࢆほ ࡋࠊR·ࡢ⏕ᡂ㐣⛬࡜ࢻࢹ࢝ࣥࡢᨺᑕ
⥺໬Ꮫึᮇ㐣⛬ࡢ㛵ಀࢆゎ᫂ࡍࡿࡇ࡜࡛࠶ࡿࠋࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡾἼ㛗 240 nm ࡛㐣
Ώ྾཰᫬㛫ᣲືࢆ ᐃࡍࡿࡇ࡜࡟ᡂຌࡋࡓࠋ240 nm ࡟࠾ࡅࡿ㐣Ώ྾཰ࡢ᫬㛫ᣲືࡣࠊ7 ps ࡛ᛴ⃭࡟⏕ᡂ
ࡋࠊࡑࢀ௨㝆ࡣ⏕ᡂࡏࡎ࡟ࡺࡿࡸ࠿࡟ῶ⾶ࡋࡓࠋࡇࢀࡲ࡛ᨺᑕ⥺໬Ꮫึᮇ㐣⛬࡟࠾࠸࡚ࢪ࢙࣑ࢿ࣮ࢺ࢖
࢜ࣥ෌⤖ྜࢆ⤒ࡓບ㉳≧ែ࠿ࡽࡢ࢔ࣝ࢟ࣝࣛࢪ࢝ࣝ⏕ᡂࣔࢹ࡛ࣝࡣࠊࢪ࢙࣑ࢿ࣮ࢺ࢖࢜ࣥ෌⤖ྜ࡟ࡼࡿ
ࡺࡗࡃࡾ࡜ࡋࡓ⏕ᡂᣲືࡀほ ࡉࢀ࡞࠿ࡗࡓࡇ࡜ࢆㄝ࡛᫂ࡁ࡞࠸ࠋࡇࢀࡽࡢᐇ㦂⤖ᯝࡣࠊ㏆ᖺᡃࠎࡀᥦ
᱌ࡋ࡚࠸ࡿບ㉳ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ࡞࡝ࡢ▷ᑑ࿨άᛶ✀ࡢ㔜኱࡞ᐤ୚ࢆ♧ࡋ࡚࠸ࡿࠋ
―6―
࣭࣏ࣜ࢔ࣝࣇ࢓࣓ࢳࣝࢫࢳࣞࣥࡢ┤᥋࢖࢜ࣥ໬ἲ࡟ࡼࡿࣇ࢙ࢽࣝࢲ࢖࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ⏕ᡂ㐣⛬ࡢ
◊✲
༙ᑟయᚤ⣽ຍᕤ࡟࠾ࡅࡿࣞࢪࢫࢺᮦᩱࡢᨺᑕ⥺໬Ꮫᇶ♏㐣⛬ࢆゎ᫂ࡍࡿࡓࡵ࡟ࠊࣔࢹࣝ໬ྜ≀࡜ࡋ࡚
࣏ࣜĮ࣓ࢳࣝࢫࢳࣞࣥ㸦PAMS㸧ࡢࣇ࢙ࢽࣝࢲ࢖࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥࡢ⏕ᡂ㐣⛬ࢆ┤᥋࢖࢜ࣥ໬ἲ࡜ࣇ
࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡾ◊✲ࡋࡓࠋPAMSࡢ┤᥋࢖࢜ࣥ໬࡟ࡼࡿࢲ࢖࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ
ࡢᣲືࢆほ ࡍࡿࡓࡵ࡟ࠊ࢝ࢳ࢜ࣥ⛣ື཯ᛂࢆࡋ࡞࠸࡜▱ࡽࢀ࡚࠸ࡿࢸࢺࣛࣄࢻࣟࣇࣛࣥ㸦THF㸧ࢆ⁐
፹࡟㑅ᢥࡋࠊ⏕ᡂࡍࡿ⁐፹࿴㟁Ꮚࢆᤕᤊࡍࡿࡓࡵ࡟ࢪࢡ࣓ࣟࣟࢱࣥ(CH 2 Cl 2 )ࢆ㸯Mຍ࠼ࡓࠋࡑࡢ⤖ᯝ⁐
ᾮ୰࡛PAMSࡢ┤᥋࢖࢜ࣥ໬࡟ࡼࡿࢲ࢖࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥࡢ㐣Ώ྾཰ࡀἼ㛗 1200 nm࡛ほ ࡉࢀࠊ
ࡑࡢ⏕ᡂ᫬ᐃᩘࢆ 2×1011 s-1⛬ᗘ࡜ぢ✚ࡶࡿࡇ࡜࡟ึࡵ࡚ᡂຌࡋࡓࠋ
࣭ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡿỈ࿴㟁Ꮚ⏕ᡂ㐣⛬ࡢ◊✲
Ỉ࡟ᨺᑕ⥺ࢆ↷ᑕࡍࡿ࡜ࠊỈ࿴๓㟁Ꮚ࠿ࡽỈ࿴㟁Ꮚࡀᙧᡂࡉࢀࠊᵝࠎ࡞ᚋ⥆཯ᛂࢆᘬࡁ㉳ࡇࡍࡇ࡜ࡀ
ࡇࢀࡲ࡛ࡢ◊✲࡟ࡼࡾࡼࡃ▱ࡽࢀ࡚࠸ࡿࠋࡋ࠿ࡋࠊ᫬㛫ศゎ⬟୙㊊࠿ࡽࠊ㟁Ꮚ⥺ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟
ࡼࡿỈ࿴㟁ᏊࠊỈ࿴๓㟁Ꮚࡢ⏕ᡂᣲືࡣゎ᫂ࡉࢀ࡚࠸࡞࠿ࡗࡓࠋࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࢆ⏝࠸
࡚ࠊỈࡢ㐣Ώ྾཰᫬㛫ᣲືࢆ 450 nm-1700 nm ࡛ ᐃࡋࠊỈ࿴๓㟁Ꮚ࠿ࡽỈ࿴㟁Ꮚࡀᙧᡂࡉࢀࡿ࡜࠸࠺ 2
≧ែࣔࢹࣝࢆ௬ᐃࡋࠊ ᐃ⣔ࡢ᫬㛫ศゎ⬟ࢆ⪃៖ࡋࡓࠋྛἼ㛗࡛ࡢ㐣Ώ྾཰᫬㛫ᣲື࠿ࡽࠊỈ࿴๓㟁Ꮚ
࠾ࡼࡧỈ࿴㟁Ꮚࡢࢲ࢖ࢼ࣑ࢡࢫࢆᚓࡿࡇ࡜ࡀ࡛ࡁࡓࠋྠ᫬࡟Ỉ࿴๓㟁ᏊࠊỈ࿴㟁Ꮚࡢ㐣Ώ྾཰ࢫ࣌ࢡࢺ
ࣝኚ໬ࢆᚓࡿࡇ࡜࡟ᡂຌࡋࡓࠋỈ࿴๓㟁Ꮚࡣࠊ㏆㉥እ㡿ᇦ࡛ࢫ࣌ࢡࢺࣝࡢࣈ࣮ࣝࢩࣇࢺࡀぢࡽࢀࠊỈ࿴
㟁Ꮚ࡛ࡣࢫ࣌ࢡࢺࣝࡣ࡯࡜ࢇ࡝ࢩࣇࢺࡋ࡞࠿ࡗࡓࠋ௨ୖࡢࡇ࡜࠿ࡽࠊỈ୰ࡢ㟁Ꮚࡢ⁐፹࿴㐣⛬ࡣࠊỈ࿴
๓㟁Ꮚࡢẁ㝵࡛ỈศᏊࡀ㓄ྥࡋࠊỈ࿴㟁Ꮚࡣ p ≧ែ࠿ࡽ s ≧ែ࡬ࡢ㟁Ꮚ≧ែ㛫㑄⛣࡟ࡼࡾỈ࿴๓㟁Ꮚ࠿
ࡽᙧᡂࡉࢀࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ
࣭ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡿ࢔ࣝࢥ࣮ࣝ୰ࡢ⁐፹࿴๓㟁Ꮚ⏕ᡂ㐣⛬ࡢ◊✲
Ỉࡸ࢔ࣝࢥ࣮ࣝ࡞࡝ࡢᴟᛶ⁐፹୰࡛ࡣࠊ࢖࢜ࣥ໬ࡉࢀࡓ㟁Ꮚࡣ࿘ᅖࡢศᏊࢆ㓄ྥࡉࡏ࡚⁐፹࿴㟁Ꮚ࡜
࡞ࡾࠊᵝࠎ࡞ᚋ⥆཯ᛂࢆᘬࡁ㉳ࡇࡍࠋ࢔ࣝࢥ࣮ࣝ୰࡛ࡢ㟁Ꮚࡢ⁐፹࿴㐣⛬ࡢ඲యീࢆゎ᫂ࡍࡿࡇ࡜ࡀ᭦
࡞ࡿᛂ⏝Ⓨᒎࡢࡓࡵ࡟ࡣᚲせ࡛࠶ࡿࠋࣇ࢛ࢺ࢝ࢯ࣮ࢻ RF 㟁Ꮚ㖠ࣛ࢖ࢼࢵࢡࢆ⏝࠸ࡓࣇ࢙࣒ࢺ⛊ࣃࣝࢫ
ࣛࢪ࢜ࣜࢩࢫἲ࡟ࡼࡾࠊ࢚ࢱࣀ࣮ࣝ࠾ࡼࡧ࢜ࢡࢱࣀ࣮ࣝ୰࡛㟁Ꮚࡢ⁐፹࿴㐣⛬࡟࠾ࡅࡿ᫬㛫ศゎࢫ࣌ࢡ
ࢺࣝኚ໬ࡢほ ࡟ᡂຌࡋࡓࠋ㏆㉥እ㡿ᇦ࠿ࡽྍどᇦ࡬ࡢ୙㐃⥆࡛኱ࡁ࡞ࢫ࣌ࢡࢺࣝࢪࣕࣥࣉ࡜㐃⥆ⓗ࡛
ẚ㍑ⓗᑠࡉ࡞ࢫ࣌ࢡࢺࣝࢩࣇࢺࢆほ ࡋࡓࠋ㟁Ꮚࡢ⁐፹࿴㐣⛬࡟࠾࠸࡚ࠊ㟁Ꮚ≧ែ㑄⛣࡜ศᏊ㓄ྥ࡟ࡼ
ࡿ⦆࿴㐣⛬ࡀྠ᫬࡟㉳ࡁࡿ࡜࠸࠺ࣔࢹࣝࢆᵓ⠏ࡋࡓࡇ࡜࡟ࡼࡾࠊᐇ㦂⤖ᯝࢆࡼࡃㄝ᫂ࡍࡿࡇ࡜ࡀ࡛ࡁࡓࠋ
࢜ࢡࢱࣀ࣮࡛ࣝࡣࠊ1900 nm ௜㏆࡟᭦࡟㧗㏿࡟⏕ᡂࡋῶ⾶ࡍࡿ㟁Ꮚࡢ୰㛫άᛶ✀ࡀほ ࡉࢀࠊࢻࣛ࢖㟁
Ꮚࡀほ ࡉࢀࡓྍ⬟ᛶࡶ⪃࠼ࡽࢀࡿࠋ⁐፹࿴㟁Ꮚ⏕ᡂ࣓࢝ࢽࢬ࣒࡟ࡘ࠸࡚㔜せ࡞▱ぢࢆᚓࡿࡇ࡜ࡀ࡛ࡁ
ࡓࠋ
―7―
ࢼࣀᵓ㐀࣭ᶵ⬟ホ౯◊✲ศ㔝
ᩍᤵ
෸ᩍᤵ
ຓᩍ
≉௵◊✲ဨ
኱Ꮫ㝔Ꮫ⏕
஦ົ⿵బဨ
➉⏣ ⢭἞
ྜྷ⏣ ⚽ே
⚄ෆ ┤ே㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥᥇⏝㸧
Ꮮ ⛉ᣲ
ෆᒣ ᚭஓࠊ┦㤿 ೺ኴ㑻ࠊ๓⣡ ぬࠊᑠᕝ ὒᖹࠊ⋢ᒸ ṊὈ
㧗℩ ⣖Ꮚ
a) ᴫせ
㟁Ꮚ㢧ᚤ㙾࡟ࡼࡿࢼࣀᵓ㐀ࡢゎᯒࡸᶵ⬟ࡢホ౯ࡣࠊᶵ⬟ᛶᮦᩱࢆᨵⰋࡲࡓࡣ᪂つ㛤Ⓨࡍࡿୖ࡛ᚲせ୙
ྍḞ࡛࠶ࡿࠋ≉࡟ࠊ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾(TEM)ࢆ⏝࠸ࡓࢼࣀᵓ㐀࣭ࢼࣀࢹࣂ࢖ࢫࡢ⏕ᡂࣉࣟࢭࢫࡢホ౯ࠊ
ཬࡧᶵ⬟Ⓨ⌧୰ࡢࡑࢀࡽࡢホ౯ࡣࠊ௒ᚋ┈ࠎ㔜せ࡟࡞ࡿ࡜⪃࠼ࡽࢀࡿࠋᙜ◊✲ศ㔝࡛ࡣࡇࢀࡲ࡛࡟ࠊẼ
య୰ࡢࢼࣀᵓ㐀ࡸࢼࣀࢹࣂ࢖ࢫࢆཎᏊࢫࢣ࣮࡛ࣝほᐹྍ⬟࡞⎔ቃไᚚᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾(ETEM)ࢆ㛤Ⓨ
ࡋ࡚ࡁࡓࠋࡇࡢ ETEM ࢆά⏝ࡋࠊᵝࠎ࡞Ẽయ࡜ᅛయࡢ⏺㠃࡛㉳ࡇࡿືⓗ࡞⌧㇟ࢆゎᯒࡍࡿࡇ࡜࡛ࠊࢼࣀ
ᵓ㐀࣭ࢼࣀࢹࣂ࢖ࢫࡢ⏕ᡂ㐣⛬ࡢゎ᫂ࡸࠊ᪂つᶵ⬟ᛶᮦᩱࡢ㛤Ⓨ࡟ྲྀࡾ⤌ࢇ࡛࠸ࡿࠋලయⓗ࡟ࡣࠊ୍㓟
໬Ⅳ⣲(CO)㓟໬཯ᛂ⎔ቃୗ࡛ࡢ㔠ࢼࣀ⢏Ꮚゐ፹ࡸⓑ㔠ࢼࣀ⢏Ꮚゐ፹࡞࡝ࡢཎᏊᵓ㐀ࡢኚ໬ࡸࠊ࣮࢝࣎ࣥ
ࢼࣀࢳ࣮ࣗࣈ(CNTs)࡟௦⾲ࡉࢀࡿࢼࣀᵓ㐀ࡢ⏕ᡂ㐣⛬ࢆཎᏊࢫࢣ࣮࡛ࣝࡑࡢሙほᐹࡋࠊࡑࢀࡽࡢ⏺㠃⌧
㇟ࡢ⫼ᚋ࡟₯ࡴ≀⌮ࢆ◊✲ࡋ࡚࠸ࡿࠋ
b) ᡂᯝ
࣭ࢭࣜ࢔ᢸᣢ㔠ࢼࣀ⢏Ꮚゐ፹ࡢࢼࣀᵓ㐀ࡢゎ᫂
㓟໬ࢭ࣒ࣜ࢘࡟ᢸᣢࡉࢀࡓ㔠ࢼࣀ⢏Ꮚゐ፹
㸦Au/CeO 2 㸧ࡣࠊCOࡢ㓟໬཯ᛂ࡟ᑐࡋ࡚ᐊ ௨ୗ࡛
ࡶ㧗࠸ゐ፹άᛶࢆ♧ࡍࡇ࡜ࡀ▱ࡽࢀ࡚࠸ࡿࠋ㔠ࢼࣀ
⢏Ꮚ࡜㔠ᒓ㓟໬≀ᢸయࡢ⏺㠃ࡀࠊゐ፹཯ᛂࡢ㐍⾜࡟
㔜せ࡞ᙺ๭ࢆᯝࡓࡋ࡚࠸ࡿ࡜⪃࠼ࡽࢀ࡚࠸ࡿࡀࠊࡑ
ࡢ࣓࢝ࢽࢬ࣒ࡣ᫂ࡽ࠿࡟ࡉࢀ࡚࠸࡞࠸ࠋAu/CeO 2 ゐ፹
ࡢ཯ᛂ࣓࢝ࢽࢬ࣒ࢆゎ᫂ࡍࡿ࡟ࡣࠊᐇ㝿ࡢゐ፹཯ᛂ
⎔ቃୗ࡛Au/CeO 2 ࢆཎᏊࢫࢣ࣮࡛ࣝࡑࡢሙほᐹࡍࡿ
ࡇ࡜ࡀ㔜せ࡛࠶ࡿࠋ
ᮏ◊✲࡛ࡣࠊAu/CeO 2 ゐ፹ࢆᯒฟỿẊἲ࡛ㄪ〇ࡋࠊ
཰ ᕪ ⿵ ṇ ETEM ࢆ ⏝ ࠸ ࡚ CO 㓟 ໬ ཯ ᛂ ⎔ ቃ ୗ (CO
1vol.%/airΰྜ࢞ࢫ୰ࠊᐊ )࡛Au/CeO 2 ゐ፹୰ࡢ㔠ࢼ
ࣀ⢏Ꮚࢆほᐹࡋࡓࠋᅗ 1 ࡟ࡣࠊAu/CeO 2 ゐ፹ࡢETEM
ほᐹ⤖ᯝࢆ♧ࡋࠊᅗ 1 ୰ࡢI࡜IIࡢ㧗ಸ⋡ീࢆࡑࢀࡒ
ࢀᅗ 1(b), (c)࡟♧ࡍࠋᅗ 1(b)ࡢ㔠ࢼࣀ⢏Ꮚ࡜ᢸయࡢ⏺
㠃ࢆヲ⣽࡟ほᐹࡋࡓ⤖ᯝࠊᅗ 2 ࡢ 1 ẁ┠ࡢࡼ࠺࡟ࠊ
᫬㛫⤒㐣࡜࡜ࡶ࡟⣙ 3 nmࡢ㔠ࢼࣀ⢏Ꮚࡀࢫࢸࢵࣉⓗ
࡟ 0.09 nmᖹ⾜⛣ືࡋࠊഹ࠿࡟ᅇ㌿ࡋ࡚࠸ࡿࡇ࡜ࡀศ
࠿ࡗࡓࠋᅗ 2 ࡢ 2 ẁ┠ࡢࢩ࣑࣮ࣗࣞࢩࣙࣥ⤖ᯝ࠿ࡽ
ࡶࠊ㔠ࢼࣀ⢏Ꮚࡢ⏺㠃ᵓ㐀ࡢኚ໬ࡀ☜ㄆࡉࢀࡓࠋ
୍᪉ࠊᅗ 1(c)ࡢ㔠ࢼࣀ⢏Ꮚࡢ᫬㛫ኚ໬ࢆㄪ࡭ࡿ࡜ࠊ
ᅗ 3(a)ࡢࡼ࠺࡟㔠ࢼࣀ⢏Ꮚࡀ࠶ࡿⅬࢆ୰ᚰ࡟ࡋ࡚ᅇ
㌿ࡍࡿࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࠋᅗ 3(a)ࢆࣇ࣮࢚ࣜኚ᥮
― 8―
ᅗ 1 Au/CeO2 ゐ፹୰ࡢ㔠ࢼࣀ⢏Ꮚࡢ཰ᕪ⿵ṇ ETEM ീ
ᅗ 2 ゐ፹άᛶⓎ⌧୰ࡢ㔠ࢼࣀ⢏Ꮚࡢẁ㝵ⓗ࡞⛣ື
ࡋࡓ⤖ᯝࠊ㔠ࢼࣀ⢏ᏊࡣCeO 2 ᢸయୖ࡛±4°ᅇ
㌿ࡋ࡚࠸ࡿࡇ࡜ࡀศ࠿ࡗࡓ(ᅗ 3(b)-(d))ࠋ
௨ୖࡢࡼ࠺࡟ࠊAu/CeO 2 ゐ፹୰ࡢ㔠ࢼࣀ⢏
ᏊࡣࠊETEMほᐹ୰࡟CO㓟໬཯ᛂ⎔ቃୗ࡛ྍ
㏫ⓗ࠿ࡘࢫࢸࢵࣉⓗ࡟ᖹ⾜⛣ື࡜ᅇ㌿ࢆࡍࡿ
ࡇ࡜ࢆぢฟࡋࡓࠋࡇࡢ⤖ᯝࡣࠊAu/CeO 2 ゐ፹
୰ࡢ㔠ࢼࣀ⢏Ꮚ࡜CeO 2 ᢸయࡢ᥋ྜࡀᙉᅛ࡛
ࡣ࡞࠸ࡇ࡜ࢆព࿡ࡋ࡚࠸ࡿࠋࡘࡲࡾࠊCeO 2
⾲㠃ࡢ୍㒊࡟Ꮡᅾࡍࡿ㓟⣲✵᱁ᏊⅬ࡛ࠊCeཎ
Ꮚ࡟AuཎᏊࡀ┤᥋⤖ྜࡍࡿࡇ࡜࡛ࠊ㔠ࢼࣀ⢏
Ꮚࡀᢸయ࡟㘌ࢆୗࢁࡋࡓࡼ࠺࡟⦆ࡸ࠿࡟ᅛᐃ
ࡉࢀ࡚࠸ࡿ࡜⤖ㄽ௜ࡅࡽࢀࡿࠋᮏ◊✲࡛᫂ࡽ
࠿࡟ࡉࢀࡓ㔠ࢼࣀ⢏Ꮚ࡜CeO 2 ᢸయ࡜ࡢ⏺㠃
ࡢཎᏊᵓ㐀ࡢኚ໬ࡣࠊAu/CeO 2 ゐ፹ࡢCO㓟໬
཯ᛂ࣓࢝ࢽࢬ࣒ࢆゎ᫂ࡍࡿୖ࡛ᴟࡵ࡚㔜せ࡛
࠶ࡿࠋ
ᅗ 3 ゐ፹άᛶⓎ⌧୰ࡢ㔠ࢼࣀ⢏Ꮚࡢᅇ㌿
࣭ᡂ㛗୰࡟࠾ࡅࡿ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢᙧ≧ኚ໬ࡢゎᯒ
࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈ(CNTs)ࡣࠊ≉Ṧ࡞ࢼࣀᵓ㐀ࢆࡶࡘࡓࡵ࡟ඃࢀࡓ㟁Ẽⓗᛶ㉁࣭ᶵᲔⓗᛶ㉁ࢆ♧ࡍ
ࡇ࡜ࡀ▱ࡽࢀ࡚࠸ࡿࠋ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ≉ᛶࡣࠊ┤ᚄࡸ࢟ࣛࣜࢸ࢕ࡔࡅ࡛࡞ࡃࠊḞ㝗࡟ࡼࡗ࡚ኚ
໬ࡍࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋ୍⯡ⓗ࡟࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡣᡂ㛗୰࡟Ḟ㝗ࡀධࡾࠊ⤖ᯝ࡜ࡋ࡚࣮࢝
࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ᭤ࡀࡾࡸ୙ᆒ୍࡞ᒙ㛫ࡢ⏕ᡂࠊࢳ࣮ࣗࣈࡢ┤ᚄࡢኚ໬ࠊࢢࣛࣇ࢓࢖ࢺᒙᩘࡢኚ໬࡞
࡝ࡀ⏕ࡌࡿࠋ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢᑗ᮶ⓗ࡞ᐇ⏝໬ࡢࡓࡵ࡟ࡣࠊḞ㝗ࢆᣢࡓ࡞࠸࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗ
ࣈࡢྜᡂᡭἲࡢ☜❧ࡀᚲ㡲࡛࠶ࡿࠋࡑࡇ࡛ᮏ◊✲࡛ࡣࠊࢼࣀ⢏
Ꮚゐ፹(NPCs)ࢆ⏝࠸ࡓ໬Ꮫ⵨╔(CVD)ἲ࡟ࡼࡿ࣮࢝࣎ࣥࢼࣀࢳ
࣮ࣗࣈࡢᡂ㛗㐣⛬ࢆ ETEM ࡟ࡼࡗ࡚ࡑࡢሙほᐹࡋࠊ࣮࢝࣎ࣥࢼ
ࣀࢳ࣮ࣗࣈᡂ㛗୰ࡢḞ㝗Ⓨ⏕࣓࢝ࢽࢬ࣒ࢆ᫂ࡽ࠿࡟ࡋࡓࠋ
ࢼࣀ⢏Ꮚゐ፹࡟ࡣ㕲-ࣔࣜࣈࢹࣥࢆ⏝࠸ࠊ600°C ࡛࢔ࢭࢳࣞࣥ
࡜Ỉ⣲ࢆ ETEM ࡟ᑟධࡋࠊ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢᡂ㛗ࣉࣟࢭ
ࢫࢆࡑࡢሙほᐹࡋࡓࠋᅗ 4 ࡟♧ࡍࡼ࠺࡟ࠊᡂ㛗୰࡟࣮࢝࣎ࣥࢼ
ࣀࢳ࣮ࣗࣈࡀ▷᫬㛫࡛኱ࡁࡃ᭤ࡀࡿᵝᏊࡀほᐹࡉࢀࡓࠋࡑࡢ㝿ࠊ
◚⥺࡛♧ࡍࡼ࠺࡟㕲-ࣔࣜࣈࢹࣥࢼࣀ⢏Ꮚࡢᙧ≧ࡀኚ໬ࡋ࡚࠸
ࡿࡇ࡜ࡀศ࠿ࡗࡓࠋࡲࡓࠊᅗ 5 ࡟ࡣ 11 ᒙ࠿ࡽ࡞ࡿከᒙ࣮࢝࣎ࣥ
ࢼࣀࢳ࣮ࣗࣈࡢᒙ㛫ࡀ 0.34 nm ࠿ࡽ 0.41 nm ࡬࡜ᚎࠎ࡟ᗈࡃ࡞ࡿ
㐣⛬ࢆ♧ࡍࠋᒙ㛫ࡢኚ໬࡟ᑐࡋ࡚ࡶ㕲-ࣔࣜࣈࢹࣥࢼࣀ⢏Ꮚࡢᙧ
≧ࡀ㔜せ࡞ᙺ๭ࢆᯝࡓࡍࡇ࡜ࡀ☜ㄆࡉࢀࡓࠋ
ᅗ 4 ᡂ㛗୰ࡢ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ᭤ࡀࡾ
௨ୖࡢࡼ࠺࡟ࠊETEM ࡟ࡼࡿ㧗ศゎ⬟ほᐹ࠿
ࡽࠊࢼࣀ⢏Ꮚゐ፹ࡢኚᙧࡀ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗ
ࣈ୰ࡢᵝࠎ࡞Ḟ㝗ࡢ⏕ᡂࢆㄏⓎࡍࡿࡇ࡜ࡀศ
࠿ࡗࡓࠋࡘࡲࡾࠊ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈ࡜ࡢ⏺
㠃࡛ࡢࢼࣀ⢏Ꮚゐ፹ࡢഹ࠿࡞ኚᙧࡀ࣮࢝࣎ࣥ
ࢼࣀࢳ࣮ࣗࣈ୰ࡢ᭤ࡀࡾࡸ୙ᆒ୍࡞ᒙ㛫ࡢ⏕
ᡂ࡟⧅ࡀࡿࡇ࡜ࡀ☜ㄆࡉࢀࡓࠋࡉࡽ࡟ࠊ࣮࢝࣎
ࣥࢼࣀࢳ࣮ࣗࣈࡢ┤ᚄࡢኚ໬ࡸࢢࣛࣇ࢓࢖ࢺ
ᒙᩘࡢ㐪࠸ࡣࠊࢼࣀ⢏Ꮚゐ፹ࡢ✺ฟࡸ཰⦰ኚᙧ
࡟⏤᮶ࡍࡿࡇ࡜ࡶ᫂ࡽ࠿࡟ࡉࢀࡓࠋᮏ◊✲࠿ࡽࠊ
ᡂ㛗୰࡟⏕ࡌࡿ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢḞ㝗
ᅗ 5 ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈᡂ㛗୰ࡢᒙ㛫ࡢኚ໬
ࢆไᚚࡍࡿࡓࡵࡢᣦ㔪ࢆᚓࡿࡇ࡜ࡀ࡛ࡁࡓࠋ
― 9―
ࢼࣀᶵ⬟ண ◊✲ศ㔝
ᩍᤵ
෸ᩍᤵ
ຓᩍ
ᣍ࡬࠸ᩍᤵ
≉௵ᩍᤵ
≉௵◊✲ဨ㸦ᐈဨᩍဨ㸧
≉௵◊✲ဨ
኱Ꮫ㝔Ꮫ⏕
஦ົ⿵బဨ
ᑠཱྀ ከ⨾ኵ
ⓑ஭ ග㞼
ᒣෆ 㑥ᙪࠊ⢄⏣ ᾈ⩏
ᮏἙ ග༤ࠊᇛ ೺⏨
Jaichan Lee㸦ᖹᡂ 25 ᖺ 11 ᭶ 11 ᪥ࠥᖹᡂ 25 ᖺ 12 ᭶ 13 ᪥㸧
᪫ Ⰻྖ㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥ࠥᖹᡂ 26 ᖺ 1 ᭶ 31 ᪥㸧
㇏⏣ 㞞அࠊ
Mohammad Shahjahan㸦ᖹᡂ 25 ᖺ 9 ᭶ 1 ᪥ࠥᖹᡂ 25 ᖺ 11 ᭶ 30 ᪥㸧
ࠊ
ୖᮧ ┤ᶞ㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥ࠥᖹᡂ 25 ᖺ 11 ᭶ 30 ᪥㸧
Mohammad Shahjahanࠊ☾ᒣ ె⏠ࠊୖᮧ ┤ᶞࠊ⸨ᮧ ༟ຌࠊᑠ᳃ ᑦᖹࠊ
Taufik Adi Nugrahaࠊబஂ㛫 ᜤᖹࠊ㧗ᓮ ⱥ㔛Ꮚࠊฟཱྀ ᨻᏕࠊ⸨஭ ுᏹࠊ
すᲄ Ὀ⤂
ᇉෆ ⨾ዉᏊ
a) ᴫせ
➨୍ཎ⌮ィ⟬࡟ᇶ࡙ࡁࠊ✀ࠎࡢᅛయ⣔࣭⾲㠃⣔࡛Ⓨ⌧ࡍࡿ≀ᛶ࣭ᶵ⬟ࢆ⌮ㄽⓗ࡟ண ࡍࡿ◊✲ࢆ⾜ࡗ
࡚࠸ࡿࠋⓎ⌧ᶵᵓࢆ㟁Ꮚ≧ែࡢ≉␗ᛶ࠿ࡽ᫂ࡽ࠿࡟ࡍࡿࡇ࡜࡟ࡼࡗ࡚ࠊ᪂ࡓ࡞≀㉁ࢆタィࡍࡿ◊✲࡟ࡶ
ᒎ㛤ࡋ࡚࠸ࡿࠋࡲࡓࠊ➨୍ཎ⌮ィ⟬࡟ᚲせ࡜࡞ࡿᇶ♏⌮ㄽࡸィ⟬ᡭἲࡢ㛤Ⓨ࡟ࡶྲྀࡾ⤌ࢇ࡛࠸ࡿࠋ
b) ᡂᯝ
࣭㑄⛣㔠ᒓ࠾ࡼࡧࡑࡢ໬ྜ≀⣔ࡢ㟁Ꮚ≧ែ
㑄⛣㔠ᒓඖ⣲ࡣከ✀ࡢඖ⣲࡜ྜ㔠ࡸ໬ྜ≀ࢆࡘࡃࡾከᒱ
࡟ࢃࡓࡿ≀ᛶࢆ♧ࡍࠋᡃࠎࡣࠊ✀ࠎࡢ㑄⛣㔠ᒓ㓟໬≀࡟ὀ┠
ࡋࠊࡑࡢ㟁Ꮚ≧ែࡢ≉␗ᛶ࡜ࡑࢀ࡟㉳ᅉࡍࡿ≀ᛶⓎ⌧ᶵᵓࡢ
ゎ᫂ࢆ┠ᣦࡋ࡚࠸ࡿࠋAࢧ࢖ࢺ⨨᥮ᆺ࣌ࣟࣇࢫ࢝࢖ࢺ㓟໬≀
AA’ 3 B 4 O 12 ࡣ༢⣧࡞࣌ࣟࣇࢫ࢝࢖ࢺᆺ㓟໬≀ABO 3 ࡢAࢧ࢖
ࢺࢆ஧✀㢮ࡢ㝧࢖࢜ࣥA࡜A’࡛༨᭷ࡉࡏࡓ㓟໬≀⣔࡛☢ᛶࢆ
ࡣࡌࡵከᵝ࡞㟁Ꮚ≀ᛶࢆ♧ࡍࠋCaCu 3 B 4 O 12 (B=Ti, Ge, Zr, Sn)
⣔࡟ぢࡽࢀࡿB࢖࢜ࣥ✀࡟ࡼࡾ␗࡞ࡿ☢Ẽ⛛ᗎࡢᚤどⓗᶵᵓ
ࢆ➨୍ཎ⌮㟁Ꮚ≧ែィ⟬࠿ࡽ᫂ࡽ࠿࡟ࡋࡓ㹙ㄽᩥ 1㹛ࠋࡑࡢ
㓟໬≀⣔࡜㢮ఝࡢBࢧ࢖ࢺ࡟☢ᛶ࢖࢜ࣥࢆ᭷ࡍࡿ
CaCu 3 Fe 4 O 12 ࡟ᑐࡋ࡚ࠊ㟁Ꮚ≧ែィ⟬࠿ࡽほ ࡉࢀࡓᏳᐃ☢
Ẽᵓ㐀࡜X⥺☢Ẽ෇஧Ⰽᛶࢫ࣌ࢡࢺࣝ࡟ᑐࡍࡿゎ㔘ࢆ୚࠼ࡓ
㹙ㄽᩥ 2㹛
ࠋ୕ゅ᱁Ꮚᵓ㐀ࢆ᭷ࡍࡿ㑄⛣㔠ᒓ㓟໬≀⣔PdCoO 2
࡜PdCrO 2 ࡢ㟁Ꮚ≧ែ࡟㛵ࡍࡿ◊✲ࢆ㐍ࡵࡓ㹙ㄽᩥ 3ࠊㄽᩥ 4㹛
ࠋ
ᅗ 1 A ࢧ࢖ࢺ⛛ᗎᆺ࣌ࣟࣇࢫ࢝࢖ࢺ㓟໬≀
࣭ཎᏊࢲ࢖ࢼ࣑ࢵࢡࢫࢆ฼⏝ࡋࡓ࣐ࢸࣜ࢔ࣝࢹࢨ࢖ࣥ
➨୍ཎ⌮㟁Ꮚ≧ែィ⟬ࡣ୺࡟≀㉁ࡢᇶᗏ≧ែ࡟㛵ࡍࡿ⌮ㄽ࡛࠶ࡿࡀࠊᡃࠎࡣཎᏊࡢືࡁ㸦ࢲ࢖ࢼ࣑ࢵ
ࢡࢫ㸧
ࠊ㍺㏦⌧㇟ࢆేࡏࡓ◊✲ࢆ⾜ࡗ࡚࠸ࡿࠋ௒ᖺᗘࡣ௨ୗࡢᡂᯝࢆᣲࡆ࡚࠸ࡿࠋ
⤖ᬗࢩࣜࢥࣥ୰ࡢḞ㝗ࡢᵓ㐀࡟ࡘ࠸࡚ 2 ࡘࡢ㈉⊩ࢆࡋࡓࠋ୍ࡘࡣࢩࣜࢥࣥ୰ࡢỈ⣲୙⣧≀ࡢᛶ㉁࡟㛵
ࡍࡿࡶࡢ࡛ࠊ୙⣧≀᣺ືࡢῶ⾶ࡀᚑ᮶ࡢ⌮ㄽࡼࡾ㠀ᖖ࡟኱ࡁ࠸ࡇ࡜ࢆࠊỈ⣲ࡢࢲ࢖ࢼ࣑ࢵࢡࢫ࠿ࡽゎ᫂
ࡋࡓࠋࡶ࠺୍ࡘࡀࢩࣜࢥࣥ୰ࡢ᱁Ꮚ✵Ꮝࡢᛶ㉁࡛ࠊప ࡛࣍ࢫࢺࡢᙎᛶᐃᩘࢆࢯࣇࢺ໬ࡍࡿࡇ࡜ࡀᐇ㦂
࡛♧ࡉࢀ࡚࠸ࡿࡀࠊࡑࢀࡀ᱁Ꮚ✵Ꮝࡀㄏᑟࡍࡿ᱁Ꮚṍࡳࡢࢲ࢖ࢼ࣑ࢵࢡࢫ࠿ࡽㄝ࡛᫂ࡁࡿࡇ࡜ࢆ♧ࡋࡓࠋ
― 10 ―
⼥ᾮ࠿ࡽࡢࢩࣜࢥࣥᘬࡁୖࡆᡂ㛗࡟࠾ࡅࡿ㌿⛣Ⓨ⏕࡟⇕ᛂຊࡀᙳ㡪ࡍࡿࡀࠊࡑࢀࢆᐃ㔞ⓗ࡟ᢕᥱࡍࡿ
ࡓࡵࡢࣖࣥࢢ⋡ࡢ ᗘ౫Ꮡᛶ࡟ࡘ࠸࡚ᚑ᮶ࡼࡾㄽதࡀ࠶ࡗࡓࡀࠊࡑࡢ ᗘ౫Ꮡᛶࢆ⌮ㄽⓗ࡟ᑟ࠸ࡓࠋ
࣭࣐ࣝࢳࣇ࢙ࣟ࢖ࢵࢡ≀㉁ࡢ≀㉁タィ
☢ᛶ࠾ࡼࡧᙉㄏ㟁ᛶࢆྠ᫬࡟♧ࡍ࣐ࣝࢳࣇ࢙ࣟ࢖ࢵࢡ≀㉁ࡢ୰࡟ࡣࠊ࣐ࢢࢿࢱ࢖ࢺࡢࡼ࠺࡟ప ┦ࡢ
㟁Ⲵ⛛ᗎࡀ⤖ᬗࡢ཯㌿ᑐ⛠ࢆ◚ࡾᙉㄏ㟁ศᴟࢆ♧ࡍ≀㉁ࡀ࠶ࡿࠋᡃࠎࡣࠊ㟁Ⲵ⛛ᗎࢆ♧ࡍ࣐ࣥ࢞ࣥ㓟໬
≀ࠊ㕲㓟໬≀࡟ࡘ࠸࡚㟁Ꮚ≧ែࢆィ⟬ࡋࠊㄏ㟁ᛶࡢᚤどⓗᶵᵓࢆゎ᫂ࡋ࡚ࡁࡓ㹙ㄽᩥ 5㹛
ࠋࡲࡓࠊ࣐ࣝ
ࢳࣇ࢙ࣟ࢖ࢵࢡ≀㉁ࡢከࡃࡣࠊእ㒊㟁ሙ࡟ࡼࡗ࡚☢ᛶࢆ᧯సྍ⬟࡜࡞ࡿ㟁Ẽ☢Ẽຠᯝࢆ♧ࡍࠋ
Ba 2 CoGe 2 O 7 ࡣࠊࢫࣆࣥ㌶㐨┦஫స⏝࠾ࡼࡧ␗᪉ⓗpdΰᡂ࡟㉳ᅉࡍࡿ㟁Ẽ☢Ẽຠᯝࢆ♧ࡍࡇ࡜ࡀ▱ࡽࢀ
࡚࠸ࡿࡀࠊᐦᗘỗ㛵ᩘἲࢩ࣑࣮ࣗࣞࢩࣙࣥࢆ⏝࠸࡚ࠊCoࢧ࢖ࢺࢆ௚ࡢ㑄⛣㔠ᒓඖ⣲࡟⨨᥮ࡋࡓ໬ྜ≀
Ba 2 MGe 2 O 7 (M = V, Cr, Mn, Fe, Ni, Cu)ࡢ≀㉁タィ࠾ࡼࡧ㟁Ꮚ≧ែィ⟬ࢆ⾜࠸ࠊ㟁Ẽ☢Ẽຠᯝࢆண ࡋࡓࠋ
M = V, Niࡢ࡜ࡁ࡟ࡣࠊ㑄⛣㔠ᒓඖ⣲ࡢt 2g ㌶㐨‽఩ࡀ㒊ศⓗ࡟༨᭷ࡉࢀ࡚ࠊ㓟⣲ᅄ㠃యࡢᴟᛶࢆࡶࡘ
Jahn-Tellerṍࡳࡀ⏕ࡌࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ
࣭஧ḟ㟁ụṇᴟᮦᩱࡢ≀㉁᥈⣴࡜ᒁᡤᵓ㐀ゎᯒ
ࣜࢳ࣒࢘࢖࢜ࣥ஧ḟ㟁ụࡣᑠᆺ㟁Ꮚᶵჾࡸ⮬ື㌴⏝㟁※࡞࡝ᵝࠎ࡞⏝㏵࡛฼⏝ࡉࢀ࡚࠾ࡾࠊ㟁ụᛶ⬟
ࡢྥୖࢆ┠ⓗ࡜ࡋࡓ᪂つᮦᩱࡢ᥈⣴࡜◊✲㛤ⓎࡀάⓎ࡟⾜ࢃࢀ࡚࠸ࡿࠋ≉࡟ṇᴟ࡜㈇ᴟ࡛ࡢࣜࢳ࣒࢘࢖
࢜ࣥࡢฟධࡾ࡟ࡼࡗ࡚⾲ࡉࢀࡿ඘ᨺ㟁཯ᛂࡣ㟁ụືసࡢᇶ♏ཎ⌮ࡢࡦ࡜ࡘ࡛࠶ࡾࠊ඘ᨺ㟁࡟క࠺㟁Ꮚ≧
ែࡸᒁᡤⓗཎᏊᵓ㐀ࡢኚ໬ࢆ㟁Ꮚ࣭ཎᏊࡢࢫࢣ࣮࡛ࣝ⌮ㄽゎᯒࡍࡿࡇ࡜ࡀᚲせ࡛࠶ࡿࠋᡃࠎࡣࠊ஧ḟ㟁
ụṇᴟᮦᩱࡢ᪂つ≀㉁᥈⣴ࢆ┠ᶆ࡜ࡋ࡚ࠊ➨୍ཎ⌮ィ⟬ᡭἲࢆ⏝࠸ࡓ඘ᨺ㟁๓ᚋࡢᒁᡤᵓ㐀ゎᯒࡸࠊ⌮
ㄽⓗ࡞㉳㟁ຊࡢホ౯ࢆ⾜ࡗ࡚࠸ࡿࠋ᭱㏆࡛ࡣ㈨※㔞ࡸࢥࢫࢺ࡞࡝ࡢほⅬ࠿ࡽࠊ࣏ࢫࢺࣜࢳ࣒࢘࢖࢜ࣥ㟁
ụࡢೃ⿵࡜ࡋ࡚ࢼࢺ࣒ࣜ࢘࢖࢜ࣥ஧ḟ㟁ụࡢ◊✲㛤Ⓨࡀὀ┠ࡉࢀ࡚࠸ࡿࠋࡑࡢṇᴟᮦᩱ࡜ࡋ࡚FeS 2 ⣔≀
㉁ࡀᣲࡆࡽࢀ࡚࠸ࡿࠋࡋ࠿ࡋࠊNa࢖࢜ࣥࡢฟධࡾࡼࡗ࡚࡝ࡢࡼ࠺࡞ᵓ㐀ኚ໬ࡀ㉳ࡇࡗ࡚࠸ࡿ࠿ࡣ᏶඲࡞
⌮ゎ࡟ࡣ⮳ࡗ࡚࠾ࡽࡎࠊࡇࢀࡲ࡛࡟࠸ࡃࡘ࠿ࡢ඘ᨺ㟁཯ᛂᘧࡀᥦ᱌ࡉࢀ࡚࠸ࡿࠋNa/FeS 2 ⣔ṇᴟᮦᩱࡢ
ᇶ♏཯ᛂ࣓࢝ࢽࢬ࣒࡜ࡋ࡚ࠊNa࢖࢜ࣥࡢฟධࡾ࡟ࡼࡗ࡚኱ࡁ࡞ᒁᡤᵓ㐀ኚ໬࣭⤖ᬗᵓ㐀ኚ໬ࡀ㉳ࡇࡿࢥ
ࣥࣂ࣮ࢪࣙࣥ཯ᛂࡀ⪃࠼ࡽࢀ࡚࠸ࡿࠋᡃࠎࡣ඘ᨺ㟁࡟క࠺ᒁᡤᵓ㐀ࡢኚ໬ࢆ᫂ࡽ࠿࡟ࡍࡿࡓࡵ࡟ࠊᇶ♏
ࢹ࣮ࢱ࡜࡞ࡿ㟁Ꮚᵓ㐀ࡸ☢ᛶ࡟㛵ࡍࡿゎᯒࢆ⾜࠸ࠊX⥺྾཰ࢫ࣌ࢡࢺࣝࡢᐇ㦂ࢹ࣮ࢱࡢゎᯒࢆ㐍ࡵ࡚࠸
ࡿࠋᥦ᱌ࡉࢀ࡚࠸ࡿࡦ࡜ࡘࡢ඘ᨺ㟁཯ᛂᘧࡣࠊ2Na + FeS 2 ĺ1D 2 S 2 + Fe࡛࠶ࡿࠋPyriteᵓ㐀FeS 2 ࠊșᵓ㐀
NaSࠊBCCᵓ㐀NaࠊཬࡧBCCᵓ㐀Feࡢᐇ㦂್ࡢ⤖ᬗᵓ㐀ࢆ௬ᐃࡋ࡚ࠊ୍⯡໬ᐦᗘ໙㓄㏆ఝࢆ⏝࠸ࡓ➨୍
ཎ⌮ィ⟬࠿ࡽホ౯ࡋࡓ㉳㟁ຊࡣ⣙ 0.9 ࣎ࣝࢺ⛬ᗘࡢ್࡛࠶ࡾࠊࡇࡢ್ࡣࢥࣥࣂ࣮ࢪࣙࣥࣔࢹࣝࢆ⏝࠸ࡓ
⌮ㄽ್࡞࡝࡜ẚ㍑ࡍࡿ࡜ᑠࡉ࡞್࡛࠶ࡿࠋ᭱㏆ࠊOkadaࡽࡣ඘ᨺ㟁཯ᛂ࡟ࡼࡿᵓ㐀ኚ໬ࢆᐇ㦂ⓗ࡟ㄪ࡭ࠊ
ṇᴟ୰Na㔞࡟౫Ꮡࡋࡓ 2 ẁ㝵ࡢ཯ᛂᘧ (1) 2Na + FeS 2 ĺ1D 2 FeS 2 , (2) 2Na + Na 2 FeS 2 ĺ1D 2 S + Fe ࢆᥦ
᱌ࡋ࡚࠸ࡿࠋࡇࢀࡣLi/FeS 2 ⣔࡟࠾ࡅࡿ཯ᛂ࡜ྠᵝࡢᘧ࡛࠶ࡿࠋCubicᵓ㐀Na 2 Sࢆ⏝࠸࡚ࠊ୰㛫≧ែࢆ↓
どࡋࡓ⠊ᅖෆ㸦4Na + FeS 2 ĺ1D 2 S + Fe㸧࡛ィ⟬ࡋࡓ⤖ᯝࠊ㉳㟁ຊࡢィ⟬್ࡣ 1.2 ࣎ࣝࢺ࡛࠶ࡾࠊࡇࡢ
཯ᛂᘧ࡟ᇶ࡙࠸ࡓィ⟬್ࡣKimࡽ࡟ࡼࡗ࡚ᥦ᱌ࡉࢀ࡚࠸ࡿ཯ᛂᘧࡼࡾࡶ㧗࠸㉳㟁ຊ್ࢆ♧ࡋ࡚࠸ࡿࠋ
― 11 ―
ࢯࣇࢺࢼࣀ࣐ࢸࣜ࢔ࣝ◊✲ศ㔝
ᩍᤵ
෸ᩍᤵ
ຓᩍ
኱Ꮫ㝔Ꮫ⏕
≉௵◊✲ဨ
஦ົ⿵బဨ
ᢏ⾡⿵బဨ
Ᏻ⸽ ⰾ㞝
ᐙ ⿱㝯
㎞ᕝ ㄔࠊ஧㇂ ┿ྖ
㯤 ᘓ᫂ࠊ㝕ෆ 㟷ⴌࠊబ⸨ ༓ᑜࠊ฼᰿ ⣪⧊ࠊứ 傯ࠊ➲⏣ ⩧ᖹࠊ⏣௦ ᙬ
Shreyam Chattergee
ᒣᓮ ៞Ꮚ
∾㔝 ୔ኵ㸦㹼ᖹᡂ 25 ᖺ 12 ᭶ 31 ᪥㸧
a) ᴫせ
᭷ᶵ≀㉁ࡢᶵ⬟ࢆศᏊࡢ࡛ࣞ࣋ࣝゎ᫂ࡋไᚚࡍࡿࡇ࡜ࢆᇶ┙࡜ࡋ࡚ࠊඃࢀࡓ㟁Ꮚ࣭ගᶵ⬟ࢆ᭷ࡍࡿ᭷
ᶵศᏊࡢ㛤Ⓨ࡜ᵓ㐀≀ᛶ┦㛵ࠊ࠾ࡼࡧࠊᶵ⬟ホ౯࡜᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫᛂ⏝ࡢ୍㈏ࡋࡓ◊✲ࢆ⾜ࡗ࡚
࠸ࡿࠋ᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫ࡟㐺ࡋࡓ᭷ᶵᶵ⬟ศᏊࡢ㛤Ⓨࠊ࠾ࡼࡧࠊศᏊࢫࢣ࣮࢚ࣝࣞࢡࢺࣟࢽࢡࢫࢆ
ᚿྥࡋࡓࢼࣀࢫࢣ࣮ࣝȧඹᙺศᏊᮦᩱࡢศᏊタィ࡜≀㉁ྜᡂࠊࡑࢀࡽࡢ≀ᛶ᭷ᶵ໬Ꮫ࡜ᶵ⬟᭷ᶵ໬Ꮫࡢ
◊✲ࢆ୰ᚰ࡟ࠊ1) ȧ㟁Ꮚඹᙺ⣔ࡢ໬Ꮫಟ㣭࡟ࡼࡿ㧗࠸㟁Ꮚ⛣ືᗘࢆ♧ࡍ᭷ᶵ༙ᑟయᮦᩱࡢ㛤Ⓨ 2) ศᏊ
࢚ࣞࢡࢺࣟࢽࢡࢫ⣲Ꮚ࡟㐺ࡋࡓࢼࣀࢫࢣ࣮ࣝศᏊᮦᩱࡢ㛤Ⓨࢆ┠ⓗ࡜ࡋ࡚ࠊᶵ⬟໬ศᏊ࣡࢖ࣖ࠾ࡼࡧ㔠
ᒓ㟁ᴟ᥋ྜࣘࢽࢵࢺࡢ㛤Ⓨ࡜ホ౯ࢆ㐍ࡵ࡚࠸ࡿࠋ
b) ᡂᯝ
᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫᮦᩱ࡜ࡋ࡚ࠊn ᆺࡢ᭷ᶵࢺࣛࣥࢪࢫࢱᮦᩱࡢ㛤Ⓨࢆ⾜ࡗࡓࠋȧ㟁Ꮚඹᙺ⣔࡟㟁
Ꮚồᘬᛶᇶࢆᑟධࡍࡿࡇ࡜࡛ n ᆺ≉ᛶࡀⓎ⌧ࡍࡿ஦ࡀ▱ࡽࢀ࡚࠸ࡿࠋ୍᪉ࠊⷧ⭷࡟࠾࠸࡚࢟ࣕࣜ࢔⛣ື
ᗘࢆྥୖࡉࡏࡿᡭἲ࡜ࡋ࡚ࠊศᏊ㛫࡟࠾ࡅࡿศᏊ㌶㐨┦஫స⏝ࡢቑຍࡉࡏࡿࡇ࡜ࡀᣲࡆࡽࢀࡿ㸬ࡇࡢほ
Ⅼ࠿ࡽࠊȧ㟁Ꮚ⣔ศᏊ࡟㔜ཎᏊࢆᑟධࡍࡿࡇ࡜࡛ࠊ࢟ࣕࣜ࢔㍺㏦⬟ࡢᨵၿࡀᮇᚅ࡛ࡁࡿࠋ᭱㏆ࠊඃࢀࡓ
༙ᑟయᛶ⬟ࢆ♧ࡍ࡜࡜ࡶ࡟ࠊ⁐ᾮࣉࣟࢭࢫࡀྍ⬟࡞໬ྜ≀࡜ࡋ࡚ N-࢔ࣝ࢟ࣝ⎔≧࢖࣑ࢻᵓ㐀ࢆᮎ➃࡟᭷
ࡍࡿȧ㟁Ꮚ⣔ศᏊࡀሗ࿌ࡉࢀ࡚࠸ࡿࡇ࡜࠿ࡽࠊᮎ➃࡟ N-࢔ࣝ࢟ࣝ⎔≧࢖࣑ࢻࡢ㓟⣲ཎᏊࢆ◲㯤࡛⨨᥮ࡋ
ࡓ⎔≧ࢳ࢜࢖࣑ࢻࢆ᭷ࡍࡿ ʌ 㟁Ꮚ⣔ศᏊࢆྜᡂࡋࡓࠋ๰ฟࡋࡓࢳ࢜࢖࣑ࢻ໬ྜ≀ࡢࢧ࢖ࢡࣜࢵࢡ࣎ࣝࢱ
ࣔࢢ࣒࡛ࣛࡣ–1.1 ࠿ࡽ–1.6 V ࡟㑏ඖἼࡀほ ࡉࢀࡓࡇ࡜࠿ࡽࠊ
n ᆺ FET ≉ᛶࡢⓎ⌧ࡀᮇᚅ࡛ࡁࡓࠋ
ࡲࡓࠊ
ࢳ࢜࢖࣑ࢻ໬ྜ≀ࡢ㑏ඖἼࡣࠊᑐᛂࡍࡿ࢖࣑ࢻ໬ྜ≀ࡢ㑏ඖἼ࡜ẚ࡭࡚㧗㟁఩࡟ࢩࣇࢺࡋ࡚࠸ࡓࡇ࡜࠿
ࡽࠊ◲㯤ཎᏊࡢᑟධ࡟ࡼࡾ㟁Ꮚཷᐜᛶࡢྥୖࡀぢࡽࢀࡓࠋࢫࣆࣥࢥ࣮ࢺἲࢆ⏝࠸࡚࣎ࢺ࣒ࢥࣥࢱࢡࢺᆺ
ࡢ FET ⣲Ꮚࢆస
ᡂࡋࠊ㟁Ꮚ⛣ືᗘ
ࢆホ౯ࡋࡓ⤖ᯝࠊ
࠸ࡎࢀࡢ⣲Ꮚࡶ
඾ᆺⓗ࡞ n ᆺࡢ
ᣲືࢆ♧ࡋࡓࠋ≉
࡟ࠊ⎔≧ࢳ࢜࢖࣑
ࢻ໬ྜ≀࡛ࡣᑐ
ᛂࡍࡿ࢖࣑ࢻ໬
ྜ≀࡜ẚ࡭࡚ 1
᱆㸫2 ᱆ࡢ㟁Ꮚ
⛣ືᗘࡢྥୖࡀ
ぢࡽࢀࡓ[ㄽᩥ
2](ᅗ 1)ࠋ
― 12 ―
୍᪉ࠊ᭷ᶵⷧ⭷ᆺኴ㝧㟁ụ㸦OPV㸧
࡟ྥࡅ࡚ࡢ n ᆺ༙ᑟయᮦᩱࡢ㛤Ⓨ
ࡣ㐜ࢀ࡚࠾ࡾࠊࣇ࣮ࣛࣞࣥ࡟௦ࢃࡾ
ᚓࡿᛶ⬟ࢆᣢࡘᮦᩱࡣタィᣦ㔪ࡍࡽ
☜❧ࡉࢀ࡚࠸࡞࠸ࠋࡇࢀࡣ༢ᡂศ࡛
ᵓᡂࡉࢀࡿ OFET ࡢⷧ⭷࡟ᑐࡋ࡚ࠊ
p ᆺᮦᩱ࡜ n ᆺᮦᩱࢆΰྜࡋ࡚ᵓ
ᡂࡉࢀࡿࣂࣝࢡ࣊ࢸࣟ᥋ྜ OPV ࡟
࠾࠸࡚ࡣ࢟ࣕࣜ࢔㍺㏦⤒㊰ࡢᵓ⠏ࡀ
ᅔ㞴࡞ࡓࡵ࡛࠶ࡿࠋࡑࡇ࡛ࠊࣇ࣮ࣛ
ࣞࣥࡢࡼ࠺࡟␗᪉ᛶࡢ࡞࠸❧యᵓ㐀
ࡢȧ㟁Ꮚ⣔ศᏊࢆ㛤Ⓨࡍࡿ஦ࡀ࡛ࡁ
ᅗ 2 3 ḟඖᆺᵓ㐀࢔ࢡࢭࣉࢱ࣮ᮦᩱ
ࢀࡤ᪂ࡓ࡞᭷ᶵ༙ᑟయᮦᩱ࡟࡞ࡿ࡜
⪃࠼ࡓࠋࡇࡢほⅬ࠿ࡽࠊ඾ᆺⓗ࡞ n
ᆺ໬ྜ≀࡛࠶ࡿ࣌ࣜࣞࣥࣅࢫ(ࢪ࢝ࣝ࣎࢟ࢩ࢖࣑ࢻ)(PDI)ࢆᮎ➃࡟ᑟධࡋࡓࠊ୕ḟඖᵓ㐀ࢆ᭷ࡍࡿศᏊ 1,
2 ࢆタィࡋࠊྜᡂࠊ≀ᛶホ౯ࠊ࠾ࡼࡧࠊn ᆺ༙ᑟయ࡜ࡋ࡚ࡢග㟁ኚ᥮≉ᛶࡢホ౯ࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊ
ࡑࢀࡒࢀࠊ0.12, 0.18%ࡢග㟁ኚ᥮ຠ⋡ࡀほ ࡉࢀࠊᑐᛂࡍࡿཧ↷໬ྜ≀ 3(0.12%)࡜ྠ➼௨ୖࡢᛶ⬟ࢆ♧
ࡋࡓ[ㄽᩥ 1](ᅗ 2)ࠋ
ࡲࡓࠊ᭷ᶵⷧ⭷ᆺኴ㝧㟁ụ࡟࠾ࡅࡿnᆺ༙ᑟయᮦᩱ࡜ࡋ࡚ࡢᛂ⏝ࢆ┠ⓗ࡜ࡋ࡚ࠊ᪂つࣇ࣮ࣛࣞࣥㄏᑟయ
ࡢ㛤Ⓨࢆ௻ᴗ࡜ඹྠ◊✲࡟ࡼࡾ⾜ࡗ࡚࠸ࡿࠋ࢚ࢿࣝࢠ࣮ኚ᥮ຠ⋡ࡢ㧗࠸᭷ᶵⷧ⭷ኴ㝧㟁ụࡢᐇ⌧࡟ྥࡅ
࡚ࠊ࢚ࢿࣝࢠ࣮‽఩࡜ྍどග྾཰㡿ᇦࡢㄪᩚࢆ┠ⓗ࡜ࡋࡓ⦓ᐦ࡞ศᏊタィࡀ⾜ࢃࢀࠊnᆺ༙ᑟయ࡜ࡢ㐺
ษ࡞࢚ࢿࣝࢠ࣮ࢠࣕࢵࣉ࡜ᗈ࠸྾཰㡿ᇦࢆేࡏᣢࡗࡓpᆺ༙ᑟయᮦᩱࡀ㛤Ⓨࡉࢀ࡚ࡁࡓࠋ୍᪉࡛ࠊnᆺ᭷
ᶵ༙ᑟయᮦᩱࡣࠊ[60]ࣇ࣮ࣛࣞࣥ(C 60 )ㄏᑟయ࡛࠶ࡿ[6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM)ࠊ࠶
ࡿ࠸ࡣࡑࡢC 70 ㄏᑟయ (PC 71 BM)ࡢࠊ㏻⛠PCBM࡜⛠ࡍࡿᮦᩱ࡟౫Ꮡࡋ࡚࠸ࡿࠋࡇࡢࡼ࠺࡞≧ἣࡣࠊOPV
ࡢᛶ⬟ྥୖ࡟ྥࡅࡓᇶ♏ⓗ࡞≀ᛶࡢ⌮ゎࡢ㞀ᐖ࡜࡞ࡾ࠿ࡡࡎࠊOPVᮦᩱ࡜ࡑࡢ໬Ꮫࠊ≀⌮ⓗ⌮ゎࡢ㐍ᒎ
ࡢࡓࡵࠊPCBM௦᭰࡜࡞ࡿᮦᩱ㛤Ⓨࡣᚲ㡲࡛࠶ࡿࠋ
ᡃࠎࡢࠊࡇࢀࡲ࡛ࡢ᪂つ n ᆺᮦᩱ◊✲࡛ࠊ࠸ࡃࡘ࠿ࡢ⨨᥮ᇶ࡟ᛶ⬟ྥୖ࡟ᐤ୚ࡍࡿຠᯝࡀ࠶ࡿࡇ࡜ࡀ
ศ࠿ࡗ࡚ࡁࡓࠋ⨨᥮ᇶ࡜ࢹࣂ࢖ࢫ≀ᛶ࡟㛵ࡍࡿᡃࠎࡢ᳨ウ࠿ࡽ᪂つࣇ࣮ࣛࣞࣥㄏᑟయࡣࠊ᪤Ꮡ n ᆺᮦᩱ
࡛࠶ࡿ PCBM ࡜ྠ➼௨ୖࡢᛶ⬟ࡀᚓࡽࢀ࡚࠸ࡿࠋࡇࢀࡲ࡛ࡢ◊✲࠿ࡽᚓࡽࢀࡓ᪂つᮦᩱࡢෆࠊPCBM ࡜
ྠ➼௨ୖࡢࡶࡢ࡟ࡘ࠸࡚ࠊ᪂ࡓ࡞ࢻࢼ࣮ᮦᩱ㸦PTB7㸧࡜ࡢ⤌ࡳྜࢃࡏ࡟ࡼࡿᛶ⬟ホ౯ࢆ⾜ࡗࡓࠋPTB7
ࢆࢻࢼ࣮࡟౑ࡗࡓሙྜ࡟࠾࠸࡚ࡶࠊⰋዲ࡞ኴ㝧㟁ụ≉ᛶࢆ♧ࡋࡓࠋࡉࡽ࡟ࡣࠊ᪂つᮦᩱࡣࡇࡢ⣔࡟࠾࠸
࡚ࡶࠊPCBM ࡟ᑐࡋ࡚ᘬࡅࢆ࡜ࡽ࡞࠸ᛶ⬟࡛࠶ࡾࠊC60 ࣇ࣮ࣛࣞࣥࢆ౑ࡗࡓኴ㝧㟁ụࡢ୰࡛ࡣୡ⏺ࢺࢵ
ࣉࢡࣛࢫ࡜࡞ࡿࠋ
ᅗ 3 ᪂つࣇ࣮ࣛࣞࣥࢆ౑ࡗࡓኴ㝧㟁ụ⣲Ꮚࡢ㟁ὶ㟁ᅽ≉ᛶᅗ࡜ࡑࡢ⣲Ꮚᵓ㐀
― 13 ―
ࣂ࢖࢜ࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ศ㔝
ᩍᤵ
෸ᩍᤵ
ຓᩍ
኱Ꮫ㝔Ꮫ⏕
஦ົ⿵బဨ
㇂ཱྀ
⟄஭
⏣୰
ᮏ㒓
⸨ᯘ
ṇ㍤
┿ᴋ
⿱⾜ࠊᶓ⏣ ୍㐨㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥᥇⏝㸧
⚞ேࠊ᭷㤿 ᙲ⚽ࠊ᳃ᕝ 㧗඾
஀⌮Ꮚ
a) ᴫせ
⚾㐩ࡢࢢ࣮ࣝࣉ࡛ࡣࠊ་⒪デ᩿ᢏ⾡ࡢ㧗ᗘ໬࣭㧗ᛶ⬟໬࡟ྥࡅ࡚ࠊ⏕యෆࡢᵓ㐀ࡸᶵ⬟ࢆᶍೌࡋࡓ༙
ᑟయࢼࣀࢹࣂ࢖ࢫࡸ 1 ศᏊ᳨ฟཎ⌮ࡢ◊✲ࢆ⾜ࡗ࡚࠸ࡿࠋ㟁Ꮚ⥺ᥥ⏬ἲ࡞࡝ࡢඛ➃ࣞ࣋ࣝࡢࢼࣀຍᕤᢏ
⾡ࢆ㥑౑ࡋࡓࠊᩘࢼࣀ࣓࣮ࢺࣝࢧ࢖ࢬࡢ㟁ᴟࢠࣕࢵࣉࢆసࡿࡓࡵࡢ᪂ࡓ࡞ᢏ⾡ࢆ๰〇ࡋࠊࡇࢀࢆᛂ⏝ࡋ
࡚ࠊ㟁ᴟ㛫࡟㓄⥺ࡉࢀ࡚࠸ࡿศᏊࡢᩘࡸ✀㢮ࠊ1 ศᏊࡀ㟁ᴟ࡟ࡘ࡞ࡀࡗ࡚࠸ࡿᙉᗘࡸ᫬㛫ࠊ㟁ᴟ࡟᥋⥆
ࡉࢀ࡚࠸ࡿ 1 ศᏊࡢ㏻㟁᫬࡟࠾ࡅࡿᒁᡤ ᗘࠊ1 ศᏊࡢࢲ࢖ࢼ࣑ࢡࢫࡸ໬Ꮫ཯ᛂࢆ㟁Ẽⓗ࡟ㄪ࡭ࡿ᪉ἲ
ࢆᵓ⠏ࡋ࡚࠸ࡿࠋࡲࡓࠊ㉮ᰝࣉ࣮ࣟࣈ㢧ᚤ㙾࡟ࡼࡾࠊ⾲㠃ୖ࡟࠶ࡿ DNA ࡞࡝ࡢ 1 ศᏊほᐹ࠾ࡼࡧศග
࡜ศᏊ࣐ࢽࣆ࣮ࣗࣞࢩࣙࣥࢆ⾜ࡗ࡚࠸ࡿࠋࡑࡋ࡚ࠊࡇࢀࡽࡢᇶ♏◊✲ࢆ㏻ࡌ࡚ࠊ1 ศᏊࡢᛶ㉁ࢆㄪ࡭ࡿ
1 ศᏊ⛉Ꮫࢆ㛤ᣅࡋࠊྠ᫬࡟ࡇࡢ 1 ศᏊ⛉Ꮫࢆᇶᮏཎ⌮࡜ࡍࡿ᪂ࡋ࠸ࣂ࢖࢜ศᏊࢹࣂ࢖ࢫࡸࣂ࢖࢜ࢭࣥ
ࢧ࣮ࢆ㛤Ⓨࡍࡿ࡜ඹ࡟ࠊSM-TAS(Single-Molecule Total Analysis System)ࡢᐇ⌧࡟㈨ࡍࡿ 1 ศᏊᢏ⾡ࡢ๰ฟ
࡟ྲྀࡾ⤌ࢇ࡛࠸ࡿࠋ
୺࡞◊✲ㄢ㢟࡜ࡋ࡚ࡣࠊSPM ࡟ࡼࡿ DNA ➼ࡢࣂ࢖࢜ศᏊࡢࢼࣀࢧ࢖࢚ࣥࢫ࣭ࢼࣀࢸࢡࣀࣟࢪ࣮ࠊࢼ
ࣀ㟁ᴟ࡜ࢼࣀὶ㊰ࢆ⼥ྜࡉࡏࡓ 1 ศᏊࣂ࢖࢜ࢭࣥࢧ࣮ࡢ㛤Ⓨࠊᅛయࢼࣀ࣏࢔ࢹࣂ࢖ࢫࢆ⏝࠸ࡓࢼࣀ࣏࢔
ࢩ࣮ࢡ࢚ࣥࢩࣥࢢἲࡢ㛤Ⓨࠊ┬㈨※࣭┬࢚ࢿࣝࢠ࣮࡟㈨ࡍࡿ༢୍ศᏊࢹࣂ࢖ࢫࡢ㛤Ⓨࠊࡀᣲࡆࡽࢀࡿࠋ
b) ᡂᯝ
࣭ࢼࣀ࣏࢔ࢺࣛࢵࣉἲࢆ⏝࠸ࡓ༢୍⢏Ꮚ㆑ู
ᅛయ࣓ࣥࣈࣞࣥ୰࡟✵ࡅࡽࢀࡓࢼࣀࢧ࢖ࢬࡢ⣽
Ꮝ࡛ᵓᡂࡉࢀࡿࢼࣀ࣏࢔ࢭࣥࢧ࣮ࡣࠊ㉥⾑⌫ࠊⓑ
⾑⌫ࠊ࢘࢖ࣝࢫ➼ࢆ㧗ឤᗘ᳨࡛ฟࡍࡿࣂ࢖࢜ࢭࣥ
ࢧ࣮࡜ࡋ࡚ࠊࡑࡢᐇ⏝໬࡟ྥࡅࡓ◊✲㛤Ⓨࡀᗈࡃ
ᒎ㛤ࡉࢀ࡚ࡁ࡚࠸ࡿࠋࢼࣀ࣏࢔ࢹࣂ࢖ࢫ࡛ࡣࠊ᳨
యࡀࢼࣀ࣏࢔ࢆ㏻㐣ࡍࡿ㝿࡟⏕ࡌࡿࠊ࣏࢔ࢆ㏻ࡿ
࢖࢜ࣥ㟁ὶኚ໬ࢆᣦᶆ࡜ࡋ࡚ࠊ᳨యࡢ᳨ฟࡸ㆑ู
ࡀ⾜ࢃࢀࡿࠋࡋ࠿ࡋࠊࡇࡢ᳨ฟཎ⌮࡛ࡣࠊ᳨యࢆ
㟁ẼὋືࡉࡏࡿࡓࡵ࡟༳ຍࡍࡿ㟁ᅽ࡟ࡼࡗ࡚࣏࢔
ෆ࡟ 2mV/nm ௨ୖࡢᴟࡵ࡚኱ࡁ࡞㟁⏺ࡀ⏕ࡌࡿࡓ
ࡵࠊ࢖࢜ࣥ㟁ὶィ ࡢࢧࣥࣉ࣮ࣝࣞࢺ࡟ẚࡋ࡚㠀
ᖖ࡟㧗㏿᳨࡛యࡀ࣏࢔ࢆ㏻㐣ࡍࡿ࡜࠸࠺ၥ㢟ࡀ࠶
ࡗࡓࠋࡑࡇ࡛ࠊ᳨యࡼࡾᑠࡉ࡞┤ᚄࢆ᭷ࡍࡿ࣏࢔
ᅗ ࢼࣀ࣏࢔ࢺࣛࢵࣉἲ㸬㟁ẼὋື㟁ᅽไᚚ࡟ࡼࡾ᳨య⢏Ꮚ
ࢆ⏝࠸࡚ࠊ᳨యࢆ࣏࢔࡟㏻㐣ࡉࡏࡿࡢ࡛ࡣ࡞ࡃࠊ
ࢆ⧞ࡾ㏉ࡋࢺࣛࢵࣉ⬺ࢺࣛࢵࣉࡉࡏࡿࡇ࡜ࡀ࡛ࡁࡿ㸬
࣏࢔㏆ഐ࡟㟁Ẽⓗ࡟ᤕᤊࡉࡏࡿࢼࣀ࣏࢔ࢺࣛࢵࣉ
ἲࢆ㛤Ⓨࡋࡓ㸦ᅗ 1㸧ࠋ
ࢼࣀ࣏࢔ࢺࣛࢵࣉἲࢆ⏝࠸ࡿ࡜ࠊᖏ㟁ࡋࡓࢼࣀ⢏Ꮚࢆ࣏࢔㏆ഐ࡟⧞ࡾ㏉ࡋࢺࣛࢵࣉ/⬺ࢺࣛࢵࣉࡉࡏࡿ
ࡇ࡜ࡀ࡛ࡁࡓࠋࡉࡽ࡟ࠊࡑࡢ㝿࡟⏕ࡌࡿ࢖࢜ࣥ㟁ὶኚ໬࠿ࡽࠊ⾲㠃㟁Ⲵᐦᗘࡢ㐪࠸࡟ࡼࡿ᳨యࡢ㆑ูࡀ
ྍ⬟࡜࡞ࡿࡇ࡜ࢆᐇドࡋࡓࠋ
― 14 ―
࣭ཎᏊࢧ࢖ࢬ᥋ྜ࡟࠾ࡅࡿ㔞Ꮚ໬⇕㉳㟁ຊࡢほ ༢ศᏊ᥋ྜ࡟≉᭷ࡢ㟁Ꮚ≧ែࢆ฼⏝ࡍࡿࡇ࡜࡛ࠊ㧗࠸ᛶ⬟ࢆ᭷ࡍࡿ⇕㟁⣲Ꮚࢆ๰〇ࡍࡿࡇ࡜ࡀ⌮ㄽୖ
ྍ⬟࡛࠶ࡿࡇ࡜ࡀᣦ᦬ࡉࢀ࡚௨᮶ࠊ༢ศᏊ᥋ྜࡢ⇕㟁≉ᛶ࡟㛵ࡍࡿ◊✲ࡀ⢭ຊⓗ࡟⾜ࢃࢀ࡚ࡁ࡚࠸ࡿࠋ
ࡋ࠿ࡋࡇࢀࡲ࡛ࡢ㉮ᰝࢺࣥࢿࣝ㢧ᚤ㙾ࢆ⏝࠸ࡓ㸯ศᏊ⇕㉳㟁ຊィ ἲ࡛ࡣࠊ⇕ࢻࣜࣇࢺ➼ࡢၥ㢟ࡀ࠶ࡾࠊ
㟁ᴟ䇲 ༢ศᏊ䇲 ᥋ྜࢆᙧᡂ࡛ࡁ࡚ࡶࠊࡑࡢ≧ែࢆࠊ⇕㉳㟁ຊ ᐃࢆᐇ⾜ࡍࡿୖ࡛༑ศ࡟㛗࠸᫬㛫ಖᣢࡍ
ࡿࡇ࡜ࡀᅔ㞴࡛࠶ࡗࡓࠋࡑࡇ࡛ࠊ༢ศᏊ᥋ྜࡢᏳᐃಖᣢ࡟㐺ࡋࡓࢼࣀຍᕤ MCBJ㸦mechanically-controllable
break junction㸧ࢆᨵⰋࡋࡓ࣐࢖ࢡࣟࣄ࣮ࢱ⤌㎸ࡳᆺ MCBJ㸦ᅗ 2㸧ࢆ㛤Ⓨࡋࠊࡑࡢືసᐇド࡜ࡋ࡚ࠊ㔠ཎ
Ꮚࢧ࢖ࢬ᥋ྜࡢ㟁Ẽఏᑟᗘ࡜⇕㉳㟁ຊࡢྠ᫬ィ ࢆᐇ᪋ࡋࡓࠋ
ᚓࡽࢀࡓ⇕㉳㟁ຊࡢࣂࣛࡘࡁࢆㄪ࡭ࡓ࡜ࡇࢁࠊ
ࡑࡢᶆ‽೫ᕪࡣ᥋ྜ㟁Ẽఏᑟᗘࡀ㔞Ꮚ໬㟁Ẽఏᑟ
ᗘࡢ༙ᩚᩘಸࡢ᫬࡟ᴟ኱್ࢆ♧ࡍࡇ࡜ࡀศ࠿ࡗࡓࠋ
ࡇࢀࡣࠊࣂࣜࢫࢸ࢕ࢵࢡ࡟᥋ྜࢆ㏱㐣ࡍࡿఏᑟ㟁
Ꮚ࡜ࠊ㏱㐣ᚋ࡟᥋ྜ㟁ᴟෆ㒊ࡢḞ㝗࡟ࡼࡗ࡚ᚋ᪉
ᩓ஘ࡉࢀࡓ㟁Ꮚࡢ㛫࡛⏕ࡌࡿ㔞Ꮚᖸ΅ຠᯝ࡟㉳ᅉ
ࡍࡿ⌧㇟࡛࠶ࡿ࡜⪃࠼ࡽࢀࡿࠋ
୍᪉ࠊ⇕㉳㟁ຊࡢᖹᆒ್ࡣࠊ᥋ྜ㟁Ẽఏᑟᗘࡀ
㔞Ꮚ໬㟁Ẽఏᑟᗘࡢᩚᩘಸࡢ᫬࡟ᴟᑠ್ࢆ♧ࡋࡓࠋ
ࡇࡢ≉ᛶࡣࠊ⌮᝿ⓗ࡞㸯ḟඖࣂࣜࢫࢸ࢕ࢵࢡ㟁Ꮚ
⣔࡟࠾࠸࡚⌮ㄽⓗ࡟ண ࡉࢀࡿ⇕㉳㟁ຊࡢ㔞Ꮚ໬
⌧㇟࡜Ⰻ࠸୍⮴ࢆぢࡿࡶࡢ࡛࠶ࡗࡓࠋ௨ୖࡢࡼ࠺
ᅗ ࣐࢖ࢡࣟࣄ࣮ࢱ⤌㎸ࡳᆺ 0&%- ⣲Ꮚ
࡟ࠊ㔠᥋ྜࡢ㟁Ẽఏᑟᗘ࡜⇕㉳㟁ຊࡢྠ᫬ィ ࢆ
ᐇ᪋ࡍࡿࡇ࡜࡛ࠊཎᏊࢧ࢖ࢬ᥋ྜ࡟࠾ࡅࡿ㔞Ꮚ໬
⇕㉳㟁ຊࡢほ ࡟ᡂຌࡋࡓࠋ
࣭Ᏻ౯࡛ᖹᆠ࡞ࢢࣛࣇ࢙ࣥᇶᯈࡢసᡂ࡜ホ౯
㸯ศᏊ᳨ฟ࣭㆑ูᢏ⾡ࡢ㛤Ⓨᨭ᥼ࡢࡓࡵࠊࢤ࣮ࢸ࢕ࣥࢢࢼࣀ࣏࢔
࡜㢮ఝᵓ㐀࡟┦ᙜࡍࡿࠊࣉ࣮ࣟࣈ㢧ᚤ㙾㸦SPM㸧ࡢࣉ࣮ࣟࣈ࡜ᇶᯈ
ࡢ㛫ࡢศᏊࡢ 1 ศᏊ᳨ฟࡢᢏ⾡㛤Ⓨ◊✲ࢆ⾜ࡗࡓࠋศᏊ࡜ࡢ┦஫స
⏝ࡀᙅࡃୟࡘཎᏊ࡛ࣞ࣋ࣝᖹᆠ࡞ᇶᯈࡢ㛤Ⓨࢆ⾜ࡗࡓࠋ
ࡲࡎࠊཎᏊⓗ࡟ᖹᆠ࡞ SPM ほᐹ⏝ᇶᯈ࡜ࡋ࡚᭷ྡ࡞࣐࢖࢝ᇶᯈ
ୖ࡟ Ni(111)ⷧ⭷ࢆసᡂࡋࡓ㸦ᅗ 3㸧
ࠋᡂ⭷᮲௳ࡣࠊࢽࢵࢣࣝ⭷ཌ⣙
500nmࠊࢫࣃࢵࢱ࢔ࢽ࣮ࣝ㸦ຍ⇕ ᗘ 800ΥࠊAr ࢖࢜ࣥࢫࣃࢵࢱ㸧
⣙㸯᫬㛫࡛࠶ࡿࠋ㉸㧗┿✵ SPM ࡛సᡂࡋࡓ⾲㠃ࡢᙧ≧ほᐹࢆ⾜ࡗ
ࡓ࡜ࡇࢁࠊᅗ㸱ࡢࡼ࠺࡞ fcc(111)⾲㠃ࡢ≉ᚩࢆ᭷ࡍࡿ⾲㠃ᙧ≧ീࡀ
ᚓࡽࢀࡓࠋᇶᯈୖ࡟࠾࠸࡚ࡢ࢔ࣉ࣮ࣟࢳ࣏࢖ࣥࢺࢆᩘ mm ࡟Ώࡾ」
ᩘ⟠ᡤࡢほᐹࢆ⾜ࡗࡓࡀࠊSPM ほᐹࡀጉࡆࡽࢀࡿ࡯࡝ࡢࢻ࣓࢖ࣥᵓ
㐀ࡸࡑࡢ⤖ᬗ⢏⏺ࢆ㟢㦵࡟ṧࡋࡓᵓ㐀ࡣほᐹࡉࢀ࡞࠿ࡗࡓࠋࡕ࡞ࡳ
࡟ࠊᡂ⭷ ᗘࡀ㸴㸳㸮Υ⛬ᗘࡢ࡜ࡁ࡟ᚓࡽࢀࡓ SPM ീ࡛ࡣࠊ⤖ᬗ
⢏⏺ࡢẁᕪࡣᩘⓒ nm ࡶ࠶ࡗࡓ㸦ࢹ࣮ࢱ┬␎㸧
ࠋ
ḟ࡟ࠊNi(111)Ύί⾲㠃ࡢୖ࡟Ⅳ໬Ỉ⣲࢞ࢫࢆᭀ㟢ࡍࡿࡇ࡜࡛ࢢࣛ
ࣇ࢙ࣥࢆసᡂࡋࡓࠋࡑࡢヨᩱ⾲㠃ࡢ SPM ീ㸦㧗ࡉᚤศീ㸧ࢆᅗ 4 ࡟
࠾࠸࡚ࠊfcc(111)⾲㠃≉᭷ࡢ༢ཎᏊࢫࢸࢵࣉᵓ㐀࡟ຍ࠼࡚ࠊࢢࣛࣇ࢙
ࣥ≉᭷ࡢ⓾≧ࡢᵓ㐀ࢆ☜ㄆࡍࡿࡇ࡜ࡀ࡛ࡁࠊࢢࣛࣇ࢙ࣥࡀᡂ⭷࡛ࡁ
ࡓࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࠋ
ᮏ◊✲࡛ᚓࡽࢀࡓࢢࣛࣇ࢙ࣥᇶᯈࡣࠊin situ ࡛㉸㧗┿✵ SPM ⏝ࡢ
ᇶᯈ࡟⏝࠸ࡿࡔࡅ࡛ࡣ࡞ࡃࠊ࢙࢘ࢵࢺࣉࣟࢭࢫ࡞࡝ࢆ⤒࡚㌿෗ࡉࡏ
ࢀࡤࢼࣀࢹࣂ࢖ࢫ࡟࠾࠸࡚ࡶ⏝࠸ࡿࡇ࡜ࡀྍ⬟࡛࠶ࡾࠊ௒ᚋࡢⓎᒎ
ࡀᮇᚅࡉࢀࡿࠋ
― 15 ―
ᅗ 1Lࡢ 630 ീ
ᅗ ࢢࣛࣇ࢙ࣥࡢ 630 ീ
⎔ቃ࣭࢚ࢿࣝࢠ࣮ࢼࣀᛂ⏝ศ㔝
ᩍᤵ㸦ව௵㸧
Ᏻ⸨ 㝧୍
a) ᴫせ
ᮏ◊✲ศ㔝࡛ࡣࠊ⏘ᴗ⛉Ꮫࢼࣀࢸࢡࣀࣟࢪ࣮ࢭࣥࢱ࣮ࡀ᭷ࡍࡿ࣐࢖ࢡ࣭ࣟࢼࣀຍᕤࡢࡓࡵࡢタഛ࡜ᢏ
⾡ࢆ฼⏝ࡋ࡚ࠊ⎔ቃ࣭࢚ࢿࣝࢠ࣮ၥ㢟ࡢゎỴ࡟ᙺ❧ࡘ㉸ఏᑟᮦᩱ࣭ࢫࣆࣥࢺࣟࢽࢡࢫᮦᩱ࣭㧗ຠ⋡⇕㟁
ኚ᥮ᮦᩱ࡞࡝ࡢ≀ᛶ◊✲ࢆ⾜ࡗ࡚࠸ࡿࠋᮏᖺᗘࡣ≉࡟ࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢ୰࡛ࡶࣂࣝࢡ⤯⦕ᛶࡀ㣕
㌍ⓗ࡟ྥୖࡋࡓBi 2-x Sb x Te 3-y Se y ࡟ὀ┠ࡋ࡚◊✲ࡋࡓࠋ
b) ᡂᯝ
࣭ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢᇶ♏≀ᛶゎ᫂
㟁Ꮚࡢᣢࡘࢫࣆࣥࡢྥࡁࡢ⮬⏤ᗘࢆ฼⏝ࡍࡿࢫࣆࣥࢺࣟࢽࢡࢫ࡟࠾࠸࡚ࡣࠊ࠸࠿࡟ࢫࣆࣥࢆไᚚࡍࡿ
࠿ࡀᢏ⾡ࡢ୰ᚰ࡛࠶ࡿࠋ2007 ᖺ࡟ࠊ≀㉁୰ࡢ౯㟁Ꮚᖏࡢᣢࡘ఩┦ᗄఱᏛⓗ࡞ᛶ㉁࡟ࡼࡗ࡚ࠊࣂࣝࢡ࡟ࡣ
⤯⦕యࡔࡀ⾲㠃࡟↓ᩓ㐓ࡢࢫࣆࣥὶࡀᏑᅾࡍࡿࡼ࠺࡞≀㉁ࡀ࠶ࡿࡢ࡛ࡣ࡞࠸࠿࡜⌮ㄽⓗ࡟ண ࡉࢀࠊࡑ
ࡢࡼ࠺࡞≀㉁ࡣࠕࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࠖ࡜ྡ௜ࡅࡽࢀࡓࠋᛂ⏝ࡢほⅬ࠿ࡽࡣࠊࡑࡢ↓ᩓ㐓ࡢࢫࣆࣥὶࢆ
ࢹࣂ࢖ࢫ࡟ᛂ⏝࡛ࡁࢀࡤࠊ㉸┬࢚ࢿࣝࢠ࣮ᆺࡢࢫࣆࣥࢺࣟࢽࢡࢫࡀᐇ⌧࡛ࡁࡿྍ⬟ᛶࡀ࠶ࡿࠋ
ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య◊✲ࡢึᮇ࡟࠾࠸࡚ࠊᐇ㝿࡟Bi 1-x Sb x ࠊBi 2 Se 3 ࠊBi 2 Te 3 ࡀࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య࡛࠶
ࡿࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࡀࠊࣂࣝࢡ⤯⦕ᛶࡀప࠸ࡇ࡜ࡀၥ㢟࡛࠶ࡗࡓࠋࡑࡢࡓࡵࡼࡾ㧗࠸ࣂࣝࢡ⤯⦕ᛶ
ࢆᣢࡘࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢ᥈⣴ࡀ⥆ࡅࡽࢀ࡚࠸ࡿࠋࡑࡢ୰࡛ᡃࠎࡣࠊ2010 ᖺ࡟ึࡵ࡚ࡢࣂࣝࢡ⤯⦕ᛶ
ࢆ♧ࡍࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య≀㉁Bi 2 Te 2 SeࢆⓎぢࡋࠊ2011 ᖺ࡟ࡣࡑࡢᨵⰋ∧Bi 2-x Sb x Te 3-y Se y ࢆ㛤Ⓨࡍࡿ࡞
࡝ࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢᇶ♏◊✲࡟࠾࠸࡚㔜せ࡞ᡂᯝࢆᣲࡆ࡚࠸ࡿࠋ
࣭ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య࡟࠾ࡅࡿࣇ࢙࣑ࣝ‽఩ࡢ㟁⏺ไᚚ
ୖグࡢ≀ᛶゎ᫂◊✲࡜୪⾜ࡋ࡚ࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య࡟ࡼࡿࢫࣆࣥࢺࣟࢽࢡࢫ⣲Ꮚ㛤Ⓨࡢࡓࡵࡢᇶ♏
◊✲ࡶ⾜ࡗ࡚࠾ࡾࠊ⌧ᅾࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య⾲㠃࡟࠾ࡅࡿࢫࣆࣥὶࡢ┤᥋᳨ฟࢆ┠ᣦࡋ࡚࠸ࡿࠋ
ࡑࡢࡓࡵࡢせ⣲ᢏ⾡࡜ࡋ࡚ࠊSiO 2 ⤯⦕ᒙࢆᙧᡂࡋࡓࢩࣜࢥࣥᇶᯈୖ࡟ࠊࢢࣛࣇ࢙ࣥ࡜ྠᵝࡢࢫࢥࢵࢳ
ࢸ࣮ࣉࢆ⏝࠸ࡓ๼㛤ἲ࡟ࡼࡗ࡚Bi 2-x Sb x Te 3-y Se y ࡢᚤᑠ༢⤖ᬗⷧ∦ࢆᐃ╔ࡉࡏࠊࡑࡢୖ࡟㟁Ꮚࣅ࣮࣒ࣜࢯ
ࢢࣛࣇ࢕࣮࡟ࡼࡗ࡚㟁ᴟࢆᙧᡂࡋࡓ㸦ᅗ 1㸧
ࠋࡇࡢࢹࣂ࢖ࢫ࡛ࡣࠊࣂࢵࢡࢤ࣮ࢺ࠿ࡽ༳ຍࡍࡿ㟁⏺࡟ࡼࡗ
࡚ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య୰ࡢࣇ࢙࣑ࣝ‽఩ࢆไᚚࡋࠊ࢟ࣕࣜ࢔ࡢᴟᛶࢆnᆺ࠿ࡽpᆺࡲ࡛ኚ໬ࡉࡏࡿࡇ࡜ࡀ
࡛ࡁࡿࠋࡇࡢࡼ࠺࡞ࢹࣂ࢖ࢫࢆ ᐃ࣭ホ౯ࡋࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࢫࣆࣥࢺࣟࢽࢡࢫ⣲Ꮚࢆస〇ࡍࡿࡓ
ࡵ࡟ᚲせ࡟࡞ࡿせ⣲ᢏ⾡ࢆ㛤Ⓨࡋࡓࠋ
ᅗ ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యୖ࡟ᚤ⣽㟁ᴟࢆᙧᡂࡋࡓࣂࢵࢡࢤ࣮ࢺᆺ㟁⏺ຠᯝࢹࣂ࢖ࢫࠋࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య
Bi 2-x Sb x Te 3-y Se y ༢⤖ᬗ࠿ࡽ๤㞳ࡋSiO 2 ⤯⦕ᒙࢆᣢࡘSiᇶᯈ࡟ᐃ╔ࡉࢀࡓⷧ∦ୖ࡟ࠊ㟁Ꮚࣅ࣮࣒ࣜࢯࢢࣛࣇ࢕࣮࡟ࡼࡗ࡚Pd
ࡢᚤ⣽㟁ᴟࡀᙧᡂࡉࢀ࡚࠸ࡿࠋ
― 16 ―
ࢼࣀ▱⬟ࢩࢫࢸ࣒ศ㔝
ᩍᤵ㸦ව௵㸧
㮖ᑿ 㝯
a) ᴫせ
ᐇ㦂࡜ィ ᢏ⾡ࡢ㐍Ṍ࡟కࡗ࡚ࠊࢼࣀࢸࢡࣀࣟࢪ◊✲ศ㔝࡟࠾࠸࡚኱㔞ࡢᐇ㦂ࢹ࣮ࢱࡀ⵳✚ࡉࢀࡘࡘ
࠶ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ◊✲⪅ࢆྵࡴே㛫ࡢ᝟ሗฎ⌮⬟ຊࡢ㝈⏺࡟ࡼࡾࠊࡑࡢࡼ࠺࡞኱㔞ࢹ࣮ࢱ࠿ࡽ⛉Ꮫ
ⓗࠊᕤᏛⓗ࡟ព⩏῝࠸▱㆑ࢆᡭື࡛ຠ⋡ⓗ࡟ᢳฟࡍࡿࡇ࡜ࡣ㞴ࡋ࠸ࠋࡇࡢၥ㢟ࢆゎỴ࡞࠸ࡋ㍍ῶࡍࡿࡓ
ࡵ࡟ࠊᮏ◊✲㒊㛛࡛ࡣᵝࠎ࡞᥎ㄽࡸ᥈⣴࢔ࣝࢦࣜࢬ࣒ࢆ㥑౑ࡋ࡚኱㔞ࢹ࣮ࢱ࠿ࡽே㛫࡟࡜ࡗ࡚ព࿡ࡢ኱
ࡁ࡞▱㆑ࢆᢳฟ࡞࠸ࡋ᥎ᐃࡍࡿᡭἲࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿࠋᮏᖺᗘࡣ᫖ᖺᗘ࡟ᘬࡁ⥆ࡁࠊ㔞Ꮚ᝟ሗࣇ࢛ࢺ
ࢽࢡࢫ◊✲ศ㔝㜰኱⏘◊࣭໭኱㟁Ꮚ◊࢔ࣛ࢖࢔ࣥࢫࣛ࣎ࡢ◊✲ࢳ࣮࣒࡜ࠊ㔞Ꮚ᝟ሗฎ⌮ᐇ㦂࡟࠾ࡅࡿ
ᐇ㦂᮲௳ࡢ␗ᖖኚື᳨▱ᡭἲࡢ㛤Ⓨ࡟ྲྀࡾ⤌ࢇࡔࠋ㛗᫬㛫࡟ரࡿ㔞Ꮚ᝟ሗฎ⌮ᐇ㦂࡟࠾࠸࡚ࡣࠊ✀ࠎࡢ
እ஘ࡸ⿦⨨タᐃࡢຎ໬࡞࡝࡟ࡼࡗ࡚ᐇ㦂᮲௳ࡀ୙ព࡟ኚືࡋࠊࡑࢀࡀᐇ㦂⤖ᯝࡢಙ㢗ᛶࢆపୗࡉࡏࡿྍ
⬟ᛶࡀ࠶ࡿࠋࡑࡇ࡛ࠊᮏ◊✲࡛ࡣ≧ែᐦᗘ⾜ิࢆᐃᖖ㸦㠀ືⓗ㸧ᡂศ࡜␗ᖖኚືࢆ⾲ࡍ㠀ᐃᖖ㸦ືⓗ㸧
ᡂศ࡟ศゎࡋ⢭ᗘࡢ㧗࠸᥎ᐃ⤖ᯝࢆᚓࡿ᪂ࡓ࡞ᩘᏛⓗつ⠊ࢆ⪃᱌ࡋࠊࡑࢀࢆゎᯒᡭἲ࡜ࡋ࡚ලయ໬ࡍࡿ
◊✲ࢆ㐍ࡵࡓࠋࡑࡢ⤖ᯝࠊ᫖ᖺ௨ୖ࡟ࡼࡾ㧗ಙ㢗࡞᥎ᐃ⤖ᯝࢆᚓࡿࡇ࡜ࡀ࡛ࡁࡓࠋ
b)
ᡂᯝ
ᪧ᮶ᡭἲ࡟ࡼࡿ␗ᖖ᳨▱ ᥦ᱌ᡭἲ࡟ࡼࡿ␗ᖖ᳨▱
ᥦ᱌ᡭἲࡣᐇ㝿ࡢ␗ᖖ㒊ศ㸦▮༳⟠ᡤ㸧ࢆࡼࡾⓗ☜࡟᳨▱㸦㉥Ⰽࣂ࣮㸧ྍ⬟࡛࠶ࡿࠋ
ᪧ᮶ᡭἲ㻌
ᥦ᱌ᡭἲ㻌
⧞ࡾ㏉ࡋᐇ㦂࡟࠾ࡅࡿ AUC ᣦᶆ㸦100%࡟㏆࠸࡯࡝㧗ಙ㢗㸧ࡢศᕸࢆẚ㍑ࡍࡿ࡜
ᥦ᱌ᡭἲࡢ᪉ࡀࡼࡾಙ㢗ᛶࡀ㧗࠸ࡇ࡜ࡀࢃ࠿ࡿࠋ
― 17 ―
ࢼࣀ་⒪ᛂ⏝ࢹࣂ࢖ࢫศ㔝
ᩍᤵ㸦ව௵㸧
୰㇂ ࿴ᙪ
a) ᴫせ
ᙜศ㔝࡛ࡣࠊ㎿㏿ࠊ⡆౽ࠊᏳ౯࡞㑇ఏᏊデ᩿ἲࡢ㛤Ⓨࢆ┠ᣦࡋ࡚ࠊ᳨ฟ࡟ᚲせ࡞ᇶᮏᢏ⾡ᴫᛕࡢᥦ᱌
࡜᳨ドࢆ⾜࠺࡜࡜ࡶ࡟ࠊࢼࣀᚤ⣽ຍᕤ࡜⤌ࡳྜࢃࡏࡓࢹࣂ࢖ࢫࡸࠊ་⒪デ᩿ᶵჾࡢ㛤Ⓨ࡬ࡶᒎ㛤ࡍࡿࠋ
b) ᡂᯝ
࣭ࢩࢺࢩࣥࣂࣝࢪ࡬࢔ࣆࣥࣉࣛ࢖࣐࣮ࢆ⏝࠸ࡓ⡆౽࡞㑇ఏᏊኚ␗᳨ฟἲ
㑇ఏᏊࡢኚ␗ࢆ㎿㏿࡟᳨ฟࡍࡿᡭἲࡀࠊ
ࢸ࣮࣓࣮ࣛࢻ་⒪ࢆᨭ࠼ࡿ᰿ᖿᢏ⾡࡜ࡋ࡚
ᮇᚅࡉࢀ࡚࠸ࡿࠋᙜ◊✲ศ㔝࡛ࡣࠊ࣑ࢫ࣐
ࢵࢳࡸࣂࣝࢪᵓ㐀࡟≉␗ⓗ࡟⤖ྜࡍࡿᑠศ
Ꮚࢆ⏝࠸ࡓ㑇ఏᏊኚ␗᳨ᰝᢏ⾡ࢆᥦ᱌ࡋ࡚
ࡁࡓࠋᡃࠎࡢ᪉ἲࡢ≉ᚩࡣࠊᶆⓗ DNA ࡀ
ᑡ㔞࡛ࡶ PCR ࢆ౑࠺ࡇ࡜᳨࡛ฟࡀྍ⬟࡛
࠶ࡿࡇ࡜ࠊ඲࡚ࢆΰྜࡋ࡚ PCR ࡀ࠿ࡅࡽࢀ
ࡿ࡜࠸࠺ࡁࢃࡵ࡚⡆౽࡞ᡭἲ࡛㑇ఏᏊኚ␗
ࡀุᐃ࡛ࡁࡿⅬ࡟࠶ࡿࠋࢸࣥࣉ࣮ࣞࢺࢆ⏝
࠸࡚ PCR ࢆ⾜࡞ࡗࡓ⤖ᯝࠊ3‘ᮎ➃ࡢ୍ሷᇶ
ࡢ㐪࠸࡛⺯ගࡢኚ໬࡟኱ࡁ࡞ᕪࡀほ ࡉࢀࠊ
୍ሷᇶࡢ㐪࠸ࢆㄆ㆑ࡍࡿࡇ࡜࡟ᡂຌࡋࡓࠋ
ࡉࡽ࡟ࡇࡢᡭἲࢆ⏝࠸࡚ࠊ⌧ᅾ࢘࢖ࣝࢫࡢ
㧗ឤᗘ᳨ฟࢆ௻ᴗࠊࢩ࣏࣮ࣥ࢞ࣝ኱Ꮫ࡜ඹ
ྠ࡛⾜ࡗ࡚࠸ࡿࠋRNA࢘࢖ࣝࢫ࡟≉␗ⓗ
࡞ࣉࣛ࢖࣐࣮࡟࣊࢔ࣆࣥࢆࢱࢢ࡜ࡋ࡚௜୚
ࡋࠊ㏫㌿෗̾PCR(RT-PCR)ࢆ⾜࠺࡜ࠊ୍ᮏࡢࢳ࣮ࣗࣈෆ࡛ PCR ࡀ㐍⾜ࡋࠊ࢘࢖ࣝࢫࡢ᳨ฟࡀྍ⬟࡛࠶ࡿ
ࡇ࡜ࡀ♧၀ࡉࢀࡓࠋࡲࡓࠊDNAѸ࢘࢖ࣝࢫ࡛ࡶྠᵝ࡟࢘࢖ࣝࢫࡢ᳨ฟࡀྍ⬟࡛࠶ࡾࠊ࢘࢖ࣝࢫ⡆౽࡞᳨
ฟἲ࡜ࡋ࡚ࡢᛂ⏝ᒎ㛤ࡀᮇᚅࡉࢀࡿࠋ
ᑦࠊᮏ◊✲ࡣ⢭ᐦไᚚ໬Ꮫ◊✲ศ㔝ࡢṊ஭ྐᜨຓᩍ࡜ࡢඹྠ◊✲࡛࠶ࡿࠋ
― 18 ―
ࢼࣀࢩࢫࢸ࣒タィศ㔝
ᣍ࡬࠸ᩍᤵ
ሯᮏ ྐ㑻㸦ᖹᡂ 25 ᖺ 5 ᭶ 1 ᪥ࠥᖹᡂ 25 ᖺ 9 ᭶ 30 ᪥㸧
a) ᴫせ
໬ྜ≀༙ᑟయ GaAs ෆ࡟ᇙࡵ㎸ࡲࢀࡓ InAs ༢୍㔞Ꮚࢻࢵࢺ
ࡣ༢୍ගᏊࢆ฼⏝ࡋࡓ㔞Ꮚᬯྕ㏻ಙࡢග※࡜ࡋ࡚ὀ┠ࡉࢀ࡚
࠸ࡿࠋࡋ࠿ࡋ୍⯡ⓗ࡞స〇ἲࡀ⮬ᕫ⤌⧊໬ࢆ฼⏝ࡋࡓࡶࡢ࡛࠶
ࡾࠊࢼࣀ࡛ࣞ࣋ࣝࡢ఩⨨ไᚚࡀᅔ㞴࡛࠶ࡿࠋࡑࡇ࡛஬ࣨ᭶ࡢᣍ
࡬࠸ᮇ㛫ࡢ㛫࡟ࠊ኱㜰኱Ꮫࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬࡢᶵ
ჾࢆ฼⏝ࡋ࡚ࠊ≉ᐃ఩⨨࡟㸯ࡘࡔࡅ㧗ရ఩㔞Ꮚࢻࢵࢺࢆ㓄⨨ࡍ
ࡿᢏ⾡࠾ࡼࡧ㓄⨨ࡋࡓࢻࢵࢺࡢ᳨ฟ⏝࣐࣮࣮࢝ᙧᡂᡭἲࡢ☜
❧ࢆ┠ᣦࡋࡓࠋࡲࡎศᏊ⥺࢚ࣆࢱ࢟ࢩ࢕㸦MBE㸧ᡂ㛗࡟⪏࠼࠺
ࡿ࣐ࢫࢡᮦᩱ࡜ᙧ≧ࡢ᳨ウࠊࡑࡋ࡚࣐ࢫࢡస〇ẁ㝵࡟࠾ࡅࡿ
ᅗ㸯 STMBE ⿦⨨
GaAs(001)ᇶᯈ⾲㠃࡬ࡢࢲ࣓࣮ࢪࢆᴟຊపῶࡋࡓࣉࣟࢭࢫ᪉ἲ
ࡢ☜❧ࢆ⾜ࡗࡓࠋᐇ㦂ࡢ᭱⤊ẁ㝵࡛ࡣ
MBE ᡂ㛗୰࡟ࡑࡢሙ࡛㉮ᰝᆺࢺࣥࢿ
ࣝ㢧ᚤ㙾(STM)ほᐹࡀྍ⬟࡞ STMBE
⿦⨨㸦ᅗ㸯㸧࡟ࡼࡿ InAs ⷧ⭷ᡂ㛗࠾
ࡼࡧ᭱⾲㠃ࡢཎᏊᵓ㐀ࡢ㐪࠸ࢆ฼⏝
ࡋࡓ STM ᧯స࡟ࡼࡿ≉ᐃ఩⨨࡬ࡢ࣍
࣮ࣝస〇࡜ InAs 㔞Ꮚࢻࢵࢺ⮬ᕫᙧᡂ
ࢆ⾜࠺ࡇ࡜࡟࡞ࡿ㸦ᅗ㸰㸧
ࠋࡑࡢࡓࡵࠊ
స〇ࡍࡿ࣐ࢫࢡᮦᩱ࡜ᙧ≧ࡣ MBE ᡂ
㛗᫬ࡢ ᗘ࡜㞺ᅖẼ࡟⪏࠼ࡽࢀࡿࡔ
ࡅ࡛ࡣ࡞ࡃࠊGa, In, As ࡞࡝ࡢᮦᩱ࡜
཯ᛂࡋ࡞࠸ୟࡘᙧ≧ኚ໬ࡋ࡞࠸ᚲせ
ࡀ࠶ࡿࠋࡲࡓᡂ㛗㠃࡟ࡣཎᏊ࡛ࣞ࣋ࣝ
ࡢᖹᆠᛶࡀᚲせ࡞ࡓࡵࠊࣉࣟࢭࢫ࡟ࡼ
ᅗ㸰 ఩⨨ไᚚ༢୍㔞Ꮚࢻࢵࢺస〇㸸InAs ᡂ㛗㔞࡜᩿㠃ᙧ≧
ࡿ⾲㠃࢚ࢵࢳࣥࢢ࡞࡝ࡢࢲ࣓࣮ࢪࢆ
᭱ᑠ㝈ᗘ࡟Ṇࡵࡿᚲせࡀ࠶ࡿࠋ
b)
ᡂᯝ
ࡲࡎ࣐ࢫࢡᮦᩱ࡜ࡋ࡚ࡣࠊ㧗 ࡛Ᏻᐃ࡞
Wࢆ㑅ᢥࡋࡓࠋW࣐ࢫࢡࡣ㑅ᢥᡂ㛗⏝ࡢ࣐
ࢫࢡ࡜ࡋ࡚ࡶ฼⏝ࡉࢀ࡚࠾ࡾࠊ࣐ࢫࢡୖ࡟
ࡣGaAsࡀᡂ㛗ࡋ࡞࠸ࠊࡶࡋࡃࡣḞ㝗ࢆྵࡴ
ከ⤖ᬗ࡜࡞ࡾࠊⓎග࡟ᐤ୚ࡋ࡞࠸ࡓࡵࠊ࣐
ࢫࢡࡢ↓࠸࡜ࡇࢁ࡟࢚ࣆࢱ࢟ࢩࣕࣝᡂ㛗ࡋ
ࡓInAsࢻࢵࢺ࡜ࡢ༊ูࡀྍ⬟࡛࠶ࡿࠋᅗ㸱
(a)࡟ࣇ࢛ࢺ࣐ࢫࢡࡢᙧ≧࡜ᣑ኱ᅗࠊᅗ㸱(b)
࡟᭱⤊ⓗ࡟స〇ࡋࡓW࣐ࢫࢡࡢᣑ኱ᅗࢆ♧
ࡍࠋSTMBE࡛ࡢᗈᇦࢫ࢟ࣕࣥ⠊ᅖࡀ 10—m
ᅄ᪉࡛࠶ࡿࡓࡵࠊ㛤ཱྀ㒊ࢆࡑࢀ௨ୗ࡜ࡍࡿ
ᚲせࡀ࠶ࡾࠊ⌧ᅾࡢ࡜ࡇࢁࠊᅗ㸱(b)࡟♧ࡍ
(a)
(b)
ᅗ㸱(a)㔠ᒓࣇ࢛ࢺ࣐ࢫࢡ࡜(b)స〇ࡋࡓ W ࣐ࢫࢡࣃࢱ࣮ࣥ
― 19 ―
W mask
ࡼ࠺࡟ࠊ4—mᅄ᪉ࡢ㛤ཱྀ㒊స〇࡟ᡂຌࡋ࡚࠸ࡿࠋࡲࡓWⷧ⭷ࢆ 100—m RFࢫࣃࢵࢱᚋࡢDMFࢆ⏝࠸ࡓࣜ
ࣇࢺ࢜ࣇ᫬࡟㛗᫬㛫DMF⁐ᾮ࡟ᾐࡍ࡜GaAsᇶᯈ⾲㠃ࡀᾐ㣗ࡉࢀࠊᩘ༑nm⛬ᗘࡢพฝࡀᙧᡂࡉࢀ࡚ࡋࡲ
࠺ࡇ࡜ࡀࢃ࠿ࡗࡓࠋࡇࢀࡣMBEᡂ㛗ࡢጉࡆ࡜࡞ࡿࡓࡵࠊ᭱ᑠ᫬㛫࡛ࡢ᭷ຠ࡞ࣜࣇࢺ࢜ࣇࢆ᥈⣴ࡋࠊ⌧ᅾ
ࡢ࡜ࡇࢁDMF 45min࡛⾲㠃พฝࢆ 1nm⛬ᗘ࡟ᢲࡉ࠼ࡽࢀࡿࡇ࡜ࡀศࡗࡓࠋ
― 20 ―
ࢼࣀࢹࣂ࢖ࢫホ౯࣭デ᩿ศ㔝
ᐈဨᩍᤵ
᪫ Ⰻྖ㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥ࠥᖹᡂ 26 ᖺ 1 ᭶ 31 ᪥㸧
a) ᴫせ
ᶵ⬟ᛶᮦᩱ㛤Ⓨ࡟࠾ࡅࡿ➨୍ཎ⌮ィ⟬ࡢ᭷⏝ᛶᣑᙇ࡜ά⏝
b) ᡂᯝ
࣭ᶵ⬟ᛶᮦᩱࡢ➨୍ཎ⌮ィ⟬
ࡇࢀࡲ࡛ࠊ➨୍ཎ⌮ィ⟬࠾ࡼࡧ㟁Ꮚບ㉳≧ែࡢィ⟬ᡭἲࢆ⏝࠸࡚ࠊྛ✀ᶵ⬟ᮦᩱࡢ◊✲㛤Ⓨࠊ≉࡟ࠊ
ගゐ፹ࠊኴ㝧㟁ụᮦᩱࠊ⇕㟁ᮦᩱࠊ⌮᝿ᙉᗘྜ㔠➼ࠊྛ✀ᶵ⬟ᮦᩱࡢ㛤Ⓨ࡟㛵ࢃࡾࠊᮦᩱ≀ᛶゎᯒ࠾ࡼ
ࡧ᪂ᮦᩱᥦ᱌ࢆ⾜ࡗ࡚ࡁࡓࠋ◊✲ᡂᯝࡣㄽᩥ࡟␃ࡲࡽࡎࠊከࡃࡣᐇ㦂࡜῝ࡃ㐃ᦠࡍࡿࡇ࡜࡛≉チࡸၟရ
࡟⮳ࡾࠊィ⟬ࡢ᭷⏝ᛶࢆᐇドࡋ࡚ࡁࡓࠋ᭱㏆࡛ࡣࡼࡾ୍⯡ⓗ࠿ࡘ㝵ᒙⓗ࡞ᮦᩱタィࢆྍ⬟࡟ࡍࡿࡓࡵࡢ
࢔ࣝࢦࣜࢬ࣒ࢆ◊✲ࡋ࡚࠾ࡾࠊᮏ◊✲࡛ࡣࠊᶵ⬟ᛶᮦᩱ㛤Ⓨ࡬ࡢ➨୍ཎ⌮ィ⟬ᡭἲࡢࡼࡾᗈ⠊࡞ά⏝ࢆ
┠ᣦࡍࠋࡲࡓࠊ
ࠕ➨୍ཎ⌮ィ⟬ࢆ⏝࠸ࡓᶵ⬟ᮦᩱタィ 1 Ѹ ගᏛᶵ⬟ᮦᩱタィࠖ
㸦ᖹᡂ 25 ᖺ 12 ᭶ 16 ᪥㛤
ദ㸧ࠊࠕ➨୍ཎ⌮ィ⟬ࢆ⏝࠸ࡓᶵ⬟ᮦᩱタィ 2 Ѹ ྜ㔠ᮦᩱタィࠊᮦᩱタィἲࡢ㛤Ⓨࠖ㸦ᖹᡂ 26 ᖺ 1 ᭶ 16
᪥㛤ദ㸧ࡢࢱ࢖ࢺ࡛ࣝ᪫ᩍᤵ࡟ࡼࡿබ㛤ࢭ࣑ࢼ࣮ࡀ㛤ദࡉࢀࠊศ㔝ෆእࡢ◊✲⪅ࡸ㝔⏕࡜ࡢάⓎ࡞㆟ㄽ
ࡀ⾜ࢃࢀࡓࠋ
― 21 ―
ࢼࣀࢹࣂ࢖ࢫホ౯࣭デ᩿ศ㔝
ࢠ࣮࣒ࣚ ࢝ࣟࣥ㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼ᖹᡂ 25 ᖺ 5 ᭶ 31 ᪥㸧
a) ᴫせ
ᮏ◊✲ศ㔝࡛ࡣࠊ᪂ࡋ࠸࢖࣓࣮ࢪࣥࢢࢩࢫࢸ࣒࡜ࡋ࡚ࠊࢩ࣮ࣥ࡟ྜࢃࡏ࡚⾲㠃ᙧ≧ࡀኚ໬ࡉࡏࡿࡇ࡜
ࡀ࡛ࡁࡿྍኚ࣑࣮ࣛࢩࢫࢸ࣒ࢆ㛤Ⓨࡋࡓࠋヨసࢩࢫࢸ࣒ࢆసᡂࡍࡿ࡜࡜ࡶ࡟ࠊ࣑࣮ࣛࡢゅᗘࡢ⮬ືᰯṇ
ἲࢆ㛤Ⓨࡋࡓࠋ
b) ᡂᯝ
㺃 ྍኚ࣑࣮ࣛࢩࢫࢸ࣒
ࡇࢀࡲ࡛࡟ࠊࢥࣥࣆ࣮ࣗࢱࣅࢪࣙࣥศ㔝ࡸࣟ࣎ࢸ࢕ࢡࢫศ㔝࡛ࡣࠊ┠ⓗ࡟ᛂࡌ࡚ฝᙧ≧ࡸพᙧ≧ࡢ࣑
࣮ࣛࡀ⏝࠸ࡽࢀ࡚ࡁࡓࠋ୍᪉ࠊ࣑࣮ࣛᙧ≧ࢆ࢔ࢡࢳ࢚࣮ࣗࢱ࣮࡟ࡼࡗ࡚⢭ᐦ࡟ไᚚࡍࡿࢩࢫࢸ࣒ࡶᏑᅾ
ࡍࡿࡀࠊ୍⯡࡟኱᥃࠿ࡾ࡛㧗౯࡞ࢩࢫࢸ࣒࡜࡞ࡿࠋࡑࢀ࡟ᑐࡋ࡚ࠊᮏ◊✲࡛ࡣࠊࢦ࣒⾲㠃࡟࣑࣮ࣛࣃࢵ
ࢳࢆ㈞ࡾ௜ࡅࠊไᚚᲬࢆ⛣ືࡉࡏࡿࡇ࡜࡛ࢦ࣒⾲㠃ࡢᙧ≧ࢆኚ໬ࡉࡏࡿ࡜࠸࠺ࢩࣥࣉࣝ࡞ཎ⌮ࡢྍኚ࣑
࣮ࣛࢩࢫࢸ࣒ࢆ⪃᱌ࡋࡓࠋࢦ࣒⾲㠃ࡣࠊฝᙧ≧࡟ࡶพᙧ≧࡟ࡶኚ໬ࡉࡏࡿࡇ࡜ࡀ࡛ࡁࡿࠋᅗ㸯࡟♧ࡍࡼ
࠺࡞ヨసࢩࢫࢸ࣒ࢆ㛤Ⓨࡋࠊࡑࡢືసࢆ᳨ドࡋࡓࠋ
㺃 ࣑࣮ࣛࡢ⮬ືᰯṇἲ
㛤Ⓨࡋࡓྍኚ࣑࣮ࣛࢩࢫࢸ࣒ࡣࠊಶࠎࡢ࣑࣮ࣛࡢゅᗘࢆ⊂❧ࡋ࡚ไᚚ࡛ࡁࡿࢃࡅ࡛ࡣ࡞࠸ࠋࡑࡇ࡛ࠊ
ྛ࣑࣮ࣛࡢゅᗘࢆ⮬ືⓗ࡟ᰯṇࡍࡿᡭἲࢆ㛤Ⓨࡋࡓࠋ➢ྕ໬ࡉࢀࡓࢻࢵࢺࣃࢱ࣮ࣥࡢᖹ㠃ࢆྍኚ࣑࣮ࣛ
ࢩࢫࢸ࣒࡛᧜ᙳࡋࠊಶࠎࡢ࣑࣮ࣛ࡟ᫎࡿࣃࢱ࣮ࣥࢆ≉ᐃࡍࡿࡇ࡜࡛ࠊ࣑࣮ࣛࡢゅᗘࢆ⟬ฟࡍࡿࠋไᚚᲬ
ࢆ⛣ືࡉࡏࡓ᫬࡟ࠊ࡝ࡢࡼ࠺࡟ಶࠎࡢ࣑࣮ࣛࡀഴࡃ࠿ࡢ㛵ಀࢆグ㘓ࡋ࡚࠾ࡃࡇ࡜࡛ࠊᰯṇࢆྍ⬟࡜ࡋࡓࠋ
ᅗ㸯 ྍኚ࣑࣮ࣛࢩࢫࢸ࣒
ᅗ㸰 ➢ྕ໬ࢻࢵࢺࣃࢱ࣮ࣥࢆ฼⏝ࡋࡓ࣑࣮ࣛゅᗘ⮬ືᰯṇἲ
― 22 ―
ࢼࣀࢹࣂ࢖ࢫホ౯࣭デ᩿ศ㔝
ᐈဨᩍᤵ
㔠 ᡂ᳜ (ᖹᡂ 25 ᖺ 6 ᭶ 21 ᪥㹼ᖹᡂ 25 ᖺ 7 ᭶ 30 ᪥)
a) ᴫせ
᭷ᶵ໬Ꮫ཯ᛂ࡟࠾࠸࡚ࣛࢪ࢝ࣝ࢖࢜ࣥ✀ࡣ㔜せ࡞཯ᛂ୰㛫య࡛࠶ࡾࠊࡑࡢ཯ᛂᛶไᚚࡣ㔜せ࡞ㄢ㢟࡛
࠶ࡿࠋࢃࢀࢃࢀࡢ◊✲ศ㔝࡛ࡣࠊගບ㉳࡟ࡼࡾ⏕ࡌࡓບ㉳ࣛࢪ࢝ࣝ࢖࢜ࣥ✀ࡀࡁࢃࡵ࡚㧗࠸㓟໬㑏ඖ཯
ᛂࢆ♧ࡍࡇ࡜ࢆᐇドࡋ࡚ࡁࡓࠋບ㉳ࣛࢪ࢝ࣝ࢖࢜ࣥ✀ࡢᑑ࿨ࡣ㏻ᖖ 1 ࢼࣀ⛊௨ୗ࡛࠶ࡿࡇ࡜࠿ࡽࠊ཯ᛂ
㏣㊧࡟ࡣ㉸㧗㏿ศග࡟ࡼࡿ᳨ウࡀ୙ྍḞ࡛࠶ࡿࠋࡲࡓࠊຠ⋡ⓗ࡞཯ᛂࢆᐇ⌧ࡍࡿࡓࡵ࡟ࡣࠊ」ᩘࡢᶵ⬟
ศᏊࢆඹ᭷⤖ྜ࡛⤖ྜࡋࡓࢲ࢖࢔ࢵࢻศᏊࡀ᭷ຠ࡛࠶ࡿࠋᮏ◊✲࡛ࡣບ㉳ࣛࢪ࢝ࣝ࢔ࢽ࢜ࣥ࠿ࡽࡢ㟁Ꮚ
⛣ື㐣⛬ࡢゎ᫂ࢆ┠ᣦࡋࠊ୍㐃ࡢࢲ࢖࢔ࢵࢻศᏊࡢྜᡂࢆ⾜ࡗࡓࠋ
b) ᡂᯝ
ࢃࢀࢃࢀࡢ◊✲ࢢ࣮ࣝࣉࡣࡍ࡛࡟ࢼࣇࢱࣝࢪ࢖࣑ࢻ(NDI)࡜ࣆ࣓ࣟࣜࢵࢺ࢖࣑ࢻ(PI)ࢆ⤖ྜࡋࡓࢲ࢖
࢔ࢵࢻศᏊࢆ⏝࠸࡚ບ㉳ࣛࢪ࢝ࣝ࢔ࢽ࢜ࣥ࠿ࡽࡢ㟁Ꮚ⛣ືࢆ᳨ウࡋࡓࠋࡇࡢࢲ࢖࢔ࢵࢻศᏊࢆ໬Ꮫ㑏ඖ
ࡍࡿ࡜ࠊ㓟໬㑏ඖ㟁఩ࡢ㛵ಀࡼࡾ NDI ࡀ㑅ᢥⓗ࡟㑏ඖࡉࢀࡿࠋNDI ࣛࢪ࢝ࣝ࢔ࢽ࢜ࣥࡢ྾཰ࢆ㑅ᢥⓗ
࡟ບ㉳ࡍࡿࡇ࡜࡟ࡼࡾࠊບ㉳ NDI ࣛࢪ࢝ࣝ࢔ࢽ࢜ࣥ࠿ࡽ PI ࡬ࡢ㟁Ꮚ⛣ືࡀᩘࣆࢥ⛊࡛㉳ࡇࡿࡇ࡜ࢆ᫂
ࡽ࠿࡟ࡋࡓࠋᮏ◊✲࡛ࡣࠊNDI ࢆᅛᐃࡋ࣌࢔࡜࡞ࡿศᏊࢆ✀ࠎኚ᭦ࡍࡿࡇ࡜࡛ࠊ㟁Ꮚ⛣ືࡢ⮬⏤࢚ࢿࣝ
ࢠ࣮ኚ໬౫Ꮡᛶࢆ᳨ウࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡋࡓࠋලయⓗ࡟ࡣ࣌ࣜࣞࣥࢪ࢖࣑ࢻࠊ࣌ࣜࣞࣥࣔࣀ࢖࣑ࢻࠊࣇ
ࢱࣝ࢖࣑ࢻࠊࢼࣇࢱࣝ࢖࣑ࢻ࡜ NDI ࢆ⤖ྜࡋࡓ୍㐃ࡢࢲ࢖࢔ࢵࢻศᏊࢆྜᡂࡍࡿࡇ࡜ࢆィ⏬ࡋࡓࠋࡇ
ࢀࡽࡢศᏊࡣ NDI ࡼࡾ㑏ඖ㟁఩ࡀప࠸ࡓࡵࠊ໬Ꮫ㑏ඖࢆࡋࡓሙྜ࡟ࡣ NDI ࡀ㑅ᢥⓗ࡟㑏ඖࡍࡿࡇ࡜ࡀ
ண᝿ࡉࢀࠊ㉸㧗㏿ศගࡢ㐺⏝࡟ࡼࡾࠊບ㉳ࣛࢪ࢝ࣝ࢔ࢽ࢜ࣥ࠿ࡽࡢ㟁Ꮚ⛣ືࡀほ ࡉࢀࡿࡇ࡜ࡀᮇᚅࡉ
ࢀࡿࠋࡇࢀࡽࡢࢲ࢖࢔ࢵࢻศᏊࡣࠊࡑࢀࡒࢀࡢ↓Ỉ㓑㓟ࢆࢪ࢔࣑ࣀ࣋ࣥࢮࣥ࡟ẁ㝵ⓗ࡟⤖ྜࡍࡿࡇ࡜࡛
ྜᡂ࡛ࡁࠊᐇ㝿ࠊ4 ✀ࡢࢲ࢖࢔ࢵࢻศᏊࢆྜᡂࡍࡿࡇ࡜࡟ᡂຌࡋࡓࠋ௒ᚋࠊບ㉳ࣛࢪ࢝ࣝ࢔ࢽ࢜ࣥ࠿ࡽ
ࡢ㟁Ꮚ⛣ື࣓࢝ࢽࢬ࣒ࡢヲ⣽ࡀ᫂ࡽ࠿࡟࡞ࡿ࡜ண᝿ࡉࢀࡿࠋ
― 23 ―
ࢼࣀࢹࣂ࢖ࢫホ౯࣭デ᩿ศ㔝
ᐈဨᩍᤵ
Jaichan Lee㸦ᖹᡂ 25 ᖺ 11 ᭶ 11 ᪥ࠥᖹᡂ 25 ᖺ 12 ᭶ 13 ᪥㸧
a) ᴫせ
పḟඖ㑄⛣㔠ᒓ㓟໬≀ࡢ➨୍ཎ⌮ⓗ◊✲
b) ᡂᯝ
࣭పḟඖᛶࢆ࿊ࡍࡿ 㑄⛣㔠ᒓ㓟໬≀ࡢ㟁Ꮚ≧ែ
పḟඖ㓟໬≀ࡣࢼࣀ࣡࢖ࣖࠊࢼࣀࣟࢵࢻࠊ㉸ⷧ⭷ࠊ㉸᱁Ꮚࡢࡼ࠺࡞ᵝࠎ࡞ᙧែ࡛ᐇ⌧ࡉࢀ࡚࠸ࡿࠋࡇ
ࡢ࠺ࡕ㓟໬≀㉸᱁Ꮚࡣࠊᒙᡂ㛗࡟ࡼࡾ௵ព࡟㐃⥆✚ᒙࡉࢀࡓ㓟໬≀ᵓ㐀࡛࠶ࡾࠊࡓ࠸࡬ࢇⷧ࠸㓟໬≀ᒙ
ࢆྵࡴࡓࡵࠊ᪂ࡓ࡞≀⌮ⓗ≉␗ᛶ࡟ᑟࡃపḟඖᛶࡢⓎ⌧ࡀᮇᚅࡉࢀ࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊ㔠ᒓ-⤯⦕య㌿
⛣࡟௦⾲ࡉࢀࡿ㟁Ꮚ┦㌿⛣⌧㇟ࢆࠊ㓟໬≀㉸᱁Ꮚ⣔ࢆᑐ㇟࡜ࡋ࡚➨୍ཎ⌮ィ⟬࡟ࡼࡾㄪ࡭ࡿࠋලయⓗ࡟
ࡣࠊ࣌ࣟࣇࢫ࢝࢖ࢺᆺᵓ㐀ࡢLaTiO 3 ࡸLaVO 3 ࣔࢵࢺ⤯⦕యࠊSrTiO 3 ࣂࣥࢻ⤯⦕యࠊSrVO 3 ᙉ┦㛵㔠ᒓ➼
ࡀᮏ◊✲࡛ࡢࢱ࣮ࢤࢵࢺపḟඖ⣔࡜࡞ࡿࠋᮏ◊✲࡛ࡣࠊࡑࡢࡼ࠺࡞పḟඖᛶࡢⓎ⌧ࡀᮇᚅࡉࢀࡿ㑄⛣㔠
ᒓ㓟໬≀࡟࠾ࡅࡿ≉␗࡞㟁Ꮚ≧ែ࡜≀ᛶࡢⓎ⌧ᶵᵓ࡟ࡘ࠸࡚㆟ㄽࢆ㐍ࡵࡓࠋࡲࡓࠊ
ࠕTransition metal oxide
superlattices㸦㑄⛣㔠ᒓ㓟໬≀㉸᱁Ꮚ㸧ࠖ
㸦ᖹᡂ 25 ᖺ 11 ᭶ 18 ᪥㛤ദ㸧ࡢࢱ࢖ࢺ࡛ࣝLeeᩍᤵ࡟ࡼࡿࢭ࣑ࢼ
࣮ࡀ㛤ദࡉࢀࠊศ㔝ෆእࡢ◊✲⪅ࡸ㝔⏕࡜ࡢάⓎ࡞㆟ㄽࡀ⾜ࢃࢀࡓࠋ
― 24 ―
ࢼࣀࢹࣂ࢖ࢫホ౯࣭デ᩿ศ㔝
ᐈဨᩍᤵ
㛗ᒣ(CHANG SHAN) (ᖹᡂ 25 ᖺ 12 ᭶ 24 ᪥㹼ᖹᡂ 26 ᖺ 1 ᭶ 24 ᪥)
a) ᴫせ
ࡇࢀࡲ࡛ࠊ◪㓟㓟໬ἲ(NAOS ἲ)ࢆᾮᬗࢹ࢕ࢫࣉࣞ࢖⏝ⷧ⭷ࢺࣛࣥࢪࢫࢱ㸦TFT㸧ࡢࢤ࣮ࢺ㓟໬⭷࡟
ᛂ⏝ࡍࡿࡇ࡜࡛ࠊTFT ࡢపᾘ㈝㟁ຊ໬ࢆ⾜ࡗ࡚ࡁࡓࠋࡇࢀࡣࠊNAOS ἲ࡟ࡼࡗ࡚ᙧᡂࢀࡓࢩࣜࢥࣥ㓟໬
⭷ࡀ⦓ᐦ࡛࠶ࡾࠊ⤯⦕ᛶࡀ㧗࠸ࡓࡵᚑ᮶ࡢ TFT ࡢࢤ࣮ࢺ㓟໬⭷ࢆⷧ⭷໬࡛ࡁࡓࡇ࡜࡟ࡼࡿࠋᮏ◊✲࡛ࡣࠊ
ࡇࡢ⦓ᐦ࡞ࢩࣜࢥࣥ㓟໬⭷ࡀᙧᡂ࡛ࡁࡿ NAOS ἲࢆࠊᚑ᮶ࡢ pn ᥋ྜࢩࣜࢥࣥኴ㝧㟁ụࡢࣃࢵࢩ࣮࣋ࢩ
ࣙࣥ⭷࡟⏝࠸ࡿࡇ࡜ࢆヨࡳࡓࠋ
b) ᡂᯝ
ᚑ᮶ࡢ pn ᥋ྜࢩࣜࢥࣥኴ㝧㟁ụࡢᵓ㐀ࡣࠊ㖟㟁ᴟ/཯ᑕ㜵Ṇ⭷(SiN)/pn ᥋ྜࢩࣜࢥࣥ/࢔࣑ࣝ㟁ᴟ࡛࠶
ࡿࠋࡇࡢࢩࣜࢥࣥኴ㝧㟁ụࡢ⾲㠃ࢆຠᯝⓗ࡟ࣃࢵࢩ࣮࣋ࢩࣙࣥࡍࡿࡓࡵࠊNAOS ἲ࡟ࡼࡿࢩࣜࢥࣥ㓟໬
⭷ࢆ཯ᑕ㜵Ṇ⭷࡜ pn ᥋ྜࢩࣜࢥࣥ⾲㠃ࡢ㛫࡟ᙧᡂࡍࡿࡇ࡜᳨ウࡋࡓࠋᙧᡂࡋࡓኴ㝧㟁ụࡢ AM1.5
100mW/cm2 ↷ᑕୗ࡛ࡢ㟁ὶ̾㟁ᅽ≉ᛶࢆ ᐃࡋࠊNAOS 㓟໬⭷ࡢᙧᡂ᮲௳(཯ᛂ᫬㛫ࠊ ᗘ)ࡢ᭱㐺໬ࢆ
⾜ࡗࡓࠋ
― 25 ―
ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝
ᐈဨ෸ᩍᤵ
Atif Mossad ALI 㸦ᖹᡂ 25 ᖺ 6 ᭶ 21 ᪥㹼ᖹᡂ 25 ᖺ 7 ᭶ 30 ᪥㸧
a) ᴫせ
ࢩࣜࢥࣥኴ㝧㟁ụ⏝࢙࣮࢘ࣁࡣࠊ࢖ࣥࢦࢵࢺࢆ࣡࢖࣮ࣖࢯ࣮࡛ࢫࣛ࢖ࢩࣥࢢࡍࡿࡇ࡜࡟ࡼࡗ࡚〇㐀ࡉ
ࢀ࡚࠸ࡿࠋࢫࣛ࢖ࢩࣥࢢࡢ㝿ࠊ࢙࣮࢘ࣁ࡜࡯ࡰྠ㔞ࡢษ⢊ࡀ⏕ᡂࡋࠊ⏘ᴗᗫᲠ≀࡜ࡋ࡚ᗫᲠࡉࢀ࡚࠸ࡿࠋ
ࡑࡇ࡛ࠊࡇࡢษ⢊࠿ࡽࠊ⢊○ἲ࡜ග໬Ꮫⓗ⁐ゎἲࢆ⏝࠸࡚ࠊࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࢆᙧᡂࡍࡿࠋࢩ
ࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࡢ≀ᛶࢆࠊࣇ࢛ࢺ࣑ࣝࢿࢵࢭࣥࢫἲࠊTEM ➼ࢆ⏝࠸࡚ほ ࡋࠊࢧ࢖ࢬ࡜ࣂࣥࢻ
ࢠࣕࢵࣉࡢ㛵ಀࢆồࡵࡿࠋࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝྠኈࡢ㟁Ẽⓗ᥋ゐࢆ㐩ᡂࡍࡿࡓࡵ࡟ࠊ◪㓟㓟໬ἲ
ࢆ⏝࠸ࡿࠋࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࡢḞ㝗ᾘ⁛࡜㔠ᒓởᰁࡢ㝖ཤࡢ᪉ἲ࡜ࡋ࡚ࠊḞ㝗ᾘ⁛ᆺ༙ᑟయὙ
ίἲࢆ⏝࠸ࡿࠋࡉࡽ࡟ࠊ㔞Ꮚࢧ࢖ࢬຠᯝ࡟ࡼࡗ࡚ᣑ኱ࡋࡓࣂࣥࢻࢠࣕࢵࣉࢆᣢࡘࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕
ࢡࣝࢆ⏝࠸࡚ኴ㝧㟁ụࢆ๰〇ࡋࠊ࢚ࢿࣝࢠ࣮ኚ᥮ຠ⋡ࡢྥୖࢆ┠ᣦࡍࠋ
b) ᡂᯝ
⢊○ἲ࡜ග໬Ꮫⓗ⁐ゎἲࢆ⏝࠸࡚ࠊࢩࣜࢥࣥษ⢊࠿ࡽࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࢆᙧᡂࡋࡓࠋTEM ീ
ࡸ X ⥺ᅇᢡ࠿ࡽࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࡣࠊ1㹼20 nm ࡢ⢏ᚄࢆᣢࡘࡇ࡜ࡀศ࠿ࡗࡓࠋ⢊○ᚋࡢࢩࣜ
ࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࢆỈ⣲୰࡛࢔ࢽ࣮ࣝฎ⌮ࢆ⾜ࡗࡓࡀࠊX ⥺ᅇᢡࡢ⤖ᯝ࡛ࡣኚ໬ࡀぢࡽࢀࡎࠊ⢊○
᫬࡟࢔ࣔࣝࣇ࢓ࢫࢩࣜࢥࣥࡣ࡯࡜ࢇ࡝⏕ᡂࡋ࡚࠸࡞࠸ࡇ࡜ࡀ♧၀ࡉࢀࡓࠋࡲࡓࠊࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕
ࢡࣝྠኈࡢ㟁Ẽⓗ᥋ゐࢆᨵၿࡍࡿࡓࡵࡢ◪㓟㓟໬ἲࡢ㐺⏝ࡸࠊࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࡢḞ㝗ᾘ⁛࡜
㔠ᒓởᰁࡢ㝖ཤࡢ᪉ἲ࡜ࡋ࡚ࠊḞ㝗ᾘ⁛ᆺ༙ᑟయὙίἲࡢ㐺⏝࡟ࡘ࠸᳨࡚ウࡋࡓࠋࡲࡓࠊ㔞Ꮚࢧ࢖ࢬຠ
ᯝ࡟ࡼࡗ࡚ᣑ኱ࡋࡓࣂࣥࢻࢠࣕࢵࣉࢆᣢࡘࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ࢕ࢡࣝࢆ⏝࠸࡚ኴ㝧㟁ụࡢࣉࣟࢭࢫ࡟
ࡘ࠸࡚ࡶ᳨ウࡋࡓࠋ
― 26 ―
ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝
ᐈဨᩍᤵ
Sefic SUZER 㸦ᖹᡂ 26 ᖺ 1 ᭶ 27 ᪥㹼ᖹᡂ 26 ᖺ 2 ᭶ 28 ᪥㸧
a) ᴫせ
࣮ࣜࢡ㟁ὶᶵᵓࠊḞ㝗‽఩ࡢཎᅉࠊḞ㝗‽఩ࡢ⏕ᡂ࡜ᾘ⁛ᶵᵓࢆゎ᫂ࡍࡿࡇ࡜ࡣࠊ⾲㠃⏺㠃࣭Ḟ㝗≧
ែࢆไᚚࡍࡿࡇ࡜࡟ࡼࡗ࡚ࠊ༙ᑟయࢹࣂ࢖ࢫࡢ㧗ᛶ⬟໬ࢆ┠ᣦࡍୖ࡛㔜せ࡞ㄢ㢟࡛࠶ࡿࠋࡑࡇ࡛ࠊࢩࣜ
ࢥࣥ➼ࡢ༙ᑟయࢆࠊග㟁Ꮚศගἲ➼ࢆ⏝࠸࡚ࡑࡢ≀ᛶࢆゎ᫂ࡍࡿࠋ≉࡟ࠊ⾲㠃㟁Ꮚ≧ែࡸḞ㝗‽఩࡟㛵
ࡍࡿ᝟ሗࢆᚓࡿࠋᚓࡽࢀࡓ༙ᑟయ⾲㠃≧ែ࡜ࠊ༙ᑟయࢹࣂ࢖ࢫࡢ≉ᛶࡢ㛵ಀࢆ᫂ࡽ࠿࡟ࡍࡿࠋḞ㝗‽఩
ࡢᾘ⁛ἲ࡜ࡋ࡚ࠊ1㸬Ḟ㝗ᾘ⁛ᆺ༙ᑟయὙίἲ㸦ࢩ࢔ࣥฎ⌮㸧
ࠊ2㸬◪㓟㓟໬ἲࢆ᳨ウࡍࡿࠋ
b) ᡂᯝ
⾲㠃ᵓ㐀໬Ꮫⓗ㌿෗ἲࢆ⏝࠸࡚ᙧᡂࡋࡓప཯ᑕࢩࣜࢥࣥ⾲㠃ࢆ⏝࠸࡚ࠊ⾲㠃㟁Ꮚ≧ែࡸḞ㝗‽఩࡟㛵
ࡍࡿ᝟ሗࢆᚓࡿࡇ࡜࡟࡞ࡗࡓࠋ┦஫⌮ゎࢆ῝ࡵࡿࡓࡵࠊప཯ᑕࢩࣜࢥࣥ⾲㠃ࡢᙧᡂࠊప཯ᑕࢩࣜࢥࣥ⾲
㠃࡛ࡢᑡᩘ࢟ࣕࣜ࢔ࣛ࢖ࣇࢱ࢖࣒ ᐃࡸࢩࣜࢥࣥኴ㝧㟁ụ≉ᛶࡢホ౯ࢆ⾜ࡗࡓࠋࡲࡓࠊ௒ᚋࠊSuzer ◊
࡛⾜࠺ࠊࣂ࢖࢔ࢫ༳ຍ X ⥺ග㟁Ꮚศගἲࢆ⏝࠸ࡓゎᯒ࡟ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓࠋ᪂ࡓ࡟ࠊࢩࣜࢥࣥᮦᩱࡢ
ࣜࢳ࣒࢘࢖࢜ࣥ㟁ụ࡬ࡢᛂ⏝࡟㛵㐃ࡋ࡚ࠊࣂ࢖࢔ࢫ༳ຍ᫬ࡢࣜࢳ࣒࢘࢖࢜ࣥࡢࢩࣜࢥࣥᇶᯈෆ࡛ࡢᣲື
ࢆࣂ࢖࢔ࢫ༳ຍ X ⥺ග㟁Ꮚἲ࡛ほᐹࡍࡿ᪉ἲ࡟ࡘ࠸࡚ࡶ᳨ウࡋࡓࠋ
― 27 ―
ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝
ᐈဨᩍᤵ
㉿ ኱※ (ᖹᡂ 25 ᖺ 4 ᭶ 26 ᪥㹼ᖹᡂ 25 ᖺ 6 ᭶ 28 ᪥)
a) ᴫせ
ඹᙺ⣔㧗ศᏊࡸࡑࡢ࢜ࣜࢦ࣐࣮ࡣࢼࣀ࣐ࢸࣜ࢔ࣝࡢ㔜せ࡞ᵓᡂせ⣲࡛࠶ࡾᗈࡃ◊✲ࡉࢀ࡚࠸ࡿࠋࡇࢀ
ࡽࡢග࠾ࡼࡧ㟁Ꮚ≀ᛶࡣ㓟໬㑏ඖ≧ែ࡟኱ࡁࡃ౫Ꮡࡍࡿࡀࠊ㓟໬㑏ඖࡣྠ᫬࡟ศᏊᵓ㐀࡟ኚ໬ࡶࡶࡓࡽ
ࡍࡇ࡜ࡀ▱ࡽࢀ࡚࠸ࡿࠋ᣺ືศගࡣศᏊᵓ㐀ࡢホ౯࡟㐺ษ࡛࠶ࡾࠊ࡜ࡃ࡟᫬㛫ศゎ ᐃࡣ཯ᛂࢲ࢖ࢼ࣑
ࢡࢫࢆホ౯ࡍࡿ࠺࠼࡛㔜せ࡛࠶ࡿࠋ௨ୖࡢࡇ࡜࠿ࡽࠊᮏ◊✲࡛ࡣࠊࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟᫬㛫ศゎඹ㬆
࣐ࣛࣥ ᐃࢆ⤌ࡳྜࢃࡏࡿࡇ࡜࡛ࠊඹᙺ⣔㧗ศᏊ࢜ࣜࢦ࣐࣮ࡢ㓟໬㑏ඖ࡟క࠺ᵓ㐀ኚ໬ࢆ᫂ࡽ࠿࡟ࡍࡿ
ࡇ࡜ࢆࡵࡊࡋࡓࠋ
b) ᡂᯝ
ᮏ◊✲࡛ࡣඹᙺ⣔㧗ศᏊ࢜ࣜࢦ࣐࣮࡜ࡋ࡚
isotruxene ࢆࢥ࢔࡜ࡋࡓ஧ḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞ
ࣥ(ᅗ 1)ࢆ⏝࠸ࡓࠋ஧ḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞࣥࡢ྾
཰࠾ࡼࡧ⺯ගࢫ࣌ࢡࢺࣝࡣ᫂░࡞᣺ືᵓ㐀ࢆ♧ࡋࠊศ
Ꮚࢧ࢖ࢬࡢቑຍ࡜࡜ࡶ࡟ඹᙺ⣔ࡢᣑᙇࢆ♧ࡍࣆ࣮ࢡࢩ
ࣇࢺࡀ☜ㄆࡉࢀࡓࠋ
஧ḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞࣥ࡟J⥺↷ᑕ࠾ࡼࡧࣃ
ࣝࢫࣛࢪ࢜ࣜࢩࢫࢆ㐺⏝ࡍࡿࡇ࡜࡛ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ
✀ࡢ྾཰ࢫ࣌ࢡࢺࣝࢆᚓࡓࠋ྾཰ࢫ࣌ࢡࢺࣝࡣ㏆㉥እ
࠿ࡽ⣸እ㡿ᇦ࡟ศᕸࡋࠊ⌮ㄽィ⟬࡜ẚ㍑ࡍࡿࡇ࡜࡛㏆
㉥እࡢ྾཰ᖏࡣ HOMO ࡬ࡢ㑄⛣࡛࠶ࡾࠊྍどᇦࡢ྾
཰ᖏࡣ HOMO ࠿ࡽ LUMO ࡬ࡢ㑄⛣࡛࠶ࡿࡇ࡜ࡀ☜ㄆ
ࡉࢀࡓࠋ
㟁Ꮚ⥺↷ᑕᚋ 50 nsᚋ࡟ࢼࣀ⛊࣮ࣞࢨ࣮ࢆ↷ᑕࡍࡿ
ࡇ࡜࡛ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ✀ࡢඹ㬆࣐ࣛࣥࢫ࣌ࢡࢺࣝࢆ
ᐃࡍࡿࡇ࡜࡟ᡂຌࡋࡓࠋࣛࢪ࢝ࣝ࢖࢜ࣥ✀ࡢCCఙ⦰
᣺ືࡣ୰ᛶศᏊࡢࡶࡢ࡜ẚ࡭ 10 cm-1࡯࡝పἼᩘࢩࣇ
ࢺࡍࡿࡇ࡜ࡀ☜ㄆࡉࢀࡓࠋࡇࡢࢩࣇࢺࡣ㓟໬࡟ࡼࡾࠊ
࢟ࣀ࢖ࢻᵓ㐀ࡢᐤ୚ࡀ⏕ࡌࡓࡇ࡜ࢆ♧ࡋࠊᐇ㝿⌮ㄽィ
⟬࡜ࡼ࠸୍⮴ࢆ♧ࡍࡇ࡜ࢆ☜ㄆࡋࡓࠋ
ᅗ㸯 ஧ḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞࣥࡢศᏊᵓ㐀
௨ୖࡢ◊✲ࡣࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟᫬㛫ศゎඹ㬆ࣛ
࣐ࣥ ᐃࢆ⤌ࡳྜࢃࡏࡿࡇ࡜࡛ࠊ୰㛫యࡢศᏊᵓ㐀࡟
ࡘ࠸࡚ࡢ▱ぢࡀᚓࡽࢀࡿࡇ࡜ࢆ♧ࡍࡶࡢ࡛ࠊ௒ᚋࠊ✀ࠎࡢࢼࣀ࣐ࢸࣜ࢔ࣝ࡬ࡢᛂ⏝ࡀᮇᚅࡉࢀࡿࠋ
― 28 ―
ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝
ᐈဨᩍᤵ
๽ ᚿᶒ 㸦ᖹᡂ 25 ᖺ 11 ᭶ 8 ᪥㹼ᖹᡂ 26 ᖺ 1 ᭶ 31 ᪥㸧
a) ᴫせ
ᐇ⿦ศ㔝࡟࠾ࡅࡿࡣࢇࡔࡸ᥋ྜᮦᩱࡢᚤ⣽ᵓ㐀ࡢไᚚࠊ᥋ྜ⏺㠃ࡢ᭱㐺໬ࡣࠊ࣐࢖ࢡ࢚ࣟࣞࢡࢺࣟࢽ
ࢡࢫࢹࣂ࢖ࢫࡢ≉ᛶࡸ⪏⏝ᖺᩘ࡟ᙉࡃ┤᥋ᙳ㡪ࢆ୚࠼ࡿࡢ࡛ᗈ⠊ᅖࡢ◊✲ศ㔝࡛㛵ᚰࢆᣢࡓࢀ࡚࠸ࡿࠋ
ᙜ◊✲ᐊ࡛ࡣࠊTEM㸦㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾㸧ࢆ⏝࠸࡚ࠊࡣࢇࡔࠊ᥋ྜᮦᩱࡢ⇕㈇Ⲵࡸ኱㟁ὶ㈇Ⲵୗࡢ࢚ࣞ
ࢡࢺ࣐ࣟ࢖ࢢ࣮ࣞࢩࣙࣥ࡞࡝ࠊᮦᩱࡢຎ໬㐣⛬࡟࠾ࡅࡿ⏺㠃཯ᛂ࡜ᚤ⣽ᵓ㐀ࡢゎ᫂࡜ࡑࡢไᚚࢆ◊✲ࡋ
࡚ࡁࡓࠋᮏ◊✲࡛ࡣࠊࣉࣜࣥࢸࢵࢻ࢚ࣞࢡࢺࣟࢽࢡࢫ࡛౑⏝ࡉࢀࡿ㖟ࢼࣀ࣡࢖ࣖࡢᙧែᏛⓗ≉ᛶࡢホ౯
࡟ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓࠋ
b) ᡂᯝ
㖟ࢼࣀ࣡࢖ࣖ⭷ࡣࠊࡑࡢ㠀ᖖ࡟㧗࠸㏱᫂ᛶࠊᑟ㟁ᛶࠊᰂ㌾ᛶࠊఙ⦰ᛶࠊཬࡧప࠸ࢥࢫࢺࢆ≉ᚩ࡜ࡋ࡚
ᣢࡕࠊ㏆ᖺࠊࢱࢵࢳࣃࢿࣝࠊ᭷ᶵ ELࠊ᭷ᶵኴ㝧㟁ụ࡞࡝ᵝࠎ࡞ศ㔝࡟ᛂ⏝ࡉࢀࠊὀ┠ࡉࢀ࡚ࡁࡓࠋࡋ
࠿ࡋࠊ㖟ࢼࣀ࣡࢖ࣖ࡟ࡘ࠸࡚ࡢಙ㢗ᛶࡣࠊ࡯࡜ࢇ࡝◊✲ࡉࢀ࡚࠾ࡽࡎࠊᮏ◊✲࡛ࡣ TEM ࢆ⏝࠸࡚ࠊ⇕
㈇Ⲵ࠶ࡿ࠸ࡣ㞺ᅖẼᙳ㡪࡟ࡼࡿ㖟ࢼࣀ࣡࢖ࣖࡢຎ໬ࠊ⤖ᬗࡢኚ໬࡟ࡘ࠸᳨࡚ウࡋࡓࠋඖࡢ㖟ࢼࣀ࣡࢖ࣖ
ࡣࠊFCC ᵓ㐀࡛஬ᅇᑐ⛠ࡢ཮ᬗࡀ㸦111㸧⤖ᬗ㠃࡟ἢࡗ࡚⥡㯇࡟ᡂ㛗ࡋࡓ⤖ᬗᵓ㐀ࡔࡀࠊ୍ᐃ ᗘ௨ୖ
ࡢ⇕ฎ⌮࡟ࡼࡾࡇࡢ࣡࢖ࣖᵓ㐀ࡣᔂࢀࡿࠋࡇࡢࡇ࡜࡟ࡼࡗ࡚ࠊ㖟ࢼࣀ࣡࢖ࣖࢆሬᕸࡋࡓ⭷ࡢᑟ㟁ᛶࡀୗ
ࡀࡿࡇ࡜ࡀศ࠿ࡗࡓࠋࡲࡓࠊ✵Ẽ୰࡟ಖᏑࡍࡿ࡜ࠊ‵ᗘ࡞࡝ࡢᙳ㡪࡛ࠊ✵Ẽ୰ࡢ㓟⣲ࡸ◲໬Ỉ⣲࡞࡝࡜
཯ᛂࡋࠊ㖟ࢼࣀ࣡࢖ࣖࡢࢼࣀ࣡࢖ࣖᵓ㐀ࡀቯࢀࠊ㓟໬㖟ࡸ◲໬㖟ࡢ⢏≧໬ྜ≀࡟࡞ࡿࡇ࡜ࡀほᐹࡉࢀࡓࠋ
ࡇࢀࡽ୍㐃ࡢ⤖ᯝࡣࠊ㖟ࢼࣀ࣡࢖ࣖࡢ≧ែࢆ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ほᐹࡍࡿࡇ࡜࡟ࡼࡾࠊุ᫂ࡋࡓࠋ௒ᚋࠊ
࣡࢖ࣖᵓ㐀ࡢኚ໬ࢆ཯ᛂ࡟࠾ࡅࡿ㟁Ꮚ⛣ືᶵᵓࡢヲ⣽ゎ᫂࡬⤖ࡧࡘࡅࠊ㖟ࢼࣀ࣡࢖ࣖ㏱᫂ᑟ㟁⭷ࡢಙ㢗
ᛶࡢไᚚྥୖࢆ┠ᣦࡍணᐃ࡛࠶ࡿࠋ
ࡲࡓࠊ๽ᩍᤵࡣࠊ◊✲ᐊࡢᏛ⏕ࡸ⫋ဨ࡟ྥࡅࠊTEM ࡢཎ⌮㺃≉ᚩ࠿ࡽࠊ᧯స᪉ἲࠊᛂ⏝ࠊゎᯒ࡞࡝ࢆ
ヲ⣽࡟ㅮ⩏ゎㄝࡋࡓࠋලయⓗ࡞ᵝࠎ࡞ᮦᩱࢆ౛࡜ࡋ࡚ࠊᐇ㝿ࡢ TEM ࡛ࡢほᐹࢆ⾜࠸ᣦᑟࡋࡓࡇ࡜ࡣࠊ
௒ᚋࡢ◊✲࡟኱࠸࡟㈨ࡍࡿࡶࡢ࡜ゝ࠼ࡿࠋ
― 29 ―
ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝◊✲ศ㔝
ᐈဨᩍᤵ
Ralescu Anca Luminita㸦ᖹᡂ 26 ᖺ 2 ᭶ 3 ᪥~ᖹᡂ 26 ᖺ 4 ᭶ 30 ᪥㸧
a) ᴫせ
㏆ᖺࠊேᕤ▱⬟ࠊᶵᲔᏛ⩦ࠊ⤫ィ⌮ㄽ (AI/ML/S ᢏ⾡) ࢆࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗศ㔝࡟㐺⏝ࡍࡿືࡁ
ࡀ࠶ࡿࠋࢩ࣮ࣗࣞࢹ࢕࣮ࣥ࢞᪉⛬ᘧࢆ㠀⥺ᙧᅇᖐၥ㢟࡟ኚ᥮ࡋ࡚ゎࡃᡭἲࡶࡑࡢ୍౛࡛࠶ࡿࠋࡋ࠿ࡋࠊ
ࡇࢀࡽࡢ࡝ࡢᢏ⾡ࡀࢼࣀࢸࢡࣀࣟࢪ࣮ࡢ࡝ࡢၥ㢟ゎỴ࡟᭷ຠ࠿ࡢලయⓗ࡞ᣦ㔪ࡣࡲࡔ࡞࠸ࠋࡑࡢ⌮⏤ࡣ
⏕≀ࠊ໬Ꮫࠊ≀⌮ศ㔝࡛㛤Ⓨࡉࢀ࡚᮶ࡓࣔࢹࣝࡢከࡃࡣỗ⏝ⓗ࡟⤫ྜࡋ࡚ᢅ࠺ࡇ࡜ࡀ㞴ࡋ࠸ࡇ࡜࡟㉳ᅉ
ࡋ࡚࠸ࡿࠋࡑࡢࡓࡵࠊ⌧᫬Ⅼ࡛ࡣ AI/ML/S ᢏ⾡ࡢ㐺⏝ࡢ௙᪉ࡣ࢔ࢻ࣍ࢵࢡ࡛࠶ࡿ࡜ゝࢃࡊࡿࢆᚓ࡞࠸ࠋ
ᮏ◊✲࡛ࡣࠊࡲࡎࠊ᭱ඛ➃ AI/ML/S ᢏ⾡ࡢࢼࣀࢸࢡࣀࣟࢪ࣮ᛂ⏝≧ἣࢆㄪᰝศᯒࡋࠊศᏊタィ࡞࡝ࡢࢼ
ࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝࡟㐺⏝ࡍࡿ࡟㝿ࡋࠊ࡝ࡢࡼ࠺࡞ AI/ML/S ᢏ⾡ࢆ౑࠼ࡤຠᯝⓗ࠿ࢆホ౯ࡍࡿࠋ
― 30 ―
業績
ࢼࣀᶵ⬟ᮦᩱࢹࣂ࢖ࢫ◊✲ศ㔝
ཎⴭㄽᩥ
[1]Manipulation of Metal-Insulator Transition Characteristics in Aspect Ratio-Controlled VO2
Micro-Scale Thin Films on TiO2 (001) Substrates, H. Ueda, T. Kanki and H. Tanaka: Appl. Phys. Lett.,
102 (2013) 153106-1-3.
[2]Nonvolatile Transport States in Ferrite Thin Films Induced by a Field Effect Involving Redox
Processes, K. Fujiwara, T. Ichimura, H. Tanaka: Advanced Materials Interfaces, published online DOI:
10.1002/admi.201300108.
[3]Unstrained Epitaxial Zn-Substituted Fe3O4 Films for Ferromagnetic Field-Effect Transistors, T.
Ichimura, K. Fujiwara, T. Kushizaki, T. Kanki, H. Tanaka: Jpn. J. Appl. Phys., 52 (2013) 015001-1-3.
[4]Colossal Magnetoresistive (La,Pr,Ca)MnO3 Nanobox Array Structures Constructed by the
― 31 ―
Three-Dimensional Nanotemplate Pulsed Laser Deposition Technique, T. V. A. Nguyen, A. N. Hattori, Y.
Fujiwara, S. Ueda, H. Tanaka: Appl. Phys. Lett., 103 (2013) 223105-1-4.
[5]Multistep Metal Insulator Transition in VO2 Nanowires on Al2O3 (0001) Substrates, H. Takami, T.
Kanki, H. Tanaka: Appl. Phys. Lett., 104 (2014) 023104-1-4.
[6]Fabrication of Three-Dimensional Epitaxial (Fe,Zn)3O4 Nanowall Wire Structures and Their Transport
Properties, A. N. Hattori, Y. Fujiwara, K. Fujiwara, Y. Murakami, D. Shindo, H. Tanaka: Appl. Phys. Exp.,
7 (2014) 045201-1-4.
[7]Metal-Insulator Transition Driven by Low Power Joule Heating in Free-Standing VO2/TiO2
Microstructures, S. Yamasaki, T. Kanki, N. Mancla, L. Pellegrino, D. Marre, H. Tanaka: Appl. Phys. Exp.,
7 (2014) 023201-1-4.
[8]Electrical Switching to Probe Complex Phases in a Frustrated Manganite, S. Asthana, K. Fujiwara, H.
Tanaka: Solid State Commun., 187 (2014) 64-67.
[9]MoS2 Nanocube Structures as Catalysts for Electrochemical H2 Evolution from Acidic Aqueous
Solutions, A. W. Maijenburg, M. Regis, A. N. Hattori, H. Tanaka, K.-S. Choi, J. E. ten Elshof: ACS Appl.
Mater. Interfaces, 6 (2014) 2003-2010.
[10]Revealing Magnetic Domain Structure in Functional Fe2.5Zn0.5O4 Wires by Transmission Electron
Microscopy, Y. Murakami, A. Ohta, A. N. Hattori, T. Kanki, S. Aizawa, T. Tanigaki, H. S. Park, H. Tanaka,
D. Shindo: Acta. Mater., 64 (2014) 144-153.
[11]Ni and p-Cu2O Nanocubes with a Small Size Distribution by Templated Electrodeposition, and Their
Characterization by Photocurrent Measurement, A. W. Maijenburg, A. N. Hattori, M. De Respinis, C. M.
McShane, K.-S. Choi, B. Dam, H. Tanaka, J. E. ten Elshof: ACS Appl. Mater. Interfaces, 5 (2013)
10938-10945.
[12]Programmable Mechanical Resonances in MEMS by Localized Joule Heating of Phase Change
Materials, N. Manca, L. Pellegrino, T. Kanki, S. Yamasaki, H. Tanaka, A. S. Siri, D. Marre: Advanced
Materials, 25 (2013) 6430-6435.
[13]Nonvolatile Transport States in Ferrite Thin Films Induced by a Field Effect Involving Redox
Processes, K. Fujiwara, T. Ichimura, H. Tanaka: Adv. Mater. Int., published online (2014) DOI:
10.1002/admi.201300108.
[14]5d Iridium Oxide as a Material for Spin-Current Detection, K. Fujiwara, Y. Fukuma, J. Matsuno, H.
Idzuchi, Y. Niimi, Y. Otani, H. Takagi: Nat. Commun., 4 (2013) 2893-1-6.
[15]Observation of Rebirth of Metallic Paths during Resistance Switching of Metal Nanowire, K. Horiba,
K. Fujiwara, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima: Appl. Phys. Lett., 103 (2013)
193114-1-3.
[16]Enhancement of Photoluminescence Efficiency from GaN(0001) by Surface Treatments, A. N.
Hattori, K. Hattori, Y. Moriwaki, A. Yamamoto, S. Sadakuni, J. Murata, K. Arima, Y. Sano, K. Yamauchi,
H. Daimon, K. Endo: Jpn. J. Appl. Phys., 53 (2014) 021001-1-5.
[17]Coherent Metallic Screening in Core-Level Photoelectron Spectra for Strongly Correlated Oxides of
La1-xBaxMnO3 and V1-xWxO2, S. Ueda, H. Takami, T. Kanki, H. Tanaka: Phys. Rev. B, 89 (2014)
035141-1-8.
ᅜ㝿఍㆟
― 32 ―
[1]3D Nanostructures for correlated oxide electronics (invited), H. Tanaka, T. Kanki, A. Hattori, K.
Fujiwara: The 74th Autumn Meeting, 2013/2013 JSAP-MRS Joint Symposia.
[2]Correlated Nano-Oxides for Electronic Phase Change Electronics (invited), H. Tanaka: 224th ECS
Meeting incuding electrochemical energy summit 2013 / featuring the Energy-Water Nexus
Symposium.
[3]Nano-Confinement Steep Metal-Insulator Transition Driven by Temperature and Magnetic Field in
Extremely Small (La,Pr,Ca)MnO3 Epitaxial Nanowall Prepared by 3D Nano-Template PLD (oral), H.
Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit.
[4]Colossal Magnetoresistive (La,Pr,Ca)MnO3 Nanobox Array Structures Constructed by 3D
Nanotemplate PLD Technique (oral), H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit.
[5]Artificial Construction of Correlated Oxide Nanostructures for Electronic Phase Change Electronics
(invited), H. Tanaka: International Conference on Nano Science and Technology (ICONSAT-2014).
[6]Manupilation of Metal-Insulator Transition Characteristics Through Control of Size and Aspect Ratio
of VO2 Thin Films (oral), T. Kanki, H. Tanaka: 2013 JSAP-MRS Joint Symposia.
[7]Design of Metal-Insulator Transition Characteristics in Size- and Aspect Ratio-Controlled Oxide Thin
Films (invited), T. Kanki, H. Tanaka: 2013 EMN(Energy Materials Nanotechnology) meeting.
[8]Design of Electronic Transport Property through Electronic Phase Manipulation in Correlated Electron
Materials (invited), T. Kanki, H. Tanaka: 3rd International Conference on Nanotek & Expo.
[9]Electric-Field Control of Transport Properties in VO2 Nanowires with Side Gates via Air Gap (oral), T.
Kanki, T. Sasaki, H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit.
[10]A New Strategy to Realize the Three-Dimensional Functional Metal Oxide Nanostructured
Electronics (oral), A. N. Hattori, H. Tanaka: 224th ECS Meeting incuding electrochemical energy
summit 2013 / featuring the Energy-Water Nexus Symposium.
[11]ZnO Luminescent Nanobox by 3D-Nanotemplate PLD (invited), A. N. Hattori: SPIE Phononics
West(Oxide-based Materials and Devices International Conference (Conference OE108)).
[12]Control of Magnetotransport Properties of Zinc Ferrite Thin Films via Reversible Electrochemical
Reactions (oral), K. Fujiwara, T. Ichimura, T. Hori, H. Tanaka: 2013 Materials Research Society Fall
Meeting& Exhibit.
[13]Current Switching Effect in the Insulating Charge-Ordered States of Layered Ferrite Thin Films
(poster), K. Fujiwara, T. Hori, H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit.
[14]In-Plane Oblique Pulsed-Laser Deposition for Growth of Metal Oxide Nanostructures with Laterally
Modulated Profiles (oral), K. Fujiwara, T. Kushizaki, Y. Fujiwara, K. Okada, A. N. Hattori, H. Tanaka:
26th International Microprocesses and Nanotechnology Conference.
[15]Electric-Field-Induced Phase Transition in Charge-Ordered LuFe2O4 Thin Films (invited), K.
Fujiwara, T. Hori, H. Tanaka: 21th International Conference on Composites/Nano Engineering.
[16]Modulation of Conductive Property in VO2 Nano-Wires through an Air Gap-Mediated Electric Field
(poster), T.Sasaki, H. Ueda, T. Kanki, H. Tanaka: The 17th Sanken International Symposium, The 2nd
International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita,
Osaka, Japan, January 21-22, 2014.
― 33 ―
[17]Metal-Insulator Transition Driven by Low Power Joule Heating in Free-Standing VO2/TiO2
Microstructures (poster), S. Yamasaki, T. Kanki, N. Mancola, L. Pellegrino, D. Marre, H. Tanaka: The
17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials,
Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[18]Investigation of Effective Carrier Characteristics in Strongly Correlated (La,Pr,Ca)MnO3 Films by
the THz Time Domain Spectroscopy (poster), T. V. A. Nguyen, A. N. Hattori, M. Nagai, T. Nakamura, K.
Fujiwara, M. Ashida, H. Tanaka: 1st KANSAI Nanoscience and Nanotechnology International
Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN
Nanotechnology Symposium.
[19]Redox-Control of Conductive Property in VO2 Nano-Wires by an Electric Field via an Air Nano-Gap
(poster), T. Sasaki, T. Kanki, H. Tanaka: 1st KANSAI Nanoscience and Nanotechnology International
Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN
Nanotechnology Symposium.
[20]Low Power-Driven Metal-Insulator Transition in Free-Standing VO2 Microstructures and Its
Mechanism Elucidation (poster), S. Yamasaki, T. Kanki, N. Mancola, L. Pellegrino, D. Marre, H. Tanaka:
1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and
Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium.
[21]Conductive Properties through the Metal Insulator ITansition in the Strongly Correlated
(La,Pr,Ca)MnO3 Film Investigated by the THz Time Domain Spectroscopy (poster), T. V. A. Nguyen, A.
N. Hattori, M. Nagai, T. Nakamura, K. Fujiwara, M. Ashida, H. Tanaka: International Symposium on
Terahertz Nanoscience㸦TeraNano4㸧.
ゎㄝࠊ⥲ㄝ
ㄏᑟࢼࣀᵓ㐀⛉Ꮫ࡟ࡼࡿ 3 ḟඖᴟᚤ⣽㓟໬≀࢚ࣞࢡࢺࣟࢽࢡࢫࢹࣂ࢖ࢫࡢ๰〇, ⏣୰ ⚽࿴ࠊ᭹
㒊 ᱻࠊᒸ⏣ ᾈ୍, ᶵ⬟ᮦᩱ, ࢩ࣮࢚࣒ࢩ࣮ฟ∧, 34 (2014), 25-33.
ⴭ᭩
[1]ࣃࣝࢫ࣮ࣞࢨ࣮ሁ✚ࠊࣜࢯࢢࣛࣇ࢕ (ᯇ஭ ᩥᙪ)“ၥ㢟࡜ゎㄝ࡛Ꮫࡪ⾲㠃⛉Ꮫ”, ᭹㒊 ᱻ(ศ
ᢸᇳ➹), ඹ❧ฟ∧, 1 (162-163) 2013.
≉チ
[1]ࠕᅜෆᡂ❧≉チࠖࣀ࢖ࢬࢪ࢙ࢿ࣮ࣞࢱࠊཬࡧ☜⋡ඹ᣺⣲Ꮚ, ≉チ➨ 5421923 ྕ
[2]ࠕᅜ㝿ᡂ❧≉チࠖ, EP1489664B1
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
⏣୰ ⚽࿴
CIMTEC 2014(13th International Ceramics Congress) (⤌⧊ጤဨ)
ᅜෆᏛ఍
ࢼࣀࢸࢡࣉࣛࢵࢺࣇ࢛࣮࣒㛵す
㧗ศᏊ࣭ࣁ࢖ࣈࣜࢵࢻᮦᩱ◊✲ࢭࣥࢱ࣮2013 PHyM ࢩ࣏ࣥࢪ࣒࢘
ᅵ᭙⛉Ꮫ఍ 㸴᭶ࡢ౛఍
ᖹᡂ 25 ᖺᗘ 㜰኱⏘◊㸭ᮾ໭኱㏻◊஺ὶ఍㏻◊ ◊✲ᡤ㐃ᦠᆺඹྠࣉࣟࢪ࢙
ࢡࢺ◊✲㸦ࢱ࢖ࣉ㹑㸧◊✲Ⓨ⾲఍
㝃⨨◊✲ᡤ㛫࢔ࣛ࢖࢔ࣥࢫࠕḟୡ௦࢚ࣞࢡࢺࣟࢽࢡࢫࠖࢢ࣮ࣝࣉ㸦G㸯㸧ศ⛉
఍㸦ᒣᙧ኱Ꮫࢪࣙ࢖ࣥࢺࢩ࣏ࣥࢪ࣒࢘㸧
2013 ᖺ ➨ 74 ᅇᛂ⏝≀⌮Ꮫ఍⛅ᏘᏛ⾡ㅮ₇఍
➨ 42 ᅇⷧ⭷࣭⾲㠃≀⌮ᇶ♏ㅮᗙ㸦2013㸧
࣋ࢺࢼ࣒࣭᪥ᮏ⛉Ꮫ஺ὶ࣑࣮ࢸ࢕ࣥࢢ
᪥ᮏ≀⌮Ꮫ఍ 2013 ᖺ⛅Ꮨ኱఍
ᛂ⏝≀⌮Ꮫ఍㛵すᨭ㒊ᖹᡂ 25 ᖺᗘ➨ 2 ᅇㅮ₇఍
― 34 ―
1௳
1௳
1௳
1௳
2௳
8௳
1௳
1௳
2௳
1௳
ⷧ⭷ᮦᩱࢹࣂ࢖ࢫ◊✲఍ ➨ 10 ᅇ◊✲㞟఍
2013 ᖺ┿✵࣭⾲㠃⛉Ꮫྜྠㅮ₇఍
㝃⨨◊✲ᡤ㛫࢔ࣛ࢖࢔ࣥࢫࡢ➨୍ᅇⱝᡭ◊✲఍
➨ 23 ᅇ᪥ᮏ MRS ᖺḟ኱఍
Opt Osaka 㸰㸮㸯㸲 in Tokyo -኱㜰኱Ꮫࡢග⛉Ꮫ㸯㸮㸮➨㸴㸯ᅇᛂ⏝≀⌮Ꮫ఍᫓ᏘᏛ⾡ㅮ₇఍
᪥ᮏ≀⌮Ꮫ఍ ➨ 69 ᅇᖺḟ኱఍
ྲྀᚓᏛ఩
ಟኈ㸦ᕤᏛ㸧
VO2 ⷧ⭷࡟࠾ࡅࡿᕧ኱㟁Ꮚ┦ࡢⓎぢ࡜㟁Ẽఏᑟ≉ᛶ࡜ࡢ┦㛵ゎ᫂
ᕝ㇂ ೺୍
ಟኈ㸦ᕤᏛ㸧
㟁⏺ຠᯝ࡟ࡼࡿࣇ࢙ࣛ࢖ࢺ☢ᛶయࡢ㟁Ẽ㍺㏦≉ᛶไᚚ
ᕷᮧ ᪸ኈ
⛉Ꮫ◊✲㈝⿵ຓ㔠
ⱝᡭ◊✲(S)
⏣୰ ⚽࿴
ᇶ┙◊✲(B)
⚄ྜྷ ㍤ኵ
ⱝᡭ◊✲(B)
᭹㒊 ᱻ
ⱝᡭ◊✲(B)
⸨ཎ ᏹᖹ
ཷク◊✲
⏣୰ ⚽࿴
ዡᏛᐤ㝃㔠
᭹㒊 ᱻ
⸨ཎ ᏹᖹ
⸨ཎ ᏹᖹ
ᙉ┦㛵㓟໬≀ࢼࣀ࢚ࣞࢡࢺࣟࢽࢡࢫᵓ⠏࡟㛵ࡍࡿ◊✲
1௳
2௳
1௳
1௳
1௳
5௳
1௳
༢఩㸸༓෇
15,600
ࢼࣀࢫࢣ࣮ࣝᙉ┦㛵㟁Ꮚ┦ࢻ࣓࢖ࣥࡢ┦㌿⛣࣭ືⓗ࣭✵㛫
㓄ิࢺ࣮ࢱࣝไᚚ
3d 㑄⛣㔠ᒓ㓟໬≀ࡢࢼࣀ㉸ᵓ㐀໬ᢏ⾡ᵓ⠏࡜ᕧ኱☢Ẽᛂ⟅
ᛶホ౯
㕲⣔㓟໬≀ࡢᐊ 㟁Ꮚᅛయ≧ែ࡟࠾ࡅࡿ㟁Ꮚ┦ኚ໬ᶵ⬟ࡢ
ᐇド
ࢧࢫࢸ࢕ࢼࣈࣝ Fe 㓟໬≀㧗 ᙉ
☢ᛶ༙ᑟయࢆ⏝࠸ࡓࢫࣆ࢚ࣥࣞ
ࢡࢺࣟࢽࢡࢫ⣲Ꮚࡢ㛤Ⓨ
⊂❧⾜ᨻἲே ᪂࢚ࢿ
ࣝࢠ࣮࣭⏘ᴗᢏ⾡⥲ྜ㛤
Ⓨᶵᵓ
බ┈㈈ᅋἲே㛵す࢚ࢿࣝࢠ࣮࣭ࣜࢧ࢖ࢡࣝ⛉Ꮫ◊✲᣺⯆㈈
ᅋ ௦⾲⌮஦ ▼ᕝ༤ᚿ
බ┈㈈ᅋἲேᮧ⏣Ꮫ⾡᣺⯆㈈ᅋ ⌮஦㛗 ᮧ⏣ᜏኵ
୍⯡㈈ᅋἲே୸ᩥ㈈ᅋ ⌮஦㛗 ✄ᮧ᫂ᙪ
ࡑࡢ௚ࡢ➇தⓗ◊✲㈨㔠
⏣୰ ⚽࿴
㸦⊂㸧᪥ᮏᏛ⾡᣺⯆఍
⏣୰ ⚽࿴
ᩥ㒊⛉Ꮫ┬
⏣୰ ⚽࿴
኱Ꮫඹྠ฼⏝ᶵ㛵ἲே⮬↛
⛉Ꮫ◊✲ᶵᵓศᏊ⛉Ꮫ◊✲
ᡤ
⮬ᕫ⤌⧊໬࡟ࡼࡿ㓟໬≀ࢼࣀ㉸ᵓ㐀య
ࢫࣆࣥࢺࣟࢽࢡࢫࢹࣂ࢖ࢫᙧᡂ࡟㛵ࡍ
ࡿ◊✲
ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺࣇ࢛࣮࣒ᐇ᪋ᶵ
㛵
ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺࣇ࢛࣮࣒ᐇ᪋ᶵ
㛵
8,320
2,470
3,120
2,990
130
1,200
200
1,000
283,056
35,000
ࢼࣀᴟ㝈ࣇ࢓ࣈࣜࢣ࣮ࢩࣙࣥศ㔝
ཎⴭㄽᩥ
[1]Femtosecond pulse radiolysis study of geminate ion recombination in biphenyl-dodecane solution, T.
Kondoh, J. Yang, K. Norizawa, K. Kan, T. Kozawa, A. Ogata, S. Tagawa, Y. Yoshida: Radiat. Phys.
Chem., 84 (2013) 30-34.
[2]Radially Polarized Terahertz Waves from a Photoconductive Antenna with Microstructures, K. Kan, J.
Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo:
Appl. Phys. Lett., 102 (2013) 221118.
― 35 ―
[3]Determination of Transient Atomic Structure of Laser-Excited Materials from Time-Resolved
Diffraction Data, Y. Giret, N. Naruse, S. L. Daraszewicz, Y. Murooka, J. Yang, D. M. Duffy, A. L.
Shluger, K. Tanimura: Appl. Phys. Lett., 103 (2013) 253107.
[4]Structural Dynamics of Laser-Irradiated Gold Nanofilms, S. L. Daraszewicz, Y. Giret, N. Naruse, Y.
Murooka, J. Yang, D. M. Duffy, A. L. Shluger, K. Tanimura: Phys. Rev. B, 88 (2013) 184101.
[5]Twin-Peaks Absorption Spectra of Excess Electron in Ionic Liquids, R. M. Musat, T. Kondoh, Y.
Yoshida, K. Takahashi: Radiat. Phys. Chem., 100 (2014) 32-37.
ᅜ㝿఍㆟
[1]Attosecond and Femtosecond Radiation-induced Phenomena (invited), Y. Yoshida: 3rd Asian
Congress of Radiation Research (ACRR2013).
[2]RF gun based MeV transmission electron microscopy (invited), J. Yang: Workshop on femtosecond
electron imaging and spectroscopy.
[3]Photocathode RF gun based transmission electron microscopy (invited), J. Yang: 5th Aisan forum for
accelerators and detectors (AFAD2014).
[4]Femtosecond Pulse Radiolysis of Primary Process of Radiation Chemistry (invited), K. Norizawa, K.
Kan, M. Gohdo, T. Kondoh, J. Yang, Y. Yoshida: DAE-BRNS 12th Biennial Trombay Symposium on
Radiation & Photochemistry (TSRP-2014).
[5]Kansai Nanoscience and Nanotechnology Network (invited), Y. Yoshida: 1st KANSAI Nanoscience
and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology
International Symposium, 12th SANKEN Nanotechnology Symposium.
[6]Application of Double-Decker Pulse Radiolysis (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M.
Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: The 14th RIES-Hokudai International Symposium.
[7]Pulse Radiolysis Using Terahertz Probe Pulses (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M.
Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: The 17th Sanken International Symposium, The 2nd
International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita,
Osaka, Japan, January 21-22, 2014.
[8]Development of Femtosecond Time-Resolved Electron Microscopy (poster), J. Yang, K. Kan, N.
Naruse, T. Kondoh, M. Gohdo, Y. Yoshida, K. Tanimura: The 17th Sanken International Symposium, The
2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project,
Suita, Osaka, Japan, January 21-22, 2014.
[9]Generation of Ultrashort Electron Beam (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K.
Norizawa, H. Kobayashi, Y. Yoshida: The 17th Sanken International Symposium, The 2nd International
Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka,
Japan, January 21-22, 2014.
[10]Study of the Primary Process of Polystyrene Radiolysis by Means of Femto-Second and
Nano-Second Pulse Radiolysis Technique (poster), M. Gohdo, T. Kondoh, K. Kan, J. Yang, A. Oshima, H.
Shibata, S. Tagawa, Y. Yoshida: The 17th Sanken International Symposium, The 2nd International
Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka,
Japan, January 21-22, 2014.
[11]Observation of Dodecane Alkyl-Radical by the UV Femtosecond Pulse Radiolysis (poster), T.
Kondoh, M. Gohdo, K. Kan, J. Yang, K. Norizawa, Y. Muroya, H. Kobayashi, A. Ogata, S. Tagawa, Y.
― 36 ―
Yoshida: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro
Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[12]Reactivity of Excess Electrons during Solvation Process in Alcohols Studied by Femtosecond Pulse
Radiolysis (poster), K. Norizawa, T. Kondoh, M. Gohdo, K. Kan, J. Yang, A. Ogata, Y. Yoshida: The 17th
Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device,
and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[13]Generation of Ultrashort Electron Beam for Attosecond Pulse Radiolysis (poster), K. Kan, J. Yang, A.
Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: 1 st KANSAI Nanoscience and
Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International
Symposium, 12th SANKEN Nanotechnology Symposium.
[14]Terahertz Pulse Radiolysis Based on Double-Decker Electron Beams (poster), K. Kan, J. Yang, A.
Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: 1 st KANSAI Nanoscience and
Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International
Symposium, 12th SANKEN Nanotechnology Symposium.
[15]Femtosecond Pulse Radiolysis Study of Poly-Į-Methyl Styrene as a Model Compound of PolymerResist (poster), M. Gohdo, T. Kondoh, S. Tagawa, J. Yang, K. Norizawa, K. Kan, Y. Yoshida: 1st KANSAI
Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and
Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium.
[16]Study of the Primary Process of Polystyrene Radiolysis by Means of Femto-Second and
Nano-Second Pulse Radiolysis Technique (poster), M. Gohdo, T. Kondoh, K. Kan, J. Yang, A. Oshima, H.
Shibata, S. Tagawa, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium,
9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology
Symposium.
[17]The Pulse Radiolysis Study of Radical Ions of Naphthalene Bis Imide Derivatives as an Optical
Functional Material (poster), T. Kondoh, M. Gohdo, J. Yang, K. Kan, Y. Yoshida: 1st KANSAI
Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and
Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium.
[18]Reactivity of the Precursors of the Solvated Electrons in Neat Ethanol Studied by Femtosecond Pulse
Radiolysis (poster), K. Norizawa, T. Kondoh, M. Gohdo, K. Kan, J. Yang, A. Ogata, Y. Yoshida: 1st
KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and
Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium.
[19]Accelerator-based Femtosecond Transmission Electron Microscopy (poster), J. Yang, K. Kan, N.
Naruse, T. Kondoh, M. Gohdo, Y. Yoshida, K. Tanimura: 1st KANSAI Nanoscience and Nanotechnology
International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th
SANKEN Nanotechnology Symposium.
[20]Measurement of Electron Beam Property of Femtosecond Time-Resolved MeV Electron Microscopy
(poster), J. Yang, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium,
9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology
Symposium.
[21]Femtosecond Time-Resolved Electron Microscopy Using a Radio-Frequency Relativistic-Energy
Electron Gun (oral), J. Yang, K. Kan, N. Naruse, T. Kondoh, M. Godoh, Y. Yoshida, K. Tanimura:
Electronmicroscopy and Multiscalemodeling (EMMM) 2013.
[22]Experimental Observation of Formation and Geminate Recombination of Hydrated Electron in Water
― 37 ―
Radiolysis (poster), J. Yang, T. Kondoh, K. norizawa, Y. Yoshida: 3rd Asian Congress of Radiation
Research (ACRR2013).
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
ྜྷ⏣ 㝧୍
The 5th Asia Pacific Symposium on Radiation Chemistry (APSRC2014) (⤌⧊ጤဨ)
ྜྷ⏣ 㝧୍
The 15th International Congress of Radiation Research (ICRR 2015) (⛉Ꮫጤဨ఍)
ᅜෆᏛ఍
᪥ᮏຍ㏿ჾᏛ఍ᖺ఍
6௳
᪥ᮏཎᏊຊᏛ఍
13 ௳
ᨺᑕ⥺໬Ꮫウㄽ఍
7௳
1௳
㧗ᓮ㔞Ꮚᛂ⏝◊✲ࢩ࣏ࣥࢪ࣒࢘
3௳
㧗㍤ᗘ࣭RF 㟁Ꮚ㖠◊✲఍
ࢼࣀࢸࢵࢡ
1௳
᪥ᮏ໬Ꮫ఍
2௳
1௳
᰾⼥ྜ⛉Ꮫ◊✲ᡤ ୍⯡ඹྠ◊✲ ◊✲࣭ሗ࿌఍
᪥ᮏ㢧ᚤ㙾Ꮫ఍
1௳
ࣅ࣮࣒≀⌮◊✲఍
1௳
᪥ᮏ≀⌮Ꮫ఍
1௳
ྲྀᚓᏛ఩
ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡿࢻࢹ࢝ࣥ࢔ࣝ࢟ࣝࣛࢪ࢝ࣝࡢ⏕ᡂ㐣⛬
Ꮫኈ(ᕤᏛ㸧
す஭ ⪽ᚿ
ࡢ◊✲
Ꮫኈ(ᕤᏛ㸧
ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡿỈ࿴㟁Ꮚࡢ⏕ᡂ㐣⛬ࡢ◊✲
ᒣᒽ ඃ
⛉Ꮫ◊✲㈝⿵ຓ㔠
༢఩㸸༓෇
ḟୡ௦࢔ࢺ⛊࣭ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟㛵ࡍࡿ◊
28,080
ᇶ┙◊✲(S)
ྜྷ⏣ 㝧୍
✲
ⱝᡭ◊✲(B)
จ⦰⣔࡟࠾ࡅࡿ㔞Ꮚࣅ࣮࣒ㄏ㉳㉸㧗㏿㟁Ⲵ⛣ື㐣⛬ࡢ◊✲
1,820
㏆⸨ Ꮥᩥ
ⱝᡭ◊✲(B)
ࢸࣛ࣊ࣝࢶ㡿ᇦࡢࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟㛵ࡍࡿ◊✲
2,210
Ⳣ ᫭୍
ཷク◊✲
ྜྷ⏣ 㝧୍
ᩥ㒊⛉Ꮫ┬
㸦ࢢ࣮ࣝࣉྡ㸸㸧኱㜰኱Ꮫࢼࣀࢧ
1,500
࢖࢚ࣥࢫ࣭ࢼࣀࢸࢡࣀࣟࢪ࣮࢔ࣛ
࢖࢔ࣥࢫ
― 38 ―
ࢼࣀᵓ㐀࣭ᶵ⬟ホ౯◊✲ศ㔝
ཎⴭㄽᩥ
[1]Impact of Preferential Indium Nucleation on Electrical Conductivity of Vapor-Liquid-Solid Grown
Indium-Tin Oxide Nanowires, G. Meng, T. Yanagida, K. Nagashima, H. Yoshida, M. Kanai, A.
Klamchuen, F. Zhuge, Y. He, S. Rahong, X. Fang, S. Takeda, T. Kawai: J. Am. Chem. Soc., 135 (2013)
7033-7038.
[2]WGS Catalysis and In Situ Studies of CoO1-x, PtCon/Co3O4, and PtmCom'/CoO1-x Nanorod Catalysts, S.
Zhang, J. Shan, Y. Zhu, A. I. Frenkel, A. Patlolla, W. Huang, S. J. Yoon, L. Wang, H. Yoshida, S. Takeda,
F. F. Tao: J. Am. Chem. Soc., 135 (2013) 8283-8293.
[3]Stepwise Displacement of Catalytically Active Gold Nanoparticles on Cerium Oxide, Y. Kuwauchi, S.
Takeda, H. Yoshida, K. Sun, M. Haruta, H. Kohno: Nano Lett., 13 (2013) 3073-3077.
[4]Restructuring Transition Metal Oxide Nanorods for 100% Selectivity in Reduction of Nitric Oxide
with Carbon Monoxide, S. Zhang, J. Shan, Y. Zhu, L. Nguyen, W. Huang, H. Yoshida, S. Takeda, F. F.
Tao: Nano Lett., 13 (2013) 3310-3314.
[5]Direct O2 Activation on Gold/Metal Oxide Catalysts through a Unique Double Linear O-Au-O
Structure, K. Sun, M. Kohyama, S. Tanaka, S. Takeda: ChemCatChem, 5 (2013) 2217-2222.
[6]Three-dimensional Evaluation of Gettering Ability of Ȉ3{111} Grain Boundaries in Silicon by Atom
Probe Tomography Combined with Transmission Electron Microscopy, Y. Ohno, K. Inoue, Y. Tokumoto,
K. Kutsukake, I. Yonenaga, N. Ebisawa, H. Takamizawa, Y. Shimizu, K. Inoue, Y. Nagai, H. Yoshida, S.
Takeda: Appl. Phys. Lett., 103 (2013) 102102-1--102102-4.
[7]A Study on the Mechanism for H2 Dissociation on Au/TiO2 Catalysts, K. Sun, M. Kohyama, S. Tanaka,
S. Takeda: J. Phys. Chem. C, 118 (2014) 1611-1617.
ᅜ㝿఍㆟
[1]Environmental TEM for Quantitative in-situ Microscopy at the Atomic Scale (invited), S. Takeda, H.
Yoshida: Frontiers of in situ Transmission Electron Microscopy Workshop.
[2]Atomistic Structures of Gold Nanoparticulate Catalysts in Reaction Environments (oral), S. Takeda, Y.
Kuwauchi, H. Yoshida, K. Sun, S. Tanaka, M. Kohyama, M. Haruta, T. Akita, T. Uchiyama: 23rd North
American Catalysis Society Meeting㸦NAM23).
[3]Quantitative High-Resolution ETEM of Nanoparticulate Catalysts in Gases (invited), S. Takeda:
Microscopy and Microanalysis 2013, Pre-Meeting Congress: Opportunities, Challenges and Outlook for
In-situ Experiments in Liquids and Gases using Electron-Optical Instruments.
[4]In-situ Observation of the Changes in Shape and Surface Structure of Pt Nanoparticulate Catalysts in
Reactant Gases by Aberration-corrected Environmental Transmission Electron Microscopy (oral), H.
Yoshida, H. Omote, M. Haruta, S. Takeda: Microscopy and Microanalysis 2013.
[5]Singly Anchored Pt and Pd Atoms on Co3O4 and Their Catalytic Performance (poster), S. Zhang, F.
Tao, A. I. Frenkel, S. Takeda: Microscopy and Microanalysis 2013.
[6]Restructuring Early Transition Metal Oxide for New Catalysis (poster), F. F. Tao, S. Zhang, H. Yoshida,
S. Takeda: Microscopy and Microanalysis 2013.
[7]In-situ Atomic Resolution Environmental TEM as Quantitative Microscopy in Materials Science
(invited), S. Takeda: The 8th Pacific Rim International Congress on Advanced Materials and Processing
(PRICM-8).
― 39 ―
[8]Quantitative High Resolution Environmental Transmission Electron Microscopy for Catalyst
Chemistry (invited), S. Takeda, H. Yoshida, Y. Kuwauchi, T. Uchiyama: Fifteenth Annual Conference
YUCOMAT 2013.
[9]Atomic-Resolution Environmental Transmission Electron Microscopy for Quantitative in-situ
Microscopy in Catalyst Chemistry (plenary), S. Takeda: 22nd International Congress on X-ray Optics and
Microanalysis (ICXOM22).
[10]Environmental TEM for Quantitative in-situ Microscopy in Catalyst Chemistry at the Atomic Scale
(invited), S. Takeda, H. Yoshida: 246th ACS National Meeting & Exposition.
[11]Accumulation Ability of Ȉ3{111} Grain Boundaries in Si (oral), Y. Ohno, K. Inoue, Y. Tokumoto, K.
Kutsukake, I. Yonenaga, N. Ebisawa, H. Takamizawa, Y. Shimizu, K. Inoue, Y. Nagai, H. Yoshida,
S.Takeda: 7th International Workshop on Crystalline Silicon Solar Cells (CSSC7).
[12]Atomic-Resolution Environmental Transmission Electron Microscopy for Quantitative In-situ
Microscopy in Catalyst Chemistry (invited), S. Takeda: The 1st East-Asia Microscopy Conference
(EAMC-1).
[13]Structure of Surface Gold Oxide Film on Gold Nanoparticles in O2 Atmosphere (poster), K. Sun: The
1st East-Asia Microscopy Conference (EAMC-1).
[14]Atomic-Resolution Environmental Transmission Electron Microscopy for Quantitative in-situ
Microscopy in Materials Science (invited), S. Takeda, H. Yoshida: 12th International Conference on
Atomically Controlled Surfaces, Interfaces and Nanostructures in conjunction with 21st International
Colloquium on Scanning Probe Microscopy (ACSIN-12 & ICSPM21).
[15]Quantitative Environmental TEM toward Materials Process Characterization (invited), S. Takeda:
International Workshop on Environmental Transmission Electron Microscopy (IWETEM 2013).
[16]In-Situ Environmental TEM Observation of Formation of Defects in Growing Carbon Nanotubes
(poster), H. Yoshida, S. Takeda: 2013 MRS Fall Meeting & Exhibit.
[17]Structure of Nanoparticles during the Cobalt-Catalyzed Carbon Nanotube Growth (poster), Y.
Kohigashi, H. Yoshida, S. Takeda: 2013 MRS Fall Meeting & Exhibit.
[18]Quantitative Atomic Resolution Environmental Transmission Electron Microscopy for Materials
Process Characterization (invited), S. Takeda: 9th International Symposium on Atomic Level
Characterizations for New Materials and Devices '13㸦ALC '13㸧.
[19]Atomic-Scale in-situ Observation of the Growth of Carbon Nanotubes (invited), S. Takeda: Workshop
on Metallic Nanoparticles in Reactive Environment.
ᅜෆᏛ఍
᪥ᮏ㢧ᚤ㙾Ꮫ఍➨ 69 ᅇᏛ⾡ㅮ₇఍
➨ 74 ᅇᛂ⏝≀⌮Ꮫ఍⛅ᏘᏛ⾡ㅮ₇఍
኱㜰኱Ꮫ ⏘ᴗ⛉Ꮫ◊✲ᡤ ➨ 69 ᅇᏛ⾡ㅮ₇఍
᪥ᮏ㢧ᚤ㙾Ꮫ఍➨ 57 ᅇࢩ࣏ࣥࢪ࣒࢘
ᖹᡂ 25 ᖺᗘ 㝃⨨◊✲ᡤ㛫࢔ࣛ࢖࢔ࣥࢫࠕ᪂࢚ࢿࣝࢠ࣮࣭ࢹࣂ࢖ࢫ ࣉࣟࢪ࢙
ࢡࢺࠖࢢ࣮ࣝࣉ (G2) ◊✲఍
FEI ᭱᪂ TEM ᢏ⾡ࢭ࣑ࢼ࣮
࣮࣡ࢡࢩࣙࢵࣉࠕ㔠ᢸᣢゐ፹ࡢ཯ᛂάᛶࡢ㉳※ࢆ᥈ࡿࠖ
ᮾி⌮⛉኱Ꮫ⥲ྜ◊✲ᶵᵓ ࢼࣀ࣮࢝࣎ࣥ◊✲㒊㛛࣮࣡ࢡࢩࣙࢵࣉ
➨ 61 ᅇᛂ⏝≀⌮Ꮫ఍᫓ᏘᏛ⾡ㅮ₇఍
― 40 ―
5௳
1௳
1௳
1௳
1௳
1௳
1௳
1௳
1௳
ྲྀᚓᏛ఩
ಟኈ㸦ᕤᏛ㸧
᪂つ࡞ືⓗ TEM ほᐹἲࡢ㛤Ⓨ࡜඲ᅛయ஧ḟ㟁ụ࡬ࡢᛂ⏝
┦㤿 ೺ኴ㑻
ಟኈ㸦ᕤᏛ㸧
࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈ࡜Ỉࡢ┦஫స⏝ࡢ⎔ቃ TEM ࡑࡢሙほᐹ
๓⣡ ぬ
⛉Ꮫ◊✲㈝⿵ຓ㔠
ᇶ┙◊✲(A)
➉⏣ ⢭἞
ⱝᡭ◊✲(B)
ྜྷ⏣ ⚽ே
≉ู◊✲ဨዡ
ບ㈝
⚄ෆ ┤ே
ཷク◊✲
➉⏣ ⢭἞
ዡᏛᐤ㝃㔠
➉⏣ ⢭἞
➉⏣ ⢭἞
➉⏣ ⢭἞
ẼయศᏊ࡜┦஫స⏝ࡍࡿࢼࣀࢠࣕࢵࣉ㟁ᴟࡢཎᏊࢫࢣ࣮ࣝ
ືⓗゎᯒ
཰ᕪ⿵ṇ⎔ቃไᚚᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾࡟ࡼࡿⅣ⣲ࢼࣀᮦᩱᙧ
ᡂ᫬ࡢࢼࣀ⢏Ꮚゐ፹ࡢᵓ㐀Ỵᐃ
ࢼࣀᵓ㐀ࢆไᚚࡋࡓ⎔ቃί໬ゐ፹ࡢ⮬ື㌴᤼࢞ࢫί໬࠾ࡼ
ࡧ VOC ⇞↝࡬ࡢᛂ⏝
༢఩㸸༓෇
36,400
1,690
1,200
㹊㹧஧ḟ㟁ụ࣑ࢡࣟ⏺㠃ࡢ࢖࢜
ࣥᣑᩓ᫬㛫ᛂ⟅ࡢྍど໬ᢏ⾡ࡢ
㛤Ⓨ
23,140
ᰴᘧ఍♫ UBE ⛉Ꮫศᯒࢭࣥࢱ࣮ ௦⾲ྲྀ⥾ᙺ♫㛗 ὸ⏣⚽
グ
᪂᪥㕲ఫ㔠ᰴᘧ఍♫ ᢏ⾡㛤Ⓨᮏ㒊 ඛ➃ᢏ⾡◊✲ᡤ㛗
஬༑ᔒṇ᫭
᪥ᮏ࢚ࣇ࢖࣮࣭࢔࢖ᰴᘧ఍♫ ௦⾲ྲྀ⥾ᙺ♫㛗 ⸨஭༤ⱥ
2,000
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ
500
600
ࢼࣀᶵ⬟ண ◊✲ศ㔝
ཎⴭㄽᩥ
[1]First-Principles Study of X-ray Absorption Spectra of FeS2, T. Oguchi, H. Momida: J. Phys. Soc. Jpn.,
82 (2013) 065004/1-2.
[2]Atomic-Layer Alignment Tuning for Giant Perpendicular Magnetocrystalline Anisotropy of 3d
Transition-Metal Thin Films, K. Hotta, K. Nakamura, T. Akiyama, T. Ito, T. Oguchi, A. J. Freeman:
Phys. Rev. Lett., 110 (2013) 267206/1-5.
[3]Ab initio Study of Magnetic Coupling in CaCu3B4O12 (B=Ti, Ge, Zr, and Sn), M. Toyoda, K.
Yamauchi, T. Oguchi: Phys. Rev. B, 87 (2013) 224430/1-7.
[4]Highly Sensitive Spin-Crossover Transition in a Metal-Organic Molecular Crystal, K. Yamauchi, I.
Hamada, T. Oguchi: Phys. Rev. B, 88 (2013) 035110/1-4.
[5]Extremely Large Magnetoresistance in the Nonmagnetic Metal PdCoO2, H. Takatsu, J. J. Ishikawa, S.
Yonezawa, H. Yoshino, T. Shishidou, T. Oguchi, K. Murata, Y. Maeno: Phys. Rev. Lett., 111 (2013)
056601/1-4.
[6]First-Principles Calculation of X-ray Absorption Spectra for the A-site Ordered Perovskite
CaCu3Fe4O12, T. Ueda, M. Kodera, K. Yamauchi, T. Oguchi: J. Phys. Soc. Jpn., 82 (2013) 094718/1-5.
[7]Influence of Lone Pair Doping on the Multiferroic Property of Orthorhombic HoMnO3: ab initio
Prediction, S. S. Subramanian, K. Yamauchi, T. Ozaki, T. Oguchi, B. Natesan: J. Phys.: Condensed Matter,
― 41 ―
25 (2013) 385901/1-8.
[8]Electronic Structure of the Metallic Antiferromagnet PdCrO2 Measured by Angle-Resolved
Photoemission Spectroscopy, J. A. Sobota, K. Kim, H. Takatsu, M. Hashimoto, S.-K. Mo, Z. Hussain, T.
Oguchi, T. Shishidou, Y. Maeno, B. I. Min, Z.-X. Shen: Phys. Rev. B, 88 (2013) 125109/1-5.
[9]Quantum Oscillations of the Metallic Triangular-Lattice Antiferromagnet PdCrO2, J. M. Ok, Y. J. Jo, K.
Kim, T. Shishidou, E. S. Choi, H.-J. Noh, T. Oguchi, B. I. Min, J. S. Kim: Phys. Rev. Lett., 111 (2013)
176405/1-5.
[10]Fermiological Interpretation of FeTe1-xSex Thin Crystal by Quantum Conductance Oscillation, H.
Okazaki, T. Yamaguchi, T. Watanabe, K. Deguchi, S. Demura, S. J. Denholme, T. Ozaki, Y. Mizuguchi, H.
Takeya, T. Oguchi, Y. Takano: Euro. Phys. Lett., 104 (2013) 37010/1-6.
[11]Temperature Dependence of Young's Modulus of Silicon, K. Shirai: Jpn. J. Appl. Phys., 52 (2013)
088002/1-2.
[12]Electronic Ferroelectricity Induced by Charge and Orbital Orderings, K. Yamauchi, P. Barone: J.
Phys.: Condensed Matter, 26 (2014) 103201/1-17.
[13]Mechanism of Ferroelectricity in Half-Doped Manganites with Pseudocubic and Bilayer Structure, K.
Yamauchi, S. Picozzi: J. Phys. Soc. Jpn., 82 (2013) 113703/1-5.
[14]Physical Guiding Principles for High Quality Resistive Random Access Memory Stack with Al2O3
Insertion Layer, M. Y. Yang, K. Kamiya, B. Magyari-Kope, H. Momida, T. Ohno, M. Niwa, Y. Nishi, K.
Shiraishi: Jpn. J. Appl. Phys., 52 (2013) 04CD11/1-4.
[15]Hydrogen-Enhanced Vacancy Embrittlement of Grain Boundaries in Iron, H. Momida, Y. Asari, Y.
Nakamura, Y. Tateyama, T. Ohno: Phys. Rev. B, 88 (2013) 144107/1-13.
ᅜ㝿఍㆟
[1]Ab-initio Study on Sodium Ion Batteries (invited), T. Oguchi: First Joint Symposium of Bordeaux
University and Tohoku University.
[2]Novel Electronic States in Perovskite Oxides (invited), T. Oguchi: 5th IACS-APCTP International
Conference on Novel Oxide Materials and Low Dimensional Systems.
[3]First-Principles Study on Structure Stabilities of D-S and Na-S Battery Systems (oral), H. Momida, T.
Oguchi: American Physical Society: APS March Meeting.
[4]Quantum Oscillations of the Metallic Triangular-Lattice Antiferromagnet PdCrO2 (oral), J. M. Ok, Y. J.
Jo, K. Kim, T. Shishidou, E. S. Choi, H. J. Noh, T. Oguchi, B. I. Min. J. S. Kim: American Physical
Society: APS March Meeting.
[5]Noncollinear Magnetic Order in Quadruple Perovskite LaMn3V4O12 (oral), M. Toyoda, K. Yamauchi, T.
Oguchi: American Physical Society: APS March Meeting.
[6]Structural Stability and Electronic Properties of Na2C6O6 for a Rechargable Sodium-Ion Battery (oral),
T. Yamashita, A. Fujii, H. Momida, T. Oguchi: American Physical Society: APS March Meeting.
[7]Electronic Nature of Defect States of Boron Crystals (oral), K. Shirai, N. Uemura: The 17th
International Symposium on Intercalation Compounds (ISIC17).
[8]High Power Factor of SrTiO3 and A New Route for High-Performance Thermoelectric Materials (oral),
― 42 ―
K. Shirai, K. Yamanaka: The 32nd International Conference on Thermoelectrics (ICT2013).
[9]High Thermoelectric Power Factor of SrTiO3 and New Route for High-Performance Thermoelectric
Material (oral), K. Shirai, K. Yamanaka: International Workshop of Computational Nano-Materials
Design on Green Energy, JSPS Core-to-Core Program Workshop.
[10]First-Principles Study of D-Tetragonal Boron (poster), N. Uemura, K. Shirai: International Workshop
of Computational Nano-Materials Design on Green Energy, JSPS Core-to-Core Program Workshop.
[11]Electronic Structure and Formation Energy of Copper Impurity in Silicon (poster), T. Fujimura, K.
Shirai: International Workshop of Computational Nano-Materials Design on Green Energy, JSPS
Core-to-Core Program Workshop.
[12]Dynamical Properties of Vacancy in Si (poster), K. Shirai, J. Ishisada: The 27th International
Conference on Defects in Semiconductors.
[13]Dynamics of Hydrogen in Silicon (poster), K. Shirai, I. Hamada, H. Katayama-Yoshida: The 27th
International Conference on Defects in Semiconductors.
[14]Theoretical Prediction of Novel Magnetoelectric Materials (invited), K. Yamauchi: Joint Workshop of
Interactive Materials Science Cadet Program (IMSC), Osaka University, and S-1 JSPS Core-to-Core
Program (A) Advanced Research Networks.
[15]Hyperfine Field at Sn in Ferromagnetic Heusler Alloys (poster), H. Momida, T. Oguchi: Joint
Workshop of Interactive Materials Science Cadet Program (IMSC), Osaka University, and S-1 JSPS
Core-to-Core Program (A) Advanced Research Networks.
[16]Hydrogen-Enhanced Vacancy Embrittlement of Grain Boundaries in Iron: First-Principles
Calculations (oral), H. Momida, Y. Asari, Y. Nakamura, Y. Tateyama, T. Ohno: International Symposium
on Atomistic Modeling for Mechanics and Multiphysics of Materials.
[17]First-Principles Study of Resistance Switching by Oxygen Vacancies in Al2O3 ReRAM (invited), H.
Momida: Core-to-core Japan-Germany Workshop.
[18]Strain-Induced Topologically Insulating Phase of Sb2Te (poster), E. Takasaki, H. Momida, T. Oguchi:
Materials Research Society: 2013 MRS Fall Meeting.
[19]Computational Study of Discharge Reactions in the Na-Ion Battery System Na/FeS2 (poster), H.
Momida, T. Oguchi: The 14th RIES-Hokudai International Symposium (MOU).
[20]Electric Property Calculations of Disodium Rhodizonate Na2C6O6 as a cathode Material for Na-ion
Secondary Battery (poster), A. Fujii, H. Momida, T. Oguchi: The 17th Sanken International Symposium
2014 Joined with The 2nd International Symposium of Nano-Macro Materials, Device, and System
Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
ᑠཱྀ ከ⨾ኵ
The 16th Asia Workshop on First-principles Electronic Structure Calculations (ᅜ㝿⤌
⧊ጤဨ)
ⓑ஭ ග㞼
The CECAM workshop “Modeling the Physical Properties of Clustering Crystals”,
Lausanne, Switzerland, at the Ecole Polytechnique Fédérale de Lausanne
(EPFL) from 4-6 November 2013 (⤌⧊ጤဨ㛗)
ᅜෆᏛ఍
᪥ᮏ≀⌮Ꮫ఍
13 ௳
ᛂ⏝≀⌮Ꮫ఍
7௳
― 43 ―
᪥ᮏ MRS
᪥ᮏ㔠ᒓᏛ఍
ྲྀᚓᏛ఩
ಟኈ㸦⌮Ꮫ㸧
Taufik Adi
Nugraha
ಟኈ㸦⌮Ꮫ㸧
బஂ㛫 ᜤᖹ
ಟኈ㸦⌮Ꮫ㸧
㧗ᓮ ⱥ㔛Ꮚ
ಟኈ㸦⌮Ꮫ㸧
⸨஭ ுᏹ
ಟኈ㸦ᕤᏛ㸧
ฟཱྀ ᨻᏕ
༤ኈ㸦⌮Ꮫ㸧
Mohammad
Shahjahan
⛉Ꮫ◊✲㈝⿵ຓ㔠
ⱝᡭ◊✲(B)
ᒣෆ 㑥ᙪ
ཷク◊✲
ᑠཱྀ ከ⨾ኵ
2௳
1௳
The Study of Vacancy in Gadolinium-Doped Gallium Nitride
➨୍ཎ⌮ィ⟬࡛ࡢ࣮࣎ࣟࣥ࢝ࣂ࢖ࢺࡢᵓ㐀᥈⣴
➨୍ཎ⌮ィ⟬࡟ࡼࡿ Sb2Te ⣔ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢ⌮ㄽⓗ᥈⣴
ḟୡ௦஧ḟ㟁ụṇᴟᮦᩱ NaxC6O6 ࡢ㟁Ꮚ≧ែィ⟬
Pt ⣔㑄⛣㔠ᒓከᒙ⭷࡟࠾ࡅࡿ☢Ẽ␗᪉ᛶࡢ⌮ㄽ◊✲
࢝ࣝࢥࣃ࢖ࣛ࢖ࢺ༙ᑟయ࡟࠾ࡅࡿᕼⷧ☢Ẽ≧ែ࡜ࣁ࣮ࣇ࣓ࢱࣝᛶ࡟㛵ࡍࡿ➨
୍ཎ⌮ⓗ◊✲
࣐ࣥ࢞ࣥ㓟໬≀ࢆ୰ᚰ࡜ࡋࡓ࣐ࣝࢳࣇ࢙ࣟ࢖ࢵࢡ≀㉁ࡢ⌮
ㄽ◊✲
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ
ࡑࡢ௚ࡢ➇தⓗ◊✲㈨㔠
ᑠཱྀ ከ⨾ኵ ᩥ㒊⛉Ꮫ┬ඖ⣲ᡓ␎ࣉࣟ
ࢪ࢙ࢡࢺ㸺◊✲ᣐⅬᙧᡂ
ᆺ㸼
༢఩㸸༓෇
1,170
➨୍ཎ⌮ィ⟬࡟ࡼࡿ㟁Ꮚ≧ែゎ
ᯒ
ᐇ㦂࡜⌮ㄽィ⟬⛉Ꮫࡢ࢖ࣥࢱ࣮ࣉࣞ࢖࡟
ࡼࡿゐ፹࣭㟁ụࡢඖ⣲ᡓ␎◊✲
12,350
5,000
ࢯࣇࢺࢼࣀ࣐ࢸࣜ࢔ࣝ◊✲ศ㔝
ཎⴭㄽᩥ
[1]Three-Dimensional Electron-Accepting Compounds Containing Perylene Bis(dicarboximide)s as
n-Type Organic Photovoltaic Materials, Y. Ie, T. Sakurai, S. Jinnai, M. Karakawa, K. Okuda, S. Mori, Y.
Aso: Chem. Commun., 49 (2013) 8386-8388.
[2]Arenedithiocarboxyimide-Containing Extended pi-Conjugated Systems with High Electron Affinity, Y.
Ie, S. Jinnai, M. Nitani, Y. Aso: J. Mater. Chem. C, 1 (2013) 5373-5380.
[3]Low Band-Gap Donor–Acceptor Copolymers Based on Dioxocylopenta[c]thiophene Derivatives as
Acceptor Units: Synthesis, Properties, and Photovoltaic Performances, J. Huang, Y. Ie, M. Karakawa, Y.
Aso: J. Mater. Chem. A, 1 (2013) 15000-15009.
[4]Synthesis and Properties of a Benzo[1,2-b:4,5-b']dithiophene Core pi-System that Bears Alkyl,
Alkylthio and Alkoxy Groups at 3,7-Positions, S. Ota, S. Minami, K. Hirano, T. Satoh, Y. Ie, S. Seki, Y.
Aso, M. Miura: RSC Advances, 3 (2013) 12356-12365.
[5]Narrow-Optical-Gap p-Conjugated Small Molecules Based on Terminal Isoindigo and Thienoisoindigo
Acceptor Units for Photovoltaic Application, M. Karakawa, Y. Aso: RSC Advances, 3 (2013)
16259-16263.
― 44 ―
[6]Near-Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo
Acceptor Units, M. Karakawa, Y. Aso: Macromol. Chem. Phys., 214 (2013) 2388-2397.
ᅜ㝿఍㆟
[1]Tripodal Anchoring Groups for Molecular Electronics (oral), Y. Ie, T. Hirose, K, Tanaka, H. Nakamura,
M. Kiguchi, N. Takagi, M. Kawai, Y. Aso: The 15th Asian Chemical Congress Novel Functional
pi-Systems and Materials.
[2]Highly Electron-Accepting ʌ-Conjugated Compounds for Organic Field-Effect Transistor and
Photovoltaic Application (invited), Y. Aso: The Sixth East Asia Symposium on Functional Dyes and
Advanced Materials (EAS-6).
[3]Synthesis, Properties, and Electron-Accepting Characteristics of New ʌ-Conjugated System Bearing
Dithiophthalimide Units (oral), Y. Ie, S. Jinnai, M. NItani, M. Karakawa, Y. Aso: 15th International
Symposium on Novel Aromatic Compounds (ISNA-15).
[4]Development of Thiophene-Based Three Dimensional pi-Electron Systems Containing
Dicyanomethylene Groups (poster), S. Jinnai, Y. Ie, Y. Aso: 15th International Symposium on Novel
Aromatic Compounds (ISNA-15).
[5]Development of Solution-Processable n-Type Organic Semiconductors Based on Carbonyl-Bridged
Thiazole-Fused Ring (poster), C. Sato, Y. Ie, Y. Aso: 15th International Symposium on Novel Aromatic
Compounds (ISNA-15).
[6]4,9-Dihydro-s-indaceno[1,2-b:5,6-b']dithiazole-4,9-dione : A New Electronegative Unit for an n-Type
Organic Semiconducting Materials (oral), Y. Ie, M. Nitani, Y. Aso: The 11th International Symposium on
Functional ࣭-Electron System (Fp-11).
[7]Electron-Donor Function of [6,6]-Phenyl-C61-Butyric Acid Methyl Ester in Bulk Heterojunction
Solar Cells (oral), Y. Ie, M. Karakawa, H. Yoshida, A. Saeki, H. Ohkita, Y. Aso: 2013 MRS Fall Meeting.
[8]Synthesis, Properties, and Photovoltaic Performance of D–A Copolymers Based on
Dioxocyclopentene-Annelated Thiophenes as Acceptor Units (poster), J. Huang, Y. Ie, M. Karakawa, Y.
Aso: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro
Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[9]Arenedithiocarboxyimide-Containing Extended pi-Conjugated Systems: Synthesis, Properties, and
Application as n-Type Organic Semiconductor (poster), S. Jinnai, Y. Ie, Y. Aso: The 17th Sanken
International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and
System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[10]Synthesis and Properties of Solution-Processable n-Type Organic Semiconductors Based on
Carbonyl-Bridged Thiazole-Fused Ring (poster), C. Sato, Y. Ie, Y. Aso: The 17th Sanken International
Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research
Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[11]Synthesis, Properties, and Photovoltaic Performances of Novel D–A Copolymers Based on
Naphtho[2,3-c]thiophene-4,9-dione as Acceptor Units (poster), J. Huang, Y. Ie, M. Karakawa, Y. Aso:
CEMS International Symposium on Supramolecular Chemistry and Functional Materials 2013.
[12]Development of Fluorine-Containing ʌ-Conjugated Systems towards n-Type Organic
Semiconducting Materials (invited), Y. Ie: 4th International Fluorine Workshop.
[13]Synthesis, Properties, and n-Type Performances of Electronegative ʌ-Conjugated Systems (invited), Y.
― 45 ―
Ie: The first Asian conference for “MONODUKURI” Strategy by Synthetic Organic Chemistry (ACMS).
[14]PCBM Alternative Acceptor Material for Organic Photovoltaic Cell (poster), M. Karakawa, T. Nagai,
K. Adachi, Y. Ie, Y. Aso: 12th European Conference of Molecular Electronics.
[15]Synthesis and Characterization of New Wide-Range Light Absorption Oligomers for Organic
Photovoltaics (poster), M. Karakawa, Y. Aso: 12th European Conference of Molecular Electronics.
[16]New Fulleropyrrolidine Derivatives as Acceptor Materials for Organic Photovoltaic Cells , M.
Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso: 1st KANSAI Nanoscience and Nanotechnology
International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th
SANKEN Nanotechnology Symposium.
ゎㄝࠊ⥲ㄝ
ḟඖᛶࢆ௜୚ࡋࡓྵࣜࣞࣥ࢖࣑ࢻ໬ྜ≀ࡢ㟁Ꮚ≀ᛶ࡜ග㟁ኚ᥮≉ᛶ, ග໬Ꮫ, ග໬Ꮫ༠఍, 44
(2013), 73-80.
ሬᕸἲ࡟㐺⏝ྍ⬟࡞᭷ᶵ༙ᑟయᮦᩱࡢ㛤Ⓨ, ᭶หࢹ࢖ࢫࣉࣞ࢖, ࢸࢡࣀࢱ࢖࣒ࢬ♫, 19 (2013),
1-8.
ศᏊ࢚ࣞࢡࢺࣟࢽࢡࢫᮦᩱ࡜ࡋ࡚ࡢ ʌ ඹᙺᶵ⬟ศᏊ, Electrochemistry, 8 (2013), 273-276.
≉チ
[1]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-207724
[2]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-181678
[3]ࠕᅜෆ≉チฟ㢪ࠖ㹬ᆺ༙ᑟయ໬ྜ≀ࠊཬࡧ㹮ᆺ༙ᑟయ໬ྜ≀ࢆྵ᭷ࡍࡿ⤌ᡂ≀ࠋ, 2013-251554
[4]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-104472
[5]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-104475
[6]ࠕᅜෆᡂ❧≉チࠖඹᙺ⣔໬ྜ≀ࠊ୪ࡧ࡟ࡇࢀࢆ⏝࠸ࡓ᭷ᶵⷧ⭷ཬࡧ᭷ᶵⷧ⭷⣲Ꮚ, 2008-290027
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
Ᏻ⸽ ⰾ㞝
The 17th SANKEN International Symposium 2014 Joined with The 2nd International
Symposium of Nano-Macro Materials, Devices and System Research Alliance Project
(⤌⧊ጤဨ)
Ᏻ⸽ ⰾ㞝
1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai
Nanoscience and Nanotechnology International Symposium, 12th SANKEN
Nanotechnology Symposium(⤌⧊ጤဨ)
஧㇂ ┿ྖ
The 17th SANKEN International Symposium 2014 Joined with The 2nd International
Symposium of Nano-Macro Materials, Devices and System Research Alliance
Project(⤌⧊ጤဨ)
ᅜෆᏛ఍
᪥ᮏ໬Ꮫ఍
᭷ᶵȧ㟁Ꮚ⣔ࢩ࣏ࣥࢪ࣒࢘
᭷ᶵ඾ᆺඖ⣲໬Ꮫウㄽ఍
ᇶ♏᭷ᶵ໬Ꮫウㄽ఍
ྲྀᚓᏛ఩
༤ኈ㸦ᕤᏛ㸧
8௳
1௳
2௳
3௳
ࢪ࢜࢟ࢯࢩࢡࣟ࢔ࣝࢣࣥ⦰⎔ࢳ࢜ࣇ࢙ࣥࢆ࢔ࢡࢭࣉࢱ࣮ࣘࢽࢵࢺ࡜ࡋࡓ᪂つ
― 46 ―
㯤 ᘓ᫂
ࢻࢼ࣮̽࢔ࢡࢭࣉࢱ࣮ᆺࢥ࣏࣐࣮ࣜࡢ㛤Ⓨཬࡧ᭷ᶵⷧ⭷ኴ㝧㟁ụ࡬ࡢᛂ⏝࡟
㛵ࡍࡿ◊✲
ࢳ࢔ࢰ࣮ࣝ⦰ྜከ⎔⣔ࢆྵࡴ㟁Ꮚཷᐜᛶȧඹᙺ⣔໬ྜ≀ࡢྜᡂࠊ≀ᛶࠊ༙ᑟ
య≉ᛶ
୧ᮎ➃࡟㟁ᴟ࡜᥋ྜྍ⬟࡞࢔࣮ࣥ࢝㒊఩ࢆ᭷ࡍࡿ⿕そᆺ࢜ࣜࢦࢳ࢜ࣇ࢙ࣥࡢ
㛤Ⓨ
ࣇ࢚࣮ࣝ࢜ࣟࢸࣝᇶࢆ᭷ࡍࡿȧඹᙺ࣏࣐࣮ࣜࡢྜᡂ࡜≀ᛶࠊ࠾ࡼࡧࠊග㟁ኚ
᥮≉ᛶ
ಟኈ㸦ᕤᏛ㸧
బ⸨ ༓ᑜ
ಟኈ㸦ᕤᏛ㸧
฼᰿ ⣪⧊
ಟኈ㸦ᕤᏛ㸧
ứ ࢖
⛉Ꮫ◊✲㈝⿵ຓ㔠
⢭⦓タィࢼࣀඹᙺศᏊ࣡࢖ࣖࡢ๰〇࡟ᇶ࡙ࡃศᏊࢹࣂ࢖ࢫ
ᇶ┙◊✲(A)
Ᏻ⸽ ⰾ㞝
㛤Ⓨ
ᣮᡓⓗⴌⱆ◊✲ ༢ศᏊ࡛ࡢග㟁ኚ᥮ほ ࡟ྥࡅࡓᶵ⬟ᛶ ʌ 㟁Ꮚ⣔ศᏊࡢ๰
ᐙ ⿱㝯
ฟ
ᇶ┙◊✲(B)
༢ศᏊ⣲Ꮚࡢᶵᵓゎ᫂ࢆඛᑟࡍࡿᶵ⬟ᛶ ʌ 㟁Ꮚ⣔ࡢ๰〇
ᐙ ⿱㝯
᪂Ꮫ⾡㡿ᇦ◊✲ ศᏊ࢔࣮࢟ࢸࢡࢺࢽࢡࢫ࡟ྥࡅࡓᶵ⬟ᛶศᏊྜᡂ࡜ᵓ㐀≀
㸦◊✲㡿ᇦᥦ᱌ ᛶ┦㛵ゎ᫂
ᆺ㸧
ᐙ ⿱㝯
ཷク◊✲
ᐙ ⿱㝯
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ ᭷ᶵⷧ⭷⣔ኴ㝧㟁ụ࡟ᛂ⏝ྍ⬟
࡞ n ᆺ༙ᑟయᮦᩱࡢ㛤Ⓨ
ᐙ ⿱㝯
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ ᭷ᶵ㟁ゎຠᯝࢺࣛࣥࢪࢫࢱ⣲Ꮚ
ࡢ≀ᛶホ౯
Ᏻ⸽ ⰾ㞝
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ ᭷ᶵⷧ⭷ኴ㝧㟁ụ⏝࢔ࢡࢭࣉࢱ
࣮ᮦᩱࡢᐇ⏝໬
ዡᏛᐤ㝃㔠
ᐙ ⿱㝯
TANAKA ࣮࣍ࣝࢹ࢕ࣥࢢࢫᰴᘧ఍♫
༢఩㸸༓෇
10,790
1,430
4,940
12,610
8,034
8,034
4,810
200
ࣂ࢖࢜ࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ศ㔝
ཎⴭㄽᩥ
[1]Tracking Single-Particle Dynamics via Combined Optical and Electrical Sensing, N. Yukimoto, M.
Tsutsui, Y. He, H. Shintaku, S. Tanaka, S. Kawano, T. Kawai, M. Taniguchi: Scientific Reports, 3 (2013)
1855-1861.
[2]Trapping and Identifying Single-Nanoparticles Using a Low-Aspect-Ratio Nanopore, M. Tsutsui, Y.
Maeda, Y. He, S. Hongo, S. Ryuzaki, S. Kawano, T. Kawai, M. Taniguchi: Applied Physics Letters, 103
(2013) 013108-013112.
[3]Thermoelectricity in Atom-Sized Junctions at Room Temperatures, M. Tsutsui, T. Morikawa, A. Arima,
M. Taniguchi: Science Reports, 3 (2013) 3326-3332.
[4]Nonequilibrium Ionic Response of Biased Mechanically Controllable Break Junction (MCBJ)
Electrodes, K. Doi, M. Tsutsui, T. Ohshiro, C.-C. Chien, M. Zwolak, M. Taniguchi, T. Kawai, S. Kawano,
M. Di Ventra: The Journal of Physical Chemistry C, 118 (2014) 3758-3765.
― 47 ―
[5]Fabrications of Insulator-Protected Nanometer-Sized Electrode Gaps, A. Arima, M. Tsutsui, T.
Morikawa, K. Yokota, T. Kawai, M. Taniguchi: J. Appl. Phys., 115 (2014) 114310-114314.
[6]High Speed DNA Denaturation Using Microheating Devices, M. Furuhashi, Y. Okamoto, D. Onoshima,
T. Ohshiro, S. Ryuzaki, K. Yokota, M. Tsutsui, M. Taniguchi, K. Nakatani, Y. Baba, T. Kawai: Applied
Physics Letters, 103 (2013) 023112-023115.
[7]Polaron Coupling in Graphene Field Effect Transistors on Patterned Self-Assembled Monolayer, K.
Yokota, K. Takai, Y. Kudo, Y. Satoa, T. Enoki: Phys. Chem. Chem. Phys., 16 (2013) 4313-4319.
[8]Fabrications of Insulator-Protected Nanometer-Sized Electrode Gaps, A. Arima, M. Tsutsui, T.
Morikawa, K. Yokota, M. Taniguchi: Journal of Applied Physics, 115 (2014) 114310-114314.
ᅜ㝿఍㆟
[1]Emerging NGS Technology: Single Molecule Sequencing for miRNA (invited), M. Taniguchi: Next
Generation Sequencers & Bioinformatics Summit Europe.
[2]Partial Sequencing of a Single DNA Molecule with a Scanning Tunnelling Microscope (oral), H.
Tanaka: ࢔ࣛ࢖࢔ࣥࢫ G㸱ศ⛉఍, ྎ‴࢔࢝ࢹ࣑࢔ࢩࢽ࢝.
[3]Single Molecule Electrical Sensing Technologies (invited), M. Taniguchi: The 17th Sanken
International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and
System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014.
[4]ࣂ࢖࢜ࢼࣀࢸࢡࣀࣟࢪ࣮ࡢ㛤Ⓨ (oral), M. Taniguchi: nano tech 2014 ➨ 13 ᅇᅜ㝿ࢼࣀࢸࢡࣀࣟ
ࢪ࣮⥲ྜᒎ࣭ᢏ⾡఍㆟.
[5]Next Generation DNA Sequencing Technologies (oral), M. Taniguchi: The Third International
Symposium of Medical-Dental-Pharmaceutical Education and Research in Okayama.
[6]4th Generation DNA Sequencing Technologies (oral), M. Taniguchi: The Japan Society of Applied
Physics and the Materials Research Society.
ゎㄝࠊ⥲ㄝ
Electrode-Embedded Nanopores for Label-Free Single-Molecule Sequencing by Electric Currents, K.
Yokota, M. Tsutsui, M. Taniguchi, RSC Advances, Royal Society of Chemistry, 4 (2014), 15886-15899.
≉チ
[1]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⿦⨨ࠊ᪉ἲࠊཬࡧࣉࣟࢢ࣒ࣛ, 2014-011430
[2]ࠕᅜෆ≉チฟ㢪ࠖヨᩱᑟධ᪉ἲ, 2013-099363
[3]ࠕᅜෆ≉チฟ㢪ࠖ⇕㟁⣲Ꮚࠊཬࡧ⇕㟁⣲Ꮚࡢ⇕㟁≉ᛶ ᐃ᪉ἲ, 2013-160841
[4]ࠕᅜෆ≉チฟ㢪ࠖ༢ศᏊ㆑ู᪉ἲࠊ⿦⨨ࠊཬࡧࣉࣟࢢ࣒ࣛ, 2013-197443
[5]ࠕᅜෆ≉チฟ㢪ࠖ≀㉁ࡢ㆑ู᪉ἲ, 2013-047373
[6]ࠕᅜෆ≉チฟ㢪ࠖศගἲ࠾ࡼࡧศග⿦⨨, 2013-028433
[7]ࠕᅜෆ≉チฟ㢪ࠖ໬Ꮫ≀㉁᳨ฟ᪉ἲ, 2014-015110
[8]ࠕᅜෆ≉チฟ㢪ࠖ໬Ꮫ≀㉁᳨ฟ᪉ἲ, 2013-141711
― 48 ―
[9]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⿦⨨ࠊ᪉ἲࠊཬࡧࣉࣟࢢ࣒ࣛ, 2013-193498
[10]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊ⇕ኚᛶ⿦⨨ཬࡧࡑࡢ〇㐀᪉ἲ, 2013-175637
[11]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⿦⨨⏝㟁ᴟࠊ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⿦⨨ࠊ᪉ἲࠊ
ཬࡧࣉࣟࢢ࣒ࣛ, 2014-031084
[12]ࠕᅜ㝿≉チฟ㢪ࠖ≀㉁ࡢ⛣ື㏿ᗘࡢไᚚ᪉ἲ࠾ࡼࡧไᚚ⿦⨨ࠊ୪ࡧ࡟ࠊࡇࢀࡽࡢ฼⏝,
PCT/JP2013/051913
[13]ࠕᅜ㝿≉チฟ㢪࣏ࠖࣜࢾࢡࣞ࢜ࢳࢻࡢሷᇶ㓄ิࢆỴᐃࡍࡿ᪉ἲࠊ࠾ࡼࡧࠊ࣏ࣜࢾࢡࣞ࢜ࢳࢻ
ࡢሷᇶ㓄ิࢆỴᐃࡍࡿ⿦⨨, PCT/JP2013/059645
[14]ࠕᅜ㝿≉チฟ㢪୍ࠖ⢏Ꮚゎᯒ⿦⨨࠾ࡼࡧゎᯒ᪉ἲ, PCT/JP2013/056690
[15]ࠕᅜ㝿≉チฟ㢪ࠖヨᩱࡢศᯒ᪉ἲ, PCT/JP2013/071059
[16]ࠕᅜ㝿≉チฟ㢪ࠖ≀㉁ࡢ⛣ື㏿ᗘࡢไᚚ᪉ἲ࠾ࡼࡧไᚚ⿦⨨, 13/975610
[17]ࠕᅜ㝿≉チฟ㢪࣏ࠖࣜࢾࢡࣞ࢜ࢳࢻࡢሷᇶ㓄ิࢆỴᐃࡍࡿ᪉ἲࠊ࠾ࡼࡧࠊ࣏ࣜࢾࢡࣞ࢜ࢳࢻ
ࡢሷᇶ㓄ิࢆỴᐃࡍࡿ⿦⨨, 2013-541893
[18]ࠕᅜෆᡂ❧≉チࠖ᭷ᶵ㟁⏺ຠᯝࢺࣛࣥࢪࢫࢱ࣮ཬࡧࡑࡢ〇㐀᪉ἲ, 2008-223369
[19]ࠕᅜ㝿ᡂ❧≉チࠖ୧ᴟᛶ᭷ᶵ㟁⏺ຠᯝⷧᒙࢺࣛࣥࢪࢫࢱ࣮ཬࡧࡑࡢ〇㐀᪉ἲ, 95110388
[20]ࠕᅜ㝿ᡂ❧≉チࠖOrganic Field Effect Transistor and its Production Method, 9252087.3000000007
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
㇂ཱྀṇ㍤
Scientific Reports (⦅㞟ဨ)
ᅜෆᏛ఍
㟁ẼᏛ఍
ᛂ⏝≀⌮Ꮫ఍Ꮫ⾡ㅮ₇఍
ศᏊ⛉Ꮫウㄽ఍
᪥ᮏ≀⌮Ꮫ఍኱఍
᪥ᮏ໬Ꮫ఍ᖺ఍
⛉Ꮫ◊✲㈝⿵ຓ㔠
ⱝᡭ◊✲(A)
㇂ཱྀ ṇ㍤
ᣮᡓⓗⴌⱆ◊
✲
⟄஭ ┿ᴋ
ⱝᡭ◊✲(A)
⟄஭ ┿ᴋ
ᣮᡓⓗⴌⱆ◊
✲
⏣୰ ⿱⾜
ᇶ┙◊✲(B)
⏣୰ ⿱⾜
◊✲άືࢫࢱ
࣮ࢺᨭ᥼
ᶓ⏣ ୍㐨
ࢤ࣮ࢸ࢕ࣥࢢࢼࣀ࣏࢔࡟ࡼࡿ༢ศᏊὶືไᚚᢏ⾡ࡢ㛤Ⓨ
1௳
11 ௳
2௳
2௳
3௳
༢఩㸸༓෇
6,240
ࢼࣀ࣏࢔ࢺࣛࢵࣉἲࢆ⏝࠸ࡓ༢୍࢘࢖ࣝࢫ⢏Ꮚ㆑ูἲࡢ๰ᡂ
4,030
Ὃື㏿ᗘไᚚᶵ⬟ࢆ᭷ࡍࡿ༢୍ศᏊ㆑ูࢹࣂ࢖ࢫࡢ๰〇
6,630
㹑㹎㹋ࢆ⏝࠸ࡓࢢࣛࣇ࢙ࣥࡢࢼࣀ࣏࢔ຍᕤ
780
ࢢࣛࣇ࢙ࣥࢆ⏝࠸ࡓ㸯ศᏊࢩ࣮ࢣࣥࢩࣥࢢ
5,590
ࢢࣛࣇ࢙ࣥࢼࣀ࣏࢔ࢹࣂ࢖ࢫࡢ㛤Ⓨ
1,040
― 49 ―
ཷク◊✲
⟄஭ ┿ᴋ
⥲ົ┬
ዡᏛᐤ㝃㔠
⟄஭ ┿ᴋ
බ┈㈈ᅋἲே㇂ᕝ⇕ᢏ⾡᣺⯆ᇶ㔠 ⌮஦㛗 ㇂ᕝᐶ
ࡑࡢ௚ࡢ➇தⓗ◊✲㈨㔠
㇂ཱྀ ṇ㍤
ᩥ㒊⛉Ꮫ┬
ᅜ❧኱Ꮫἲேி㒔኱Ꮫ
㇂ཱྀ ṇ㍤
7,652
᭷ᶵศᏊ⇕㟁Ⓨ㟁ࢩ࣮ࢺࣔࢪࣗ
࣮ࣝࡢ◊✲㛤Ⓨ
ᚤ⣽ຍᕤࣉࣛࢵࢺࣇ࢛࣮࣒ᐇ᪋ᶵ㛵
ᚤ⣽ຍᕤࣉࣛࢵࢺࣇ࢛࣮࣒ᐇ᪋ᶵ㛵
1,000
285,285
38,000
⎔ቃ࣭࢚ࢿࣝࢠ࣮ࢼࣀᛂ⏝ศ㔝
ཎⴭㄽᩥ
[1]Tunability of the 㹩-Space Location of the Dirac Cones in the Topological Crystalline Insulator
Pb1-xSnxTe, Y. Tanaka, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Z. Ren, M. Novak, K. Segawa, Y.
Ando: Phys. Rev. B, 87 (15) (2013) 155105/1-5.
[2]Fermiology of the Strongly Spin-Orbit Coupled Superconductor Sn1-xInxTe: Implications for
Topological Superconductivity, T. Sato, Y. Tanaka, K. Nakayama, S. Souma, T. Takahashi, S. Sasaki, Z.
Ren, A. A. Taskin, K. Segawa, Y. Ando: Phys. Rev. Lett., 110 (20) (2013) 206804/1-5.
[3]Anomalous Dressing of Dirac Fermions in the Topological Surface State of Bi2Se3, Bi2Te3, and
Cu-Doped Bi2Se3, T. Kondo, Y. Nakashima, Y. Ota, Y. Ishida, W. Malaeb, K. Okazaki, S. Shin, M. Kriener,
S. Sasaki, K. Segawa, Y. Ando: Phys. Rev. Lett., 110 (21) (2013) 217601/1-5.
[4]Experimental Studies of the Topological Superconductor CuxBi2Se3, Y. Ando, K. Segawa, S. Sasaki, M.
Kriener: J. Phys.: Conf. Ser., 449 (2013) 012033/1-5.
[5]Topological Insulator Materials, Y. Ando: J. Phys. Soc. Jpn (Invited review paper), 82 (10) (2013)
102001/1-32.
[6]Unusual Nature of Fully Gapped Superconductivity in In-Doped SnTe, M. Novak, S. Sasaki, M.
Kriener, K. Segawa, Y. Ando: Phys. Rev. B (Rapid Communications), 88 (14) (2013) 140502(R)/1-5.
[7]Two Types of Dirac-Cone Surface States on the (111) Surface of the Topological Crystalline Insulator
SnTe, Y. Tanaka, T. Shoman, K. Nakayama, S Souma, T. Sato, T. Takahashi, M. Novak, K. Segawa, Y.
Ando: Phys. Rev. B, 88 (23) (2013) 235126/1-5.
[8]Relationship between Fermi Surface Warping and Out-of Plane Spin Polarization in Topological
Insulators: A View from Spin- and Angle-Resolved Photoemission, M. Nomura, S. Souma, A. Takayama,
T. Sato, T. Takahashi, K. Eto, K. Segawa, Y. Ando: Phys. Rev. B, 89 (4) (2014) 045134/1-6.
[9]Topological Surface Transport in Epitaxial SnTe Thin Films Grown on Bi2Te3, A. A. Taskin, F. Yang, S.
Sasaki, K. Segawa, Y. Ando: Phys. Rev. B (Rapid Communications), 89 (12) (2014) 121302(R)/1-5.
ᅜ㝿఍㆟
[1]Searching for Possible Topological Superconductors with Time-Reversal Invariance (invited), Y. Ando:
Gordon Research Conference on Superconductivity.
[2]Possible Topological Superconductivity in Doped Topological Insulators (invited), Y. Ando: Majoranas
in Solid State Workshop.
[3]Experimental Studies of Topological Insulators and Superconductors (invited), Y. Ando: 2013 Swiss
― 50 ―
Workshop on Material with Novel Electronic Properties.
[4]Possible Bulk Topological Superconductors with Time-Reversal invariance (invited), Y. Ando:
Conference on Majorana Physics in Condensed Matter, Ettore Majorana Foundation and Center for
Scientific Culture.
[5]Experimental Studies of Topological Insulators and Superconductors (invited), Y. Ando: International
Workshop on Superconductivity Research and Advanced by New Materials and Spectroscopies.
[6]Experimental Efforts to Realize Time-Reversal Invariant Topological Superconductors (invited), S.
Sasaki, A. A. Taskin, K. Segawa, Y. Ando: International Symposium on Quantum Fluids and Solids
(QFS2013).
[7]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Symposium on
Frontiers of Solid State Physics.
[8]Ionic-Liquid Gating Experiment on Topological Insulators (poster), K. Segawa, Z. Ren, S. Sasaki, T.
Tsuda, S. Kuwabata, Y. Ando: International Workshop for Young Researchers on Topological Quantum
Phenomena in Condensed Matter with Broken Symmetries 2013.
[9]Conductance Spectroscopy on Superconducting Topological Insulator Families (invited), S. Sasaki, A.
A. Taskin, K. Segawa, Y. Ando: International Workshop for Young Researchers on Topological Quantum
Phenomena in Condensed Matter with Broken Symmetries 2013.
[10]The Gating of Topological Insulator Thin Films and Exfoliated Crystals (poster), F. Yang, A. A.
Taskin, M. Kishi, K. Eto, K. Segawa, Y. Ando: International Workshop for Young Researchers on
Topological Quantum Phenomena in Condensed Matter with Broken Symmetries 2013.
[11]Phase Diagram of Sn1-xInxTe -a Topological Superconductor Candidate (poster), M. Novak, S. Sasaki,
M. Kriener, K. Segawa, Y. Ando: International Workshop for Young Researchers on Topological Quantum
Phenomena in Condensed Matter with Broken Symmetries 2013.
[12]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Colloquium,
Max-Planck Institute for Solid State Research.
[13]Experimental Studies of Topological Insulators and Superconductors (invited), Y. Ando:
FIRST-QS2C Workshop on Emergent Phenomena of Correlated Materials.
[14]Transport Studies of Topological Insulators (invited), Y. Ando: International Symposium on
Nanoscale Transport and Technology (ISNTT2013).
[15]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Colloquium,
Department of Physics, University of California Santa Barbara.
[16]Spin Pumping into the Surface State of Topological Insulators (invited), Y. Ando: Workshop on
Topological Matter, Superconductivity and Majorana, Institute for Advanced Study, Hong Kong
University of Science and Technology (HKUST).
[17]Transport Studies of Topological Insulators (plenary), Y. Ando: Trends in Nano Technology (TNT
Japan 2014).
[18]Materials Efforts for Topological Insulators and Superconductors (invited), Y. Ando: FIRST
International Symposium on Topological Quantum Technology.
― 51 ―
[19]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Quantum Matter
and Materials Colloquium.
[20]New Topological Materials: Topological Crystalline Insulators and Topological Superconductors
(invited), Y. Ando: 18th International Winterschool on New Developments in Solid State Physics.
[21]Superconducting Topological Insulators (invited), Y. Ando: Theo Murphy International Scientific
Meeting, Emergence of new exotic states at interfaces with superconductors.
ゎㄝࠊ⥲ㄝ
≀ᛶ≀⌮Ꮫ࡜᪂つ≀㉁ʊ㉸ఏᑟయ࡜ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࢆ౛࡜ࡋ࡚ʊ, Ᏻ⸨ 㝧୍, ᩘ⌮⛉Ꮫ,
ᰴᘧ఍♫ࢧ࢖࢚ࣥࢫ♫, [605] (2013), 26-31.
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
Ᏻ⸨ 㝧୍
Europhysics Letters (EPL) (ඹྠ⦅㞟⪅)
Ᏻ⸨ 㝧୍
Advanced Materials Interfaces (ᅜ㝿࢔ࢻࣂ࢖ࢨ࣮ࣜጤဨ)
Ᏻ⸨ 㝧୍
International Conference on Topological Quantum Phenomena (TQP2014) (ࣉࣟࢢࣛ
࣒ጤဨ㛗)
Ᏻ⸨ 㝧୍
Materials and Mechanisms of Superconductivity Conference (M2S 2015) (ᅜ㝿࢔ࢻ
ࣂ࢖ࢨ࣮ࣜጤဨ)
Ᏻ⸨ 㝧୍
7th International Conference "Science and Engineering of Novel Superconductors" of
the Forum on New Materials (ᅜ㝿࢔ࢻࣂ࢖ࢨ࣮ࣜጤဨ)
ᅜෆᏛ఍
᪥ᮏ≀⌮Ꮫ఍ 2013 ᖺ⛅Ꮨ኱఍
11 ௳
᪂Ꮫ⾡㡿ᇦ࣭ᑐ⛠ᛶࡢ◚ࢀࡓจ⦰⣔࡟࠾ࡅࡿࢺ࣏ࣟࢪ࢝ࣝ㔞Ꮚ⌧㇟ ➨ 4 ᅇ
7௳
㡿ᇦ◊✲఍
7௳
᪥ᮏ≀⌮Ꮫ఍➨ 69 ᅇᖺḟ኱఍
⛉Ꮫ◊✲㈝⿵ຓ㔠
༢఩㸸༓෇
11,050
᭱ඛ➃࣭ḟୡ௦ ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య࡟ࡼࡿ㠉᪂ⓗࢹࣂ࢖ࢫࡢ๰ฟ
◊✲㛤Ⓨᨭ᥼ࣉ
ࣟࢢ࣒ࣛ
Ᏻ⸨ 㝧୍
ᇶ┙◊✲(S)
ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య㺃㉸ఏᑟయ࡟࠾ࡅࡿ᪂ወ࡞㔞Ꮚ⌧㇟ࡢ
136,760
Ᏻ⸨ 㝧୍
᥈ồ
ࢼࣀ▱⬟ࢩࢫࢸ࣒ศ㔝
ཎⴭㄽᩥ
[1]Anomaly Detection in Reconstructed Quantumn StatesUsing a Machine Learning Technique, S. Hara,
T. Ono, R. Okamoto, T. Washio, S. Takeuchi: Phys. Rev. A, 89 (2014) 022104.
[2]LiNearN: A New Approach to Nearest Neighbour Density Estimator, J. R. Wells, K. M. Ting, T.
Washio: Pattern Recognition, (2014) in press.
ᅜ㝿఍㆟
[1]A Novel Structural AR Modeling Approach for a Continuous Time Linear Markov System, C. K.
Kengne, L. C. Fopa, A. Termier, N. Ibrahim, M.-C. Rousset, T. Washio, M. Santana: Proc. of The IEEE
International Conference on Data Mining series (ICDM) Workshop 2013, (2013) 104-113.
[2]Efficiently Rewriting Large Multimedia Application Execution Traces with few Event Sequences, T.
Washio: Proc. of the 19th ACM SIGKDD Iternational Conference on Knowledge Discovery and Data
Mining, (2013) 1348-1356.
[3]Structural Analysis of IBR-2 Based on Continuous Time Canonicality (oral), M. Demeshko, T. Washio,
― 52 ―
Y. Pepyolyshev: ANS National Meeting; 2013 ANS Winter Meeting Technical Sessions.
[4]Issues for Modeling from Big Data (invited), T. Washio: Workshop on Computation: Theory and
Practice.
[5]Rare Flood Scenario Analysis Using Observed Rain Fall Data (oral), T. Washio, Y. Iba: JSST 2013:
International Conference on Simulation Technology.
ゎㄝࠊ⥲ㄝ
ࣅࢵࢢࢹ࣮ࢱ࠿ࡽࡢࣔࢹࣜࣥࢢ, 㮖ᑿ 㝯, ࢩࢫࢸ࣒ไᚚ᝟ሗᏛ఍ㄅ ࢩࢫࢸ࣒㸭ไᚚ㸭᝟ሗ,
ࢩࢫࢸ࣒ไᚚ᝟ሗᏛ఍, 58[1] (2014), 3-8.
ⴭ᭩
[1]ࣅࢵࢢࢹ࣮ࢱ࠿ࡽࡢࣔࢹࣜࣥࢢᡭἲ “ࣅࢵࢢࢹ࣮ࢱ࣭࣐ࢿ࣮ࢪ࣓ࣥࢺ”, 㮖ᑿ 㝯, ࢚ࢾ࣭ࢸ
࢕࣭࢚ࢫ♫, 2[4] (57-67) 2014.
ᅜ㝿఍㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ
㮖ᑿ 㝯
The 21st ACM International Conference on Information and Knowledge Management
(CIKM 2012) (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
ICDM 2012 IEEE International Conference on Data Mining (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
ECML/PKDD'13: The European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ࢤࢫࢺ⦅㞟ጤဨ)
㮖ᑿ 㝯
SDM2013 : SIAM International Conference on Data Mining (୺ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
ACM SIGKDD'13: The 19th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
The 22nd International Conference on Information and Knowledge Management
(CIKM 2013) (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
ICDM 2013 IEEE International Conference on Data Mining (࣮࣡ࢡࢩࣙࢵࣉࣉࣟ
ࢢ࣒ࣛඹྠጤဨ㛗)
㮖ᑿ 㝯
ECML/PKDD'13: The European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
NIPS2013: Neural Information Processing Systems 2013 (ᑂᰝဨ)
㮖ᑿ 㝯
SDM2014 : SIAM International Conference on Data Mining (୺ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
The 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD2014) (ᗈሗጤဨ㛗)
㮖ᑿ 㝯
The 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD2014) (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
Society for Industrial and Applied Mathematics (ࣉࣟࢢ࣒ࣛ⦅㞟ጤဨ)
㮖ᑿ 㝯
DS-2014: the Seventeenth International Conference on Discovery Science (ࣉࣟࢢࣛ
࣒ጤဨ)
㮖ᑿ 㝯
ேᕤ▱⬟Ꮫ఍ᅜ㝿ࢩ࣏ࣥࢪ࣒࢘(JSAI-isAI 2014) (࢔ࢻࣂ࢖ࢨ࣮ࣜጤဨ఍ጤဨ)
㮖ᑿ 㝯
ACM SIGKDD'14: The 20th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
ICDM 2014: IEEE International Conference on Data Mining (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
ECML/PKDD 2014: The European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases 2014 (ࣉࣟࢢ࣒ࣛጤဨ)
㮖ᑿ 㝯
The Second IEEE ICDM (IEEE International Conference on Data Mining) Workshop
on Causal Discovery (CD 2014) (⤌⧊ጤဨ)
ᅜෆᏛ఍
➨ 27 ᅇேᕤ▱⬟Ꮫ఍඲ᅜ኱఍
3௳
㟁ẼᏛ఍඲ᅜ኱఍
1௳
1௳
᪥ᮏ࣮࢜࣌ࣞࢩ࣭ࣙࣥࣜࢧ࣮ࢳᏛ఍
1௳
➨ 16 ᅇ᝟ሗㄽⓗᏛ⩦⌮ㄽ࣮࣡ࢡࢩࣙࢵࣉ
1௳
Incomplete Data Analysis and Causal Inference
― 53 ―
ྲྀᚓᏛ఩
Ꮫኈ㸦ᕤᏛ㸧
ᵓ㐀ṇ๎໬Ꮫ⩦ࢆ⏝࠸ࡓΰ㞧ࢩ࣮ࣥࡢ␗ᖖ᳨▱
ᤲ㒊 ೺
Ꮫኈ㸦ᕤᏛ㸧
㠀ᐃᖖ᫬⣔ิࢹ࣮ࢱ࡟࠾ࡅࡿ㠀࢞࢘ࢫᛶࢆ⏝࠸ࡓᅉᯝᵓ㐀᥈⣴
኱ᵳ ⣫ᖹ
Ꮫኈ㸦ᕤᏛ㸧
Componentwise ࣮࢝ࢿࣝᏛ⩦ࢆ⏝࠸ࡓ࣏࣮ࢺࣇ࢛ࣜ࢜㑅ᢥ
ᒸ⏣ ⚈࿃
ಟኈ㸦ᕤᏛ㸧
ࢢ࣮ࣝࣉṇ๎໬୺ᡂศศᯒࢆ⏝࠸ࡓࣉࣟࢭࢫ␗ᖖ᳨▱
ᱵᮧ ୍⣖
ಟኈ㸦ᕤᏛ㸧
ຎࣔࢪࣗࣛᛶࢆ⏝࠸ࡓࢢ࣮ࣝࣉṇ๎໬୺ᡂศศᯒ
ᮡᮏ ࿴ṇ
⛉Ꮫ◊✲㈝⿵ຓ㔠
ᇶ┙◊✲(A)
㮖ᑿ 㝯
ᣮᡓⓗⴌⱆ◊
✲
㮖ᑿ 㝯
ⱝᡭ◊✲(B)
ΎỈ ᫀᖹ
ᣮᡓⓗⴌⱆ◊
✲
Ἑཎ ྜྷఙ
ⱝᡭ◊✲(B)
වᮧ ཌ⠊
ཷク◊✲
㮖ᑿ 㝯
㮖ᑿ 㝯
Ἑཎ ྜྷఙ
㉸㧗ḟඖࢹ࣮ࢱ✵㛫࡟࠾ࡅࡿ⤫ィⓗ᥎ᐃ࣭ࢩ࣑࣮ࣗࣞࢩࣙ
ࣥཎ⌮ࡢ㛤Ⓨ࡜ᛂ⏝ᒎ㛤
ᕼᑡ࣭≉Ṧ᮲௳࡟࠾ࡅࡿ஦㇟࣭ࢩࢼࣜ࢜⏕㉳ࡢ☜⋡ⓗࢩ࣑
࣮ࣗࣞࢩࣙࣥࣔࢹࣝࡢᏛ⩦
༢఩㸸༓෇
10,140
1,560
」ᩘࢹ࣮ࢱࢭࢵࢺ࠿ࡽࡢ㧗ḟඖᅉᯝࢿࢵࢺ࣮࣡ࢡ᥎ᐃἲࡢ
㛤Ⓨ࡜⏕࿨⛉Ꮫ࡬ࡢᛂ⏝
㞳ᩓฝᛶ࡟ᇶ࡙ࡃᩚᩘࣃ࣓࣮ࣛࢱṇ๎໬Ꮫ⩦࡟ࡼࡿࣁ࣮ࢻ
࢙࢘࢔࣭ࣇࣞࣥࢻࣜ࡞ᶵᲔᏛ⩦
650
ᐦࣃࢵࢳୖࡢ☜⋡ࣔࢹࣝ࡟ࡼࡿᒁᡤᵓ㐀ࢆ࡜ࡽ࠼ࡓࣟࣂࢫ
ࢺ࡞ከḟඖಙྕฎ⌮
650
㸦⊂)ᚠ⎔ჾ⑓◊✲ࢭࣥ
ࢱ࣮
500
ᰴᘧ఍♫ᐩኈ㏻◊✲ᡤ
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ
៏ᛶᚰ୙඲ࡢணᚋࡢᩘᘧ໬࡜ࡑ
ࡢጇᙜᛶ࡟㛵ࡍࡿከ᪋タ⮫ᗋ◊
✲
ศᯒᇶ┙ᢏ⾡ࡢ◊✲
⤌ྜࡏㄽⓗィ⟬࡟ᇶ࡙ࡃ㉸㧗ḟ
ඖࢹ࣮ࢱ࠿ࡽࡢ▱㆑Ⓨぢ
910
2,000
10,166
ࡑࡢ௚ࡢ➇தⓗ◊✲㈨㔠
Ἑཎ ྜྷఙ
஧ᅜ㛫஺ὶ஦ᴗ ඹྠ◊✲
㸦ࢩ࣏࣮ࣥ࢞ࣝ㸧
(H24-H26)
஺㏻┘ど࣓࢝ࣛࢹ࣮ࢱ࠿ࡽࡢ␗ᖖ࢖࣋ࣥ
ࢺ᳨▱㸭ண ࢩࢫࢸ࣒
2,450
ࢼࣀ་⒪ᛂ⏝ࢹࣂ࢖ࢫศ㔝
ཎⴭㄽᩥ
[1]Facile Electrochemical Biosensor Based on a New Bifunctional Probe for Label-Free Detection of
CGG Trinucleotide Repeat, H. He, J. P. Xia, X. Q. Peng, G. Chang, X. H. Zhang, Y. F. Wang, K.
Nakatani, Z. W. Lou, S. F. Wang: Biosensors and Bioelectronics, 49 (11) 282-289.
[2]High Speed DNA Denaturation Using Microheating Devices, M. Furuhashi, Y. Okamoto, D.
Onoshima,T. Ohshiro, S. Ryuzaki, K. Yokota, M. Tsutsui, M. Taniguchi, K. Nakatani, T. Kawai: Appl.
― 54 ―
Phys. Lett., 103 (11) 023112.
[3]Detection of Hepatitis C Virus by Single-Step Hairpin Primer RT-PCR, F. Takei, H. Tani, Y. Matsuura,
K. Nakatani: Bioorg. Med. Chem. Lett., 24 (1) 394-396.
ᅜ㝿఍㆟
[1]Coumarin Fluorochrome Binds to Rev Responsible Element RNA with Extremely Large Absorption
Shift , : RNA 2012, the 18th Annual Meeting of the RNA Society.
[2]Synthesis and Application of New Modified DNA Having Cytosine-bulge Binding Fluorescence
Molecule , : Technologies for Medical Diagonosis and Therapy (G3 Meeting).
[3]New PCR Monitoring System Using DNA Primer Having Cytosine-Bulge and Covalent Binding
Fluorescence Molecule , : The 17th Sanken International Symposium, The 2nd International Symposium of
Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January
21-22, 2014.
[4]Regulation of RNA Secondary Structure and Function (invited), : Imaging and Sensing Biomolecular
Function and Assembly.
[5]Toward Regulation of RNA Structure and Function by Small Molecules (invited), : A3RONA 2013.
[6]Small Molecule Interaction to RNA (invited), : The 16th Japan-Korea Seminor on Organic Chemistry.
[7]Small Organic Molecules Regulating RNA Structure and Function (invited), : First Osaka
University-EPFL International Symposium.
[8]Small Organic Molecules Regulating RNA Structure and Function #2 (invited), : Asian Chemical
Biology Initiative.
ゎㄝࠊ⥲ㄝ
The Chemistry of PCR Primers: Concept and Application, Ṋ஭ ྐᜨࠊ୰㇂ ࿴ᙪ, Israel Journal of
Chemistry, John Wiley & Sons, Inc., 53 (2013), 401-416.
ᅜෆᏛ఍
᪥ᮏ໬Ꮫ఍➨ 94 ᫓Ꮨᖺ఍
᪥ᮏࢣ࣑࢝ࣝࣂ࢖࢜ࣟࢪ࣮◊✲఍ ➨ 8 ᅇᖺ఍
➨ 15 ᅇ RNA ࣑࣮ࢸ࢕ࣥࢢ
⛉Ꮫ◊✲㈝⿵ຓ㔠
ᇶ┙◊✲(A)
୰㇂ ࿴ᙪ
ᣮᡓⓗⴌⱆ◊
✲
୰㇂ ࿴ᙪ
ᇶ┙◊✲(B)
Ṋ஭ ྐᜨ
8 ఩⨨᥮ࣉࣜࣥ໬ྜ≀ࣛ࢖ࣈ࣮ࣛࣜࡢྜᡂ࡜ࣜ࣎ࢫ࢖ࢵࢳ
࢚ࣜࣥࢪࢽ࢔ࣜࣥࢢ
RNA ࣮ࣝࣉ≉␗ⓗ࡟ᵓ㐀ኚ໬ࢆ♧ࡍศᏊᶵᵓࡢゎ᫂࡜
Dicer ษ᩿ࡢ㜼ᐖຠᯝᐇド
࣊࢔ࣆࣥࣉࣛ࢖࣐࣮PCR ἲࢆ⏝࠸ࡓ࢘࢖ࣝࢫࡢ㧗ឤᗘ᳨ฟ
ἲ࡟㛵ࡍࡿ◊✲
1௳
1௳
1௳
༢఩㸸༓෇
16,250
4,030
6,240
ࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬ
ཎⴭㄽᩥ
[1]Magnetoresistance Generated by Combination of Spin-Orbit Interaction and Applied Magnetic Field in
― 55 ―
Bipolar Conductors, M. Sakai, D. Kodama, Y. Okano, T. Sakuraba, Z. Honda, A. Kitajima, A. Oshima,
K.Higuchi, S. Hasegawa, O. Nakamura: Jpn. J. Appl. Phys., 52 (2013) 093001-1-8.
[2]Enhancement of Hydrogen Uptake for Y and Gd Films by Thin Nisurface Overlayers, H. Hirama, M.
Hayakawa, T. Okoshi, M. Sakai, K.Higuchi, A. Kitajima, A. Oshima, S. Hasegawa: J. Crystal Growth,
378 (2013) 356-360.
[3]Influence of Hydrogen Incorporation on Texture and Grain Size inYH2 Films, T. Okoshi, M.
Hayakawa, H. Hirama, M. Sakai, K. Higuchi, A. Kitajima, A. Oshima, S. Hasegawa: J. Crystal Growth,
378 (2013) 388-392.
[4]Crystal Growth of Magnetic Dihydride GdxY1íxH2 for Generation of Spin Current, T. Sakuraba, H.
Hirama, M. Sakai, Z. Honda, M. Hayakawa,T. Okoshi, A. Kitajima, A. Oshima, K. Higuchi, S. Hasegawa:
J. Crystal Growth, 378 (2013) 351-355.
[5]Aluminum-Doped Zinc Oxide Electrode for Robust (Pb,La)(Zr,Ti)O3 Capacitors: Effect of Oxide
Insulator Encapsulation and Oxide Buffer Layer, Y. Takada, T. Tsuji, N. Okamoto, T. Saito, K. Kondo, T.
Yoshimura, N. Fujimura, K. Higuchi, A. Kitajima, A. Oshima: Journal of Materials Science: Materials in
Electronics, in press .
ᅜ㝿఍㆟
[1]Hall Effect and Magnetoresistance in GdxY1-xH2 (x䴼0.4) (poster), T. Sakuraba, M. Sakai, T. Arai, Y.
Tanaka, H. Hirama, Z. Honda, A. Kitajima, K. Higuchi, A. Oshima, S. Hasegawa: The 12th Asia Pacific
Physics Conference.
[2]Optical Assessment of Carrier Effective Mass in GdxY1-xH2 (0䵐x䵐1) (poster), S. Haruyama, M.
Sakai, T. Sakuraba, H. Hirama, Z. Honda, A. Kitajima, K. Higuchi, A. Oshima and Shigehiko
HASEGAWA1: The 12th Asia Pacific Physics Conference.
[3]Electrical Properties of PbLaZrTiOx Capacitors with Conductive Oxide Buffer Layer on Pt Electrodes
(poster), T. Saito, Y. Takada, T. Tsuji, N. Okamoto, K. Kondo, T. Yoshimura, N. Fujimura, K. Higuchi, A.
Kitajima, A. Oshima: 2013 Joint UFFC, EFTF and PFM Symposium.
[4]Comparative Study of Electrical Properties of PbLaZrTiOx Capacitors with Al-Doped ZnO and ITO
Top Electrodes (poster), Y. Takada, T. Tsuji, N. Okamoto, T. Saito, K. Kondo, T. Yoshimura, N. Fujimura,
K. Higuchi, A. Kitajima, A. Oshima: 2013 Joint UFFC, EFTF and PFM Symposium.
― 56 ―
ඹྠ◊✲
ࢼࣀᶵ⬟ᮦᩱࢹࣂ࢖ࢫ◊✲ศ㔝
⏣୰ ⚽࿴
༢఩㸸༓෇
㸦⊂㸧≀㉁࣭ᮦᩱ◊✲ᶵ構
◳㹖⥺ග㟁Ꮚศග࡟ࡼࡿᙉ┦㛵
㓟໬≀⣔ᮦᩱࡢ◊✲
0
ࢼࣀᴟ㝈ࣇ࢓ࣈࣜࢣ࣮ࢩࣙࣥศ㔝
ྜྷ⏣ 㝧୍
ࢲ࢖࢟ࣥᕤᴗᰴᘧ఍♫
ྜྷ⏣ 㝧୍
㸦⊂㸧᪥ᮏཎᏊຊ◊✲㛤
Ⓨᶵᵓ
ྜྷ⏣ 㝧୍
⊂❧⾜ᨻἲே᪥ᮏཎᏊ
ຊ◊✲㛤Ⓨᶵᵓ
ྜྷ⏣ 㝧୍
ྜྷ⏣ 㝧୍
⊂❧⾜ᨻἲே᪥ᮏཎᏊ
ຊ◊✲㛤Ⓨᶵᵓ
㸦⊂㸧⏘ᴗᢏ⾡⥲ྜ◊✲
ᡤ
ᗈᓥᅜ㝿኱
ྜྷ⏣ 㝧୍
㔠ἑ኱
ྜྷ⏣ 㝧୍
஑ᕞ኱Ꮫ
᳿ 㔠ᓠ
㔞Ꮚࣅ࣮࣒↷ᑕ࡟ࡼࡿࣇࢵ⣲⣔
ᶞ⬡ࡢᚤ⣽ຍᕤ࡜ࡑࡢᶵ⬟ไᚚ
㔜࢖࢜ࣥࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟
ࡼࡿࢻࢹ࢝ࣥศゎึᮇ㐣⛬ࡢ◊
✲
ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫἲࢆ⏝࠸ࡓ
ᶵ⬟ᛶ཯ᛂሙ࡛ࡢ㐣Ώ⌧㇟࡟㛵
ࡍࡿ◊✲
Ỉ୰࡟࠾ࡅࡿ㟁Ꮚࡢ⇕໬㐣⛬࡟
㛵ࡍࡿ◊✲
2,500
ࣇ࢛ࢺ࢝ࢯ࣮ࢻ RF 㟁Ꮚ㖠ࢆ⏝
࠸ࡓ㟁Ꮚ㢧ᚤ㙾ࡢ㛤Ⓨ
㧗⢭ᗘᨺᑕ⥺἞⒪ࡢࡓࡵࡢࢼ
ࣀ࣭࣐࢖ࢡࣟ⥺㔞ィ㛤Ⓨ
࢖࢜ࣥᾮయ୰࡛ࡢ㟁Ꮚ࠾ࡼࡧ࣍
࣮ࣝࡢࢲ࢖ࢼ࣑ࢡࢫ
ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ࡟ࡼࡿ᪂つ
ගᶵ⬟ᛶᮦᩱࡢ㟁Ⲵ≧ែࡢ◊✲
0
0
0
0
0
0
0
ࢼࣀ構造・ᶵ⬟評価◊✲ศ㔝
➉⏣ ⢭἞
ᰴᘧ఍♫ᮏ⏣ᢏ⾡◊✲
ᡤ
⎔ቃ TEM ࡟ࡼࡿࢼࣀࢳ࣮ࣗࣈᡂ
㛗ᶵᵓほᐹ࡟㛵ࡍࡿඹྠ◊✲
➉⏣ ⢭἞
(⊂)⏘ᴗᢏ⾡⥲ྜ◊✲ᡤ
ศᯒ㟁Ꮚ㢧ᚤ㙾ࢆ⏝࠸ࡓపḟඖ
10,200
0
ࢼࣀᮦᩱࡢᵓ㐀ゎᯒ
ࢼࣀᶵ⬟ண ◊✲ศ㔝
ᑠཱྀ ከ⨾ኵ
ᰴᘧ఍♫ࢹࣥࢯ࣮
ᑠཱྀ ከ⨾ኵ
ᰴᘧ఍♫㇏⏣୰ኸ◊✲
➨୍ཎ⌮ィ⟬ࢆ⏝࠸ࡓ᪂つᅽ㟁
ᮦᩱࡢ᥈⣴
ゐ፹⾲㠃≧ែ࡟㛵ࡍࡿ◊✲
1,500
᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫᮦᩱࡢ㛤Ⓨ
᭷ᶵⷧ⭷ኴ㝧㟁ụ⏝᭷ᶵ༙ᑟయࡢ
㛤Ⓨ
ࣇ࢛ࢺ࢚ࣞࢡࢺࣟࢽࢡࢫᶵ⬟ᛶⰍ
⣲ᮦᩱ࡟㛵ࡍࡿ◊✲
1,000
0
ᡤ
ソフトナノマテリアル◊✲ศ㔝
安蘇 芳雄
Ᏻ⸽ ⰾ㞝
㎞ᕝ ㄔ
ఫ཭໬Ꮫᰴᘧ఍♫
ࢲ࢖࢟ࣥᕤᴗᰴᘧ఍♫
ᮾὒ࢖ࣥ࢟ SC ࣮࣍ࣝࢹ
࢕ࣥࢢࢫᰴᘧ఍♫
― 57 ―
2,500
500
ࣂ࢖࢜ࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ศ㔝
㇂ཱྀ ṇ㍤
ࢡ࢜ࣥࢱ࣒ࣂ࢖࢜ࢩࢫ
୍ศᏊゎᯒᢏ⾡࡟ᇶ࡙ࡃ⏕≀ヨᩱ
ゎᯒ⿦⨨࣭ࢹࣂ࢖ࢫࡢホ౯
ࢸ࣒ࢬᰴᘧ఍♫
0
ࢼࣀ知能システムศ㔝
㮖ᑿ 㝯
㸦⊂㸧⛉Ꮫᢏ⾡᣺⯆ᶵᵓ
⤫ィ࣭ࢹ࣮ࢱ࣐࢖ࢽࣥࢢศ㔝࡟
᪥ᮏ㟁Ẽᰴᘧ఍♫
ࡢホ౯᳨࣭ド
‽⮬ື࣐࢖ࢽࣥࢢࣉࣟࢭࢫ᭱㐺
1,140
࠾ࡅࡿ㞳ᩓᵓ㐀ฎ⌮ᛂ⏝ྍ⬟ᛶ
Ἑཎ ྜྷఙ
1,575
໬ࡢࡓࡵࡢ⬟ືᏛ⩦ᢏ⾡
Ἑཎ ྜྷఙ
ᰴᘧ఍♫ᮏ⏣ᢏ⾡◊✲
ᡤ
ኚศ᥎ㄽࢆᛂ⏝ࡋࡓ㌶㐨᭱㐺໬
࡟ࡼࡿࣟ࣎ࢵࢺືస⏕ᡂᡭἲࡢ
ඹྠ◊✲
2,640
⺯ගࢩࢢࢼࣝቑ኱ᆺࣉࣛ࢖
࣐࣮ἲࡢ㛤Ⓨ
0
ࢼࣀ་⒪ᛂ⏝ࢹࣂ࢖ࢫศ㔝
୰㇂ ࿴ᙪ
ᰴᘧ఍♫ྂἙ㟁ᕤ࢔ࢻࣂࣥ
ࢫࢺ࢚ࣥࢪࢽ࢔ࣜࣥࢢ
― 58 ―
●
― 59 ―
ࢼࣀຍᕤᐊ
ᐊ㛗㸦ව௵㸧ᩍᤵ
ᢏ⾡⫋ဨ
⏣୰ ⚽࿴
ᴬཎ ୍᪼ࠊ㇂⏿ බ᫛
a) ᴫせ
ࢼࣀຍᕤᐊࡣࠊ⏘◊ࡢ᭷ࡍࡿྛ✀ࢼࣀຍᕤ⿦⨨࠾ࡼࡧࢼࣀຍᕤᢏ⾡ࢆ┦஫࡟᭷ຠά⏝ࡋࠊྛศ㔝ࡢ◊
✲ࡢ᥎㐍ࢆᅗࡿࡇ࡜ࢆ┠ⓗ࡜ࡋ࡚࠸ࡿࠋᚤ⣽ຍᕤࡢᢏ⾡௦⾜ࡢ࡯࠿ࠊᚤ⣽ຍᕤࡢᛂ⏝࡟㛵ᚰࢆᣢࡘ◊✲
⪅࡟ࢹࣂ࢖ࢫࡢ㛤Ⓨ࣭ᥦ౪ࢆ⾜ࡗ࡚࠸ࡿࠋ
b) ᡂᯝ
౫㢗௳ᩘ
౫㢗ඛ
౫㢗௳ᩘ
࣭ຍᕤ౫㢗
ࢼࣀຍᕤᐊࡀ⾜࠺ຍᕤᴗົࡣࠊ᪂つࢹࣂ࢖ࢫࡢ㛤Ⓨ
ࢆึࡵ࠿ࡽ⾜࠺ࡇ࡜ࡶ࠶ࢀࡤࠊ࢚ࢵࢳࣥࢢࡸᡂ⭷࡜࠸
ࡗࡓࠊࢹࣂ࢖ࢫຍᕤࣉࣟࢭࢫࡢ୍㒊ࢆᢸᙜࡍࡿࡇ࡜ࡶ
࠶ࡿࠋ2013 ᖺᗘࡣ 10 ◊✲ᐊ࠿ࡽ 94 ௳ࡢຍᕤ౫㢗ࡀ࠶
ࡗࡓࠋᅗ 1 ࡟ࡣ 2005 ᖺᗘࡢⓎ㊊௨᮶ࡢ౫㢗ඛ࡜౫㢗௳
ᩘࡢ᥎⛣ࢆ♧ࡋࡓࠋ2013 ᖺᗘࡢ౫㢗௳ᩘࡢᛴ⃭࡞ῶᑡ
ࡣࠊ౫㢗௳ᩘࡢከ࠿ࡗࡓ◊✲ᐊࡢ㌿ฟ࡟ࡼࡿࡶࡢ࡛࠶
ࡿࠋ
᪂ࡋ࠸౫㢗࡜ࡋ࡚ࠊ2013 ᖺᗘࡣᚤᑠᾮ⁲ࢆᙧᡂࡍࡿ
ࡓࡵࡢࢹࣂ࢖ࢫస〇ࢆ⾜ࡗࡓࠋࢹࣂ࢖ࢫࡑࡢࡶࡢࡣ 3
ᖺ๓࡟⚾ࡓࡕࡀ㛤Ⓨࡋࡓࡶࡢ࡛࠶ࡿࠋ௒ᅇࠊࡇࡢࢹࣂ
࢖ࢫࢆ⏝࠸ࡓ⸆๣ࡢࢫࢡ࣮ࣜࢽࣥࢢ࡜ࠊ㧗ឤᗘࡢ㓝⣲
⤖ྜච␿྾╔᳨ฟࢆ⾜࠺ᐇ㦂ࡀᮏ᱁ⓗ࡟ጞࡲࡾࠊࢹࣂ
࢖ࢫࡢᥦ౪࡜᪂ࡓ࡞㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿࠋᅗ 2 ࡟ᚤᑠᾮ
⁲࡟ࣂࢡࢸࣜ࢔ࢆ㛢ࡌ㎸ࡵࠊᇵ㣴ࡋࡓᵝᏊࢆ♧ࡋࡓࠋ
౫㢗ඛ
ᖺᗘ
ᅗ㸯 2005 ᖺⓎ㊊௨᮶ࡢάືᒚṔ
࣭ᅜ㝿ࢼࣀࢸࢡࣀࣟࢪ࣮⥲ྜᒎࡢཧຍ
2014 ᖺ 1 ᭶ 29 ᪥ 㹼 31 ᪥ ࡟ ᮾ ி ࡛ ⾜ ࢃ ࢀ ࡓ
nanotech2014 ࡟⏘◊ࢼࣀࢸࢡࣀࣟࢪ࣮ࢭࣥࢱ࣮ࡢ୍ဨ
࡜ࡋ࡚ཧຍࡋࡓࠋάືෆᐜࢆࢩࣥࣉࣝ࡟ࡲ࡜ࡵࡓࣃࢿ
ࣝࡢᒎ♧࡜ࠊࣉࣞࢮࣥࢸ࣮ࢩࣙࣥࢆ⾜ࡗ࡚ࡁࡓࠋ
ᅗ㸰 ┤ᚄ ࣐࢖ࢡ࣓࣮ࣟࢺࣝࡢᾮ⁲ෆ࡛ࣂࢡࢸࣜ࢔
ࢆᇵ㣴ࡋࡓᵝᏊࠋୖࡀ㛢ࡌ㎸ࡵ┤ᚋࠊୗࡀ ᫬㛫ᚋࡢᵝ
Ꮚࠋ
― 60 ―
ࢼࣀࢸࢡඛ➃ᶵჾᐊ
ᐊ㛗㸦ව௵㸧ᩍᤵ
≉௵ᢏ⾡⫋ဨ
⏣୰ ⚽࿴
బஂ㛫 ⨾ᬛᏊ
a) ᴫせ
ࢼࣀࢸࢡඛ➃ᶵჾᐊࡣࠊࢼࣀࢸࢡࣀࣟࢪ࣮࡟≉໬ࡋࡓ᭱ඛ➃ᶵჾࢆタ⨨ࡋࠊࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࢆ
ᡓ␎ⓗ࡟Ⓨᒎࡉࡏࡿࡓࡵ࡟ࠊࢼࣀࢸࢡࣀࣟࢪ࣮ࢭࣥࢱ࣮ࡢᨵ⤌ᣑ඘࡟క࠸ 2009 ᖺᗘ࡟Ⓨ㊊ࡋࡓࠋᴟᚤ
⣽࡞ࢼࣀࢹࣂ࢖ࢫᵓ㐀ࢆᙧᡂ࡛ࡁࡿ㟁Ꮚ⥺㟢ග⿦⨨ࢆ⏝࠸ࡓ㉸ᚤ⣽ຍᕤࢩࢫࢸ࣒ࡀタ⨨ࡉࢀ࡚࠾ࡾࠊ௒
ᖺᗘࡉࡽ࡟ࠊࢼࣀࢹࣂ࢖ࢫຍᕤ⿦⨨⩌ࠊࢼࣀࢹࣂ࢖ࢫᵓ㐀ホ౯⿦⨨⩌ࠊࢼࣀࢹࣂ࢖ࢫᶵ⬟ホ౯⿦⨨⩌࠿
ࡽ࡞ࡿࢼࣀࢹࣂ࢖ࢫ㉸⢭ᐦຍᕤ࣭≀ᛶホ౯ࢩࢫࢸ࣒ࡀᑟධࡉࢀࠊ↓ᶵ≀ࠊ㔠ᒓ㓟໬≀ࠊ᭷ᶵ≀ࠊ⏕య㛵
㐃≀㉁➼ࡢከᵝ࡞ᮦᩱࡢࢼࣀᵓ㐀ᙧᡂ࠾ࡼࡧᵓ㐀࣭ᶵ⬟࣭㟁Ꮚ≉ᛶ➼ࡢ㧗⢭ᗘゎᯒ࠾ࡼࡧホ౯ࡀྍ⬟࡜
࡞ࡿࠋࡇࢀࡽඛ➃⿦⨨⩌࡟ࡼࡾ㐃ᦠࡋࡓࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࡢⓎᒎⓗ᥎㐍ࢆྍ⬟࡜ࡋࠊࡉࡽ࡟ࡑࡢᡂ
ᯝࢆᬑཬࡉࡏࡿࡇ࡜ࢆ┠ᣦࡋ࡚࠸ࡿࠋ
b) ᡂᯝ
ඛ➃ᶵჾᐊࡢ⿦⨨ูࡢ฼⏝≧ἣࢆྑࡢࢢࣛࣇ࡟
♧ࡍࠋ฼⏝⥲ᩘࡣ 1078 ௳࡛๓ᖺᗘ࡜ẚ㍑ࡋ 144 ௳
ቑຍࠋ
᫖ᖺᗘ࠿ࡽࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬࡢ
⿦⨨࡜ࡋ࡚ࡶ౑⏝ࡉࢀ࡚࠸ࡿࡓࡵࠊ
⏘◊እ࠿ࡽࡢ฼
⏝⪅ࡶቑ࠼࡚࠸ࡿࠋ
ᅗ㸯
ࣟࢦ࣐࣮ࢡ㸦㹋㹑᫂ᮅ
ᅗ㸯 ࣟࢦ
ࢦ࣐࣮ࢡ㸦
㸦㹋㹑
㹋 ᫂ᮅ
᫂ SW㸧
SW㸧
― 61 ―
ࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬ
ᣐⅬ㛗㸦ව௵㸧ᩍᤵ
ᩍᤵ㸦ව௵㸧
≉௵ᩍᤵ㸦ව௵㸧
ຓᩍ
≉௵ຓᩍ
≉௵◊✲ဨ
஦ົ⿵బဨ
ὴ㐵⫋ဨ
ྜྷ⏣ 㝧୍
⏣୰ ⚽࿴
㇂ཱྀ ṇ㍤
ಖ⏣ ⱥὒ
᳃ ༤ኴ㑻
ᑠᯘ ៞ኴ
໭ᓥ ᙲ
ἲ⃝ බᐶ
᯽಴ ⨾⣖
ᵽཱྀ ᏹ஧
Dang Nguyen Tuan
㇂ཱྀ 㝯
Dinh Cong Que
ୗ‶ ᜤᏊ
ᅭぢ ᜨᏊ
᳜ᮧ ⌮⤮Ꮚ
㸦㹼ᖹᡂ 26 ᖺ 2 ᭶ 15 ᪥㸧
㸦ᖹᡂ 26 ᖺ 2 ᭶ 16 ᪥㹼㸧
㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼㸧
㸦㹼ᖹᡂ 25 ᖺ 9 ᭶ 30 ᪥㸧
㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼ᖹᡂ 25 ᖺ 9 ᭶ 30 ᪥㸧
㸦ᖹᡂ 25 ᖺ 11 ᭶ 1 ᪥㹼㸧
㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼㸧
㸦㹼ᖹᡂ 26 ᖺ 3 ᭶ 31 ᪥㸧
a) ᴫせ
ᩥ㒊⛉Ꮫ┬ጤク஦ᴗࠕࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮࣒஦ᴗ㸦௨ᚋ“ᮏ஦ᴗ”࡜␎ࡍ㸧
ࠖࡣࠊ኱ࡁ࡞ᮇ
ᚅࡀ࠿࠿ࡿ┿࡟᪂ࡋ࠸ࢼࣀᮦᩱࡸࢼࣀࢹࣂ࢖ࢫ➼ࡢ๰ฟ࡟㈉⊩ࡋࠊࡲࡓࠊᆅᇦࡢ௻ᴗࡸ◊✲ᶵ㛵࡜ࡢ᭷
ᶵⓗ࡞㐃ᦠ➼ࢆ῝ࡵࡿࡇ࡜ࢆ┠ⓗ࡜ࡍࡿࠋᮏ஦ᴗ࡟ཧ⏬ࡍࡿ኱㜰኱Ꮫࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬ
㸦௨ᚋ“ᙜᣐⅬ”࡜␎ࡍ㸧ࡣࠊᙜᣐⅬࡀಖ᭷ࡍࡿձᚤ⣽ᵓ㐀ゎᯒࠊղᚤ⣽ຍᕤࠊճศᏊ࣭≀㉁ྜᡂࡢ 3 ࡘ
ࡢࣉࣛࢵࢺࣇ࢛࣮࣒࡟ᒓࡋ࡚ᙜᣐⅬࡢ᪋タ࣭⿦⨨࣭ᢏ⾡➼ࡢ≉ᚩࢆ⏕࠿ࡋ࡚ࠊࢼࣀࣉࣟࢭࢫࡸࢼࣀᵓ㐀࣭
ᶵ⬟ࡢゎᯒ࡟ᚲせ࡞⥲ྜⓗ࡞◊✲ᨭ᥼ࢆ⾜࠺࡜࡜ࡶ࡟ࠊ༢࡞ࡿඛ➃⿦⨨࣭᪋タ࡜ࡋ࡚ࡢᶵ⬟ࡔࡅ࡛࡞ࡃࠊ
ேᮦ⫱ᡂࡸ࢖ࣀ࣮࣋ࢩࣙࣥ๰ฟࡢ᰾࡜࡞ࡿ◊✲ᢏ⾡ࢭࣥࢱ࣮ⓗᶵ⬟ࢆᯝࡓࡋ࡚࠸ࡿࠋ
ձ ᚤ⣽ᵓ㐀ゎᯒࣉࣛࢵࢺࣇ࢛࣮࣒
nm ࢫࢣ࣮ࣝࡢศゎ⬟࡛ ȝP ࢫࢣ࣮ࣝࡢཌࡉࡢヨᩱෆ㒊ࢆᵓ㐀ศᯒ࣭ゎᯒࠊྛ✀ᮦᩱࡸ⏕యヨᩱ➼
ࡢㄪ〇࡜ຠ⋡ⓗ࡞ศᯒ࣭ゎᯒ➼ࡢᨭ᥼
ղ ᚤ⣽ຍᕤࣉࣛࢵࢺࣇ࢛࣮࣒
ࣜࢯࢢࣛࣇ࢕࣮ᢏ⾡ࠊࣅ࣮࣒ࢸࢡࣀࣟࢪ࣮ࢆ฼⏝ࡋࡓⷧ⭷ヨᩱࡢᚤ⣽ຍᕤ࡜ࢹࣂ࢖ࢫ໬ࠊ࠾ࡼࡧࡑ
ࡢࢹࣂ࢖ࢫࡢホ౯➼ࡢᨭ᥼
ճ ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺࣇ࢛࣮࣒
᭷ᶵ≀࣭↓ᶵ≀࣭㔠ᒓ➼ࡀᣢࡘᶵ⬟ࢆ᭱኱㝈࡟฼⏝ࡋࠊ✵㛫ⓗ࣭࢚ࢿࣝࢠ࣮ⓗ࡟᭱㐺࡞㓄ิࡸ⤌ྜ
ࡏࢆ⪃៖ࡋࡓཎᏊ࣭ศᏊ㓄ิࢆ᭷ࡍࡿᮦᩱࡢ๰〇ࠊࡲࡓⷧ⭷ࡸேᕤ᱁Ꮚࡢᙧᡂ࣭≀ᛶ ᐃ➼ࡢᨭ᥼
b) ᡂᯝ
ᮏ஦ᴗ࡟ࡼࡿᅜෆእ࣭Ꮫෆእࡢࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࢆࢧ࣏࣮ࢺࡍࡿඛ➃ඹ⏝᪋タ࡜ࡋ࡚ࠊ⏘ᴗ⛉Ꮫ
◊✲ᡤࡀಖ᭷ࡍࡿᚤ⣽ຍᕤ࡜ศᏊ࣭≀㉁ྜᡂ㸦ⷧ⭷ྜᡂ㸧ࠊࡑࡋ࡚㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ࢭࣥࢱ࣮ࡀಖ᭷ࡍ
ࡿᚤ⣽ᵓ㐀ゎᯒࡢ 3 ࡘࡢࣉࣛࢵࢺࣇ࢛࣮࣒ࢆ⼥ྜ࣭」ྜ໬ࡋࠊࢼࣀࢫࢣ࣮ࣝࣉࣟࢭࢫࡸࢼࣀᵓ㐀࣭ᶵ⬟
ࡢゎᯒ࡟ᚲせ࡞᪋タ࣭⿦⨨࣭ᢏ⾡➼ࡢᥦ౪࡟ࡼࡿ⥲ྜⓗ࡞◊✲ᨭ᥼ࢆ⾜ࡗࡓࠋࡲࡓᮏᖺᗘࡣᮏ஦ᴗࡢ 2
― 62 ―
ᖺᗘ┠࡛࠶ࡾࠊᙜᣐⅬ࡛ࡣ 3 ࣉࣛࢵࢺࣇ࢛࣮࣒ྜィ࡛ᘏ࡭ 128 ௳ࡢᨭ᥼ࢆࡋ࡚ࡁࡓࠋᖹᡂ 25 ᖺᗘࡢᡂ
ᯝබ㛤஦ᴗ࡟࠾ࡅࡿᨭ᥼௳ᩘࡢ㡯┠ูෆヂࢆ⾲㸫1 ࡟♧ࡍࠋ
⾲㸫1㸸ᖹᡂ 25 ᖺᗘࡢᨭ᥼ㄢ㢟௳ᩘ㸦ᡂᯝබ㛤஦ᴗ㸦ᡂᯝබ㛤⊰ணࢆྵࡴ㸧
㸧
ᚤ⣽ᵓ㐀ゎᯒ
ᚤ⣽ຍᕤ
ศᏊ࣭≀㉁ྜᡂ
ྜィ
Ꮫ
⊂
⏘
ィ
Ꮫ
⊂
⏘
ィ
Ꮫ
⊂
⏘
ィ
Ꮫ
⊂
⏘
ィ
ᶵჾ฼⏝
0
0
5
5
33
1
4
38
19
0
5
24
52
1
14
67
ඹྠ◊✲
35
4
5
44
4
0
1
5
4
0
1
5
43
4
7
54
ᢏ⾡௦⾜
0
0
1
1
1
0
3
4
0
0
2
2
1
0
6
7
ᢏ⾡⿵ຓ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ᢏ⾡┦ㄯ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ྜ ィ
35
4
11
50
38
1
8
47
23
0
8
31
96
5
27
128
஦ᴗ࠾ࡼࡧᣐⅬάື⤂௓ࡢࡓࡵࠊᏛእ࠿ࡽࡢゼၥ⪅࡟ࡼࡿ᪋タぢᏛࢆཷࡅධࢀࡓࠋᖹᡂ 25 ᖺᗘ࡟ཷ
ࡅධࢀࡓ᪋タぢᏛࢆ⾲㸫2 ࡟♧ࡍࠋ
⾲㸫2㸸᪋タぢᏛ㸦⏘ᴗ⛉Ꮫ◊✲ᡤഃ᪋タࠊ᪋タ฼⏝ࡢᡴྜࡏ࡟ࡼࡿぢᏛࢆ㝖ࡃ㸧
᪥௜
ゼၥ⪅㸦ᅋయ㸧
ᑐ㇟
ᖹᡂ 25 ᖺ 5 ᭶ 17 ᪥ ⏘◊ࢸࢡࣀࢧࣟࣥ
௻ᴗ➼
ᖹᡂ 25 ᖺ 7 ᭶ 19 ᪥ ᩥ㒊⛉Ꮫ┬࣭JST
ࣉࣛࢵࢺࣇ࢛࣮࣒஦ᴗ㛵ಀ
ᖹᡂ 25 ᖺ 8 ᭶ 7 ᪥ ▼ᕝ┴⚾❧ᫍ⛸㧗ᰯ
㧗ᰯ⏕
ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺ
ᖹᡂ 25 ᖺ 11 ᭶ 12 ᪥ ᚤ⣽ຍᕤ PF ᢏ⾡⪅஺ὶ఍
ࣇ࢛࣮࣒㛵ಀ⪅
ᖹᡂ 25 ᖺ 11 ᭶ 21 ᪥ 㮵ඣᓥ┴❧ฟỈ㧗➼Ꮫᰯ
㧗ᰯ⏕
ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮
ᖹᡂ 25 ᖺ 11 ᭶ 21 ᪥
௻ᴗ࣭ᅜෆ኱Ꮫ➼㻌
࣒᪋タぢᏛ఍㸦➨ 1 ᅇ㸧
࣋ࢺࢼ࣒⛉Ꮫᢏ⾡㛤Ⓨᇶ㔠
ᖹᡂ 25 ᖺ 11 ᭶ 25 ᪥
ᅜእ኱Ꮫ
㸦Nafosted㸧
ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮
ᖹᡂ 26 ᖺ 1 ᭶ 15 ᪥
௻ᴗ࣭ᅜෆ኱Ꮫ➼
࣒᪋タぢᏛ఍㸦➨ 2 ᅇ㸧
ᖹᡂ 26 ᖺ 3 ᭶ 13 ᪥ ࢱ࢖࣭ᕤᏛ㒊㛗఍
ᅜእ኱Ꮫ
ேᩘ
46
21
42
36
32
15
8
5
30
ᣐⅬάື⤂௓࠾ࡼࡧᢏ⾡◊㛑ࡢሙࡢᥦ౪ࡢࡓࡵࠊ୺࡜ࡋ࡚௻ᴗ࣭௚኱Ꮫ㛵ಀ⪅ࢆᑐ㇟࡟Ꮫእࡢࢫࢡ࣮
ࣝࡸࢭ࣑ࢼ࣮ࢆ㛤ദࡋࡓࠋᖹᡂ 25 ᖺᗘ㛤ദศࢆ⾲㸫3 ࡟♧ࡍࠋ
⾲㸫3㸸ࢭ࣑ࢼ࣮࣭ࢫࢡ࣮ࣝ➼
᪥௜
㛤ദྡ
ᑐ㇟
ᖹᡂ 25 ᖺ 5 ᭶ 22 ᪥
SEMI Forum Japan 2013
ᖹᡂ 25 ᖺ 7 ᭶ 22 ᪥
㹼26 ᪥
ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮
ᅜෆ኱ᏛᏛ⏕㸦㝔⏕ࢆྵࡴ㸧
࣒ᖹᡂ 26 ᖺᗘ Ꮫ⏕◊ಟࣉࣟࢢ࣒ࣛ
ᖹᡂ 26 ᖺ 2 ᭶ 25 ᪥
㹼26 ᪥
኱㜰኱Ꮫ ࢼࣀࢸࢡࣀࣟࢪ࣮タഛ
౪⏝ᣐⅬ ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺ ௻ᴗࠊ኱Ꮫࠊබⓗᶵ㛵࡞࡝
ࣇ࢛࣮࣒ ࢫࢡ࣮ࣝ
― 63 ―
௻ᴗࠊ኱Ꮫࠊබⓗᶵ㛵࡞࡝
ேᩘ
70
2
24
編集後記
年次報告書、Vol.12 を発行いたします。早や、発足以来 12 年が過ぎ、
当センターの陣容も年々充実してきました。その結果、多彩な優れた成
果を生むに至っています。編集するに当って、成果の内容を吟味すると
同時に、更なる発展を目指し、構成員個々の責任を痛感するところです。
吉田、田中、谷口
大阪大学産業科学研究所
産業科学ナノテクノロジーセンター報告書
Vol. 12 2013
発行元:大阪大学産業科学研究所
産業科学ナノテクノロジーセンター
Tel & Fax:06-6879-8518
URL: http://www.sanken.osaka-u.ac.jp/labs/nano/index.html
発行日:平成 26 年 3 月 31 日
印刷:
■発
行
日
2014年 3月
■事務連絡先
大阪大学 産業科学研究所 産業科学ナノテクノロジーセンター
Nanoscience and Nanotechnology Center , ISIR , Osaka University
〒567-0047 大阪府茨木市美穂ヶ丘8-1
TEL:06-6879-8518
8-1 Mihogaoka,Ibaraki,Osaka 567-0047,Japan TEL:+81-6-6879-8518
URL:http://www.sanken.osaka-u.ac.jp/labs/nano/index.html
FAX:06-6879-8518
Fly UP