Comments
Description
Transcript
Vol.12 - 大阪大学 産業科学研究所
Vol.12 研究成果報告書 第12巻(2013年) Nanoscience and Nanotechnology Center ISIR, Osaka University 大阪大学産業科学研究所 産業科学ナノテクノロジーセンター 目 次 センター長の挨拶 ------------------------------------------- 1 産業科学ナノテクノロジーセンター 概念と組織図 ------------- 2 専任分野 ナノ機能材料デバイス研究分野 ----------------------------- 4 ナノ極限ファブリケーション研究分野 ----------------------- 6 ナノ構造・機能評価研究分野 ------------------------------- 8 ナノ機能予測研究分野 ------------------------------------ 10 ソフトナノマテリアル究分野 ------------------------------ 12 バイオナノテクノロジー研究分野 -------------------------- 14 客員・兼任分野 環境・エネルギーナノ応用分野 ---------------------------- 16 ナノ知能システム分野 ------------------------------------ 17 ナノ医療応用デバイス分野 -------------------------------- 18 ナノシステム設計分野 ------------------------------------ 19 ナノデバイス評価・診断分野 ------------------------------ 21 ナノテクノロジー産業応用分野 ---------------------------- 26 業績 ナノ機能材料デバイス研究分野 ---------------------------- 31 ナノ極限ファブリケーション研究分野 ---------------------- 35 ナノ構造・機能評価研究分野 ------------------------------ 39 ナノ機能予測研究分野 ------------------------------------ 41 ソフトナノマテリアル究分野 ------------------------------ 44 バイオナノテクノロジー研究分野 -------------------------- 47 環境・エネルギーナノ応用分野 ---------------------------- 50 ナノ知能システム分野 ------------------------------------ 52 ナノ医療応用デバイス分野 -------------------------------- 54 ナノテクノロジー設備供用拠点 ---------------------------- 58 共同研究 -------------------------------------------------- 57 外国人・国内客員教員 -------------------------------------- 59 附属施設 ナノ加工室 ---------------------------------------------- 60 ナノテク先端機器室 -------------------------------------- 61 ナノテクノロジー設備供用拠点 編集後記 ---------------------------- 62 センター長の挨拶 吉田 陽一 「産業科学ナノテクノロジーセンター」は、原子・分子を積み上げ 材料を創製するボトムアップナノテクノロジー、材料を極限まで削り ナノデバイスを作製するトップダウンナノテクノロジー、さらにそれ らの融合による産業応用を目指したナノサイエンス・ナノテクノロジ ーを推進することを目的として、2002 年に産業科学研究所に設置さ れた全国初のナノテクノロジーセンターで、今年度で 11 年目を迎え ました。 設立当初は、専任 3、所内兼任 7、学内兼任 3、国内・外国人客員 3 の 16 研究分野からなる 3 研究部門制で発足した当センターですが、 2003 年にはナノテクノロジー総合研究棟が完成し、全学のナノテクノロジー研究を推進する ためのオープンラボラトリーの運用も開始されました。さらに、2006 年にナノ加工室が設置 され、2009 年の産業科学研究所の大幅な改組に伴い、専任 6 研究分野を中心とした新しい組 織に充実強化されました。さらに、2010 年には文部科学省の低炭素研究ネットワークの大阪 大学サテライト拠点が設置されました。 また、産学官の学外ナノテクノロジー研究者のための共同施設として、2002 年のセンター 設立当初に、ナノテクノロジープロセスファンドリーが設置され支援活動を開始しました。 この活動は、2007 年には阪大複合機能ナノファウンダリへ、さらに 2012 年には、ナノテク ノロジープラットフォームに引き継がれており、現在、 「微細加工」および「分子・物質合成」 の2つの重要な役割を果たしています。 現在の産業科学ナノテクノロジーセンターは、専任 6 研究分野を中心として、所内兼任 3、 学内兼任 6、国内・外国人客員 3 の 18 研究分野からなり、さらに、ナノテクノロジーに特化 した供用最先端機器を設置するナノテク先端機器室が設けられています。幅広くハード、ソ フト、生体材料分野においてトップダウンとボトムアップナノプロセスの融合によるナノシ ステムの創成、さらに、理論および評価との研究融合による新たな展開を図ることで、ナノ テクノロジー研究を学際融合基盤科学技術へと発展させ、同時に学内・国内・国外の多彩な ネットワークを構築して、ナノテクノロジー研究の拠点となることを目指しています。 -1- ―2― ナノテクノロジー設備供用拠点 Nanotechnology Open Facilities ―3― ࢼࣀᶵ⬟ᮦᩱࢹࣂࢫ◊✲ศ㔝 ᩍᤵ ⏣୰ ⚽ ᩍᤵ ⚄ྜྷ ㍤ኵ ຓᩍ ᭹㒊 ᱻࠊ⸨ཎ ᏹᖹ ≉௵◊✲ဨ ᒸ⏣ ᾈ୍ Ꮫ㝔Ꮫ⏕ 㧗ぢ ⱥྐࠊNguyen Thi Van AnhࠊWei Tingtingࠊᕝ㇂ ୍ࠊᕷᮧ ᪸ኈࠊ ᒣᓮ ⩧ኴࠊᇼ ❳ஓࠊబࠎᮌ ⩼ Ꮫ㒊Ꮫ⏕ ᕥᾏ ᗣኴ㑻ࠊ୰ᮧ ᣅ㑻 ᢏ⾡⿵బဨ ᒾᇛ ᩥ ົ⿵బဨ ዟᮏ ᭸Ꮚ a) ᴫせ ᵝࠎ࡞እሙ(ගࠊ☢ሙࠊ㟁ሙࠊ ᗘ)ᑐࡋᕧᛂ⟅ࡋከᙬ࡞≀ᛶࢆ♧ࡍ㑄⛣㔠ᒓ㓟≀ᮦᩱ⩌ࢆᑐ ㇟ࡋࠊࢺࢵࣉࢲ࢘ࣥࢼࣀࢸࢡࣀࣟࢪ࣮(㉸ᚤ⣽ࢼࣀຍᕤᢏ⾡)࣎ࢺ࣒ࢵࣉࢼࣀࢸࢡࣀࣟࢪ࣮(㉸ⷧ ⭷࣭࣊ࢸࣟ᥋ྜ࣭ேᕤ᱁Ꮚ⤖ᬗᡂ㛗)ࢆ⼥ྜࡍࡿࡇࡼࡗ࡚ࠊᮃࡳࡢ⨨ࠊᮃࡳࡢ≀㉁࣭㟁Ꮚ≧ែࡢ ✵㛫ⓗ㓄⨨ḟඖᛶࢆࢼࣀࢫࢣ࣮࡛ࣝ௵ពไᚚࡍࡿᢏ⾡᪉ἲㄽࡑࡢ㓟≀ࢼࣀᵓ㐀ࡀ♧ࡍᇶ♏≀ ᛶࡢ⌮ゎࢆ㏻ࡋ࡚ࠊ㧗ᶵ⬟ࡘ┬࢚ࢿࣝࢠ࣮㥑ືࡢ᪂ཎ⌮ࢹࣂࢫࡢᵓ⠏ྲྀࡾ⤌ࢇ࡛࠸ࡿࠋᖺᗘࡢ ࡞ᡂᯝࢆ௨ୗヲ㏙ࡍࡿࠋ b) ᡂᯝ ࣭㓟ࣂࢼࢪ࣒࢘㸦VO 2 㸧ࡢ㟁Ꮚ┦ࢻ࣓ࣥほᐹ㟁Ẽఏᑟ≉ᛶࡢྠ ᐃ VO 2 ࡣࠊᐊ ㏆࡛㟁ሙࠊ☢ሙࠊග࡞ࡢእ㒊่⃭ࡼࡗ࡚ࠊᩘ ᱆ࡶཬࡪ㟁Ẽఏᑟ⋡ࡢኚࢆకࡗࡓ㔠ᒓ-⤯⦕య㟁Ꮚ┦㌿⛣ࢆ㉳ࡇ ࡍࡓࡵ᪂つࢹࣂࢫฟྥࡅࡓ᭷ᮃ࡞ᮦᩱ࡛࠶ࡿࠋࡇࡢ≀㉁ࡢ┦ ㌿⛣Ⅼ㏆ഐࡣࠊࢼࣀ㹼࣐ࢡࣟࢫࢣ࣮ࣝࡢ⤯⦕యࠊ㔠ᒓ㟁Ꮚ㞟ᅋࡀ ධࡾΰࡌࡗࡓ┦ΰྜ≧ែ࡞ࡗ࡚࠸ࡿࠋࡇࡢ✵㛫ⓗࣛࣥࢲ࣒ฟ ⌧ࡍࡿ㔠ᒓ㟁Ꮚ┦ࢻ࣓ࣥᑐࡋ࡚ࠊಶࠎ┦㌿⛣࣭⨨ไᚚࡀྍ ⬟࡞ࢀࡤࠊ㟁Ꮚ┦ࢻ࣓ࣥࢆࣅࢵࢺࡍࡿሗグ᠈ࠊ㟁Ꮚ┦㓄ิ ࢆไᚚࡋࡓ㟁Ꮚ┦ࢧ࣮࢟ࢵࢺ➼ࠊ᪂つ࢚ࣞࢡࢺࣟࢽࢡࢫࡢᒎ㛤ࡀ ᮇᚅ࡛ࡁࡿࠋᮏᖺᗘࡣࠊ㓟≀࢚ࣞࢡࢺࣟࢽࢡࢫᒎ㛤ࡢ࣮࢟࡞ࡿ 㟁Ꮚ┦ࢻ࣓ࣥࡢࡿ⯙࠸㟁Ẽఏᑟ≉ᛶࡢ㛵ಀ↔Ⅼࢆᙜ࡚◊ ✲ࢆ⾜ࡗࡓࠋTiO 2 (001)ᇶᯈୖࡢVO 2 ࡢ࣐ࢡࣟࢫࢣ࣮ࣝࢻ࣓ࣥࢆ ⏝ࡋࡓගᏛ㢧ᚤ㙾ほᐹ㟁Ẽఏᑟ ᐃࡢྠホ౯ࢆ⾜࠸ࠊ㔠ᒓ㟁 Ꮚ┦ࢻ࣓ࣥࡢ㓄⨨㸦୍ḟඖ࣭ḟඖࢻ࣓ࣥ㓄ิ(ᅗ 1(a)-(c)㸧ࡢ㐪 ࠸ࡼࡾࡁࡃ㟁Ẽఏᑟ≉ᛶࡀኚࡋࠊಶࠎࡢ㟁Ꮚ┦ࢻ࣓ࣥࡢ┦ ㌿⛣ࡼࡾᛴᓧ࡞ᢠ⋡ኚࡀ☜ㄆ࡛ࡁࡓ㸦ᅗ 1(d)㸧[ㄽᩥ 1]ࠋ ࡲࡓࠊAl 2 O 3 (0001)ᇶᯈୖࡢVO 2 ⷧ⭷࠾࠸࡚ࡣࠊᩘ༑㹼ᩘⓒࢼࣀ ࣓࣮ࢺࣝࡢࢻ࣓ࣥࡀᏑᅾࡋ࡚࠸ࡿゝࢃࢀ࡚࠾ࡾࠊࢻ࣓ࣥࢧ ࢬྠ⛬ᗘ࡞ࡿ 200 nmᖜࡢVO 2 ⷧ⭷ࢼࣀ࣮࣡ࣖ࠾࠸࡚ࡶࠊ ಶࠎࡢࢼࣀࢫࢣ࣮ࣝ㟁Ꮚ┦ࢻ࣓ࣥࡢ┦㌿⛣ࡀほ ࡉࢀ [ㄽᩥ 5]ࠊ ࢻ࣓ࣥࡢ┦㌿⛣࣭㓄⨨ࡀࢹࣂࢫ≀ᛶᕥྑࡍࡿ㔜せ࡞せᅉ࡛࠶ࡿ ࡇࢆぢฟࡋࡓࠋ㓟≀࢚ࣞࢡࢺࣟࢽࢡࢫࡢⓎᒎࡗ࡚㔜せ࡞ࡇ ᅗ 1 TiO2(001)ᇶᯈୖࡢ VO2 ⷧ⭷ࡢ㔠ᒓࢻ ࣓ࣥ(a)ḟඖ㓄⨨ࠊ(b)୍ḟඖ┤ิ㓄⨨ࠊ ࡣࠊࡇࡢ⮬↛࠼ࡽࢀࡓࢻࣞࢫ✵㛫ࢆዴఱ⏝ࡋ࡚࠸ࡃ (c)୍ḟඖ୪ิ㓄⨨ࠊ(d)ࢻ࣓ࣥ㓄⨨ࣃࢱ ࠸࠺ࡇ࡛࠶ࡾࠊࡇࡢᚓࡽࢀࡓ▱ぢࢆᚋࡢࣔࢵࢺࢹࣂࢫస〇 ࣮ࣥࡢ㐪࠸ࡼࡿᢠ- ᗘ᭤⥺ࠊཬࡧ㔠 ᒓࢻ࣓ࣥ㓄⨨㢧ᚤ㙾ീ ―4― άࡍࠋ ࣭ࢫࣆࢿࣝࣇ࢙ࣛࢺⷧ⭷࠾ࡅࡿⓎᛶ࣓࣮ࣔࣜ⌧㇟ ḟୡ௦┬㟁ຊ࢚ࣞࢡࢺࣟࢽࢡࢫࡢᢸ࠸ᡭࡋ࡚ᮇᚅࡉࢀࡿ㑄 ⛣㔠ᒓ㓟≀ࡢ㟁Ꮚ≉ᛶࢆእ㒊㟁⏺ࡼࡾኚㄪࠊไᚚࡍࡿ◊✲ࡀ ┒ࢇ⾜ࢃࢀ࡚࠸ࡿࠋ≉㏆ᖺࠊ㟁⏺ຠᯝࢺࣛࣥࢪࢫࢱᵓ㐀ࡢࢤ ࣮ࢺ⤯⦕ᒙ㟁⏺㉁ࢆ⏝࠸ࡓ㟁Ẽ㔜ᒙࢹࣂࢫ࠾࠸࡚ࠊ㟁⏺ ㄏ㉳㉸ఏᑟࠊ☢ᛶࢫࢵࢳࣥࢢ࡞ࡢ᪂ወ≀⌮⌧㇟ࡢⓎぢࡀ┦ḟ ࡄ࡞ࠊ㟁⏺ຠᯝࢆ⏝࠸ࡓ◊✲ࡀࡁ࡞㐍ᒎࢆ♧ࡋ࡚࠸ࡿࠋᮏ◊ ✲࡛ᡃࠎࡣࠊࡇࡢ㟁⏺ຠᯝᡭἲࢆࣇ࢙ࣛࢺ☢ᛶయ࡛࠶ࡿ Zn x Fe íx O 4 ࡢⷧ⭷㐺⏝ࡋࡓࡇࢁࠊ㏻ᖖࡢ㟼㟁࢟ࣕࣜࢻ࣮ࣆ ࣥࢢຠᯝ⏤᮶ࡣ␗࡞ࡿⓎᛶࡢ㟁⏺ຠᯝࡀ⏕ࡌࡿࡇࢆぢ ฟࡋࠊ㟁Ꮚ㍺㏦≉ᛶࢆྍ㏫࣭Ⓨⓗࢫࢵࢳࣥࢢ࡛ࡁࡿࡇ ࢆᐇドࡋࡓ[ㄽᩥ 2,3]ࠋ࢜ࣥᾮయ㟁⏺㉁ࢆࡋࡓṇ㸭㈇ࡢࢤ࣮ࢺ 㟁ᅽࡢ༳ຍࡼࡾ㸦ᅗ 2 (a)㸧ࠊ㟁Ẽఏᑟ࠾ࡼࡧ☢Ẽᢠ㸦ᅗ 2 (b)㸧 ࡢⓎⓗ࡞ቑຍ㸭ῶᑡࡀࣇ࢙ࣛࢺࢳࣕࢿࣝㄏ㉳ࡉࢀࡿࡇ ࡀศࡗࡓࠋࡇࢀࡽ㍺㏦≉ᛶࡢኚࡣࠊࢳࣕࢿࣝ⾲㠃࡛ࡢ㓟 ⣲⤌ᡂࡢኚࡼࡾ༙ᐃ㔞ⓗㄝ᫂ࡍࡿࡇࡀ࡛ࡁࡓࠋ㟁⏺㉁ࡀ ᅗ 2 (a) 㟁Ẽ㔜ᒙࢹࣂࢫᵓ㐀ࠋG, D, S, IL ࡣࡑࢀࡒࢀࠊࢤ࣮ࢺࠊࢻࣞࣥࠊࢯ࣮ࢫ㟁ᴟࠊ ⏘ࡳฟࡍᕧ㟁⏺ࡼࡿ㓟㑏ඖᛂࢆⓎᛶ㟁⏺ຠᯝࡢ㉳ ࢜ࣥᾮయࢆ♧ࡍࠋ (b) 300 K ࠾ࡅࡿ☢Ẽ ※ࡋ࡚ᥦၐࡋ࡚࠸ࡿࠋ ᢠ್ࡢⓎᛶࢫࢵࢳࣥࢢຠᯝࠋ ࣭㔠ᒓ㓟≀ 3 ḟඖࢼࣀ㉸ᵓ㐀〇᪂ወࢼࣀ≀ᛶࡢゎ᫂ ᶵ⬟ᛶ㔠ᒓ㓟≀ࡢࢼࣀᵓ㐀ࡼࡿ㧗ᶵ⬟ฟࢆ┠ⓗࡋ࡚ࠊᑐ㇟≀㉁ࡢᡂ㛗⨨ࠊᙧ≧ࠊࢧࢬ ࢆ 3 ḟඖ᪉ྥ࡚࡛⢭☜ไᚚࡋ࡚స〇ࡍࡿ⊂⮬ࢼࣀ㉸ᵓ㐀〇ᢏ⾡ࠕ3 ḟඖࢼࣀࢸࣥࣉ࣮ࣞࢺPLDἲࠖ [ㄽᩥ 4,6]ࢆ☜❧ࡋ࡚ࡁࡓࠋ ᅗ 3 3 ḟඖࢼࣀࢸࣥࣉ࣮ࣞࢺPLDἲ࡛స〇ࡋࡓᐊ ᙉ☢ᛶ༙ᑟయ(Fe,Zn) 3 O 4 (FZO)༢⤖ᬗࢼࣀ࢛࣮࢘ࣝ⣽⥺ᵓ㐀ࡑࡢ᩿㠃㏱㐣㟁Ꮚ㢧ᚤ㙾(TEM)ീࢆ♧ࡍࠋTEMീࡼࡾࠊFZOࢼࣀ࢘ ࢛࣮ࣝࡀᇶᯈ࡛࠶ࡿ 3D-MgOഃ㠃ࡽ㠃ෆ᪉ྥ࢚ࣆࢱ࢟ࢩࣕࣝᡂ㛗ࡋ࡚࠾ࡾࠊ㧗ရ㉁࡞⤖ᬗᵓ㐀ࢆ᭷ ࡋ࡚࠸ࡿࡇࡀࢃࡿࠋࡇࡢᡭἲ࡛ ࡣࠊ௵ពᙧ≧ࡢ㑅ᢥࠊ㠃ෆ࡛ཌࡳࢆ ไᚚࡋࡓࢼࣀᵓ㐀ࡢస〇ࡶྍ⬟࡛࠶ ࡿࠋᅗ 4(a)㉸ᕧ☢Ẽᢠຠᯝࢆ♧ ࡍ ࣌ ࣟ ࣈ ࢫ ࢝ ࢺ Mn 㓟 ≀ (La,Pr,Ca)MnO 3 (LPCMO)ࡢࠊࢼࣀ࣎ ࢵࢡࢫᵓ㐀ࢆ♧ࡍࠋࢼࣀ࡛ࣞ࣋ࣝ⢭ ᐦ✵㛫ไᚚࡉࢀࠊ⮬ᅾࢧࢬࢆ ㄪᩚࡋࡓࢼࣀ㉸ᵓ㐀యࡢ〇ࢆᐇ⌧ ࡛ࡁࡿࠋ◳X⥺ග㟁Ꮚศගࢆ⏝࠸ࡓ㟁 Ꮚ≧ែゎᯒࡽࠊࢼࣀ࣎ࢵࢡࢫヨᩱ ࡛ࡣ㏻ᖖࡢⷧ⭷ヨᩱࡼࡾ 50 K௨ୖ㧗 ࠸ ᗘࡽ⤯⦕┦ࡢ㌿⛣ࡀ⏕ࡌࡿ ࡇࢆ᫂ࡽࡋࡓࠋ㌿⛣Ⅼࡢୖ᪼ ࡣ 3 ḟඖࢼࣀᵓ㐀ᙧ≧⏤᮶ࡍࡿࡇ ࡀ♧၀ࡉࢀࠊࢼࣀᵓ㐀ࡀ㑄⛣㔠 ᅗ 3 ⊂⮬ࢼࣀᵓ㐀〇ᢏ⾡࡛స〇ࡋࡓᐊ ᅗ 4 (a) LPCMO ࢼࣀ࣎ࢵࢡࢫࡢቨ ᒓ㓟≀ࡢ࢚ࣞࢡࢺࣟࢽࢡࢫᶵ⬟㛤 ᙉ☢ᛶ༙ᑟయ(Fe2.5Zn0.5)O4 ࡢ(a)࢚ࣆࢱ࢟ ཌไᚚᛶࠋ (b) ග㟁Ꮚࢫ࣌ࢡࢺࣝ ࢩࣕࣝࢼࣀ⣽⥺ᵓ㐀ࠊ(b)FZO ࢼࣀ⣽⥺ࠊ ࡢࢧࢸࣛࢺࣆ࣮ࢡᙉᗘࡢ ᗘ ᣅ࣭≉ᛶྥୖ᭷⏝࡛࠶ࡿࡇࢆ♧ (c) FZO/3D-MgO ࡢ᩿㠃 TEM ീࠋ ౫Ꮡᛶࠋ ࡍⓎᒎⓗᡂᯝ࡛࠶ࡿࠋ3 ḟඖࢼࣀ㉸ᵓ 㐀యࢆᇶ┙ࡋ࡚ࠊࢼࣀ≉ᛶࡢホ౯ࡑࢀࢆ᭱㝈ά⏝ࡋࡓ᪂つࢼࣀ㟁Ꮚࢹࣂࢫᶵ⬟ࡢ㛤ᣅࢆヨࡳ ࡚࠸ࡿࠋ ―5― ࢼࣀᴟ㝈ࣇࣈࣜࢣ࣮ࢩࣙࣥ◊✲ศ㔝 ᩍᤵ ᩍᤵ ຓᩍ ≉௵◊✲ဨ ᐈဨᩍᤵ ᐈဨᩍᤵ Ꮫ㝔Ꮫ⏕ Ꮫ㒊Ꮫ⏕ ົ⿵బဨ ྜྷ⏣ 㝧୍ 㔠ᓠ ㏆⸨ ᏕᩥࠊⳢ ୍ ⚄ᡞ ṇ㞝 ᑠ᪉ ཌࠊᑠᯘ ோ ᰘ⏣ ⿱ᐇ ᵽᕝ ᬛὒࠊబࠎᮌ ὈࠊἙཎ ᶞࠊ㔝⃝ ୍ኴࠊᮤ ு す ⪽ᚿࠊᒣᒽ ඃ ༓௦ Ᏻዉ a) ᴫせ ᴟ㝈ࢼࣀࣇࣈࣜࢣ࣮ࢩࣙࣥࢆᐇ⌧ࡍࡿࡓࡵࠊ㛫࣭✵㛫ᛂゎᯒᡭἲࢆ⏝࠸࡚㔞Ꮚࣅ࣮࣒ᴟ㝈ࢼ ࣀࣇࣈࣜࢣ࣮ࢩࣙࣥࡢᇶ♏㐣⛬ࢆゎ᫂ࡋࠊ㔞Ꮚࣅ࣮࣒ㄏ㉳ᛂࡢไᚚ᪉ἲࡢ㛤Ⓨࢆ┠ᣦࡋ࡚࠸ࡿࠋࡑ ࢀࡽࢆᨭ࠼ࡿࡓࡵୡ⏺᭱㧗㛫ศゎ⬟ࢆ᭷ࡍࡿࣇ࢙࣒ࢺ⛊࣭ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࢩࢫࢸ࣒࠾ࡼ ࡧࣇ࢙࣒ࢺ⛊㛫ศゎ㟁Ꮚ㢧ᚤ㙾ࡼࡿࠊࢼࣀ✵㛫ෆࡢ㔞Ꮚࣅ࣮࣒ㄏ㉳㧗㏿⌧㇟ࡢゎ᫂㛵ࡍࡿ◊✲ࢆ ⾜ࡗ࡚࠸ࡿࠋ b) ᡂᯝ ࣭ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫྥࡅࡓ㉸▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒Ⓨ⏕ࡢ◊✲ ᴟ㝈㛫ศゎ⬟ࢆ᭷ࡍࡿࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫᐇ⌧ྥࡅࡓࠊ10 ࣇ࢙࣒ࢺ⛊௨ୗ㉸▷ࣃࣝࢫ㟁Ꮚ ࣅ࣮࣒ࡢⓎ⏕࣭ィ ἲࡢ☜❧ࢆ⾜ࡗࡓࠋ㉸▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒ࢆⓎ⏕ࡍࡿࡓࡵࠊࣇ࢙࣒ࢺ⛊㟁Ꮚ㖠ࠊ 㧗ḟᕪ⿵ṇ☢Ẽࣃࣝࢫᅽ⦰ჾࡢᑟධࢆ⾜ࡗࡓࠋⓎ⏕ࡋࡓ㉸▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒ࡽᨺᑕࡉࢀࡿ࣐ࢡ ࣓࣮ࣟࢺࣝ㡿ᇦࡢἼ㛗ࢆࡶࡘ㉥እගࢆࠊ࣐ࢣࣝࢯࣥᖸ΅ィࡼࡾᚓࡽࢀࡿ㛫Ἴᙧࢆゎᯒࡋࠊ㟁Ꮚࣅ ࣮࣒ࣃࣝࢫᖜࢆィ ࡋࡓࠋᖸ΅ィ࡛ࡣࠊMCT㸦HgCdTe㸧᳨ฟჾࢆ⏝࠸࡚ࠊ▷ࣃࣝࢫ㟁Ꮚࣅ࣮࣒ࢆ ᐃ ࡛ࡁࡿࡼ࠺▷Ἴ㛗ࡢ㟁☢Ἴࢆィ ࡛ࡁࡿࡼ࠺ࡋࡓࠋࡑࡢ⤖ᯝࠊ㟁Ⲵ㔞㸸2.1 pC ࡢࠊ1 fs ࡢ rms 㟁 Ꮚࣅ࣮࣒ࣃࣝࢫࡢⓎ⏕࣭ィ ᡂຌࡋࡓࠋᚋࠊࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫᛂ⏝ࢆ⾜࠺ࠋ ࣭⣸እࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡿࢻࢹ࢝ࣥ୰ࡢࣝ࢟ࣝࣛࢪ࢝ࣝ⏕ᡂ㐣⛬ࡢ◊✲ ᰾⇞ᩱฎ⌮ࡢᢳฟ⁐፹࡛࠶ࡿࢻࢹ࢝ࣥࡣࠊᨺᑕ⥺ศゎࡢほⅬࡸࠊࣞࢪࢫࢺᮦᩱࡢࣔࢹࣝྜ≀ ࡋ࡚ᨺᑕ⥺Ꮫึᮇ㐣⛬ศゎ㐣⛬ࢆゎ᫂ࡍࡿᚲせࡀ࠶ࡿࠋᮏ◊✲ࡢ┠ⓗࡣࠊࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ ࣜࢩࢫࢩࢫࢸ࣒ࢆ⣸እ㡿ᇦᣑᙇࡋ࡚ R·ࡢ㐣Ώ྾㛫ᣲືࢆほ ࡋࠊR·ࡢ⏕ᡂ㐣⛬ࢻࢹ࢝ࣥࡢᨺᑕ ⥺Ꮫึᮇ㐣⛬ࡢ㛵ಀࢆゎ᫂ࡍࡿࡇ࡛࠶ࡿࠋࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡾἼ㛗 240 nm ࡛㐣 Ώ྾㛫ᣲືࢆ ᐃࡍࡿࡇᡂຌࡋࡓࠋ240 nm ࠾ࡅࡿ㐣Ώ྾ࡢ㛫ᣲືࡣࠊ7 ps ࡛ᛴ⃭⏕ᡂ ࡋࠊࡑࢀ௨㝆ࡣ⏕ᡂࡏࡎࡺࡿࡸῶ⾶ࡋࡓࠋࡇࢀࡲ࡛ᨺᑕ⥺Ꮫึᮇ㐣⛬࠾࠸࡚ࢪ࢙࣑ࢿ࣮ࢺ ࢜ࣥ⤖ྜࢆ⤒ࡓບ㉳≧ែࡽࡢࣝ࢟ࣝࣛࢪ࢝ࣝ⏕ᡂࣔࢹ࡛ࣝࡣࠊࢪ࢙࣑ࢿ࣮ࢺ࢜ࣥ⤖ྜࡼࡿ ࡺࡗࡃࡾࡋࡓ⏕ᡂᣲືࡀほ ࡉࢀ࡞ࡗࡓࡇࢆㄝ࡛᫂ࡁ࡞࠸ࠋࡇࢀࡽࡢᐇ㦂⤖ᯝࡣࠊ㏆ᖺᡃࠎࡀᥦ ࡋ࡚࠸ࡿບ㉳ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ࡞ࡢ▷ᑑάᛶ✀ࡢ㔜࡞ᐤࢆ♧ࡋ࡚࠸ࡿࠋ ―6― ࣭࣏ࣜࣝࣇ࣓ࢳࣝࢫࢳࣞࣥࡢ┤᥋࢜ࣥἲࡼࡿࣇ࢙ࢽࣝࢲ࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ⏕ᡂ㐣⛬ࡢ ◊✲ ༙ᑟయᚤ⣽ຍᕤ࠾ࡅࡿࣞࢪࢫࢺᮦᩱࡢᨺᑕ⥺Ꮫᇶ♏㐣⛬ࢆゎ᫂ࡍࡿࡓࡵࠊࣔࢹࣝྜ≀ࡋ࡚ ࣏ࣜĮ࣓ࢳࣝࢫࢳࣞࣥ㸦PAMS㸧ࡢࣇ࢙ࢽࣝࢲ࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥࡢ⏕ᡂ㐣⛬ࢆ┤᥋࢜ࣥἲࣇ ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡾ◊✲ࡋࡓࠋPAMSࡢ┤᥋࢜ࣥࡼࡿࢲ࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ ࡢᣲືࢆほ ࡍࡿࡓࡵࠊ࢝ࢳ࢜ࣥ⛣ືᛂࢆࡋ࡞࠸▱ࡽࢀ࡚࠸ࡿࢸࢺࣛࣄࢻࣟࣇࣛࣥ㸦THF㸧ࢆ⁐ ፹㑅ᢥࡋࠊ⏕ᡂࡍࡿ⁐፹㟁Ꮚࢆᤕᤊࡍࡿࡓࡵࢪࢡ࣓ࣟࣟࢱࣥ(CH 2 Cl 2 )ࢆ㸯Mຍ࠼ࡓࠋࡑࡢ⤖ᯝ⁐ ᾮ୰࡛PAMSࡢ┤᥋࢜ࣥࡼࡿࢲ࣐࣮ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥࡢ㐣Ώ྾ࡀἼ㛗 1200 nm࡛ほ ࡉࢀࠊ ࡑࡢ⏕ᡂᐃᩘࢆ 2×1011 s-1⛬ᗘぢ✚ࡶࡿࡇึࡵ࡚ᡂຌࡋࡓࠋ ࣭ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡿỈ㟁Ꮚ⏕ᡂ㐣⛬ࡢ◊✲ Ỉᨺᑕ⥺ࢆ↷ᑕࡍࡿࠊỈ๓㟁ᏊࡽỈ㟁Ꮚࡀᙧᡂࡉࢀࠊᵝࠎ࡞ᚋ⥆ᛂࢆᘬࡁ㉳ࡇࡍࡇࡀ ࡇࢀࡲ࡛ࡢ◊✲ࡼࡾࡼࡃ▱ࡽࢀ࡚࠸ࡿࠋࡋࡋࠊ㛫ศゎ⬟㊊ࡽࠊ㟁Ꮚ⥺ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ ࡼࡿỈ㟁ᏊࠊỈ๓㟁Ꮚࡢ⏕ᡂᣲືࡣゎ᫂ࡉࢀ࡚࠸࡞ࡗࡓࠋࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࢆ⏝࠸ ࡚ࠊỈࡢ㐣Ώ྾㛫ᣲືࢆ 450 nm-1700 nm ࡛ ᐃࡋࠊỈ๓㟁ᏊࡽỈ㟁Ꮚࡀᙧᡂࡉࢀࡿ࠸࠺ 2 ≧ែࣔࢹࣝࢆ௬ᐃࡋࠊ ᐃ⣔ࡢ㛫ศゎ⬟ࢆ⪃៖ࡋࡓࠋྛἼ㛗࡛ࡢ㐣Ώ྾㛫ᣲືࡽࠊỈ๓㟁Ꮚ ࠾ࡼࡧỈ㟁Ꮚࡢࢲࢼ࣑ࢡࢫࢆᚓࡿࡇࡀ࡛ࡁࡓࠋྠỈ๓㟁ᏊࠊỈ㟁Ꮚࡢ㐣Ώ྾ࢫ࣌ࢡࢺ ࣝኚࢆᚓࡿࡇᡂຌࡋࡓࠋỈ๓㟁Ꮚࡣࠊ㏆㉥እ㡿ᇦ࡛ࢫ࣌ࢡࢺࣝࡢࣈ࣮ࣝࢩࣇࢺࡀぢࡽࢀࠊỈ 㟁Ꮚ࡛ࡣࢫ࣌ࢡࢺࣝࡣࢇࢩࣇࢺࡋ࡞ࡗࡓࠋ௨ୖࡢࡇࡽࠊỈ୰ࡢ㟁Ꮚࡢ⁐፹㐣⛬ࡣࠊỈ ๓㟁Ꮚࡢẁ㝵࡛ỈศᏊࡀ㓄ྥࡋࠊỈ㟁Ꮚࡣ p ≧ែࡽ s ≧ែࡢ㟁Ꮚ≧ែ㛫㑄⛣ࡼࡾỈ๓㟁Ꮚ ࡽᙧᡂࡉࢀࡿࡇࡀ᫂ࡽ࡞ࡗࡓࠋ ࣭ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡿࣝࢥ࣮ࣝ୰ࡢ⁐፹๓㟁Ꮚ⏕ᡂ㐣⛬ࡢ◊✲ Ỉࡸࣝࢥ࣮ࣝ࡞ࡢᴟᛶ⁐፹୰࡛ࡣࠊ࢜ࣥࡉࢀࡓ㟁Ꮚࡣ࿘ᅖࡢศᏊࢆ㓄ྥࡉࡏ࡚⁐፹㟁Ꮚ ࡞ࡾࠊᵝࠎ࡞ᚋ⥆ᛂࢆᘬࡁ㉳ࡇࡍࠋࣝࢥ࣮ࣝ୰࡛ࡢ㟁Ꮚࡢ⁐፹㐣⛬ࡢయീࢆゎ᫂ࡍࡿࡇࡀ᭦ ࡞ࡿᛂ⏝Ⓨᒎࡢࡓࡵࡣᚲせ࡛࠶ࡿࠋࣇ࢛ࢺ࢝ࢯ࣮ࢻ RF 㟁Ꮚ㖠ࣛࢼࢵࢡࢆ⏝࠸ࡓࣇ࢙࣒ࢺ⛊ࣃࣝࢫ ࣛࢪ࢜ࣜࢩࢫἲࡼࡾࠊ࢚ࢱࣀ࣮ࣝ࠾ࡼࡧ࢜ࢡࢱࣀ࣮ࣝ୰࡛㟁Ꮚࡢ⁐፹㐣⛬࠾ࡅࡿ㛫ศゎࢫ࣌ࢡ ࢺࣝኚࡢほ ᡂຌࡋࡓࠋ㏆㉥እ㡿ᇦࡽྍどᇦࡢ㐃⥆࡛ࡁ࡞ࢫ࣌ࢡࢺࣝࢪࣕࣥࣉ㐃⥆ⓗ࡛ ẚ㍑ⓗᑠࡉ࡞ࢫ࣌ࢡࢺࣝࢩࣇࢺࢆほ ࡋࡓࠋ㟁Ꮚࡢ⁐፹㐣⛬࠾࠸࡚ࠊ㟁Ꮚ≧ែ㑄⛣ศᏊ㓄ྥࡼ ࡿ⦆㐣⛬ࡀྠ㉳ࡁࡿ࠸࠺ࣔࢹࣝࢆᵓ⠏ࡋࡓࡇࡼࡾࠊᐇ㦂⤖ᯝࢆࡼࡃㄝ᫂ࡍࡿࡇࡀ࡛ࡁࡓࠋ ࢜ࢡࢱࣀ࣮࡛ࣝࡣࠊ1900 nm ㏆᭦㧗㏿⏕ᡂࡋῶ⾶ࡍࡿ㟁Ꮚࡢ୰㛫άᛶ✀ࡀほ ࡉࢀࠊࢻࣛ㟁 Ꮚࡀほ ࡉࢀࡓྍ⬟ᛶࡶ⪃࠼ࡽࢀࡿࠋ⁐፹㟁Ꮚ⏕ᡂ࣓࢝ࢽࢬ࣒ࡘ࠸࡚㔜せ࡞▱ぢࢆᚓࡿࡇࡀ࡛ࡁ ࡓࠋ ―7― ࢼࣀᵓ㐀࣭ᶵ⬟ホ౯◊✲ศ㔝 ᩍᤵ ᩍᤵ ຓᩍ ≉௵◊✲ဨ Ꮫ㝔Ꮫ⏕ ົ⿵బဨ ➉⏣ ⢭ ྜྷ⏣ ⚽ே ⚄ෆ ┤ே㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥᥇⏝㸧 Ꮮ ⛉ᣲ ෆᒣ ᚭஓࠊ┦㤿 ኴ㑻ࠊ๓⣡ ぬࠊᑠᕝ ὒᖹࠊ⋢ᒸ ṊὈ 㧗℩ ⣖Ꮚ a) ᴫせ 㟁Ꮚ㢧ᚤ㙾ࡼࡿࢼࣀᵓ㐀ࡢゎᯒࡸᶵ⬟ࡢホ౯ࡣࠊᶵ⬟ᛶᮦᩱࢆᨵⰋࡲࡓࡣ᪂つ㛤Ⓨࡍࡿୖ࡛ᚲせ ྍḞ࡛࠶ࡿࠋ≉ࠊ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾(TEM)ࢆ⏝࠸ࡓࢼࣀᵓ㐀࣭ࢼࣀࢹࣂࢫࡢ⏕ᡂࣉࣟࢭࢫࡢホ౯ࠊ ཬࡧᶵ⬟Ⓨ⌧୰ࡢࡑࢀࡽࡢホ౯ࡣࠊᚋ┈ࠎ㔜せ࡞ࡿ⪃࠼ࡽࢀࡿࠋᙜ◊✲ศ㔝࡛ࡣࡇࢀࡲ࡛ࠊẼ య୰ࡢࢼࣀᵓ㐀ࡸࢼࣀࢹࣂࢫࢆཎᏊࢫࢣ࣮࡛ࣝほᐹྍ⬟࡞⎔ቃไᚚᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾(ETEM)ࢆ㛤Ⓨ ࡋ࡚ࡁࡓࠋࡇࡢ ETEM ࢆά⏝ࡋࠊᵝࠎ࡞Ẽయᅛయࡢ⏺㠃࡛㉳ࡇࡿືⓗ࡞⌧㇟ࢆゎᯒࡍࡿࡇ࡛ࠊࢼࣀ ᵓ㐀࣭ࢼࣀࢹࣂࢫࡢ⏕ᡂ㐣⛬ࡢゎ᫂ࡸࠊ᪂つᶵ⬟ᛶᮦᩱࡢ㛤Ⓨྲྀࡾ⤌ࢇ࡛࠸ࡿࠋලయⓗࡣࠊ୍㓟 Ⅳ⣲(CO)㓟ᛂ⎔ቃୗ࡛ࡢ㔠ࢼࣀ⢏Ꮚゐ፹ࡸⓑ㔠ࢼࣀ⢏Ꮚゐ፹࡞ࡢཎᏊᵓ㐀ࡢኚࡸࠊ࣮࢝࣎ࣥ ࢼࣀࢳ࣮ࣗࣈ(CNTs)௦⾲ࡉࢀࡿࢼࣀᵓ㐀ࡢ⏕ᡂ㐣⛬ࢆཎᏊࢫࢣ࣮࡛ࣝࡑࡢሙほᐹࡋࠊࡑࢀࡽࡢ⏺㠃⌧ ㇟ࡢ⫼ᚋ₯ࡴ≀⌮ࢆ◊✲ࡋ࡚࠸ࡿࠋ b) ᡂᯝ ࣭ࢭࣜᢸᣢ㔠ࢼࣀ⢏Ꮚゐ፹ࡢࢼࣀᵓ㐀ࡢゎ᫂ 㓟ࢭ࣒ࣜ࢘ᢸᣢࡉࢀࡓ㔠ࢼࣀ⢏Ꮚゐ፹ 㸦Au/CeO 2 㸧ࡣࠊCOࡢ㓟ᛂᑐࡋ࡚ᐊ ௨ୗ࡛ ࡶ㧗࠸ゐ፹άᛶࢆ♧ࡍࡇࡀ▱ࡽࢀ࡚࠸ࡿࠋ㔠ࢼࣀ ⢏Ꮚ㔠ᒓ㓟≀ᢸయࡢ⏺㠃ࡀࠊゐ፹ᛂࡢ㐍⾜ 㔜せ࡞ᙺࢆᯝࡓࡋ࡚࠸ࡿ⪃࠼ࡽࢀ࡚࠸ࡿࡀࠊࡑ ࡢ࣓࢝ࢽࢬ࣒ࡣ᫂ࡽࡉࢀ࡚࠸࡞࠸ࠋAu/CeO 2 ゐ፹ ࡢᛂ࣓࢝ࢽࢬ࣒ࢆゎ᫂ࡍࡿࡣࠊᐇ㝿ࡢゐ፹ᛂ ⎔ቃୗ࡛Au/CeO 2 ࢆཎᏊࢫࢣ࣮࡛ࣝࡑࡢሙほᐹࡍࡿ ࡇࡀ㔜せ࡛࠶ࡿࠋ ᮏ◊✲࡛ࡣࠊAu/CeO 2 ゐ፹ࢆᯒฟỿẊἲ࡛ㄪ〇ࡋࠊ ᕪ ⿵ ṇ ETEM ࢆ ⏝ ࠸ ࡚ CO 㓟 ᛂ ⎔ ቃ ୗ (CO 1vol.%/airΰྜ࢞ࢫ୰ࠊᐊ )࡛Au/CeO 2 ゐ፹୰ࡢ㔠ࢼ ࣀ⢏Ꮚࢆほᐹࡋࡓࠋᅗ 1 ࡣࠊAu/CeO 2 ゐ፹ࡢETEM ほᐹ⤖ᯝࢆ♧ࡋࠊᅗ 1 ୰ࡢIIIࡢ㧗ಸ⋡ീࢆࡑࢀࡒ ࢀᅗ 1(b), (c)♧ࡍࠋᅗ 1(b)ࡢ㔠ࢼࣀ⢏Ꮚᢸయࡢ⏺ 㠃ࢆヲ⣽ほᐹࡋࡓ⤖ᯝࠊᅗ 2 ࡢ 1 ẁ┠ࡢࡼ࠺ࠊ 㛫⤒㐣ࡶ⣙ 3 nmࡢ㔠ࢼࣀ⢏Ꮚࡀࢫࢸࢵࣉⓗ 0.09 nmᖹ⾜⛣ືࡋࠊഹᅇ㌿ࡋ࡚࠸ࡿࡇࡀศ ࡗࡓࠋᅗ 2 ࡢ 2 ẁ┠ࡢࢩ࣑࣮ࣗࣞࢩࣙࣥ⤖ᯝࡽ ࡶࠊ㔠ࢼࣀ⢏Ꮚࡢ⏺㠃ᵓ㐀ࡢኚࡀ☜ㄆࡉࢀࡓࠋ ୍᪉ࠊᅗ 1(c)ࡢ㔠ࢼࣀ⢏Ꮚࡢ㛫ኚࢆㄪࡿࠊ ᅗ 3(a)ࡢࡼ࠺㔠ࢼࣀ⢏Ꮚࡀ࠶ࡿⅬࢆ୰ᚰࡋ࡚ᅇ ㌿ࡍࡿࡇࡀ᫂ࡽ࡞ࡗࡓࠋᅗ 3(a)ࢆࣇ࣮࢚ࣜኚ ― 8― ᅗ 1 Au/CeO2 ゐ፹୰ࡢ㔠ࢼࣀ⢏Ꮚࡢᕪ⿵ṇ ETEM ീ ᅗ 2 ゐ፹άᛶⓎ⌧୰ࡢ㔠ࢼࣀ⢏Ꮚࡢẁ㝵ⓗ࡞⛣ື ࡋࡓ⤖ᯝࠊ㔠ࢼࣀ⢏ᏊࡣCeO 2 ᢸయୖ࡛±4°ᅇ ㌿ࡋ࡚࠸ࡿࡇࡀศࡗࡓ(ᅗ 3(b)-(d))ࠋ ௨ୖࡢࡼ࠺ࠊAu/CeO 2 ゐ፹୰ࡢ㔠ࢼࣀ⢏ ᏊࡣࠊETEMほᐹ୰CO㓟ᛂ⎔ቃୗ࡛ྍ ㏫ⓗࡘࢫࢸࢵࣉⓗᖹ⾜⛣ືᅇ㌿ࢆࡍࡿ ࡇࢆぢฟࡋࡓࠋࡇࡢ⤖ᯝࡣࠊAu/CeO 2 ゐ፹ ୰ࡢ㔠ࢼࣀ⢏ᏊCeO 2 ᢸయࡢ᥋ྜࡀᙉᅛ࡛ ࡣ࡞࠸ࡇࢆពࡋ࡚࠸ࡿࠋࡘࡲࡾࠊCeO 2 ⾲㠃ࡢ୍㒊Ꮡᅾࡍࡿ㓟⣲✵᱁ᏊⅬ࡛ࠊCeཎ ᏊAuཎᏊࡀ┤᥋⤖ྜࡍࡿࡇ࡛ࠊ㔠ࢼࣀ⢏ Ꮚࡀᢸయ㘌ࢆୗࢁࡋࡓࡼ࠺⦆ࡸᅛᐃ ࡉࢀ࡚࠸ࡿ⤖ㄽࡅࡽࢀࡿࠋᮏ◊✲࡛᫂ࡽ ࡉࢀࡓ㔠ࢼࣀ⢏ᏊCeO 2 ᢸయࡢ⏺㠃 ࡢཎᏊᵓ㐀ࡢኚࡣࠊAu/CeO 2 ゐ፹ࡢCO㓟 ᛂ࣓࢝ࢽࢬ࣒ࢆゎ᫂ࡍࡿୖ࡛ᴟࡵ࡚㔜せ࡛ ࠶ࡿࠋ ᅗ 3 ゐ፹άᛶⓎ⌧୰ࡢ㔠ࢼࣀ⢏Ꮚࡢᅇ㌿ ࣭ᡂ㛗୰࠾ࡅࡿ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢᙧ≧ኚࡢゎᯒ ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈ(CNTs)ࡣࠊ≉Ṧ࡞ࢼࣀᵓ㐀ࢆࡶࡘࡓࡵඃࢀࡓ㟁Ẽⓗᛶ㉁࣭ᶵᲔⓗᛶ㉁ࢆ♧ࡍ ࡇࡀ▱ࡽࢀ࡚࠸ࡿࠋ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ≉ᛶࡣࠊ┤ᚄࡸ࢟ࣛࣜࢸࡔࡅ࡛࡞ࡃࠊḞ㝗ࡼࡗ࡚ኚ ࡍࡿࡇࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋ୍⯡ⓗ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡣᡂ㛗୰Ḟ㝗ࡀධࡾࠊ⤖ᯝࡋ࡚࣮࢝ ࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ᭤ࡀࡾࡸᆒ୍࡞ᒙ㛫ࡢ⏕ᡂࠊࢳ࣮ࣗࣈࡢ┤ᚄࡢኚࠊࢢࣛࣇࢺᒙᩘࡢኚ࡞ ࡀ⏕ࡌࡿࠋ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢᑗ᮶ⓗ࡞ᐇ⏝ࡢࡓࡵࡣࠊḞ㝗ࢆᣢࡓ࡞࠸࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗ ࣈࡢྜᡂᡭἲࡢ☜❧ࡀᚲ㡲࡛࠶ࡿࠋࡑࡇ࡛ᮏ◊✲࡛ࡣࠊࢼࣀ⢏ Ꮚゐ፹(NPCs)ࢆ⏝࠸ࡓᏛ╔(CVD)ἲࡼࡿ࣮࢝࣎ࣥࢼࣀࢳ ࣮ࣗࣈࡢᡂ㛗㐣⛬ࢆ ETEM ࡼࡗ࡚ࡑࡢሙほᐹࡋࠊ࣮࢝࣎ࣥࢼ ࣀࢳ࣮ࣗࣈᡂ㛗୰ࡢḞ㝗Ⓨ⏕࣓࢝ࢽࢬ࣒ࢆ᫂ࡽࡋࡓࠋ ࢼࣀ⢏Ꮚゐ፹ࡣ㕲-ࣔࣜࣈࢹࣥࢆ⏝࠸ࠊ600°C ࡛ࢭࢳࣞࣥ Ỉ⣲ࢆ ETEM ᑟධࡋࠊ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢᡂ㛗ࣉࣟࢭ ࢫࢆࡑࡢሙほᐹࡋࡓࠋᅗ 4 ♧ࡍࡼ࠺ࠊᡂ㛗୰࣮࢝࣎ࣥࢼ ࣀࢳ࣮ࣗࣈࡀ▷㛫࡛ࡁࡃ᭤ࡀࡿᵝᏊࡀほᐹࡉࢀࡓࠋࡑࡢ㝿ࠊ ◚⥺࡛♧ࡍࡼ࠺㕲-ࣔࣜࣈࢹࣥࢼࣀ⢏Ꮚࡢᙧ≧ࡀኚࡋ࡚࠸ ࡿࡇࡀศࡗࡓࠋࡲࡓࠊᅗ 5 ࡣ 11 ᒙࡽ࡞ࡿከᒙ࣮࢝࣎ࣥ ࢼࣀࢳ࣮ࣗࣈࡢᒙ㛫ࡀ 0.34 nm ࡽ 0.41 nm ᚎࠎᗈࡃ࡞ࡿ 㐣⛬ࢆ♧ࡍࠋᒙ㛫ࡢኚᑐࡋ࡚ࡶ㕲-ࣔࣜࣈࢹࣥࢼࣀ⢏Ꮚࡢᙧ ≧ࡀ㔜せ࡞ᙺࢆᯝࡓࡍࡇࡀ☜ㄆࡉࢀࡓࠋ ᅗ 4 ᡂ㛗୰ࡢ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ᭤ࡀࡾ ௨ୖࡢࡼ࠺ࠊETEM ࡼࡿ㧗ศゎ⬟ほᐹ ࡽࠊࢼࣀ⢏Ꮚゐ፹ࡢኚᙧࡀ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗ ࣈ୰ࡢᵝࠎ࡞Ḟ㝗ࡢ⏕ᡂࢆㄏⓎࡍࡿࡇࡀศ ࡗࡓࠋࡘࡲࡾࠊ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢ⏺ 㠃࡛ࡢࢼࣀ⢏Ꮚゐ፹ࡢഹ࡞ኚᙧࡀ࣮࢝࣎ࣥ ࢼࣀࢳ࣮ࣗࣈ୰ࡢ᭤ࡀࡾࡸᆒ୍࡞ᒙ㛫ࡢ⏕ ᡂ⧅ࡀࡿࡇࡀ☜ㄆࡉࢀࡓࠋࡉࡽࠊ࣮࢝࣎ ࣥࢼࣀࢳ࣮ࣗࣈࡢ┤ᚄࡢኚࡸࢢࣛࣇࢺ ᒙᩘࡢ㐪࠸ࡣࠊࢼࣀ⢏Ꮚゐ፹ࡢ✺ฟࡸ⦰ኚᙧ ⏤᮶ࡍࡿࡇࡶ᫂ࡽࡉࢀࡓࠋᮏ◊✲ࡽࠊ ᡂ㛗୰⏕ࡌࡿ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈࡢḞ㝗 ᅗ 5 ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈᡂ㛗୰ࡢᒙ㛫ࡢኚ ࢆไᚚࡍࡿࡓࡵࡢᣦ㔪ࢆᚓࡿࡇࡀ࡛ࡁࡓࠋ ― 9― ࢼࣀᶵ⬟ண ◊✲ศ㔝 ᩍᤵ ᩍᤵ ຓᩍ ᣍ࠸ᩍᤵ ≉௵ᩍᤵ ≉௵◊✲ဨ㸦ᐈဨᩍဨ㸧 ≉௵◊✲ဨ Ꮫ㝔Ꮫ⏕ ົ⿵బဨ ᑠཱྀ ከ⨾ኵ ⓑ ග㞼 ᒣෆ 㑥ᙪࠊ⢄⏣ ᾈ⩏ ᮏἙ ග༤ࠊᇛ ⏨ Jaichan Lee㸦ᖹᡂ 25 ᖺ 11 ᭶ 11 ᪥ࠥᖹᡂ 25 ᖺ 12 ᭶ 13 ᪥㸧 ᪫ Ⰻྖ㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥ࠥᖹᡂ 26 ᖺ 1 ᭶ 31 ᪥㸧 ㇏⏣ 㞞அࠊ Mohammad Shahjahan㸦ᖹᡂ 25 ᖺ 9 ᭶ 1 ᪥ࠥᖹᡂ 25 ᖺ 11 ᭶ 30 ᪥㸧 ࠊ ୖᮧ ┤ᶞ㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥ࠥᖹᡂ 25 ᖺ 11 ᭶ 30 ᪥㸧 Mohammad Shahjahanࠊ☾ᒣ ె⏠ࠊୖᮧ ┤ᶞࠊ⸨ᮧ ༟ຌࠊᑠ᳃ ᑦᖹࠊ Taufik Adi Nugrahaࠊబஂ㛫 ᜤᖹࠊ㧗ᓮ ⱥ㔛Ꮚࠊฟཱྀ ᨻᏕࠊ⸨ ுᏹࠊ すᲄ Ὀ⤂ ᇉෆ ⨾ዉᏊ a) ᴫせ ➨୍ཎ⌮ィ⟬ᇶ࡙ࡁࠊ✀ࠎࡢᅛయ⣔࣭⾲㠃⣔࡛Ⓨ⌧ࡍࡿ≀ᛶ࣭ᶵ⬟ࢆ⌮ㄽⓗண ࡍࡿ◊✲ࢆ⾜ࡗ ࡚࠸ࡿࠋⓎ⌧ᶵᵓࢆ㟁Ꮚ≧ែࡢ≉␗ᛶࡽ᫂ࡽࡍࡿࡇࡼࡗ࡚ࠊ᪂ࡓ࡞≀㉁ࢆタィࡍࡿ◊✲ࡶ ᒎ㛤ࡋ࡚࠸ࡿࠋࡲࡓࠊ➨୍ཎ⌮ィ⟬ᚲせ࡞ࡿᇶ♏⌮ㄽࡸィ⟬ᡭἲࡢ㛤Ⓨࡶྲྀࡾ⤌ࢇ࡛࠸ࡿࠋ b) ᡂᯝ ࣭㑄⛣㔠ᒓ࠾ࡼࡧࡑࡢྜ≀⣔ࡢ㟁Ꮚ≧ែ 㑄⛣㔠ᒓඖ⣲ࡣከ✀ࡢඖ⣲ྜ㔠ࡸྜ≀ࢆࡘࡃࡾከᒱ ࢃࡓࡿ≀ᛶࢆ♧ࡍࠋᡃࠎࡣࠊ✀ࠎࡢ㑄⛣㔠ᒓ㓟≀ὀ┠ ࡋࠊࡑࡢ㟁Ꮚ≧ែࡢ≉␗ᛶࡑࢀ㉳ᅉࡍࡿ≀ᛶⓎ⌧ᶵᵓࡢ ゎ᫂ࢆ┠ᣦࡋ࡚࠸ࡿࠋAࢧࢺ⨨ᆺ࣌ࣟࣇࢫ࢝ࢺ㓟≀ AA’ 3 B 4 O 12 ࡣ༢⣧࡞࣌ࣟࣇࢫ࢝ࢺᆺ㓟≀ABO 3 ࡢAࢧ ࢺࢆ✀㢮ࡢ㝧࢜ࣥAA’࡛༨᭷ࡉࡏࡓ㓟≀⣔࡛☢ᛶࢆ ࡣࡌࡵከᵝ࡞㟁Ꮚ≀ᛶࢆ♧ࡍࠋCaCu 3 B 4 O 12 (B=Ti, Ge, Zr, Sn) ⣔ぢࡽࢀࡿB࢜ࣥ✀ࡼࡾ␗࡞ࡿ☢Ẽ⛛ᗎࡢᚤどⓗᶵᵓ ࢆ➨୍ཎ⌮㟁Ꮚ≧ែィ⟬ࡽ᫂ࡽࡋࡓ㹙ㄽᩥ 1㹛ࠋࡑࡢ 㓟≀⣔㢮ఝࡢBࢧࢺ☢ᛶ࢜ࣥࢆ᭷ࡍࡿ CaCu 3 Fe 4 O 12 ᑐࡋ࡚ࠊ㟁Ꮚ≧ែィ⟬ࡽほ ࡉࢀࡓᏳᐃ☢ Ẽᵓ㐀X⥺☢ẼⰍᛶࢫ࣌ࢡࢺࣝᑐࡍࡿゎ㔘ࢆ࠼ࡓ 㹙ㄽᩥ 2㹛 ࠋ୕ゅ᱁Ꮚᵓ㐀ࢆ᭷ࡍࡿ㑄⛣㔠ᒓ㓟≀⣔PdCoO 2 PdCrO 2 ࡢ㟁Ꮚ≧ែ㛵ࡍࡿ◊✲ࢆ㐍ࡵࡓ㹙ㄽᩥ 3ࠊㄽᩥ 4㹛 ࠋ ᅗ 1 A ࢧࢺ⛛ᗎᆺ࣌ࣟࣇࢫ࢝ࢺ㓟≀ ࣭ཎᏊࢲࢼ࣑ࢵࢡࢫࢆ⏝ࡋࡓ࣐ࢸࣜࣝࢹࢨࣥ ➨୍ཎ⌮㟁Ꮚ≧ែィ⟬ࡣ≀㉁ࡢᇶᗏ≧ែ㛵ࡍࡿ⌮ㄽ࡛࠶ࡿࡀࠊᡃࠎࡣཎᏊࡢືࡁ㸦ࢲࢼ࣑ࢵ ࢡࢫ㸧 ࠊ㍺㏦⌧㇟ࢆేࡏࡓ◊✲ࢆ⾜ࡗ࡚࠸ࡿࠋᖺᗘࡣ௨ୗࡢᡂᯝࢆᣲࡆ࡚࠸ࡿࠋ ⤖ᬗࢩࣜࢥࣥ୰ࡢḞ㝗ࡢᵓ㐀ࡘ࠸࡚ 2 ࡘࡢ㈉⊩ࢆࡋࡓࠋ୍ࡘࡣࢩࣜࢥࣥ୰ࡢỈ⣲⣧≀ࡢᛶ㉁㛵 ࡍࡿࡶࡢ࡛ࠊ⣧≀ືࡢῶ⾶ࡀᚑ᮶ࡢ⌮ㄽࡼࡾ㠀ᖖࡁ࠸ࡇࢆࠊỈ⣲ࡢࢲࢼ࣑ࢵࢡࢫࡽゎ᫂ ࡋࡓࠋࡶ࠺୍ࡘࡀࢩࣜࢥࣥ୰ࡢ᱁Ꮚ✵Ꮝࡢᛶ㉁࡛ࠊప ࡛࣍ࢫࢺࡢᙎᛶᐃᩘࢆࢯࣇࢺࡍࡿࡇࡀᐇ㦂 ࡛♧ࡉࢀ࡚࠸ࡿࡀࠊࡑࢀࡀ᱁Ꮚ✵Ꮝࡀㄏᑟࡍࡿ᱁Ꮚṍࡳࡢࢲࢼ࣑ࢵࢡࢫࡽㄝ࡛᫂ࡁࡿࡇࢆ♧ࡋࡓࠋ ― 10 ― ⼥ᾮࡽࡢࢩࣜࢥࣥᘬࡁୖࡆᡂ㛗࠾ࡅࡿ㌿⛣Ⓨ⏕⇕ᛂຊࡀᙳ㡪ࡍࡿࡀࠊࡑࢀࢆᐃ㔞ⓗᢕᥱࡍࡿ ࡓࡵࡢࣖࣥࢢ⋡ࡢ ᗘ౫Ꮡᛶࡘ࠸࡚ᚑ᮶ࡼࡾㄽதࡀ࠶ࡗࡓࡀࠊࡑࡢ ᗘ౫Ꮡᛶࢆ⌮ㄽⓗᑟ࠸ࡓࠋ ࣭࣐ࣝࢳࣇ࢙ࣟࢵࢡ≀㉁ࡢ≀㉁タィ ☢ᛶ࠾ࡼࡧᙉㄏ㟁ᛶࢆྠ♧ࡍ࣐ࣝࢳࣇ࢙ࣟࢵࢡ≀㉁ࡢ୰ࡣࠊ࣐ࢢࢿࢱࢺࡢࡼ࠺ప ┦ࡢ 㟁Ⲵ⛛ᗎࡀ⤖ᬗࡢ㌿ᑐ⛠ࢆ◚ࡾᙉㄏ㟁ศᴟࢆ♧ࡍ≀㉁ࡀ࠶ࡿࠋᡃࠎࡣࠊ㟁Ⲵ⛛ᗎࢆ♧ࡍ࣐ࣥ࢞ࣥ㓟 ≀ࠊ㕲㓟≀ࡘ࠸࡚㟁Ꮚ≧ែࢆィ⟬ࡋࠊㄏ㟁ᛶࡢᚤどⓗᶵᵓࢆゎ᫂ࡋ࡚ࡁࡓ㹙ㄽᩥ 5㹛 ࠋࡲࡓࠊ࣐ࣝ ࢳࣇ࢙ࣟࢵࢡ≀㉁ࡢከࡃࡣࠊእ㒊㟁ሙࡼࡗ࡚☢ᛶࢆ᧯సྍ⬟࡞ࡿ㟁Ẽ☢Ẽຠᯝࢆ♧ࡍࠋ Ba 2 CoGe 2 O 7 ࡣࠊࢫࣆࣥ㌶㐨┦స⏝࠾ࡼࡧ␗᪉ⓗpdΰᡂ㉳ᅉࡍࡿ㟁Ẽ☢Ẽຠᯝࢆ♧ࡍࡇࡀ▱ࡽࢀ ࡚࠸ࡿࡀࠊᐦᗘỗ㛵ᩘἲࢩ࣑࣮ࣗࣞࢩࣙࣥࢆ⏝࠸࡚ࠊCoࢧࢺࢆࡢ㑄⛣㔠ᒓඖ⣲⨨ࡋࡓྜ≀ Ba 2 MGe 2 O 7 (M = V, Cr, Mn, Fe, Ni, Cu)ࡢ≀㉁タィ࠾ࡼࡧ㟁Ꮚ≧ែィ⟬ࢆ⾜࠸ࠊ㟁Ẽ☢Ẽຠᯝࢆண ࡋࡓࠋ M = V, Niࡢࡁࡣࠊ㑄⛣㔠ᒓඖ⣲ࡢt 2g ㌶㐨‽ࡀ㒊ศⓗ༨᭷ࡉࢀ࡚ࠊ㓟⣲ᅄ㠃యࡢᴟᛶࢆࡶࡘ Jahn-Tellerṍࡳࡀ⏕ࡌࡿࡇࡀ᫂ࡽ࡞ࡗࡓࠋ ࣭ḟ㟁ụṇᴟᮦᩱࡢ≀㉁᥈⣴ᒁᡤᵓ㐀ゎᯒ ࣜࢳ࣒࢘࢜ࣥḟ㟁ụࡣᑠᆺ㟁Ꮚᶵჾࡸ⮬ື㌴⏝㟁※࡞ᵝࠎ࡞⏝㏵࡛⏝ࡉࢀ࡚࠾ࡾࠊ㟁ụᛶ⬟ ࡢྥୖࢆ┠ⓗࡋࡓ᪂つᮦᩱࡢ᥈⣴◊✲㛤ⓎࡀάⓎ⾜ࢃࢀ࡚࠸ࡿࠋ≉ṇᴟ㈇ᴟ࡛ࡢࣜࢳ࣒࢘ ࢜ࣥࡢฟධࡾࡼࡗ࡚⾲ࡉࢀࡿᨺ㟁ᛂࡣ㟁ụືసࡢᇶ♏ཎ⌮ࡢࡦࡘ࡛࠶ࡾࠊᨺ㟁క࠺㟁Ꮚ≧ ែࡸᒁᡤⓗཎᏊᵓ㐀ࡢኚࢆ㟁Ꮚ࣭ཎᏊࡢࢫࢣ࣮࡛ࣝ⌮ㄽゎᯒࡍࡿࡇࡀᚲせ࡛࠶ࡿࠋᡃࠎࡣࠊḟ㟁 ụṇᴟᮦᩱࡢ᪂つ≀㉁᥈⣴ࢆ┠ᶆࡋ࡚ࠊ➨୍ཎ⌮ィ⟬ᡭἲࢆ⏝࠸ࡓᨺ㟁๓ᚋࡢᒁᡤᵓ㐀ゎᯒࡸࠊ⌮ ㄽⓗ࡞㉳㟁ຊࡢホ౯ࢆ⾜ࡗ࡚࠸ࡿࠋ᭱㏆࡛ࡣ㈨※㔞ࡸࢥࢫࢺ࡞ࡢほⅬࡽࠊ࣏ࢫࢺࣜࢳ࣒࢘࢜ࣥ㟁 ụࡢೃ⿵ࡋ࡚ࢼࢺ࣒ࣜ࢘࢜ࣥḟ㟁ụࡢ◊✲㛤Ⓨࡀὀ┠ࡉࢀ࡚࠸ࡿࠋࡑࡢṇᴟᮦᩱࡋ࡚FeS 2 ⣔≀ ㉁ࡀᣲࡆࡽࢀ࡚࠸ࡿࠋࡋࡋࠊNa࢜ࣥࡢฟධࡾࡼࡗ࡚ࡢࡼ࠺࡞ᵓ㐀ኚࡀ㉳ࡇࡗ࡚࠸ࡿࡣ࡞ ⌮ゎࡣ⮳ࡗ࡚࠾ࡽࡎࠊࡇࢀࡲ࡛࠸ࡃࡘࡢᨺ㟁ᛂᘧࡀᥦࡉࢀ࡚࠸ࡿࠋNa/FeS 2 ⣔ṇᴟᮦᩱࡢ ᇶ♏ᛂ࣓࢝ࢽࢬ࣒ࡋ࡚ࠊNa࢜ࣥࡢฟධࡾࡼࡗ࡚ࡁ࡞ᒁᡤᵓ㐀ኚ࣭⤖ᬗᵓ㐀ኚࡀ㉳ࡇࡿࢥ ࣥࣂ࣮ࢪࣙࣥᛂࡀ⪃࠼ࡽࢀ࡚࠸ࡿࠋᡃࠎࡣᨺ㟁క࠺ᒁᡤᵓ㐀ࡢኚࢆ᫂ࡽࡍࡿࡓࡵࠊᇶ♏ ࢹ࣮ࢱ࡞ࡿ㟁Ꮚᵓ㐀ࡸ☢ᛶ㛵ࡍࡿゎᯒࢆ⾜࠸ࠊX⥺྾ࢫ࣌ࢡࢺࣝࡢᐇ㦂ࢹ࣮ࢱࡢゎᯒࢆ㐍ࡵ࡚࠸ ࡿࠋᥦࡉࢀ࡚࠸ࡿࡦࡘࡢᨺ㟁ᛂᘧࡣࠊ2Na + FeS 2 ĺ1D 2 S 2 + Fe࡛࠶ࡿࠋPyriteᵓ㐀FeS 2 ࠊșᵓ㐀 NaSࠊBCCᵓ㐀NaࠊཬࡧBCCᵓ㐀Feࡢᐇ㦂್ࡢ⤖ᬗᵓ㐀ࢆ௬ᐃࡋ࡚ࠊ୍⯡ᐦᗘ໙㓄㏆ఝࢆ⏝࠸ࡓ➨୍ ཎ⌮ィ⟬ࡽホ౯ࡋࡓ㉳㟁ຊࡣ⣙ 0.9 ࣎ࣝࢺ⛬ᗘࡢ್࡛࠶ࡾࠊࡇࡢ್ࡣࢥࣥࣂ࣮ࢪࣙࣥࣔࢹࣝࢆ⏝࠸ࡓ ⌮ㄽ್࡞ẚ㍑ࡍࡿᑠࡉ࡞್࡛࠶ࡿࠋ᭱㏆ࠊOkadaࡽࡣᨺ㟁ᛂࡼࡿᵓ㐀ኚࢆᐇ㦂ⓗㄪࠊ ṇᴟ୰Na㔞౫Ꮡࡋࡓ 2 ẁ㝵ࡢᛂᘧ (1) 2Na + FeS 2 ĺ1D 2 FeS 2 , (2) 2Na + Na 2 FeS 2 ĺ1D 2 S + Fe ࢆᥦ ࡋ࡚࠸ࡿࠋࡇࢀࡣLi/FeS 2 ⣔࠾ࡅࡿᛂྠᵝࡢᘧ࡛࠶ࡿࠋCubicᵓ㐀Na 2 Sࢆ⏝࠸࡚ࠊ୰㛫≧ែࢆ↓ どࡋࡓ⠊ᅖෆ㸦4Na + FeS 2 ĺ1D 2 S + Fe㸧࡛ィ⟬ࡋࡓ⤖ᯝࠊ㉳㟁ຊࡢィ⟬್ࡣ 1.2 ࣎ࣝࢺ࡛࠶ࡾࠊࡇࡢ ᛂᘧᇶ࡙࠸ࡓィ⟬್ࡣKimࡽࡼࡗ࡚ᥦࡉࢀ࡚࠸ࡿᛂᘧࡼࡾࡶ㧗࠸㉳㟁ຊ್ࢆ♧ࡋ࡚࠸ࡿࠋ ― 11 ― ࢯࣇࢺࢼࣀ࣐ࢸࣜࣝ◊✲ศ㔝 ᩍᤵ ᩍᤵ ຓᩍ Ꮫ㝔Ꮫ⏕ ≉௵◊✲ဨ ົ⿵బဨ ᢏ⾡⿵బဨ Ᏻ⸽ ⰾ㞝 ᐙ ⿱㝯 ㎞ᕝ ㄔࠊ㇂ ┿ྖ 㯤 ᘓ᫂ࠊ㝕ෆ 㟷ⴌࠊబ⸨ ༓ᑜࠊ᰿ ⣪⧊ࠊứ 傯ࠊ➲⏣ ⩧ᖹࠊ⏣௦ ᙬ Shreyam Chattergee ᒣᓮ Ꮚ ∾㔝 ኵ㸦㹼ᖹᡂ 25 ᖺ 12 ᭶ 31 ᪥㸧 a) ᴫせ ᭷ᶵ≀㉁ࡢᶵ⬟ࢆศᏊࡢ࡛ࣞ࣋ࣝゎ᫂ࡋไᚚࡍࡿࡇࢆᇶ┙ࡋ࡚ࠊඃࢀࡓ㟁Ꮚ࣭ගᶵ⬟ࢆ᭷ࡍࡿ᭷ ᶵศᏊࡢ㛤Ⓨᵓ㐀≀ᛶ┦㛵ࠊ࠾ࡼࡧࠊᶵ⬟ホ౯᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫᛂ⏝ࡢ୍㈏ࡋࡓ◊✲ࢆ⾜ࡗ࡚ ࠸ࡿࠋ᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫ㐺ࡋࡓ᭷ᶵᶵ⬟ศᏊࡢ㛤Ⓨࠊ࠾ࡼࡧࠊศᏊࢫࢣ࣮࢚ࣝࣞࢡࢺࣟࢽࢡࢫࢆ ᚿྥࡋࡓࢼࣀࢫࢣ࣮ࣝȧඹᙺศᏊᮦᩱࡢศᏊタィ≀㉁ྜᡂࠊࡑࢀࡽࡢ≀ᛶ᭷ᶵᏛᶵ⬟᭷ᶵᏛࡢ ◊✲ࢆ୰ᚰࠊ1) ȧ㟁Ꮚඹᙺ⣔ࡢᏛಟ㣭ࡼࡿ㧗࠸㟁Ꮚ⛣ືᗘࢆ♧ࡍ᭷ᶵ༙ᑟయᮦᩱࡢ㛤Ⓨ 2) ศᏊ ࢚ࣞࢡࢺࣟࢽࢡࢫ⣲Ꮚ㐺ࡋࡓࢼࣀࢫࢣ࣮ࣝศᏊᮦᩱࡢ㛤Ⓨࢆ┠ⓗࡋ࡚ࠊᶵ⬟ศᏊ࣡ࣖ࠾ࡼࡧ㔠 ᒓ㟁ᴟ᥋ྜࣘࢽࢵࢺࡢ㛤Ⓨホ౯ࢆ㐍ࡵ࡚࠸ࡿࠋ b) ᡂᯝ ᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫᮦᩱࡋ࡚ࠊn ᆺࡢ᭷ᶵࢺࣛࣥࢪࢫࢱᮦᩱࡢ㛤Ⓨࢆ⾜ࡗࡓࠋȧ㟁Ꮚඹᙺ⣔㟁 Ꮚồᘬᛶᇶࢆᑟධࡍࡿࡇ࡛ n ᆺ≉ᛶࡀⓎ⌧ࡍࡿࡀ▱ࡽࢀ࡚࠸ࡿࠋ୍᪉ࠊⷧ⭷࠾࠸࡚࢟ࣕࣜ⛣ື ᗘࢆྥୖࡉࡏࡿᡭἲࡋ࡚ࠊศᏊ㛫࠾ࡅࡿศᏊ㌶㐨┦స⏝ࡢቑຍࡉࡏࡿࡇࡀᣲࡆࡽࢀࡿ㸬ࡇࡢほ Ⅼࡽࠊȧ㟁Ꮚ⣔ศᏊ㔜ཎᏊࢆᑟධࡍࡿࡇ࡛ࠊ࢟ࣕࣜ㍺㏦⬟ࡢᨵၿࡀᮇᚅ࡛ࡁࡿࠋ᭱㏆ࠊඃࢀࡓ ༙ᑟయᛶ⬟ࢆ♧ࡍࡶࠊ⁐ᾮࣉࣟࢭࢫࡀྍ⬟࡞ྜ≀ࡋ࡚ N-ࣝ࢟ࣝ⎔≧࣑ࢻᵓ㐀ࢆᮎ➃᭷ ࡍࡿȧ㟁Ꮚ⣔ศᏊࡀሗ࿌ࡉࢀ࡚࠸ࡿࡇࡽࠊᮎ➃ N-ࣝ࢟ࣝ⎔≧࣑ࢻࡢ㓟⣲ཎᏊࢆ◲㯤࡛⨨ࡋ ࡓ⎔≧ࢳ࣑࢜ࢻࢆ᭷ࡍࡿ ʌ 㟁Ꮚ⣔ศᏊࢆྜᡂࡋࡓࠋฟࡋࡓࢳ࣑࢜ࢻྜ≀ࡢࢧࢡࣜࢵࢡ࣎ࣝࢱ ࣔࢢ࣒࡛ࣛࡣ–1.1 ࡽ–1.6 V 㑏ඖἼࡀほ ࡉࢀࡓࡇࡽࠊ n ᆺ FET ≉ᛶࡢⓎ⌧ࡀᮇᚅ࡛ࡁࡓࠋ ࡲࡓࠊ ࢳ࣑࢜ࢻྜ≀ࡢ㑏ඖἼࡣࠊᑐᛂࡍࡿ࣑ࢻྜ≀ࡢ㑏ඖἼẚ࡚㧗㟁ࢩࣇࢺࡋ࡚࠸ࡓࡇ ࡽࠊ◲㯤ཎᏊࡢᑟධࡼࡾ㟁Ꮚཷᐜᛶࡢྥୖࡀぢࡽࢀࡓࠋࢫࣆࣥࢥ࣮ࢺἲࢆ⏝࠸࡚࣎ࢺ࣒ࢥࣥࢱࢡࢺᆺ ࡢ FET ⣲Ꮚࢆస ᡂࡋࠊ㟁Ꮚ⛣ືᗘ ࢆホ౯ࡋࡓ⤖ᯝࠊ ࠸ࡎࢀࡢ⣲Ꮚࡶ ᆺⓗ࡞ n ᆺࡢ ᣲືࢆ♧ࡋࡓࠋ≉ ࠊ⎔≧ࢳ࣑࢜ ࢻྜ≀࡛ࡣᑐ ᛂࡍࡿ࣑ࢻ ྜ≀ẚ࡚ 1 ᱆㸫2 ᱆ࡢ㟁Ꮚ ⛣ືᗘࡢྥୖࡀ ぢࡽࢀࡓ[ㄽᩥ 2](ᅗ 1)ࠋ ― 12 ― ୍᪉ࠊ᭷ᶵⷧ⭷ᆺኴ㝧㟁ụ㸦OPV㸧 ྥࡅ࡚ࡢ n ᆺ༙ᑟయᮦᩱࡢ㛤Ⓨ ࡣ㐜ࢀ࡚࠾ࡾࠊࣇ࣮ࣛࣞࣥ௦ࢃࡾ ᚓࡿᛶ⬟ࢆᣢࡘᮦᩱࡣタィᣦ㔪ࡍࡽ ☜❧ࡉࢀ࡚࠸࡞࠸ࠋࡇࢀࡣ༢ᡂศ࡛ ᵓᡂࡉࢀࡿ OFET ࡢⷧ⭷ᑐࡋ࡚ࠊ p ᆺᮦᩱ n ᆺᮦᩱࢆΰྜࡋ࡚ᵓ ᡂࡉࢀࡿࣂࣝࢡ࣊ࢸࣟ᥋ྜ OPV ࠾࠸࡚ࡣ࢟ࣕࣜ㍺㏦⤒㊰ࡢᵓ⠏ࡀ ᅔ㞴࡞ࡓࡵ࡛࠶ࡿࠋࡑࡇ࡛ࠊࣇ࣮ࣛ ࣞࣥࡢࡼ࠺␗᪉ᛶࡢ࡞࠸❧యᵓ㐀 ࡢȧ㟁Ꮚ⣔ศᏊࢆ㛤Ⓨࡍࡿࡀ࡛ࡁ ᅗ 2 3 ḟඖᆺᵓ㐀ࢡࢭࣉࢱ࣮ᮦᩱ ࢀࡤ᪂ࡓ࡞᭷ᶵ༙ᑟయᮦᩱ࡞ࡿ ⪃࠼ࡓࠋࡇࡢほⅬࡽࠊᆺⓗ࡞ n ᆺྜ≀࡛࠶ࡿ࣌ࣜࣞࣥࣅࢫ(ࢪ࢝ࣝ࣎࢟ࢩ࣑ࢻ)(PDI)ࢆᮎ➃ᑟධࡋࡓࠊ୕ḟඖᵓ㐀ࢆ᭷ࡍࡿศᏊ 1, 2 ࢆタィࡋࠊྜᡂࠊ≀ᛶホ౯ࠊ࠾ࡼࡧࠊn ᆺ༙ᑟయࡋ࡚ࡢග㟁ኚ≉ᛶࡢホ౯ࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊ ࡑࢀࡒࢀࠊ0.12, 0.18%ࡢග㟁ኚຠ⋡ࡀほ ࡉࢀࠊᑐᛂࡍࡿཧ↷ྜ≀ 3(0.12%)ྠ➼௨ୖࡢᛶ⬟ࢆ♧ ࡋࡓ[ㄽᩥ 1](ᅗ 2)ࠋ ࡲࡓࠊ᭷ᶵⷧ⭷ᆺኴ㝧㟁ụ࠾ࡅࡿnᆺ༙ᑟయᮦᩱࡋ࡚ࡢᛂ⏝ࢆ┠ⓗࡋ࡚ࠊ᪂つࣇ࣮ࣛࣞࣥㄏᑟయ ࡢ㛤Ⓨࢆᴗඹྠ◊✲ࡼࡾ⾜ࡗ࡚࠸ࡿࠋ࢚ࢿࣝࢠ࣮ኚຠ⋡ࡢ㧗࠸᭷ᶵⷧ⭷ኴ㝧㟁ụࡢᐇ⌧ྥࡅ ࡚ࠊ࢚ࢿࣝࢠ࣮‽ྍどග྾㡿ᇦࡢㄪᩚࢆ┠ⓗࡋࡓ⦓ᐦ࡞ศᏊタィࡀ⾜ࢃࢀࠊnᆺ༙ᑟయࡢ㐺 ษ࡞࢚ࢿࣝࢠ࣮ࢠࣕࢵࣉᗈ࠸྾㡿ᇦࢆేࡏᣢࡗࡓpᆺ༙ᑟయᮦᩱࡀ㛤Ⓨࡉࢀ࡚ࡁࡓࠋ୍᪉࡛ࠊnᆺ᭷ ᶵ༙ᑟయᮦᩱࡣࠊ[60]ࣇ࣮ࣛࣞࣥ(C 60 )ㄏᑟయ࡛࠶ࡿ[6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM)ࠊ࠶ ࡿ࠸ࡣࡑࡢC 70 ㄏᑟయ (PC 71 BM)ࡢࠊ㏻⛠PCBM⛠ࡍࡿᮦᩱ౫Ꮡࡋ࡚࠸ࡿࠋࡇࡢࡼ࠺࡞≧ἣࡣࠊOPV ࡢᛶ⬟ྥୖྥࡅࡓᇶ♏ⓗ࡞≀ᛶࡢ⌮ゎࡢ㞀ᐖ࡞ࡾࡡࡎࠊOPVᮦᩱࡑࡢᏛࠊ≀⌮ⓗ⌮ゎࡢ㐍ᒎ ࡢࡓࡵࠊPCBM௦᭰࡞ࡿᮦᩱ㛤Ⓨࡣᚲ㡲࡛࠶ࡿࠋ ᡃࠎࡢࠊࡇࢀࡲ࡛ࡢ᪂つ n ᆺᮦᩱ◊✲࡛ࠊ࠸ࡃࡘࡢ⨨ᇶᛶ⬟ྥୖᐤࡍࡿຠᯝࡀ࠶ࡿࡇࡀ ศࡗ࡚ࡁࡓࠋ⨨ᇶࢹࣂࢫ≀ᛶ㛵ࡍࡿᡃࠎࡢ᳨ウࡽ᪂つࣇ࣮ࣛࣞࣥㄏᑟయࡣࠊ᪤Ꮡ n ᆺᮦᩱ ࡛࠶ࡿ PCBM ྠ➼௨ୖࡢᛶ⬟ࡀᚓࡽࢀ࡚࠸ࡿࠋࡇࢀࡲ࡛ࡢ◊✲ࡽᚓࡽࢀࡓ᪂つᮦᩱࡢෆࠊPCBM ྠ➼௨ୖࡢࡶࡢࡘ࠸࡚ࠊ᪂ࡓ࡞ࢻࢼ࣮ᮦᩱ㸦PTB7㸧ࡢ⤌ࡳྜࢃࡏࡼࡿᛶ⬟ホ౯ࢆ⾜ࡗࡓࠋPTB7 ࢆࢻࢼ࣮ࡗࡓሙྜ࠾࠸࡚ࡶࠊⰋዲ࡞ኴ㝧㟁ụ≉ᛶࢆ♧ࡋࡓࠋࡉࡽࡣࠊ᪂つᮦᩱࡣࡇࡢ⣔࠾࠸ ࡚ࡶࠊPCBM ᑐࡋ࡚ᘬࡅࢆࡽ࡞࠸ᛶ⬟࡛࠶ࡾࠊC60 ࣇ࣮ࣛࣞࣥࢆࡗࡓኴ㝧㟁ụࡢ୰࡛ࡣୡ⏺ࢺࢵ ࣉࢡࣛࢫ࡞ࡿࠋ ᅗ 3 ᪂つࣇ࣮ࣛࣞࣥࢆࡗࡓኴ㝧㟁ụ⣲Ꮚࡢ㟁ὶ㟁ᅽ≉ᛶᅗࡑࡢ⣲Ꮚᵓ㐀 ― 13 ― ࣂ࢜ࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ศ㔝 ᩍᤵ ᩍᤵ ຓᩍ Ꮫ㝔Ꮫ⏕ ົ⿵బဨ ㇂ཱྀ ⟄ ⏣୰ ᮏ㒓 ⸨ᯘ ṇ㍤ ┿ᴋ ⿱⾜ࠊᶓ⏣ ୍㐨㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥᥇⏝㸧 ⚞ேࠊ᭷㤿 ᙲ⚽ࠊ᳃ᕝ 㧗 ⌮Ꮚ a) ᴫせ ⚾㐩ࡢࢢ࣮ࣝࣉ࡛ࡣࠊ་⒪デ᩿ᢏ⾡ࡢ㧗ᗘ࣭㧗ᛶ⬟ྥࡅ࡚ࠊ⏕యෆࡢᵓ㐀ࡸᶵ⬟ࢆᶍೌࡋࡓ༙ ᑟయࢼࣀࢹࣂࢫࡸ 1 ศᏊ᳨ฟཎ⌮ࡢ◊✲ࢆ⾜ࡗ࡚࠸ࡿࠋ㟁Ꮚ⥺ᥥ⏬ἲ࡞ࡢඛ➃ࣞ࣋ࣝࡢࢼࣀຍᕤᢏ ⾡ࢆ㥑ࡋࡓࠊᩘࢼࣀ࣓࣮ࢺࣝࢧࢬࡢ㟁ᴟࢠࣕࢵࣉࢆసࡿࡓࡵࡢ᪂ࡓ࡞ᢏ⾡ࢆ〇ࡋࠊࡇࢀࢆᛂ⏝ࡋ ࡚ࠊ㟁ᴟ㛫㓄⥺ࡉࢀ࡚࠸ࡿศᏊࡢᩘࡸ✀㢮ࠊ1 ศᏊࡀ㟁ᴟࡘ࡞ࡀࡗ࡚࠸ࡿᙉᗘࡸ㛫ࠊ㟁ᴟ᥋⥆ ࡉࢀ࡚࠸ࡿ 1 ศᏊࡢ㏻㟁࠾ࡅࡿᒁᡤ ᗘࠊ1 ศᏊࡢࢲࢼ࣑ࢡࢫࡸᏛᛂࢆ㟁Ẽⓗㄪࡿ᪉ἲ ࢆᵓ⠏ࡋ࡚࠸ࡿࠋࡲࡓࠊ㉮ᰝࣉ࣮ࣟࣈ㢧ᚤ㙾ࡼࡾࠊ⾲㠃ୖ࠶ࡿ DNA ࡞ࡢ 1 ศᏊほᐹ࠾ࡼࡧศග ศᏊ࣐ࢽࣆ࣮ࣗࣞࢩࣙࣥࢆ⾜ࡗ࡚࠸ࡿࠋࡑࡋ࡚ࠊࡇࢀࡽࡢᇶ♏◊✲ࢆ㏻ࡌ࡚ࠊ1 ศᏊࡢᛶ㉁ࢆㄪࡿ 1 ศᏊ⛉Ꮫࢆ㛤ᣅࡋࠊྠࡇࡢ 1 ศᏊ⛉Ꮫࢆᇶᮏཎ⌮ࡍࡿ᪂ࡋ࠸ࣂ࢜ศᏊࢹࣂࢫࡸࣂ࢜ࢭࣥ ࢧ࣮ࢆ㛤ⓎࡍࡿඹࠊSM-TAS(Single-Molecule Total Analysis System)ࡢᐇ⌧㈨ࡍࡿ 1 ศᏊᢏ⾡ࡢฟ ྲྀࡾ⤌ࢇ࡛࠸ࡿࠋ ࡞◊✲ㄢ㢟ࡋ࡚ࡣࠊSPM ࡼࡿ DNA ➼ࡢࣂ࢜ศᏊࡢࢼࣀࢧ࢚ࣥࢫ࣭ࢼࣀࢸࢡࣀࣟࢪ࣮ࠊࢼ ࣀ㟁ᴟࢼࣀὶ㊰ࢆ⼥ྜࡉࡏࡓ 1 ศᏊࣂ࢜ࢭࣥࢧ࣮ࡢ㛤Ⓨࠊᅛయࢼࣀ࣏ࢹࣂࢫࢆ⏝࠸ࡓࢼࣀ࣏ ࢩ࣮ࢡ࢚ࣥࢩࣥࢢἲࡢ㛤Ⓨࠊ┬㈨※࣭┬࢚ࢿࣝࢠ࣮㈨ࡍࡿ༢୍ศᏊࢹࣂࢫࡢ㛤Ⓨࠊࡀᣲࡆࡽࢀࡿࠋ b) ᡂᯝ ࣭ࢼࣀ࣏ࢺࣛࢵࣉἲࢆ⏝࠸ࡓ༢୍⢏Ꮚ㆑ู ᅛయ࣓ࣥࣈࣞࣥ୰✵ࡅࡽࢀࡓࢼࣀࢧࢬࡢ⣽ Ꮝ࡛ᵓᡂࡉࢀࡿࢼࣀ࣏ࢭࣥࢧ࣮ࡣࠊ㉥⾑⌫ࠊⓑ ⾑⌫ࠊ࢘ࣝࢫ➼ࢆ㧗ឤᗘ᳨࡛ฟࡍࡿࣂ࢜ࢭࣥ ࢧ࣮ࡋ࡚ࠊࡑࡢᐇ⏝ྥࡅࡓ◊✲㛤Ⓨࡀᗈࡃ ᒎ㛤ࡉࢀ࡚ࡁ࡚࠸ࡿࠋࢼࣀ࣏ࢹࣂࢫ࡛ࡣࠊ᳨ యࡀࢼࣀ࣏ࢆ㏻㐣ࡍࡿ㝿⏕ࡌࡿࠊ࣏ࢆ㏻ࡿ ࢜ࣥ㟁ὶኚࢆᣦᶆࡋ࡚ࠊ᳨యࡢ᳨ฟࡸ㆑ู ࡀ⾜ࢃࢀࡿࠋࡋࡋࠊࡇࡢ᳨ฟཎ⌮࡛ࡣࠊ᳨యࢆ 㟁ẼὋືࡉࡏࡿࡓࡵ༳ຍࡍࡿ㟁ᅽࡼࡗ࡚࣏ ෆ 2mV/nm ௨ୖࡢᴟࡵ࡚ࡁ࡞㟁⏺ࡀ⏕ࡌࡿࡓ ࡵࠊ࢜ࣥ㟁ὶィ ࡢࢧࣥࣉ࣮ࣝࣞࢺẚࡋ࡚㠀 ᖖ㧗㏿᳨࡛యࡀ࣏ࢆ㏻㐣ࡍࡿ࠸࠺ၥ㢟ࡀ࠶ ࡗࡓࠋࡑࡇ࡛ࠊ᳨యࡼࡾᑠࡉ࡞┤ᚄࢆ᭷ࡍࡿ࣏ ᅗ ࢼࣀ࣏ࢺࣛࢵࣉἲ㸬㟁ẼὋື㟁ᅽไᚚࡼࡾ᳨య⢏Ꮚ ࢆ⏝࠸࡚ࠊ᳨యࢆ࣏㏻㐣ࡉࡏࡿࡢ࡛ࡣ࡞ࡃࠊ ࢆ⧞ࡾ㏉ࡋࢺࣛࢵࣉ⬺ࢺࣛࢵࣉࡉࡏࡿࡇࡀ࡛ࡁࡿ㸬 ࣏㏆ഐ㟁Ẽⓗᤕᤊࡉࡏࡿࢼࣀ࣏ࢺࣛࢵࣉ ἲࢆ㛤Ⓨࡋࡓ㸦ᅗ 1㸧ࠋ ࢼࣀ࣏ࢺࣛࢵࣉἲࢆ⏝࠸ࡿࠊᖏ㟁ࡋࡓࢼࣀ⢏Ꮚࢆ࣏㏆ഐ⧞ࡾ㏉ࡋࢺࣛࢵࣉ/⬺ࢺࣛࢵࣉࡉࡏࡿ ࡇࡀ࡛ࡁࡓࠋࡉࡽࠊࡑࡢ㝿⏕ࡌࡿ࢜ࣥ㟁ὶኚࡽࠊ⾲㠃㟁Ⲵᐦᗘࡢ㐪࠸ࡼࡿ᳨యࡢ㆑ูࡀ ྍ⬟࡞ࡿࡇࢆᐇドࡋࡓࠋ ― 14 ― ࣭ཎᏊࢧࢬ᥋ྜ࠾ࡅࡿ㔞Ꮚ⇕㉳㟁ຊࡢほ ༢ศᏊ᥋ྜ≉᭷ࡢ㟁Ꮚ≧ែࢆ⏝ࡍࡿࡇ࡛ࠊ㧗࠸ᛶ⬟ࢆ᭷ࡍࡿ⇕㟁⣲Ꮚࢆ〇ࡍࡿࡇࡀ⌮ㄽୖ ྍ⬟࡛࠶ࡿࡇࡀᣦࡉࢀ࡚௨᮶ࠊ༢ศᏊ᥋ྜࡢ⇕㟁≉ᛶ㛵ࡍࡿ◊✲ࡀ⢭ຊⓗ⾜ࢃࢀ࡚ࡁ࡚࠸ࡿࠋ ࡋࡋࡇࢀࡲ࡛ࡢ㉮ᰝࢺࣥࢿࣝ㢧ᚤ㙾ࢆ⏝࠸ࡓ㸯ศᏊ⇕㉳㟁ຊィ ἲ࡛ࡣࠊ⇕ࢻࣜࣇࢺ➼ࡢၥ㢟ࡀ࠶ࡾࠊ 㟁ᴟ䇲 ༢ศᏊ䇲 ᥋ྜࢆᙧᡂ࡛ࡁ࡚ࡶࠊࡑࡢ≧ែࢆࠊ⇕㉳㟁ຊ ᐃࢆᐇ⾜ࡍࡿୖ࡛༑ศ㛗࠸㛫ಖᣢࡍ ࡿࡇࡀᅔ㞴࡛࠶ࡗࡓࠋࡑࡇ࡛ࠊ༢ศᏊ᥋ྜࡢᏳᐃಖᣢ㐺ࡋࡓࢼࣀຍᕤ MCBJ㸦mechanically-controllable break junction㸧ࢆᨵⰋࡋࡓ࣐ࢡࣟࣄ࣮ࢱ⤌㎸ࡳᆺ MCBJ㸦ᅗ 2㸧ࢆ㛤Ⓨࡋࠊࡑࡢືసᐇドࡋ࡚ࠊ㔠ཎ Ꮚࢧࢬ᥋ྜࡢ㟁Ẽఏᑟᗘ⇕㉳㟁ຊࡢྠィ ࢆᐇࡋࡓࠋ ᚓࡽࢀࡓ⇕㉳㟁ຊࡢࣂࣛࡘࡁࢆㄪࡓࡇࢁࠊ ࡑࡢᶆ‽೫ᕪࡣ᥋ྜ㟁Ẽఏᑟᗘࡀ㔞Ꮚ㟁Ẽఏᑟ ᗘࡢ༙ᩚᩘಸࡢᴟ್ࢆ♧ࡍࡇࡀศࡗࡓࠋ ࡇࢀࡣࠊࣂࣜࢫࢸࢵࢡ᥋ྜࢆ㏱㐣ࡍࡿఏᑟ㟁 Ꮚࠊ㏱㐣ᚋ᥋ྜ㟁ᴟෆ㒊ࡢḞ㝗ࡼࡗ࡚ᚋ᪉ ᩓࡉࢀࡓ㟁Ꮚࡢ㛫࡛⏕ࡌࡿ㔞Ꮚᖸ΅ຠᯝ㉳ᅉ ࡍࡿ⌧㇟࡛࠶ࡿ⪃࠼ࡽࢀࡿࠋ ୍᪉ࠊ⇕㉳㟁ຊࡢᖹᆒ್ࡣࠊ᥋ྜ㟁Ẽఏᑟᗘࡀ 㔞Ꮚ㟁Ẽఏᑟᗘࡢᩚᩘಸࡢᴟᑠ್ࢆ♧ࡋࡓࠋ ࡇࡢ≉ᛶࡣࠊ⌮ⓗ࡞㸯ḟඖࣂࣜࢫࢸࢵࢡ㟁Ꮚ ⣔࠾࠸࡚⌮ㄽⓗண ࡉࢀࡿ⇕㉳㟁ຊࡢ㔞Ꮚ ⌧㇟Ⰻ࠸୍⮴ࢆぢࡿࡶࡢ࡛࠶ࡗࡓࠋ௨ୖࡢࡼ࠺ ᅗ ࣐ࢡࣟࣄ࣮ࢱ⤌㎸ࡳᆺ 0&%- ⣲Ꮚ ࠊ㔠᥋ྜࡢ㟁Ẽఏᑟᗘ⇕㉳㟁ຊࡢྠィ ࢆ ᐇࡍࡿࡇ࡛ࠊཎᏊࢧࢬ᥋ྜ࠾ࡅࡿ㔞Ꮚ ⇕㉳㟁ຊࡢほ ᡂຌࡋࡓࠋ ࣭Ᏻ౯࡛ᖹᆠ࡞ࢢࣛࣇ࢙ࣥᇶᯈࡢసᡂホ౯ 㸯ศᏊ᳨ฟ࣭㆑ูᢏ⾡ࡢ㛤Ⓨᨭࡢࡓࡵࠊࢤ࣮ࢸࣥࢢࢼࣀ࣏ 㢮ఝᵓ㐀┦ᙜࡍࡿࠊࣉ࣮ࣟࣈ㢧ᚤ㙾㸦SPM㸧ࡢࣉ࣮ࣟࣈᇶᯈ ࡢ㛫ࡢศᏊࡢ 1 ศᏊ᳨ฟࡢᢏ⾡㛤Ⓨ◊✲ࢆ⾜ࡗࡓࠋศᏊࡢ┦స ⏝ࡀᙅࡃୟࡘཎᏊ࡛ࣞ࣋ࣝᖹᆠ࡞ᇶᯈࡢ㛤Ⓨࢆ⾜ࡗࡓࠋ ࡲࡎࠊཎᏊⓗᖹᆠ࡞ SPM ほᐹ⏝ᇶᯈࡋ࡚᭷ྡ࡞࣐࢝ᇶᯈ ୖ Ni(111)ⷧ⭷ࢆసᡂࡋࡓ㸦ᅗ 3㸧 ࠋᡂ⭷᮲௳ࡣࠊࢽࢵࢣࣝ⭷ཌ⣙ 500nmࠊࢫࣃࢵࢱࢽ࣮ࣝ㸦ຍ⇕ ᗘ 800ΥࠊAr ࢜ࣥࢫࣃࢵࢱ㸧 ⣙㸯㛫࡛࠶ࡿࠋ㉸㧗┿✵ SPM ࡛సᡂࡋࡓ⾲㠃ࡢᙧ≧ほᐹࢆ⾜ࡗ ࡓࡇࢁࠊᅗ㸱ࡢࡼ࠺࡞ fcc(111)⾲㠃ࡢ≉ᚩࢆ᭷ࡍࡿ⾲㠃ᙧ≧ീࡀ ᚓࡽࢀࡓࠋᇶᯈୖ࠾࠸࡚ࡢࣉ࣮ࣟࢳ࣏ࣥࢺࢆᩘ mm Ώࡾ」 ᩘ⟠ᡤࡢほᐹࢆ⾜ࡗࡓࡀࠊSPM ほᐹࡀጉࡆࡽࢀࡿࡢࢻ࣓ࣥᵓ 㐀ࡸࡑࡢ⤖ᬗ⢏⏺ࢆ㟢㦵ṧࡋࡓᵓ㐀ࡣほᐹࡉࢀ࡞ࡗࡓࠋࡕ࡞ࡳ ࠊᡂ⭷ ᗘࡀ㸴㸳㸮Υ⛬ᗘࡢࡁᚓࡽࢀࡓ SPM ീ࡛ࡣࠊ⤖ᬗ ⢏⏺ࡢẁᕪࡣᩘⓒ nm ࡶ࠶ࡗࡓ㸦ࢹ࣮ࢱ┬␎㸧 ࠋ ḟࠊNi(111)Ύί⾲㠃ࡢୖⅣỈ⣲࢞ࢫࢆᭀ㟢ࡍࡿࡇ࡛ࢢࣛ ࣇ࢙ࣥࢆసᡂࡋࡓࠋࡑࡢヨᩱ⾲㠃ࡢ SPM ീ㸦㧗ࡉᚤศീ㸧ࢆᅗ 4 ࠾࠸࡚ࠊfcc(111)⾲㠃≉᭷ࡢ༢ཎᏊࢫࢸࢵࣉᵓ㐀ຍ࠼࡚ࠊࢢࣛࣇ࢙ ࣥ≉᭷ࡢ⓾≧ࡢᵓ㐀ࢆ☜ㄆࡍࡿࡇࡀ࡛ࡁࠊࢢࣛࣇ࢙ࣥࡀᡂ⭷࡛ࡁ ࡓࡇࡀ᫂ࡽ࡞ࡗࡓࠋ ᮏ◊✲࡛ᚓࡽࢀࡓࢢࣛࣇ࢙ࣥᇶᯈࡣࠊin situ ࡛㉸㧗┿✵ SPM ⏝ࡢ ᇶᯈ⏝࠸ࡿࡔࡅ࡛ࡣ࡞ࡃࠊ࢙࢘ࢵࢺࣉࣟࢭࢫ࡞ࢆ⤒࡚㌿ࡉࡏ ࢀࡤࢼࣀࢹࣂࢫ࠾࠸࡚ࡶ⏝࠸ࡿࡇࡀྍ⬟࡛࠶ࡾࠊᚋࡢⓎᒎ ࡀᮇᚅࡉࢀࡿࠋ ― 15 ― ᅗ 1Lࡢ 630 ീ ᅗ ࢢࣛࣇ࢙ࣥࡢ 630 ീ ⎔ቃ࣭࢚ࢿࣝࢠ࣮ࢼࣀᛂ⏝ศ㔝 ᩍᤵ㸦ව௵㸧 Ᏻ⸨ 㝧୍ a) ᴫせ ᮏ◊✲ศ㔝࡛ࡣࠊ⏘ᴗ⛉Ꮫࢼࣀࢸࢡࣀࣟࢪ࣮ࢭࣥࢱ࣮ࡀ᭷ࡍࡿ࣐ࢡ࣭ࣟࢼࣀຍᕤࡢࡓࡵࡢタഛᢏ ⾡ࢆ⏝ࡋ࡚ࠊ⎔ቃ࣭࢚ࢿࣝࢠ࣮ၥ㢟ࡢゎỴᙺ❧ࡘ㉸ఏᑟᮦᩱ࣭ࢫࣆࣥࢺࣟࢽࢡࢫᮦᩱ࣭㧗ຠ⋡⇕㟁 ኚᮦᩱ࡞ࡢ≀ᛶ◊✲ࢆ⾜ࡗ࡚࠸ࡿࠋᮏᖺᗘࡣ≉ࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢ୰࡛ࡶࣂࣝࢡ⤯⦕ᛶࡀ㣕 ㌍ⓗྥୖࡋࡓBi 2-x Sb x Te 3-y Se y ὀ┠ࡋ࡚◊✲ࡋࡓࠋ b) ᡂᯝ ࣭ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢᇶ♏≀ᛶゎ᫂ 㟁Ꮚࡢᣢࡘࢫࣆࣥࡢྥࡁࡢ⮬⏤ᗘࢆ⏝ࡍࡿࢫࣆࣥࢺࣟࢽࢡࢫ࠾࠸࡚ࡣࠊ࠸ࢫࣆࣥࢆไᚚࡍࡿ ࡀᢏ⾡ࡢ୰ᚰ࡛࠶ࡿࠋ2007 ᖺࠊ≀㉁୰ࡢ౯㟁Ꮚᖏࡢᣢࡘ┦ᗄఱᏛⓗ࡞ᛶ㉁ࡼࡗ࡚ࠊࣂࣝࢡࡣ ⤯⦕యࡔࡀ⾲㠃↓ᩓ㐓ࡢࢫࣆࣥὶࡀᏑᅾࡍࡿࡼ࠺࡞≀㉁ࡀ࠶ࡿࡢ࡛ࡣ࡞࠸⌮ㄽⓗண ࡉࢀࠊࡑ ࡢࡼ࠺࡞≀㉁ࡣࠕࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࠖྡࡅࡽࢀࡓࠋᛂ⏝ࡢほⅬࡽࡣࠊࡑࡢ↓ᩓ㐓ࡢࢫࣆࣥὶࢆ ࢹࣂࢫᛂ⏝࡛ࡁࢀࡤࠊ㉸┬࢚ࢿࣝࢠ࣮ᆺࡢࢫࣆࣥࢺࣟࢽࢡࢫࡀᐇ⌧࡛ࡁࡿྍ⬟ᛶࡀ࠶ࡿࠋ ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య◊✲ࡢึᮇ࠾࠸࡚ࠊᐇ㝿Bi 1-x Sb x ࠊBi 2 Se 3 ࠊBi 2 Te 3 ࡀࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య࡛࠶ ࡿࡇࡀ᫂ࡽ࡞ࡗࡓࡀࠊࣂࣝࢡ⤯⦕ᛶࡀప࠸ࡇࡀၥ㢟࡛࠶ࡗࡓࠋࡑࡢࡓࡵࡼࡾ㧗࠸ࣂࣝࢡ⤯⦕ᛶ ࢆᣢࡘࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢ᥈⣴ࡀ⥆ࡅࡽࢀ࡚࠸ࡿࠋࡑࡢ୰࡛ᡃࠎࡣࠊ2010 ᖺึࡵ࡚ࡢࣂࣝࢡ⤯⦕ᛶ ࢆ♧ࡍࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య≀㉁Bi 2 Te 2 SeࢆⓎぢࡋࠊ2011 ᖺࡣࡑࡢᨵⰋ∧Bi 2-x Sb x Te 3-y Se y ࢆ㛤Ⓨࡍࡿ࡞ ࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢᇶ♏◊✲࠾࠸࡚㔜せ࡞ᡂᯝࢆᣲࡆ࡚࠸ࡿࠋ ࣭ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య࠾ࡅࡿࣇ࢙࣑ࣝ‽ࡢ㟁⏺ไᚚ ୖグࡢ≀ᛶゎ᫂◊✲୪⾜ࡋ࡚ࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡼࡿࢫࣆࣥࢺࣟࢽࢡࢫ⣲Ꮚ㛤Ⓨࡢࡓࡵࡢᇶ♏ ◊✲ࡶ⾜ࡗ࡚࠾ࡾࠊ⌧ᅾࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య⾲㠃࠾ࡅࡿࢫࣆࣥὶࡢ┤᥋᳨ฟࢆ┠ᣦࡋ࡚࠸ࡿࠋ ࡑࡢࡓࡵࡢせ⣲ᢏ⾡ࡋ࡚ࠊSiO 2 ⤯⦕ᒙࢆᙧᡂࡋࡓࢩࣜࢥࣥᇶᯈୖࠊࢢࣛࣇ࢙ࣥྠᵝࡢࢫࢥࢵࢳ ࢸ࣮ࣉࢆ⏝࠸ࡓ㛤ἲࡼࡗ࡚Bi 2-x Sb x Te 3-y Se y ࡢᚤᑠ༢⤖ᬗⷧ∦ࢆᐃ╔ࡉࡏࠊࡑࡢୖ㟁Ꮚࣅ࣮࣒ࣜࢯ ࢢࣛࣇ࣮ࡼࡗ࡚㟁ᴟࢆᙧᡂࡋࡓ㸦ᅗ 1㸧 ࠋࡇࡢࢹࣂࢫ࡛ࡣࠊࣂࢵࢡࢤ࣮ࢺࡽ༳ຍࡍࡿ㟁⏺ࡼࡗ ࡚ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య୰ࡢࣇ࢙࣑ࣝ‽ࢆไᚚࡋࠊ࢟ࣕࣜࡢᴟᛶࢆnᆺࡽpᆺࡲ࡛ኚࡉࡏࡿࡇࡀ ࡛ࡁࡿࠋࡇࡢࡼ࠺࡞ࢹࣂࢫࢆ ᐃ࣭ホ౯ࡋࠊࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࢫࣆࣥࢺࣟࢽࢡࢫ⣲Ꮚࢆస〇ࡍࡿࡓ ࡵᚲせ࡞ࡿせ⣲ᢏ⾡ࢆ㛤Ⓨࡋࡓࠋ ᅗ ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యୖᚤ⣽㟁ᴟࢆᙧᡂࡋࡓࣂࢵࢡࢤ࣮ࢺᆺ㟁⏺ຠᯝࢹࣂࢫࠋࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య Bi 2-x Sb x Te 3-y Se y ༢⤖ᬗࡽ㞳ࡋSiO 2 ⤯⦕ᒙࢆᣢࡘSiᇶᯈᐃ╔ࡉࢀࡓⷧ∦ୖࠊ㟁Ꮚࣅ࣮࣒ࣜࢯࢢࣛࣇ࣮ࡼࡗ࡚Pd ࡢᚤ⣽㟁ᴟࡀᙧᡂࡉࢀ࡚࠸ࡿࠋ ― 16 ― ࢼࣀ▱⬟ࢩࢫࢸ࣒ศ㔝 ᩍᤵ㸦ව௵㸧 㮖ᑿ 㝯 a) ᴫせ ᐇ㦂ィ ᢏ⾡ࡢ㐍Ṍకࡗ࡚ࠊࢼࣀࢸࢡࣀࣟࢪ◊✲ศ㔝࠾࠸࡚㔞ࡢᐇ㦂ࢹ࣮ࢱࡀ✚ࡉࢀࡘࡘ ࠶ࡿࠋࡋࡋ࡞ࡀࡽࠊ◊✲⪅ࢆྵࡴே㛫ࡢሗฎ⌮⬟ຊࡢ㝈⏺ࡼࡾࠊࡑࡢࡼ࠺࡞㔞ࢹ࣮ࢱࡽ⛉Ꮫ ⓗࠊᕤᏛⓗព⩏῝࠸▱㆑ࢆᡭື࡛ຠ⋡ⓗᢳฟࡍࡿࡇࡣ㞴ࡋ࠸ࠋࡇࡢၥ㢟ࢆゎỴ࡞࠸ࡋ㍍ῶࡍࡿࡓ ࡵࠊᮏ◊✲㒊㛛࡛ࡣᵝࠎ࡞᥎ㄽࡸ᥈⣴ࣝࢦࣜࢬ࣒ࢆ㥑ࡋ࡚㔞ࢹ࣮ࢱࡽே㛫ࡗ࡚ពࡢ ࡁ࡞▱㆑ࢆᢳฟ࡞࠸ࡋ᥎ᐃࡍࡿᡭἲࡢ㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿࠋᮏᖺᗘࡣᖺᗘᘬࡁ⥆ࡁࠊ㔞Ꮚሗࣇ࢛ࢺ ࢽࢡࢫ◊✲ศ㔝㜰⏘◊࣭㟁Ꮚ◊ࣛࣥࢫࣛ࣎ࡢ◊✲ࢳ࣮࣒ࠊ㔞Ꮚሗฎ⌮ᐇ㦂࠾ࡅࡿ ᐇ㦂᮲௳ࡢ␗ᖖኚື᳨▱ᡭἲࡢ㛤Ⓨྲྀࡾ⤌ࢇࡔࠋ㛗㛫ரࡿ㔞Ꮚሗฎ⌮ᐇ㦂࠾࠸࡚ࡣࠊ✀ࠎࡢ እࡸ⨨タᐃࡢຎ࡞ࡼࡗ࡚ᐇ㦂᮲௳ࡀពኚືࡋࠊࡑࢀࡀᐇ㦂⤖ᯝࡢಙ㢗ᛶࢆపୗࡉࡏࡿྍ ⬟ᛶࡀ࠶ࡿࠋࡑࡇ࡛ࠊᮏ◊✲࡛ࡣ≧ែᐦᗘ⾜ิࢆᐃᖖ㸦㠀ືⓗ㸧ᡂศ␗ᖖኚືࢆ⾲ࡍ㠀ᐃᖖ㸦ືⓗ㸧 ᡂศศゎࡋ⢭ᗘࡢ㧗࠸᥎ᐃ⤖ᯝࢆᚓࡿ᪂ࡓ࡞ᩘᏛⓗつ⠊ࢆ⪃ࡋࠊࡑࢀࢆゎᯒᡭἲࡋ࡚ලయࡍࡿ ◊✲ࢆ㐍ࡵࡓࠋࡑࡢ⤖ᯝࠊᖺ௨ୖࡼࡾ㧗ಙ㢗࡞᥎ᐃ⤖ᯝࢆᚓࡿࡇࡀ࡛ࡁࡓࠋ b) ᡂᯝ ᪧ᮶ᡭἲࡼࡿ␗ᖖ᳨▱ ᥦᡭἲࡼࡿ␗ᖖ᳨▱ ᥦᡭἲࡣᐇ㝿ࡢ␗ᖖ㒊ศ㸦▮༳⟠ᡤ㸧ࢆࡼࡾⓗ☜᳨▱㸦㉥Ⰽࣂ࣮㸧ྍ⬟࡛࠶ࡿࠋ ᪧ᮶ᡭἲ㻌 ᥦᡭἲ㻌 ⧞ࡾ㏉ࡋᐇ㦂࠾ࡅࡿ AUC ᣦᶆ㸦100%㏆࠸㧗ಙ㢗㸧ࡢศᕸࢆẚ㍑ࡍࡿ ᥦᡭἲࡢ᪉ࡀࡼࡾಙ㢗ᛶࡀ㧗࠸ࡇࡀࢃࡿࠋ ― 17 ― ࢼࣀ་⒪ᛂ⏝ࢹࣂࢫศ㔝 ᩍᤵ㸦ව௵㸧 ୰㇂ ᙪ a) ᴫせ ᙜศ㔝࡛ࡣࠊ㎿㏿ࠊ⡆౽ࠊᏳ౯࡞㑇ఏᏊデ᩿ἲࡢ㛤Ⓨࢆ┠ᣦࡋ࡚ࠊ᳨ฟᚲせ࡞ᇶᮏᢏ⾡ᴫᛕࡢᥦ ᳨ドࢆ⾜࠺ࡶࠊࢼࣀᚤ⣽ຍᕤ⤌ࡳྜࢃࡏࡓࢹࣂࢫࡸࠊ་⒪デ᩿ᶵჾࡢ㛤Ⓨࡶᒎ㛤ࡍࡿࠋ b) ᡂᯝ ࣭ࢩࢺࢩࣥࣂࣝࢪࣆࣥࣉ࣐࣮ࣛࢆ⏝࠸ࡓ⡆౽࡞㑇ఏᏊኚ␗᳨ฟἲ 㑇ఏᏊࡢኚ␗ࢆ㎿㏿᳨ฟࡍࡿᡭἲࡀࠊ ࢸ࣮࣓࣮ࣛࢻ་⒪ࢆᨭ࠼ࡿ᰿ᖿᢏ⾡ࡋ࡚ ᮇᚅࡉࢀ࡚࠸ࡿࠋᙜ◊✲ศ㔝࡛ࡣࠊ࣑ࢫ࣐ ࢵࢳࡸࣂࣝࢪᵓ㐀≉␗ⓗ⤖ྜࡍࡿᑠศ Ꮚࢆ⏝࠸ࡓ㑇ఏᏊኚ␗᳨ᰝᢏ⾡ࢆᥦࡋ࡚ ࡁࡓࠋᡃࠎࡢ᪉ἲࡢ≉ᚩࡣࠊᶆⓗ DNA ࡀ ᑡ㔞࡛ࡶ PCR ࢆ࠺ࡇ᳨࡛ฟࡀྍ⬟࡛ ࠶ࡿࡇࠊ࡚ࢆΰྜࡋ࡚ PCR ࡀࡅࡽࢀ ࡿ࠸࠺ࡁࢃࡵ࡚⡆౽࡞ᡭἲ࡛㑇ఏᏊኚ␗ ࡀุᐃ࡛ࡁࡿⅬ࠶ࡿࠋࢸࣥࣉ࣮ࣞࢺࢆ⏝ ࠸࡚ PCR ࢆ⾜࡞ࡗࡓ⤖ᯝࠊ3‘ᮎ➃ࡢ୍ሷᇶ ࡢ㐪࠸࡛⺯ගࡢኚࡁ࡞ᕪࡀほ ࡉࢀࠊ ୍ሷᇶࡢ㐪࠸ࢆㄆ㆑ࡍࡿࡇᡂຌࡋࡓࠋ ࡉࡽࡇࡢᡭἲࢆ⏝࠸࡚ࠊ⌧ᅾ࢘ࣝࢫࡢ 㧗ឤᗘ᳨ฟࢆᴗࠊࢩ࣏࣮ࣥ࢞ࣝᏛඹ ྠ࡛⾜ࡗ࡚࠸ࡿࠋRNA࢘ࣝࢫ≉␗ⓗ ࡞ࣉ࣐࣮ࣛ࣊ࣆࣥࢆࢱࢢࡋ࡚ ࡋࠊ㏫㌿̾PCR(RT-PCR)ࢆ⾜࠺ࠊ୍ᮏࡢࢳ࣮ࣗࣈෆ࡛ PCR ࡀ㐍⾜ࡋࠊ࢘ࣝࢫࡢ᳨ฟࡀྍ⬟࡛࠶ࡿ ࡇࡀ♧၀ࡉࢀࡓࠋࡲࡓࠊDNAѸ࢘ࣝࢫ࡛ࡶྠᵝ࢘ࣝࢫࡢ᳨ฟࡀྍ⬟࡛࠶ࡾࠊ࢘ࣝࢫ⡆౽࡞᳨ ฟἲࡋ࡚ࡢᛂ⏝ᒎ㛤ࡀᮇᚅࡉࢀࡿࠋ ᑦࠊᮏ◊✲ࡣ⢭ᐦไᚚᏛ◊✲ศ㔝ࡢṊྐᜨຓᩍࡢඹྠ◊✲࡛࠶ࡿࠋ ― 18 ― ࢼࣀࢩࢫࢸ࣒タィศ㔝 ᣍ࠸ᩍᤵ ሯᮏ ྐ㑻㸦ᖹᡂ 25 ᖺ 5 ᭶ 1 ᪥ࠥᖹᡂ 25 ᖺ 9 ᭶ 30 ᪥㸧 a) ᴫせ ྜ≀༙ᑟయ GaAs ෆᇙࡵ㎸ࡲࢀࡓ InAs ༢୍㔞Ꮚࢻࢵࢺ ࡣ༢୍ගᏊࢆ⏝ࡋࡓ㔞Ꮚᬯྕ㏻ಙࡢග※ࡋ࡚ὀ┠ࡉࢀ࡚ ࠸ࡿࠋࡋࡋ୍⯡ⓗ࡞స〇ἲࡀ⮬ᕫ⤌⧊ࢆ⏝ࡋࡓࡶࡢ࡛࠶ ࡾࠊࢼࣀ࡛ࣞ࣋ࣝࡢ⨨ไᚚࡀᅔ㞴࡛࠶ࡿࠋࡑࡇ࡛ࣨ᭶ࡢᣍ ࠸ᮇ㛫ࡢ㛫ࠊ㜰Ꮫࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬࡢᶵ ჾࢆ⏝ࡋ࡚ࠊ≉ᐃ⨨㸯ࡘࡔࡅ㧗ရ㔞Ꮚࢻࢵࢺࢆ㓄⨨ࡍ ࡿᢏ⾡࠾ࡼࡧ㓄⨨ࡋࡓࢻࢵࢺࡢ᳨ฟ⏝࣐࣮࣮࢝ᙧᡂᡭἲࡢ☜ ❧ࢆ┠ᣦࡋࡓࠋࡲࡎศᏊ⥺࢚ࣆࢱ࢟ࢩ㸦MBE㸧ᡂ㛗⪏࠼࠺ ࡿ࣐ࢫࢡᮦᩱᙧ≧ࡢ᳨ウࠊࡑࡋ࡚࣐ࢫࢡస〇ẁ㝵࠾ࡅࡿ ᅗ㸯 STMBE ⨨ GaAs(001)ᇶᯈ⾲㠃ࡢࢲ࣓࣮ࢪࢆᴟຊపῶࡋࡓࣉࣟࢭࢫ᪉ἲ ࡢ☜❧ࢆ⾜ࡗࡓࠋᐇ㦂ࡢ᭱⤊ẁ㝵࡛ࡣ MBE ᡂ㛗୰ࡑࡢሙ࡛㉮ᰝᆺࢺࣥࢿ ࣝ㢧ᚤ㙾(STM)ほᐹࡀྍ⬟࡞ STMBE ⨨㸦ᅗ㸯㸧ࡼࡿ InAs ⷧ⭷ᡂ㛗࠾ ࡼࡧ᭱⾲㠃ࡢཎᏊᵓ㐀ࡢ㐪࠸ࢆ⏝ ࡋࡓ STM ᧯సࡼࡿ≉ᐃ⨨ࡢ࣍ ࣮ࣝస〇 InAs 㔞Ꮚࢻࢵࢺ⮬ᕫᙧᡂ ࢆ⾜࠺ࡇ࡞ࡿ㸦ᅗ㸰㸧 ࠋࡑࡢࡓࡵࠊ స〇ࡍࡿ࣐ࢫࢡᮦᩱᙧ≧ࡣ MBE ᡂ 㛗ࡢ ᗘ㞺ᅖẼ⪏࠼ࡽࢀࡿࡔ ࡅ࡛ࡣ࡞ࡃࠊGa, In, As ࡞ࡢᮦᩱ ᛂࡋ࡞࠸ୟࡘᙧ≧ኚࡋ࡞࠸ᚲせ ࡀ࠶ࡿࠋࡲࡓᡂ㛗㠃ࡣཎᏊ࡛ࣞ࣋ࣝ ࡢᖹᆠᛶࡀᚲせ࡞ࡓࡵࠊࣉࣟࢭࢫࡼ ᅗ㸰 ⨨ไᚚ༢୍㔞Ꮚࢻࢵࢺస〇㸸InAs ᡂ㛗㔞᩿㠃ᙧ≧ ࡿ⾲㠃࢚ࢵࢳࣥࢢ࡞ࡢࢲ࣓࣮ࢪࢆ ᭱ᑠ㝈ᗘṆࡵࡿᚲせࡀ࠶ࡿࠋ b) ᡂᯝ ࡲࡎ࣐ࢫࢡᮦᩱࡋ࡚ࡣࠊ㧗 ࡛Ᏻᐃ࡞ Wࢆ㑅ᢥࡋࡓࠋW࣐ࢫࢡࡣ㑅ᢥᡂ㛗⏝ࡢ࣐ ࢫࢡࡋ࡚ࡶ⏝ࡉࢀ࡚࠾ࡾࠊ࣐ࢫࢡୖ ࡣGaAsࡀᡂ㛗ࡋ࡞࠸ࠊࡶࡋࡃࡣḞ㝗ࢆྵࡴ ከ⤖ᬗ࡞ࡾࠊⓎගᐤࡋ࡞࠸ࡓࡵࠊ࣐ ࢫࢡࡢ↓࠸ࡇࢁ࢚ࣆࢱ࢟ࢩࣕࣝᡂ㛗ࡋ ࡓInAsࢻࢵࢺࡢ༊ูࡀྍ⬟࡛࠶ࡿࠋᅗ㸱 (a)ࣇ࢛ࢺ࣐ࢫࢡࡢᙧ≧ᣑᅗࠊᅗ㸱(b) ᭱⤊ⓗస〇ࡋࡓW࣐ࢫࢡࡢᣑᅗࢆ♧ ࡍࠋSTMBE࡛ࡢᗈᇦࢫ࢟ࣕࣥ⠊ᅖࡀ 10m ᅄ᪉࡛࠶ࡿࡓࡵࠊ㛤ཱྀ㒊ࢆࡑࢀ௨ୗࡍࡿ ᚲせࡀ࠶ࡾࠊ⌧ᅾࡢࡇࢁࠊᅗ㸱(b)♧ࡍ (a) (b) ᅗ㸱(a)㔠ᒓࣇ࢛ࢺ࣐ࢫࢡ(b)స〇ࡋࡓ W ࣐ࢫࢡࣃࢱ࣮ࣥ ― 19 ― W mask ࡼ࠺ࠊ4mᅄ᪉ࡢ㛤ཱྀ㒊స〇ᡂຌࡋ࡚࠸ࡿࠋࡲࡓWⷧ⭷ࢆ 100m RFࢫࣃࢵࢱᚋࡢDMFࢆ⏝࠸ࡓࣜ ࣇࢺ࢜ࣇ㛗㛫DMF⁐ᾮᾐࡍGaAsᇶᯈ⾲㠃ࡀᾐ㣗ࡉࢀࠊᩘ༑nm⛬ᗘࡢพฝࡀᙧᡂࡉࢀ࡚ࡋࡲ ࠺ࡇࡀࢃࡗࡓࠋࡇࢀࡣMBEᡂ㛗ࡢጉࡆ࡞ࡿࡓࡵࠊ᭱ᑠ㛫࡛ࡢ᭷ຠ࡞ࣜࣇࢺ࢜ࣇࢆ᥈⣴ࡋࠊ⌧ᅾ ࡢࡇࢁDMF 45min࡛⾲㠃พฝࢆ 1nm⛬ᗘᢲࡉ࠼ࡽࢀࡿࡇࡀศࡗࡓࠋ ― 20 ― ࢼࣀࢹࣂࢫホ౯࣭デ᩿ศ㔝 ᐈဨᩍᤵ ᪫ Ⰻྖ㸦ᖹᡂ 25 ᖺ 10 ᭶ 1 ᪥ࠥᖹᡂ 26 ᖺ 1 ᭶ 31 ᪥㸧 a) ᴫせ ᶵ⬟ᛶᮦᩱ㛤Ⓨ࠾ࡅࡿ➨୍ཎ⌮ィ⟬ࡢ᭷⏝ᛶᣑᙇά⏝ b) ᡂᯝ ࣭ᶵ⬟ᛶᮦᩱࡢ➨୍ཎ⌮ィ⟬ ࡇࢀࡲ࡛ࠊ➨୍ཎ⌮ィ⟬࠾ࡼࡧ㟁Ꮚບ㉳≧ែࡢィ⟬ᡭἲࢆ⏝࠸࡚ࠊྛ✀ᶵ⬟ᮦᩱࡢ◊✲㛤Ⓨࠊ≉ࠊ ගゐ፹ࠊኴ㝧㟁ụᮦᩱࠊ⇕㟁ᮦᩱࠊ⌮ᙉᗘྜ㔠➼ࠊྛ✀ᶵ⬟ᮦᩱࡢ㛤Ⓨ㛵ࢃࡾࠊᮦᩱ≀ᛶゎᯒ࠾ࡼ ࡧ᪂ᮦᩱᥦࢆ⾜ࡗ࡚ࡁࡓࠋ◊✲ᡂᯝࡣㄽᩥ␃ࡲࡽࡎࠊከࡃࡣᐇ㦂῝ࡃ㐃ᦠࡍࡿࡇ࡛≉チࡸၟရ ⮳ࡾࠊィ⟬ࡢ᭷⏝ᛶࢆᐇドࡋ࡚ࡁࡓࠋ᭱㏆࡛ࡣࡼࡾ୍⯡ⓗࡘ㝵ᒙⓗ࡞ᮦᩱタィࢆྍ⬟ࡍࡿࡓࡵࡢ ࣝࢦࣜࢬ࣒ࢆ◊✲ࡋ࡚࠾ࡾࠊᮏ◊✲࡛ࡣࠊᶵ⬟ᛶᮦᩱ㛤Ⓨࡢ➨୍ཎ⌮ィ⟬ᡭἲࡢࡼࡾᗈ⠊࡞ά⏝ࢆ ┠ᣦࡍࠋࡲࡓࠊ ࠕ➨୍ཎ⌮ィ⟬ࢆ⏝࠸ࡓᶵ⬟ᮦᩱタィ 1 Ѹ ගᏛᶵ⬟ᮦᩱタィࠖ 㸦ᖹᡂ 25 ᖺ 12 ᭶ 16 ᪥㛤 ദ㸧ࠊࠕ➨୍ཎ⌮ィ⟬ࢆ⏝࠸ࡓᶵ⬟ᮦᩱタィ 2 Ѹ ྜ㔠ᮦᩱタィࠊᮦᩱタィἲࡢ㛤Ⓨࠖ㸦ᖹᡂ 26 ᖺ 1 ᭶ 16 ᪥㛤ദ㸧ࡢࢱࢺ࡛ࣝ᪫ᩍᤵࡼࡿබ㛤ࢭ࣑ࢼ࣮ࡀ㛤ദࡉࢀࠊศ㔝ෆእࡢ◊✲⪅ࡸ㝔⏕ࡢάⓎ࡞㆟ㄽ ࡀ⾜ࢃࢀࡓࠋ ― 21 ― ࢼࣀࢹࣂࢫホ౯࣭デ᩿ศ㔝 ࢠ࣮࣒ࣚ ࢝ࣟࣥ㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼ᖹᡂ 25 ᖺ 5 ᭶ 31 ᪥㸧 a) ᴫせ ᮏ◊✲ศ㔝࡛ࡣࠊ᪂ࡋ࠸࣓࣮ࢪࣥࢢࢩࢫࢸ࣒ࡋ࡚ࠊࢩ࣮ࣥྜࢃࡏ࡚⾲㠃ᙧ≧ࡀኚࡉࡏࡿࡇ ࡀ࡛ࡁࡿྍኚ࣑࣮ࣛࢩࢫࢸ࣒ࢆ㛤Ⓨࡋࡓࠋヨసࢩࢫࢸ࣒ࢆసᡂࡍࡿࡶࠊ࣑࣮ࣛࡢゅᗘࡢ⮬ືᰯṇ ἲࢆ㛤Ⓨࡋࡓࠋ b) ᡂᯝ 㺃 ྍኚ࣑࣮ࣛࢩࢫࢸ࣒ ࡇࢀࡲ࡛ࠊࢥࣥࣆ࣮ࣗࢱࣅࢪࣙࣥศ㔝ࡸࣟ࣎ࢸࢡࢫศ㔝࡛ࡣࠊ┠ⓗᛂࡌ࡚ฝᙧ≧ࡸพᙧ≧ࡢ࣑ ࣮ࣛࡀ⏝࠸ࡽࢀ࡚ࡁࡓࠋ୍᪉ࠊ࣑࣮ࣛᙧ≧ࢆࢡࢳ࢚࣮ࣗࢱ࣮ࡼࡗ࡚⢭ᐦไᚚࡍࡿࢩࢫࢸ࣒ࡶᏑᅾ ࡍࡿࡀࠊ୍⯡ࡾ࡛㧗౯࡞ࢩࢫࢸ࣒࡞ࡿࠋࡑࢀᑐࡋ࡚ࠊᮏ◊✲࡛ࡣࠊࢦ࣒⾲㠃࣑࣮ࣛࣃࢵ ࢳࢆ㈞ࡾࡅࠊไᚚᲬࢆ⛣ືࡉࡏࡿࡇ࡛ࢦ࣒⾲㠃ࡢᙧ≧ࢆኚࡉࡏࡿ࠸࠺ࢩࣥࣉࣝ࡞ཎ⌮ࡢྍኚ࣑ ࣮ࣛࢩࢫࢸ࣒ࢆ⪃ࡋࡓࠋࢦ࣒⾲㠃ࡣࠊฝᙧ≧ࡶพᙧ≧ࡶኚࡉࡏࡿࡇࡀ࡛ࡁࡿࠋᅗ㸯♧ࡍࡼ ࠺࡞ヨసࢩࢫࢸ࣒ࢆ㛤Ⓨࡋࠊࡑࡢືసࢆ᳨ドࡋࡓࠋ 㺃 ࣑࣮ࣛࡢ⮬ືᰯṇἲ 㛤Ⓨࡋࡓྍኚ࣑࣮ࣛࢩࢫࢸ࣒ࡣࠊಶࠎࡢ࣑࣮ࣛࡢゅᗘࢆ⊂❧ࡋ࡚ไᚚ࡛ࡁࡿࢃࡅ࡛ࡣ࡞࠸ࠋࡑࡇ࡛ࠊ ྛ࣑࣮ࣛࡢゅᗘࢆ⮬ືⓗᰯṇࡍࡿᡭἲࢆ㛤Ⓨࡋࡓࠋ➢ྕࡉࢀࡓࢻࢵࢺࣃࢱ࣮ࣥࡢᖹ㠃ࢆྍኚ࣑࣮ࣛ ࢩࢫࢸ࣒࡛ᙳࡋࠊಶࠎࡢ࣑࣮ࣛᫎࡿࣃࢱ࣮ࣥࢆ≉ᐃࡍࡿࡇ࡛ࠊ࣑࣮ࣛࡢゅᗘࢆ⟬ฟࡍࡿࠋไᚚᲬ ࢆ⛣ືࡉࡏࡓࠊࡢࡼ࠺ಶࠎࡢ࣑࣮ࣛࡀഴࡃࡢ㛵ಀࢆグ㘓ࡋ࡚࠾ࡃࡇ࡛ࠊᰯṇࢆྍ⬟ࡋࡓࠋ ᅗ㸯 ྍኚ࣑࣮ࣛࢩࢫࢸ࣒ ᅗ㸰 ➢ྕࢻࢵࢺࣃࢱ࣮ࣥࢆ⏝ࡋࡓ࣑࣮ࣛゅᗘ⮬ືᰯṇἲ ― 22 ― ࢼࣀࢹࣂࢫホ౯࣭デ᩿ศ㔝 ᐈဨᩍᤵ 㔠 ᡂ᳜ (ᖹᡂ 25 ᖺ 6 ᭶ 21 ᪥㹼ᖹᡂ 25 ᖺ 7 ᭶ 30 ᪥) a) ᴫせ ᭷ᶵᏛᛂ࠾࠸࡚ࣛࢪ࢝ࣝ࢜ࣥ✀ࡣ㔜せ࡞ᛂ୰㛫య࡛࠶ࡾࠊࡑࡢᛂᛶไᚚࡣ㔜せ࡞ㄢ㢟࡛ ࠶ࡿࠋࢃࢀࢃࢀࡢ◊✲ศ㔝࡛ࡣࠊගບ㉳ࡼࡾ⏕ࡌࡓບ㉳ࣛࢪ࢝ࣝ࢜ࣥ✀ࡀࡁࢃࡵ࡚㧗࠸㓟㑏ඖ ᛂࢆ♧ࡍࡇࢆᐇドࡋ࡚ࡁࡓࠋບ㉳ࣛࢪ࢝ࣝ࢜ࣥ✀ࡢᑑࡣ㏻ᖖ 1 ࢼࣀ⛊௨ୗ࡛࠶ࡿࡇࡽࠊᛂ ㏣㊧ࡣ㉸㧗㏿ศගࡼࡿ᳨ウࡀྍḞ࡛࠶ࡿࠋࡲࡓࠊຠ⋡ⓗ࡞ᛂࢆᐇ⌧ࡍࡿࡓࡵࡣࠊ」ᩘࡢᶵ⬟ ศᏊࢆඹ᭷⤖ྜ࡛⤖ྜࡋࡓࢲࢵࢻศᏊࡀ᭷ຠ࡛࠶ࡿࠋᮏ◊✲࡛ࡣບ㉳ࣛࢪ࢝ࣝࢽ࢜ࣥࡽࡢ㟁Ꮚ ⛣ື㐣⛬ࡢゎ᫂ࢆ┠ᣦࡋࠊ୍㐃ࡢࢲࢵࢻศᏊࡢྜᡂࢆ⾜ࡗࡓࠋ b) ᡂᯝ ࢃࢀࢃࢀࡢ◊✲ࢢ࣮ࣝࣉࡣࡍ࡛ࢼࣇࢱࣝࢪ࣑ࢻ(NDI)ࣆ࣓ࣟࣜࢵࢺ࣑ࢻ(PI)ࢆ⤖ྜࡋࡓࢲ ࢵࢻศᏊࢆ⏝࠸࡚ບ㉳ࣛࢪ࢝ࣝࢽ࢜ࣥࡽࡢ㟁Ꮚ⛣ືࢆ᳨ウࡋࡓࠋࡇࡢࢲࢵࢻศᏊࢆᏛ㑏ඖ ࡍࡿࠊ㓟㑏ඖ㟁ࡢ㛵ಀࡼࡾ NDI ࡀ㑅ᢥⓗ㑏ඖࡉࢀࡿࠋNDI ࣛࢪ࢝ࣝࢽ࢜ࣥࡢ྾ࢆ㑅ᢥⓗ ບ㉳ࡍࡿࡇࡼࡾࠊບ㉳ NDI ࣛࢪ࢝ࣝࢽ࢜ࣥࡽ PI ࡢ㟁Ꮚ⛣ືࡀᩘࣆࢥ⛊࡛㉳ࡇࡿࡇࢆ᫂ ࡽࡋࡓࠋᮏ◊✲࡛ࡣࠊNDI ࢆᅛᐃࡋ࣌࡞ࡿศᏊࢆ✀ࠎኚ᭦ࡍࡿࡇ࡛ࠊ㟁Ꮚ⛣ືࡢ⮬⏤࢚ࢿࣝ ࢠ࣮ኚ౫Ꮡᛶࢆ᳨ウࡍࡿࡇࢆ┠ⓗࡋࡓࠋලయⓗࡣ࣌ࣜࣞࣥࢪ࣑ࢻࠊ࣌ࣜࣞࣥࣔࣀ࣑ࢻࠊࣇ ࢱ࣑ࣝࢻࠊࢼࣇࢱ࣑ࣝࢻ NDI ࢆ⤖ྜࡋࡓ୍㐃ࡢࢲࢵࢻศᏊࢆྜᡂࡍࡿࡇࢆィ⏬ࡋࡓࠋࡇ ࢀࡽࡢศᏊࡣ NDI ࡼࡾ㑏ඖ㟁ࡀప࠸ࡓࡵࠊᏛ㑏ඖࢆࡋࡓሙྜࡣ NDI ࡀ㑅ᢥⓗ㑏ඖࡍࡿࡇࡀ ணࡉࢀࠊ㉸㧗㏿ศගࡢ㐺⏝ࡼࡾࠊບ㉳ࣛࢪ࢝ࣝࢽ࢜ࣥࡽࡢ㟁Ꮚ⛣ືࡀほ ࡉࢀࡿࡇࡀᮇᚅࡉ ࢀࡿࠋࡇࢀࡽࡢࢲࢵࢻศᏊࡣࠊࡑࢀࡒࢀࡢ↓Ỉ㓑㓟ࢆࢪ࣑ࣀ࣋ࣥࢮࣥẁ㝵ⓗ⤖ྜࡍࡿࡇ࡛ ྜᡂ࡛ࡁࠊᐇ㝿ࠊ4 ✀ࡢࢲࢵࢻศᏊࢆྜᡂࡍࡿࡇᡂຌࡋࡓࠋᚋࠊບ㉳ࣛࢪ࢝ࣝࢽ࢜ࣥࡽ ࡢ㟁Ꮚ⛣ື࣓࢝ࢽࢬ࣒ࡢヲ⣽ࡀ᫂ࡽ࡞ࡿணࡉࢀࡿࠋ ― 23 ― ࢼࣀࢹࣂࢫホ౯࣭デ᩿ศ㔝 ᐈဨᩍᤵ Jaichan Lee㸦ᖹᡂ 25 ᖺ 11 ᭶ 11 ᪥ࠥᖹᡂ 25 ᖺ 12 ᭶ 13 ᪥㸧 a) ᴫせ పḟඖ㑄⛣㔠ᒓ㓟≀ࡢ➨୍ཎ⌮ⓗ◊✲ b) ᡂᯝ ࣭పḟඖᛶࢆ࿊ࡍࡿ 㑄⛣㔠ᒓ㓟≀ࡢ㟁Ꮚ≧ែ పḟඖ㓟≀ࡣࢼࣀ࣡ࣖࠊࢼࣀࣟࢵࢻࠊ㉸ⷧ⭷ࠊ㉸᱁Ꮚࡢࡼ࠺࡞ᵝࠎ࡞ᙧែ࡛ᐇ⌧ࡉࢀ࡚࠸ࡿࠋࡇ ࡢ࠺ࡕ㓟≀㉸᱁Ꮚࡣࠊᒙᡂ㛗ࡼࡾ௵ព㐃⥆✚ᒙࡉࢀࡓ㓟≀ᵓ㐀࡛࠶ࡾࠊࡓ࠸ࢇⷧ࠸㓟≀ᒙ ࢆྵࡴࡓࡵࠊ᪂ࡓ࡞≀⌮ⓗ≉␗ᛶᑟࡃపḟඖᛶࡢⓎ⌧ࡀᮇᚅࡉࢀ࡚࠸ࡿࠋᮏ◊✲࡛ࡣࠊ㔠ᒓ-⤯⦕య㌿ ⛣௦⾲ࡉࢀࡿ㟁Ꮚ┦㌿⛣⌧㇟ࢆࠊ㓟≀㉸᱁Ꮚ⣔ࢆᑐ㇟ࡋ࡚➨୍ཎ⌮ィ⟬ࡼࡾㄪࡿࠋලయⓗ ࡣࠊ࣌ࣟࣇࢫ࢝ࢺᆺᵓ㐀ࡢLaTiO 3 ࡸLaVO 3 ࣔࢵࢺ⤯⦕యࠊSrTiO 3 ࣂࣥࢻ⤯⦕యࠊSrVO 3 ᙉ┦㛵㔠ᒓ➼ ࡀᮏ◊✲࡛ࡢࢱ࣮ࢤࢵࢺపḟඖ⣔࡞ࡿࠋᮏ◊✲࡛ࡣࠊࡑࡢࡼ࠺࡞పḟඖᛶࡢⓎ⌧ࡀᮇᚅࡉࢀࡿ㑄⛣㔠 ᒓ㓟≀࠾ࡅࡿ≉␗࡞㟁Ꮚ≧ែ≀ᛶࡢⓎ⌧ᶵᵓࡘ࠸࡚㆟ㄽࢆ㐍ࡵࡓࠋࡲࡓࠊ ࠕTransition metal oxide superlattices㸦㑄⛣㔠ᒓ㓟≀㉸᱁Ꮚ㸧ࠖ 㸦ᖹᡂ 25 ᖺ 11 ᭶ 18 ᪥㛤ദ㸧ࡢࢱࢺ࡛ࣝLeeᩍᤵࡼࡿࢭ࣑ࢼ ࣮ࡀ㛤ദࡉࢀࠊศ㔝ෆእࡢ◊✲⪅ࡸ㝔⏕ࡢάⓎ࡞㆟ㄽࡀ⾜ࢃࢀࡓࠋ ― 24 ― ࢼࣀࢹࣂࢫホ౯࣭デ᩿ศ㔝 ᐈဨᩍᤵ 㛗ᒣ(CHANG SHAN) (ᖹᡂ 25 ᖺ 12 ᭶ 24 ᪥㹼ᖹᡂ 26 ᖺ 1 ᭶ 24 ᪥) a) ᴫせ ࡇࢀࡲ࡛ࠊ◪㓟㓟ἲ(NAOS ἲ)ࢆᾮᬗࢹࢫࣉࣞ⏝ⷧ⭷ࢺࣛࣥࢪࢫࢱ㸦TFT㸧ࡢࢤ࣮ࢺ㓟⭷ ᛂ⏝ࡍࡿࡇ࡛ࠊTFT ࡢపᾘ㈝㟁ຊࢆ⾜ࡗ࡚ࡁࡓࠋࡇࢀࡣࠊNAOS ἲࡼࡗ࡚ᙧᡂࢀࡓࢩࣜࢥࣥ㓟 ⭷ࡀ⦓ᐦ࡛࠶ࡾࠊ⤯⦕ᛶࡀ㧗࠸ࡓࡵᚑ᮶ࡢ TFT ࡢࢤ࣮ࢺ㓟⭷ࢆⷧ⭷࡛ࡁࡓࡇࡼࡿࠋᮏ◊✲࡛ࡣࠊ ࡇࡢ⦓ᐦ࡞ࢩࣜࢥࣥ㓟⭷ࡀᙧᡂ࡛ࡁࡿ NAOS ἲࢆࠊᚑ᮶ࡢ pn ᥋ྜࢩࣜࢥࣥኴ㝧㟁ụࡢࣃࢵࢩ࣮࣋ࢩ ࣙࣥ⭷⏝࠸ࡿࡇࢆヨࡳࡓࠋ b) ᡂᯝ ᚑ᮶ࡢ pn ᥋ྜࢩࣜࢥࣥኴ㝧㟁ụࡢᵓ㐀ࡣࠊ㖟㟁ᴟ/ᑕ㜵Ṇ⭷(SiN)/pn ᥋ྜࢩࣜࢥࣥ/࣑ࣝ㟁ᴟ࡛࠶ ࡿࠋࡇࡢࢩࣜࢥࣥኴ㝧㟁ụࡢ⾲㠃ࢆຠᯝⓗࣃࢵࢩ࣮࣋ࢩࣙࣥࡍࡿࡓࡵࠊNAOS ἲࡼࡿࢩࣜࢥࣥ㓟 ⭷ࢆᑕ㜵Ṇ⭷ pn ᥋ྜࢩࣜࢥࣥ⾲㠃ࡢ㛫ᙧᡂࡍࡿࡇ᳨ウࡋࡓࠋᙧᡂࡋࡓኴ㝧㟁ụࡢ AM1.5 100mW/cm2 ↷ᑕୗ࡛ࡢ㟁ὶ̾㟁ᅽ≉ᛶࢆ ᐃࡋࠊNAOS 㓟⭷ࡢᙧᡂ᮲௳(ᛂ㛫ࠊ ᗘ)ࡢ᭱㐺ࢆ ⾜ࡗࡓࠋ ― 25 ― ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝 ᐈဨᩍᤵ Atif Mossad ALI 㸦ᖹᡂ 25 ᖺ 6 ᭶ 21 ᪥㹼ᖹᡂ 25 ᖺ 7 ᭶ 30 ᪥㸧 a) ᴫせ ࢩࣜࢥࣥኴ㝧㟁ụ⏝࢙࣮࢘ࣁࡣࠊࣥࢦࢵࢺࢆ࣮࣡ࣖࢯ࣮࡛ࢫࣛࢩࣥࢢࡍࡿࡇࡼࡗ࡚〇㐀ࡉ ࢀ࡚࠸ࡿࠋࢫࣛࢩࣥࢢࡢ㝿ࠊ࢙࣮࢘ࣁࡰྠ㔞ࡢษ⢊ࡀ⏕ᡂࡋࠊ⏘ᴗᗫᲠ≀ࡋ࡚ᗫᲠࡉࢀ࡚࠸ࡿࠋ ࡑࡇ࡛ࠊࡇࡢษ⢊ࡽࠊ⢊○ἲගᏛⓗ⁐ゎἲࢆ⏝࠸࡚ࠊࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࢆᙧᡂࡍࡿࠋࢩ ࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࡢ≀ᛶࢆࠊࣇ࢛ࢺ࣑ࣝࢿࢵࢭࣥࢫἲࠊTEM ➼ࢆ⏝࠸࡚ほ ࡋࠊࢧࢬࣂࣥࢻ ࢠࣕࢵࣉࡢ㛵ಀࢆồࡵࡿࠋࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝྠኈࡢ㟁Ẽⓗ᥋ゐࢆ㐩ᡂࡍࡿࡓࡵࠊ◪㓟㓟ἲ ࢆ⏝࠸ࡿࠋࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࡢḞ㝗ᾘ⁛㔠ᒓởᰁࡢ㝖ཤࡢ᪉ἲࡋ࡚ࠊḞ㝗ᾘ⁛ᆺ༙ᑟయὙ ίἲࢆ⏝࠸ࡿࠋࡉࡽࠊ㔞Ꮚࢧࢬຠᯝࡼࡗ࡚ᣑࡋࡓࣂࣥࢻࢠࣕࢵࣉࢆᣢࡘࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ ࢡࣝࢆ⏝࠸࡚ኴ㝧㟁ụࢆ〇ࡋࠊ࢚ࢿࣝࢠ࣮ኚຠ⋡ࡢྥୖࢆ┠ᣦࡍࠋ b) ᡂᯝ ⢊○ἲගᏛⓗ⁐ゎἲࢆ⏝࠸࡚ࠊࢩࣜࢥࣥษ⢊ࡽࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࢆᙧᡂࡋࡓࠋTEM ീ ࡸ X ⥺ᅇᢡࡽࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࡣࠊ1㹼20 nm ࡢ⢏ᚄࢆᣢࡘࡇࡀศࡗࡓࠋ⢊○ᚋࡢࢩࣜ ࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࢆỈ⣲୰࡛ࢽ࣮ࣝฎ⌮ࢆ⾜ࡗࡓࡀࠊX ⥺ᅇᢡࡢ⤖ᯝ࡛ࡣኚࡀぢࡽࢀࡎࠊ⢊○ ࣔࣝࣇࢫࢩࣜࢥࣥࡣࢇ⏕ᡂࡋ࡚࠸࡞࠸ࡇࡀ♧၀ࡉࢀࡓࠋࡲࡓࠊࢩࣜࢥࣥࢼࣀࣃ࣮ࢸ ࢡࣝྠኈࡢ㟁Ẽⓗ᥋ゐࢆᨵၿࡍࡿࡓࡵࡢ◪㓟㓟ἲࡢ㐺⏝ࡸࠊࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࡢḞ㝗ᾘ⁛ 㔠ᒓởᰁࡢ㝖ཤࡢ᪉ἲࡋ࡚ࠊḞ㝗ᾘ⁛ᆺ༙ᑟయὙίἲࡢ㐺⏝ࡘ࠸᳨࡚ウࡋࡓࠋࡲࡓࠊ㔞Ꮚࢧࢬຠ ᯝࡼࡗ࡚ᣑࡋࡓࣂࣥࢻࢠࣕࢵࣉࢆᣢࡘࢩࣜࢥࣥࢼࣀࣃ࣮ࢸࢡࣝࢆ⏝࠸࡚ኴ㝧㟁ụࡢࣉࣟࢭࢫ ࡘ࠸࡚ࡶ᳨ウࡋࡓࠋ ― 26 ― ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝 ᐈဨᩍᤵ Sefic SUZER 㸦ᖹᡂ 26 ᖺ 1 ᭶ 27 ᪥㹼ᖹᡂ 26 ᖺ 2 ᭶ 28 ᪥㸧 a) ᴫせ ࣮ࣜࢡ㟁ὶᶵᵓࠊḞ㝗‽ࡢཎᅉࠊḞ㝗‽ࡢ⏕ᡂᾘ⁛ᶵᵓࢆゎ᫂ࡍࡿࡇࡣࠊ⾲㠃⏺㠃࣭Ḟ㝗≧ ែࢆไᚚࡍࡿࡇࡼࡗ࡚ࠊ༙ᑟయࢹࣂࢫࡢ㧗ᛶ⬟ࢆ┠ᣦࡍୖ࡛㔜せ࡞ㄢ㢟࡛࠶ࡿࠋࡑࡇ࡛ࠊࢩࣜ ࢥࣥ➼ࡢ༙ᑟయࢆࠊග㟁Ꮚศගἲ➼ࢆ⏝࠸࡚ࡑࡢ≀ᛶࢆゎ᫂ࡍࡿࠋ≉ࠊ⾲㠃㟁Ꮚ≧ែࡸḞ㝗‽㛵 ࡍࡿሗࢆᚓࡿࠋᚓࡽࢀࡓ༙ᑟయ⾲㠃≧ែࠊ༙ᑟయࢹࣂࢫࡢ≉ᛶࡢ㛵ಀࢆ᫂ࡽࡍࡿࠋḞ㝗‽ ࡢᾘ⁛ἲࡋ࡚ࠊ1㸬Ḟ㝗ᾘ⁛ᆺ༙ᑟయὙίἲ㸦ࢩࣥฎ⌮㸧 ࠊ2㸬◪㓟㓟ἲࢆ᳨ウࡍࡿࠋ b) ᡂᯝ ⾲㠃ᵓ㐀Ꮫⓗ㌿ἲࢆ⏝࠸࡚ᙧᡂࡋࡓపᑕࢩࣜࢥࣥ⾲㠃ࢆ⏝࠸࡚ࠊ⾲㠃㟁Ꮚ≧ែࡸḞ㝗‽㛵 ࡍࡿሗࢆᚓࡿࡇ࡞ࡗࡓࠋ┦⌮ゎࢆ῝ࡵࡿࡓࡵࠊపᑕࢩࣜࢥࣥ⾲㠃ࡢᙧᡂࠊపᑕࢩࣜࢥࣥ⾲ 㠃࡛ࡢᑡᩘ࢟ࣕࣜࣛࣇࢱ࣒ ᐃࡸࢩࣜࢥࣥኴ㝧㟁ụ≉ᛶࡢホ౯ࢆ⾜ࡗࡓࠋࡲࡓࠊᚋࠊSuzer ◊ ࡛⾜࠺ࠊࣂࢫ༳ຍ X ⥺ග㟁Ꮚศගἲࢆ⏝࠸ࡓゎᯒࡘ࠸᳨࡚ウࢆ⾜ࡗࡓࠋ᪂ࡓࠊࢩࣜࢥࣥᮦᩱࡢ ࣜࢳ࣒࢘࢜ࣥ㟁ụࡢᛂ⏝㛵㐃ࡋ࡚ࠊࣂࢫ༳ຍࡢࣜࢳ࣒࢘࢜ࣥࡢࢩࣜࢥࣥᇶᯈෆ࡛ࡢᣲື ࢆࣂࢫ༳ຍ X ⥺ග㟁Ꮚἲ࡛ほᐹࡍࡿ᪉ἲࡘ࠸࡚ࡶ᳨ウࡋࡓࠋ ― 27 ― ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝 ᐈဨᩍᤵ ㉿ ※ (ᖹᡂ 25 ᖺ 4 ᭶ 26 ᪥㹼ᖹᡂ 25 ᖺ 6 ᭶ 28 ᪥) a) ᴫせ ඹᙺ⣔㧗ศᏊࡸࡑࡢ࢜ࣜࢦ࣐࣮ࡣࢼࣀ࣐ࢸࣜࣝࡢ㔜せ࡞ᵓᡂせ⣲࡛࠶ࡾᗈࡃ◊✲ࡉࢀ࡚࠸ࡿࠋࡇࢀ ࡽࡢග࠾ࡼࡧ㟁Ꮚ≀ᛶࡣ㓟㑏ඖ≧ែࡁࡃ౫Ꮡࡍࡿࡀࠊ㓟㑏ඖࡣྠศᏊᵓ㐀ኚࡶࡶࡓࡽ ࡍࡇࡀ▱ࡽࢀ࡚࠸ࡿࠋືศගࡣศᏊᵓ㐀ࡢホ౯㐺ษ࡛࠶ࡾࠊࡃ㛫ศゎ ᐃࡣᛂࢲࢼ࣑ ࢡࢫࢆホ౯ࡍࡿ࠺࠼࡛㔜せ࡛࠶ࡿࠋ௨ୖࡢࡇࡽࠊᮏ◊✲࡛ࡣࠊࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ㛫ศゎඹ㬆 ࣐ࣛࣥ ᐃࢆ⤌ࡳྜࢃࡏࡿࡇ࡛ࠊඹᙺ⣔㧗ศᏊ࢜ࣜࢦ࣐࣮ࡢ㓟㑏ඖక࠺ᵓ㐀ኚࢆ᫂ࡽࡍࡿ ࡇࢆࡵࡊࡋࡓࠋ b) ᡂᯝ ᮏ◊✲࡛ࡣඹᙺ⣔㧗ศᏊ࢜ࣜࢦ࣐࣮ࡋ࡚ isotruxene ࢆࢥࡋࡓḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞ ࣥ(ᅗ 1)ࢆ⏝࠸ࡓࠋḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞࣥࡢ྾ ࠾ࡼࡧ⺯ගࢫ࣌ࢡࢺࣝࡣ᫂░࡞ືᵓ㐀ࢆ♧ࡋࠊศ Ꮚࢧࢬࡢቑຍࡶඹᙺ⣔ࡢᣑᙇࢆ♧ࡍࣆ࣮ࢡࢩ ࣇࢺࡀ☜ㄆࡉࢀࡓࠋ ḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞࣥJ⥺↷ᑕ࠾ࡼࡧࣃ ࣝࢫࣛࢪ࢜ࣜࢩࢫࢆ㐺⏝ࡍࡿࡇ࡛ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ ✀ࡢ྾ࢫ࣌ࢡࢺࣝࢆᚓࡓࠋ྾ࢫ࣌ࢡࢺࣝࡣ㏆㉥እ ࡽ⣸እ㡿ᇦศᕸࡋࠊ⌮ㄽィ⟬ẚ㍑ࡍࡿࡇ࡛㏆ ㉥እࡢ྾ᖏࡣ HOMO ࡢ㑄⛣࡛࠶ࡾࠊྍどᇦࡢ྾ ᖏࡣ HOMO ࡽ LUMO ࡢ㑄⛣࡛࠶ࡿࡇࡀ☜ㄆ ࡉࢀࡓࠋ 㟁Ꮚ⥺↷ᑕᚋ 50 nsᚋࢼࣀ⛊࣮ࣞࢨ࣮ࢆ↷ᑕࡍࡿ ࡇ࡛ࣛࢪ࢝ࣝ࢝ࢳ࢜ࣥ✀ࡢඹ㬆࣐ࣛࣥࢫ࣌ࢡࢺࣝࢆ ᐃࡍࡿࡇᡂຌࡋࡓࠋࣛࢪ࢝ࣝ࢜ࣥ✀ࡢCCఙ⦰ ືࡣ୰ᛶศᏊࡢࡶࡢẚ 10 cm-1పἼᩘࢩࣇ ࢺࡍࡿࡇࡀ☜ㄆࡉࢀࡓࠋࡇࡢࢩࣇࢺࡣ㓟ࡼࡾࠊ ࢟ࣀࢻᵓ㐀ࡢᐤࡀ⏕ࡌࡓࡇࢆ♧ࡋࠊᐇ㝿⌮ㄽィ ⟬ࡼ࠸୍⮴ࢆ♧ࡍࡇࢆ☜ㄆࡋࡓࠋ ᅗ㸯 ḟඖ≧⦰ྜ࢜ࣜࢦࣇࣝ࢜ࣞࣥࡢศᏊᵓ㐀 ௨ୖࡢ◊✲ࡣࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ㛫ศゎඹ㬆ࣛ ࣐ࣥ ᐃࢆ⤌ࡳྜࢃࡏࡿࡇ࡛ࠊ୰㛫యࡢศᏊᵓ㐀 ࡘ࠸࡚ࡢ▱ぢࡀᚓࡽࢀࡿࡇࢆ♧ࡍࡶࡢ࡛ࠊᚋࠊ✀ࠎࡢࢼࣀ࣐ࢸࣜࣝࡢᛂ⏝ࡀᮇᚅࡉࢀࡿࠋ ― 28 ― ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝ศ㔝 ᐈဨᩍᤵ ᚿᶒ 㸦ᖹᡂ 25 ᖺ 11 ᭶ 8 ᪥㹼ᖹᡂ 26 ᖺ 1 ᭶ 31 ᪥㸧 a) ᴫせ ᐇศ㔝࠾ࡅࡿࡣࢇࡔࡸ᥋ྜᮦᩱࡢᚤ⣽ᵓ㐀ࡢไᚚࠊ᥋ྜ⏺㠃ࡢ᭱㐺ࡣࠊ࣐ࢡ࢚ࣟࣞࢡࢺࣟࢽ ࢡࢫࢹࣂࢫࡢ≉ᛶࡸ⪏⏝ᖺᩘᙉࡃ┤᥋ᙳ㡪ࢆ࠼ࡿࡢ࡛ᗈ⠊ᅖࡢ◊✲ศ㔝࡛㛵ᚰࢆᣢࡓࢀ࡚࠸ࡿࠋ ᙜ◊✲ᐊ࡛ࡣࠊTEM㸦㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾㸧ࢆ⏝࠸࡚ࠊࡣࢇࡔࠊ᥋ྜᮦᩱࡢ⇕㈇Ⲵࡸ㟁ὶ㈇Ⲵୗࡢ࢚ࣞ ࢡࢺ࣐ࣟࢢ࣮ࣞࢩࣙࣥ࡞ࠊᮦᩱࡢຎ㐣⛬࠾ࡅࡿ⏺㠃ᛂᚤ⣽ᵓ㐀ࡢゎ᫂ࡑࡢไᚚࢆ◊✲ࡋ ࡚ࡁࡓࠋᮏ◊✲࡛ࡣࠊࣉࣜࣥࢸࢵࢻ࢚ࣞࢡࢺࣟࢽࢡࢫ࡛⏝ࡉࢀࡿ㖟ࢼࣀ࣡ࣖࡢᙧែᏛⓗ≉ᛶࡢホ౯ ࡘ࠸᳨࡚ウࢆ⾜ࡗࡓࠋ b) ᡂᯝ 㖟ࢼࣀ࣡ࣖ⭷ࡣࠊࡑࡢ㠀ᖖ㧗࠸㏱᫂ᛶࠊᑟ㟁ᛶࠊᰂ㌾ᛶࠊఙ⦰ᛶࠊཬࡧప࠸ࢥࢫࢺࢆ≉ᚩࡋ࡚ ᣢࡕࠊ㏆ᖺࠊࢱࢵࢳࣃࢿࣝࠊ᭷ᶵ ELࠊ᭷ᶵኴ㝧㟁ụ࡞ᵝࠎ࡞ศ㔝ᛂ⏝ࡉࢀࠊὀ┠ࡉࢀ࡚ࡁࡓࠋࡋ ࡋࠊ㖟ࢼࣀ࣡ࣖࡘ࠸࡚ࡢಙ㢗ᛶࡣࠊࢇ◊✲ࡉࢀ࡚࠾ࡽࡎࠊᮏ◊✲࡛ࡣ TEM ࢆ⏝࠸࡚ࠊ⇕ ㈇Ⲵ࠶ࡿ࠸ࡣ㞺ᅖẼᙳ㡪ࡼࡿ㖟ࢼࣀ࣡ࣖࡢຎࠊ⤖ᬗࡢኚࡘ࠸᳨࡚ウࡋࡓࠋඖࡢ㖟ࢼࣀ࣡ࣖ ࡣࠊFCC ᵓ㐀࡛ᅇᑐ⛠ࡢᬗࡀ㸦111㸧⤖ᬗ㠃ἢࡗ࡚⥡㯇ᡂ㛗ࡋࡓ⤖ᬗᵓ㐀ࡔࡀࠊ୍ᐃ ᗘ௨ୖ ࡢ⇕ฎ⌮ࡼࡾࡇࡢ࣡ࣖᵓ㐀ࡣᔂࢀࡿࠋࡇࡢࡇࡼࡗ࡚ࠊ㖟ࢼࣀ࣡ࣖࢆሬᕸࡋࡓ⭷ࡢᑟ㟁ᛶࡀୗ ࡀࡿࡇࡀศࡗࡓࠋࡲࡓࠊ✵Ẽ୰ಖᏑࡍࡿࠊ‵ᗘ࡞ࡢᙳ㡪࡛ࠊ✵Ẽ୰ࡢ㓟⣲ࡸ◲Ỉ⣲࡞ ᛂࡋࠊ㖟ࢼࣀ࣡ࣖࡢࢼࣀ࣡ࣖᵓ㐀ࡀቯࢀࠊ㓟㖟ࡸ◲㖟ࡢ⢏≧ྜ≀࡞ࡿࡇࡀほᐹࡉࢀࡓࠋ ࡇࢀࡽ୍㐃ࡢ⤖ᯝࡣࠊ㖟ࢼࣀ࣡ࣖࡢ≧ែࢆ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ほᐹࡍࡿࡇࡼࡾࠊุ᫂ࡋࡓࠋᚋࠊ ࣡ࣖᵓ㐀ࡢኚࢆᛂ࠾ࡅࡿ㟁Ꮚ⛣ືᶵᵓࡢヲ⣽ゎ᫂⤖ࡧࡘࡅࠊ㖟ࢼࣀ࣡ࣖ㏱᫂ᑟ㟁⭷ࡢಙ㢗 ᛶࡢไᚚྥୖࢆ┠ᣦࡍணᐃ࡛࠶ࡿࠋ ࡲࡓࠊᩍᤵࡣࠊ◊✲ᐊࡢᏛ⏕ࡸ⫋ဨྥࡅࠊTEM ࡢཎ⌮㺃≉ᚩࡽࠊ᧯స᪉ἲࠊᛂ⏝ࠊゎᯒ࡞ࢆ ヲ⣽ㅮ⩏ゎㄝࡋࡓࠋලయⓗ࡞ᵝࠎ࡞ᮦᩱࢆࡋ࡚ࠊᐇ㝿ࡢ TEM ࡛ࡢほᐹࢆ⾜࠸ᣦᑟࡋࡓࡇࡣࠊ ᚋࡢ◊✲࠸㈨ࡍࡿࡶࡢゝ࠼ࡿࠋ ― 29 ― ࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝◊✲ศ㔝 ᐈဨᩍᤵ Ralescu Anca Luminita㸦ᖹᡂ 26 ᖺ 2 ᭶ 3 ᪥~ᖹᡂ 26 ᖺ 4 ᭶ 30 ᪥㸧 a) ᴫせ ㏆ᖺࠊேᕤ▱⬟ࠊᶵᲔᏛ⩦ࠊ⤫ィ⌮ㄽ (AI/ML/S ᢏ⾡) ࢆࢼࣀࢸࢡࣀࣟࢪ࣮⏘ᴗศ㔝㐺⏝ࡍࡿືࡁ ࡀ࠶ࡿࠋࢩ࣮ࣗࣞࢹ࣮ࣥ࢞᪉⛬ᘧࢆ㠀⥺ᙧᅇᖐၥ㢟ኚࡋ࡚ゎࡃᡭἲࡶࡑࡢ୍࡛࠶ࡿࠋࡋࡋࠊ ࡇࢀࡽࡢࡢᢏ⾡ࡀࢼࣀࢸࢡࣀࣟࢪ࣮ࡢࡢၥ㢟ゎỴ᭷ຠࡢලయⓗ࡞ᣦ㔪ࡣࡲࡔ࡞࠸ࠋࡑࡢ⌮⏤ࡣ ⏕≀ࠊᏛࠊ≀⌮ศ㔝࡛㛤Ⓨࡉࢀ࡚᮶ࡓࣔࢹࣝࡢከࡃࡣỗ⏝ⓗ⤫ྜࡋ࡚ᢅ࠺ࡇࡀ㞴ࡋ࠸ࡇ㉳ᅉ ࡋ࡚࠸ࡿࠋࡑࡢࡓࡵࠊ⌧Ⅼ࡛ࡣ AI/ML/S ᢏ⾡ࡢ㐺⏝ࡢ᪉ࡣࢻ࣍ࢵࢡ࡛࠶ࡿゝࢃࡊࡿࢆᚓ࡞࠸ࠋ ᮏ◊✲࡛ࡣࠊࡲࡎࠊ᭱ඛ➃ AI/ML/S ᢏ⾡ࡢࢼࣀࢸࢡࣀࣟࢪ࣮ᛂ⏝≧ἣࢆㄪᰝศᯒࡋࠊศᏊタィ࡞ࡢࢼ ࣀࢸࢡࣀࣟࢪ࣮⏘ᴗᛂ⏝㐺⏝ࡍࡿ㝿ࡋࠊࡢࡼ࠺࡞ AI/ML/S ᢏ⾡ࢆ࠼ࡤຠᯝⓗࢆホ౯ࡍࡿࠋ ― 30 ― 業績 ࢼࣀᶵ⬟ᮦᩱࢹࣂࢫ◊✲ศ㔝 ཎⴭㄽᩥ [1]Manipulation of Metal-Insulator Transition Characteristics in Aspect Ratio-Controlled VO2 Micro-Scale Thin Films on TiO2 (001) Substrates, H. Ueda, T. Kanki and H. Tanaka: Appl. Phys. Lett., 102 (2013) 153106-1-3. [2]Nonvolatile Transport States in Ferrite Thin Films Induced by a Field Effect Involving Redox Processes, K. Fujiwara, T. Ichimura, H. Tanaka: Advanced Materials Interfaces, published online DOI: 10.1002/admi.201300108. [3]Unstrained Epitaxial Zn-Substituted Fe3O4 Films for Ferromagnetic Field-Effect Transistors, T. Ichimura, K. Fujiwara, T. Kushizaki, T. Kanki, H. Tanaka: Jpn. J. Appl. Phys., 52 (2013) 015001-1-3. [4]Colossal Magnetoresistive (La,Pr,Ca)MnO3 Nanobox Array Structures Constructed by the ― 31 ― Three-Dimensional Nanotemplate Pulsed Laser Deposition Technique, T. V. A. Nguyen, A. N. Hattori, Y. Fujiwara, S. Ueda, H. Tanaka: Appl. Phys. Lett., 103 (2013) 223105-1-4. [5]Multistep Metal Insulator Transition in VO2 Nanowires on Al2O3 (0001) Substrates, H. Takami, T. Kanki, H. Tanaka: Appl. Phys. Lett., 104 (2014) 023104-1-4. [6]Fabrication of Three-Dimensional Epitaxial (Fe,Zn)3O4 Nanowall Wire Structures and Their Transport Properties, A. N. Hattori, Y. Fujiwara, K. Fujiwara, Y. Murakami, D. Shindo, H. Tanaka: Appl. Phys. Exp., 7 (2014) 045201-1-4. [7]Metal-Insulator Transition Driven by Low Power Joule Heating in Free-Standing VO2/TiO2 Microstructures, S. Yamasaki, T. Kanki, N. Mancla, L. Pellegrino, D. Marre, H. Tanaka: Appl. Phys. Exp., 7 (2014) 023201-1-4. [8]Electrical Switching to Probe Complex Phases in a Frustrated Manganite, S. Asthana, K. Fujiwara, H. Tanaka: Solid State Commun., 187 (2014) 64-67. [9]MoS2 Nanocube Structures as Catalysts for Electrochemical H2 Evolution from Acidic Aqueous Solutions, A. W. Maijenburg, M. Regis, A. N. Hattori, H. Tanaka, K.-S. Choi, J. E. ten Elshof: ACS Appl. Mater. Interfaces, 6 (2014) 2003-2010. [10]Revealing Magnetic Domain Structure in Functional Fe2.5Zn0.5O4 Wires by Transmission Electron Microscopy, Y. Murakami, A. Ohta, A. N. Hattori, T. Kanki, S. Aizawa, T. Tanigaki, H. S. Park, H. Tanaka, D. Shindo: Acta. Mater., 64 (2014) 144-153. [11]Ni and p-Cu2O Nanocubes with a Small Size Distribution by Templated Electrodeposition, and Their Characterization by Photocurrent Measurement, A. W. Maijenburg, A. N. Hattori, M. De Respinis, C. M. McShane, K.-S. Choi, B. Dam, H. Tanaka, J. E. ten Elshof: ACS Appl. Mater. Interfaces, 5 (2013) 10938-10945. [12]Programmable Mechanical Resonances in MEMS by Localized Joule Heating of Phase Change Materials, N. Manca, L. Pellegrino, T. Kanki, S. Yamasaki, H. Tanaka, A. S. Siri, D. Marre: Advanced Materials, 25 (2013) 6430-6435. [13]Nonvolatile Transport States in Ferrite Thin Films Induced by a Field Effect Involving Redox Processes, K. Fujiwara, T. Ichimura, H. Tanaka: Adv. Mater. Int., published online (2014) DOI: 10.1002/admi.201300108. [14]5d Iridium Oxide as a Material for Spin-Current Detection, K. Fujiwara, Y. Fukuma, J. Matsuno, H. Idzuchi, Y. Niimi, Y. Otani, H. Takagi: Nat. Commun., 4 (2013) 2893-1-6. [15]Observation of Rebirth of Metallic Paths during Resistance Switching of Metal Nanowire, K. Horiba, K. Fujiwara, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima: Appl. Phys. Lett., 103 (2013) 193114-1-3. [16]Enhancement of Photoluminescence Efficiency from GaN(0001) by Surface Treatments, A. N. Hattori, K. Hattori, Y. Moriwaki, A. Yamamoto, S. Sadakuni, J. Murata, K. Arima, Y. Sano, K. Yamauchi, H. Daimon, K. Endo: Jpn. J. Appl. Phys., 53 (2014) 021001-1-5. [17]Coherent Metallic Screening in Core-Level Photoelectron Spectra for Strongly Correlated Oxides of La1-xBaxMnO3 and V1-xWxO2, S. Ueda, H. Takami, T. Kanki, H. Tanaka: Phys. Rev. B, 89 (2014) 035141-1-8. ᅜ㝿㆟ ― 32 ― [1]3D Nanostructures for correlated oxide electronics (invited), H. Tanaka, T. Kanki, A. Hattori, K. Fujiwara: The 74th Autumn Meeting, 2013/2013 JSAP-MRS Joint Symposia. [2]Correlated Nano-Oxides for Electronic Phase Change Electronics (invited), H. Tanaka: 224th ECS Meeting incuding electrochemical energy summit 2013 / featuring the Energy-Water Nexus Symposium. [3]Nano-Confinement Steep Metal-Insulator Transition Driven by Temperature and Magnetic Field in Extremely Small (La,Pr,Ca)MnO3 Epitaxial Nanowall Prepared by 3D Nano-Template PLD (oral), H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit. [4]Colossal Magnetoresistive (La,Pr,Ca)MnO3 Nanobox Array Structures Constructed by 3D Nanotemplate PLD Technique (oral), H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit. [5]Artificial Construction of Correlated Oxide Nanostructures for Electronic Phase Change Electronics (invited), H. Tanaka: International Conference on Nano Science and Technology (ICONSAT-2014). [6]Manupilation of Metal-Insulator Transition Characteristics Through Control of Size and Aspect Ratio of VO2 Thin Films (oral), T. Kanki, H. Tanaka: 2013 JSAP-MRS Joint Symposia. [7]Design of Metal-Insulator Transition Characteristics in Size- and Aspect Ratio-Controlled Oxide Thin Films (invited), T. Kanki, H. Tanaka: 2013 EMN(Energy Materials Nanotechnology) meeting. [8]Design of Electronic Transport Property through Electronic Phase Manipulation in Correlated Electron Materials (invited), T. Kanki, H. Tanaka: 3rd International Conference on Nanotek & Expo. [9]Electric-Field Control of Transport Properties in VO2 Nanowires with Side Gates via Air Gap (oral), T. Kanki, T. Sasaki, H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit. [10]A New Strategy to Realize the Three-Dimensional Functional Metal Oxide Nanostructured Electronics (oral), A. N. Hattori, H. Tanaka: 224th ECS Meeting incuding electrochemical energy summit 2013 / featuring the Energy-Water Nexus Symposium. [11]ZnO Luminescent Nanobox by 3D-Nanotemplate PLD (invited), A. N. Hattori: SPIE Phononics West(Oxide-based Materials and Devices International Conference (Conference OE108)). [12]Control of Magnetotransport Properties of Zinc Ferrite Thin Films via Reversible Electrochemical Reactions (oral), K. Fujiwara, T. Ichimura, T. Hori, H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit. [13]Current Switching Effect in the Insulating Charge-Ordered States of Layered Ferrite Thin Films (poster), K. Fujiwara, T. Hori, H. Tanaka: 2013 Materials Research Society Fall Meeting& Exhibit. [14]In-Plane Oblique Pulsed-Laser Deposition for Growth of Metal Oxide Nanostructures with Laterally Modulated Profiles (oral), K. Fujiwara, T. Kushizaki, Y. Fujiwara, K. Okada, A. N. Hattori, H. Tanaka: 26th International Microprocesses and Nanotechnology Conference. [15]Electric-Field-Induced Phase Transition in Charge-Ordered LuFe2O4 Thin Films (invited), K. Fujiwara, T. Hori, H. Tanaka: 21th International Conference on Composites/Nano Engineering. [16]Modulation of Conductive Property in VO2 Nano-Wires through an Air Gap-Mediated Electric Field (poster), T.Sasaki, H. Ueda, T. Kanki, H. Tanaka: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. ― 33 ― [17]Metal-Insulator Transition Driven by Low Power Joule Heating in Free-Standing VO2/TiO2 Microstructures (poster), S. Yamasaki, T. Kanki, N. Mancola, L. Pellegrino, D. Marre, H. Tanaka: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [18]Investigation of Effective Carrier Characteristics in Strongly Correlated (La,Pr,Ca)MnO3 Films by the THz Time Domain Spectroscopy (poster), T. V. A. Nguyen, A. N. Hattori, M. Nagai, T. Nakamura, K. Fujiwara, M. Ashida, H. Tanaka: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [19]Redox-Control of Conductive Property in VO2 Nano-Wires by an Electric Field via an Air Nano-Gap (poster), T. Sasaki, T. Kanki, H. Tanaka: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [20]Low Power-Driven Metal-Insulator Transition in Free-Standing VO2 Microstructures and Its Mechanism Elucidation (poster), S. Yamasaki, T. Kanki, N. Mancola, L. Pellegrino, D. Marre, H. Tanaka: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [21]Conductive Properties through the Metal Insulator ITansition in the Strongly Correlated (La,Pr,Ca)MnO3 Film Investigated by the THz Time Domain Spectroscopy (poster), T. V. A. Nguyen, A. N. Hattori, M. Nagai, T. Nakamura, K. Fujiwara, M. Ashida, H. Tanaka: International Symposium on Terahertz Nanoscience㸦TeraNano4㸧. ゎㄝࠊ⥲ㄝ ㄏᑟࢼࣀᵓ㐀⛉Ꮫࡼࡿ 3 ḟඖᴟᚤ⣽㓟≀࢚ࣞࢡࢺࣟࢽࢡࢫࢹࣂࢫࡢ〇, ⏣୰ ⚽ࠊ᭹ 㒊 ᱻࠊᒸ⏣ ᾈ୍, ᶵ⬟ᮦᩱ, ࢩ࣮࢚࣒ࢩ࣮ฟ∧, 34 (2014), 25-33. ⴭ᭩ [1]ࣃࣝࢫ࣮ࣞࢨ࣮ሁ✚ࠊࣜࢯࢢࣛࣇ (ᯇ ᩥᙪ)“ၥ㢟ゎㄝ࡛Ꮫࡪ⾲㠃⛉Ꮫ”, ᭹㒊 ᱻ(ศ ᢸᇳ➹), ඹ❧ฟ∧, 1 (162-163) 2013. ≉チ [1]ࠕᅜෆᡂ❧≉チࠖࣀࢬࢪ࢙ࢿ࣮ࣞࢱࠊཬࡧ☜⋡ඹ⣲Ꮚ, ≉チ➨ 5421923 ྕ [2]ࠕᅜ㝿ᡂ❧≉チࠖ, EP1489664B1 ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ ⏣୰ ⚽ CIMTEC 2014(13th International Ceramics Congress) (⤌⧊ጤဨ) ᅜෆᏛ ࢼࣀࢸࢡࣉࣛࢵࢺࣇ࢛࣮࣒㛵す 㧗ศᏊ࣭ࣁࣈࣜࢵࢻᮦᩱ◊✲ࢭࣥࢱ࣮2013 PHyM ࢩ࣏ࣥࢪ࣒࢘ ᅵ᭙⛉Ꮫ 㸴᭶ࡢ ᖹᡂ 25 ᖺᗘ 㜰⏘◊㸭ᮾ㏻◊ὶ㏻◊ ◊✲ᡤ㐃ᦠᆺඹྠࣉࣟࢪ࢙ ࢡࢺ◊✲㸦ࢱࣉ㹑㸧◊✲Ⓨ⾲ 㝃⨨◊✲ᡤ㛫ࣛࣥࢫࠕḟୡ௦࢚ࣞࢡࢺࣟࢽࢡࢫࠖࢢ࣮ࣝࣉ㸦G㸯㸧ศ⛉ 㸦ᒣᙧᏛࢪࣙࣥࢺࢩ࣏ࣥࢪ࣒࢘㸧 2013 ᖺ ➨ 74 ᅇᛂ⏝≀⌮Ꮫ⛅ᏘᏛ⾡ㅮ₇ ➨ 42 ᅇⷧ⭷࣭⾲㠃≀⌮ᇶ♏ㅮᗙ㸦2013㸧 ࣋ࢺࢼ࣒࣭᪥ᮏ⛉Ꮫὶ࣑࣮ࢸࣥࢢ ᪥ᮏ≀⌮Ꮫ 2013 ᖺ⛅Ꮨ ᛂ⏝≀⌮Ꮫ㛵すᨭ㒊ᖹᡂ 25 ᖺᗘ➨ 2 ᅇㅮ₇ ― 34 ― 1௳ 1௳ 1௳ 1௳ 2௳ 8௳ 1௳ 1௳ 2௳ 1௳ ⷧ⭷ᮦᩱࢹࣂࢫ◊✲ ➨ 10 ᅇ◊✲㞟 2013 ᖺ┿✵࣭⾲㠃⛉Ꮫྜྠㅮ₇ 㝃⨨◊✲ᡤ㛫ࣛࣥࢫࡢ➨୍ᅇⱝᡭ◊✲ ➨ 23 ᅇ᪥ᮏ MRS ᖺḟ Opt Osaka 㸰㸮㸯㸲 in Tokyo -㜰Ꮫࡢග⛉Ꮫ㸯㸮㸮➨㸴㸯ᅇᛂ⏝≀⌮ᏛᏘᏛ⾡ㅮ₇ ᪥ᮏ≀⌮Ꮫ ➨ 69 ᅇᖺḟ ྲྀᚓᏛ ಟኈ㸦ᕤᏛ㸧 VO2 ⷧ⭷࠾ࡅࡿᕧ㟁Ꮚ┦ࡢⓎぢ㟁Ẽఏᑟ≉ᛶࡢ┦㛵ゎ᫂ ᕝ㇂ ୍ ಟኈ㸦ᕤᏛ㸧 㟁⏺ຠᯝࡼࡿࣇ࢙ࣛࢺ☢ᛶయࡢ㟁Ẽ㍺㏦≉ᛶไᚚ ᕷᮧ ᪸ኈ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ⱝᡭ◊✲(S) ⏣୰ ⚽ ᇶ┙◊✲(B) ⚄ྜྷ ㍤ኵ ⱝᡭ◊✲(B) ᭹㒊 ᱻ ⱝᡭ◊✲(B) ⸨ཎ ᏹᖹ ཷク◊✲ ⏣୰ ⚽ ዡᏛᐤ㝃㔠 ᭹㒊 ᱻ ⸨ཎ ᏹᖹ ⸨ཎ ᏹᖹ ᙉ┦㛵㓟≀ࢼࣀ࢚ࣞࢡࢺࣟࢽࢡࢫᵓ⠏㛵ࡍࡿ◊✲ 1௳ 2௳ 1௳ 1௳ 1௳ 5௳ 1௳ ༢㸸༓ 15,600 ࢼࣀࢫࢣ࣮ࣝᙉ┦㛵㟁Ꮚ┦ࢻ࣓ࣥࡢ┦㌿⛣࣭ືⓗ࣭✵㛫 㓄ิࢺ࣮ࢱࣝไᚚ 3d 㑄⛣㔠ᒓ㓟≀ࡢࢼࣀ㉸ᵓ㐀ᢏ⾡ᵓ⠏ᕧ☢Ẽᛂ⟅ ᛶホ౯ 㕲⣔㓟≀ࡢᐊ 㟁Ꮚᅛయ≧ែ࠾ࡅࡿ㟁Ꮚ┦ኚᶵ⬟ࡢ ᐇド ࢧࢫࢸࢼࣈࣝ Fe 㓟≀㧗 ᙉ ☢ᛶ༙ᑟయࢆ⏝࠸ࡓࢫࣆ࢚ࣥࣞ ࢡࢺࣟࢽࢡࢫ⣲Ꮚࡢ㛤Ⓨ ⊂❧⾜ᨻἲே ᪂࢚ࢿ ࣝࢠ࣮࣭⏘ᴗᢏ⾡⥲ྜ㛤 Ⓨᶵᵓ බ┈㈈ᅋἲே㛵す࢚ࢿࣝࢠ࣮࣭ࣜࢧࢡࣝ⛉Ꮫ◊✲⯆㈈ ᅋ ௦⾲⌮ ▼ᕝ༤ᚿ බ┈㈈ᅋἲேᮧ⏣Ꮫ⾡⯆㈈ᅋ ⌮㛗 ᮧ⏣ᜏኵ ୍⯡㈈ᅋἲேᩥ㈈ᅋ ⌮㛗 ✄ᮧ᫂ᙪ ࡑࡢࡢ➇தⓗ◊✲㈨㔠 ⏣୰ ⚽ 㸦⊂㸧᪥ᮏᏛ⾡⯆ ⏣୰ ⚽ ᩥ㒊⛉Ꮫ┬ ⏣୰ ⚽ Ꮫඹྠ⏝ᶵ㛵ἲே⮬↛ ⛉Ꮫ◊✲ᶵᵓศᏊ⛉Ꮫ◊✲ ᡤ ⮬ᕫ⤌⧊ࡼࡿ㓟≀ࢼࣀ㉸ᵓ㐀య ࢫࣆࣥࢺࣟࢽࢡࢫࢹࣂࢫᙧᡂ㛵ࡍ ࡿ◊✲ ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺࣇ࢛࣮࣒ᐇᶵ 㛵 ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺࣇ࢛࣮࣒ᐇᶵ 㛵 8,320 2,470 3,120 2,990 130 1,200 200 1,000 283,056 35,000 ࢼࣀᴟ㝈ࣇࣈࣜࢣ࣮ࢩࣙࣥศ㔝 ཎⴭㄽᩥ [1]Femtosecond pulse radiolysis study of geminate ion recombination in biphenyl-dodecane solution, T. Kondoh, J. Yang, K. Norizawa, K. Kan, T. Kozawa, A. Ogata, S. Tagawa, Y. Yoshida: Radiat. Phys. Chem., 84 (2013) 30-34. [2]Radially Polarized Terahertz Waves from a Photoconductive Antenna with Microstructures, K. Kan, J. Yang, A. Ogata, S. Sakakihara, T. Kondoh, K. Norizawa, Y. Yoshida, H. Kitahara, K. Takano, M. Hangyo: Appl. Phys. Lett., 102 (2013) 221118. ― 35 ― [3]Determination of Transient Atomic Structure of Laser-Excited Materials from Time-Resolved Diffraction Data, Y. Giret, N. Naruse, S. L. Daraszewicz, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, K. Tanimura: Appl. Phys. Lett., 103 (2013) 253107. [4]Structural Dynamics of Laser-Irradiated Gold Nanofilms, S. L. Daraszewicz, Y. Giret, N. Naruse, Y. Murooka, J. Yang, D. M. Duffy, A. L. Shluger, K. Tanimura: Phys. Rev. B, 88 (2013) 184101. [5]Twin-Peaks Absorption Spectra of Excess Electron in Ionic Liquids, R. M. Musat, T. Kondoh, Y. Yoshida, K. Takahashi: Radiat. Phys. Chem., 100 (2014) 32-37. ᅜ㝿㆟ [1]Attosecond and Femtosecond Radiation-induced Phenomena (invited), Y. Yoshida: 3rd Asian Congress of Radiation Research (ACRR2013). [2]RF gun based MeV transmission electron microscopy (invited), J. Yang: Workshop on femtosecond electron imaging and spectroscopy. [3]Photocathode RF gun based transmission electron microscopy (invited), J. Yang: 5th Aisan forum for accelerators and detectors (AFAD2014). [4]Femtosecond Pulse Radiolysis of Primary Process of Radiation Chemistry (invited), K. Norizawa, K. Kan, M. Gohdo, T. Kondoh, J. Yang, Y. Yoshida: DAE-BRNS 12th Biennial Trombay Symposium on Radiation & Photochemistry (TSRP-2014). [5]Kansai Nanoscience and Nanotechnology Network (invited), Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [6]Application of Double-Decker Pulse Radiolysis (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: The 14th RIES-Hokudai International Symposium. [7]Pulse Radiolysis Using Terahertz Probe Pulses (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [8]Development of Femtosecond Time-Resolved Electron Microscopy (poster), J. Yang, K. Kan, N. Naruse, T. Kondoh, M. Gohdo, Y. Yoshida, K. Tanimura: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [9]Generation of Ultrashort Electron Beam (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [10]Study of the Primary Process of Polystyrene Radiolysis by Means of Femto-Second and Nano-Second Pulse Radiolysis Technique (poster), M. Gohdo, T. Kondoh, K. Kan, J. Yang, A. Oshima, H. Shibata, S. Tagawa, Y. Yoshida: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [11]Observation of Dodecane Alkyl-Radical by the UV Femtosecond Pulse Radiolysis (poster), T. Kondoh, M. Gohdo, K. Kan, J. Yang, K. Norizawa, Y. Muroya, H. Kobayashi, A. Ogata, S. Tagawa, Y. ― 36 ― Yoshida: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [12]Reactivity of Excess Electrons during Solvation Process in Alcohols Studied by Femtosecond Pulse Radiolysis (poster), K. Norizawa, T. Kondoh, M. Gohdo, K. Kan, J. Yang, A. Ogata, Y. Yoshida: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [13]Generation of Ultrashort Electron Beam for Attosecond Pulse Radiolysis (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: 1 st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [14]Terahertz Pulse Radiolysis Based on Double-Decker Electron Beams (poster), K. Kan, J. Yang, A. Ogata, T. Kondoh, M. Gohdo, K. Norizawa, H. Kobayashi, Y. Yoshida: 1 st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [15]Femtosecond Pulse Radiolysis Study of Poly-Į-Methyl Styrene as a Model Compound of PolymerResist (poster), M. Gohdo, T. Kondoh, S. Tagawa, J. Yang, K. Norizawa, K. Kan, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [16]Study of the Primary Process of Polystyrene Radiolysis by Means of Femto-Second and Nano-Second Pulse Radiolysis Technique (poster), M. Gohdo, T. Kondoh, K. Kan, J. Yang, A. Oshima, H. Shibata, S. Tagawa, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [17]The Pulse Radiolysis Study of Radical Ions of Naphthalene Bis Imide Derivatives as an Optical Functional Material (poster), T. Kondoh, M. Gohdo, J. Yang, K. Kan, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [18]Reactivity of the Precursors of the Solvated Electrons in Neat Ethanol Studied by Femtosecond Pulse Radiolysis (poster), K. Norizawa, T. Kondoh, M. Gohdo, K. Kan, J. Yang, A. Ogata, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [19]Accelerator-based Femtosecond Transmission Electron Microscopy (poster), J. Yang, K. Kan, N. Naruse, T. Kondoh, M. Gohdo, Y. Yoshida, K. Tanimura: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [20]Measurement of Electron Beam Property of Femtosecond Time-Resolved MeV Electron Microscopy (poster), J. Yang, Y. Yoshida: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. [21]Femtosecond Time-Resolved Electron Microscopy Using a Radio-Frequency Relativistic-Energy Electron Gun (oral), J. Yang, K. Kan, N. Naruse, T. Kondoh, M. Godoh, Y. Yoshida, K. Tanimura: Electronmicroscopy and Multiscalemodeling (EMMM) 2013. [22]Experimental Observation of Formation and Geminate Recombination of Hydrated Electron in Water ― 37 ― Radiolysis (poster), J. Yang, T. Kondoh, K. norizawa, Y. Yoshida: 3rd Asian Congress of Radiation Research (ACRR2013). ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ ྜྷ⏣ 㝧୍ The 5th Asia Pacific Symposium on Radiation Chemistry (APSRC2014) (⤌⧊ጤဨ) ྜྷ⏣ 㝧୍ The 15th International Congress of Radiation Research (ICRR 2015) (⛉Ꮫጤဨ) ᅜෆᏛ ᪥ᮏຍ㏿ჾᏛᖺ 6௳ ᪥ᮏཎᏊຊᏛ 13 ௳ ᨺᑕ⥺Ꮫウㄽ 7௳ 1௳ 㧗ᓮ㔞Ꮚᛂ⏝◊✲ࢩ࣏ࣥࢪ࣒࢘ 3௳ 㧗㍤ᗘ࣭RF 㟁Ꮚ㖠◊✲ ࢼࣀࢸࢵࢡ 1௳ ᪥ᮏᏛ 2௳ 1௳ ᰾⼥ྜ⛉Ꮫ◊✲ᡤ ୍⯡ඹྠ◊✲ ◊✲࣭ሗ࿌ ᪥ᮏ㢧ᚤ㙾Ꮫ 1௳ ࣅ࣮࣒≀⌮◊✲ 1௳ ᪥ᮏ≀⌮Ꮫ 1௳ ྲྀᚓᏛ ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡿࢻࢹ࢝ࣥࣝ࢟ࣝࣛࢪ࢝ࣝࡢ⏕ᡂ㐣⛬ Ꮫኈ(ᕤᏛ㸧 す ⪽ᚿ ࡢ◊✲ Ꮫኈ(ᕤᏛ㸧 ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡿỈ㟁Ꮚࡢ⏕ᡂ㐣⛬ࡢ◊✲ ᒣᒽ ඃ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ༢㸸༓ ḟୡ௦ࢺ⛊࣭ࣇ࢙࣒ࢺ⛊ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ㛵ࡍࡿ◊ 28,080 ᇶ┙◊✲(S) ྜྷ⏣ 㝧୍ ✲ ⱝᡭ◊✲(B) จ⦰⣔࠾ࡅࡿ㔞Ꮚࣅ࣮࣒ㄏ㉳㉸㧗㏿㟁Ⲵ⛣ື㐣⛬ࡢ◊✲ 1,820 ㏆⸨ Ꮥᩥ ⱝᡭ◊✲(B) ࢸࣛ࣊ࣝࢶ㡿ᇦࡢࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ㛵ࡍࡿ◊✲ 2,210 Ⳣ ୍ ཷク◊✲ ྜྷ⏣ 㝧୍ ᩥ㒊⛉Ꮫ┬ 㸦ࢢ࣮ࣝࣉྡ㸸㸧㜰Ꮫࢼࣀࢧ 1,500 ࢚ࣥࢫ࣭ࢼࣀࢸࢡࣀࣟࢪ࣮ࣛ ࣥࢫ ― 38 ― ࢼࣀᵓ㐀࣭ᶵ⬟ホ౯◊✲ศ㔝 ཎⴭㄽᩥ [1]Impact of Preferential Indium Nucleation on Electrical Conductivity of Vapor-Liquid-Solid Grown Indium-Tin Oxide Nanowires, G. Meng, T. Yanagida, K. Nagashima, H. Yoshida, M. Kanai, A. Klamchuen, F. Zhuge, Y. He, S. Rahong, X. Fang, S. Takeda, T. Kawai: J. Am. Chem. Soc., 135 (2013) 7033-7038. [2]WGS Catalysis and In Situ Studies of CoO1-x, PtCon/Co3O4, and PtmCom'/CoO1-x Nanorod Catalysts, S. Zhang, J. Shan, Y. Zhu, A. I. Frenkel, A. Patlolla, W. Huang, S. J. Yoon, L. Wang, H. Yoshida, S. Takeda, F. F. Tao: J. Am. Chem. Soc., 135 (2013) 8283-8293. [3]Stepwise Displacement of Catalytically Active Gold Nanoparticles on Cerium Oxide, Y. Kuwauchi, S. Takeda, H. Yoshida, K. Sun, M. Haruta, H. Kohno: Nano Lett., 13 (2013) 3073-3077. [4]Restructuring Transition Metal Oxide Nanorods for 100% Selectivity in Reduction of Nitric Oxide with Carbon Monoxide, S. Zhang, J. Shan, Y. Zhu, L. Nguyen, W. Huang, H. Yoshida, S. Takeda, F. F. Tao: Nano Lett., 13 (2013) 3310-3314. [5]Direct O2 Activation on Gold/Metal Oxide Catalysts through a Unique Double Linear O-Au-O Structure, K. Sun, M. Kohyama, S. Tanaka, S. Takeda: ChemCatChem, 5 (2013) 2217-2222. [6]Three-dimensional Evaluation of Gettering Ability of Ȉ3{111} Grain Boundaries in Silicon by Atom Probe Tomography Combined with Transmission Electron Microscopy, Y. Ohno, K. Inoue, Y. Tokumoto, K. Kutsukake, I. Yonenaga, N. Ebisawa, H. Takamizawa, Y. Shimizu, K. Inoue, Y. Nagai, H. Yoshida, S. Takeda: Appl. Phys. Lett., 103 (2013) 102102-1--102102-4. [7]A Study on the Mechanism for H2 Dissociation on Au/TiO2 Catalysts, K. Sun, M. Kohyama, S. Tanaka, S. Takeda: J. Phys. Chem. C, 118 (2014) 1611-1617. ᅜ㝿㆟ [1]Environmental TEM for Quantitative in-situ Microscopy at the Atomic Scale (invited), S. Takeda, H. Yoshida: Frontiers of in situ Transmission Electron Microscopy Workshop. [2]Atomistic Structures of Gold Nanoparticulate Catalysts in Reaction Environments (oral), S. Takeda, Y. Kuwauchi, H. Yoshida, K. Sun, S. Tanaka, M. Kohyama, M. Haruta, T. Akita, T. Uchiyama: 23rd North American Catalysis Society Meeting㸦NAM23). [3]Quantitative High-Resolution ETEM of Nanoparticulate Catalysts in Gases (invited), S. Takeda: Microscopy and Microanalysis 2013, Pre-Meeting Congress: Opportunities, Challenges and Outlook for In-situ Experiments in Liquids and Gases using Electron-Optical Instruments. [4]In-situ Observation of the Changes in Shape and Surface Structure of Pt Nanoparticulate Catalysts in Reactant Gases by Aberration-corrected Environmental Transmission Electron Microscopy (oral), H. Yoshida, H. Omote, M. Haruta, S. Takeda: Microscopy and Microanalysis 2013. [5]Singly Anchored Pt and Pd Atoms on Co3O4 and Their Catalytic Performance (poster), S. Zhang, F. Tao, A. I. Frenkel, S. Takeda: Microscopy and Microanalysis 2013. [6]Restructuring Early Transition Metal Oxide for New Catalysis (poster), F. F. Tao, S. Zhang, H. Yoshida, S. Takeda: Microscopy and Microanalysis 2013. [7]In-situ Atomic Resolution Environmental TEM as Quantitative Microscopy in Materials Science (invited), S. Takeda: The 8th Pacific Rim International Congress on Advanced Materials and Processing (PRICM-8). ― 39 ― [8]Quantitative High Resolution Environmental Transmission Electron Microscopy for Catalyst Chemistry (invited), S. Takeda, H. Yoshida, Y. Kuwauchi, T. Uchiyama: Fifteenth Annual Conference YUCOMAT 2013. [9]Atomic-Resolution Environmental Transmission Electron Microscopy for Quantitative in-situ Microscopy in Catalyst Chemistry (plenary), S. Takeda: 22nd International Congress on X-ray Optics and Microanalysis (ICXOM22). [10]Environmental TEM for Quantitative in-situ Microscopy in Catalyst Chemistry at the Atomic Scale (invited), S. Takeda, H. Yoshida: 246th ACS National Meeting & Exposition. [11]Accumulation Ability of Ȉ3{111} Grain Boundaries in Si (oral), Y. Ohno, K. Inoue, Y. Tokumoto, K. Kutsukake, I. Yonenaga, N. Ebisawa, H. Takamizawa, Y. Shimizu, K. Inoue, Y. Nagai, H. Yoshida, S.Takeda: 7th International Workshop on Crystalline Silicon Solar Cells (CSSC7). [12]Atomic-Resolution Environmental Transmission Electron Microscopy for Quantitative In-situ Microscopy in Catalyst Chemistry (invited), S. Takeda: The 1st East-Asia Microscopy Conference (EAMC-1). [13]Structure of Surface Gold Oxide Film on Gold Nanoparticles in O2 Atmosphere (poster), K. Sun: The 1st East-Asia Microscopy Conference (EAMC-1). [14]Atomic-Resolution Environmental Transmission Electron Microscopy for Quantitative in-situ Microscopy in Materials Science (invited), S. Takeda, H. Yoshida: 12th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures in conjunction with 21st International Colloquium on Scanning Probe Microscopy (ACSIN-12 & ICSPM21). [15]Quantitative Environmental TEM toward Materials Process Characterization (invited), S. Takeda: International Workshop on Environmental Transmission Electron Microscopy (IWETEM 2013). [16]In-Situ Environmental TEM Observation of Formation of Defects in Growing Carbon Nanotubes (poster), H. Yoshida, S. Takeda: 2013 MRS Fall Meeting & Exhibit. [17]Structure of Nanoparticles during the Cobalt-Catalyzed Carbon Nanotube Growth (poster), Y. Kohigashi, H. Yoshida, S. Takeda: 2013 MRS Fall Meeting & Exhibit. [18]Quantitative Atomic Resolution Environmental Transmission Electron Microscopy for Materials Process Characterization (invited), S. Takeda: 9th International Symposium on Atomic Level Characterizations for New Materials and Devices '13㸦ALC '13㸧. [19]Atomic-Scale in-situ Observation of the Growth of Carbon Nanotubes (invited), S. Takeda: Workshop on Metallic Nanoparticles in Reactive Environment. ᅜෆᏛ ᪥ᮏ㢧ᚤ㙾Ꮫ➨ 69 ᅇᏛ⾡ㅮ₇ ➨ 74 ᅇᛂ⏝≀⌮Ꮫ⛅ᏘᏛ⾡ㅮ₇ 㜰Ꮫ ⏘ᴗ⛉Ꮫ◊✲ᡤ ➨ 69 ᅇᏛ⾡ㅮ₇ ᪥ᮏ㢧ᚤ㙾Ꮫ➨ 57 ᅇࢩ࣏ࣥࢪ࣒࢘ ᖹᡂ 25 ᖺᗘ 㝃⨨◊✲ᡤ㛫ࣛࣥࢫࠕ᪂࢚ࢿࣝࢠ࣮࣭ࢹࣂࢫ ࣉࣟࢪ࢙ ࢡࢺࠖࢢ࣮ࣝࣉ (G2) ◊✲ FEI ᭱᪂ TEM ᢏ⾡ࢭ࣑ࢼ࣮ ࣮࣡ࢡࢩࣙࢵࣉࠕ㔠ᢸᣢゐ፹ࡢᛂάᛶࡢ㉳※ࢆ᥈ࡿࠖ ᮾி⌮⛉Ꮫ⥲ྜ◊✲ᶵᵓ ࢼࣀ࣮࢝࣎ࣥ◊✲㒊㛛࣮࣡ࢡࢩࣙࢵࣉ ➨ 61 ᅇᛂ⏝≀⌮ᏛᏘᏛ⾡ㅮ₇ ― 40 ― 5௳ 1௳ 1௳ 1௳ 1௳ 1௳ 1௳ 1௳ 1௳ ྲྀᚓᏛ ಟኈ㸦ᕤᏛ㸧 ᪂つ࡞ືⓗ TEM ほᐹἲࡢ㛤Ⓨᅛయḟ㟁ụࡢᛂ⏝ ┦㤿 ኴ㑻 ಟኈ㸦ᕤᏛ㸧 ࣮࢝࣎ࣥࢼࣀࢳ࣮ࣗࣈỈࡢ┦స⏝ࡢ⎔ቃ TEM ࡑࡢሙほᐹ ๓⣡ ぬ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ᇶ┙◊✲(A) ➉⏣ ⢭ ⱝᡭ◊✲(B) ྜྷ⏣ ⚽ே ≉ู◊✲ဨዡ ບ㈝ ⚄ෆ ┤ே ཷク◊✲ ➉⏣ ⢭ ዡᏛᐤ㝃㔠 ➉⏣ ⢭ ➉⏣ ⢭ ➉⏣ ⢭ ẼయศᏊ┦స⏝ࡍࡿࢼࣀࢠࣕࢵࣉ㟁ᴟࡢཎᏊࢫࢣ࣮ࣝ ືⓗゎᯒ ᕪ⿵ṇ⎔ቃไᚚᆺ㏱㐣㟁Ꮚ㢧ᚤ㙾ࡼࡿⅣ⣲ࢼࣀᮦᩱᙧ ᡂࡢࢼࣀ⢏Ꮚゐ፹ࡢᵓ㐀Ỵᐃ ࢼࣀᵓ㐀ࢆไᚚࡋࡓ⎔ቃίゐ፹ࡢ⮬ື㌴࢞ࢫί࠾ࡼ ࡧ VOC ⇞↝ࡢᛂ⏝ ༢㸸༓ 36,400 1,690 1,200 㹊㹧ḟ㟁ụ࣑ࢡࣟ⏺㠃ࡢ࢜ ࣥᣑᩓ㛫ᛂ⟅ࡢྍどᢏ⾡ࡢ 㛤Ⓨ 23,140 ᰴᘧ♫ UBE ⛉Ꮫศᯒࢭࣥࢱ࣮ ௦⾲ྲྀ⥾ᙺ♫㛗 ὸ⏣⚽ グ ᪂᪥㕲ఫ㔠ᰴᘧ♫ ᢏ⾡㛤Ⓨᮏ㒊 ඛ➃ᢏ⾡◊✲ᡤ㛗 ༑ᔒṇ ᪥ᮏ࢚ࣇ࣮࣭ᰴᘧ♫ ௦⾲ྲྀ⥾ᙺ♫㛗 ⸨༤ⱥ 2,000 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ 500 600 ࢼࣀᶵ⬟ண ◊✲ศ㔝 ཎⴭㄽᩥ [1]First-Principles Study of X-ray Absorption Spectra of FeS2, T. Oguchi, H. Momida: J. Phys. Soc. Jpn., 82 (2013) 065004/1-2. [2]Atomic-Layer Alignment Tuning for Giant Perpendicular Magnetocrystalline Anisotropy of 3d Transition-Metal Thin Films, K. Hotta, K. Nakamura, T. Akiyama, T. Ito, T. Oguchi, A. J. Freeman: Phys. Rev. Lett., 110 (2013) 267206/1-5. [3]Ab initio Study of Magnetic Coupling in CaCu3B4O12 (B=Ti, Ge, Zr, and Sn), M. Toyoda, K. Yamauchi, T. Oguchi: Phys. Rev. B, 87 (2013) 224430/1-7. [4]Highly Sensitive Spin-Crossover Transition in a Metal-Organic Molecular Crystal, K. Yamauchi, I. Hamada, T. Oguchi: Phys. Rev. B, 88 (2013) 035110/1-4. [5]Extremely Large Magnetoresistance in the Nonmagnetic Metal PdCoO2, H. Takatsu, J. J. Ishikawa, S. Yonezawa, H. Yoshino, T. Shishidou, T. Oguchi, K. Murata, Y. Maeno: Phys. Rev. Lett., 111 (2013) 056601/1-4. [6]First-Principles Calculation of X-ray Absorption Spectra for the A-site Ordered Perovskite CaCu3Fe4O12, T. Ueda, M. Kodera, K. Yamauchi, T. Oguchi: J. Phys. Soc. Jpn., 82 (2013) 094718/1-5. [7]Influence of Lone Pair Doping on the Multiferroic Property of Orthorhombic HoMnO3: ab initio Prediction, S. S. Subramanian, K. Yamauchi, T. Ozaki, T. Oguchi, B. Natesan: J. Phys.: Condensed Matter, ― 41 ― 25 (2013) 385901/1-8. [8]Electronic Structure of the Metallic Antiferromagnet PdCrO2 Measured by Angle-Resolved Photoemission Spectroscopy, J. A. Sobota, K. Kim, H. Takatsu, M. Hashimoto, S.-K. Mo, Z. Hussain, T. Oguchi, T. Shishidou, Y. Maeno, B. I. Min, Z.-X. Shen: Phys. Rev. B, 88 (2013) 125109/1-5. [9]Quantum Oscillations of the Metallic Triangular-Lattice Antiferromagnet PdCrO2, J. M. Ok, Y. J. Jo, K. Kim, T. Shishidou, E. S. Choi, H.-J. Noh, T. Oguchi, B. I. Min, J. S. Kim: Phys. Rev. Lett., 111 (2013) 176405/1-5. [10]Fermiological Interpretation of FeTe1-xSex Thin Crystal by Quantum Conductance Oscillation, H. Okazaki, T. Yamaguchi, T. Watanabe, K. Deguchi, S. Demura, S. J. Denholme, T. Ozaki, Y. Mizuguchi, H. Takeya, T. Oguchi, Y. Takano: Euro. Phys. Lett., 104 (2013) 37010/1-6. [11]Temperature Dependence of Young's Modulus of Silicon, K. Shirai: Jpn. J. Appl. Phys., 52 (2013) 088002/1-2. [12]Electronic Ferroelectricity Induced by Charge and Orbital Orderings, K. Yamauchi, P. Barone: J. Phys.: Condensed Matter, 26 (2014) 103201/1-17. [13]Mechanism of Ferroelectricity in Half-Doped Manganites with Pseudocubic and Bilayer Structure, K. Yamauchi, S. Picozzi: J. Phys. Soc. Jpn., 82 (2013) 113703/1-5. [14]Physical Guiding Principles for High Quality Resistive Random Access Memory Stack with Al2O3 Insertion Layer, M. Y. Yang, K. Kamiya, B. Magyari-Kope, H. Momida, T. Ohno, M. Niwa, Y. Nishi, K. Shiraishi: Jpn. J. Appl. Phys., 52 (2013) 04CD11/1-4. [15]Hydrogen-Enhanced Vacancy Embrittlement of Grain Boundaries in Iron, H. Momida, Y. Asari, Y. Nakamura, Y. Tateyama, T. Ohno: Phys. Rev. B, 88 (2013) 144107/1-13. ᅜ㝿㆟ [1]Ab-initio Study on Sodium Ion Batteries (invited), T. Oguchi: First Joint Symposium of Bordeaux University and Tohoku University. [2]Novel Electronic States in Perovskite Oxides (invited), T. Oguchi: 5th IACS-APCTP International Conference on Novel Oxide Materials and Low Dimensional Systems. [3]First-Principles Study on Structure Stabilities of D-S and Na-S Battery Systems (oral), H. Momida, T. Oguchi: American Physical Society: APS March Meeting. [4]Quantum Oscillations of the Metallic Triangular-Lattice Antiferromagnet PdCrO2 (oral), J. M. Ok, Y. J. Jo, K. Kim, T. Shishidou, E. S. Choi, H. J. Noh, T. Oguchi, B. I. Min. J. S. Kim: American Physical Society: APS March Meeting. [5]Noncollinear Magnetic Order in Quadruple Perovskite LaMn3V4O12 (oral), M. Toyoda, K. Yamauchi, T. Oguchi: American Physical Society: APS March Meeting. [6]Structural Stability and Electronic Properties of Na2C6O6 for a Rechargable Sodium-Ion Battery (oral), T. Yamashita, A. Fujii, H. Momida, T. Oguchi: American Physical Society: APS March Meeting. [7]Electronic Nature of Defect States of Boron Crystals (oral), K. Shirai, N. Uemura: The 17th International Symposium on Intercalation Compounds (ISIC17). [8]High Power Factor of SrTiO3 and A New Route for High-Performance Thermoelectric Materials (oral), ― 42 ― K. Shirai, K. Yamanaka: The 32nd International Conference on Thermoelectrics (ICT2013). [9]High Thermoelectric Power Factor of SrTiO3 and New Route for High-Performance Thermoelectric Material (oral), K. Shirai, K. Yamanaka: International Workshop of Computational Nano-Materials Design on Green Energy, JSPS Core-to-Core Program Workshop. [10]First-Principles Study of D-Tetragonal Boron (poster), N. Uemura, K. Shirai: International Workshop of Computational Nano-Materials Design on Green Energy, JSPS Core-to-Core Program Workshop. [11]Electronic Structure and Formation Energy of Copper Impurity in Silicon (poster), T. Fujimura, K. Shirai: International Workshop of Computational Nano-Materials Design on Green Energy, JSPS Core-to-Core Program Workshop. [12]Dynamical Properties of Vacancy in Si (poster), K. Shirai, J. Ishisada: The 27th International Conference on Defects in Semiconductors. [13]Dynamics of Hydrogen in Silicon (poster), K. Shirai, I. Hamada, H. Katayama-Yoshida: The 27th International Conference on Defects in Semiconductors. [14]Theoretical Prediction of Novel Magnetoelectric Materials (invited), K. Yamauchi: Joint Workshop of Interactive Materials Science Cadet Program (IMSC), Osaka University, and S-1 JSPS Core-to-Core Program (A) Advanced Research Networks. [15]Hyperfine Field at Sn in Ferromagnetic Heusler Alloys (poster), H. Momida, T. Oguchi: Joint Workshop of Interactive Materials Science Cadet Program (IMSC), Osaka University, and S-1 JSPS Core-to-Core Program (A) Advanced Research Networks. [16]Hydrogen-Enhanced Vacancy Embrittlement of Grain Boundaries in Iron: First-Principles Calculations (oral), H. Momida, Y. Asari, Y. Nakamura, Y. Tateyama, T. Ohno: International Symposium on Atomistic Modeling for Mechanics and Multiphysics of Materials. [17]First-Principles Study of Resistance Switching by Oxygen Vacancies in Al2O3 ReRAM (invited), H. Momida: Core-to-core Japan-Germany Workshop. [18]Strain-Induced Topologically Insulating Phase of Sb2Te (poster), E. Takasaki, H. Momida, T. Oguchi: Materials Research Society: 2013 MRS Fall Meeting. [19]Computational Study of Discharge Reactions in the Na-Ion Battery System Na/FeS2 (poster), H. Momida, T. Oguchi: The 14th RIES-Hokudai International Symposium (MOU). [20]Electric Property Calculations of Disodium Rhodizonate Na2C6O6 as a cathode Material for Na-ion Secondary Battery (poster), A. Fujii, H. Momida, T. Oguchi: The 17th Sanken International Symposium 2014 Joined with The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ ᑠཱྀ ከ⨾ኵ The 16th Asia Workshop on First-principles Electronic Structure Calculations (ᅜ㝿⤌ ⧊ጤဨ) ⓑ ග㞼 The CECAM workshop “Modeling the Physical Properties of Clustering Crystals”, Lausanne, Switzerland, at the Ecole Polytechnique Fédérale de Lausanne (EPFL) from 4-6 November 2013 (⤌⧊ጤဨ㛗) ᅜෆᏛ ᪥ᮏ≀⌮Ꮫ 13 ௳ ᛂ⏝≀⌮Ꮫ 7௳ ― 43 ― ᪥ᮏ MRS ᪥ᮏ㔠ᒓᏛ ྲྀᚓᏛ ಟኈ㸦⌮Ꮫ㸧 Taufik Adi Nugraha ಟኈ㸦⌮Ꮫ㸧 బஂ㛫 ᜤᖹ ಟኈ㸦⌮Ꮫ㸧 㧗ᓮ ⱥ㔛Ꮚ ಟኈ㸦⌮Ꮫ㸧 ⸨ ுᏹ ಟኈ㸦ᕤᏛ㸧 ฟཱྀ ᨻᏕ ༤ኈ㸦⌮Ꮫ㸧 Mohammad Shahjahan ⛉Ꮫ◊✲㈝⿵ຓ㔠 ⱝᡭ◊✲(B) ᒣෆ 㑥ᙪ ཷク◊✲ ᑠཱྀ ከ⨾ኵ 2௳ 1௳ The Study of Vacancy in Gadolinium-Doped Gallium Nitride ➨୍ཎ⌮ィ⟬࡛ࡢ࣮࣎ࣟࣥ࢝ࣂࢺࡢᵓ㐀᥈⣴ ➨୍ཎ⌮ィ⟬ࡼࡿ Sb2Te ⣔ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡢ⌮ㄽⓗ᥈⣴ ḟୡ௦ḟ㟁ụṇᴟᮦᩱ NaxC6O6 ࡢ㟁Ꮚ≧ែィ⟬ Pt ⣔㑄⛣㔠ᒓከᒙ⭷࠾ࡅࡿ☢Ẽ␗᪉ᛶࡢ⌮ㄽ◊✲ ࢝ࣝࢥࣃࣛࢺ༙ᑟయ࠾ࡅࡿᕼⷧ☢Ẽ≧ែࣁ࣮ࣇ࣓ࢱࣝᛶ㛵ࡍࡿ➨ ୍ཎ⌮ⓗ◊✲ ࣐ࣥ࢞ࣥ㓟≀ࢆ୰ᚰࡋࡓ࣐ࣝࢳࣇ࢙ࣟࢵࢡ≀㉁ࡢ⌮ ㄽ◊✲ 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ ࡑࡢࡢ➇தⓗ◊✲㈨㔠 ᑠཱྀ ከ⨾ኵ ᩥ㒊⛉Ꮫ┬ඖ⣲ᡓ␎ࣉࣟ ࢪ࢙ࢡࢺ㸺◊✲ᣐⅬᙧᡂ ᆺ㸼 ༢㸸༓ 1,170 ➨୍ཎ⌮ィ⟬ࡼࡿ㟁Ꮚ≧ែゎ ᯒ ᐇ㦂⌮ㄽィ⟬⛉Ꮫࡢࣥࢱ࣮ࣉࣞ ࡼࡿゐ፹࣭㟁ụࡢඖ⣲ᡓ␎◊✲ 12,350 5,000 ࢯࣇࢺࢼࣀ࣐ࢸࣜࣝ◊✲ศ㔝 ཎⴭㄽᩥ [1]Three-Dimensional Electron-Accepting Compounds Containing Perylene Bis(dicarboximide)s as n-Type Organic Photovoltaic Materials, Y. Ie, T. Sakurai, S. Jinnai, M. Karakawa, K. Okuda, S. Mori, Y. Aso: Chem. Commun., 49 (2013) 8386-8388. [2]Arenedithiocarboxyimide-Containing Extended pi-Conjugated Systems with High Electron Affinity, Y. Ie, S. Jinnai, M. Nitani, Y. Aso: J. Mater. Chem. C, 1 (2013) 5373-5380. [3]Low Band-Gap Donor–Acceptor Copolymers Based on Dioxocylopenta[c]thiophene Derivatives as Acceptor Units: Synthesis, Properties, and Photovoltaic Performances, J. Huang, Y. Ie, M. Karakawa, Y. Aso: J. Mater. Chem. A, 1 (2013) 15000-15009. [4]Synthesis and Properties of a Benzo[1,2-b:4,5-b']dithiophene Core pi-System that Bears Alkyl, Alkylthio and Alkoxy Groups at 3,7-Positions, S. Ota, S. Minami, K. Hirano, T. Satoh, Y. Ie, S. Seki, Y. Aso, M. Miura: RSC Advances, 3 (2013) 12356-12365. [5]Narrow-Optical-Gap p-Conjugated Small Molecules Based on Terminal Isoindigo and Thienoisoindigo Acceptor Units for Photovoltaic Application, M. Karakawa, Y. Aso: RSC Advances, 3 (2013) 16259-16263. ― 44 ― [6]Near-Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo Acceptor Units, M. Karakawa, Y. Aso: Macromol. Chem. Phys., 214 (2013) 2388-2397. ᅜ㝿㆟ [1]Tripodal Anchoring Groups for Molecular Electronics (oral), Y. Ie, T. Hirose, K, Tanaka, H. Nakamura, M. Kiguchi, N. Takagi, M. Kawai, Y. Aso: The 15th Asian Chemical Congress Novel Functional pi-Systems and Materials. [2]Highly Electron-Accepting ʌ-Conjugated Compounds for Organic Field-Effect Transistor and Photovoltaic Application (invited), Y. Aso: The Sixth East Asia Symposium on Functional Dyes and Advanced Materials (EAS-6). [3]Synthesis, Properties, and Electron-Accepting Characteristics of New ʌ-Conjugated System Bearing Dithiophthalimide Units (oral), Y. Ie, S. Jinnai, M. NItani, M. Karakawa, Y. Aso: 15th International Symposium on Novel Aromatic Compounds (ISNA-15). [4]Development of Thiophene-Based Three Dimensional pi-Electron Systems Containing Dicyanomethylene Groups (poster), S. Jinnai, Y. Ie, Y. Aso: 15th International Symposium on Novel Aromatic Compounds (ISNA-15). [5]Development of Solution-Processable n-Type Organic Semiconductors Based on Carbonyl-Bridged Thiazole-Fused Ring (poster), C. Sato, Y. Ie, Y. Aso: 15th International Symposium on Novel Aromatic Compounds (ISNA-15). [6]4,9-Dihydro-s-indaceno[1,2-b:5,6-b']dithiazole-4,9-dione : A New Electronegative Unit for an n-Type Organic Semiconducting Materials (oral), Y. Ie, M. Nitani, Y. Aso: The 11th International Symposium on Functional ࣭-Electron System (Fp-11). [7]Electron-Donor Function of [6,6]-Phenyl-C61-Butyric Acid Methyl Ester in Bulk Heterojunction Solar Cells (oral), Y. Ie, M. Karakawa, H. Yoshida, A. Saeki, H. Ohkita, Y. Aso: 2013 MRS Fall Meeting. [8]Synthesis, Properties, and Photovoltaic Performance of D–A Copolymers Based on Dioxocyclopentene-Annelated Thiophenes as Acceptor Units (poster), J. Huang, Y. Ie, M. Karakawa, Y. Aso: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [9]Arenedithiocarboxyimide-Containing Extended pi-Conjugated Systems: Synthesis, Properties, and Application as n-Type Organic Semiconductor (poster), S. Jinnai, Y. Ie, Y. Aso: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [10]Synthesis and Properties of Solution-Processable n-Type Organic Semiconductors Based on Carbonyl-Bridged Thiazole-Fused Ring (poster), C. Sato, Y. Ie, Y. Aso: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [11]Synthesis, Properties, and Photovoltaic Performances of Novel D–A Copolymers Based on Naphtho[2,3-c]thiophene-4,9-dione as Acceptor Units (poster), J. Huang, Y. Ie, M. Karakawa, Y. Aso: CEMS International Symposium on Supramolecular Chemistry and Functional Materials 2013. [12]Development of Fluorine-Containing ʌ-Conjugated Systems towards n-Type Organic Semiconducting Materials (invited), Y. Ie: 4th International Fluorine Workshop. [13]Synthesis, Properties, and n-Type Performances of Electronegative ʌ-Conjugated Systems (invited), Y. ― 45 ― Ie: The first Asian conference for “MONODUKURI” Strategy by Synthetic Organic Chemistry (ACMS). [14]PCBM Alternative Acceptor Material for Organic Photovoltaic Cell (poster), M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso: 12th European Conference of Molecular Electronics. [15]Synthesis and Characterization of New Wide-Range Light Absorption Oligomers for Organic Photovoltaics (poster), M. Karakawa, Y. Aso: 12th European Conference of Molecular Electronics. [16]New Fulleropyrrolidine Derivatives as Acceptor Materials for Organic Photovoltaic Cells , M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso: 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium. ゎㄝࠊ⥲ㄝ ḟඖᛶࢆࡋࡓྵ࣑ࣜࣞࣥࢻྜ≀ࡢ㟁Ꮚ≀ᛶග㟁ኚ≉ᛶ, ගᏛ, ගᏛ༠, 44 (2013), 73-80. ሬᕸἲ㐺⏝ྍ⬟࡞᭷ᶵ༙ᑟయᮦᩱࡢ㛤Ⓨ, ᭶หࢹࢫࣉࣞ, ࢸࢡࣀࢱ࣒ࢬ♫, 19 (2013), 1-8. ศᏊ࢚ࣞࢡࢺࣟࢽࢡࢫᮦᩱࡋ࡚ࡢ ʌ ඹᙺᶵ⬟ศᏊ, Electrochemistry, 8 (2013), 273-276. ≉チ [1]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-207724 [2]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-181678 [3]ࠕᅜෆ≉チฟ㢪ࠖ㹬ᆺ༙ᑟయྜ≀ࠊཬࡧ㹮ᆺ༙ᑟయྜ≀ࢆྵ᭷ࡍࡿ⤌ᡂ≀ࠋ, 2013-251554 [4]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-104472 [5]ࠕᅜෆ≉チฟ㢪ࠖࣇ࣮ࣛࣞࣥㄏᑟయࠊཬࡧ㹬ᆺ༙ᑟయᮦᩱ, 2013-104475 [6]ࠕᅜෆᡂ❧≉チࠖඹᙺ⣔ྜ≀ࠊ୪ࡧࡇࢀࢆ⏝࠸ࡓ᭷ᶵⷧ⭷ཬࡧ᭷ᶵⷧ⭷⣲Ꮚ, 2008-290027 ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ Ᏻ⸽ ⰾ㞝 The 17th SANKEN International Symposium 2014 Joined with The 2nd International Symposium of Nano-Macro Materials, Devices and System Research Alliance Project (⤌⧊ጤဨ) Ᏻ⸽ ⰾ㞝 1st KANSAI Nanoscience and Nanotechnology International Symposium, 9th Handai Nanoscience and Nanotechnology International Symposium, 12th SANKEN Nanotechnology Symposium(⤌⧊ጤဨ) ㇂ ┿ྖ The 17th SANKEN International Symposium 2014 Joined with The 2nd International Symposium of Nano-Macro Materials, Devices and System Research Alliance Project(⤌⧊ጤဨ) ᅜෆᏛ ᪥ᮏᏛ ᭷ᶵȧ㟁Ꮚ⣔ࢩ࣏ࣥࢪ࣒࢘ ᭷ᶵᆺඖ⣲Ꮫウㄽ ᇶ♏᭷ᶵᏛウㄽ ྲྀᚓᏛ ༤ኈ㸦ᕤᏛ㸧 8௳ 1௳ 2௳ 3௳ ࢪ࢜࢟ࢯࢩࢡࣟࣝࢣࣥ⦰⎔ࢳ࢜ࣇ࢙ࣥࢆࢡࢭࣉࢱ࣮ࣘࢽࢵࢺࡋࡓ᪂つ ― 46 ― 㯤 ᘓ᫂ ࢻࢼ࣮̽ࢡࢭࣉࢱ࣮ᆺࢥ࣏࣐࣮ࣜࡢ㛤Ⓨཬࡧ᭷ᶵⷧ⭷ኴ㝧㟁ụࡢᛂ⏝ 㛵ࡍࡿ◊✲ ࢳࢰ࣮ࣝ⦰ྜከ⎔⣔ࢆྵࡴ㟁Ꮚཷᐜᛶȧඹᙺ⣔ྜ≀ࡢྜᡂࠊ≀ᛶࠊ༙ᑟ య≉ᛶ ୧ᮎ➃㟁ᴟ᥋ྜྍ⬟࡞࣮ࣥ࢝㒊ࢆ᭷ࡍࡿ⿕そᆺ࢜ࣜࢦࢳ࢜ࣇ࢙ࣥࡢ 㛤Ⓨ ࣇ࢚࣮ࣝ࢜ࣟࢸࣝᇶࢆ᭷ࡍࡿȧඹᙺ࣏࣐࣮ࣜࡢྜᡂ≀ᛶࠊ࠾ࡼࡧࠊග㟁ኚ ≉ᛶ ಟኈ㸦ᕤᏛ㸧 బ⸨ ༓ᑜ ಟኈ㸦ᕤᏛ㸧 ᰿ ⣪⧊ ಟኈ㸦ᕤᏛ㸧 ứ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ⢭⦓タィࢼࣀඹᙺศᏊ࣡ࣖࡢ〇ᇶ࡙ࡃศᏊࢹࣂࢫ ᇶ┙◊✲(A) Ᏻ⸽ ⰾ㞝 㛤Ⓨ ᣮᡓⓗⴌⱆ◊✲ ༢ศᏊ࡛ࡢග㟁ኚほ ྥࡅࡓᶵ⬟ᛶ ʌ 㟁Ꮚ⣔ศᏊࡢ ᐙ ⿱㝯 ฟ ᇶ┙◊✲(B) ༢ศᏊ⣲Ꮚࡢᶵᵓゎ᫂ࢆඛᑟࡍࡿᶵ⬟ᛶ ʌ 㟁Ꮚ⣔ࡢ〇 ᐙ ⿱㝯 ᪂Ꮫ⾡㡿ᇦ◊✲ ศᏊ࣮࢟ࢸࢡࢺࢽࢡࢫྥࡅࡓᶵ⬟ᛶศᏊྜᡂᵓ㐀≀ 㸦◊✲㡿ᇦᥦ ᛶ┦㛵ゎ᫂ ᆺ㸧 ᐙ ⿱㝯 ཷク◊✲ ᐙ ⿱㝯 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ ᭷ᶵⷧ⭷⣔ኴ㝧㟁ụᛂ⏝ྍ⬟ ࡞ n ᆺ༙ᑟయᮦᩱࡢ㛤Ⓨ ᐙ ⿱㝯 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ ᭷ᶵ㟁ゎຠᯝࢺࣛࣥࢪࢫࢱ⣲Ꮚ ࡢ≀ᛶホ౯ Ᏻ⸽ ⰾ㞝 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ ᭷ᶵⷧ⭷ኴ㝧㟁ụ⏝ࢡࢭࣉࢱ ࣮ᮦᩱࡢᐇ⏝ ዡᏛᐤ㝃㔠 ᐙ ⿱㝯 TANAKA ࣮࣍ࣝࢹࣥࢢࢫᰴᘧ♫ ༢㸸༓ 10,790 1,430 4,940 12,610 8,034 8,034 4,810 200 ࣂ࢜ࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ศ㔝 ཎⴭㄽᩥ [1]Tracking Single-Particle Dynamics via Combined Optical and Electrical Sensing, N. Yukimoto, M. Tsutsui, Y. He, H. Shintaku, S. Tanaka, S. Kawano, T. Kawai, M. Taniguchi: Scientific Reports, 3 (2013) 1855-1861. [2]Trapping and Identifying Single-Nanoparticles Using a Low-Aspect-Ratio Nanopore, M. Tsutsui, Y. Maeda, Y. He, S. Hongo, S. Ryuzaki, S. Kawano, T. Kawai, M. Taniguchi: Applied Physics Letters, 103 (2013) 013108-013112. [3]Thermoelectricity in Atom-Sized Junctions at Room Temperatures, M. Tsutsui, T. Morikawa, A. Arima, M. Taniguchi: Science Reports, 3 (2013) 3326-3332. [4]Nonequilibrium Ionic Response of Biased Mechanically Controllable Break Junction (MCBJ) Electrodes, K. Doi, M. Tsutsui, T. Ohshiro, C.-C. Chien, M. Zwolak, M. Taniguchi, T. Kawai, S. Kawano, M. Di Ventra: The Journal of Physical Chemistry C, 118 (2014) 3758-3765. ― 47 ― [5]Fabrications of Insulator-Protected Nanometer-Sized Electrode Gaps, A. Arima, M. Tsutsui, T. Morikawa, K. Yokota, T. Kawai, M. Taniguchi: J. Appl. Phys., 115 (2014) 114310-114314. [6]High Speed DNA Denaturation Using Microheating Devices, M. Furuhashi, Y. Okamoto, D. Onoshima, T. Ohshiro, S. Ryuzaki, K. Yokota, M. Tsutsui, M. Taniguchi, K. Nakatani, Y. Baba, T. Kawai: Applied Physics Letters, 103 (2013) 023112-023115. [7]Polaron Coupling in Graphene Field Effect Transistors on Patterned Self-Assembled Monolayer, K. Yokota, K. Takai, Y. Kudo, Y. Satoa, T. Enoki: Phys. Chem. Chem. Phys., 16 (2013) 4313-4319. [8]Fabrications of Insulator-Protected Nanometer-Sized Electrode Gaps, A. Arima, M. Tsutsui, T. Morikawa, K. Yokota, M. Taniguchi: Journal of Applied Physics, 115 (2014) 114310-114314. ᅜ㝿㆟ [1]Emerging NGS Technology: Single Molecule Sequencing for miRNA (invited), M. Taniguchi: Next Generation Sequencers & Bioinformatics Summit Europe. [2]Partial Sequencing of a Single DNA Molecule with a Scanning Tunnelling Microscope (oral), H. Tanaka: ࣛࣥࢫ G㸱ศ⛉, ྎ‴࢝ࢹ࣑ࢩࢽ࢝. [3]Single Molecule Electrical Sensing Technologies (invited), M. Taniguchi: The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [4]ࣂ࢜ࢼࣀࢸࢡࣀࣟࢪ࣮ࡢ㛤Ⓨ (oral), M. Taniguchi: nano tech 2014 ➨ 13 ᅇᅜ㝿ࢼࣀࢸࢡࣀࣟ ࢪ࣮⥲ྜᒎ࣭ᢏ⾡㆟. [5]Next Generation DNA Sequencing Technologies (oral), M. Taniguchi: The Third International Symposium of Medical-Dental-Pharmaceutical Education and Research in Okayama. [6]4th Generation DNA Sequencing Technologies (oral), M. Taniguchi: The Japan Society of Applied Physics and the Materials Research Society. ゎㄝࠊ⥲ㄝ Electrode-Embedded Nanopores for Label-Free Single-Molecule Sequencing by Electric Currents, K. Yokota, M. Tsutsui, M. Taniguchi, RSC Advances, Royal Society of Chemistry, 4 (2014), 15886-15899. ≉チ [1]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⨨ࠊ᪉ἲࠊཬࡧࣉࣟࢢ࣒ࣛ, 2014-011430 [2]ࠕᅜෆ≉チฟ㢪ࠖヨᩱᑟධ᪉ἲ, 2013-099363 [3]ࠕᅜෆ≉チฟ㢪ࠖ⇕㟁⣲Ꮚࠊཬࡧ⇕㟁⣲Ꮚࡢ⇕㟁≉ᛶ ᐃ᪉ἲ, 2013-160841 [4]ࠕᅜෆ≉チฟ㢪ࠖ༢ศᏊ㆑ู᪉ἲࠊ⨨ࠊཬࡧࣉࣟࢢ࣒ࣛ, 2013-197443 [5]ࠕᅜෆ≉チฟ㢪ࠖ≀㉁ࡢ㆑ู᪉ἲ, 2013-047373 [6]ࠕᅜෆ≉チฟ㢪ࠖศගἲ࠾ࡼࡧศග⨨, 2013-028433 [7]ࠕᅜෆ≉チฟ㢪ࠖᏛ≀㉁᳨ฟ᪉ἲ, 2014-015110 [8]ࠕᅜෆ≉チฟ㢪ࠖᏛ≀㉁᳨ฟ᪉ἲ, 2013-141711 ― 48 ― [9]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⨨ࠊ᪉ἲࠊཬࡧࣉࣟࢢ࣒ࣛ, 2013-193498 [10]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊ⇕ኚᛶ⨨ཬࡧࡑࡢ〇㐀᪉ἲ, 2013-175637 [11]ࠕᅜෆ≉チฟ㢪ࠖ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⨨⏝㟁ᴟࠊ⏕యศᏊࢩ࣮ࢣࣥࢩࣥࢢ⨨ࠊ᪉ἲࠊ ཬࡧࣉࣟࢢ࣒ࣛ, 2014-031084 [12]ࠕᅜ㝿≉チฟ㢪ࠖ≀㉁ࡢ⛣ື㏿ᗘࡢไᚚ᪉ἲ࠾ࡼࡧไᚚ⨨ࠊ୪ࡧࠊࡇࢀࡽࡢ⏝, PCT/JP2013/051913 [13]ࠕᅜ㝿≉チฟ㢪࣏ࠖࣜࢾࢡࣞ࢜ࢳࢻࡢሷᇶ㓄ิࢆỴᐃࡍࡿ᪉ἲࠊ࠾ࡼࡧࠊ࣏ࣜࢾࢡࣞ࢜ࢳࢻ ࡢሷᇶ㓄ิࢆỴᐃࡍࡿ⨨, PCT/JP2013/059645 [14]ࠕᅜ㝿≉チฟ㢪୍ࠖ⢏Ꮚゎᯒ⨨࠾ࡼࡧゎᯒ᪉ἲ, PCT/JP2013/056690 [15]ࠕᅜ㝿≉チฟ㢪ࠖヨᩱࡢศᯒ᪉ἲ, PCT/JP2013/071059 [16]ࠕᅜ㝿≉チฟ㢪ࠖ≀㉁ࡢ⛣ື㏿ᗘࡢไᚚ᪉ἲ࠾ࡼࡧไᚚ⨨, 13/975610 [17]ࠕᅜ㝿≉チฟ㢪࣏ࠖࣜࢾࢡࣞ࢜ࢳࢻࡢሷᇶ㓄ิࢆỴᐃࡍࡿ᪉ἲࠊ࠾ࡼࡧࠊ࣏ࣜࢾࢡࣞ࢜ࢳࢻ ࡢሷᇶ㓄ิࢆỴᐃࡍࡿ⨨, 2013-541893 [18]ࠕᅜෆᡂ❧≉チࠖ᭷ᶵ㟁⏺ຠᯝࢺࣛࣥࢪࢫࢱ࣮ཬࡧࡑࡢ〇㐀᪉ἲ, 2008-223369 [19]ࠕᅜ㝿ᡂ❧≉チࠖ୧ᴟᛶ᭷ᶵ㟁⏺ຠᯝⷧᒙࢺࣛࣥࢪࢫࢱ࣮ཬࡧࡑࡢ〇㐀᪉ἲ, 95110388 [20]ࠕᅜ㝿ᡂ❧≉チࠖOrganic Field Effect Transistor and its Production Method, 9252087.3000000007 ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ ㇂ཱྀṇ㍤ Scientific Reports (⦅㞟ဨ) ᅜෆᏛ 㟁ẼᏛ ᛂ⏝≀⌮ᏛᏛ⾡ㅮ₇ ศᏊ⛉Ꮫウㄽ ᪥ᮏ≀⌮Ꮫ ᪥ᮏᏛᖺ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ⱝᡭ◊✲(A) ㇂ཱྀ ṇ㍤ ᣮᡓⓗⴌⱆ◊ ✲ ⟄ ┿ᴋ ⱝᡭ◊✲(A) ⟄ ┿ᴋ ᣮᡓⓗⴌⱆ◊ ✲ ⏣୰ ⿱⾜ ᇶ┙◊✲(B) ⏣୰ ⿱⾜ ◊✲άືࢫࢱ ࣮ࢺᨭ ᶓ⏣ ୍㐨 ࢤ࣮ࢸࣥࢢࢼࣀ࣏ࡼࡿ༢ศᏊὶືไᚚᢏ⾡ࡢ㛤Ⓨ 1௳ 11 ௳ 2௳ 2௳ 3௳ ༢㸸༓ 6,240 ࢼࣀ࣏ࢺࣛࢵࣉἲࢆ⏝࠸ࡓ༢୍࢘ࣝࢫ⢏Ꮚ㆑ูἲࡢᡂ 4,030 Ὃື㏿ᗘไᚚᶵ⬟ࢆ᭷ࡍࡿ༢୍ศᏊ㆑ูࢹࣂࢫࡢ〇 6,630 㹑㹎㹋ࢆ⏝࠸ࡓࢢࣛࣇ࢙ࣥࡢࢼࣀ࣏ຍᕤ 780 ࢢࣛࣇ࢙ࣥࢆ⏝࠸ࡓ㸯ศᏊࢩ࣮ࢣࣥࢩࣥࢢ 5,590 ࢢࣛࣇ࢙ࣥࢼࣀ࣏ࢹࣂࢫࡢ㛤Ⓨ 1,040 ― 49 ― ཷク◊✲ ⟄ ┿ᴋ ⥲ົ┬ ዡᏛᐤ㝃㔠 ⟄ ┿ᴋ බ┈㈈ᅋἲே㇂ᕝ⇕ᢏ⾡⯆ᇶ㔠 ⌮㛗 ㇂ᕝᐶ ࡑࡢࡢ➇தⓗ◊✲㈨㔠 ㇂ཱྀ ṇ㍤ ᩥ㒊⛉Ꮫ┬ ᅜ❧Ꮫἲேி㒔Ꮫ ㇂ཱྀ ṇ㍤ 7,652 ᭷ᶵศᏊ⇕㟁Ⓨ㟁ࢩ࣮ࢺࣔࢪࣗ ࣮ࣝࡢ◊✲㛤Ⓨ ᚤ⣽ຍᕤࣉࣛࢵࢺࣇ࢛࣮࣒ᐇᶵ㛵 ᚤ⣽ຍᕤࣉࣛࢵࢺࣇ࢛࣮࣒ᐇᶵ㛵 1,000 285,285 38,000 ⎔ቃ࣭࢚ࢿࣝࢠ࣮ࢼࣀᛂ⏝ศ㔝 ཎⴭㄽᩥ [1]Tunability of the 㹩-Space Location of the Dirac Cones in the Topological Crystalline Insulator Pb1-xSnxTe, Y. Tanaka, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Z. Ren, M. Novak, K. Segawa, Y. Ando: Phys. Rev. B, 87 (15) (2013) 155105/1-5. [2]Fermiology of the Strongly Spin-Orbit Coupled Superconductor Sn1-xInxTe: Implications for Topological Superconductivity, T. Sato, Y. Tanaka, K. Nakayama, S. Souma, T. Takahashi, S. Sasaki, Z. Ren, A. A. Taskin, K. Segawa, Y. Ando: Phys. Rev. Lett., 110 (20) (2013) 206804/1-5. [3]Anomalous Dressing of Dirac Fermions in the Topological Surface State of Bi2Se3, Bi2Te3, and Cu-Doped Bi2Se3, T. Kondo, Y. Nakashima, Y. Ota, Y. Ishida, W. Malaeb, K. Okazaki, S. Shin, M. Kriener, S. Sasaki, K. Segawa, Y. Ando: Phys. Rev. Lett., 110 (21) (2013) 217601/1-5. [4]Experimental Studies of the Topological Superconductor CuxBi2Se3, Y. Ando, K. Segawa, S. Sasaki, M. Kriener: J. Phys.: Conf. Ser., 449 (2013) 012033/1-5. [5]Topological Insulator Materials, Y. Ando: J. Phys. Soc. Jpn (Invited review paper), 82 (10) (2013) 102001/1-32. [6]Unusual Nature of Fully Gapped Superconductivity in In-Doped SnTe, M. Novak, S. Sasaki, M. Kriener, K. Segawa, Y. Ando: Phys. Rev. B (Rapid Communications), 88 (14) (2013) 140502(R)/1-5. [7]Two Types of Dirac-Cone Surface States on the (111) Surface of the Topological Crystalline Insulator SnTe, Y. Tanaka, T. Shoman, K. Nakayama, S Souma, T. Sato, T. Takahashi, M. Novak, K. Segawa, Y. Ando: Phys. Rev. B, 88 (23) (2013) 235126/1-5. [8]Relationship between Fermi Surface Warping and Out-of Plane Spin Polarization in Topological Insulators: A View from Spin- and Angle-Resolved Photoemission, M. Nomura, S. Souma, A. Takayama, T. Sato, T. Takahashi, K. Eto, K. Segawa, Y. Ando: Phys. Rev. B, 89 (4) (2014) 045134/1-6. [9]Topological Surface Transport in Epitaxial SnTe Thin Films Grown on Bi2Te3, A. A. Taskin, F. Yang, S. Sasaki, K. Segawa, Y. Ando: Phys. Rev. B (Rapid Communications), 89 (12) (2014) 121302(R)/1-5. ᅜ㝿㆟ [1]Searching for Possible Topological Superconductors with Time-Reversal Invariance (invited), Y. Ando: Gordon Research Conference on Superconductivity. [2]Possible Topological Superconductivity in Doped Topological Insulators (invited), Y. Ando: Majoranas in Solid State Workshop. [3]Experimental Studies of Topological Insulators and Superconductors (invited), Y. Ando: 2013 Swiss ― 50 ― Workshop on Material with Novel Electronic Properties. [4]Possible Bulk Topological Superconductors with Time-Reversal invariance (invited), Y. Ando: Conference on Majorana Physics in Condensed Matter, Ettore Majorana Foundation and Center for Scientific Culture. [5]Experimental Studies of Topological Insulators and Superconductors (invited), Y. Ando: International Workshop on Superconductivity Research and Advanced by New Materials and Spectroscopies. [6]Experimental Efforts to Realize Time-Reversal Invariant Topological Superconductors (invited), S. Sasaki, A. A. Taskin, K. Segawa, Y. Ando: International Symposium on Quantum Fluids and Solids (QFS2013). [7]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Symposium on Frontiers of Solid State Physics. [8]Ionic-Liquid Gating Experiment on Topological Insulators (poster), K. Segawa, Z. Ren, S. Sasaki, T. Tsuda, S. Kuwabata, Y. Ando: International Workshop for Young Researchers on Topological Quantum Phenomena in Condensed Matter with Broken Symmetries 2013. [9]Conductance Spectroscopy on Superconducting Topological Insulator Families (invited), S. Sasaki, A. A. Taskin, K. Segawa, Y. Ando: International Workshop for Young Researchers on Topological Quantum Phenomena in Condensed Matter with Broken Symmetries 2013. [10]The Gating of Topological Insulator Thin Films and Exfoliated Crystals (poster), F. Yang, A. A. Taskin, M. Kishi, K. Eto, K. Segawa, Y. Ando: International Workshop for Young Researchers on Topological Quantum Phenomena in Condensed Matter with Broken Symmetries 2013. [11]Phase Diagram of Sn1-xInxTe -a Topological Superconductor Candidate (poster), M. Novak, S. Sasaki, M. Kriener, K. Segawa, Y. Ando: International Workshop for Young Researchers on Topological Quantum Phenomena in Condensed Matter with Broken Symmetries 2013. [12]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Colloquium, Max-Planck Institute for Solid State Research. [13]Experimental Studies of Topological Insulators and Superconductors (invited), Y. Ando: FIRST-QS2C Workshop on Emergent Phenomena of Correlated Materials. [14]Transport Studies of Topological Insulators (invited), Y. Ando: International Symposium on Nanoscale Transport and Technology (ISNTT2013). [15]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Colloquium, Department of Physics, University of California Santa Barbara. [16]Spin Pumping into the Surface State of Topological Insulators (invited), Y. Ando: Workshop on Topological Matter, Superconductivity and Majorana, Institute for Advanced Study, Hong Kong University of Science and Technology (HKUST). [17]Transport Studies of Topological Insulators (plenary), Y. Ando: Trends in Nano Technology (TNT Japan 2014). [18]Materials Efforts for Topological Insulators and Superconductors (invited), Y. Ando: FIRST International Symposium on Topological Quantum Technology. ― 51 ― [19]Topological Insulators and Superconductors: Materials Frontier (invited), Y. Ando: Quantum Matter and Materials Colloquium. [20]New Topological Materials: Topological Crystalline Insulators and Topological Superconductors (invited), Y. Ando: 18th International Winterschool on New Developments in Solid State Physics. [21]Superconducting Topological Insulators (invited), Y. Ando: Theo Murphy International Scientific Meeting, Emergence of new exotic states at interfaces with superconductors. ゎㄝࠊ⥲ㄝ ≀ᛶ≀⌮Ꮫ᪂つ≀㉁ʊ㉸ఏᑟయࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࢆࡋ࡚ʊ, Ᏻ⸨ 㝧୍, ᩘ⌮⛉Ꮫ, ᰴᘧ♫ࢧ࢚ࣥࢫ♫, [605] (2013), 26-31. ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ Ᏻ⸨ 㝧୍ Europhysics Letters (EPL) (ඹྠ⦅㞟⪅) Ᏻ⸨ 㝧୍ Advanced Materials Interfaces (ᅜ㝿ࢻࣂࢨ࣮ࣜጤဨ) Ᏻ⸨ 㝧୍ International Conference on Topological Quantum Phenomena (TQP2014) (ࣉࣟࢢࣛ ࣒ጤဨ㛗) Ᏻ⸨ 㝧୍ Materials and Mechanisms of Superconductivity Conference (M2S 2015) (ᅜ㝿ࢻ ࣂࢨ࣮ࣜጤဨ) Ᏻ⸨ 㝧୍ 7th International Conference "Science and Engineering of Novel Superconductors" of the Forum on New Materials (ᅜ㝿ࢻࣂࢨ࣮ࣜጤဨ) ᅜෆᏛ ᪥ᮏ≀⌮Ꮫ 2013 ᖺ⛅Ꮨ 11 ௳ ᪂Ꮫ⾡㡿ᇦ࣭ᑐ⛠ᛶࡢ◚ࢀࡓจ⦰⣔࠾ࡅࡿࢺ࣏ࣟࢪ࢝ࣝ㔞Ꮚ⌧㇟ ➨ 4 ᅇ 7௳ 㡿ᇦ◊✲ 7௳ ᪥ᮏ≀⌮Ꮫ➨ 69 ᅇᖺḟ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ༢㸸༓ 11,050 ᭱ඛ➃࣭ḟୡ௦ ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕యࡼࡿ㠉᪂ⓗࢹࣂࢫࡢฟ ◊✲㛤Ⓨᨭࣉ ࣟࢢ࣒ࣛ Ᏻ⸨ 㝧୍ ᇶ┙◊✲(S) ࢺ࣏ࣟࢪ࢝ࣝ⤯⦕య㺃㉸ఏᑟయ࠾ࡅࡿ᪂ወ࡞㔞Ꮚ⌧㇟ࡢ 136,760 Ᏻ⸨ 㝧୍ ᥈ồ ࢼࣀ▱⬟ࢩࢫࢸ࣒ศ㔝 ཎⴭㄽᩥ [1]Anomaly Detection in Reconstructed Quantumn StatesUsing a Machine Learning Technique, S. Hara, T. Ono, R. Okamoto, T. Washio, S. Takeuchi: Phys. Rev. A, 89 (2014) 022104. [2]LiNearN: A New Approach to Nearest Neighbour Density Estimator, J. R. Wells, K. M. Ting, T. Washio: Pattern Recognition, (2014) in press. ᅜ㝿㆟ [1]A Novel Structural AR Modeling Approach for a Continuous Time Linear Markov System, C. K. Kengne, L. C. Fopa, A. Termier, N. Ibrahim, M.-C. Rousset, T. Washio, M. Santana: Proc. of The IEEE International Conference on Data Mining series (ICDM) Workshop 2013, (2013) 104-113. [2]Efficiently Rewriting Large Multimedia Application Execution Traces with few Event Sequences, T. Washio: Proc. of the 19th ACM SIGKDD Iternational Conference on Knowledge Discovery and Data Mining, (2013) 1348-1356. [3]Structural Analysis of IBR-2 Based on Continuous Time Canonicality (oral), M. Demeshko, T. Washio, ― 52 ― Y. Pepyolyshev: ANS National Meeting; 2013 ANS Winter Meeting Technical Sessions. [4]Issues for Modeling from Big Data (invited), T. Washio: Workshop on Computation: Theory and Practice. [5]Rare Flood Scenario Analysis Using Observed Rain Fall Data (oral), T. Washio, Y. Iba: JSST 2013: International Conference on Simulation Technology. ゎㄝࠊ⥲ㄝ ࣅࢵࢢࢹ࣮ࢱࡽࡢࣔࢹࣜࣥࢢ, 㮖ᑿ 㝯, ࢩࢫࢸ࣒ไᚚሗᏛㄅ ࢩࢫࢸ࣒㸭ไᚚ㸭ሗ, ࢩࢫࢸ࣒ไᚚሗᏛ, 58[1] (2014), 3-8. ⴭ᭩ [1]ࣅࢵࢢࢹ࣮ࢱࡽࡢࣔࢹࣜࣥࢢᡭἲ “ࣅࢵࢢࢹ࣮ࢱ࣭࣐ࢿ࣮ࢪ࣓ࣥࢺ”, 㮖ᑿ 㝯, ࢚ࢾ࣭ࢸ ࣭࢚ࢫ♫, 2[4] (57-67) 2014. ᅜ㝿㆟ࡢ⤌⧊ጤဨࠊᅜ㝿㞧ㄅࡢ⦅㞟ጤဨ 㮖ᑿ 㝯 The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012) (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 ICDM 2012 IEEE International Conference on Data Mining (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 ECML/PKDD'13: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ࢤࢫࢺ⦅㞟ጤဨ) 㮖ᑿ 㝯 SDM2013 : SIAM International Conference on Data Mining (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 ACM SIGKDD'13: The 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 The 22nd International Conference on Information and Knowledge Management (CIKM 2013) (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 ICDM 2013 IEEE International Conference on Data Mining (࣮࣡ࢡࢩࣙࢵࣉࣉࣟ ࢢ࣒ࣛඹྠጤဨ㛗) 㮖ᑿ 㝯 ECML/PKDD'13: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 NIPS2013: Neural Information Processing Systems 2013 (ᑂᰝဨ) 㮖ᑿ 㝯 SDM2014 : SIAM International Conference on Data Mining (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 The 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD2014) (ᗈሗጤဨ㛗) 㮖ᑿ 㝯 The 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD2014) (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 Society for Industrial and Applied Mathematics (ࣉࣟࢢ࣒ࣛ⦅㞟ጤဨ) 㮖ᑿ 㝯 DS-2014: the Seventeenth International Conference on Discovery Science (ࣉࣟࢢࣛ ࣒ጤဨ) 㮖ᑿ 㝯 ேᕤ▱⬟Ꮫᅜ㝿ࢩ࣏ࣥࢪ࣒࢘(JSAI-isAI 2014) (ࢻࣂࢨ࣮ࣜጤဨጤဨ) 㮖ᑿ 㝯 ACM SIGKDD'14: The 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 ICDM 2014: IEEE International Conference on Data Mining (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 ECML/PKDD 2014: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2014 (ࣉࣟࢢ࣒ࣛጤဨ) 㮖ᑿ 㝯 The Second IEEE ICDM (IEEE International Conference on Data Mining) Workshop on Causal Discovery (CD 2014) (⤌⧊ጤဨ) ᅜෆᏛ ➨ 27 ᅇேᕤ▱⬟Ꮫᅜ 3௳ 㟁ẼᏛᅜ 1௳ 1௳ ᪥ᮏ࣮࢜࣌ࣞࢩ࣭ࣙࣥࣜࢧ࣮ࢳᏛ 1௳ ➨ 16 ᅇሗㄽⓗᏛ⩦⌮ㄽ࣮࣡ࢡࢩࣙࢵࣉ 1௳ Incomplete Data Analysis and Causal Inference ― 53 ― ྲྀᚓᏛ Ꮫኈ㸦ᕤᏛ㸧 ᵓ㐀ṇ๎Ꮫ⩦ࢆ⏝࠸ࡓΰ㞧ࢩ࣮ࣥࡢ␗ᖖ᳨▱ ᤲ㒊 Ꮫኈ㸦ᕤᏛ㸧 㠀ᐃᖖ⣔ิࢹ࣮ࢱ࠾ࡅࡿ㠀࢞࢘ࢫᛶࢆ⏝࠸ࡓᅉᯝᵓ㐀᥈⣴ ᵳ ⣫ᖹ Ꮫኈ㸦ᕤᏛ㸧 Componentwise ࣮࢝ࢿࣝᏛ⩦ࢆ⏝࠸ࡓ࣏࣮ࢺࣇ࢛ࣜ࢜㑅ᢥ ᒸ⏣ ⚈࿃ ಟኈ㸦ᕤᏛ㸧 ࢢ࣮ࣝࣉṇ๎ᡂศศᯒࢆ⏝࠸ࡓࣉࣟࢭࢫ␗ᖖ᳨▱ ᱵᮧ ୍⣖ ಟኈ㸦ᕤᏛ㸧 ຎࣔࢪࣗࣛᛶࢆ⏝࠸ࡓࢢ࣮ࣝࣉṇ๎ᡂศศᯒ ᮡᮏ ṇ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ᇶ┙◊✲(A) 㮖ᑿ 㝯 ᣮᡓⓗⴌⱆ◊ ✲ 㮖ᑿ 㝯 ⱝᡭ◊✲(B) ΎỈ ᫀᖹ ᣮᡓⓗⴌⱆ◊ ✲ Ἑཎ ྜྷఙ ⱝᡭ◊✲(B) වᮧ ཌ⠊ ཷク◊✲ 㮖ᑿ 㝯 㮖ᑿ 㝯 Ἑཎ ྜྷఙ ㉸㧗ḟඖࢹ࣮ࢱ✵㛫࠾ࡅࡿ⤫ィⓗ᥎ᐃ࣭ࢩ࣑࣮ࣗࣞࢩࣙ ࣥཎ⌮ࡢ㛤Ⓨᛂ⏝ᒎ㛤 ᕼᑡ࣭≉Ṧ᮲௳࠾ࡅࡿ㇟࣭ࢩࢼࣜ࢜⏕㉳ࡢ☜⋡ⓗࢩ࣑ ࣮ࣗࣞࢩࣙࣥࣔࢹࣝࡢᏛ⩦ ༢㸸༓ 10,140 1,560 」ᩘࢹ࣮ࢱࢭࢵࢺࡽࡢ㧗ḟඖᅉᯝࢿࢵࢺ࣮࣡ࢡ᥎ᐃἲࡢ 㛤Ⓨ⏕⛉Ꮫࡢᛂ⏝ 㞳ᩓฝᛶᇶ࡙ࡃᩚᩘࣃ࣓࣮ࣛࢱṇ๎Ꮫ⩦ࡼࡿࣁ࣮ࢻ ࢙࣭࢘ࣇࣞࣥࢻࣜ࡞ᶵᲔᏛ⩦ 650 ᐦࣃࢵࢳୖࡢ☜⋡ࣔࢹࣝࡼࡿᒁᡤᵓ㐀ࢆࡽ࠼ࡓࣟࣂࢫ ࢺ࡞ከḟඖಙྕฎ⌮ 650 㸦⊂)ᚠ⎔ჾ◊✲ࢭࣥ ࢱ࣮ 500 ᰴᘧ♫ᐩኈ㏻◊✲ᡤ 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ ៏ᛶᚰࡢணᚋࡢᩘᘧࡑ ࡢጇᙜᛶ㛵ࡍࡿከタ⮫ᗋ◊ ✲ ศᯒᇶ┙ᢏ⾡ࡢ◊✲ ⤌ྜࡏㄽⓗィ⟬ᇶ࡙ࡃ㉸㧗ḟ ඖࢹ࣮ࢱࡽࡢ▱㆑Ⓨぢ 910 2,000 10,166 ࡑࡢࡢ➇தⓗ◊✲㈨㔠 Ἑཎ ྜྷఙ ᅜ㛫ὶᴗ ඹྠ◊✲ 㸦ࢩ࣏࣮ࣥ࢞ࣝ㸧 (H24-H26) ㏻┘ど࣓࢝ࣛࢹ࣮ࢱࡽࡢ␗ᖖ࣋ࣥ ࢺ᳨▱㸭ண ࢩࢫࢸ࣒ 2,450 ࢼࣀ་⒪ᛂ⏝ࢹࣂࢫศ㔝 ཎⴭㄽᩥ [1]Facile Electrochemical Biosensor Based on a New Bifunctional Probe for Label-Free Detection of CGG Trinucleotide Repeat, H. He, J. P. Xia, X. Q. Peng, G. Chang, X. H. Zhang, Y. F. Wang, K. Nakatani, Z. W. Lou, S. F. Wang: Biosensors and Bioelectronics, 49 (11) 282-289. [2]High Speed DNA Denaturation Using Microheating Devices, M. Furuhashi, Y. Okamoto, D. Onoshima,T. Ohshiro, S. Ryuzaki, K. Yokota, M. Tsutsui, M. Taniguchi, K. Nakatani, T. Kawai: Appl. ― 54 ― Phys. Lett., 103 (11) 023112. [3]Detection of Hepatitis C Virus by Single-Step Hairpin Primer RT-PCR, F. Takei, H. Tani, Y. Matsuura, K. Nakatani: Bioorg. Med. Chem. Lett., 24 (1) 394-396. ᅜ㝿㆟ [1]Coumarin Fluorochrome Binds to Rev Responsible Element RNA with Extremely Large Absorption Shift , : RNA 2012, the 18th Annual Meeting of the RNA Society. [2]Synthesis and Application of New Modified DNA Having Cytosine-bulge Binding Fluorescence Molecule , : Technologies for Medical Diagonosis and Therapy (G3 Meeting). [3]New PCR Monitoring System Using DNA Primer Having Cytosine-Bulge and Covalent Binding Fluorescence Molecule , : The 17th Sanken International Symposium, The 2nd International Symposium of Nano-Macro Materials, Device, and System Research Alliance Project, Suita, Osaka, Japan, January 21-22, 2014. [4]Regulation of RNA Secondary Structure and Function (invited), : Imaging and Sensing Biomolecular Function and Assembly. [5]Toward Regulation of RNA Structure and Function by Small Molecules (invited), : A3RONA 2013. [6]Small Molecule Interaction to RNA (invited), : The 16th Japan-Korea Seminor on Organic Chemistry. [7]Small Organic Molecules Regulating RNA Structure and Function (invited), : First Osaka University-EPFL International Symposium. [8]Small Organic Molecules Regulating RNA Structure and Function #2 (invited), : Asian Chemical Biology Initiative. ゎㄝࠊ⥲ㄝ The Chemistry of PCR Primers: Concept and Application, Ṋ ྐᜨࠊ୰㇂ ᙪ, Israel Journal of Chemistry, John Wiley & Sons, Inc., 53 (2013), 401-416. ᅜෆᏛ ᪥ᮏᏛ➨ 94 Ꮨᖺ ᪥ᮏࢣ࣑࢝ࣝࣂ࢜ࣟࢪ࣮◊✲ ➨ 8 ᅇᖺ ➨ 15 ᅇ RNA ࣑࣮ࢸࣥࢢ ⛉Ꮫ◊✲㈝⿵ຓ㔠 ᇶ┙◊✲(A) ୰㇂ ᙪ ᣮᡓⓗⴌⱆ◊ ✲ ୰㇂ ᙪ ᇶ┙◊✲(B) Ṋ ྐᜨ 8 ⨨ࣉࣜࣥྜ≀ࣛࣈ࣮ࣛࣜࡢྜᡂࣜ࣎ࢫࢵࢳ ࢚ࣜࣥࢪࢽࣜࣥࢢ RNA ࣮ࣝࣉ≉␗ⓗᵓ㐀ኚࢆ♧ࡍศᏊᶵᵓࡢゎ᫂ Dicer ษ᩿ࡢ㜼ᐖຠᯝᐇド ࣊ࣆࣥࣉ࣐࣮ࣛPCR ἲࢆ⏝࠸ࡓ࢘ࣝࢫࡢ㧗ឤᗘ᳨ฟ ἲ㛵ࡍࡿ◊✲ 1௳ 1௳ 1௳ ༢㸸༓ 16,250 4,030 6,240 ࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬ ཎⴭㄽᩥ [1]Magnetoresistance Generated by Combination of Spin-Orbit Interaction and Applied Magnetic Field in ― 55 ― Bipolar Conductors, M. Sakai, D. Kodama, Y. Okano, T. Sakuraba, Z. Honda, A. Kitajima, A. Oshima, K.Higuchi, S. Hasegawa, O. Nakamura: Jpn. J. Appl. Phys., 52 (2013) 093001-1-8. [2]Enhancement of Hydrogen Uptake for Y and Gd Films by Thin Nisurface Overlayers, H. Hirama, M. Hayakawa, T. Okoshi, M. Sakai, K.Higuchi, A. Kitajima, A. Oshima, S. Hasegawa: J. Crystal Growth, 378 (2013) 356-360. [3]Influence of Hydrogen Incorporation on Texture and Grain Size inYH2 Films, T. Okoshi, M. Hayakawa, H. Hirama, M. Sakai, K. Higuchi, A. Kitajima, A. Oshima, S. Hasegawa: J. Crystal Growth, 378 (2013) 388-392. [4]Crystal Growth of Magnetic Dihydride GdxY1íxH2 for Generation of Spin Current, T. Sakuraba, H. Hirama, M. Sakai, Z. Honda, M. Hayakawa,T. Okoshi, A. Kitajima, A. Oshima, K. Higuchi, S. Hasegawa: J. Crystal Growth, 378 (2013) 351-355. [5]Aluminum-Doped Zinc Oxide Electrode for Robust (Pb,La)(Zr,Ti)O3 Capacitors: Effect of Oxide Insulator Encapsulation and Oxide Buffer Layer, Y. Takada, T. Tsuji, N. Okamoto, T. Saito, K. Kondo, T. Yoshimura, N. Fujimura, K. Higuchi, A. Kitajima, A. Oshima: Journal of Materials Science: Materials in Electronics, in press . ᅜ㝿㆟ [1]Hall Effect and Magnetoresistance in GdxY1-xH2 (x䴼0.4) (poster), T. Sakuraba, M. Sakai, T. Arai, Y. Tanaka, H. Hirama, Z. Honda, A. Kitajima, K. Higuchi, A. Oshima, S. Hasegawa: The 12th Asia Pacific Physics Conference. [2]Optical Assessment of Carrier Effective Mass in GdxY1-xH2 (0䵐x䵐1) (poster), S. Haruyama, M. Sakai, T. Sakuraba, H. Hirama, Z. Honda, A. Kitajima, K. Higuchi, A. Oshima and Shigehiko HASEGAWA1: The 12th Asia Pacific Physics Conference. [3]Electrical Properties of PbLaZrTiOx Capacitors with Conductive Oxide Buffer Layer on Pt Electrodes (poster), T. Saito, Y. Takada, T. Tsuji, N. Okamoto, K. Kondo, T. Yoshimura, N. Fujimura, K. Higuchi, A. Kitajima, A. Oshima: 2013 Joint UFFC, EFTF and PFM Symposium. [4]Comparative Study of Electrical Properties of PbLaZrTiOx Capacitors with Al-Doped ZnO and ITO Top Electrodes (poster), Y. Takada, T. Tsuji, N. Okamoto, T. Saito, K. Kondo, T. Yoshimura, N. Fujimura, K. Higuchi, A. Kitajima, A. Oshima: 2013 Joint UFFC, EFTF and PFM Symposium. ― 56 ― ඹྠ◊✲ ࢼࣀᶵ⬟ᮦᩱࢹࣂࢫ◊✲ศ㔝 ⏣୰ ⚽ ༢㸸༓ 㸦⊂㸧≀㉁࣭ᮦᩱ◊✲ᶵ構 ◳㹖⥺ග㟁Ꮚศගࡼࡿᙉ┦㛵 㓟≀⣔ᮦᩱࡢ◊✲ 0 ࢼࣀᴟ㝈ࣇࣈࣜࢣ࣮ࢩࣙࣥศ㔝 ྜྷ⏣ 㝧୍ ࢲ࢟ࣥᕤᴗᰴᘧ♫ ྜྷ⏣ 㝧୍ 㸦⊂㸧᪥ᮏཎᏊຊ◊✲㛤 Ⓨᶵᵓ ྜྷ⏣ 㝧୍ ⊂❧⾜ᨻἲே᪥ᮏཎᏊ ຊ◊✲㛤Ⓨᶵᵓ ྜྷ⏣ 㝧୍ ྜྷ⏣ 㝧୍ ⊂❧⾜ᨻἲே᪥ᮏཎᏊ ຊ◊✲㛤Ⓨᶵᵓ 㸦⊂㸧⏘ᴗᢏ⾡⥲ྜ◊✲ ᡤ ᗈᓥᅜ㝿 ྜྷ⏣ 㝧୍ 㔠ἑ ྜྷ⏣ 㝧୍ ᕞᏛ 㔠ᓠ 㔞Ꮚࣅ࣮࣒↷ᑕࡼࡿࣇࢵ⣲⣔ ᶞ⬡ࡢᚤ⣽ຍᕤࡑࡢᶵ⬟ไᚚ 㔜࢜ࣥࣃࣝࢫࣛࢪ࢜ࣜࢩࢫ ࡼࡿࢻࢹ࢝ࣥศゎึᮇ㐣⛬ࡢ◊ ✲ ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫἲࢆ⏝࠸ࡓ ᶵ⬟ᛶᛂሙ࡛ࡢ㐣Ώ⌧㇟㛵 ࡍࡿ◊✲ Ỉ୰࠾ࡅࡿ㟁Ꮚࡢ⇕㐣⛬ 㛵ࡍࡿ◊✲ 2,500 ࣇ࢛ࢺ࢝ࢯ࣮ࢻ RF 㟁Ꮚ㖠ࢆ⏝ ࠸ࡓ㟁Ꮚ㢧ᚤ㙾ࡢ㛤Ⓨ 㧗⢭ᗘᨺᑕ⥺⒪ࡢࡓࡵࡢࢼ ࣀ࣭࣐ࢡࣟ⥺㔞ィ㛤Ⓨ ࢜ࣥᾮయ୰࡛ࡢ㟁Ꮚ࠾ࡼࡧ࣍ ࣮ࣝࡢࢲࢼ࣑ࢡࢫ ࣃࣝࢫࣛࢪ࢜ࣜࢩࢫࡼࡿ᪂つ ගᶵ⬟ᛶᮦᩱࡢ㟁Ⲵ≧ែࡢ◊✲ 0 0 0 0 0 0 0 ࢼࣀ構造・ᶵ⬟評価◊✲ศ㔝 ➉⏣ ⢭ ᰴᘧ♫ᮏ⏣ᢏ⾡◊✲ ᡤ ⎔ቃ TEM ࡼࡿࢼࣀࢳ࣮ࣗࣈᡂ 㛗ᶵᵓほᐹ㛵ࡍࡿඹྠ◊✲ ➉⏣ ⢭ (⊂)⏘ᴗᢏ⾡⥲ྜ◊✲ᡤ ศᯒ㟁Ꮚ㢧ᚤ㙾ࢆ⏝࠸ࡓపḟඖ 10,200 0 ࢼࣀᮦᩱࡢᵓ㐀ゎᯒ ࢼࣀᶵ⬟ண ◊✲ศ㔝 ᑠཱྀ ከ⨾ኵ ᰴᘧ♫ࢹࣥࢯ࣮ ᑠཱྀ ከ⨾ኵ ᰴᘧ♫㇏⏣୰ኸ◊✲ ➨୍ཎ⌮ィ⟬ࢆ⏝࠸ࡓ᪂つᅽ㟁 ᮦᩱࡢ᥈⣴ ゐ፹⾲㠃≧ែ㛵ࡍࡿ◊✲ 1,500 ᭷ᶵ࢚ࣞࢡࢺࣟࢽࢡࢫᮦᩱࡢ㛤Ⓨ ᭷ᶵⷧ⭷ኴ㝧㟁ụ⏝᭷ᶵ༙ᑟయࡢ 㛤Ⓨ ࣇ࢛ࢺ࢚ࣞࢡࢺࣟࢽࢡࢫᶵ⬟ᛶⰍ ⣲ᮦᩱ㛵ࡍࡿ◊✲ 1,000 0 ᡤ ソフトナノマテリアル◊✲ศ㔝 安蘇 芳雄 Ᏻ⸽ ⰾ㞝 ㎞ᕝ ㄔ ఫᏛᰴᘧ♫ ࢲ࢟ࣥᕤᴗᰴᘧ♫ ᮾὒࣥ࢟ SC ࣮࣍ࣝࢹ ࣥࢢࢫᰴᘧ♫ ― 57 ― 2,500 500 ࣂ࢜ࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ศ㔝 ㇂ཱྀ ṇ㍤ ࢡ࢜ࣥࢱ࣒ࣂ࢜ࢩࢫ ୍ศᏊゎᯒᢏ⾡ᇶ࡙ࡃ⏕≀ヨᩱ ゎᯒ⨨࣭ࢹࣂࢫࡢホ౯ ࢸ࣒ࢬᰴᘧ♫ 0 ࢼࣀ知能システムศ㔝 㮖ᑿ 㝯 㸦⊂㸧⛉Ꮫᢏ⾡⯆ᶵᵓ ⤫ィ࣭ࢹ࣮ࢱ࣐ࢽࣥࢢศ㔝 ᪥ᮏ㟁Ẽᰴᘧ♫ ࡢホ౯᳨࣭ド ‽⮬ື࣐ࢽࣥࢢࣉࣟࢭࢫ᭱㐺 1,140 ࠾ࡅࡿ㞳ᩓᵓ㐀ฎ⌮ᛂ⏝ྍ⬟ᛶ Ἑཎ ྜྷఙ 1,575 ࡢࡓࡵࡢ⬟ືᏛ⩦ᢏ⾡ Ἑཎ ྜྷఙ ᰴᘧ♫ᮏ⏣ᢏ⾡◊✲ ᡤ ኚศ᥎ㄽࢆᛂ⏝ࡋࡓ㌶㐨᭱㐺 ࡼࡿࣟ࣎ࢵࢺືస⏕ᡂᡭἲࡢ ඹྠ◊✲ 2,640 ⺯ගࢩࢢࢼࣝቑᆺࣉࣛ ࣐࣮ἲࡢ㛤Ⓨ 0 ࢼࣀ་⒪ᛂ⏝ࢹࣂࢫศ㔝 ୰㇂ ᙪ ᰴᘧ♫ྂἙ㟁ᕤࢻࣂࣥ ࢫࢺ࢚ࣥࢪࢽࣜࣥࢢ ― 58 ― ● ― 59 ― ࢼࣀຍᕤᐊ ᐊ㛗㸦ව௵㸧ᩍᤵ ᢏ⾡⫋ဨ ⏣୰ ⚽ ᴬཎ ୍᪼ࠊ㇂⏿ බ a) ᴫせ ࢼࣀຍᕤᐊࡣࠊ⏘◊ࡢ᭷ࡍࡿྛ✀ࢼࣀຍᕤ⨨࠾ࡼࡧࢼࣀຍᕤᢏ⾡ࢆ┦᭷ຠά⏝ࡋࠊྛศ㔝ࡢ◊ ✲ࡢ᥎㐍ࢆᅗࡿࡇࢆ┠ⓗࡋ࡚࠸ࡿࠋᚤ⣽ຍᕤࡢᢏ⾡௦⾜ࡢࠊᚤ⣽ຍᕤࡢᛂ⏝㛵ᚰࢆᣢࡘ◊✲ ⪅ࢹࣂࢫࡢ㛤Ⓨ࣭ᥦ౪ࢆ⾜ࡗ࡚࠸ࡿࠋ b) ᡂᯝ ౫㢗௳ᩘ ౫㢗ඛ ౫㢗௳ᩘ ࣭ຍᕤ౫㢗 ࢼࣀຍᕤᐊࡀ⾜࠺ຍᕤᴗົࡣࠊ᪂つࢹࣂࢫࡢ㛤Ⓨ ࢆึࡵࡽ⾜࠺ࡇࡶ࠶ࢀࡤࠊ࢚ࢵࢳࣥࢢࡸᡂ⭷࠸ ࡗࡓࠊࢹࣂࢫຍᕤࣉࣟࢭࢫࡢ୍㒊ࢆᢸᙜࡍࡿࡇࡶ ࠶ࡿࠋ2013 ᖺᗘࡣ 10 ◊✲ᐊࡽ 94 ௳ࡢຍᕤ౫㢗ࡀ࠶ ࡗࡓࠋᅗ 1 ࡣ 2005 ᖺᗘࡢⓎ㊊௨᮶ࡢ౫㢗ඛ౫㢗௳ ᩘࡢ᥎⛣ࢆ♧ࡋࡓࠋ2013 ᖺᗘࡢ౫㢗௳ᩘࡢᛴ⃭࡞ῶᑡ ࡣࠊ౫㢗௳ᩘࡢከࡗࡓ◊✲ᐊࡢ㌿ฟࡼࡿࡶࡢ࡛࠶ ࡿࠋ ᪂ࡋ࠸౫㢗ࡋ࡚ࠊ2013 ᖺᗘࡣᚤᑠᾮࢆᙧᡂࡍࡿ ࡓࡵࡢࢹࣂࢫస〇ࢆ⾜ࡗࡓࠋࢹࣂࢫࡑࡢࡶࡢࡣ 3 ᖺ๓⚾ࡓࡕࡀ㛤Ⓨࡋࡓࡶࡢ࡛࠶ࡿࠋᅇࠊࡇࡢࢹࣂ ࢫࢆ⏝࠸ࡓ⸆ࡢࢫࢡ࣮ࣜࢽࣥࢢࠊ㧗ឤᗘࡢ㓝⣲ ⤖ྜච྾╔᳨ฟࢆ⾜࠺ᐇ㦂ࡀᮏ᱁ⓗጞࡲࡾࠊࢹࣂ ࢫࡢᥦ౪᪂ࡓ࡞㛤Ⓨࢆ⾜ࡗ࡚࠸ࡿࠋᅗ 2 ᚤᑠᾮ ࣂࢡࢸࣜࢆ㛢ࡌ㎸ࡵࠊᇵ㣴ࡋࡓᵝᏊࢆ♧ࡋࡓࠋ ౫㢗ඛ ᖺᗘ ᅗ㸯 2005 ᖺⓎ㊊௨᮶ࡢάືᒚṔ ࣭ᅜ㝿ࢼࣀࢸࢡࣀࣟࢪ࣮⥲ྜᒎࡢཧຍ 2014 ᖺ 1 ᭶ 29 ᪥ 㹼 31 ᪥ ᮾ ி ࡛ ⾜ ࢃ ࢀ ࡓ nanotech2014 ⏘◊ࢼࣀࢸࢡࣀࣟࢪ࣮ࢭࣥࢱ࣮ࡢ୍ဨ ࡋ࡚ཧຍࡋࡓࠋάືෆᐜࢆࢩࣥࣉࣝࡲࡵࡓࣃࢿ ࣝࡢᒎ♧ࠊࣉࣞࢮࣥࢸ࣮ࢩࣙࣥࢆ⾜ࡗ࡚ࡁࡓࠋ ᅗ㸰 ┤ᚄ ࣐ࢡ࣓࣮ࣟࢺࣝࡢᾮෆ࡛ࣂࢡࢸࣜ ࢆᇵ㣴ࡋࡓᵝᏊࠋୖࡀ㛢ࡌ㎸ࡵ┤ᚋࠊୗࡀ 㛫ᚋࡢᵝ Ꮚࠋ ― 60 ― ࢼࣀࢸࢡඛ➃ᶵჾᐊ ᐊ㛗㸦ව௵㸧ᩍᤵ ≉௵ᢏ⾡⫋ဨ ⏣୰ ⚽ బஂ㛫 ⨾ᬛᏊ a) ᴫせ ࢼࣀࢸࢡඛ➃ᶵჾᐊࡣࠊࢼࣀࢸࢡࣀࣟࢪ࣮≉ࡋࡓ᭱ඛ➃ᶵჾࢆタ⨨ࡋࠊࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࢆ ᡓ␎ⓗⓎᒎࡉࡏࡿࡓࡵࠊࢼࣀࢸࢡࣀࣟࢪ࣮ࢭࣥࢱ࣮ࡢᨵ⤌ᣑక࠸ 2009 ᖺᗘⓎ㊊ࡋࡓࠋᴟᚤ ⣽࡞ࢼࣀࢹࣂࢫᵓ㐀ࢆᙧᡂ࡛ࡁࡿ㟁Ꮚ⥺㟢ග⨨ࢆ⏝࠸ࡓ㉸ᚤ⣽ຍᕤࢩࢫࢸ࣒ࡀタ⨨ࡉࢀ࡚࠾ࡾࠊ ᖺᗘࡉࡽࠊࢼࣀࢹࣂࢫຍᕤ⨨⩌ࠊࢼࣀࢹࣂࢫᵓ㐀ホ౯⨨⩌ࠊࢼࣀࢹࣂࢫᶵ⬟ホ౯⨨⩌ ࡽ࡞ࡿࢼࣀࢹࣂࢫ㉸⢭ᐦຍᕤ࣭≀ᛶホ౯ࢩࢫࢸ࣒ࡀᑟධࡉࢀࠊ↓ᶵ≀ࠊ㔠ᒓ㓟≀ࠊ᭷ᶵ≀ࠊ⏕య㛵 㐃≀㉁➼ࡢከᵝ࡞ᮦᩱࡢࢼࣀᵓ㐀ᙧᡂ࠾ࡼࡧᵓ㐀࣭ᶵ⬟࣭㟁Ꮚ≉ᛶ➼ࡢ㧗⢭ᗘゎᯒ࠾ࡼࡧホ౯ࡀྍ⬟ ࡞ࡿࠋࡇࢀࡽඛ➃⨨⩌ࡼࡾ㐃ᦠࡋࡓࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࡢⓎᒎⓗ᥎㐍ࢆྍ⬟ࡋࠊࡉࡽࡑࡢᡂ ᯝࢆᬑཬࡉࡏࡿࡇࢆ┠ᣦࡋ࡚࠸ࡿࠋ b) ᡂᯝ ඛ➃ᶵჾᐊࡢ⨨ูࡢ⏝≧ἣࢆྑࡢࢢࣛࣇ ♧ࡍࠋ⏝⥲ᩘࡣ 1078 ௳࡛๓ᖺᗘẚ㍑ࡋ 144 ௳ ቑຍࠋ ᖺᗘࡽࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬࡢ ⨨ࡋ࡚ࡶ⏝ࡉࢀ࡚࠸ࡿࡓࡵࠊ ⏘◊እࡽࡢ ⏝⪅ࡶቑ࠼࡚࠸ࡿࠋ ᅗ㸯 ࣟࢦ࣐࣮ࢡ㸦㹋㹑᫂ᮅ ᅗ㸯 ࣟࢦ ࢦ࣐࣮ࢡ㸦 㸦㹋㹑 㹋 ᫂ᮅ ᫂ SW㸧 SW㸧 ― 61 ― ࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬ ᣐⅬ㛗㸦ව௵㸧ᩍᤵ ᩍᤵ㸦ව௵㸧 ≉௵ᩍᤵ㸦ව௵㸧 ຓᩍ ≉௵ຓᩍ ≉௵◊✲ဨ ົ⿵బဨ ὴ㐵⫋ဨ ྜྷ⏣ 㝧୍ ⏣୰ ⚽ ㇂ཱྀ ṇ㍤ ಖ⏣ ⱥὒ ᳃ ༤ኴ㑻 ᑠᯘ ኴ ᓥ ᙲ ἲ⃝ බᐶ ᯽ ⨾⣖ ᵽཱྀ ᏹ Dang Nguyen Tuan ㇂ཱྀ 㝯 Dinh Cong Que ୗ‶ ᜤᏊ ᅭぢ ᜨᏊ ᳜ᮧ ⌮⤮Ꮚ 㸦㹼ᖹᡂ 26 ᖺ 2 ᭶ 15 ᪥㸧 㸦ᖹᡂ 26 ᖺ 2 ᭶ 16 ᪥㹼㸧 㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼㸧 㸦㹼ᖹᡂ 25 ᖺ 9 ᭶ 30 ᪥㸧 㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼ᖹᡂ 25 ᖺ 9 ᭶ 30 ᪥㸧 㸦ᖹᡂ 25 ᖺ 11 ᭶ 1 ᪥㹼㸧 㸦ᖹᡂ 25 ᖺ 4 ᭶ 1 ᪥㹼㸧 㸦㹼ᖹᡂ 26 ᖺ 3 ᭶ 31 ᪥㸧 a) ᴫせ ᩥ㒊⛉Ꮫ┬ጤクᴗࠕࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮࣒ᴗ㸦௨ᚋ“ᮏᴗ”␎ࡍ㸧 ࠖࡣࠊࡁ࡞ᮇ ᚅࡀࡿ┿᪂ࡋ࠸ࢼࣀᮦᩱࡸࢼࣀࢹࣂࢫ➼ࡢฟ㈉⊩ࡋࠊࡲࡓࠊᆅᇦࡢᴗࡸ◊✲ᶵ㛵ࡢ᭷ ᶵⓗ࡞㐃ᦠ➼ࢆ῝ࡵࡿࡇࢆ┠ⓗࡍࡿࠋᮏᴗཧ⏬ࡍࡿ㜰Ꮫࢼࣀࢸࢡࣀࣟࢪ࣮タഛ౪⏝ᣐⅬ 㸦௨ᚋ“ᙜᣐⅬ”␎ࡍ㸧ࡣࠊᙜᣐⅬࡀಖ᭷ࡍࡿձᚤ⣽ᵓ㐀ゎᯒࠊղᚤ⣽ຍᕤࠊճศᏊ࣭≀㉁ྜᡂࡢ 3 ࡘ ࡢࣉࣛࢵࢺࣇ࢛࣮࣒ᒓࡋ࡚ᙜᣐⅬࡢタ࣭⨨࣭ᢏ⾡➼ࡢ≉ᚩࢆ⏕ࡋ࡚ࠊࢼࣀࣉࣟࢭࢫࡸࢼࣀᵓ㐀࣭ ᶵ⬟ࡢゎᯒᚲせ࡞⥲ྜⓗ࡞◊✲ᨭࢆ⾜࠺ࡶࠊ༢࡞ࡿඛ➃⨨࣭タࡋ࡚ࡢᶵ⬟ࡔࡅ࡛࡞ࡃࠊ ேᮦ⫱ᡂࡸࣀ࣮࣋ࢩࣙࣥฟࡢ᰾࡞ࡿ◊✲ᢏ⾡ࢭࣥࢱ࣮ⓗᶵ⬟ࢆᯝࡓࡋ࡚࠸ࡿࠋ ձ ᚤ⣽ᵓ㐀ゎᯒࣉࣛࢵࢺࣇ࢛࣮࣒ nm ࢫࢣ࣮ࣝࡢศゎ⬟࡛ ȝP ࢫࢣ࣮ࣝࡢཌࡉࡢヨᩱෆ㒊ࢆᵓ㐀ศᯒ࣭ゎᯒࠊྛ✀ᮦᩱࡸ⏕యヨᩱ➼ ࡢㄪ〇ຠ⋡ⓗ࡞ศᯒ࣭ゎᯒ➼ࡢᨭ ղ ᚤ⣽ຍᕤࣉࣛࢵࢺࣇ࢛࣮࣒ ࣜࢯࢢࣛࣇ࣮ᢏ⾡ࠊࣅ࣮࣒ࢸࢡࣀࣟࢪ࣮ࢆ⏝ࡋࡓⷧ⭷ヨᩱࡢᚤ⣽ຍᕤࢹࣂࢫࠊ࠾ࡼࡧࡑ ࡢࢹࣂࢫࡢホ౯➼ࡢᨭ ճ ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺࣇ࢛࣮࣒ ᭷ᶵ≀࣭↓ᶵ≀࣭㔠ᒓ➼ࡀᣢࡘᶵ⬟ࢆ᭱㝈⏝ࡋࠊ✵㛫ⓗ࣭࢚ࢿࣝࢠ࣮ⓗ᭱㐺࡞㓄ิࡸ⤌ྜ ࡏࢆ⪃៖ࡋࡓཎᏊ࣭ศᏊ㓄ิࢆ᭷ࡍࡿᮦᩱࡢ〇ࠊࡲࡓⷧ⭷ࡸேᕤ᱁Ꮚࡢᙧᡂ࣭≀ᛶ ᐃ➼ࡢᨭ b) ᡂᯝ ᮏᴗࡼࡿᅜෆእ࣭Ꮫෆእࡢࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࢆࢧ࣏࣮ࢺࡍࡿඛ➃ඹ⏝タࡋ࡚ࠊ⏘ᴗ⛉Ꮫ ◊✲ᡤࡀಖ᭷ࡍࡿᚤ⣽ຍᕤศᏊ࣭≀㉁ྜᡂ㸦ⷧ⭷ྜᡂ㸧ࠊࡑࡋ࡚㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ࢭࣥࢱ࣮ࡀಖ᭷ࡍ ࡿᚤ⣽ᵓ㐀ゎᯒࡢ 3 ࡘࡢࣉࣛࢵࢺࣇ࢛࣮࣒ࢆ⼥ྜ࣭」ྜࡋࠊࢼࣀࢫࢣ࣮ࣝࣉࣟࢭࢫࡸࢼࣀᵓ㐀࣭ᶵ⬟ ࡢゎᯒᚲせ࡞タ࣭⨨࣭ᢏ⾡➼ࡢᥦ౪ࡼࡿ⥲ྜⓗ࡞◊✲ᨭࢆ⾜ࡗࡓࠋࡲࡓᮏᖺᗘࡣᮏᴗࡢ 2 ― 62 ― ᖺᗘ┠࡛࠶ࡾࠊᙜᣐⅬ࡛ࡣ 3 ࣉࣛࢵࢺࣇ࢛࣮࣒ྜィ࡛ᘏ 128 ௳ࡢᨭࢆࡋ࡚ࡁࡓࠋᖹᡂ 25 ᖺᗘࡢᡂ ᯝබ㛤ᴗ࠾ࡅࡿᨭ௳ᩘࡢ㡯┠ูෆヂࢆ⾲㸫1 ♧ࡍࠋ ⾲㸫1㸸ᖹᡂ 25 ᖺᗘࡢᨭㄢ㢟௳ᩘ㸦ᡂᯝබ㛤ᴗ㸦ᡂᯝබ㛤⊰ணࢆྵࡴ㸧 㸧 ᚤ⣽ᵓ㐀ゎᯒ ᚤ⣽ຍᕤ ศᏊ࣭≀㉁ྜᡂ ྜィ Ꮫ ⊂ ⏘ ィ Ꮫ ⊂ ⏘ ィ Ꮫ ⊂ ⏘ ィ Ꮫ ⊂ ⏘ ィ ᶵჾ⏝ 0 0 5 5 33 1 4 38 19 0 5 24 52 1 14 67 ඹྠ◊✲ 35 4 5 44 4 0 1 5 4 0 1 5 43 4 7 54 ᢏ⾡௦⾜ 0 0 1 1 1 0 3 4 0 0 2 2 1 0 6 7 ᢏ⾡⿵ຓ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ᢏ⾡┦ㄯ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ྜ ィ 35 4 11 50 38 1 8 47 23 0 8 31 96 5 27 128 ᴗ࠾ࡼࡧᣐⅬάື⤂ࡢࡓࡵࠊᏛእࡽࡢゼၥ⪅ࡼࡿタぢᏛࢆཷࡅධࢀࡓࠋᖹᡂ 25 ᖺᗘཷ ࡅධࢀࡓタぢᏛࢆ⾲㸫2 ♧ࡍࠋ ⾲㸫2㸸タぢᏛ㸦⏘ᴗ⛉Ꮫ◊✲ᡤഃタࠊタ⏝ࡢᡴྜࡏࡼࡿぢᏛࢆ㝖ࡃ㸧 ᪥ ゼၥ⪅㸦ᅋయ㸧 ᑐ㇟ ᖹᡂ 25 ᖺ 5 ᭶ 17 ᪥ ⏘◊ࢸࢡࣀࢧࣟࣥ ᴗ➼ ᖹᡂ 25 ᖺ 7 ᭶ 19 ᪥ ᩥ㒊⛉Ꮫ┬࣭JST ࣉࣛࢵࢺࣇ࢛࣮࣒ᴗ㛵ಀ ᖹᡂ 25 ᖺ 8 ᭶ 7 ᪥ ▼ᕝ┴⚾❧ᫍ⛸㧗ᰯ 㧗ᰯ⏕ ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺ ᖹᡂ 25 ᖺ 11 ᭶ 12 ᪥ ᚤ⣽ຍᕤ PF ᢏ⾡⪅ὶ ࣇ࢛࣮࣒㛵ಀ⪅ ᖹᡂ 25 ᖺ 11 ᭶ 21 ᪥ 㮵ඣᓥ┴❧ฟỈ㧗➼Ꮫᰯ 㧗ᰯ⏕ ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮ ᖹᡂ 25 ᖺ 11 ᭶ 21 ᪥ ᴗ࣭ᅜෆᏛ➼㻌 ࣒タぢᏛ㸦➨ 1 ᅇ㸧 ࣋ࢺࢼ࣒⛉Ꮫᢏ⾡㛤Ⓨᇶ㔠 ᖹᡂ 25 ᖺ 11 ᭶ 25 ᪥ ᅜእᏛ 㸦Nafosted㸧 ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮ ᖹᡂ 26 ᖺ 1 ᭶ 15 ᪥ ᴗ࣭ᅜෆᏛ➼ ࣒タぢᏛ㸦➨ 2 ᅇ㸧 ᖹᡂ 26 ᖺ 3 ᭶ 13 ᪥ ࢱ࣭ᕤᏛ㒊㛗 ᅜእᏛ ேᩘ 46 21 42 36 32 15 8 5 30 ᣐⅬάື⤂࠾ࡼࡧᢏ⾡◊㛑ࡢሙࡢᥦ౪ࡢࡓࡵࠊࡋ࡚ᴗ࣭Ꮫ㛵ಀ⪅ࢆᑐ㇟Ꮫእࡢࢫࢡ࣮ ࣝࡸࢭ࣑ࢼ࣮ࢆ㛤ദࡋࡓࠋᖹᡂ 25 ᖺᗘ㛤ദศࢆ⾲㸫3 ♧ࡍࠋ ⾲㸫3㸸ࢭ࣑ࢼ࣮࣭ࢫࢡ࣮ࣝ➼ ᪥ 㛤ദྡ ᑐ㇟ ᖹᡂ 25 ᖺ 5 ᭶ 22 ᪥ SEMI Forum Japan 2013 ᖹᡂ 25 ᖺ 7 ᭶ 22 ᪥ 㹼26 ᪥ ࢼࣀࢸࢡࣀࣟࢪ࣮ࣉࣛࢵࢺࣇ࢛࣮ ᅜෆᏛᏛ⏕㸦㝔⏕ࢆྵࡴ㸧 ࣒ᖹᡂ 26 ᖺᗘ Ꮫ⏕◊ಟࣉࣟࢢ࣒ࣛ ᖹᡂ 26 ᖺ 2 ᭶ 25 ᪥ 㹼26 ᪥ 㜰Ꮫ ࢼࣀࢸࢡࣀࣟࢪ࣮タഛ ౪⏝ᣐⅬ ศᏊ࣭≀㉁ྜᡂࣉࣛࢵࢺ ᴗࠊᏛࠊබⓗᶵ㛵࡞ ࣇ࢛࣮࣒ ࢫࢡ࣮ࣝ ― 63 ― ᴗࠊᏛࠊබⓗᶵ㛵࡞ ேᩘ 70 2 24 編集後記 年次報告書、Vol.12 を発行いたします。早や、発足以来 12 年が過ぎ、 当センターの陣容も年々充実してきました。その結果、多彩な優れた成 果を生むに至っています。編集するに当って、成果の内容を吟味すると 同時に、更なる発展を目指し、構成員個々の責任を痛感するところです。 吉田、田中、谷口 大阪大学産業科学研究所 産業科学ナノテクノロジーセンター報告書 Vol. 12 2013 発行元:大阪大学産業科学研究所 産業科学ナノテクノロジーセンター Tel & Fax:06-6879-8518 URL: http://www.sanken.osaka-u.ac.jp/labs/nano/index.html 発行日:平成 26 年 3 月 31 日 印刷: ■発 行 日 2014年 3月 ■事務連絡先 大阪大学 産業科学研究所 産業科学ナノテクノロジーセンター Nanoscience and Nanotechnology Center , ISIR , Osaka University 〒567-0047 大阪府茨木市美穂ヶ丘8-1 TEL:06-6879-8518 8-1 Mihogaoka,Ibaraki,Osaka 567-0047,Japan TEL:+81-6-6879-8518 URL:http://www.sanken.osaka-u.ac.jp/labs/nano/index.html FAX:06-6879-8518