Comments
Description
Transcript
Active-RC-Filterusinga Multi
多 端 子 対 ジ ャ イ レ ー タ を 用 い た 能 動 RCフィルタ 光 夫 根 沖 A c t i v e R C F i l t e ru s i n gaM u l t i p o r tG y r a t o r By Mitsuo OKINE I thasbeenshownthat alow-passa l l p o l eLCl a d d e r networkcanber e a l i z e du s i n g 恒 例; o d d ) _ am u l t i p o r tg y r a t Thisl e t t e rd e s c r i b e st h eo p e r a t i n gp r i n c i p l eandt h es i g n a ll e v e li ni t snetwork. I t i sa l s oshownther e a l i z i n gmethodo far a t i o n a lt r a n s f e rf u n c t i o n s by means o f the i n t e r c o n n e c t i o nasummer and i t s network. This c o n s t r u c t i o n have many p r a c t i c a l a d v a n t a g e sfromt h ep o i n t so fnetworkd e s i g n ,s t a b i l i t y,s e n s i t i v i t yanddynamicr a n g e . Asanexampleo ft h ed e s i g n,a l l p a s snetworki sp r e s e n t e d . 路に注目し,動作原理ならびに回路内の信号レベルに あらまし ついて示すものである。そして,この回路に係数掛算 多端子対ジャイレータ (n ;奇数〕を用いて無極低 域はしご形 LCフィノレタが模擬できることはすでに示 を含む加算器 1個を加えて一般の有理伝送関数を実現 している。 されている。本文は,その回路内の信号 νベルと動作 2 . 原理を示すものであり,またその回路網に加算器 l個 多端子対ジャイレータを用いた無極形 低 域 L Cフィルタの模擬 を加えて一般の有理伝送関数の実現法について述べて いる。本回路構成は回路設計,安定性,素子感度,ダ 図1 ( a ) に両端抵抗による無極形低域 LCフィルタを イナミッグレンジ等の点から実際上の有利点を持って 示す。さきの報告 4)で任意の多端子対ジャイレータ回 いる。 路の等価変換として,多端子対ジャイレータの偶数番 なお,設計例として全域通過回路網を示している。 端子に接続する (n-3)/2 個の受動回路をそれぞれ 双対変換しその回路から成る構成が等価回路となる 1.まえがき ことを示している。この等価変換を利用して,多端子 回路網の小型化・集積化の要請から能動 RCフィル 到の回路を模擬したもの 対ジャイレータを用いて図 l( タの構成法が種々報告されているが,なかでも従来の が同図 ( b )である。すなわち,多端子対ジャイレータの 受動 LCフィノレタを模擬する方法は設計手順ならびに インピーダンス反転作用を利用して,コンデンサをイ 設計データがそのまま利用できる点,回路の安定性, ンダクタンスに反転する。そのインダクタンスの値は 素子感度などの点からきわめてすぐれた構成法で、ある といえる 1)2)3)。 次式で与えられる。 ;/G2 ( L2i=C l< ; : i : : : 二(n-l)/2) 2 筆者はこの様な観点から,その)構成法として多端 子対ジャイレータを用いる方法について述べた針。本 ・ … . ( 1 ) なお,多端子対ジャイレータは同位相形また逆位相 形でも 文は,その中の無極形低域 LCフィノレタを模擬した回 ~183 ー LCフィノレタを模擬するには差異はな L。 、 ; t T E J抗日 G-~ー 1)'+1 れ 2 -・ l i 一 ν TT λ+ 1 日 (-1).1 Y } =1 k _ Vi n J-1 ・ -( 8 ) n~l~ ,..( ー l)i 叶 日 Y' }=1 ただし l~k~n , ( 9 ) Yo=l で与えられる。また,ブロック Sk の演算器の出力 電圧を Ek と置けば , . . ( : 1 0 ) Ek=Vk十 Vk _1- Vk+l となり,多端子対ジャイレータの各端子電圧のレベル 図1 を低くすれば,回路に供給し得る電圧を大きく取るこ とができる。 3 . 動作原理ならびに回路内の信号レベル 4 . 一般の有理伝送関数の実現 使用多端子対ジャイレータは同位相形すなわち 実現する有理伝送関数を …"'(2) 1k=G(V +1- Vト ,1 ) k ただし l S 二hζ n,Vo=V 叫 1=0 T ( p )= 主( j J ) D(p) ・ . . . . . ( の _a.pn十an _ l p . l十・十 ad う 十G 一一一一一 0 ・ …ω . d n p n十 d . _1p.-l+…+dlP+do である。図 1( b )の回路を点線で示す n個のブロックに 唱 分割してその動作を考える o とする。ここで Pは複素角周波数 ,D(p)は Hurwitz 4 イ ) N1 の回路では の多頃式である。 l " : L " . 二 主 主 主 = V1 乙 なる関係式が与えられ , V2 1 ωの分母多頃式のみから成る伝送関数 …・や) 1十 PC1R1 式 R1G なる係数をもっ D(p) 差動の一次遅れ回路(時定数 ;C1R1) として動作し 1 一+d =一一一一一一一 d n p .十d . _1pnl+・ ・ 十一 d1p o ている。 ( ロ , ) Nk(2~kζn-1) の回路では Vk-l-Vk+l_Tl PCk& 1 Yk b )の回路で実現する。 は図 1( …( 5 ) で与えられ,差動の積分回路(時定数 ;CkG-り と し λ(p) を持つ伝送関数いわゆる一般の 分子多頃式 γ , 図 1( b )の回路に係数掛算を 有理伝送関数 Tω) は 含む加算器 1個を加えた回路で実現する。(図 2) て動作している。 付 この回路の電圧伝送関数 N.の回路では G Vn_1 ・一一一一土~=V. 一 G2 1+PC.G 2 持つ一次遅れ回路(時定数 ;C nG 2-り T ( p )=V o ut !Vi nを求め ると …・ (6) なる関係が得られる。したがって,利得水準 GjC2 を として動作し T(p)=旦 巳E • 'n ')'1,+ 1 (-lij+l 、 J b . +1 日 Y ー . i~ 1 ている。 十 1 :bn k~ 1 n+1 つぎに回路内の信号レベノレについて検討する。図 l G ・ 一 件1 (-1)"+1 --'2-- (-1、 , j+1 日Y 、 (司と同図 ( b )の奇数番端子電圧は相等しく,一方,図 1 ( b )の偶数番端子電圧 V2i と同図(紛のインダグタンス L2i に流れる電流 1 2i はつぎの関係式で結ばれる。 (多端子対ジャイレータが逆位相形の場合には九 J -G-1 2 i) 乃 i=G-I1 2 i …ω (l~i三二 (n-l)j2) … …( 7 ) したがって,多端子対ジャイレータ回路の各端子電庄 Vk に対する入力電庄町 n との比は 図 2 一般の有理伝送関数の実現 -184ー ね -k+l 示しているが位相特性,振幅特性とも理論値と実測値 (-1); 日 Y J ~二 1 . ? 一 一 一 . . .・ ・ 帥 、 . 1 はかなり一致している。なお,入力電圧 Vi nは 0 で与えられる。なお加算係数 bi は式帥と式帥の対応、 ( v o l t )一定とした。 から遂次的に求まる。 5 . 全域通過回路網の設計 希望する全域通過関数の極を図 1の 回 路 に お い て σ2=0すなわち始端側に抵抗を有する回路で実現す る。この回路の駆動点アドミタンス Yi を式帥に代入 し,全域通過関数になるよう加算器の係数んを決定 するのであるが,まず式同をつぎのように変形する 5)。 bnJdIyfV1+九 日 y;-1 T ω =___ 1 .二 旬十 I J 1 i J 7 £ …ー・ M 江 1 E l . - T(p) b . -k+1・G ( 一1 )是 + 1 E 2 Q] 。 日 6 . む となる。ところで多端子対ジャイレータ回路で模擬し . た回路が始端抵抗の LCフィノレタであることから ,Y はリアクタンス関数となり A(p) は奇関数 , B(p) は偶関数ゼ与えられる。 (A(p) が B( め に 比 べ 1次 高い〕 以上,多端子対ジャイレータを用いた無極形低域 L Cフィルタの模擬において,その動作原理と回路内の 信号レベノレについて示した。多端子対ジャイレータ回 路を任意のブロックに分割した場合,始端側が差動の った。また,回路内の信号レベノレについては受動 LC フィルタの信号レベルがそのまま対応していることを 示した。 …田崎 一方,一般の有理伝送関数はその回路構成に 1個の が得られ,利得水準 b n刊 を 持 つ 全 域 通 過 関 数 が 実 現 係数掛算を含む加算器を加えて実現した。なお,本構 成 法i 主積分器を用いた鎖状能動 R Cフィルタ できる。 伊jとして, び のプロックは差動積分器として働いていることがわか ・ ・ ・ 肋 なる条件を考慮することにより T ( P〉=bn+RIAq ヒ互臼2 ( lR1A j J )十 β(p) す が一次遅れ回路,そしてその他 一次遅れ回路,終端倶u したがって,式 Mにおいて b . / b . +1 =-2 5Q71 Y. 一一一一←一一一一_~1":::一一一一二一-・・・・紳 ん=0( 1三 二i : : ; ; ' n 1 )¥ 。 。 0 . 2 図4 実 験 結 RIA(p)十 B(p) n-k+1 (-1); -2- f o= 1 CkHz) l f 里論 f 直 実測値 が得られる。この関係を式叫に考慮すると, ん+ 1R刈 p)+(b.+1+bn)B(P)十 包 F = R1 A(p)十 B(p)・・…・帥 主鴨 ∞ 1 . 包 W •. (-1ヲ;+1 4 ( , 、 n . + J1Yj-;=B(P , 〉J lYj -ー理論値 提 実 測f 直 ﹂' ﹃ そこで ,Y.=A(P)/B(p) とおくことにより I T C P J I つ ぎ に 示 す 3次 全 域 通 過 関 数 を 実 現 し 謝 -・ ・M ただし ,P=jf/fo とし , fo を 1(kHz) に選ん だ。その実験回路を図 3に,そして実験結果を図 4に 3) の設計 .解析がそのまま適用できる。 た 。 _V u 2p-1 t_p3-2p2十 T(p)一o 一 ←ー Vi n p3十 2p2+2p+1 一(且}﹂こ 司 :J-J. ﹃ 。 ︺ 叫 剖H J ( 1 ) " + 1 n-k+1 (-1); G 日 Y bn-k+1・ 1 路 J ーす一一. 1 .~ 1 回 。 K=:4 叩却制 HY j 図3 実 験 古 事 本研究にあたり有益な御助言・御指導をいただいた 佐賀大学理工学部電子工学科石川弘文教授,本学電子 工学科中村正孝助教授に深く感謝します。 ー185- 文 ィルタ"回路とシステム理論研資, 献 CST73-34 (昭和 48 ー 0 9) 1)W.H e i n l e i nandH. H o l r n e s ; “A c t i v e五 I te r s 4)沖根,石川,中村;“多端子対ジャイレータの構 f o ri n t e g r a t e dc i r c u i t s " .p .3 8 9,P r e n t i c e . H a l l 成とその応用 ( 1 9 7 4 ) 467(昭和4 必9 一O ω 6 ) 2) G.S z e n t i r r n a i ;“S y n t h e s i so fr n u l t i p l e . f e e d b a c k 5)沖根,石川“積分器を用いた鎖状回路による全 t e r s ",BSTJ,Vol .52,No.4 (1973) a c t i v e五I 3)沖根,石 ) 1 1;“積分器を用いた鎖状能動 R Cフ -186- 域通過回路網 No.幻 22,p .辺 22(昭4 必8 一11)