Comments
Description
Transcript
Adaptations to a High Fat Diet
Chapter 14 Adaptations to a High Fat Diet BENTE KIENS AND JØRN W. HELGE Historical perspective It is known from practical experience, obtained from the large number of polar expeditions occurring from the middle of the last century, that the dietary intake of indigenous people and their domestic animals (sledge dogs) had a very high fat content. As early as 1908, August and Marie Krogh studied the metabolism of the Greenland Eskimo where food consumption was calculated, based on observations made by the Danish explorer Rink in 1855 (Krogh & Krogh 1913). Despite such a fat-rich diet, these indigenous people and their dogs seemed to maintain normal work capacity and normal body function. In the laboratory, several groups of scientists from the turn of the century have tried to elucidate what substrate is oxidized in muscle during exercise. Short-term dietary changes, mostly to fat-rich and carbohydrate-rich diets, were applied. Zuntz et al. (1901) demonstrated that respiratory quotient (RQ) values during mild exercise after a fat-rich diet were of a magnitude that suggested an almost exclusive oxidation of fat. This was later supported by Krogh and Lindhard (1920) and Marsh and Murlin (1928). In the studies by Krogh and Lindhard (1920), the subjects were asked to describe their food intake and the perception of daily living chores and exercise sessions while eating a fat-rich or a carbohydrate-rich diet for 3–5 days. The subjects almost uniformly described that exercise was performed easily after consumption of the carbo- 192 hydrate diet, while exercise was performed with severe difficulty after consumption of the fat diet. Krogh and Lindhard (1920) also demonstrated that the muscular efficiency, measured on a Krogh bicycle ergometer positioned within a Jaquet respiration chamber, was some 10–11% more effective while carbohydrates were oxidized than while fat was oxidized. These findings were later supported by Hill (1924) and Marsh and Murlin (1928). The work by Christensen and Hansen (1939) revealed a lower respiratory exchange ratio (RER) during exercise and a shorter endurance performance time at a submaximal exercise intensity after 3–5 days’ adaptation to a fat diet than after 3–5 days’ adaptation to a carbohydrate diet. Thus, interest in the influence of diet on work capacity is not new, but during the last 50 years, focus has mainly been on the role of dietary carbohydrates for enhancing physical performance. However, because athletes today participate in physically demanding events of ever-increasing duration, it has been speculated whether habitually eating a high-fat diet could provide some of the adaptations that are produced by habitual physical exercise and thus improve physical performance. Endurance performance in rats In animals, the effect of adaptation to a fat-rich diet on endurance performance has mostly been investigated in rodents and less often in dogs and other animals. Studies in rats adapted to a adaptations to a high fat diet fat-rich diet have shown a positive effect on endurance performance. However, in most studies, fat-rich diets that are practically carbohydrate free have been used. For instance, in the study by Miller et al. (1984), endurance performance was evaluated after rats were exposed to a diet consisting of 78% of total energy intake (E%) as fat, 1 E% carbohydrate and 15 E% protein, or a diet containing 69 E% carbohydrate, 11 E% fat and 20 E% protein for 1 and 5 weeks. They demonstrated that rats ran for a longer time after adaptation to the fat diet than on the normal diet already after only 1 week’s adaptation to the diet (45 ± 5 min vs. 42 ± 4 min) and this difference was even larger after 5 weeks’ adaptation (47 ± 4 min vs. 35 ± 3 min). These findings are in contrast to those of Conlee et al. (1990), who report unchanged endurance performance time when rats had been exposed for 4–5 weeks to either a fat- or carbohydrate-rich diet, similar in composition to those diets utilized in the study by Miller et al. (1984). In both of these studies, training status of the rats was not altered during the dietary intervention period. However, if both training and a fat diet induce adaptations that increase the fat oxidative capacity, then it might be reasoned that combining the two interventions could result in an additive effect and in turn could optimize endurance capacity. In the study by Simi et al. (1991), where 12 weeks of training in combination with the intake of either a fat-rich diet (no carbohydrates included) or a carbohydrate-rich diet (no fat included), rats ran for a longer time after adaptation to training and the fat-rich diet than those on a carbohydraterich diet. Rats fed the carbohydrate diet were all exhausted before 7 h of exercise, whereas half of the fat-fed rats had to be stopped after 7.5 h of running before becoming exhausted. However, in that study untrained rats fed the fat-rich diet also ran longer (68 ± 5 min) than those fed the carbohydrate diet (42 ± 4 min). In the study by Lapachet et al. (1996), rats were trained 5 days per week, for 2 h at a time on a treadmill for 8 weeks while fed either a fat diet (79 E% fat, 0 E% carbohydrates) or a carbohydrate diet (69 E% carbohydrates, 10 E% fat). They 193 found a 31% longer endurance performance time in the fat-adapted rats than in the rats adapted to the carbohydrate diet. In summary, it appears that endurance performance time in rats is not shorter but mostly longer in fat-fed than in carbohydrate-fed rats, both in rats adapted to training and in sedentary rats. In these studies, the fat diets contained no carbohydrates and a very high proportion of fat. In a recent study, however, findings demonstrated that after 4 weeks of training and adaptation to a fat-rich diet containing 15 E% carbohydrates, endurance performance was similarly enhanced compared with that of rats which had been exposed to a carbohydrate-rich diet (Helge et al. 1998). This study demonstrated no effect of dietary composition on exercise time to exhaustion in either sedentary (mean running time to exhaustion, 50 ± 3 min) or trained rats (153 ± 8 min). In the study by Tollenar (1976), similar findings were obtained. In that study, rats were initially fed a stock diet for 4 months, followed by 3 weeks on a 40 E% fat diet. Then the rats were trained on a treadmill for 16 weeks while fed ad libitum one of three different diets consisting of 20 E%, 40 E% or 70 E% of fat. Data revealed that dietary fat content had no effect on running time to exhaustion. These findings lead to the conclusion that the relative proportion of carbohydrate–fat content in the diet is of significance in the adaptation to dietary fat and thus on running time to exhaustion in rats. Enhanced performance is apparently only observed when the fat-rich diet is virtually free from carbohydrates. An interesting idea to investigate is whether prolonged exposure to a fat-rich diet followed by brief exposure to a carbohydrate-rich diet per se could improve endurance performance further. The reasoning behind such a speculation is that a prolonged fat-diet regimen might induce a highfat oxidative capacity. Then after switching to a carbohydrate-rich diet, muscle glycogen stores are maximized and thus the muscle is provided with both a high-fat oxidative capacity and with large muscle glycogen stores. This approach was first addressed by Conlee et al. (1990), who inves- 194 nutrition and exercise tigated whether animals adapted to a prolonged high-fat diet could tolerate a second bout of exercise following 3 days of recovery consuming a carbohydrate-rich diet compared with animals adapted to a prolonged high-carbohydrate diet after consuming a fat-rich diet. Even though Conlee and co-workers (1990) found that fat-fed rats ran equally long as carbohydrate-fed rats, switching the diet for the last 3 days resulted in better endurance performance by fat-adapted animals switched to the carbohydrate diet for 3 days than carbohydrate-fed animals continued on the carbohydrate diet for 3 more days. Also, in the study by Lapachet et al. (1996), when training was combined with diet for 8 weeks, rats ran approximately 40% longer when the rats, after fat adaptation, switched to the carbohydrate diet for 3 days than when the rats were fed only a carbohydrate diet. Thus, in rats endurance performance time was increased after prolonged fat adaptation and a subsequent brief exposure to a carbohydrate-rich diet. In rats the literature reveals a fairly uniform positive effect of fat-rich, virtually carbohydratefree diet on endurance performance in rats, whereas there is an apparent discrepancy regarding the effect of dietary fats on endurance performance in man. Endurance performance in man It is well known from the classic literature that increasing the dietary fat relative to carbohydrates results in increased fat and decreased carbohydrate utilization during submaximal exercise (Christensen & Hansen 1939). Thus, it has been hypothesized that increasing the availability of fatty acids for oxidation might increase the oxidation of fat and spare carbohydrate and furthermore increase performance. Due to this hypothesis, acute dietary and pharmacological methods have been used to enhance the availability of fatty acids for oxidation. In the study by Griffiths et al. (1996), eight subjects consumed either a fat-rich meal (65 E% fat, 28 E% carbohydrate, 7 E% protein) or a carbohydrate meal (2 E% fat, 80 E% carbohydrate, 18 E% protein) and were followed over the next 6 h, while resting. Prior to the fat meal the plasma concentration of free fatty acids (FFAs) amounted to 400 mmol · l–1. One hour after ingestion of the fat meal, the plasma concentration of FFA had decreased to 200 mmol · l–1, whereafter plasma FFA increased continuously to 500 mmol · l–1 at 4 h and approximately 550 mmol · l–1 at 6 h. Thus, the intake of 80 g fat, as in this study, was not associated with any particular increase in circulating fatty acids during the following 6 h. Studies have established that glucose feeding prior to exercise produces hyperglycaemia, inducing stimulation of insulin secretion, which in turn depresses the exercise-induced lipolysis and increases RQ, indicating an increased participation of carbohydrates in the total energy expenditure. The question is whether fat feeding prior to exercise would enhance the oxidation of fat at the expense of carbohydrate during exercise. This question was addressed in the study by Satabin et al. (1987). Nine trained male subjects either were fasting or ingested a pre-exercise meal (1.7 MJ, 400 kcal) 1 h prior to a submaximal exer. cise test (60% of Vo2max.) to exhaustion. The meals contained either medium-chain triacylglycerols, long-chain triacylglycerols or glucose. During exercise, plasma insulin concentrations were decreased in all conditions. The FFA concentrations were increased similarly after the two lipid meals and in the fasting situation and markedly higher than that in the glucose trial, and RQ was significantly lower in the lipid trials and in the fasting condition than in the glucose trial. Despite the enhanced fat oxidation during exercise, after the consumption of a fat meal, no differences in endurance time (approximately 110 min) between any of the four dietary trials were seen. Also, in studies in which intralipidheparin was infused during exercise, the availability of fatty acids was markedly increased. In the study by Hargreaves et al. (1991), a sparing of muscle glycogen during exercise was not seen, whereas a decreased rate of glycogen degradation was found in another study (Dyck et al. 1993). Endurance performance was, however, not measured in any of these studies. Also, the adaptations to a high fat diet 3 Delivery of FFA (µmol.min–1) ** (a) FFA uptake (µmol.min–1) ingestion of caffeine appears to stimulate the release of fatty acids from the fat stores, at least in well-trained athletes, thus increasing the plasma concentration of FFA. However, studies have provided a conflicting picture of the effect on endurance performance in man (Spriet 1995). With regard to all these attempts to increase the plasma concentration of fatty acids, one must bear in mind that during submaximal exercise only a small percentage (7–15%) of the arterial plasma FFA concentration is extracted (Turcotte et al. 1992). Moreover, from the literature it seems as if there is a fairly linear relationship between FFA availability and FFA uptake and oxidation until a FFA concentration of approximately 700 mmol · l–1. Beyond this concentration, no further uptake and oxidation of FFA appears in non-trained subjects despite a further increase in circulating FFA availability (Turcotte et al. 1992; Kiens et al. 1993). It seems, however, that the concentration at which saturation occurs is somewhat higher in trained subjects (Fig. 14.1) (Kiens et al. 1993). By using stable isotopes, Romijn et al. (1995) evaluated the relationship between fatty acid availability and oxidation in six endurancetrained cyclists. They were studied during . 30 min of exercise at 84% of Vo2max., on two different occasions: once during a control trial when plasma FFA concentrations were normally low (0.2–0.3 mmol · l–1) and again when plasma FFA concentration was maintained between 1 and 2 mmol · l–1 by intravenous infusion of lipidheparin. In the control trial, total fat oxidation amounted to 27 ± 3 mmol · kg–1 · min–1. Even though the availability of FFA in the lipidheparin infusion trial was increased severalfold, the total fat oxidation only increased to an average of 34 ± 4 mmol · kg–1 · min–1 (Fig. 14.2). Thus, the contribution of fat oxidation to energy expenditure increased from approximately 27% during control to approximately 35% during lipid-heparin infusion (P < 0.05). Summarizing these findings, it appears that in those studies in which the plasma FFA concentration was succesfully elevated, no clear effects on endurance performance were demonstrated. A reason for this could be that the FFA uptake 195 2 ** ** ** * 1 * 0 0 60 200 120 **† 150 * 100 50 –19 –27 0 (b) 60 Exercise (min) 120 Fig. 14.1 (a) Delivery of free fatty acids (FFA) (fatty acid concentration times plasma flow), and (b) net uptake of FFA during 2 h of dynamic knee-extensor exercise with either the non-trained (䊊) or the endurance-trained (䊉) thigh. *, P < 0.05 compared with resting values; **, P < 0.05 compared with previous measurements; †, P < 0.05 between non-trained and trained. Adapted from Kiens et al. (1993). plateaus around 700–1000 mmol · l–1. Another explanation might be that increasing the fatty acid oxidation at a given power output is not of importance for endurance. In dietary intervention studies lasting 3–5 days, the prevailing concept is that endurance performance after consuming a carbohydrate- 196 nutrition and exercise 2.0 1.5 1.0 0.5 0.0 (a) 40 * Fat oxidation (µmol.kg–1.min–1) Plasma FFA concentration (mmol.l–1) 2.5 Control 30 20 10 0 Lipid heparin * Control (b) rich diet is superior to that when a fat-rich diet is consumed. Thus, in the classic study by Christensen and Hansen from 1939, three trained subjects consumed either a fat-rich diet (containing only 5 E% carbohydrates) or a carbohydraterich diet (90 E% carbohydrates) for 3–5 days. Exercise to exhaustion at approximately 65–70% of maximal oxygen uptake revealed an average endurance time on the carbohydrate diet of 210 min, which was markedly longer than when on the fat diet (90 min). Also, when intermittent exercise (30 min running followed by 10 min rest) at 70% of maximal oxygen uptake was performed in trained men, endurance performance time to exhaustion was significantly impaired after consuming a fat diet, consisting of 76 E% fat, 13.5 E% protein, for 4 days (62 ± 6 min) compared with when a carbohydrate-rich diet (77 E% carbohydrate, 13.5 E% protein) was consumed for 4 days (106 ± 5 min) (Galbo et al. 1979). Also, the short-term studies by Bergström et al. (1967) and Karlsson and Saltin (1971) suggested that 3–7 days of fat diet were detrimental to exercise performance. Thus, it is evident from these brief dietary manipulations that ‘fat-loading’ impairs endurance performance. However, in these short-term dietary studies, the primary goal was to determine the extent to which muscle glycogen content could be altered by varying the dietary regimen after depletion of the glycogen Lipid heparin Fig. 14.2 (a) Plasma free fatty acid (FFA) concentrations, and (b) total fat oxidation during a 20–30-min exercise period for six subjects during a control trial and during intralipid infusion. Subjects exercised for 30 min at 85% of maximal oxygen uptake. *, P < 0.05 compared with control trial. Adapted from Romijn et al. (1995). stores and subsequently to ascertain the relation between the individual muscle glycogen content and the capacity for prolonged exercise. Thus, these short-term carbohydrate-restricted diets probably reflect rather acute responses to changes in diet. Longer-term adaptation to fat-rich diets may, on the other hand, induce skeletal muscle adaptations, metabolic as well as morphological, which in turn could influence exercise performance. It has been known for a long time that endurance training induces several adaptations in skeletal muscle such as increased capillarization, increased mitochondrial density, increased activity of several oxidative enzymes (Saltin & Gollnick 1983) and, furthermore, as recently shown, an increased content of fatty acid binding protein in the sarcolemma (FABPpm) (Kiens et al. 1997), parameters that all are suggested to play a significant role in enhancing lipid oxidation. It might be speculated that a way to influence the fat oxidative system further, is to increase the substrate flux of fatty acids through the system by increasing the fat content of the diet. This might result in further adaptations in the fat oxidative capacity, providing possibilities for an increased fat oxidation, a sparing of carbohydrates and an increasing endurance performance. Thus, in the study by Muoio et al. (1994), five well-trained runners followed a dietary adaptations to a high fat diet regimen lasting 7 days. The runners performed two different treadmill tests after consuming either a normal diet, a mixed diet, a moderate fat diet (38 E% fat, 50 E% carbohydrates) or a carbohydrate-rich diet (73 E% carbohydrates, 15 E% fat) assigned in this order. Running time, at . 85% of Vo2max. for 30 min and then at 75–80% of . Vo2max. until exhaustion, was longer following the fat diet (91 ± 10 min) than after both the normal, mixed (69 ± 7 min) and the carbohydraterich diet (76 ± 8 min). Although these findings suggest that a 7-day fat diet improves endurance performance in trained males, several flaws in the design of the study are obvious. For example, the diets were not administered randomly and there was no separation between the different dietary periods. The fat diet only contained 38 E% fat and can therefore hardly be characterized as a fat-rich diet. Besides, a dietary carbohydrate intake of 50 E% resulted in a daily intake of a fairly high amount of carbohydrates (approximately 430 g · day–1). Furthermore, a maximal exercise test was performed before the submaximal endurance test only separated by a short break, and this inevitably confounds the interpretation of dietary effects on endurance performance. Moreover, during exercise the R-values were similar in all three diets and although the concentration of plasma fatty acids was highest in the fat diet, plasma glycerol concentrations were lower than in the two other diets. Thus, the metabolic responses during exercise do not give support to the concept that the longer running time was induced by the diet. Lambert et al. (1994) extended the dietary intervention period to 14 days. They studied five endurance-trained cyclists consuming, in a random order, either a 74 E% carbohydrate diet (HC) or a 76 E% fat diet (HF), separated by 2 weeks on ad libitum or normal diet, during which they continued their normal training. The study revealed that maximal power output (862 ± 94 W vs. 804 ± 65 W for HF and HC, respectively) and high-intensity bicycle exercise to exhaustion at . approximately 90% of Vo2max. (8.3 ± 2 vs. 12.5 ± 4 min for HF and HC, respectively) were not impaired after the fat diet. Moreover, during a 197 subsequent prolonged submaximal exercise test . at approximately 60% Vo2max., endurance performance was significantly enhanced on the fat diet compared with when on the carbohydrate diet. This improvement in submaximal endurance capacity occurred despite an initial muscle glycogen content twofold lower (32 ± 6 mmol · kg–1 wet weight) than in the carbohydrate-adapted trial (78 ± 5 mmol · kg–1 wet weight). However, the subjects performed three consecutive tests on the same day only separated by short rest intervals and the submaximal endurance test to exhaustion was always performed as the last test. This design confounds the interpretation of dietary effects on endurance performance. In contrast, in the study by Pruett (1970), relatively well-trained subjects performed intemittent exercise tests (45min bouts followed each time by a 15-min rest period) until exhaustion after consuming either a standard diet (31 E% fat, 59 E% carbohydrate, 10 E% protein), a fat diet (64 E% fat, 26 E% carbohydrate, 10 E% protein) or a carbohydrate diet (8 E% fat, 82 E% carbohydrate, 9 E% protein) for at least 14 days. Nine subjects participated in the study and each subject was placed on one of the three different diets; four of the subjects consumed all three diets. The exercise experiments were performed with 2-week intervals at power . outputs equal to 50% and 70% of Vo2max.. The subjects maintained their training throughout the 2 months required to complete a series of experiments. It was reported that exercising at . 50% Vo2max. time to exhaustion was not different between the three diets. However, maximal possible work time was 270 min and due to that, several of the subjects were stopped before they . were exhausted. At 70% Vo2max., exercise time to exhaustion was not different between the standard (175 ± 15 min) and the fat diet (164 ± 19 min), whereas a longer work time was observed when on the carbohydrate diet (193 ± 12 min) than when on the fat diet (164 ± 19 min). An even longer period of adaptation to a fat diet was studied by Phinney et al. (1983). Submaximal endurance performance was studied in five well-trained bicyclists fed a eucaloric balanced diet (EBD) for 1 week, providing 147– 198 nutrition and exercise 210 kJ · kg–1 · day–1 (35–50 kcal · kg–1 · day–1) , 1.75 g protein · kg–1 · day–1 and the remainder of calories as two-thirds carbohydrates and one-third fat. This was followed by 4 weeks of a eucaloric ketogenic diet (EKD), isocaloric and isonitrogenous with the EBD diet, but providing fewer than 20 g carbohydrates daily. The subjects continued their normal training throughout the study. . Endurance time to exhaustion, at 60–65% Vo2max., was longer in three subjects (57%, 30%, 2%) and shorter in two (36%, 28%) after 4 weeks’ adaptation to EKD, resulting in no statistical difference in the mean exercise time after the two dietary trials (147 ± 13 min for EBD vs. 151 ± 25 min for EKD). However, the big variability in performance time of the subjects makes the results difficult to interpret. A highly significant decrease in RQ values during the endurance test was found and in agreement with this a threefold drop in glucose oxidation and a fourfold reduction in muscle glycogen use were demonstrated. To summarize, so far the literature has provided a conflicting picture when the effect of dietary fat on endurance performance is investigated in man. These disparate results could be explained by the varied research designs used, making firm conclusions impossible. Moreover, dietary manipulations for only 4 weeks may not be long enough to induce adaptations in skeletal muscle of importance for endurance exercise capacity. Also, one might speculate whether training status, as indicated by maximal oxygen uptake of the subjects, could be of any significance. In the study by Helge et al. (1998), the interaction between training and diet was investigated. Fifteen initially non-trained male subjects were randomly assigned to consume a fat diet (62 E% fat, 21 E% carbohydrate, 17 E% protein) or a carbohydrate diet (20 E% fat, 65 E% carbohydrate, 15 E% protein) while following a supervised training programme for 4 weeks. Training was performed four times weekly and each training session alternated between short . and long-lasting intervals at 60–85% of Vo2max., lasting 60 min. After the 4-week intervention . period, Vo2max. was similarly increased by 9% in both dietary groups (P < 0.05). Endurance perfor- mance time to exhaustion, measured on a Krogh . bicycle ergometer, at 72% of Vo2max. (same absolute power output as in the initial nontrained trial), was similarly and significantly increased in both dietary groups both after 2 and 4 weeks of training and dieting (Table 14.1). Thus, comparing the trained subjects in the fat group with those in the carbohydrate group after 4 weeks, exercising at the same relative workload . (72% of Vo2max.), no differences in exercise time to exhaustion were found between the two dietary groups (79 ± 8 min in the fat group vs. 79 ± 15 min in the carbohydrate group). Thus, it appears that adaptation to a fat diet in combination with training up to 4 weeks, exercising at a submaximal . intensity (60–70% of Vo2max.), does not impair endurance performance (Phinney et al. 1983; Helge et al. 1998). However, in the study by Helge et al. (1996), two groups of non-trained male subjects underwent a 7-week supervised training programme while consuming either a fat diet (62 E% fat, 21 E% carbohydrate, 17 E% protein) or a carbohydrate diet (20 E% fat, 65 E% carbohydrate, 15 E% protein). Maximal oxygen uptake increased similarly in the two groups by 11% (P < 0.05). Time to exhaustion, exercising on a Krogh . bicycle ergometer at 82% of pretraining Vo2max., was significantly increased, from initial mean values for the two groups of 35 ± 4 min to 65 ± 7 min in the fat group, but significantly more in the carbohydrate group (102 ± 5 min). Thus, combining these findings it is apparent that the Table 14.1 Endurance performance (mean ± SE, measured in minutes) until exhaustion before and after 2 weeks’ and after 4 weeks’ adaptation to training and a fat-rich or a carbohydrate-rich diet. Before After 2 weeks After 4 weeks Fat-rich diet 29.5 ± 4.3 47.8 ± 8.1* 78.5 ± 8.2* Carbohydraterich diet 31.7 ± 4.3 59.5 ± 10.6* 79.3 ± 15.1* From Helge et al. (1998). * P < 0.05 compared to before values. adaptations to a high fat diet training-induced increase in endurance performance is less when a major part of daily energy intake is covered by fat for a period longer than 4 weeks than when carbohydrates made up the major part of daily energy intake (Fig. 14.3). Furthermore, comparing the trained subjects, exercising at the same relative exercise intensity, time to exhaustion is significantly shorter when a fat diet has been consumed for a longer period than when a carbohydrate diet has been consumed. Summarizing these studies, it appears that a further increase in endurance performance will be impaired when a fat diet is continued beyond 4 weeks. It is not clear why prolonged elevated dietary ** 100 * Time to exhaustion (min) 80 * 60 40 20 0 0 2 4 Time (weeks) 7 Fig. 14.3 Endurance performance to exhaustion measured on a Krogh bicycle ergometer before and after 2, 4 and 7 weeks of endurance training when consuming a fat-rich diet ( ) or a carbohydrate-rich diet (䊐). *, P < 0.05 compared with 0 week in both diets; **, P < 0.05 compared with the fat-rich diet after 7 weeks. Adapted from Helge et al. (1996, 1998). 199 fat intake attenuates the improvement in endurance performance in man. One aspect of significance in the adaptation to dietary fat could be the capacity of enzymes involved in the fat oxidation as a strong correlation between bhydroxy-acyl-CoA-dehydrogenase (HAD) activity and fatty acid uptake and oxidation has been demonstrated in man (Kiens 1997). In the study by Helge and Kiens (1997), the activity of HAD was increased by 25% after 7 weeks’ adaptation to a fat-rich diet, irrespective of whether subjects were trained or not. Furthermore, after 4 weeks’ adaptation to a fat-rich diet, carnitine palmitoyl transferase (CPT I) activity was increased by 35% and hexokinase activity was decreased by 46% (Fisher et al. 1983). Putman et al. (1993) demonstrated that the PDHa activity, the active form of pyruvate dehydrogenase (Reed & Yeaman 1987), was higher after 3 days’ adaptation to a high-fat diet than after adaptation to a high-carbohydrate diet. Preliminary data from our laboratory (unpublished data) also reveal that a fat-rich diet per se, consumed for 4 weeks, induces a significant increase in the FABPpm. Thus, allowing for the complexity of this issue, it seems fair to conclude that a fat-rich diet consumed for a longer period increases the capacity for fatty acid transport and oxidation. Despite this adaptation, training-induced increases in endurance performance are nevertheless impaired compared with when a carbohydrate diet is consumed during training. Thus, the fat oxidative capacity does not by itself seem to be decisive for endurance. Other explanations have to be found. Possible mechanisms could be increasing sympathetic activity with time when a fat-rich diet is consumed or changes in phospholipid fatty acid membrane composition induced by dietary fat intake over a longer time (Helge et al. 1996). The relation between muscle glycogen content and the capacity for prolonged submaximal exercise is evident in the brief dietary studies. The question is whether content of muscle glycogen is of the same significance for endurance performance during prolonged dietary adaptations. In the study by Phinney et al. (1983), endurance . performance, at 60–65% of Vo2max., was similar 200 nutrition and exercise (averaging approximately 2.5 h) after consuming a fat or a balanced diet even though initial muscle glycogen levels amounted to only 76 ± 4 mmol · kg–1 wet weight on the fat diet vs. 143 ± 10 mmol · kg–1 wet weight on the balanced diet. In the study by Lambert et al. (1994), where the . endurance test to exhaustion, at 60% of Vo2max., was performed as the last of three consecutive tests, muscle glycogen stores on the carbohydrate diet amounted to 77 ± 5 mmol · kg–1 wet weight prior to the endurance test, and exercise time to exhaustion lasted only 43 ± 9 min, whereas when on the fat diet, exercise time to exhaustion was 80 ± 8 min, when muscle glycogen levels averaged 32 ± 6 mmol · kg–1 wet weight prior to the test. In these studies, endurance time to exhaustion after consumption of a fat diet was not impaired but in fact even improved despite an initial glycogen content fourfold and twofold lower, respectively, than in the carbohydrate trials. Also, in the study by Helge et al. (1996), muscle glycogen levels prior to exercise were significantly different after 7 weeks’ adaptation to the fat diet (128 ± 6 mmol · kg–1 wet weight) and the carbohydrate diet (153 ± 7 mmol · kg–1 wet weight). However, the rate of muscle glycogen breakdown during exercise was similar in both trials and muscle glycogen stores were not depleted in either group at exhaustion. This was even more conspicuous after 8 weeks, when a carbohydrate diet had been consumed for 1 week after 7 weeks’ adaptation to a fat diet. In this case muscle glycogen concentrations at exhaustion were as high as resting values before initiating the dietary intervention period. These observations indicate that content of muscle glycogen prior to an endurance test does not seem to be closely correlated to submaximal performance time when adaptation to a fat diet for more than 14 days has been induced, whereas after acute or a few days’ dietary manipulation, exercise time to exhaustion seems more closely related to initial muscle glycogen content (Christensen & Hansen 1939; Bergström et al. 1967; Galbo et al. 1979). The hypothesis that manipulation of dietary fat can improve endurance performance by increasing fat oxidation and decreasing carbohydrate oxidation can probably be true for the rat. However, in man there are no scientific data to support this notion inasmuch as those few laboratory studies purporting to show a benefit suffer from serious methodological flaws. It has also been hypothesized that if a combination of training and the intake of a fat-rich diet was performed, then a subsequent brief switch to a carbohydrate-rich diet should create optimal conditions for increased endurance because a high-fat oxidative capacity is combined with large glycogen stores. This hypothesis may arise from studies in rats which have demonstrated, as mentioned earlier, that endurance performance time was increased after prolonged fat adaptation and a subsequent brief exposure to a carbohydrate-rich diet (Conlee et al. 1990; Lapachet et al. 1996). However, these findings are not supported in man. In the study by Helge et al. (1996), trained subjects switched to a carbohydrate diet (65 E% CHO, 20 E% fat) for another week, after 7 weeks’ adaptation to a fat diet, while continuing their supervised training programme (T-FAT/ CHO group). Another group, also participating in the same training programme, followed a carbohydrate diet through all 8 weeks (T-CHO group). An endurance test to exhaustion performed after the 8th week revealed that exercise time, at the same relative exercise intensity (70% . Vo2max.) as at the 7-week endurance test was modestly increased by 18%, from 65 ± 7 min at 7 weeks to 77 ± 9 min in the T-FAT/CHO group. This exercise time was, however, 26% shorter than endurance time to exhaustion in the T-CHO group (Fig. 14.4). It is of note that in the T-FAT/ CHO group the muscle glycogen stores were significantly higher initially (738 ± 53 mmol · kg–1 dry weight) than in the T-CHO group (561 ± 22 mmol · kg–1 dry weight). Moreover, blood glucose concentrations were significantly higher during exercise and at exhaustion in the T-FAT/CHO group than in the T-CHO group. Even so, endurance performance was still shorter in the T-FAT/CHO group. These data give no support to the belief that several weeks’ adaptation to a fat diet followed by a few days on adaptations to a high fat diet 120 * * 100 ** Time to exhaustion (min) 80 60 201 days) leads to a deterioration of endurance performance when compared with ingestion of a carbohydrate-rich diet. 3 Adaptation to a fat-rich diet, in combination with training, for a period of 1–4 weeks does not attenuate endurance performance compared with adaptation to a diet rich in carbohydrates, but when dieting and training are continued for 7 weeks, endurance performance is markedly better when a carbohydrate-rich diet is consumed. 4 No benefit is obtained when switching to a carbohydrate-rich diet after long-term adaptation to a fat-rich diet, compared with when a carbohydrate-rich diet is consumed all along. 40 References 20 0 7 8 Time (weeks) Fig. 14.4 Endurance performance to exhaustion measured on a Krogh bicycle ergometer after 7 weeks’ training on a fat-rich diet ( ) or a carbohydrate-rich diet ( ) followed by an additional week of training during which both groups consumed the carbohydrate-rich diet. *, P < 0.05 compared with the fat-rich and combined diets, respectively; **, P < 0.05 compared with the fat-rich diet. Adapted from Helge et al. (1996). a carbohydrate-rich diet is of benefit for the athlete before an event. Conclusion From the available literature, based on human studies, it seems fair to conclude the following. 1 An acute increase in the availability of circulating fatty acids does not result in any clear effects on endurance performance. 2 Short-term ingestion of a fat-rich diet (3–5 Bergström, J., Hermansen, L., Hultman, E. & Saltin, B. (1967) Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71, 140–150. Christensen, E.H. & Hansen, O. (1939) Arbeitsfähigkeit und ernärung (Work capacity and diet). Skandinavishes Archiv für Physiologie 81, 160 –171. Conlee, R., Hammer, R., Winder, W., Bracken, M., Nelson, A. & Barnett, D. (1990) Glycogen repletion and exercise endurance in rats adapted to a high fat diet. Metabolism 39, 289–294. Dyck, D.J., Putman, C.T., Heigenhauser, G.J.F., Hultman, E. & Spriet, L.L. (1993) Regulation of fatcarbohydrate interaction in skeletal muscle during intense aerobic cycling. American Journal of Physiology 265, E852–E859. Fisher, E.C., Evans, W.J., Phinney, S.D., Blackburn, G.L., Bistrian, B.R. & Young, V.R. (1983) Changes in skeletal muscle metabolism induced by a eucaloric ketogenic diet. In Biochemistry of Exercise, Vol. 13 (ed. H.G. Knuttgen, J.A. Vogel & J. Portman), pp. 497–501. Human Kinetics, Champaign, IL. Galbo, H., Holst, J.J. & Christensen, N.J. (1979) The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiologica Scandinavica 107, 19–32. Griffiths, J., Humphreys, S.M., Clark, M.L., Fielding, B.A. & Frayn, K.N. (1996) Immediate metabolic availability of dietary fat in combination with carbohydrate. American Journal of Clinical Nutrition 59, 53–59. Hargreaves, M., Kiens, B. & Richter, E.A. (1991) Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. Journal of Applied Physiology 70, 194–201. 202 nutrition and exercise Helge, J.W. & Kiens, B. (1997) Muscle enzyme activity in man: role of substrate availability and training. American Journal of Physiology 272, R1620–R1624. Helge, J.W., Richter, E.A. & Kiens, B. (1996) Interaction of training and diet on metabolism and endurance during exercise in man. Journal of Physiology (London) 292, 293–306. Helge, J.W., Wulff, B. & Kiens, B. (1998) Impact of a fatrich diet on endurance in man: role of the dietary period. Medicine and Science in Sports and Exercise 30, 456–461. Hill, A.V. (1924) Muscular activity and carbohydrate metabolism. Science 60, 505–514. Karlsson, J. & Saltin, B. (1971) Diet, muscle glycogen, and endurance performance. Journal of Applied Physiology 31, 203–206. Kiens, B. (1997) Effect of endurance training on fatty acid metabolism: local adaptations. Medicine in Science, Sports and Exercise 29, 640–645. Kiens, B., Essen-Gustavsson, B., Christensen, N.J. & Saltin, B. (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. Journal of Physiology (London) 469, 459–478. Kiens, B., Kristiansen, S., Jensen, P., Richter, E.A. & Turcotte, L.P. (1997) Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochemical and Biophysical Research Communications 231, 463–465. Krogh, A. & Krogh, M. (1913) A study of the diet and metabolism of eskimos. Meddelelser om Grønland 51, 3–52. Krogh, A. & Lindhard, J. (1920) The relative value of fat and carbohydrate as sources of muscular energy. Biochemistry Journal 14, 290–363. Lambert, E.V., Speechly, D.P., Dennis, S.C. & Noakes, T.D. (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks’ adaptation to a high fat diet. European Journal of Applied Physiology 69, 287–293. Lapachet, R.A.B., Miller, W.C. & Arnall, D.A. (1996) Body fat and exercise endurance in trained rats adapted to a high fat diet and/or a high carbohydrate diet. Journal of Applied Physiology 80, 1173– 1179. Marsh, E. & Murlin, J.R. (1928) Muscular efficiency on high carbohydrate and high fat diets. Journal of Nutrition 1, 105–137. Miller, W.C., Bryce, G.R. & Conlee, R.K. (1984) Adaptations to a high-fat diet that increase exercise endurance in male rats. Journal of Applied Physiology 56, 78–83. Muoio, D.M., Leddy, J.J., Horvath, P.J., Awad, A.B. & Pendergast, D.R. (1994) Effects of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners. Medicine and Science in Sports and Exercise 26, 81–88. Phinney, S.D., Bistrian, B.R., Evans, W.J., Gervino, E. & Blackburn, G.L. (1983) The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32, 769–776. Pruett, E.D.R. (1970) Glucose and insulin during prolonged work stress in men living on different diets. Journal of Applied Physiology 2, 199–208. Putman, C.T., Spriet, L.L., Hultman, E. et al. (1993) Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. American Journal of Physiology 265, E752–E760. Reed, L.J. & Yeaman, S.J. (1987) Pyruvate dehydrogenase. In Enzymes (ed. P.D. Boyer & E.G. Krebs), pp. 77–95. Academic Press, Toronto. Romijn, J.A., Coyle, E.F., Sidossis, L.S., Zhang, X.J. & Wolfe, R.R. (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. Journal of Applied Physiology 79, 1939–1945. Saltin, B. & Gollnick, P. (1983) Skeletal muscle adaptability: significance for metabolism and performance. In Handbook of Physiology, Section 10 (eds L.D. Peachy, R.H. Adrian & S.R. Geiger), pp. 555–631. American Physiological Society, Bethesda. Satabin, P., Portero, P., Defer, G., Bricout, J. & Guezennec, C.Y. (1987) Metabolic and hormonal responses to lipid and carbohydrate diets during exercise in man. Medicine and Science in Sports and Exercise 19, 218–223. Simi, B., Sempore, B., Mayet, M.-H. & Favier, R.J. (1991) Additive effects of training and high-fat diet on energy metabolism during exercise. Journal of Applied Physiology 71, 197–203. Spriet, L.L. (1995) Caffeine and performance. International Journal of Sports Nutrition 5, S84–S99. Tollenar, D. (1976) Dietary fat level as affecting running performance and other performance-related parameters of rats restricted or nonrestricted in food intake. Journal of Nutrition 106, 1539–1546. Turcotte, L.P., Richter, E.A. & Kiens, B. (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. American Journal of Physiology 262, E791–E799. Zuntz, N. (1901) Über die bedeutung der verschiedenen nahrstoffe als erzeuger der muskelkraft. Pflügers Archives 83, 557–571.