Comments
Description
Transcript
Divergence theorem and related theorems
11.8 DIVERGENCE THEOREM AND RELATED THEOREMS 11.8 Divergence theorem and related theorems The divergence theorem relates the total flux of a vector field out of a closed surface S to the integral of the divergence of the vector field over the enclosed volume V ; it follows almost immediately from our geometrical definition of divergence (11.15). Imagine a volume V , in which a vector field a is continuous and differentiable, to be divided up into a large number of small volumes Vi . Using (11.15), we have for each small volume 0 (∇ · a)Vi ≈ a · dS, Si where Si is the surface of the small volume Vi . Summing over i we find that contributions from surface elements interior to S cancel since each surface element appears in two terms with opposite signs, the outward normals in the two terms being equal and opposite. Only contributions from surface elements that are also parts of S survive. If each Vi is allowed to tend to zero then we obtain the divergence theorem, 0 ∇ · a dV = a · dS. (11.18) V S We note that the divergence theorem holds for both simply and multiply connected surfaces, provided that they are closed and enclose some non-zero volume V . The divergence theorem may also be extended to tensor fields (see chapter 26). The theorem finds most use as a tool in formal manipulations, but sometimes it is of value in transforming surface integrals of the form S a · dS into volume integrals or vice versa. For example, setting a = r we immediately obtain 0 ∇ · r dV = 3 dV = 3V = r · dS, V V S which gives the expression for the volume of a region found in subsection 11.6.1. The use of the divergence theorem is further illustrated in the following example. Evaluate the surface integral I = S a · dS, where a = (y − x) i + x2 z j + (z + x2 ) k and S is the open surface of the hemisphere x2 + y 2 + z 2 = a2 , z ≥ 0. We could evaluate this surface integral directly, but the algebra is somewhat lengthy. We will therefore evaluate it by use of the divergence theorem. Since the latter only holds for closed surfaces enclosing a non-zero volume V , let us first consider the closed surface S = S + S1 , where S1 is the circular area in the xy-plane given by x2 + y 2 ≤ a2 , z = 0; S then encloses a hemispherical volume V . By the divergence theorem we have 0 ∇ · a dV = a · dS = a · dS + a · dS. S V S Now ∇ · a = −1 + 0 + 1 = 0, so we can write a · dS = − a · dS. S S1 401 S1 LINE, SURFACE AND VOLUME INTEGRALS y R dr dy C dx n̂ ds x Figure 11.11 A closed curve C in the xy-plane bounding a region R. Vectors tangent and normal to the curve at a given point are also shown. The surface integral over S1 is easily evaluated. Remembering that the normal to the surface points outward from the volume, a surface element on S1 is simply dS = −k dx dy. On S1 we also have a = (y − x) i + x2 k, so that a · dS = x2 dx dy, I=− S1 R where R is the circular region in the xy-plane given by x2 + y 2 ≤ a2 . Transforming to plane polar coordinates we have 2π a πa4 I= ρ2 cos2 φ ρ dρ dφ = cos2 φ dφ ρ3 dρ = . 4 0 0 R It is also interesting to consider the two-dimensional version of the divergence theorem. As an example, let us consider a two-dimensional planar region R in the xy-plane bounded by some closed curve C (see figure 11.11). At any point on the curve the vector dr = dx i + dy j is a tangent to the curve and the vector n̂ ds = dy i − dx j is a normal pointing out of the region R. If the vector field a is continuous and differentiable in R then the two-dimensional divergence theorem in Cartesian coordinates gives 0 0 ∂ax ∂ay + dx dy = a · n̂ ds = (ax dy − ay dx). ∂x ∂y R C Letting P = −ay and Q = ax , we recover Green’s theorem in a plane, which was discussed in section 11.3. 11.8.1 Green’s theorems Consider two scalar functions φ and ψ that are continuous and differentiable in some volume V bounded by a surface S. Applying the divergence theorem to the 402 11.8 DIVERGENCE THEOREM AND RELATED THEOREMS vector field φ∇ψ we obtain 0 φ∇ψ · dS = ∇ · (φ∇ψ) dV S V 2 φ∇ ψ + (∇φ) · (∇ψ) dV . = (11.19) V Reversing the roles of φ and ψ in (11.19) and subtracting the two equations gives 0 (φ∇ψ − ψ∇φ) · dS = (φ∇2 ψ − ψ∇2 φ) dV . (11.20) S V Equation (11.19) is usually known as Green’s first theorem and (11.20) as his second. Green’s second theorem is useful in the development of the Green’s functions used in the solution of partial differential equations (see chapter 21). 11.8.2 Other related integral theorems There exist two other integral theorems which are closely related to the divergence theorem and which are of some use in physical applications. If φ is a scalar field and b is a vector field and both φ and b satisfy our usual differentiability conditions in some volume V bounded by a closed surface S then 0 ∇φ dV = φ dS, (11.21) 0S V ∇ × b dV = dS × b. (11.22) V S Use the divergence theorem to prove (11.21). In the divergence theorem (11.18) let a = φc, where c is a constant vector. We then have 0 ∇ · (φc) dV = φc · dS. V S Expanding out the integrand on the LHS we have ∇ · (φc) = φ∇ · c + c · ∇φ = c · ∇φ, since c is constant. Also, φc · dS = c · φdS, so we obtain 0 c · (∇φ) dV = c · φ dS. V S Since c is constant we may take it out of both integrals to give 0 ∇φ dV = c · φ dS, c· V S and since c is arbitrary we obtain the stated result (11.21). Equation (11.22) may be proved in a similar way by letting a = b × c in the divergence theorem, where c is again a constant vector. 403 LINE, SURFACE AND VOLUME INTEGRALS 11.8.3 Physical applications of the divergence theorem The divergence theorem is useful in deriving many of the most important partial differential equations in physics (see chapter 20). The basic idea is to use the divergence theorem to convert an integral form, often derived from observation, into an equivalent differential form (used in theoretical statements). For a compressible fluid with time-varying position-dependent density ρ(r, t) and velocity field v(r, t), in which fluid is neither being created nor destroyed, show that ∂ρ + ∇ · (ρv) = 0. ∂t For an arbitrary volume V in the fluid, the conservation of mass tells us that the rate of increase or decrease of the mass M of fluid in the volume must equal the net rate at which fluid is entering or leaving the volume, i.e. 0 dM = − ρv · dS, dt S where S is the surface bounding V . But the mass of fluid in V is simply M = V ρ dV , so we have 0 d ρ dV + ρv · dS = 0. dt V S Taking the derivative inside the first integral on the RHS and using the divergence theorem to rewrite the second integral, we obtain ∂ρ ∂ρ ∇ · (ρv) dV = dV + + ∇ · (ρv) dV = 0. ∂t V ∂t V V Since the volume V is arbitrary, the integrand (which is assumed continuous) must be identically zero, so we obtain ∂ρ + ∇ · (ρv) = 0. ∂t This is known as the continuity equation. It can also be applied to other systems, for example those in which ρ is the density of electric charge or the heat content, etc. For the flow of an incompressible fluid, ρ = constant and the continuity equation becomes simply ∇ · v = 0. In the previous example, we assumed that there were no sources or sinks in the volume V , i.e. that there was no part of V in which fluid was being created or destroyed. We now consider the case where a finite number of point sources and/or sinks are present in an incompressible fluid. Let us first consider the simple case where a single source is located at the origin, out of which a quantity of fluid flows radially at a rate Q (m3 s−1 ). The velocity field is given by Qr̂ Qr = . 4πr 3 4πr 2 Now, for a sphere S1 of radius r centred on the source, the flux across S1 is 0 v · dS = |v|4πr 2 = Q. v= S1 404 11.8 DIVERGENCE THEOREM AND RELATED THEOREMS Since v has a singularity at the origin it is not differentiable there, i.e. ∇ · v is not defined there, but at all other points ∇ · v = 0, as required for an incompressible fluid. Therefore, from the divergence theorem, for any closed surface S2 that does not enclose the origin we have 0 v · dS = ∇ · v dV = 0. S2 V / Thus we see that the surface integral S v · dS has value Q or zero depending on whether or not S encloses the source. In order that the divergence theorem is valid for all surfaces S, irrespective of whether they enclose the source, we write ∇ · v = Qδ(r), where δ(r) is the three-dimensional Dirac delta function. The properties of this function are discussed fully in chapter 13, but for the moment we note that it is defined in such a way that δ(r − a) = 0 for r = a, # f(r)δ(r − a) dV = V f(a) if a lies in V 0 otherwise for any well-behaved function f(r). Therefore, for any volume V containing the source at the origin, we have ∇ · v dV = Q δ(r) dV = Q, V / V which is consistent with S v · dS = Q for a closed surface enclosing the source. Hence, by introducing the Dirac delta function the divergence theorem can be made valid even for non-differentiable point sources. The generalisation to several sources and sinks is straightforward. For example, if a source is located at r = a and a sink at r = b then the velocity field is v= (r − a)Q (r − b)Q − 4π|r − a|3 4π|r − b|3 and its divergence is given by ∇ · v = Qδ(r − a) − Qδ(r − b). / Therefore, the integral S v · dS has the value Q if S encloses the source, −Q if S encloses the sink and 0 if S encloses neither the source nor sink or encloses them both. This analysis also applies to other physical systems – for example, in electrostatics we can regard the sources and sinks as positive and negative point charges respectively and replace v by the electric field E. 405