Comments
Description
Transcript
Obtaining a second solution
SERIES SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS is required, i.e. z = 0, is in fact an ordinary point of the ODE rather than a regular singular point, then substitution of the Frobenius series (16.12) leads to an indicial equation with roots σ = 0 and σ = 1. Although these roots differ by an integer (unity), the recurrence relations corresponding to the two roots yield two linearly independent power series solutions (one for each root), as expected from section 16.2. 16.4 Obtaining a second solution Whilst attempting to construct solutions to an ODE in the form of Frobenius series about a regular singular point, we found in the previous section that when the indicial equation has a repeated root, or roots differing by an integer, we can (in general) find only one solution of this form. In order to construct the general solution to the ODE, however, we require two linearly independent solutions y1 and y2 . We now consider several methods for obtaining a second solution in this case. 16.4.1 The Wronskian method If y1 and y2 are two linearly independent solutions of the standard equation y + p(z)y + q(z)y = 0 then the Wronskian of these two solutions is given by W (z) = y1 y2 − y2 y1 . Dividing the Wronskian by y12 we obtain d W 1 y2 y1 y2 d y2 = − y = + = y , 2 2 y1 y1 dz y1 dz y1 y12 y12 which integrates to give y2 (z) = y1 (z) z W (u) du. y12 (u) Now using the alternative expression for W (z) given in (16.4) with C = 1 (since we are not concerned with this normalising factor), we find u z 1 y2 (z) = y1 (z) exp − p(v) dv du. (16.25) y12 (u) Hence, given y1 , we can in principle compute y2 . Note that the lower limits of integration have been omitted. If constant lower limits are included then they merely lead to a constant times the first solution. Find a second solution to (16.21) using the Wronskian method. For the ODE (16.21) we have p(z) = 3/(z − 1), and from (16.24) we see that one solution 544 16.4 OBTAINING A SECOND SOLUTION to (16.21) is y1 = z/(1 − z)2 . Substituting for p and y1 in (16.25) we have u z z (1 − u)4 3 exp − y2 (z) = dv du (1 − z)2 u2 v−1 z (1 − u)4 z exp [−3 ln(u − 1)] du = (1 − z)2 u2 z z u−1 = du (1 − z)2 u2 1 z . ln z + = (1 − z)2 z By calculating the Wronskian of y1 and y2 it is easily shown that, as expected, the two solutions are linearly independent. In fact, as the Wronskian has already been evaluated as W (u) = exp[−3 ln(u − 1)], i.e. W (z) = (z − 1)−3 , no calculation is needed. An alternative (but equivalent) method of finding a second solution is simply to assume that the second solution has the form y2 (z) = u(z)y1 (z) for some function u(z) to be determined (this method was discussed more fully in subsection 15.2.3). From (16.25), we see that the second solution derived from the Wronskian is indeed of this form. Substituting y2 (z) = u(z)y1 (z) into the ODE leads to a first-order ODE in which u is the dependent variable; this may then be solved. 16.4.2 The derivative method The derivative method of finding a second solution begins with the derivation of a recurrence relation for the coefficients an in a Frobenius series solution, as in the previous section. However, rather than putting σ = σ1 in this recurrence relation to evaluate the first series solution, we now keep σ as a variable parameter. This means that the computed an are functions of σ and the computed solution is now a function of z and σ: y(z, σ) = z σ ∞ an (σ)z n . (16.26) n=0 Of course, if we put σ = σ1 in this, we obtain immediately the first series solution, but for the moment we leave σ as a parameter. For brevity let us denote the differential operator on the LHS of our standard ODE (16.7) by L, so that L= d2 d + p(z) + q(z), dz 2 dz and examine the effect of L on the series y(z, σ) in (16.26). It is clear that the series Ly(z, σ) will contain only a term in z σ , since the recurrence relation defining the an (σ) is such that these coefficients vanish for higher powers of z. But the coefficient of z σ is simply the LHS of the indicial equation. Therefore, if the roots 545 SERIES SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS of the indicial equation are σ = σ1 and σ = σ2 then it follows that Ly(z, σ) = a0 (σ − σ1 )(σ − σ2 )z σ . (16.27) Therefore, as in the previous section, we see that for y(z, σ) to be a solution of the ODE Ly = 0, σ must equal σ1 or σ2 . For simplicity we shall set a0 = 1 in the following discussion. Let us first consider the case in which the two roots of the indicial equation are equal, i.e. σ2 = σ1 . From (16.27) we then have Ly(z, σ) = (σ − σ1 )2 z σ . Differentiating this equation with respect to σ we obtain ∂ [Ly(z, σ)] = (σ − σ1 )2 z σ ln z + 2(σ − σ1 )z σ , ∂σ which equals zero if σ = σ1 . But since ∂/∂σ and L are operators that differentiate with respect to different variables, we can reverse their order, implying that ∂ y(z, σ) = 0 at σ = σ1 . L ∂σ Hence, the function in square brackets, evaluated at σ = σ1 and denoted by ∂ y(z, σ) , (16.28) ∂σ σ=σ1 is also a solution of the original ODE Ly = 0, and is in fact the second linearly independent solution that we were looking for. The case in which the roots of the indicial equation differ by an integer is slightly more complicated but can be treated in a similar way. In (16.27), since L differentiates with respect to z we may multiply (16.27) by any function of σ, say σ − σ2 , and take this function inside the operator L on the LHS to obtain L [(σ − σ2 )y(z, σ)] = (σ − σ1 )(σ − σ2 )2 z σ . (16.29) Therefore the function [(σ − σ2 )y(z, σ)]σ=σ2 is also a solution of the ODE Ly = 0. However, it can be proved§ that this function is a simple multiple of the first solution y(z, σ1 ), showing that it is not linearly independent and that we must find another solution. To do this we differentiate (16.29) with respect to σ and find ∂ {L [(σ − σ2 )y(z, σ)]} = (σ − σ2 )2 z σ + 2(σ − σ1 )(σ − σ2 )z σ ∂σ + (σ − σ1 )(σ − σ2 )2 z σ ln z, § For a fuller discussion see, for example, K. F. Riley, Mathematical Methods for the Physical Sciences (Cambridge: Cambridge University Press, 1974), pp. 158–9. 546 16.4 OBTAINING A SECOND SOLUTION which is equal to zero if σ = σ2 . As previously, since ∂/∂σ and L are operators that differentiate with respect to different variables, we can reverse their order to obtain ∂ [(σ − σ2 )y(z, σ)] = 0 L at σ = σ2 , ∂σ and so the function ∂ [(σ − σ2 )y(z, σ)] ∂σ (16.30) σ=σ2 is also a solution of the original ODE Ly = 0, and is in fact the second linearly independent solution. Find a second solution to (16.21) using the derivative method. From (16.23) the recurrence relation (with σ as a parameter) is given by (n + σ − 1)an = (n + σ)an−1 . Setting a0 = 1 we find that the coefficients have the particularly simple form an (σ) = (σ + n)/σ. We therefore consider the function y(z, σ) = z σ ∞ an (σ)z n = z σ n=0 ∞ σ+n n z . σ n=0 The smaller root of the indicial equation for (16.21) is σ2 = 0, and so from (16.30) a second, linearly independent, solution to the ODE is given by # . ∞ ∂ ∂ [σy(z, σ)] = (σ + n)z n . zσ ∂σ ∂σ σ=0 n=0 σ=0 The derivative with respect to σ is given by ∞ ∞ ∞ ∂ (σ + n)z n = z σ ln z (σ + n)z n + z σ zn, zσ ∂σ n=0 n=0 n=0 which on setting σ = 0 gives the second solution y2 (z) = ln z ∞ nz n + n=0 ∞ zn n=0 z 1 ln z + (1 − z)2 1−z 1 z ln z + − 1 . = 2 (1 − z) z = This second solution is the same as that obtained by the Wronskian method in the previous subsection except for the addition of some of the first solution. 16.4.3 Series form of the second solution Using any of the methods discussed above, we can find the general form of the second solution to the ODE. This form is most easily found, however, using the 547