Comments
Description
Transcript
講義2009 LTD
LTD&+*-/ 1PF2% 1CF2" !'$ ,.)0 ,.)0 (#' & Shishi Odoshi (Deer Scaring) 0-or-1 LTD is like Shishi Odoshi LTD '!%& #&" (*!, )$* '% '% ' +% ' +% #&" (CF)#/*2-.,+)10001 "'& LTD#PF 'CF"$( '& Masao Ito, Nat Rev Neurosci 3, 896-902 (2002) &Z\X,C-<J:= . L*C/ C)<J • &#*D7EWY6[YC100-200RU +KJZ\X,L( • 27?5D .E9KL • :5:0'"!D20NVOMS GIP3D)>8@FZ\X6;J • WY6[YC'A23 .F1J • <JAZ\XE&D1I#D%TN QPSAE$4HKB2A23 Doi T, Kuroda S, Michikawa T, Kawato M: IP3-dependent Ca2+ threshold dynamics detect spike-timing in cerebellar Purkinje Cells. Journal of Neuroscience, 25, 950-961 (2005). Ca2+ Wang et al., Nat Neurosci 3, 1266-1273 (2000) Ca2+ (1) A+B kf kb AB d[AB]/dt = + kf[A][B] - kb[AB] d[A]/dt = kf [A][B] + kb[AB] [A] + [AB] = [A]total = const. Kd=kb/kf =1/(kf +kb) PF Ca2+IP3 CF Ca2+ 586;1+ PFCF Ca2+ Unknown/Total Ca2+ Kd Michaelis Km Vmax [A] 31 / 34 Wang et al., (2000) Nat Neurosci 3 / 29 3 / 12 3 / 21 53+ !586;1,96 729,-'/(+586;1*$&:403 +)586;1><mGluR-Gq'IP3-Ca2+*%" &+'=,#. Ca2+PFCF Ca2+ IP3 -)46+" Fast IP3 Slow IP3 PF"!CF"&' % #"2(7/1.*573Ca2+,+05'& $"2(7/1.*573Ca2+,+05' % IP3Ca2+ Ca2+# $%!"LTD (i) CFLTD (ii) PFLTD (iii) PFCF LTD (iv)Ca2+LTD (v) IP3LTD (vi)PFLTD LTD NO membrane CRF Glutamate CRHR Ica AMPA R Na/Ca membrane Raf PKC G substrate MEK DAG AA CRHR CRHR GC PKC MEK Positive feedback loop PLC DAG AA PLA2 MAP kinase Glutamate Glutamate CRF NO Ica Ica AMPA R Na/Ca membrane mGlu mGlu R R IP3 Raf PKC Positive feedback loop MEK MAP kinase DAG Ica Raf Positive feedback loop AA PKC MEK MAP kinase DAG DAG AA PLA2 PLC [Ca22++] PKG PP2A mGlu R IP3 PLA2 Gq G substrate Na/Ca AMPA R R AMPA Lyn cGMP PLC [Ca22++]] CRHR GC Gq G substrate mGlu R [C a2+] Raf PP2A PP2A cGMP Gq Lyn PKG Na/Ca G substrate IP3 PKG PLA2 AMPA R Lyn CRF CRF NO Ica cGMP CRHR PLC [C a2+] Positive feedback loop MAP kinase Glutamate GC IP3 PP2A mGlu R Gq Lyn cGMP membrane CRF NO GC PKG P P 0.5 100 0.4 80 Non-Phosphorylated 60 AMPA Receptors 0.3 40 0.2 Phosphorylated AMPA Receptors 0.1 0 0 10 AMPA R Lyn Time (min) Update on experimental tests of Kuroda et al. positive feedback model George AugustineDuke •Ca2+ photo-uncaging control •Ca2+ Confocal microscope measurement Ca-uncaging, Ca-imaging, Whole Cell Clamp, and PF Stimulation Ca2+ Raf PKC DAG CRF Positive feedback loop MEK 20 0 20 30 40 50 60 70 80 90 100 AMPA R -RP AMPA NO PP2A MAP kinase AA PLA2 AMPA phosphorylation (μM) MAPK LTD EPSP (%) AMPA receptor (μM) LTD Simulation data 0.3 Deleted pathways control 0.2 0.1 0 0 10 Block MAP kinase 20 30 40 50 60 70 80 Time (min) Ca2+1$2%1# Ca2+ 9<7 Neuron, 54, 1-14, June 7, 2007 • George Augustine •5&+!19<7 435 •:6;8/%( -, 2)*'" 02. Ca2+ Ca2+ threshold for LTD induction 90 100 Ca2+ requirements for LTD Leaky Integrate and Depress Model dx = x + a[Ca 2+ ]i (t) dt (1) [sec]: the time constant of the leaky integrator. a[%/ μ M]: the gain from [Ca 2+ ]i to %. (2) [Ca 2+ ]i (t) = kt By substituting Eq. (2) to Eq. (1), we obtain; dx = x + akt dt (3) t x(t) = ak exp + ak(t ) Experimental confirmation that dynamic Ca2+ threshold depends on MAPK positive feedback loop (4) Positive feedback loop between PKC and MAPK MAPK inhibitor MAPK Ca2+ PKC PKC inhibitor LTD Bhalla US and Iyengar R; Science (1999) Kuroda S et al.; Journal of Neuroscience (2001) Doi T et al.; Journal of Neuroscience (2005) Tanaka K et al.; Neuron (2007) Tanaka K and Augustine GJ; Neuron (2008) Ogasawara H and Kawato M; Science Signaling (2009) Computational Schema of LTD %)[IVWP • JOFW;<8C=89; -XS/N<Z0A,-?2C9,Y • <:745<>2,. < DCB • ';+B(!LFNQGJXHJ MR*#HJMRYE 3B1 7:@45$6/B-\\ • SK" • &STU; LTD LTD579?<346DA:B ,! • @8 ELTD-#0 %5; >7,%F • NO&A:B,,4 C4= • *$+/1 • ,"),.2 '( F