...

[総 説] 抗真菌薬感受性試験の現伏と課題

by user

on
Category: Documents
14

views

Report

Comments

Transcript

[総 説] 抗真菌薬感受性試験の現伏と課題
129
ῌΐ
ῒ῍
16 10 5 !"#$%&'() *+,%-./0
12345/0162789%:;4'<=>1?@(2
0AB.C'D EFGHG I"- J NCCLS 2K
% LMNOP
Q
R"STGF.U0D VWX L
%Y-.U+X"!GF "% Candida spp. Z[\]/01 5-FC #^_`
a%MC.1 MIC $bcXd%%e+&Y"f'gF.C'D V( AMPH M
NOP
%Y-.1 VFhFCH+'MNO#^_`a.i(GH+ in vitroῌin vivo &Y1!GF.C+CD VFj?%U+)1 ?kgF.di+C1C&
4)%*(l-.*+gF.C'mnop] `"Jqrstu
v caspofungin %lC.L P
i "QwgF.C+CE)x
'D Ey-0
z{2,|-0D
Key words: 9 NCCLS M27-A, in vitroῌin vivo &Y
>%4'$b!…†
Ÿs' i
#$%/¡llx'Ny%¢`F'D
ῐ῎ῑ῏
}->,4+`~}%lC.
J National Committee for Clinical Lab-
%N'€‚.ƒ/0 (MIC) 12
oratory Standards (NCCLS) 2K-.G;8%
1 30 j?i3HG
„…†-.‡ˆ‰ŠgF
STGF.U0LMNOP
%Y
.U0D (i) €4MNO‹+
4'…H1 VFhF M27 MNO M38 £¤F'
+ Œ+5 6
7 (ii) 
Ž89† (iii) 
Q
:; (PK/PD) < (iv) ‘-C=’ŒR
§¤4 Candida spp. Z[\]CB0"2
+A%>?“”•HG)x'D ( #^_`a%lC.1 in vitro in vivo $b
%lC.1 <=>:;@A"CE
cXd% }¨_JK%e+&Y
!,%‹&'5B"–ˆ—%˜GF'E
"©GF'E"fHTGF01, 2)D VWX +AHG %4'YK1C/
ªYK‰Š>1(L
/%A/B.C0D -H- 1980 Cj™ <=
/¡llx'D -H-?«#^_`aj¬Mˆ
>?@ ‘-C&š›$b
ῌ#^_`a%lC.1(f+ in vitro
DE "%Z[\] 
ῌin vivo &Y"!GF.C+CE mnop
CB0‘-C
Ž"/F'i% œ"
] "C/•%QwgF.C
ˆ -Hi$b8%ižFx'
+CE+A z{%­gF0N®I+)i
S¶TUV· (¸192ῌ0395) WXY¹ºkZ 359
TEL: 0426ῌ76ῌ3003
FAX: 0426ῌ74ῌ9190
E-mail: [email protected]
-.‰2W¥•D C¦FiœI1Cy%
—+ˆ+CD
O¯)1 /¦JP%MC.$bDEgF.C'<
=>,+%lC.Q
2°±- l²C.O,iCy³U
2´'=
Žz{…H%lC.µ
R4'D
O$b[\»¼ Vol. 14
No. 3
2004.
1
·¸¹º
130
I . 1.
2004 9 4 7
!"#
$!
% 1&' ()*+,
-./0/ (micafungin; MCFG) %12& 345 6 7 8 9 5 (fosfluconazole) % 1 2& : ; !
<=>?@"@AB
< CD
EF>GH'
MCFG I 1 !JKLMNO)!
P
Q3NR<S TUVWXYK
<*Z[VWXY3\]^5_`
<ab' (O)<_L>Nc
a d!ef/gh/i (candins) 3
j MCFG k! caspofungin %CAS; l
K!& m anidulafungin %l#no&
b' MCFG ef/gh/i3! pqrs
I 1
+,-./0/ (micafungin) aªL
+,-./0/ef/gh/i
«7893" 6 c]+¦¥¬@
Z[VWXY3\]^5_`
<TUVWXYL>N* \3­
®:;!<¯mK® %.°=& >J
K' ±ž? +,-./0/p
4!>²³ƒ&% 1´3-b-9-u
5,/tv"!?µ!@A"6zw>
B¶K'
t3"! 1,3-b-9-
u5,/tv">#$%<w&%3" p
…4, 5)' (†,< in vitro ‡!ˆ" ,
Ax>yz" >'{K ' MCFG V
/‰Š ~O]V505 -‹g5!~
|5 AMPH m ITCZ OSNmm} Candida
NŒ< in vivo ‡>J"@4)' !$Ž!
spp. ~O Aspergillus spp. 3=@q<
O=.‘/’!K01“~S”2•
?<!–—3˜6) 2002 12 !
3)
€!"()*‚%ƒ@„%!+
1
UTŸ/i
2
”2!
3q<w™,š›œ
&%
ž ?
1962 p4Ÿ5¡ ¢95
p4£5yz
-¢¢¤T+‰/i
-5^|^/
%¤T+‰/]7¢u& (flucytosine; 5-FC)
1979 X+‰/¥tv"
DNA t6z
+67895
(miconazole; MCZ)
1986 -567895
(fluconazole; FLCZ)
1989 ©|67895
(itraconazole; ITCZ)
1993 ¦ ¢95 14a-g™X9
§ (P45014DM)
Ÿ5¡ ¢95
t6z
¨
p4£5yz
4-567895
(fosfluconazole)
2004 +,-./0/
(micafungin; MCFG)
2002 ]895i
ef/gh/i
2
]œ4 T^/ B
(amphotericin B;
AMPH)
q<w™,š›œ
C$Dxª»¼ Vol. 14
No. 3
2004.
1,3-b-9-u5,/tv"
1,3-b-9-u5,/
t6z
¨
pLyz
%&`a
2
131
234567895 (fosfluconazole) Jo¤r/234´±9¨!4567895µi¶
2345678954567895·“^·¡3„5J@DEFGHIA) c2
34´±9¨!"^ '@'?¸¹
pNº4567895i¶
5m.@ C. krusei
MCFG in vitro O#PL7%& 1 j< B C. albi-
C. glabrata 01N
C. parapsi-
cans (W%[1<‡5 2 j< C. guilliermondii !"#$ MCFG
ˆQ‰.)L1/* @'@ 1980 R
%&'()*(+,-./'-4, 5) %
SŠ'- ‹ŒT- (OPC) M@
losis
&01
FLCZ 9U
!&i HIV %8Ž'- FLCZ <
234567895 2004 1 :;<
0Ag895m?rs<B C. al-
=')>?@1A 2 B
bicans #MVWNO!C()9, 10) .
!C FLCZ DEFGHIJ@KA
<=>h':;X\"11) t
FLCZ !)?@LM1./'-
NCCLS M27-A12) ‘ƒFGƒ/@€I
!N" FLCZ 1/40 OP Q9G3 !?R#
%&`a(’YZJ g895m
(./
<“Z[”("./ \ ?ph"
$
!"STU"/? FLCZ %V
&"1M&"'(R#
g895<#k•o]–(-\<N—
("./(W)*?X7) 0Y+Z,
vwxy˜™š^_`@XXA >|
-[!\]^D_6H3-.//
]–!= FLCZ [!\ 0 ITCZ 01`a[1? 2b(c'345-7)
<B01NO#›VW C. albicans K%&d*'- FLCZ '(6e@('"
0.6œ >?M1 C. tropicalis
7%&#!%8?234567895M
aWA13)
&"
2.
!9fR#:;
< g895<
K</)hi 2 j<=>>?*(k
?l/("1 g895mA
C. glabrata 34œ
g895m(' FLCZ . 2 j<
C. albicans ?>?†L,- <vwx
y˜™?bžnh* g895mY
N— 3]Ÿ '-¡5¢3„E95¡
nJo'([i?(KA.
5¢3„E95cV3£d¤3u€eˆ
/pq .]G3K$@=@=rs<
X G¥3„E95 14a-¦v§G9¨ (cytochrome
,-./! @ 2 g895mtA
P450 lanosterol 14a-demethylase; P45014DM), A
u(<vwxy0/z tB{
©f.Y€e 69Fªg— CYP
X1 >|CDE8)(W}F1
51A1 0 ERG11 /Y« [!\ 0
,
-c' GXg895m
hcV3£d'€eiJg895<
(h~ Candida albicans z/ Can-
PL''h/¬q-1 @'@>|("
dida spp. [!\ Cryptococcus neoformans u
g895m.j­iJ!{k
He/4567895 (fluconazole; FLCZ)
KlW7®<vwxy/@!)*(m
(-\.-€I' Aspergillus fumigatus
¯?X./n[@1 .j­iJ
tA Aspergillus spp. (W‚J.@?
u/@ 2 Xo›°D…3„yA ABC _G
?Xƒ_G67895 (itraconazole; ITCZ !
3°9±9 (ATP-binding cassette transporters)
KLc'(0gy2„^… B (amphotericin
[!\ MF (major fascilitators) 1²'0p
B; AMPH) /M&>?†Lnh1 g89
Ž³#q_!
st01ucvo»¼ Vol. 14
No. 3
2004.
3
¹º»¼
132
€2
b‚ƒ„…†
‡?>ˆ‰…† 2 |c?†Š G‹ŒJ 9
„…†
‚ƒ

†Š G‹ŒJ YL 2 |9
e
‘’
C. albicans OŽW
Candida spp.
ῌP45014DMa) m/“
md GERG11 :
;(</IJ
ῌABCTb)/MFc) ”•
– GCDRsd)/MDR1
:;(<J
Cr. neoformans
ῌP45014DM mKL
“md GERG11
:;(</IJ
—˜‚‘’ ῌP45014DM m/“
md GERG11 :
;(</IJ
ῌABCT 1Q/KL
MF ”•–
GCDRs :;(<J
4š›5
œšž5 B
¡¡©šBª ž˜ž5
5
¬­5®¯5 B°5±5
A. fumigatus OŽW
Aspergillus spp.
™
῍e)
ῌP45014DM mKL
“md GERG11
:;(</IJ
ῌABCT ”•–
GCDRs :;(<J
Ÿ
~› ƒ ῌ› ƒ¡r
¡¢£¤/ƒ
¥jI¦ GERG2
¡X¥d
I1 D8,7-sterol
isomerase §¨/
ERG3 I1 D5sterol desaturase §¨J
Uracil phosphoribosyl
transferase «£
¤/§¨
ῌUMP-pyrophosphorylase «£¤/§
¨
ῌUracil phosphoribosyl transferase
«£¤/§¨
ῌCytosine permease/
cytosine deaminase
«£¤/§¨
ῌ1,3-b-9-glucan
synthase d
GFKS1 HIJ
ῌABCT ”•–
GCDRs :;(<J
lanosterol 14a-demethylase; b) ATP-binding cassette transporters;
CDR1 1Q CDR2; e) 2 |`a
c)
῍
῍
a)
C. albicans ™
™
major fascilitors;
d)
CDR 789Š²
XYZ[$T
N[$
L14)% =@\,-]^
&_/0'@`a[$15)%
!"#$% &' OPC () AIDS *+
FLCZ ,- (MIC, .64 mg/ml) /01
(i) 23456789 (CDR1/CDR2, MDR1) :;(<=>
?@ 85A (ii) P45014DM bc?d efgh
[#[$ij:
rs
@klmnYopq
!"tu'R% vw)\
BCDEF GERG11 HIJ KLM GERG11
xyzLUVW# (i) MDR1 :;(< (ii)
:;(<J =N?@O$P$ 65A 1Q 35A
ERG11 HIKL:;(< (iii) CDR1 :;
'RS TUVW#,- 75A '
(< {|}
4
³´rµ¶·¸ Vol. 14
No. 3
2004.
\~ZqLT
-./OPQR
133
dard (M27-P) 1995 Tentative Standard
16)
5-FC (M27-T)19) 7{ 1997 Approved Standard
Candida
(M27-A)12) h4 3q 54
|+; M27-A !A
spp. C. neoformans 5-FC v0}~
&€>G8Px
!"
#$%& 5'40( )
*+ ,
-./012&317) C. albicans 45
10( 1 67
-/OPQR6K3‚ƒ M27-A 2&%0
7 MIC o./0pG
* "
8 30( 5-FC 9
2 6:
„
L…†8‡ hˆˆ‰11 ICŠ95῍100q 7
;18) 88< 5-FC =8>?+
pG AMPH 79
‹ }-./
;@ 2<A B1 5-FC 7
&
Œ:8‡7o./8 8
&CDEF!013)
&Ž‘;’“ hŽq ”‘;’“
h”q 1"„1•05–?—0<
Œˆˆ˜11V™ 80( 8
II. NCCLS M27 G5HI
‡ (IC80) 50( 8‡ (IC50) 0 LM
Ž
JK;LM
N-./OPQR
”19šo./0pG7&
1.
G S F 1880 T
!A
›=O&* 2o
"„0_`7
NCCLS 4U@; V" #W!A
y„;œ1 Vže+;20'23) Ÿ0
1X; AMPH, 5-FC, YZ[\ (ke-
5-FC S80p
toconazole; KCZ), ITCZ, FLCZ 5 ]7QR$^
G h
”1 IC50q +>; MIC 8VQR_`
ab7%cd&*
5¡`n
?¢0@Si2
efe0'()g hQR*+ijpH, kl/,
0A8 pG£B#¤¥_`0+
*-mjWn o./0pG0Eq 7rrp
; LM
-./‚ƒ
h-/
G8s"31tu7+v2 7
0q ]lCj¦§
L+ hAMPH vs. G@
*+; 5 w7x
e; 5-FCq e;QR¨©ŽªZ
3>F7yz;_` 1992 Proposed Stan-
L+& hŽ vs. ”q MIC o./0
43
N-./OPQR NCCLS G (M-27A)a) )/
'()g0E
pG;tu
ῌD«/l
ῌ1¨©ŽªZ
ῌQR*
ῌkl/,
ῌkl/,G
ῌ*-m
ῌ*-Wn
Candida spp. VEN/l
Ž‘;’“e;”‘;’“
RPMI1640 h0.164 B MOPS ¬­‘1 pH 7.0 ®q
0.5¯103'2.5¯103 CFU/ml
ˆˆ‰
L McFarland 0.5 ® h1'5¯106 F /ml @#q
35°
48 Wn (Candida spp.), 72 Wn (C. neoformans)
ῌo./
"„1G08 (AMPH)
H 80( G?— h5-FC 4L±]Ž‘;’“q
•0G?— h5-FC 4L±]”‘;’“qa)
ῌQR$^]
AMPH, 5-FC, KCZ, ITCZ, FLCZ
ῌ*²'
SIJ ῌAMPH $ Candida spp³ OP1
4 Antibiotic Medium3
(AM3) ‘;*7 F!K´
0³
῍K]
$ C. neoformans OP1
4 Yeast Nitrogen
Base (YNB) ‘;*7LµMU MIC N5SO²¶
³
῎K]
$K/lOP1
4 *
·[§ (20
g/L) 7¸c o./0K´
0³
a)
ˆˆ‰1 50( G?— h50( 5–8‡¹ IC50q @#³
PQ5RºS˜»¼ Vol. 14
No. 3
2004.
5
¸¹º
134
MIC ITCZ [r|}~) MIC L‡$&
S Mˆ 8 vs. 0.125 mg/ml, R ‰ˆ 64 vs.
1 1 mg/ml, Š8% 60 N‹MŒ !"!# MIC
"#7%OP+ MIC O%4Qo3
$!%& '()*
RS
S#A" 5
+,%& $-./+01+!
-FC +>& S-DD Yr|}~)& S 23456$%& 789:;<
R Cc+T$%!CUG9 (interme-
= +>& NCCLS M27 ?@
diate; I) r|}~)>7#8
AB@C+7:DE
zV FLCZ ab![\*KWXY
F& GHIJKL MKN Žw2Z+[; w2%%
O2P
!"+& Q#R$S8
I‚CFG MIC \2!345
Q$
'T5& MIC 3456 Min vitro῍in
8!& MIC 3456
vivo 6N %&'(& UVWUXV
Y%]+^> IL_+y`
)Y+& I῍*K MKLZN
66#8WXYB‘)*)…&
O2P+
FLCZ +>’“”a•(_R$"#&
GH+,!
2.
[L\*K vs. Candida spp. in vitro῍in
b-Bj*–`<45+& AUC/MIC '8+—
T$†G822)
vivo 6
FLCZ, ITCZ ]^)_`#W+ 5-FC
In vitro῍in vivo 6+6!& FLCZ !˜
& C. albicans ab$ Candida spp. c
$ AMPH Candida spp. +!$ AMPH
+"d'e in vitro῍in vivo 66fg#8
MIC rCst/345c+,b6
"#1)& NCCLS M27-A ?@AB@C+8
g>7c$™%šd AMPH 9
#[I+>hi)jk@ClmnG8
& 1970 Ve"# 1990 Ve+› C. lusita-
Y+ M- 4N + FLCZ o ITCZ +>
niae, C. glabrata, C. parapsilosis, C. tropicalis <
& OPC24p27) W.qrCst/ Mu01v
non-albicans Candida AB+ in vitro %
rCst/N
+7()*w2+x
in vivo %œ"+fb#831p39)& in vitro῍in
'8G8 yz& 3rCst/+>
vivo 66fgd^%!"! '
%4566#829)
8
gcP`hiž>& NCCLS M27-A
28)
]^)_`hi)jk@Cl+6!78G
AMPH 9Rjkl+ˆŸ
8& (susceptible; S) 9 (resistant; R)
' & mn
RPMI1640 "# Antibiotic
c+:;{< (susceptible-dose dependent;
Medium 3 M2¡ ¢_£)”o¤& 0.1 M-~C¥¦p
S-DD) Y=!r|}~)>7#8
§ pH 7.0 +JqN +e 24 ¨c O©r?+
? M- 4N S-DD @& € MIC AB+
SYYªst8!& M27-A
‚C DEIƒA€FG+HI
?@AB@C%uvG8& 'w(+6!
$3u
„J! 7,
…x
!#& 4a]^)_`
I=+>& 30 V‹
# FLCZ ITCZ hi)jk@ClK
M«¬y­
%>\®Kz¯ °90῍60 …? - 4 +†G8Y+& FLCZ
{± Y²|45Q}G
-$
-4
NCCLS M27-A ?@AB@C+~†G8[L\*K Candida spp³ +!$ MIC hi)jk@
Cl
\*K
´_£µ^)_ (FLCZ)
@lB£µ^)_ (ITCZ)
´_·l·C (5-FC)
6
r|}~)& MIC ( mg/ml)
(S)
:;{< (S-DD)
CUG9 (I)
9 (R)
¶8
¶0.125
¶4
16p32
0.25p0.5
ῌ
ῌ
ῌ
8p16
64¶
1¶
32¶
€‚ƒWŽ»¼ Vol. 14
No. 3
2004.
XOˆ‰
135
40) in vitroῌin vivo YN RPMI1640 !"
90 &AB)! YNB !"'js tm
60 ! "#
MIC 2a4 mg/ml )u()nv*wAB
$% &100ῌ0 '( )* &90ῌ60 E,)^ x16 mg/ml iyz*u(+
'( +,
{)*),|AB U]}V
#"-.
/012 3456789 :;
< )=>!?@AB !CBDE 5
MIC ~G3€d7-‚_B
5-FC S!
!)!
R C. neoformans ƒ)~G3
FGHI Candida spp. E,)JKLM
€d7-„_B
DN
PQ…~G3€d7#
#O
PQ
RS!T
3.
EUV,
!)! U Candida spp.
E_†
,s
WX vs. C. neoformans in vitroῌ
in vivo YN
AMPH ‡L Candida spp. PQ
ˆ‰!"
Candida spp. Z C. neoformans X
[\]U)^!_B
RPMI1640 E^R AM3 !
"i,OŠ.‹!
Œ_B
!
R ˆ‰ŽRt‘*’“”/)0•
! U!@ C. neoformans AMPH
–_B
! —)A~G3€d7-„
41, 42) PE` FLCZ 43a46) ˜T
!)!
_B
b
™3šZ
!
M 27-A cde6d7f_B
!E, C.
neoformans X /AMPH g*9 Oh
Etest )=›1œ- žŸ
2hi,wRs !C
BDEOˆ‰¡
¢? (reference
YNB !"!i,E^j#_B
strain) PE`£3Z
! /$ 39 5FGHI)U FLCZ S!
45s
¤
K MIC $%Nkl%mnopq
)A
¥3
b_B
!45a47) BA
brL
G47¦6§ (trailing growth) ‚ Candida albicans tm C. tropicalis 6§¨
y©Hª«FGH (FLCZ) 2¬£­ /!7£­9 ®¯‚8°¥
9± (S) 24 tm 48 £­!7m‡L ¤! FLCZ 2²R6§³´
80 (IC80) µ¶ G47¦6§ (T) P! !7 24 £­‡L6§³´
50 (IC50) :R 48 £­· FLCZ ‹2¸R IC50 )*)
;<
$=¹º»¼ Vol. 14
No. 3
2004.
7
¸¹ºq
136
5
NCCLS M27-A J1 M27-A2 ]F„;
.[0 Candida spp¢ Ž01‚ƒ
(1) 48 –"X 24 @A.=>
,^ MIC *$_£I 24
@A.
1-¢
(2) ><¤w
_Ž¥ MIC `X1¢
(3) 48 @Avw ~ (R)€ )*+31 24 @A ~( (S)€ )*+
31¢ , 4 ¦a(4) Candida spp¢ b 55 §c01¢
4.
Candida spp. (trailing
;c52)4X
de;13 growth) NCCLS M27-A fU
< pH.5ghi5i;j1
=
k;153)3 l4 (fU>"?_
;
Candida spp. 24 48 1
,24 vs. 48 - 6<mn&o8p
pq@ArB ,50 vs. 805 (Gs IC50 vs.
MIC !"# $%&'
IC80- tCu";vw ()*+ , 4- ./01
Dx. $ IC50 . yz
1Y
2"3 $4$ 55 , C. al-
Z>
[{;51, 52, 54, 55)3 >X|Evw.
bicans C. tropicalis - 6 24 7
} NCCLS M27-A n&o8
48 7 MIC 8 ,9128 - @ArB ~
$ ( 7 :!;1<=
24 "148, 49)3 >"?@0"AB C#
.F„$GH.…] >. M27-A I 2 J
D$E%&FA'(G;1<
(M27-A2) 56)
$$ , 5-3
=" (trailing growth) H
@A.=€ "‚ƒ
†‡ ˆ‰TŠ$
‹KŒ
I1 ,) 3-3 AJ C. tropicalis 
ŽLŽ01ŒMq:NA
*$## +D,-.
157959)3 C. albicans FLCZ Oi
309505 S-DD  R PQ
KL
3 /,)MN0OPQR
13, 50)
ST.12UVW4X 2
"# ()*+31
ƒ)‘’“.01
gR”•S–—"1<=159)3
5.
AJ
˜o™?Tš;1UB8
YZ>
[;2, 44, 48)3 >\]4 C. albi-
NCCLS M27-P ;V74
cans ^_01 AIDS `
X W+›#DqœUBžŸœJX Y;
OPC 516 FLCZ 789a:b$
=
1C#D$.Z[
01¡\(fUUB
6
NCCLS M27 .¨Q$AJ6<m˜o™?#X¡\C#D$(
fUUB8"
fU
dA©ªO™
NCCLS M27-A n&o8
>"_£
W+›#Dqœ8
,W+ 1995 e-
n&o8
ῌ« 24 ¬
ppqf.dA$ Za
f ­0.2 g$ IC80 ,805 ®h- EUCASTa) 8
,˜o™? 2002 e-
n&o8
ῌibD,« ¡¡\–b)
ῌfU
<« 0.165 M-MOPS ¯j (pH 7.0) RPMI1640 25
T‚Qk…
ῌl,D6« 0.5°10592.5°105 CFU/ml
ῌ
« 24 ῌ« ©T±± (5-FC) 6<mˆ‰TŠ$
ppqdA$ IC50 ,505 ®h- ¢
a)
b)
8
The European Committee on Antibiotic Susceptibility Testing m
n²¡\"4 C. neoformans, Trichosporon spp. "o¡¡pD,³">
"´ $
Candida spp. µ¶·X1¢
W+rMq»¼ Vol. 14
No. 3
2004.
‚ Fbc
7
jJk '¨3€3(
ῌwDE FP yz{|
'z{-!(
ῌwDE DP yz{|
'z{-!(
`CuB%&89wD‚
312345
137
Fbc3v45
3lF}
m
©
!" ª«¬V­> B (AMPH) ῌ !"S²
# 1m­5­> (5-FC)
NCCLS M27-A #FJ?
#n®¯3m (MCZ)
@+r8
1mn®¯3m (FLCZ)
ῌ9†xf4-­o¬ªC
;5=n®¯3m (ITCZ)
[!‡‡! 'MN(
#€1°>±> (MCFG)
ῌ³œ NCCLS M27-A2 :;<=;
>YL>´%
&9n
wD F}bcv45 NCCLS M27-A
ª«¬V­> B (AMPH) ῌNCCLS M27-A #FJ?
ASTY
#
1m­5­> (5-FC)
@r8
'µoIF(
>
#n®¯3m (MCZ)
ῌŽ-¶F8p[3
1mn®¯3m (FLCZ)
ῌ[q>-9†
;5=n®¯3m (ITCZ)
#€1°>±> (MCFG)
Etest ~o€
'o€rF(
”·o™š
ª«¬V­> B (AMPH) ῌNCCLS M27-A #FW
1m­5­> (5-FC)
r8
#n®¯3m (MCZ)
ῌXd¡e¸;’9†
1mn®¯3m (FLCZ)
ῌAspergillus spp¹ Iºs ;5=n®¯3m (ITCZ)
+Hh5
M27-A Fr8J?@EFAs%&8962, 64)
M27-P M27-P 6.
!"
./`C (i) wDE
#$ 1995 %&
' 6(
60)
t`uB%&89 MIC 3v45
FP 'x DP( yz
{| (ii) wD F}bcv45 ASTY, (iii) Etest
NCCLS M27-T )*#+,-
~o€ )$ 3 qwD‚
./0123456789 v45GƒH„IJFuB%&89 …v4
!" M27-A :;<=;>?#
Fbc3
5KL 7 E (i) !"
-@7AB%&CD 3 xxv45-IJM[ 7ZC
ECD M27-A #FGFHIJK
i M27-A FJ?@+r8 L (IC80) MN
8 LM9 !"NO8
9†x!‡‡NˆC[E9 p‰
PQGFHIRAS&8 @
OPC OP@S C. albicans !"NE9 FLCZ #T5U3V>WXNO8 M27-A )$
ŠQ‹Q
C[ v45 MIC 3
%&'Y90F(Z[2) )\]*+
RFSTUFkVŒWXS&8
,M9
965) 0& (ii) YY#S ^34_-` . NCCLS M27 :;<=
:p%&Ž-Z[[\U‘’V>[
;>a7bc
?78 XN%
']>( ^L9†_“8
&de The Antifungal Susceptibility Testing
9KLM9 0v45C93”3•
Subcommittee of the European Committee on An-
M27-A &FVŒWE90F%&8
tibiotic Susceptibility Testing (AFST῍EUCAST)
966)
2002 /fg 'EUCAST
(i), (ii) F0F[ (iii) Etest F–—&9˜`
(61) 00 NCCLS M27-A #12
™š›œ MIC 3M9 ‚
89 3f4-h5E90FZC
bžŸ9cO8o5V4 FXd¡e¢
i6jk 48 jk@S 24 jk78E90F
£E9f 9cR MIC FE9
9F lWmn3o:pZCi;
Xg¤JM7[ 5U3V>WXECD
q
h¥ L¦i9 J§F
<=pF8D]>%&8962, 63) STt'u!»¼ Vol. 14
No. 3
FaN
2004.
9
·¸¹8
138
M38-P 6j/72), kl Aspergillus spp.
FLCZ Candida spp. c7mn89 (voriconazole, ra-
NCCLS !"#$%&
vuconazole, posaconazole) %o:Q//p <
'()*+'67, 68), - FLCZ C. tropicalis .
&qOPrs>tu'7 <
/ C. glabrata 01
502 345'
&qv- ITCZ \7w; IC50 -
669)7+8 #$9!:;
& IC100 $x5')y<zB/ M38-A {|
&, AMPH MIC }~|% 2002 1:=Q/73) R= 8W, €
'<*+8 RPMI1640 =>5'
w;>_$x Aspergillus
?/0@A7B
spp. C‚ƒ?@p'/pQ'40),
AMPH C*D'', ./E
M38-A „…*GHIMNOP
&FGHI7*D'*7
1†@AQ'7 cq῍!I
J
%+8 AMPH K ITCZ GHI
B7 in vitro῍in vivo #‡
L!IMNOPQ' NCCLS M38 ˆ5'6‰B/&F /%BŠ‹Œ|
RSTUVW XY"Z#5'<%[Q
t76[Q, lCD‚DŽE*+
'
',
,
71, 72)
2.
1.
%h*6jQ'
F  ! I  ‘ M 38-P % ’ = Q / G 1 III. 1999 1 (8@“w;>”(•†I^
NCCLS M38 GHIMNOP\ $%&]'^
–CH M38-P y$/F!I‘
I('^I)*_`%a+< ,b
6j/75) R= 8W, -OP7./ M38-
-.C%&<c/0-& `
A 3iIEJ'<).*7
de+f/, ()K 1998 1gB2h
,
NCCLS EMNOP M27-A _3i45/
=8
GHIL!IMNOP NCCLS (M38-A) F!I‘&
_`Q/—˜
$%&]c
NCCLS M38-A F!I‘
ῌ†I^
-K™./L™šM5'GHI
N›OœPGHI 'I QRGHI
Sš!I ›!I
ῌžŸ ¡t 3¢
ῌOP
M27-A i'
£[ (Alamar Blue) ¤¥ RPMI1640
3¢
ῌ'^I(
0.5¦103§2.5¦103 CFU/ml
ῌ'^I(` -¨¨T©' RIU(B<' 3¢
VTW
ῌWªT
35«
27«
ῌW…¬
24 …¬ (Rhizopus spp.), 72 …¬ (Pseudal:­V›)% Alamar Blue 9®
lescheria boydii), 48 …¬ (Fusarium spp.,
(BZ$5'.*¯¬
Aspergillus spp., Sporothrix schenckii ¤¥C
XYGHIW
ῌw;
r[°,&-:­±² R³IC50W´ 5-FC,
FLCZ
Hµ*V8 (IC¶95): AMPH, ITCZ, n89
W
-¨¨(' IC80
ῌOPrq
AMPH, 5-FC, FLCZ, n89
(voriconazole, ravuconazole, posaconazole)
AMPH, ITCZ
10 F\º]K^»¼ Vol. 14
No. 3
2004.
34
VI. 139
|}-~+'A456U8s €Y
Z (IC100) [2*Z (IC80 IC50X 5'L-A{*\]./A( )S
2002 caspo-
Tr^/ CAS in vitro ‚o_*O-
fungin (CAS) !"#$
/ƒ„+'/{ …`a†b< (minimal
(micafungin; MCFG) %&'( )
e#ective concentration; MEC)‡ A( )'cˆ
*+,)-./ 2‰dŠeL+D`‹b<LŒf g
0/ 1 2345'
h MIC !456OA)-L
,67./( *
!89
iDAFGjk?79[83)( *!K MEC
:;<$<-.=
L78DA-A- Žl‘’DA
>?@&'/A( BCDE
Gc-mn-“4Lo- *A+'Ai
?FGH<IJ!K34LM./N
j‘*A( )STL”•DAC Im-
N/4"6L#OP$
hof et al.83) RPMI1640 V–2k H<—IX ˜pE
-/ CAS L%&-/'C+'/A(
q Aspergillus spp. cˆ—™šIr›*‰
Caspofungin (CAS) 0/34
dz V%sEFNœA2tucˆL;D
Candida spp. CAS 3LP$()*+
—™šI%/ ‹žLœ/cˆLZ&
Q Pfaller et al.76) B'A( ,R- 99 S.
'EFvw`&—™šIL0?AX sŸ
*+/01 4,000 Candida spp. 23T in
/ MIC LU8DA˜p x"L~¡( )9
vitro CAS 3L NCCLS M27-A2 "U/
"A+' MIC MEC -Z\>H (95k) L
V456W IC100X 78 C. albicans, C. dubliniensis,
; ¢£¤¥|y3z-\>
1.
C. tropicalis NY C. glabrata Z3
NCCLS M38
(MIC90 : 0.25[0.5 mg/ml) L \9 C. guilliermondii
( "}:3TPC~'/-
™¦{ x"-|r*.
:3 (MIC90 : ]8 mg/ml) L^_;D)
(
- C. albicnas :`I< (FLCZ, ITCZ) Z
CAS 34"-/ d* Etest l
<=T CAS 3Z (MIC90 : a1 mg/ml)
§¨"P$&'/A84[86)( * Etest 
)-L+Q/A( )+Qb+5 Candida
© MIC 78LMNO6ªS«&'/
spp. 0/ M27-A "LDAb
AA84, 85)(
FGH
<IJcde\>?@A+'/A( B
MIC 456O-€¬#&'/A\
C EUCAST "NY Etest L/ Candida spp.
0‚ƒ} 4EqA( ?0*FGH
CAS 3L78 M27-A "-DfP$+
<IJA)'P$ij Candida spp.,
QA77)( B'A- EUCAST " V456W E
Aspergillus spp. - RPMI1640 AM3 F 24 NY 48 Gcg ICh95X ij M27-A
d„E?: MIC L…79, 8687) ­®J
"Z V94kX \>HL; B'llIA
mA88)( )_†*+ AM3 L‡ˆ4E
Etest Jm\>HA+'( )'++
q-/‰ŠDA¯{A(
Q*+ CAS - Candida spp. Knopqr/
CAS 34"rDA‹2—°
NCCLS M27-A "NY EUCAST " V5'
±A+'/)-./ in vitroῌ
456LEF 24 48 Gcg ICh95ῌ100 -
in vivo |rP$ij+Q„yC/k(
LoX (i) M"-NOZ34"
Mora-Duate et al.81) C. albicans -B' in
A)- (ii) M"?@s
*\>DA)-
vitro CAS 3:-&'A C. parapsilosis42) (iii) Etest (P4"A)- Q+
^_²}DA!89³NœA CAS †jL
'(
Df Mja†H´)- (13/20 vs.
RtST Aspergillus spp. %DA MIC
14/20) *+ FLCZ µ+'AJm|rr
78"A( u NCCLS M38 " V72 GcEF
¶A+'*.-+Q/A( )'%/
g456U8X L/ A+' CAS vw
Hernandez et al.82) :`I<\·Œ OPC
Vx MIC FGH<IJ./ 0.06[12 mg/ml78)
\¸j*+ CAS †Ž
*+ ]16 mg/ml79) yWzL;D( BX{
¹º (Day-1) NY Day-511 23 2 0 C.
l»¼‘
Vol. 14
No. 3
2004. 11
¸¹ºJ
140
albicans MIC: M27 0.25 mg/
v_™!
2 "rest;]M FLCZ UV7
ml
CAS Day-
ITCZ " Candida spp. )* in vitro R (MIC) 4
553 (MIC: 64 mg/ml)
3 in vivo R #$ 4"š+f›6.g
!
CAS "#$
œ,
"žh
žhŸic1Ž*
%& "'$
2 ( 3 ")
" MIC –;¡ŠCŒ)j/1
*#$+,-
*& 2"V_st;]u,MM4 Candida
in vitro῍in vivo .
/01& 2"'+3""
81)"
spp. "k¢FŽ+
"E9"£
4+)*"5!
1,
l+-6!Sm4_(m*& N 5-FC 4 Can-
789:4;<"
"6,
!4=>,*&
?@ABCDC (MCFG) ""E
2.
dida spp. 4"k¢FŽ
5]" in vitro῍
in vivo .C)*4=>,*42n-,
2
"#F"E9+m4V-n_&
9
MCFG "E9""":+
CAS "#
•`""E9.
¤”Sm6@n46
+616& I%+
Candida
"+
C. albicans ¥ C. tropicalis ""6
spp. ""+ NCCLS M27-A &'J ICK95)
-st;]M"Oo¦Œ–;—C‡;a/)
Aspergillus spp. "("L)M+ NCCLS M38-P
"[§N*245*& 2,"
FGH$
N+*+O,MPQ &'J IC80 ,
+
o p " • ` " " E 9 " q b 4 1 in vitro R (MIC) .)*-
"
NCCLS M27-A st;]M" MIC c
.S1* $T+/0,4)UV71W5)"2
d#F+4rd1*
in vivo +
3X41& 5YZ[C\C]6)*4
/) st;]Mž)*& 2"st¨
+>
MCFG + CAS ( in vitro R^
u MIC 4#$4".dœ*(
MIC V_5!
N MCFG 7869
M27-A U i * MIC & ' " r d © b ª v w
`: (zone phenomenon)ῌ;a<b=>cV!1,
M27-A2 xy124+z{"5*& d=>+e;a<bf,6
6*`:ῌ
- « +
H " ¬ | " " c d Z † Œ CAS +S16& 2"24+
CAS M27-A b˜U!
Œ–;—C‡;a"}
""E9"NN MCFG ?)*
~616& 2"@n+­ª€
24g@Ah-i*"5!
MCFG ?
E*44
Œ–;—C‡;a)*I%"
Bj""E9"kCDl:E*(
g®dœ* !5*&
C. neoformans 4st;]MN+ 5-FC 4"k
m5n_&
¢FŽU YNB ‚E9‚4
ῌ῏῎῍
*™!
%f›6 in vitro῍in vivo .{,
o,MF"+
pqGHI!r4 2
*& - RPMI1640 ‚+_..¯
JK"L"st;]u,MM
FLCZ 4 ITCZ, 6
f,624-,
2"‚°cdZ†Œ¬
, 7 AMPH v m & 4 2 n |Z"E9'$+
G6ı
2002 H"NZ[C\C]4wx*yOM4
!5*&
st;]M¥ 5-FC 4+4
AMPH 246*z{@|}~Q€"
+
Candida spp., C. neoformans 6H"•`""
u,MM MCFG R#
u,MPSm6
E9"-4#$4"š+N²k6
T‚,5*& N+H 2004 H U
..¯/16& 1,L)M
FLCZ "ƒ„…€†‡"VUW
ˆ8
+
Iž+qb4 NCCLS M38-A „g1
" FLCZ dX‰Y4624V*
*""
"M“῍,M"k¢FŽU
"ŠC‹ŒfpŽ6& 2_u,MM"
in vitro῍in vivo .{,6œ
Z["\>
‘M’"]UV7M“
E9;<"±³iG4´H‰Y
"^`+
u,MM"E92N
5*& "'$
µ…6,"E9"-V!
_!6"*&
M’"y5d"G_M“†‡ˆC4
+P
”H
•`"u,MM"E9+Sm a
¶‰6"8Š5*& Sm6@
& NCCLS M27-A Candida spp. "Œ–;—C‡
n+
«‹·ŒZ[C\C]M"E9
;a+ M27-A2 b˜ MIC cd
"qb616245*& 7«
12 *+ŽP»¼ Vol. 14
No. 3
2004.
Q67=>?@A
MCFG !"#$%&'($)*+,-
. /0$1
23$4567+8
9:1;< =>?@ABCDEFGHI
13)
JKLM&0NO.
P
Q67=>?@ARS
TUV
4WXYKZ[\<-. M0]<^Y
14)
JV
X$_`abcZdMO/ef0
* ghijEMO *klX
mf0nZopV.
῍ ῌ
1) Rex, J. H., M. A. Pfaller, J. N. Galgiani, et al.
1997. Development of interpretive breakpoints for antifungal susceptibility testing:
conceptual framework and analysis of in vitro῍
in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin. Infect.
Dis. 24: 235῍247.
2) qrs tuvwx 2003. Q67=>?@
Ax yzC{ 39: 3301῍3308.
3) tuvw |t} qrs ~x 2002. Micafungin Candida albicans Aspergillus
fumigatus $€}‚F
ƒ„‚F…
†x ‚‡ˆ 50(S-1): 20῍29.
4) ‰qŠ I‹ Œ Ž ~x 2002. z
B‘Q67 micafungin in vitro Q67
’?x ‚‡ˆ 50(S-1): 8῍19.
5) tuvwx 2003. Q67“”•ij
F–—&x =˜ 33: 23῍28.
6) ™ x 2003. Q67“”•E
F–—&x =˜ 33: 39῍46.
7) š› œ žŸ ¡ ~x 2004. ¢£?
67¤”¥{¦C §¨©”ῌª «¬­
E@A
E@Ax ˆ 124: 41῍
51.
8) tuvwx 2004. ®67$&Q67¯
?x y‚-°8 209: 556῍563.
9) Vu#ray, A., C. Durussel, P. Boerlin, et al. 1994.
Oropharyngeal candidiasis resistant to single
dose therapy with fluconazole in HIV-infected
patients. AIDS 8: 708῍709.
10) Johnson, E. M., D. W. Warnock, J. Luker, et al.
1995. Emergence of azole drug resistance in
Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral
candidosis. J. Antimicrob. Chemother. 35: 103῍
114.
11) tuvwx 2001. ”¥{¦C¯?±
²x Em³ 45: 879῍883.
12) National Committee for Clinical Laboratory
Standards. 1997. Reference method for broth
15)
16)
17)
18)
19)
20)
21)
22)
23)
141
dilution antifungal susceptibility testing of
yeasts. Approved standard NCCLS document
M27-A. National Committee for Clinical Laboratory Standards, 17(9), Wayne, Pa.
tuvw qrs ´µ¶· ~x 2004. Japan
Antifungal Surveillance Program $
67
E¸Q67=>?$¹€º³ (1): 2001
῍2002 »x ˆ 14: 183῍193.
Perea, S., J. López-Ribot, W. R. Kirkpatrick, et
al. 2001. Prevalence of molecular mechanisms
of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676῍2684.
Maebashi, K., M. Niimi, M. Kudoh, et al. 2001.
Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J. Antimicrob. Chemother. 47: 527῍536.
White, T. C., K. A. Marr, R. A. Bowden. 1998.
Clinical, cellular, and molecular factors that
contribute to antifungal drug resistance. Clin.
Microbiol. Rev. 11: 382῍402.
Stiller, R. L., J. E. Bennett, H. J. Scholer, et al.
1982. Susceptibility to 5-fluorocytosine and
prevalence of serotype in 402 Candida albicans
isolates from the United States. Antimicrob.
Agents Chemother. 22: 482῍487.
Vanden Bossche, H., Dupont B. Warnock, et al.
1994. Mechanisms and clinical impact of antifungal drug resistance. J. Med. Vet. Mycol.
32(S1): 189῍200.
National Committee for Clinical Laboratory
Standards. 1995. Reference method for broth
dilution antifungal susceptibility testing of
yeasts: Tentative standard. NCCLS document
M27-T. National Committee for Clinical Laboratory Standards, Wayne, Pa.
Espinel-Ingro#, A., C. W. Kish, T. M. Kerkering,
et al. 1992. Collaborative comparison of broth
macrodilution and microdilution antifungal
susceptibility tests. J. Clin. Microbiol. 30: 3138῍
3145.
Odds, F. C., L. Vranckx, F. Woestenborghs.
1995. Antifungal susceptibility testing of
yeasts: evaluation of technical variables for
test automation. Antimicrob. Agents Chemother. 39: 2051῍2060.
Pfaller, M. A., S. A. Messer, S. Co#mann. 1995.
Comparison of visual and spectrophotometric
methods of MIC endpoint determinations by
using broth microdilution methods to test five
antifungal agents, including the new triazole
D070. J. Clin. Microbiol. 33: 1094῍1097.
St. Germain, G., C. Dion, A. Espinel-Ingro#, et al.
E!}"‚¼ˆ Vol. 14
No. 3
2004. 13
142
1995. Ketoconazole and itraconazole susceptibility of Candida albicans isolates from patients
infected with HIV. J. Antimicrob. Chemother.
36: 109῍118.
24) Dannaoui, E., S. Colin, J. Pichot, et al. 1997.
Evaluation of the Etest for fluconazole susceptibility testing of Candida albicans isolates
from oropharyngeal candidiasis. Eur. J. Clin.
Microbiol. Infect. Dis. 16: 228῍232.
25) Cartledge, J. D., J. Midgley, M. Petrou, et al.
1997. Unresponsive HIV-related oro-esophageal candidosisῌan evaluation of two new invitro azole susceptibility tests. J. Antimicrob.
Chemother. 40: 117῍119.
26) Quereda, C., A. M. Polanco, C. Gner, et al. 1996.
Correlation between in vitro resistance to fluconazole and clinical outcome of oropharyngeal cadidiasis in HIV-infected patients. Eur. J.
Clin. Microbiol. Infect. Dis. 15: 30῍37.
27) Revankar, S. G., O. P. Dib, W. R. Kirkpatrick, et
al. 1998. Clinical evaluation and microbiology
of oropharyngeal infection due to fluconazoleresistant Candida in human immunodeficiency
virus-infected patients. Clin. Infect. Dis. 26:
960῍963.
28) Lee, S. C., C. P. Fung, J. S. Huang, et al. 2000.
Clinical correlates of antifungal macrodilution
susceptibility test results for non-AIDS patients with severe Candida infections treated
with fluconazole. Antimicrob. Agents Chemother. 44: 2715῍2718.
29) Costa, M., X. S. Passos, A. T. B. Miranda, et al.
2004. Correlation of in vitro itraconazole and
fluconazole susceptibility with clinical outcome for patients with vulvovaginal candidiasis. Mycopathologia 157: 43῍47.
30) Louie, A., G. L. Drusano, P. Banerjee, et al.
1998. Pharmacodynamics of fluconazole in a
murine model of systemic candidiasis. Antimicrob. Agents Chemother. 42: 1105῍1109.
31) Merz, W. G., G. R. Sanford. 1979. Isolation and
characterization of a polyene-resistant variant
of Candida tropicalis. J. Clin. Microbiol. 9: 677῍
680.
32) Dick, J., W. Merz, R. Saral. 1980. Incidence of
polyene-resistant yeasts recovered from clinical specimens. Antimicrob. Agents Chemother.
18: 158῍163.
33) Seidenfeld, S. M., B. H. Cooper, J. W. Smith, et al.
1983. Amphotericin B tolerance: a characteristic of Candida parapsilosis not shared by other
Candida species. J. Infect. Dis. 147: 116῍119.
34) Powderly, W. G., G. S. Kobayashi, G. P. Herzig,
et al. 1988. Amphotericin B-resistant yeast infection in severely immunocompromised pa-
14 Vol. 14
No. 3
2004.
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
tients. Am. J. Med. 84: 826῍832.
Walsh, T. J., I. F. Salkin, D. M. Dixon, et al.
1989. Clinical, microbiological, and experimental animal studies of Candida lipolytica. J. Clin.
Microbiol. 27: 927῍931.
Bryce, E., F. Roberts, A. Sekhon, et al. 1992.
Yeast in blood cultures : evaluation of factors
influencing outcome. Diag. Microbiol. Infect.
Dis. 15: 233῍237.
Nguyen, M. H., J. E. Peacock, Jr., A. J. Morris, et
al. 1996. The changing face of candidemia:
Emergence of non-C. albicans species and antifungal resistance. Am. J. Med. 100: 617῍623.
Sterling, T. R., R. A. Gasser, A. Ziegler. 1996.
Emergence of resistance to amphotericin B
during therapy for Candida glabrata infection
in an immunocompetent host. Clin. Infect. Dis.
23: 187῍188.
Nolte, F. S., T. Parkinson, D. J. Falconer, et al.
1997. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with
leukemia. Antimicrob. Agents Chemother. 44:
196῍199.
Rex, J. H., M. A. Pfaller. 2002. Has antifungal
susceptibility testing come of age ? Clin. Infect.
Dis. 35: 982῍989.
Powderly, W. G., E. J. Keath, M. SokolAnderson, et al. 1992. Amphotericin Bresistant Cryptococcus neoformans in a patient
with AIDS. Infect. Dis. Clin. Pract. 1: 314῍316.
Rodero, L., S. Cordoba, P. Cahn, et al. 2000. In
vitro susceptibility studies of Cryptococcus
neoformans isolates from patients with no clinical response to amphotericin B therapy. J.
Antimicrob. Chemother. 45: 239῍242.
Currie, B. P., M. Ghannoum, L. Bessen, et al.
1995. Decreased fluconazle susceptibility of a
relapse Cryptococcus neoformans isolates after
fluconazole treatment. Infect. Dis. Clin. Pract.
4: 318῍319.
Armengou, A., C. Porcar, J. Mascaro, et al.
1996. Possible development of resistance to
fluconazole during suppressive therapy for
AIDS-associated cryptococcal meningitis. Clin.
Infect. Dis. 23: 1337῍1338.
Witt, M. D., R. J. Lewis, R. A. Larsen, et al. 1996.
Identification of patients with acute AIDSassociated cryptococcal meningitis who can be
e#ectively treated with fluconazole: The role of
antifungal susceptibility testing. Clin. Infect.
Dis. 22: 864῍866.
Aller, A. I., E. Martin-Mazuelos, F. Lozano, et al.
2000. Correlation of fluconazole MICs with
clinical outcome in cryptococcal infection. An-
!L#$%&'
47)
48)
49)
50)
51)
52)
53)
54)
55)
timicrob. Agents Chemother. 44: 1544῍1548.
Jessup, C. J., M. A. Pfaller, S. A. Messer, et al.
1998. Fluconazole susceptibility testing of
Cryptococcus neoformans: Comparison of two
broth microdilution methods and clinical correlates among isolates from Ugandan AIDS patients. J Clin. Microbiol. 38: 341῍344.
Arthington-Skaggs, B. A., D. W. Warnock, C. J.
Morrison. 2000. Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility
test results and in vivo outcome after fluconazole treatment in a murine model of invasive
candidiasis. Antimicrob. Agents Chemother.
44: 2081῍2085.
Arthington-Skagg, B. A., W. Lee-Yang, M. A. Ciblak, et al. 2002. Comparison of visual and
spectrophotometric methods of broth microdilution MIC endpoint determination and evaluation of a sterol quantification method for in
vitro susceptibility testing of fluconazole and
itraconazole against trailing and non-trailing
Candida isolates. Antimicrob. Agents Chemother. 46: 2477῍2481.
Takakura, S., N. Fujihara, T. Saito, et al. 2004.
National surveillance of species distribution in
blood isolates of Candida species in Japan and
their susceptibility to six antifungal agents including voriconazole and micafungin. J. Antimicrob. Chemother. 53: 283῍289.
Rex, J. H., P. W. Nelson, V. L. Paetznick, et al.
1998. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing clinical
isolates in a murine model of invasive candidiasis. Antimicrob. Agents Chemother. 42: 129῍
134.
Revankar, S. G., W. R. Kirkpatrick, R. K. McAtee, et al. 1998. Interpretation of trailing
endpoints in antifungal susceptibility testing
by the National Committee for Clinical Laboratory Standards method. J. Clin. Microbiol.
36: 153῍156.
Marr, K. A., T. R. Rustad, J. H. Rex, et al. 1999.
The trailing endpoint phenotype in antifungal
susceptibility testing is pH-dependent. Antimicrob. Agents Chemother. 43: 1383῍1386.
Nguyen, M. H., C. Y. Yu. 1999. Influence of incubation time, inoculum size, and glucose concentration on spectrophotometric endpoint determinations for amphotericin B, fluconazole,
and itraconazole. J. Clin. Microbiol. 37: 141῍
145.
St-Germain, G. 2001. Impact of endpoint definition on the outcome of antifungal suscep-
56)
57)
58)
59)
60)
61)
62)
63)
64)
65)
66)
143
tibility tests with Candida species: 24-versus
48-h incubation and 50 versus 80 reduction
in growth. Mycoses 44: 37῍45.
National Committee for Clinical Laboratory
Standards. 2002. Reference method for broth
dilution antifungal susceptibility testing of
yeasts: Approved standard-second edition, M
27-A2. National Committee for Clinical Laboratory Standards, 22(15), Wayne, Pa.
Smith, W. L., T. D. Edlind. 2002. Histone deacylase inhibitors enhance C. albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob. Agents Chemother. 46:
3532῍3539.
Sanglard, D., F. C. Odds. 2002. Resistance of
Candida species to antifungal agents: molecular mechanisms and clinical consequences.
Lancet Infectious Diseases 2: 73῍85.
Lee, M.-K., L. E. Williams, D. W. Warnock, et al.
2004. Drug resistance genes and trailing
growth in Candida albicans isolates. J. Antimicrob. Chemother. 53: 217῍224.
1995. 19921994 ῌ!
"#$%&'( ) 36: 61῍64.
European Committee on Antibiotic Susceptibility Testing. 2002. Method for determination of minimal inhibitory concentration (MIC)
by broth dilution of fermentative yeasts. Discussion document E. Dis, 7. 1. European Society
of Clinical Microbiology and Infectious Diseases, Taufkirchen, Germany.
Cuenca-Estrella, M., T. M. Diaz-Guerra, E. Mellado, et al. 2001. Influence of glucose supplementation and inoculum size on growth kinetics and antifungal susceptibility testing of Candida spp. J. Clin. Microbiol. 39: 525῍532.
Rodriguez-Tudela, J. L., M. Cuenca-Estrella, T.
M. Diaz-Guerra, et al. 2001. Standardization of
antifungal susceptibility variables for a semiautomated methodology. J. Clin. Microbiol. 39:
2513῍2517.
Cuenca-Estrella, M., W. Lee-Yang, M. A. Ciblak,
et al. 2002. Comparative evaluation of NCCLS
M27-A and EUCAST broth microdilution procedures for antifungal susceptibility testing of
Candida species. Antimicrob. Agents Chemother. 46: 3644῍3647.
*+,- ./01 2345 1997. 67
89:;(<=5> ?@ABCDEFGHI
#$%&'ῌJK!LI in vitro M%N fluconazole I in vitro/in vivo M%OPῌ Q() 45: 115῍121.
Pfaller, M. A., S. Arikan, M. Lozano-Chiu, et al.
RS6TUV) Vol. 14
No. 3
2004. 15
'()*
144
67)
68)
69)
70)
71)
72)
73)
74)
75)
1998. Clinical evaluation of the ASTY colorimetric microdilution panel for antifungal susceptibility testing. J. Clin. Microbiol. 36: 2609ῌ
2612.
Pfaller, M. A., D. J. Diekema, S. A. Messer, et al.
2003. Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of
Candida species determined by broth microdilution, disk di#usion, and Etest methods: report from the ARTEMIS Global Antifungal
Susceptibility Program, 2001. J. Clin. Microbiol. 41: 1440ῌ1446.
Matar, M. J., L. Ostrosky-Zeichner, V. L. Paetznick, et al. 2003. Correlation between E-test,
disk di#usion, and microdilution methods for
antifungal susceptibility testing of fluconazole
and voriconazole. Antimicrob. Agents Chemother. 47: 1647ῌ1651.
Sewell, D. L., M. A. Pfaller, A. L. Barry. 1994.
Comparison of broth macrodilution, broth microdilution, and Etest antifungal susceptibility
tests for fluconazole. J. Clin. Microbiol. 32:
2099ῌ2102.
Szekely, A., E. M. Johnson, D. W. Warnock.
1999. Comparison of E-test and broth microdilution methods for antifungal drug susceptibility testing of molds. J. Clin. Microbiol. 37:
1480ῌ1483.
Pfaller, M. A., S. A. Messer, K. Mills, et al. 2000.
In vitro susceptibility testing of filamentous
fungi: comparison of Etest and reference microdilution methods for determining itraconazole
MICs. J. Clin. Microbiol. 38: 3359ῌ3361.
National Committee for Clinical Laboratory
Standards. 1998. Reference method for broth
dilution antifungal susceptibility testing of
conidium forming filamentous fungi: Proposed standard. M38-P. National Committee for
Clinical Laboratory Standards, 18(13), Wayne,
Pa.
National Committee for Clinical Laboratory
Standards. 2002. Reference method for broth
dilution antifungal susceptibility testing of
filamentous fungi: Approved standard. M38-A.
National Committee for Clinical Laboratory
Standards, 22(16), Wayne, Pa.
Espinel-Ingro#, A., M. Bartlett, V. Chaturvedi,
et al. 2001. Optimal susceptibility testing conditions for detection of azole resistance in Aspergillus spp.: NCCLS collaborative evaluation.
Antimicrob. Agents Chemother. 45: 1828ῌ
1835.
1999. 19951997 !"#$%
& 40: 243ῌ246.
16 +,-./0& Vol. 14
No. 3
2004.
76)
77)
78)
79)
80)
81)
82)
83)
84)
85)
Pfaller, M. A., D. J. Diekema, S. A. Messer, et al.
2003. In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3,959 clinical isolates of Candida
spp., including 157 fluconazole-resistant isolates.
Antimicrob. Agents Chemother. 47:
1068ῌ1071.
Chryssanthou, E., M. Cuenca-Estrella. 2002.
Comparison of the Antifungal Susceptibility
Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing
proposed standard and the E-test with the
NCCLS broth microdilution method for voriconazole and caspofungin susceptibility testing of yeast species. J. Clin. Microbiol. 40:
3841ῌ3844.
Pfaller, M. A., F. Marco, S. A. Messer, et al.
1998. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743, 872),
against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi.
Diag. Microbiol. Infect. Dis. 30: 251ῌ255.
Arikan, S., Chiu M. Lozano, V. Paetznick, et al.
2001. In vitro susceptibility testing methods
for caspofungin against Aspergillus and Fusarium isolates. Antimicrob. Agents Chemother.
45: 327ῌ330.
Kurtz, M. B., I. B. Heath, J. Marrinan, et al. 1994.
Morphological e#ects of lipopeptides against
Aspergillus fumigatus correlate with activities
against 1,3-b-9-glucan synthase. Antimicrob.
Agents Chemother. 38: 1480ῌ1488.
Serrano, Mdel C., A. Valverde-Conde, M. M.
Chavez, et al. 2003. In vitro activity of voriconazole, itraconazole, caspofungin, anidulafungin (VER002, LY303366) and amphotericin
B against Aspergillus spp.. Diag. Microbiol.
Infect. Dis. 45: 131ῌ135.
Shalit, I., Y. Shadkchan, Z. Samra, et al. 2003.
In vitro synergy of caspofungin and itraconazole against Aspergillus spp.: MIC versus minimal e#ective concentration end points. Antimicrob. Agents Chemother. 47: 1416ῌ1418.
Imhof, A., A. Balajee, K. A. Marr. 2003. New
methods to assess susceptibilities of Aspergillus isolates to caspofungin. J. Clin. Microbiol.
41: 5683ῌ5688.
Arikan, S., V. Paetznick, J. H. Rex. 2002. Comparative evaluation of disk di#usion with microdilution assay in susceptibility testing of
caspofungin against Aspergillus and Fusarium
isolates. Antimicrob. Agents Chemother. 46:
3084ῌ3087.
Bartizal, K., C. J. Gill, G. K. Abruzzo, et al. 1997.
In vitro preclinical evaluation studies with the
86)
87)
88)
echinocandin antifungal agent MK-0991 (L743, 872). Antimicrob. Agents Chemother. 41:
2326ῌ2332.
Espinel-Ingro#, A. 2003. Evaluation of both
microdilution testing parameters and agar diffusion Etest procedure for testing susceptibilities of Aspergillus spp. to caspofungin acetate
(MK-0091). J. Clin. Microbiol. 41: 403ῌ409.
Nelson, P. W., M. Lozano-Chiu, J. H. Rex. 1997.
In-vitro growth inhibitory activity of pneumocandins L-733, 560 and L-743, 872 against putatively amphotericin B- and fluconazole-resistant Candida isolatesῌinfluence of assay conditions. J. Med. Vet. Mycol. 35: 285ῌ287.
Bartizal, C., F. C. Odds. 2003. Influences of
89)
90)
145
methodological variables on susceptibility testing of caspofungin against Candida species
and Aspergillus fumigatus. Antimicrob. Agents
Chemother. 47: 2100ῌ2107.
Mora-Duarte, J., R. Betts, C. Rotstein, et al.
2002. Comparison of caspofungin and amphotericin B for invasive candidiasis. N. Engl. J.
Med. 347: 2020ῌ2029.
Hernandez, S., J. L. López-Ribot, L. K. Najvar, et
al. 2004. Caspofungin resistance in Candida
albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic
isolates serially obtained from a patient with
progressive Candida esophagitis. Antimicrob.
Agents Chemother. 48: 1382ῌ1383.
The Current Status and Challenges for Antifungal Susceptibility Testing
Hideyo Yamaguchi
Teikyo University Institute of Medical Mycology
Although new antifungal drugs of both preexisting and new classes are steadily introduced, the
incidence of deep-seated fungal infections caused by Candida spp., Aspergillus spp. and other pathogenic
fungi including those species or strains low-susceptible or resistant to currently available antifungal drugs
is still increasing. With these situations comes a growing need for clinically relevant susceptibility testing
methodologies that can be used in choosing the best treatment strategy for a given patient. Actually,
antifungal susceptibility testing has evolved rapidly during the last decades and has now become a
relevant clinical tool, so that routine susceptibility testing with azoles and flucytosine is appropriate for
Candida isolates and, to a lesser degree, C. neoformans isolates. However, this is not the case at present for
amphotericin B or mold fungi. A more problematic issue is the lack of reference method for testing the
susceptibility to candins, a recently introduced major class of antifungal drugs, that warrants further
investigation and development.
Vol. 14
No. 3
2004. 17
Fly UP