Comments
Description
Transcript
[総 説] 抗真菌薬感受性試験の現伏と課題
129 ῌΐ ῒ῍ 16 10 5 !"#$%&'() *+,%-./0 12345/0162789%:;4'<=>1?@(2 0AB.C'D EFGHG I"- J NCCLS 2K % LMNOP Q R"STGF.U0D VWX L %Y-.U+X"!GF "% Candida spp. Z[\]/01 5-FC #^_` a%MC.1 MIC $bcXd%%e+&Y"f'gF.C'D V( AMPH M NOP %Y-.1 VFhFCH+'MNO#^_`a.i(GH+ in vitroῌin vivo &Y1!GF.C+CD VFj?%U+)1 ?kgF.di+C1C& 4)%*(l-.*+gF.C'mnop] `"Jqrstu v caspofungin %lC.L P i "QwgF.C+CE)x 'D Ey-0 z{2,|-0D Key words: 9 NCCLS M27-A, in vitroῌin vivo &Y >%4'$b! s' i #$%/¡llx'Ny%¢`F'D ῐ῎ῑ῏ }->,4+`~}%lC. J National Committee for Clinical Lab- %N'./0 (MIC) 12 oratory Standards (NCCLS) 2K-.G;8% 1 30 j?i3HG -.gF STGF.U0LMNOP %Y .U0D (i) 4MNO+ 4' H1 VFhF M27 MNO M38 £¤F' + +5 6 7 (ii) 89 (iii) Q :; (PK/PD) < (iv) -C=R §¤4 Candida spp. Z[\]CB0"2 +A%>?HG)x'D ( #^_`a%lC.1 in vitro in vivo $b %lC.1 <=>:;@A"CE cXd% }¨_JK%e+&Y !,%&'5B"%GF'E "©GF'E"fHTGF01, 2)D VWX +AHG %4'YK1C/ ªYK>1(L /%A/B.C0D -H- 1980 Cj <= /¡llx'D -H-?«#^_`aj¬M >?@ -C&$b ῌ#^_`a%lC.1(f+ in vitro DE "%Z[\] ῌin vivo &Y"!GF.C+CE mnop CB0-C "/F'i% " ] "C/%QwgF.C -Hi$b8%iFx' +CE+A z{%gF0N®I+)i S¶TUV· (¸192ῌ0395) WXY¹ºkZ 359 TEL: 0426ῌ76ῌ3003 FAX: 0426ῌ74ῌ9190 E-mail: [email protected] -.2W¥D C¦FiI1Cy% ++CD O¯)1 /¦JP%MC.$bDEgF.C'< =>,+%lC.Q 2°±- l²C.O,iCy³U 2´'= z{ H%lC.µ R4'D O$b[\»¼ Vol. 14 No. 3 2004. 1 ·¸¹º 130 I . 1. 2004 9 4 7 !"# $! % 1&' ()*+, -./0/ (micafungin; MCFG) %12& 345 6 7 8 9 5 (fosfluconazole) % 1 2& : ; ! <=>?@"@AB < CD EF>GH' MCFG I 1 !JKLMNO)! P Q3NR<S TUVWXYK <*Z[VWXY3\]^5_` <ab' (O)<_L>Nc a d!ef/gh/i (candins) 3 j MCFG k! caspofungin %CAS; l K!& m anidulafungin %l#no& b' MCFG ef/gh/i3! pqrs I 1 +,-./0/ (micafungin) aªL +,-./0/ef/gh/i «7893" 6 c]+¦¥¬@ Z[VWXY3\]^5_` <TUVWXYL>N* \3 ®:;!<¯mK® %.°=& >J K' ±? +,-./0/p 4!>²³&% 1´3-b-9-u 5,/tv"!?µ!@A"6zw> B¶K' t3"! 1,3-b-9- u5,/tv">#$%<w&%3" p 4, 5)' (,< in vitro !" , Ax>yz" >'{K ' MCFG V / ~O]V505 -g5!~ |5 AMPH m ITCZ OSNmm} Candida N< in vivo >J"@4)' !$! spp. ~O Aspergillus spp. 3=@q< O=./!K01~S2 ?<!36) 2002 12 ! 3) !"()*%@%!+ 1 UT/i 2 2! 3q<w, &% ? 1962 p45¡ ¢95 p4£5yz -¢¢¤T+/i -5^|^/ %¤T+/]7¢u& (flucytosine; 5-FC) 1979 X+/¥tv" DNA t6z +67895 (miconazole; MCZ) 1986 -567895 (fluconazole; FLCZ) 1989 ©|67895 (itraconazole; ITCZ) 1993 ¦ ¢95 14a-gX9 § (P45014DM) 5¡ ¢95 t6z ¨ p4£5yz 4-567895 (fosfluconazole) 2004 +,-./0/ (micafungin; MCFG) 2002 ]895i ef/gh/i 2 ]4 T^/ B (amphotericin B; AMPH) q<w, C$Dxª»¼ Vol. 14 No. 3 2004. 1,3-b-9-u5,/tv" 1,3-b-9-u5,/ t6z ¨ pLyz %&`a 2 131 234567895 (fosfluconazole) Jo¤r/234´±9¨!4567895µi¶ 2345678954567895·^·¡35J@DEFGHIA) c2 34´±9¨!"^ '@'?¸¹ pNº4567895i¶ 5m.@ C. krusei MCFG in vitro O#PL7%& 1 j< B C. albi- C. glabrata 01N C. parapsi- cans (W%[1<5 2 j< C. guilliermondii !"#$ MCFG Q.)L1/* @'@ 1980 R %&'()*(+,-./'-4, 5) % S'- T- (OPC) M@ losis &01 FLCZ 9U !&i HIV %8'- FLCZ < 234567895 2004 1 :;< 0Ag895m?rs<B C. al- =')>?@1A 2 B bicans #MVWNO!C()9, 10) . !C FLCZ DEFGHIJ@KA <=>h':;X\"11) t FLCZ !)?@LM1./'- NCCLS M27-A12) FG/@I !N" FLCZ 1/40 OP Q9G3 !?R# %&`a(YZJ g895m (./ <Z[("./ \ ?ph" $ !"STU"/? FLCZ %V &"1M&"'(R# g895<#ko](-\<N ("./(W)*?X7) 0Y+Z, vwxy^_`@XXA >| -[!\]^D_6H3-.// ]!= FLCZ [!\ 0 ITCZ 01`a[1? 2b(c'345-7) <B01NO#VW C. albicans K%&d*'- FLCZ '(6e@('" 0.6 >?M1 C. tropicalis 7%&#!%8?234567895M aWA13) &" 2. !9fR#:; < g895< K</)hi 2 j<=>>?*(k ?l/("1 g895mA C. glabrata 34 g895m(' FLCZ . 2 j< C. albicans ?>?L,- <vwx y?bnh* g895mY N 3] '-¡5¢3E95¡ nJo'([i?(KA. 5¢3E95cV3£d¤3ue /pq .]G3K$@=@=rs< X G¥3E95 14a-¦v§G9¨ (cytochrome ,-./! @ 2 g895mtA P450 lanosterol 14a-demethylase; P45014DM), A u(<vwxy0/z tB{ ©f.Ye 69Fªg CYP X1 >|CDE8)(W}F1 51A1 0 ERG11 /Y« [!\ 0 , -c' GXg895m hcV3£d'eiJg895< (h~ Candida albicans z/ Can- PL''h/¬q-1 @'@>|(" dida spp. [!\ Cryptococcus neoformans u g895m.jiJ!{k He/4567895 (fluconazole; FLCZ) KlW7®<vwxy/@!)*(m (-\.-I' Aspergillus fumigatus ¯?X./n[@1 .jiJ tA Aspergillus spp. (WJ.@? u/@ 2 Xo°D 3yA ABC _G ?X_G67895 (itraconazole; ITCZ ! 3°9±9 (ATP-binding cassette transporters) KLc'(0gy2^ B (amphotericin [!\ MF (major fascilitators) 1²'0p B; AMPH) /M&>?Lnh1 g89 ³#q_! st01ucvo»¼ Vol. 14 No. 3 2004. 3 ¹º»¼ 132 2 b ?> 2 |c? GJ 9 GJ YL 2 |9 e C. albicans OW Candida spp. ῌP45014DMa) m/ md GERG11 : ;(</IJ ῌABCTb)/MFc) GCDRsd)/MDR1 :;(<J Cr. neoformans ῌP45014DM mKL md GERG11 :;(</IJ ῌP45014DM m/ md GERG11 : ;(</IJ ῌABCT 1Q/KL MF GCDRs :;(<J 45 5 B ¡¡©Bª 5 5 ¬5®¯5 B°5±5 A. fumigatus OW Aspergillus spp. ῍e) ῌP45014DM mKL md GERG11 :;(</IJ ῌABCT GCDRs :;(<J ~ ῌ ¡r ¡¢£¤/ ¥jI¦ GERG2 ¡X¥d I1 D8,7-sterol isomerase §¨/ ERG3 I1 D5sterol desaturase §¨J Uracil phosphoribosyl transferase «£ ¤/§¨ ῌUMP-pyrophosphorylase «£¤/§ ¨ ῌUracil phosphoribosyl transferase «£¤/§¨ ῌCytosine permease/ cytosine deaminase «£¤/§¨ ῌ1,3-b-9-glucan synthase d GFKS1 HIJ ῌABCT GCDRs :;(<J lanosterol 14a-demethylase; b) ATP-binding cassette transporters; CDR1 1Q CDR2; e) 2 |`a c) ῍ ῍ a) C. albicans major fascilitors; d) CDR 789² XYZ[$T N[$ L14)% =@\,-]^ &_/0'@`a[$15)% !"#$% &' OPC () AIDS *+ FLCZ ,- (MIC, .64 mg/ml) /01 (i) 23456789 (CDR1/CDR2, MDR1) :;(<=> ?@ 85A (ii) P45014DM bc?d efgh [#[$ij: rs @klmnYopq !"tu'R% vw)\ BCDEF GERG11 HIJ KLM GERG11 xyzLUVW# (i) MDR1 :;(< (ii) :;(<J =N?@O$P$ 65A 1Q 35A ERG11 HIKL:;(< (iii) CDR1 :; 'RS TUVW#,- 75A ' (< {|} 4 ³´rµ¶·¸ Vol. 14 No. 3 2004. \~ZqLT -./OPQR 133 dard (M27-P) 1995 Tentative Standard 16) 5-FC (M27-T)19) 7{ 1997 Approved Standard Candida (M27-A)12) h4 3q 54 |+; M27-A !A spp. C. neoformans 5-FC v0}~ &>G8Px !" #$%& 5'40( ) *+ , -./012&317) C. albicans 45 10( 1 67 -/OPQR6K3 M27-A 2&%0 7 MIC o./0pG * " 8 30( 5-FC 9 2 6: L 8 h11 IC95῍100q 7 ;18) 88< 5-FC =8>?+ pG AMPH 79 }-./ ;@ 2<A B1 5-FC 7 & :87o./8 8 &CDEF!013) &; hq ; hq 1"105?0< 11V 80( 8 II. NCCLS M27 G5HI (IC80) 50( 8 (IC50) 0 LM JK;LM N-./OPQR 19o./0pG7& 1. G S F 1880 T !A =O&* 2o "0_`7 NCCLS 4U@; V" #W!A y;1 Ve+;20'23) 0 1X; AMPH, 5-FC, YZ[\ (ke- 5-FC S80p toconazole; KCZ), ITCZ, FLCZ 5 ]7QR$^ G h 1 IC50q +>; MIC 8VQR_` ab7%cd&* 5¡`n ?¢0@Si2 efe0'()g hQR*+ijpH, kl/, 0A8 pG£B#¤¥_`0+ *-mjWn o./0pG0Eq 7rrp ; LM -./ h-/ G8s"31tu7+v2 7 0q ]lCj¦§ L+ hAMPH vs. G@ *+; 5 w7x e; 5-FCq e;QR¨©ªZ 3>F7yz;_` 1992 Proposed Stan- L+& h vs. q MIC o./0 43 N-./OPQR NCCLS G (M-27A)a) )/ '()g0E pG;tu ῌD«/l ῌ1¨©ªZ ῌQR* ῌkl/, ῌkl/,G ῌ*-m ῌ*-Wn Candida spp. VEN/l ;e;; RPMI1640 h0.164 B MOPS ¬1 pH 7.0 ®q 0.5¯103'2.5¯103 CFU/ml L McFarland 0.5 ® h1'5¯106 F /ml @#q 35° 48 Wn (Candida spp.), 72 Wn (C. neoformans) ῌo./ "1G08 (AMPH) H 80( G? h5-FC 4L±];q 0G? h5-FC 4L±];qa) ῌQR$^] AMPH, 5-FC, KCZ, ITCZ, FLCZ ῌ*²' SIJ ῌAMPH $ Candida spp³ OP1 4 Antibiotic Medium3 (AM3) ;*7 F!K´ 0³ ῍K] $ C. neoformans OP1 4 Yeast Nitrogen Base (YNB) ;*7LµMU MIC N5SO²¶ ³ ῎K] $K/lOP1 4 * ·[§ (20 g/L) 7¸c o./0K´ 0³ a) 1 50( G? h50( 58¹ IC50q @#³ PQ5RºS»¼ Vol. 14 No. 3 2004. 5 ¸¹º 134 MIC ITCZ [r|}~) MIC L$& S M 8 vs. 0.125 mg/ml, R 64 vs. 1 1 mg/ml, 8% 60 NM !"!# MIC "#7%OP+ MIC O%4Qo3 $!%& '()* RS S#A" 5 +,%& $-./+01+! -FC +>& S-DD Yr|}~)& S 23456$%& 789:;< R Cc+T$%!CUG9 (interme- = +>& NCCLS M27 ?@ diate; I) r|}~)>7#8 AB@C+7:DE zV FLCZ ab![\*KWXY F& GHIJKL MKN w2Z+[; w2%% O2P !"+& Q#R$S8 ICFG MIC \2!345 Q$ 'T5& MIC 3456 Min vitro῍in 8!& MIC 3456 vivo 6N %&'(& UVWUXV Y%]+^> IL_+y` )Y+& I῍*K MKLZN 66#8WXYB)*) & O2P+ FLCZ +>a(_R$"#& GH+,! 2. [L\*K vs. Candida spp. in vitro῍in b-Bj*`<45+& AUC/MIC '8+ T$G822) vivo 6 FLCZ, ITCZ ]^)_`#W+ 5-FC In vitro῍in vivo 6+6!& FLCZ ! & C. albicans ab$ Candida spp. c $ AMPH Candida spp. +!$ AMPH +"d'e in vitro῍in vivo 66fg#8 MIC rCst/345c+,b6 "#1)& NCCLS M27-A ?@AB@C+8 g>7c$%d AMPH 9 #[I+>hi)jk@ClmnG8 & 1970 Ve"# 1990 Ve+ C. lusita- Y+ M- 4N + FLCZ o ITCZ +> niae, C. glabrata, C. parapsilosis, C. tropicalis < & OPC24p27) W.qrCst/ Mu01v non-albicans Candida AB+ in vitro % rCst/N +7()*w2+x in vivo %"+fb#831p39)& in vitro῍in '8G8 yz& 3rCst/+> vivo 66fgd^%!"! ' %4566#829) 8 gcP`hi>& NCCLS M27-A 28) ]^)_`hi)jk@Cl+6!78G AMPH 9Rjkl+ 8& (susceptible; S) 9 (resistant; R) ' & mn RPMI1640 "# Antibiotic c+:;{< (susceptible-dose dependent; Medium 3 M2¡ ¢_£)o¤& 0.1 M-~C¥¦p S-DD) Y=!r|}~)>7#8 § pH 7.0 +JqN +e 24 ¨c O©r?+ ? M- 4N S-DD @& MIC AB+ SYYªst8!& M27-A C DEIAFG+HI ?@AB@C%uvG8& 'w(+6! $3u J! 7, x !#& 4a]^)_` I=+>& 30 V # FLCZ ITCZ hi)jk@ClK M«¬y %>\®Kz¯ °90῍60 ? - 4 +G8Y+& FLCZ {± Y²|45Q}G -$ -4 NCCLS M27-A ?@AB@C+~G8[L\*K Candida spp³ +!$ MIC hi)jk@ Cl \*K ´_£µ^)_ (FLCZ) @lB£µ^)_ (ITCZ) ´_·l·C (5-FC) 6 r|}~)& MIC ( mg/ml) (S) :;{< (S-DD) CUG9 (I) 9 (R) ¶8 ¶0.125 ¶4 16p32 0.25p0.5 ῌ ῌ ῌ 8p16 64¶ 1¶ 32¶ W»¼ Vol. 14 No. 3 2004. XO 135 40) in vitroῌin vivo YN RPMI1640 !" 90 &AB)! YNB !"'js tm 60 ! "# MIC 2a4 mg/ml )u()nv*wAB $% &100ῌ0 '( )* &90ῌ60 E,)^ x16 mg/ml iyz*u(+ '( +, {)*),|AB U]}V #"-. /012 3456789 :; < )=>!?@AB !CBDE 5 MIC ~G3d7-_B 5-FC S! !)! R C. neoformans )~G3 FGHI Candida spp. E,)JKLM d7-_B DN PQ ~G3d7# #O PQ RS!T 3. EUV, !)! U Candida spp. E_ ,s WX vs. C. neoformans in vitroῌ in vivo YN AMPH L Candida spp. PQ !" Candida spp. Z C. neoformans X [\]U)^!_B RPMI1640 E^R AM3 ! "i,O.! _B ! R Rt*/)0 ! U!@ C. neoformans AMPH _B ! )A~G3d7- 41, 42) PE` FLCZ 43a46) T !)! _B b 3Z ! M 27-A cde6d7f_B !E, C. neoformans X /AMPH g*9 Oh Etest )=1- 2hi,wRs !C BDEO¡ ¢? (reference YNB !"!i,E^j#_B strain) PE`£3Z ! /$ 39 5FGHI)U FLCZ S! 45s ¤ K MIC $%Nkl%mnopq )A ¥3 b_B !45a47) BA brL G47¦6§ (trailing growth) Candida albicans tm C. tropicalis 6§¨ y©Hª«FGH (FLCZ) 2¬£ /!7£9 ®¯8°¥ 9± (S) 24 tm 48 £!7mL ¤! FLCZ 2²R6§³´ 80 (IC80) µ¶ G47¦6§ (T) P! !7 24 £L6§³´ 50 (IC50) :R 48 £· FLCZ 2¸R IC50 )*) ;< $=¹º»¼ Vol. 14 No. 3 2004. 7 ¸¹ºq 136 5 NCCLS M27-A J1 M27-A2 ]F; .[0 Candida spp¢ 01 (1) 48 "X 24 @A.=> ,^ MIC *$_£I 24 @A. 1-¢ (2) ><¤w _¥ MIC `X1¢ (3) 48 @Avw ~ (R) )*+31 24 @A ~( (S) )*+ 31¢ , 4 ¦a(4) Candida spp¢ b 55 §c01¢ 4. Candida spp. (trailing ;c52)4X de;13 growth) NCCLS M27-A fU < pH.5ghi5i;j1 = k;153)3 l4 (fU>"?_ ; Candida spp. 24 48 1 ,24 vs. 48 - 6<mn&o8p pq@ArB ,50 vs. 805 (Gs IC50 vs. MIC !"# $%&' IC80- tCu";vw ()*+ , 4- ./01 Dx. $ IC50 . yz 1Y 2"3 $4$ 55 , C. al- Z> [{;51, 52, 54, 55)3 >X|Evw. bicans C. tropicalis - 6 24 7 } NCCLS M27-A n&o8 48 7 MIC 8 ,9128 - @ArB ~ $ ( 7 :!;1<= 24 "148, 49)3 >"?@0"AB C# .F$GH. ] >. M27-A I 2 J D$E%&FA'(G;1< (M27-A2) 56) $$ , 5-3 =" (trailing growth) H @A.= " T$ K I1 ,) 3-3 AJ C. tropicalis L01Mq:NA *$## +D,-. 157959)3 C. albicans FLCZ Oi 309505 S-DD R PQ KL 3 /,)MN0OPQR 13, 50) ST.12UVW4X 2 "# ()*+31 ).01 gRS"1<=159)3 5. AJ o?T;1UB8 YZ> [;2, 44, 48)3 >\]4 C. albi- NCCLS M27-P ;V74 cans ^_01 AIDS ` X W+#DqUBJX Y; OPC 516 FLCZ 789a:b$ = 1C#D$.Z[ 01¡\(fUUB 6 NCCLS M27 .¨Q$AJ6<mo?#X¡\C#D$( fUUB8" fU dA©ªO NCCLS M27-A n&o8 >"_£ W+#Dq8 ,W+ 1995 e- n&o8 ῌ« 24 ¬ ppqf.dA$ Za f 0.2 g$ IC80 ,805 ®h- EUCASTa) 8 ,o? 2002 e- n&o8 ῌibD,« ¡¡\b) ῌfU <« 0.165 M-MOPS ¯j (pH 7.0) RPMI1640 25 TQk ῌl,D6« 0.5°10592.5°105 CFU/ml ῌ « 24 ῌ« ©T±± (5-FC) 6<mT$ ppqdA$ IC50 ,505 ®h- ¢ a) b) 8 The European Committee on Antibiotic Susceptibility Testing m n²¡\"4 C. neoformans, Trichosporon spp. "o¡¡pD,³"> "´ $ Candida spp. µ¶·X1¢ W+rMq»¼ Vol. 14 No. 3 2004. Fbc 7 jJk '¨33( ῌwDE FP yz{| 'z{-!( ῌwDE DP yz{| 'z{-!( `CuB%&89wD 312345 137 Fbc3v45 3lF} m © !" ª«¬V> B (AMPH) ῌ !"S² # 1m5> (5-FC) NCCLS M27-A #FJ? #n®¯3m (MCZ) @+r8 1mn®¯3m (FLCZ) ῌ9xf4-o¬ªC ;5=n®¯3m (ITCZ) [!! 'MN( #1°>±> (MCFG) ῌ³ NCCLS M27-A2 :;<=; >YL>´% &9n wD F}bcv45 NCCLS M27-A ª«¬V> B (AMPH) ῌNCCLS M27-A #FJ? ASTY # 1m5> (5-FC) @r8 'µoIF( > #n®¯3m (MCZ) ῌ-¶F8p[3 1mn®¯3m (FLCZ) ῌ[q>-9 ;5=n®¯3m (ITCZ) #1°>±> (MCFG) Etest ~o 'orF( ·o ª«¬V> B (AMPH) ῌNCCLS M27-A #FW 1m5> (5-FC) r8 #n®¯3m (MCZ) ῌXd¡e¸;9 1mn®¯3m (FLCZ) ῌAspergillus spp¹ Iºs ;5=n®¯3m (ITCZ) +Hh5 M27-A Fr8J?@EFAs%&8962, 64) M27-P M27-P 6. !" ./`C (i) wDE #$ 1995 %& ' 6( 60) t`uB%&89 MIC 3v45 FP 'x DP( yz {| (ii) wD F}bcv45 ASTY, (iii) Etest NCCLS M27-T )*#+,- ~o )$ 3 qwD ./0123456789 v45GHIJFuB%&89 v4 !" M27-A :;<=;>?# Fbc3 5KL 7 E (i) !" -@7AB%&CD 3 xxv45-IJM[ 7ZC ECD M27-A #FGFHIJK i M27-A FJ?@+r8 L (IC80) MN 8 LM9 !"NO8 9x!NC[E9 p PQGFHIRAS&8 @ OPC OP@S C. albicans !"NE9 FLCZ #T5U3V>WXNO8 M27-A )$ QQ C[ v45 MIC 3 %&'Y90F(Z[2) )\]*+ RFSTUFkVWXS&8 ,M9 965) 0& (ii) YY#S ^34_-` . NCCLS M27 :;<= :p%&-Z[[\UV>[ ;>a7bc ?78 XN% ']>( ^L9_8 &de The Antifungal Susceptibility Testing 9KLM9 0v45C933 Subcommittee of the European Committee on An- M27-A &FVWE90F%&8 tibiotic Susceptibility Testing (AFST῍EUCAST) 966) 2002 /fg 'EUCAST (i), (ii) F0F[ (iii) Etest F&9` (61) 00 NCCLS M27-A #12 MIC 3M9 89 3f4-h5E90FZC b9cO8o5V4 FXd¡e¢ i6jk 48 jk@S 24 jk78E90F £E9f 9cR MIC FE9 9F lWmn3o:pZCi; Xg¤JM7[ 5U3V>WXECD q h¥ L¦i9 J§F <=pF8D]>%&8962, 63) STt'u!»¼ Vol. 14 No. 3 FaN 2004. 9 ·¸¹8 138 M38-P 6j/72), kl Aspergillus spp. FLCZ Candida spp. c7mn89 (voriconazole, ra- NCCLS !"#$%& vuconazole, posaconazole) %o:Q//p < '()*+'67, 68), - FLCZ C. tropicalis . &qOPrs>tu'7 < / C. glabrata 01 502 345' &qv- ITCZ \7w; IC50 - 669)7+8 #$9!:; & IC100 $x5')y<zB/ M38-A {| &, AMPH MIC }~|% 2002 1:=Q/73) R= 8W, '<*+8 RPMI1640 =>5' w;>_$x Aspergillus ?/0@A7B spp. C?@p'/pQ'40), AMPH C*D'', ./E M38-A *GHIMNOP &FGHI7*D'*7 1@AQ'7 cq῍!I J %+8 AMPH K ITCZ GHI B7 in vitro῍in vivo # L!IMNOPQ' NCCLS M38 5'6B/&F /%B| RSTUVW XY"Z#5'<%[Q t76[Q, lCDDE*+ ' ', , 71, 72) 2. 1. %h*6jQ' F ! I M 38-P % = Q / G 1 III. 1999 1 (8@w;>(I^ NCCLS M38 GHIMNOP\ $%&]'^ CH M38-P y$/F!I I('^I)*_`%a+< ,b 6j/75) R= 8W, -OP7./ M38- -.C%&<c/0-& ` A 3iIEJ'<).*7 de+f/, ()K 1998 1gB2h , NCCLS EMNOP M27-A _3i45/ =8 GHIL!IMNOP NCCLS (M38-A) F!I& _`Q/ $%&]c NCCLS M38-A F!I ῌI^ -K./LM5'GHI NOPGHI 'I QRGHI S!I !I ῌ ¡t 3¢ ῌOP M27-A i' £[ (Alamar Blue) ¤¥ RPMI1640 3¢ ῌ'^I( 0.5¦103§2.5¦103 CFU/ml ῌ'^I(` -¨¨T©' RIU(B<' 3¢ VTW ῌWªT 35« 27« ῌW ¬ 24 ¬ (Rhizopus spp.), 72 ¬ (Pseudal:V)% Alamar Blue 9® lescheria boydii), 48 ¬ (Fusarium spp., (BZ$5'.*¯¬ Aspergillus spp., Sporothrix schenckii ¤¥C XYGHIW ῌw; r[°,&-:±² R³IC50W´ 5-FC, FLCZ Hµ*V8 (IC¶95): AMPH, ITCZ, n89 W -¨¨(' IC80 ῌOPrq AMPH, 5-FC, FLCZ, n89 (voriconazole, ravuconazole, posaconazole) AMPH, ITCZ 10 F\º]K^»¼ Vol. 14 No. 3 2004. 34 VI. 139 |}-~+'A456U8s Y Z (IC100) [2*Z (IC80 IC50X 5'L-A{*\]./A( )S 2002 caspo- Tr^/ CAS in vitro o_*O- fungin (CAS) !"#$ /+'/{ `ab< (minimal (micafungin; MCFG) %&'( ) e#ective concentration; MEC) A( )'c *+,)-./ 2deL+D`b<Lf g 0/ 1 2345' h MIC !456OA)-L ,67./( * !89 iDAFGjk?79[83)( *!K MEC :;<$<-.= L78DA-A- lDA >?@&'/A( BCDE Gc-mn-4Lo- *A+'Ai ?FGH<IJ!K34LM./N j*A( )STLDAC Im- N/4"6L#OP$ hof et al.83) RPMI1640 V2k H<IX pE -/ CAS L%&-/'C+'/A( q Aspergillus spp. cIr* Caspofungin (CAS) 0/34 dz V%sEFNA2tucL;D Candida spp. CAS 3LP$()*+ I%/ L/cLZ& Q Pfaller et al.76) B'A( ,R- 99 S. 'EFvw`&IL0?AX s *+/01 4,000 Candida spp. 23T in / MIC LU8DAp x"L~¡( )9 vitro CAS 3L NCCLS M27-A2 "U/ "A+' MIC MEC -Z\>H (95k) L V456W IC100X 78 C. albicans, C. dubliniensis, ; ¢£¤¥|y3z-\> 1. C. tropicalis NY C. glabrata Z3 NCCLS M38 (MIC90 : 0.25[0.5 mg/ml) L \9 C. guilliermondii ( "}:3TPC~'/- ¦{ x"-|r*. :3 (MIC90 : ]8 mg/ml) L^_;D) ( - C. albicnas :`I< (FLCZ, ITCZ) Z CAS 34"-/ d* Etest l <=T CAS 3Z (MIC90 : a1 mg/ml) §¨"P$&'/A84[86)( * Etest )-L+Q/A( )+Qb+5 Candida © MIC 78LMNO6ªS«&'/ spp. 0/ M27-A "LDAb AA84, 85)( FGH <IJcde\>?@A+'/A( B MIC 456O-¬#&'/A\ C EUCAST "NY Etest L/ Candida spp. 0} 4EqA( ?0*FGH CAS 3L78 M27-A "-DfP$+ <IJA)'P$ij Candida spp., QA77)( B'A- EUCAST " V456W E Aspergillus spp. - RPMI1640 AM3 F 24 NY 48 Gcg ICh95X ij M27-A dE?: MIC L 79, 8687) ®J "Z V94kX \>HL; B'llIA mA88)( )_*+ AM3 L4E Etest Jm\>HA+'( )'++ q-/DA¯{A( Q*+ CAS - Candida spp. Knopqr/ CAS 34"rDA2° NCCLS M27-A "NY EUCAST " V5' ±A+'/)-./ in vitroῌ 456LEF 24 48 Gcg ICh95ῌ100 - in vivo |rP$ij+QyC/k( LoX (i) M"-NOZ34" Mora-Duate et al.81) C. albicans -B' in A)- (ii) M"?@s *\>DA)- vitro CAS 3:-&'A C. parapsilosis42) (iii) Etest (P4"A)- Q+ ^_²}DA!89³NA CAS jL '( Df MjaH´)- (13/20 vs. RtST Aspergillus spp. %DA MIC 14/20) *+ FLCZ µ+'AJm|rr 78"A( u NCCLS M38 " V72 GcEF ¶A+'*.-+Q/A( )'%/ g456U8X L/ A+' CAS vw Hernandez et al.82) :`I<\· OPC Vx MIC FGH<IJ./ 0.06[12 mg/ml78) \¸j*+ CAS *+ ]16 mg/ml79) yWzL;D( BX{ ¹º (Day-1) NY Day-511 23 2 0 C. l»¼ Vol. 14 No. 3 2004. 11 ¸¹ºJ 140 albicans MIC: M27 0.25 mg/ v_! 2 "rest;]M FLCZ UV7 ml CAS Day- ITCZ " Candida spp. )* in vitro R (MIC) 4 553 (MIC: 64 mg/ml) 3 in vivo R #$ 4"+f6.g ! CAS "#$ , "h hic1* %& "'$ 2 ( 3 ") " MIC ;¡C)j/1 *#$+,- *& 2"V_st;]u,MM4 Candida in vitro῍in vivo . /01& 2"'+3"" 81)" spp. "k¢F+ "E9"£ 4+)*"5! 1, l+-6!Sm4_(m*& N 5-FC 4 Can- 789:4;<" "6, !4=>,*& ?@ABCDC (MCFG) ""E 2. dida spp. 4"k¢F 5]" in vitro῍ in vivo .C)*4=>,*42n-, 2 "#F"E9+m4V-n_& 9 MCFG "E9""":+ CAS "# `""E9. ¤Sm6@n46 +616& I%+ Candida "+ C. albicans ¥ C. tropicalis ""6 spp. ""+ NCCLS M27-A &'J ICK95) -st;]M"Oo¦;C;a/) Aspergillus spp. "("L)M+ NCCLS M38-P "[§N*245*& 2," FGH$ N+*+O,MPQ &'J IC80 , + o p " ` " " E 9 " q b 4 1 in vitro R (MIC) .)*- " NCCLS M27-A st;]M" MIC c .S1* $T+/0,4)UV71W5)"2 d#F+4rd1* in vivo + 3X41& 5YZ[C\C]6)*4 /) st;]M)*& 2"st¨ +> MCFG + CAS ( in vitro R^ u MIC 4#$4".d*( MIC V_5! N MCFG 7869 M27-A U i * MIC & ' " r d © b ª v w `: (zone phenomenon)ῌ;a<b=>cV!1, M27-A2 xy124+z{"5*& d=>+e;a<bf,6 6*`:ῌ - « + H " ¬ | " " c d Z CAS +S16& 2"24+ CAS M27-A bU! ;C;a"} ""E9"NN MCFG ?)* ~616& 2"@n+ª 24g@Ah-i*"5! MCFG ? E*44 ;C;a)*I%" Bj""E9"kCDl:E*( g®d* !5*& C. neoformans 4st;]MN+ 5-FC 4"k m5n_& ¢FU YNB E94 ῌ῏῎῍ *! %f6 in vitro῍in vivo .{, o,MF"+ pqGHI!r4 2 *& - RPMI1640 +_..¯ JK"L"st;]u,MM FLCZ 4 ITCZ, 6 f,624-, 2"°cdZ¬ , 7 AMPH v m & 4 2 n |Z"E9'$+ G6± 2002 H"NZ[C\C]4wx*yOM4 !5*& st;]M¥ 5-FC 4+4 AMPH 246*z{@|}~Q" + Candida spp., C. neoformans 6H"`"" u,MM MCFG R# u,MPSm6 E9"-4#$4"+N²k6 T,5*& N+H 2004 H U ..¯/16& 1,L)M FLCZ " "VUW 8 + I+qb4 NCCLS M38-A g1 " FLCZ dXY4624V* *"" "M῍,M"k¢FU "Cfp6& 2_u,MM" in vitro῍in vivo .{,6 Z["\> M"]UV7M E9;<"±³iG4´HY "^`+ u,MM"E92N 5*& "'$ µ 6,"E9"-V! _!6"*& M"y5d"G_MC4 +P H `"u,MM"E9+Sm a ¶6"85*& Sm6@ & NCCLS M27-A Candida spp. ";C n+ «·Z[C\C]M"E9 ;a+ M27-A2 b MIC cd "qb616245*& 7« 12 *+P»¼ Vol. 14 No. 3 2004. Q67=>?@A MCFG !"#$%&'($)*+,- . /0$1 23$4567+8 9:1;< =>?@ABCDEFGHI 13) JKLM&0NO. P Q67=>?@ARS TUV 4WXYKZ[\<-. M0]<^Y 14) JV X$_`abcZdMO/ef0 * ghijEMO *klX mf0nZopV. ῍ ῌ 1) Rex, J. H., M. A. Pfaller, J. N. Galgiani, et al. 1997. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro῍ in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin. Infect. Dis. 24: 235῍247. 2) qrs tuvwx 2003. Q67=>?@ Ax yzC{ 39: 3301῍3308. 3) tuvw |t} qrs ~x 2002. Micafungin Candida albicans Aspergillus fumigatus $}F F x 50(S-1): 20῍29. 4) q I ~x 2002. z BQ67 micafungin in vitro Q67 ?x 50(S-1): 8῍19. 5) tuvwx 2003. Q67ij F&x = 33: 23῍28. 6) x 2003. Q67E F&x = 33: 39῍46. 7) ¡ ~x 2004. ¢£? 67¤¥{¦C §¨©ῌª «¬ E@A E@Ax 124: 41῍ 51. 8) tuvwx 2004. ®67$&Q67¯ ?x y-°8 209: 556῍563. 9) Vu#ray, A., C. Durussel, P. Boerlin, et al. 1994. Oropharyngeal candidiasis resistant to single dose therapy with fluconazole in HIV-infected patients. AIDS 8: 708῍709. 10) Johnson, E. M., D. W. Warnock, J. Luker, et al. 1995. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J. Antimicrob. Chemother. 35: 103῍ 114. 11) tuvwx 2001. ¥{¦C¯?± ²x Em³ 45: 879῍883. 12) National Committee for Clinical Laboratory Standards. 1997. Reference method for broth 15) 16) 17) 18) 19) 20) 21) 22) 23) 141 dilution antifungal susceptibility testing of yeasts. Approved standard NCCLS document M27-A. National Committee for Clinical Laboratory Standards, 17(9), Wayne, Pa. tuvw qrs ´µ¶· ~x 2004. Japan Antifungal Surveillance Program $ 67 E¸Q67=>?$¹º³ (1): 2001 ῍2002 »x 14: 183῍193. Perea, S., J. López-Ribot, W. R. Kirkpatrick, et al. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676῍2684. Maebashi, K., M. Niimi, M. Kudoh, et al. 2001. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J. Antimicrob. Chemother. 47: 527῍536. White, T. C., K. A. Marr, R. A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382῍402. Stiller, R. L., J. E. Bennett, H. J. Scholer, et al. 1982. Susceptibility to 5-fluorocytosine and prevalence of serotype in 402 Candida albicans isolates from the United States. Antimicrob. Agents Chemother. 22: 482῍487. Vanden Bossche, H., Dupont B. Warnock, et al. 1994. Mechanisms and clinical impact of antifungal drug resistance. J. Med. Vet. Mycol. 32(S1): 189῍200. National Committee for Clinical Laboratory Standards. 1995. Reference method for broth dilution antifungal susceptibility testing of yeasts: Tentative standard. NCCLS document M27-T. National Committee for Clinical Laboratory Standards, Wayne, Pa. Espinel-Ingro#, A., C. W. Kish, T. M. Kerkering, et al. 1992. Collaborative comparison of broth macrodilution and microdilution antifungal susceptibility tests. J. Clin. Microbiol. 30: 3138῍ 3145. Odds, F. C., L. Vranckx, F. Woestenborghs. 1995. Antifungal susceptibility testing of yeasts: evaluation of technical variables for test automation. Antimicrob. Agents Chemother. 39: 2051῍2060. Pfaller, M. A., S. A. Messer, S. Co#mann. 1995. Comparison of visual and spectrophotometric methods of MIC endpoint determinations by using broth microdilution methods to test five antifungal agents, including the new triazole D070. J. Clin. Microbiol. 33: 1094῍1097. St. Germain, G., C. Dion, A. Espinel-Ingro#, et al. E!}"¼ Vol. 14 No. 3 2004. 13 142 1995. Ketoconazole and itraconazole susceptibility of Candida albicans isolates from patients infected with HIV. J. Antimicrob. Chemother. 36: 109῍118. 24) Dannaoui, E., S. Colin, J. Pichot, et al. 1997. Evaluation of the Etest for fluconazole susceptibility testing of Candida albicans isolates from oropharyngeal candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 16: 228῍232. 25) Cartledge, J. D., J. Midgley, M. Petrou, et al. 1997. Unresponsive HIV-related oro-esophageal candidosisῌan evaluation of two new invitro azole susceptibility tests. J. Antimicrob. Chemother. 40: 117῍119. 26) Quereda, C., A. M. Polanco, C. Gner, et al. 1996. Correlation between in vitro resistance to fluconazole and clinical outcome of oropharyngeal cadidiasis in HIV-infected patients. Eur. J. Clin. Microbiol. Infect. Dis. 15: 30῍37. 27) Revankar, S. G., O. P. Dib, W. R. Kirkpatrick, et al. 1998. Clinical evaluation and microbiology of oropharyngeal infection due to fluconazoleresistant Candida in human immunodeficiency virus-infected patients. Clin. Infect. Dis. 26: 960῍963. 28) Lee, S. C., C. P. Fung, J. S. Huang, et al. 2000. Clinical correlates of antifungal macrodilution susceptibility test results for non-AIDS patients with severe Candida infections treated with fluconazole. Antimicrob. Agents Chemother. 44: 2715῍2718. 29) Costa, M., X. S. Passos, A. T. B. Miranda, et al. 2004. Correlation of in vitro itraconazole and fluconazole susceptibility with clinical outcome for patients with vulvovaginal candidiasis. Mycopathologia 157: 43῍47. 30) Louie, A., G. L. Drusano, P. Banerjee, et al. 1998. Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob. Agents Chemother. 42: 1105῍1109. 31) Merz, W. G., G. R. Sanford. 1979. Isolation and characterization of a polyene-resistant variant of Candida tropicalis. J. Clin. Microbiol. 9: 677῍ 680. 32) Dick, J., W. Merz, R. Saral. 1980. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob. Agents Chemother. 18: 158῍163. 33) Seidenfeld, S. M., B. H. Cooper, J. W. Smith, et al. 1983. Amphotericin B tolerance: a characteristic of Candida parapsilosis not shared by other Candida species. J. Infect. Dis. 147: 116῍119. 34) Powderly, W. G., G. S. Kobayashi, G. P. Herzig, et al. 1988. Amphotericin B-resistant yeast infection in severely immunocompromised pa- 14 Vol. 14 No. 3 2004. 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45) 46) tients. Am. J. Med. 84: 826῍832. Walsh, T. J., I. F. Salkin, D. M. Dixon, et al. 1989. Clinical, microbiological, and experimental animal studies of Candida lipolytica. J. Clin. Microbiol. 27: 927῍931. Bryce, E., F. Roberts, A. Sekhon, et al. 1992. Yeast in blood cultures : evaluation of factors influencing outcome. Diag. Microbiol. Infect. Dis. 15: 233῍237. Nguyen, M. H., J. E. Peacock, Jr., A. J. Morris, et al. 1996. The changing face of candidemia: Emergence of non-C. albicans species and antifungal resistance. Am. J. Med. 100: 617῍623. Sterling, T. R., R. A. Gasser, A. Ziegler. 1996. Emergence of resistance to amphotericin B during therapy for Candida glabrata infection in an immunocompetent host. Clin. Infect. Dis. 23: 187῍188. Nolte, F. S., T. Parkinson, D. J. Falconer, et al. 1997. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob. Agents Chemother. 44: 196῍199. Rex, J. H., M. A. Pfaller. 2002. Has antifungal susceptibility testing come of age ? Clin. Infect. Dis. 35: 982῍989. Powderly, W. G., E. J. Keath, M. SokolAnderson, et al. 1992. Amphotericin Bresistant Cryptococcus neoformans in a patient with AIDS. Infect. Dis. Clin. Pract. 1: 314῍316. Rodero, L., S. Cordoba, P. Cahn, et al. 2000. In vitro susceptibility studies of Cryptococcus neoformans isolates from patients with no clinical response to amphotericin B therapy. J. Antimicrob. Chemother. 45: 239῍242. Currie, B. P., M. Ghannoum, L. Bessen, et al. 1995. Decreased fluconazle susceptibility of a relapse Cryptococcus neoformans isolates after fluconazole treatment. Infect. Dis. Clin. Pract. 4: 318῍319. Armengou, A., C. Porcar, J. Mascaro, et al. 1996. Possible development of resistance to fluconazole during suppressive therapy for AIDS-associated cryptococcal meningitis. Clin. Infect. Dis. 23: 1337῍1338. Witt, M. D., R. J. Lewis, R. A. Larsen, et al. 1996. Identification of patients with acute AIDSassociated cryptococcal meningitis who can be e#ectively treated with fluconazole: The role of antifungal susceptibility testing. Clin. Infect. Dis. 22: 864῍866. Aller, A. I., E. Martin-Mazuelos, F. Lozano, et al. 2000. Correlation of fluconazole MICs with clinical outcome in cryptococcal infection. An- !L#$%&' 47) 48) 49) 50) 51) 52) 53) 54) 55) timicrob. Agents Chemother. 44: 1544῍1548. Jessup, C. J., M. A. Pfaller, S. A. Messer, et al. 1998. Fluconazole susceptibility testing of Cryptococcus neoformans: Comparison of two broth microdilution methods and clinical correlates among isolates from Ugandan AIDS patients. J Clin. Microbiol. 38: 341῍344. Arthington-Skaggs, B. A., D. W. Warnock, C. J. Morrison. 2000. Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Antimicrob. Agents Chemother. 44: 2081῍2085. Arthington-Skagg, B. A., W. Lee-Yang, M. A. Ciblak, et al. 2002. Comparison of visual and spectrophotometric methods of broth microdilution MIC endpoint determination and evaluation of a sterol quantification method for in vitro susceptibility testing of fluconazole and itraconazole against trailing and non-trailing Candida isolates. Antimicrob. Agents Chemother. 46: 2477῍2481. Takakura, S., N. Fujihara, T. Saito, et al. 2004. National surveillance of species distribution in blood isolates of Candida species in Japan and their susceptibility to six antifungal agents including voriconazole and micafungin. J. Antimicrob. Chemother. 53: 283῍289. Rex, J. H., P. W. Nelson, V. L. Paetznick, et al. 1998. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing clinical isolates in a murine model of invasive candidiasis. Antimicrob. Agents Chemother. 42: 129῍ 134. Revankar, S. G., W. R. Kirkpatrick, R. K. McAtee, et al. 1998. Interpretation of trailing endpoints in antifungal susceptibility testing by the National Committee for Clinical Laboratory Standards method. J. Clin. Microbiol. 36: 153῍156. Marr, K. A., T. R. Rustad, J. H. Rex, et al. 1999. The trailing endpoint phenotype in antifungal susceptibility testing is pH-dependent. Antimicrob. Agents Chemother. 43: 1383῍1386. Nguyen, M. H., C. Y. Yu. 1999. Influence of incubation time, inoculum size, and glucose concentration on spectrophotometric endpoint determinations for amphotericin B, fluconazole, and itraconazole. J. Clin. Microbiol. 37: 141῍ 145. St-Germain, G. 2001. Impact of endpoint definition on the outcome of antifungal suscep- 56) 57) 58) 59) 60) 61) 62) 63) 64) 65) 66) 143 tibility tests with Candida species: 24-versus 48-h incubation and 50 versus 80 reduction in growth. Mycoses 44: 37῍45. National Committee for Clinical Laboratory Standards. 2002. Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard-second edition, M 27-A2. National Committee for Clinical Laboratory Standards, 22(15), Wayne, Pa. Smith, W. L., T. D. Edlind. 2002. Histone deacylase inhibitors enhance C. albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob. Agents Chemother. 46: 3532῍3539. Sanglard, D., F. C. Odds. 2002. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infectious Diseases 2: 73῍85. Lee, M.-K., L. E. Williams, D. W. Warnock, et al. 2004. Drug resistance genes and trailing growth in Candida albicans isolates. J. Antimicrob. Chemother. 53: 217῍224. 1995. 19921994 ῌ! "#$%&'( ) 36: 61῍64. European Committee on Antibiotic Susceptibility Testing. 2002. Method for determination of minimal inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Discussion document E. Dis, 7. 1. European Society of Clinical Microbiology and Infectious Diseases, Taufkirchen, Germany. Cuenca-Estrella, M., T. M. Diaz-Guerra, E. Mellado, et al. 2001. Influence of glucose supplementation and inoculum size on growth kinetics and antifungal susceptibility testing of Candida spp. J. Clin. Microbiol. 39: 525῍532. Rodriguez-Tudela, J. L., M. Cuenca-Estrella, T. M. Diaz-Guerra, et al. 2001. Standardization of antifungal susceptibility variables for a semiautomated methodology. J. Clin. Microbiol. 39: 2513῍2517. Cuenca-Estrella, M., W. Lee-Yang, M. A. Ciblak, et al. 2002. Comparative evaluation of NCCLS M27-A and EUCAST broth microdilution procedures for antifungal susceptibility testing of Candida species. Antimicrob. Agents Chemother. 46: 3644῍3647. *+,- ./01 2345 1997. 67 89:;(<=5> ?@ABCDEFGHI #$%&'ῌJK!LI in vitro M%N fluconazole I in vitro/in vivo M%OPῌ Q() 45: 115῍121. Pfaller, M. A., S. Arikan, M. Lozano-Chiu, et al. RS6TUV) Vol. 14 No. 3 2004. 15 '()* 144 67) 68) 69) 70) 71) 72) 73) 74) 75) 1998. Clinical evaluation of the ASTY colorimetric microdilution panel for antifungal susceptibility testing. J. Clin. Microbiol. 36: 2609ῌ 2612. Pfaller, M. A., D. J. Diekema, S. A. Messer, et al. 2003. Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by broth microdilution, disk di#usion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J. Clin. Microbiol. 41: 1440ῌ1446. Matar, M. J., L. Ostrosky-Zeichner, V. L. Paetznick, et al. 2003. Correlation between E-test, disk di#usion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob. Agents Chemother. 47: 1647ῌ1651. Sewell, D. L., M. A. Pfaller, A. L. Barry. 1994. Comparison of broth macrodilution, broth microdilution, and Etest antifungal susceptibility tests for fluconazole. J. Clin. Microbiol. 32: 2099ῌ2102. Szekely, A., E. M. Johnson, D. W. Warnock. 1999. Comparison of E-test and broth microdilution methods for antifungal drug susceptibility testing of molds. J. Clin. Microbiol. 37: 1480ῌ1483. Pfaller, M. A., S. A. Messer, K. Mills, et al. 2000. In vitro susceptibility testing of filamentous fungi: comparison of Etest and reference microdilution methods for determining itraconazole MICs. J. Clin. Microbiol. 38: 3359ῌ3361. National Committee for Clinical Laboratory Standards. 1998. Reference method for broth dilution antifungal susceptibility testing of conidium forming filamentous fungi: Proposed standard. M38-P. National Committee for Clinical Laboratory Standards, 18(13), Wayne, Pa. National Committee for Clinical Laboratory Standards. 2002. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: Approved standard. M38-A. National Committee for Clinical Laboratory Standards, 22(16), Wayne, Pa. Espinel-Ingro#, A., M. Bartlett, V. Chaturvedi, et al. 2001. Optimal susceptibility testing conditions for detection of azole resistance in Aspergillus spp.: NCCLS collaborative evaluation. Antimicrob. Agents Chemother. 45: 1828ῌ 1835. 1999. 19951997 !"#$% & 40: 243ῌ246. 16 +,-./0& Vol. 14 No. 3 2004. 76) 77) 78) 79) 80) 81) 82) 83) 84) 85) Pfaller, M. A., D. J. Diekema, S. A. Messer, et al. 2003. In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3,959 clinical isolates of Candida spp., including 157 fluconazole-resistant isolates. Antimicrob. Agents Chemother. 47: 1068ῌ1071. Chryssanthou, E., M. Cuenca-Estrella. 2002. Comparison of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing proposed standard and the E-test with the NCCLS broth microdilution method for voriconazole and caspofungin susceptibility testing of yeast species. J. Clin. Microbiol. 40: 3841ῌ3844. Pfaller, M. A., F. Marco, S. A. Messer, et al. 1998. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743, 872), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diag. Microbiol. Infect. Dis. 30: 251ῌ255. Arikan, S., Chiu M. Lozano, V. Paetznick, et al. 2001. In vitro susceptibility testing methods for caspofungin against Aspergillus and Fusarium isolates. Antimicrob. Agents Chemother. 45: 327ῌ330. Kurtz, M. B., I. B. Heath, J. Marrinan, et al. 1994. Morphological e#ects of lipopeptides against Aspergillus fumigatus correlate with activities against 1,3-b-9-glucan synthase. Antimicrob. Agents Chemother. 38: 1480ῌ1488. Serrano, Mdel C., A. Valverde-Conde, M. M. Chavez, et al. 2003. In vitro activity of voriconazole, itraconazole, caspofungin, anidulafungin (VER002, LY303366) and amphotericin B against Aspergillus spp.. Diag. Microbiol. Infect. Dis. 45: 131ῌ135. Shalit, I., Y. Shadkchan, Z. Samra, et al. 2003. In vitro synergy of caspofungin and itraconazole against Aspergillus spp.: MIC versus minimal e#ective concentration end points. Antimicrob. Agents Chemother. 47: 1416ῌ1418. Imhof, A., A. Balajee, K. A. Marr. 2003. New methods to assess susceptibilities of Aspergillus isolates to caspofungin. J. Clin. Microbiol. 41: 5683ῌ5688. Arikan, S., V. Paetznick, J. H. Rex. 2002. Comparative evaluation of disk di#usion with microdilution assay in susceptibility testing of caspofungin against Aspergillus and Fusarium isolates. Antimicrob. Agents Chemother. 46: 3084ῌ3087. Bartizal, K., C. J. Gill, G. K. Abruzzo, et al. 1997. In vitro preclinical evaluation studies with the 86) 87) 88) echinocandin antifungal agent MK-0991 (L743, 872). Antimicrob. Agents Chemother. 41: 2326ῌ2332. Espinel-Ingro#, A. 2003. Evaluation of both microdilution testing parameters and agar diffusion Etest procedure for testing susceptibilities of Aspergillus spp. to caspofungin acetate (MK-0091). J. Clin. Microbiol. 41: 403ῌ409. Nelson, P. W., M. Lozano-Chiu, J. H. Rex. 1997. In-vitro growth inhibitory activity of pneumocandins L-733, 560 and L-743, 872 against putatively amphotericin B- and fluconazole-resistant Candida isolatesῌinfluence of assay conditions. J. Med. Vet. Mycol. 35: 285ῌ287. Bartizal, C., F. C. Odds. 2003. Influences of 89) 90) 145 methodological variables on susceptibility testing of caspofungin against Candida species and Aspergillus fumigatus. Antimicrob. Agents Chemother. 47: 2100ῌ2107. Mora-Duarte, J., R. Betts, C. Rotstein, et al. 2002. Comparison of caspofungin and amphotericin B for invasive candidiasis. N. Engl. J. Med. 347: 2020ῌ2029. Hernandez, S., J. L. López-Ribot, L. K. Najvar, et al. 2004. Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob. Agents Chemother. 48: 1382ῌ1383. The Current Status and Challenges for Antifungal Susceptibility Testing Hideyo Yamaguchi Teikyo University Institute of Medical Mycology Although new antifungal drugs of both preexisting and new classes are steadily introduced, the incidence of deep-seated fungal infections caused by Candida spp., Aspergillus spp. and other pathogenic fungi including those species or strains low-susceptible or resistant to currently available antifungal drugs is still increasing. With these situations comes a growing need for clinically relevant susceptibility testing methodologies that can be used in choosing the best treatment strategy for a given patient. Actually, antifungal susceptibility testing has evolved rapidly during the last decades and has now become a relevant clinical tool, so that routine susceptibility testing with azoles and flucytosine is appropriate for Candida isolates and, to a lesser degree, C. neoformans isolates. However, this is not the case at present for amphotericin B or mold fungi. A more problematic issue is the lack of reference method for testing the susceptibility to candins, a recently introduced major class of antifungal drugs, that warrants further investigation and development. Vol. 14 No. 3 2004. 17