...

Numerical Modeling of Thermal and Non

by user

on
Category: Documents
81

views

Report

Comments

Transcript

Numerical Modeling of Thermal and Non
Numerical Modeling of Thermal and
Non-thermal Emission from SNRs
Towards a Synergy of Gamma-ray and X-ray Observations
Herman Lee (RIKEN)
(Part of preliminary results are removed)
13年9月4日水曜日
Collaborators
Dan Patnaude (CfA)
Pat Slane (CfA)
Don Ellison (NCSU)
Hiro Nagataki (RIKEN)
Masaomi Ono (RIKEN)
Daniel Castro (MIT)
Jack Hughes (Rutgers U)
Kris Eriksen (Rutgers U)
And you!
Behold!
The multi-wavelength era has come
Tycho’s SNR
IR
X-ray
(thermal)
IC 443
IR
optical
X-ray
(synch)
Fermi
Fermi
Plenty of data now available, and lots more to come.
But synergy of data in different energy bands is lacking.
2
13年9月4日水曜日
SNRs are complex stuff
SN1006 Chandra
13年9月4日水曜日
3
SNRs are complex stuff
All aspects linked together
(non-linear)
Need multi-λ info and
comprehensive models
SN1006 Chandra
13年9月4日水曜日
3
Outline
1. Our recipe for modeling broadband
emission from SNR shells using our
powerful numerical tool
2. Recent work on detailed calculations of
thermal X-ray emission from SNRs
3. Applications to future missions including
CTA and Astro-H
4
13年9月4日水曜日
A recipe to model SNR emission properly
5
13年9月4日水曜日
Broadband
Spectrum
The 1st hurdle any model
must pass through
HL+ 2013 ApJ
X-ray GeV
Radio
synch
thermal
π0
SNR Vela Jr.
Need update from
Suzaku
se
c.
epre
e+
cur
sor
Resort to next hurdles if still
can’t single out best model
IC
brem
Must check consistency:
• Radio to TeV flux
• Spectral shapes
• Inferred CR energetics
• Required B-field, CSM, ESN
TeV
esc. p
6
13年9月4日水曜日
Thermal X-ray constrains
Gamma-ray origin
HL+ 2013 ApJ
SNR Vela Jr.
Hurdle #1.5
In SNRs, thermal X-ray
flux is coupled to
broadband emission!
Very important:
Predicted thermal flux
must not violate X-ray
observations
Thermal lines
Need update from
Suzaku
Thermal cont.
7
13年9月4日水曜日
Radial emission profile probes
Gamma-ray origin & CR accel efficiency
Hurdle #2
Radio, X-ray and TeV
morphology
constrain CR accel.
and E loss history
TeV
Models & H.E.S.S.
(no fitting)
CTA prediction (0o.02)
SNR Vela Jr.
H.E.S.S.
Aharonian et al (2007)
13年9月4日水曜日
HL+ 2013 ApJ8
X-ray synchrotron index distribution
constrains gamma-ray origin
Kishishita & Uchiyama 2013
XMM-Newton
SNR Vela Jr.
Synch Index
Hadronic and leptonic
models often predict
very different synch
index distributions
(e.g. CSM, B-field)
Hurdle #3
XMM Newton
Best-fit leptonic
BDS ~ a few μG? Filaments?
Unsettled mystery
Best-fit hadronic
Radius [RFS]
HL+ 2013 ApJ
13年9月4日水曜日
FS
9
What do we learn?
• A best-fit broadband model passing all the
observation hurdles tells us the gamma-ray
origin of a SNR (i.e. CR ion or e , or both)
Note: Leptonic does NOT mean there is no CR ion
• But the ultimate goal is to constrain total
energy in CR different types of SNR can
produce in its lifetime (hadronic and leptonic
models often predict very different values)
• Sometimes though, the progenitor nature of
a SNR is not even clear
13年9月4日水曜日
10
Detailed study of thermal
X-ray from SNR ejecta and shell
Purposes:
1. Unambiguously reveal progenitor properties
(e.g. metallicity in type Ia’s and core-collapses)
Patnaude+ 2012 on Kepler’s
progenitor and CSM using
Chandra X-ray spectrum
2. Constrain explosive nucleosynthesis in various SNe
3. Correlate with CSM environments and broadband
emission, better understanding of SNR populations
Key:
1. Future X-ray spectroscopy by Astro-H SXS!
2. Self-consistent simulation of X-ray spectra by a CR +
hydrodynamical model using inputs from SN simulations
(connect SN and SNR phase)
ρ
An asymmetric
explosive
nucleosynthesis
model of a 16.3
Msun star
(Ono,
Nagataki, Ito,
HL+ 2013)
11
13年9月4日水曜日
Following ionization
fractions of key elements
like O, Si, S and Fe using
full NEI coupled with
hydro is crucial
log(Ion fraction)
log(Ion fraction)
Non-equilibrium
ionization in
SNR ejecta
nISM = 0.2 cm-3
nISM = 2.0 cm-3
RS
Silicon
i
il m
e
r
P
y
r
na
CD
R [RRS]
CD
RS
Oxygen
R [RRS12]
13年9月4日水曜日
Heavy ion
temperature
equilibration
Test cal. of equilibration in a Lagrangian cell
Tion
Tp
Te
Individual heavy
ion temperatures
must be followed to
predict line profiles
Core-collapse
Time
Thermonuclear
Time
Preliminary
e- temperature
controls NEI rates
and continuum in
shocked ejecta
13
13年9月4日水曜日
Progenitor models
and X-ray spectra from SNR ejecta
CC
Pr
el
im
in
ar
y
500yr nISM = 0.2 cm-3
Core-collapse
O Fe L
Ne
Si
S
Fe K
Type Ia
Ia
data from Carles Badenes (private comm.)
Type Ia (sub-energetic)
0.3keV
13年9月4日水曜日
14
12keV
Time evolution
II) X-ray spectrum
Preliminary
We can explore
evolutionary relation
between thermal X-ray
and non-thermal emission
as the multi-λ sample of
SNRs increases in size
Synch
time
time
Thermal
Core-collapse
Shocked
ejecta
Shocked
CSM
Type Ia
Type Ia (sub-energetic)
15
13年9月4日水曜日
Synergy of future super telescopes
for SNR research
Hi-res X-ray spectroscopy
• Ejecta/CSM composition from faint lines
• Unveil progenitor properties of Ia and
core-collapse SNRs
• SN explosion mechanisms, matter
mixing and nucleosynthesis
• Broadened line profiles:
gas dynamics, temperature equilibration
13年9月4日水曜日
Hi-sensitivity, hi-res imaging
• Many new gamma-ray SNR discoveries
• Low-noise spectrum measurement
•
•
from ~20GeV to >100 TeV
Measure roll-over region of CR spectra!
3x better TeV morphology measurement
to contrast with radio/IR/X-ray images
16
Summary
• We stressed the importance of synergy of
multi-wavelength data to understand SNR
emission and their contribution to CR
• We introduced our strategy on modeling
current and future SNR observations using
our powerful numerical tool
• We elaborated on examples of new SNR
sciences achievable by next-generation
telescopes in conjunction with our code.
17
13年9月4日水曜日
Fly UP