Comments
Description
Transcript
広大放射光を用いた磁性体の分光研究 Hiroshima Synchrotron
!"#$%&'()*+,-./01!2345-46789 :::::::::;<<=>?<@?ABCDEFGH"<<;IJKL Hiroshima Synchrotron Radiation Center http://www.hsrc.hiroshima-u.ac.jp/ BL-9A: High resolution ARPES with low h! photons (h!=4-40eV) XYZ[.\]^_/*5>-.`a XgYhdih`ajkijhlm BL-14: Core absorption linear and circular dichroismd+h!=100-1200eV, BL-9B: Spin polarized photoelectron spectroscopyd(h!=16-300eV) bcdef BL-7; Photoelectron spectroscopy of Solids +h!=30-380eV, BL-1: High resolution ARPES with VUV photons +h!=26-300eV, Ouiline !"#$%&'()*+XMCD, XLD,-. &fcc Fe/Cu/*01 HiSOR BL-14DEFG!"#$-.HI HiSOR BL-14 (BM) &2/*Mott345 YTiO3 6789:;2/*<=>.?@-. &Co2MnGe &NiMnSb &Ru2-xFexCrSi 8AB!C-".?@-. &fcc Co ultrathin film/Cu #$-. !"#$%&' JKLM* NOP#QRSTUVW XMCD XLD X-ray magnetic circular dichroism Linear dichroism of YTiO3 Cr/ fcc Fe Properties YTiO3 (d1 system) · Mott-Hubbard type insulator (d) (d) · Ferromagnet ( TC = 30K ) eg xy t2g yz zx nopqr ! Jahn-Teller distortion K. Yaji, in prep. Linear dichroism of YTiO3 ! ! Linear dichroism of YTiO3 3 YTiO3 T=300K 10 -4 Orbital ordering GdFeO3-type structure 0 Ti L23 XAS & XLD spectra "+ = c1 zx + c 2 yz a-plane -6 ! ! ! Antiferro-orbital ordering is responsible for the ferromagnetism. • Polarized neutron diffraction (PND). c1 ~ 0.6 (J. Akimitsu et al., J. Phys. Soc. Jpn. 70 (2001) 3475.) c1 ~ 0.7 • Resonant X-ray scattering (RXS). ! (2002) 184419.) (H. Nakao et al., Phys. Rev. B 66 c1 ~ 0.8 • NMR (M. Itoh et al., J. Phys. Soc. Jpn. !68 (1999) 2783.) ! 10 -4 (d) 0 -4 calc. Fc - Fa (c1=0.8) b-plane exp. Fc - Fa exp. -{(Fb - Fc)+(Fa - Fb)} -2 (b) 6 c-plane 3 exp. Fa - Fb calc. Fa - Fb (c1=0.8) -4 (d) (a) 2 10 Normalized Intensity of XLD ( x 10 -4 ) "# = c1 zx # c 2 yz "#! "+ exp. Fb - Fc calc. Fb - Fc (c1=0.8) -3 0 Orbital ordering pattern in YTiO3. (c1~0.7) -3 F. Iga et al., Phys. Rev. Lett. 93 (2004) 257207. Fig.4 (c) 460 470 480 Photon Energy ( eV ) F. Iga et al. s5>.?@-. Linear dichroism of YTiO3 .?@-.>yi F. Iga et al., Phys. Rev. Lett. 93 (2004) 257207. Integrated XLD intensities exp. c1 = 0.9 c1 = 0.8 c1 = 0.7 c1 = 0.6 a-plane (Ib – Ic) / I –0.0271 –0.01474 –0.02036 –0.02903 –0.03675 b-plane (Ic – Ia) / I –0.00556 –0.00769 –0.00100 +0.01011 +0.02100 c-plane (Ia – Ib) / I +0.0261 +0.02243 +0.02136 +0.01892 +0.01573 {(Ib–Ic)+(Ic–Ia)+(Ia–Ib)}/I –0.0066 0 0 0 0 (Ib – Ic) /(Ia – Ib) –1.038 –0.365 –0.95 –1.53 –2.33 (Ic – Ia) /(Ia – Ib) –0.213 –0.635 –0.05 +0.534 +1.333 (d) "± = 0.8 zx ± 0.6 yz well explains the observed data. Consistent with NMR result. EF : z{O|}~ EV : $•}~ EB : €•tuOv: EK : .?@>‚ƒtuOv: tuOv:„…† h" = E B + ! + E K ! s5>.?@-. ‡ˆ.?@-.>yi s5>.?@-. • Multi-channel detection • High angular resolution < 0.1° • High energy resolution < 5meV ‰Š>.?@Z‹Œ• ‡ˆ.?@Z‹Œ• .?@tuOv:-wx Electron inelastic mean free path (IMFP) VUVŽ•. Properties of Co2MnGe HXŽ•. Properties &L21 structure (a~5.74Å) &Very high Curie temperature TC~905K &Large magnetization M ~ 5 µB/unit cell Co2MnGe Half metallic energy band structure first predicted by S.Fujii and S.Ishida et al. JKLM S. Fujii, S. Sugimura, S. Ishida and S. Asano, J. Phys.: Condens. Matter 43 (1990) 8583. NOPLM Possible applications to spintronics devices!! Spin injection into semiconductor with high spin pol. TMR device with huge MR ratio.. JK–NOP>?@—˜\-™š&“›œ Only a few reports on the experimental study of the electronic structure. Photoelectron spectra with hard X-ray Photoionization cross section SPring-8 BL-22/29XU(HX) HXŽ•. Ge4s/Co3d~0.01 Ge4s/Mn3d~0.02 8keV ”400• &T=40K K. Miyamoto et al. &Resolutions: 350/250meV Bulk sensitivity has improved. Ge 4s&4p bands are emphasized. Ionization cross section: Ge4s/Co3d~4 Ge4s/Mn3d~10 VUVŽ•. Co&Mn3d NB•‘’%D&“ 3.5keV 4s&4p NB•‘’%D&“ Ge 4s /Co3d~ 4 Ge 4s /Mn3d~10 @3.5keV Overall agreement between the experimental and theoretical DOS. The observed photoelectron structures are consistent with the calculated DOS except for the energy shift of the peaks toward higher EB. ¼š^«8AB¸¹½Q Ru2-xFexCrSi Ru0.5Fe1.5CrSi : Valence band PES spectra k)*' : ¢£,¤¥ ¦(§¨gYh) majority ¾¿6789:(L21);<=Ru2-xFexCrSi /©M~2µB/formula unit Ru0.5Fe1.5CrSi Ru4d Ru4d B C minority Tc ~ 460K EF ¡>—˜ªC‘«^ ¬-®>¯°y@±²>³(† Ru4d/Fe3d ~0.01 Ru0.5Fe1.5CrSi valence band Fe3d, Cr3d A h!= 3500eV ¬-ÀÁ,k*“ : Ã¥,XÄ ¦(§¨gYh) Ru2-xFexCrSi ‘´µ¶·«^8AB¸¹C\º» Ru4d/Fe3d ~2 690eV 490eV ¼š^«8AB¸¹½Q –š¶ÅÆ 100eV K. Sakamoto et al. K.Matsuda.et.al., J.Phys.:Condens.Matter.17.5889(2005) HI&NB•'•(³(†+)–>žŸ HI&NB•'•–>žŸ - experiment h!=3500eV NB•'•R¢£,¤¥ ¦+§¨gYh, - band calc NB•'•R¢£, ¤¥ ¦+§¨gYh, ³(†+ h!=3500eV : experiment : Ru4d : Fe3d : Cr3d : Si3p h!=690eV Ru2-xFexCrSi Ru2-x(Fex-yCry)(Cr1-yFey)Si (Fe-Cr disorder) y=0.125 y=0.25 h!=3500eV - experiment - band calc h!=490eV h!=100eV EF ¡ : Fe3d, Cr3d A (EB~2eV) : Fe3d B,C (EB=4~8eV) : Ru4d EF ¡>2C=Y EF disorder:y >ÇÈ ¡>2C=É Schematic Figure of Mott Scattering Spin Polarized Photoelectron Spectroscopy Photoelectron intensity v.s. Electron kinetic energy • Spin-orbit interaction Energy conservation VLS = h" = EB + ! + Ekin Ze 2 v v (s " l ) 2 2 3 2m c r • Experimental Asymmetry Spin polarization P= ! A= N" # N! NL " NR = Seff # P NL + NR • Efficiency N" + N! ! I " = # Seff2 I0 "10-4 low efficiency#large photon flux ! Purpose of this work Spin resolved photoemission experiment with recently developed spin detector Top view We chose magnetic thin film of Co/Cu(001) as a first example r M sample Pass energy = 5eV for a test measurement to check the reliability of our SARPES system. 40º The other reasons for this experiment, 1. For Co/Cu, it is easy to control the film thickness. 2. In-plane easy magnetization axis, suitable for our system. 3. A magnetic dichroism of spin-resolved valence band photoemission spectra could be quite useful. Un-polarized light [110] [1 1 0] ! Hemispherical electron analyzer: (OMICRON EA125) Angular resolution = ±1˚ Total energy resolution 110meV e! 100mm ! Film growth of Co on Cu(001) He discharge lamp (Gammadata Scienta VUV5000) Angle scanned along Base pressure: 1.2x10-8 Pa E-beam evaporation AES and RHEED oscillation was used for thickness determination ! [1 1 0] SARPES spectra of 6.5ML Co/Cu(001) K. Miyamoto et al. Clean and contaminated SARPES spectra for normal emission K. Miyamoto et al. This state disappears upon 0.1 L O2 adsorption. 47º 42º 47º 47º 37º X 42º 42º 32º 37º X 37º X ! 32º 28º ! 32º 20º 28º 28º 12º 20º 20º $=0º " 12º 12º $=0º " $=0º " ! $=0º Surface resonance d state has been observed. ! Future plan Summary ()*+,-./0123456)74#$84 Soft X-ray (hv: 500-1000eV) NOP>?@—˜ "E # 100 $ 300 meV Hard X-ray (hv: 3.5-10keV) VUV (hv: 20-100eV) ¡>?@—˜ "E < 10 meV Ê:zËÌO*ÒØ>8ABDÙ…š_?@—˜\-Ú&“ 8AB!C-".?@-. +SARPES @HiSOR, with VUV and low energy photon! JK ! Ê:zËÌO+–ÍÎÏÐG,6789:;2/*<= &NiMnSb ! &Ru2-xFexCrSi Low energy photon (hv<10eV) EF Contaminated ! ! &Co2MnGe Clean NOP>?@—˜ ¡>,ÑÒ?@ÓÔUz{O|ÕÖ×: ! "E < 5 meV &JKRÞKEßàNOP?@ÓÔ>-™ &8AB-"z{O|ÕÖ×: 1. Co2MnSi, Co2MnGe, NiMnSb, Ru2-xFexCrSiÒØ>Û¬2. Û¬-01\ÜÁ (Ý.R MgO UGaAs) 8AB-".?@-. ‡á`aâ ‡á`aâ & HiSOR BL7 & 14Z[.):*97B XgYhYhãih`aj &YTiO3 äå.æçUèéêëUìíîïU£ðñò XgYhZ[.jh`aóBÌ: XgYhYhãih`aj þÿ!"U#$"åU%$&eUÁ¥'(£ðñò XgYhZ[.jh`aóBÌ: & i`/Spring-8 & y`/Spring-8 CDæçUEcFòUG¥ñHUþIýJU«KLçU H. B. HuangU¥®¼, LMN ôõö÷Uø¥ùúUûü/úý & 8AB&!C-".?@-.+, XgYhYhãB2k)jh`aj &Co2MnGe O<PQjhYhdR£Sæ &NiMnSb TUhãYhd§Vdõ -d.U/£0&1Ug¥02Uûü/úý 3Ü0åU1í4†U56Y7U¤0î2 MNOPQRSTUQVMWX &JASRI/Spring-8 É8ñ’U9:;(Uä<=>UÉ?@A &Ru2-xFexCrSi §¨gYhdÃ¥&WUXÄXYU0ìXZ dddddddd ¢£d[U¤¥'å XgYhYhãih`aj äå.æç(D3) &fcc Fe/Cu/*01 h\]^`a_ XgYhYhãih`aj #$"å(D1) &fcc Co/Cu, Co2MnGe XgYhYhãih`aj %$&e (M2) &Ru2-xFexCrSi, NiMnSb