Comments
Description
Transcript
ハイパー核の生成・崩壊スペクトル - J-PARC分室
KEK(東海)研究会「原子核媒質中のハドロン研究=魅力と課題」 2013年8月5-6日 KEK東海キャンパス・東海1号館116号室 ハイパー核の生成・崩壊 スペクトル 媒質中のハイペロンの性質を探る 原田 融 Toru Harada Osaka Electro-Communication University/ J-PARC Branch, KEK Theory Center 1 Contents 1. Introduction 2. Hyperon mixing in hypernuclei − DCX: (π−,Κ+), (Κ−,Κ+) 3. CDCC (連続離散化チャネル結合法) − YΝΝ systems, (Κ−,π−/+) 4. Summary Keywords Hyperon mixing + TBF + DCX 2 Introduction 3 ストレンジネス核物理 ストレンジネスは原子核深部を探るプローブ –ハイペロンはパウリ排他律を受けない Impurity Physics Keywords Hyperon mixing + TBF Baryon-Baryon Interaction – YN, YY Interaction based on SUf (3) – 核力の統一的理解・斥力芯の起源 – “糊”としての役割 – 原子核構造の変化 “Exotic” Nuclear Physics – ストレンジネスが拓く新しい原子核の面白さ Neutron Starの構造と進化 – 高密度核物質, EOS, 最大質量, 冷却, … Serious Problems from hyperon-mixing (Takatsuka) 4 Neutron star core = “An interesting neutron-rich hypernuclear system” xiY g= = Coupling constant ratio; iY g iN (i σ , ω , ρ ) UΣ < 0 UΞ < 0 Λ,Σ,Ξ,.. UΣ > 0 UΞ < 0 Κ−, .. UΣ > 0 UΞ > 0 [R. Knorren, M. Prakash, P.J.Ellis, PRC52(1995)3470] [F. Weber, PPNP 54(2005)193] Cassiopeia A nebula NASA/CXC/SAO. Hyperon-mixing 5 P. B. Demorest et al., Nature467(2010)1081 PSR J1614-2230 1.4M Maximum Mass/Radius Hyperons and massive neutron stars Z.H.Li, H.-J.Schulze, PRC 78 (2008) 028801 BHF without hyperons with hyperons BHF+TBF(UIX) 1.97M PSR J1614-2230 1.44M P. B. Demorest et al., Nature467(2010)1081 Maximum Mass/Radius Softening on the EOS YN,YY: extra repulsion TNIu S. Nishizaki, T. Takatsuka, Y. Yamamoto, PTP105(2001)607; NPA691(2001)432 短距離斥力をハイペ ロン混合により回避 Hadron-Quark crossover nC (Y ) ≈ (2 − 3)n0 K. Masuda, et al., arXiv:1205.3621v2 [nucl-th] 7 Thermal evolution of neutron stars Rapid neutrino emission via weak processes (Direct/Modified Uruca) Λ → p + e− +ν e Σ − → Λ + e− +ν e Cooper pair 1S [iner crust] 0 3P -3F (n),1S (p) [core] 2 2 0 Standard cooling YY pairing Hyperon cooling [S. Tsuruta et al., Astrophys. J 691(2009)621] Standard cooling with heating TNI6u-EOS 1.47 Hyperon cooling 1.52 1.53 1.60 Msun Cooling of Neutron star Cooling relaxation? Hyperon superfluidity v.s.YY intarctions Nagara event ∆BΛΛ~0.67 MeV no ΛΛ superfluidity ? very sensitive to properties of YN, YY interactions 8 Dynamics in Strangeness Nuclear Systems ΣΣ Ξ Fujita-Miyazawa 3BF ∆ ΛΣ ΝΞ ΛΛ Ν∆ Λ Λ N ~28 MeV ΞΝ-ΛΛ coupling ΝΣ N N N very large ? ~72 MeV ΝΛ ~300 MeV Nuclei S=0 ΛΝ-ΣΝ coupling S = −1 ΝΝ ~1-2 % S = −2 Σ N Λ N Strong ΛNN 3BF ? Hypernuclei Various effects on the hyperon mixing Related to the 3BF in nuclei 9 DWIA calculation for production cross sections Inclusive differential cross section J. Hufner et al, NPA234 (1974) 429; E.H. Auerbach et al., Ann. Phys. 148 (1983) 381; C.B. Dover et al.,PRC22 (1980) 2073. Transition-amplitude for K−NπY. ,Σ ,Σ Production Amplitude M M F (R ) = Fˆ | Ψ A = CY ;τ f KN −π Y χ p( π− )* ( C R ) χ p( +K ) ( C R )Ψ A (R ) MB MA Distorted-waves for outgoing and incoming mesons χ p( π− )*= (r ) χ p( + ) (r ) K ∑ L +) 4π (2 L + 1)i L j (LM (r )YLM (rˆ ) Green’s function The relation 10 Λ Σ 0 Σ + Σ− Hyperon mixing in hypernuclei 12 G-matrix calculation in symmetric nuclear matter Λ single-particle potential depth ∑ U Λ (k F , ε Λ= ) N’ = ε Λ +ε N ) | k Λ , k N k Λ , k N | g ΛN (ω kN ) vYN + vYN gYN (ω= QN gYN (ω ) ω − QTQ Effects of the ΛN-ΣN coupling in nuclear matter 0 ΛN single channel N −20 N Λ −40 −50 ΛN-ΣN coupled channel Λ = N Λ N Spin-isospin saturated Exp. Y.Nogami, E.Satoh, NPB19(1970)93 as= -1.8fm, at= -1.6fm N Λ + N Λ Ν‘ N Σ Λ Σ + N Λ N Spin-isospin saturated ~−28 −30 N + = −10 kF Pauli-operator G-matrix (unit in MeV) k F = 1.35fm −1 −34.2 ΛNN three-body force repulsive vΛN ,ΣN −50.6 Overbinding! −52.9 QN vΛN ,ΣN eΣN suppressed 13 Λ single-particle energies in symmetric nuclear matter U Λ (k F , ε Λ ) OBEP: Nijmegen YN potential Models k F = 1.35fm −1 G-matrix calc. QTQ Scattering length as at 0 -1.90fm -1.96fm (unit in MeV) odd -2.29fm -1.88fm -2.78fm -1.41fm -2.10fm -1.86fm -2.51fm -1.75fm +0.4 +4.5 +6.9 -12.8 -14.4 -0.9 -8.0 -9.2 +0.9 -0.2 -3.2 -12.7 -13.7 -10.0 -10 1S 0 -7.4 -12.3 -14.6 -22.9 -20.7 3S - 3D 1 1 -20 -28 -25.1 -30 -23.3 -31.6 NSC89 NHC-F -30.8 Exp. -40.5 -40 -26.0 Y. Yamamoto, H. Bando, PTP.Suppl.81(1985)9 Y. Yamamoto, et al.,PTP.Suppl.117(1994)361. Th.A.Rijken, V.G.J.Stoks, Y.Yamamoto, PRC59(1999)21. Th.A.Rijken, Y.Yamamoto, PRC73(2006) 044008. -21.4 -31.1 -34.3 NSC97e NSC97f -38.5 NSC04a NHC-D Bando-Yamamoto 1985 -23.8 -21.5 Yamamoto et al. 1999 RijkenYamamoto 2006 -35.6 NSC08a -34.0 NSC08b RijkenYamamoto 2009 Overbinding Problem on s-Shell Hypernuclei The Underbinding Problem The Overbinding Problem 3 Λ 4 Λ H He 5 Λ He 0.0 -0.31 MeV 3 Λ H 4 Λ 5 Λ He He 0.0 1+ -1.24 MeV -0.31 MeV spin-spin (σ N ⋅ σ Λ ) Underbound 0+ -2.39 MeV [Exp.] -3.12 MeV Overbound 1+ -1.24 MeV 1+ 0+ 0+ -2.39 MeV [Exp.] -3.12 MeV VΛN,ΣN Q VΣN,ΛN e suppressed ΛN single-channel calc. g-matrix calc. with ΛN-ΣN(D2) Dalitz et al., NP B47 (1972) 109. Akaishi et al., PRL 84 (2000) 3539. 15 “The 0+-1+ difference is not a measure of ΛN spin-spin interaction.” by B.F. Gibson Hyperon-mixing ΛΝΝ three-body force (unit in MeV) 4 Λ 4 Λ ( H) Σ↑ He n ↓ Λ ↑ p↓ p↑ 0.0 1+ -1.24 1+ -1.08 spin-spin ΛNN force -2.39 0+ 0.38 0.86 -2.28 0+ phenomenological Exp. VΛN + VΛNN V = 6.20 VMC R. Sinha, Q.N.Usmani, NPA684(2001)586c 1+ 1+ -1.03 -1.04 -1.04 0+ Coherent coupling -2.27 0+ Pcoh.Σ = 1.9% D2 1+ -1.20 1+ -1.21 -1.52 0+ 1+ -0.68 -1.43 0+ Coherent coupling -2.10 0+ + Σ↑ + n ↓ Λ ↑ p↓ p↑ 1+ -0.70 Σ↑ n ↓ Λ ↑ p↓ p↑ -0.68 1+ -0.70 1+ -0.97 0+ Coherent coupling -2.18 0+ Coherent coupling -2.51 0+ Pcoh.Σ = 0.7% Pcoh.Σ = 0.9% Pcoh.Σ = 2.0% SC97e(S) SC97f(S) SC89(S) Breuckner-Hartree-Fock Y. Akaishi, T.Harada, S.Shinmura, Khun Swe Myint, PRL84(2000)3539 16 The Λ-Σ coupling effects in neutron matter S.Shinmura, Khin Swe Myint, T.H., Y.Akaishi, J.Phys.G28(2002)L1 Excited (1p1h) states usually included in g-matrix Single particle potential for Λcoh. Ground states 0 5.8% 1.4% 3.3% NSC97e MeV -20 -40 8.2% NSC89 16.3% -60 Λcoh mixing probability coherent Λ-Σ coupling 22.6% -80 0 0.5 1 1.5 2 2.5 nucleon density/normal density 3 The Λcoh mixing is enhanced in the neutron-excess environment. 17 Production of neutron-rich Λ-hypernuclei with the DCX reaction E10@J-PARC 9 Λ He Li(π , K ) H 9 Be(π − , K ) He 6 − + 6 Λ + 9 Λ 6 Λ H “Hyperheavy hydrogen” Y.Akaishi, NPA738(2004)80c Khin Swe Myint et al., FBS. Suppl. 12(2000)383 5H Larger neutron-excess Λ Attraction Λ binding energies Coherent Λ-Σ coupling in neutron-excess environment Coherent Λ-Σ coupling Extremely enhanced 18 First production of neutron-rich Λ hypernuclei 10 B(π − , K + ) 10Λ Li Λ spectrum by DCX (π−,Κ+) reaction at 1.2GeV/c KEK-PS-E521 P. K. Saha, et al., PRL94(2005)052502 2.5 MeV FWHM 11.3±1.9 nb/sr g.s. Cross sections - pπ=1.20 GeV/c dσ ≈ d ΩL 11.3±1.9 nb/sr - pπ=1.05 GeV/c 9Li+Λ dσ ≈ d ΩL 5.8±2.2 nb/sr ~1/1000 g.s. 9Li+Λ 12 C(π + , K + ) 12Λ C (1.2 GeV/c) 17.5±0.6 µb/sr 19 First observation of the superheavy hydrogen Λ6H M. Agnello et al., NPA881(2012)269. M. Agnello, et al., PRL108 (2012) 042501. observation of 3 candidate events of 6ΛH bound state BΛ = 4.0 ± 1.1 MeV BR(DCX) / BR(NCX,12LC) ~ 3x10-3 R = (5.9 ± 4.0) · 10−6/K−stop 6 Λ H 3 events 4 Λ H(1+ ) + 2n 4 Λ H(0+ ) + 2n − K Stop + 6 Li → Λ6 H + π + (252MeV/c) 6 Λ H → 6 He + π − (130MeV/c) E10@J-PARC Produce neutron-rich hypernuclei: 6ΛH and 9ΛHe precise measurement of B.E. of 6ΛH is possible 20 (π-, K+) -Double Charge Exchange (DCX) Reaction Two-step process: π- K+ π − p → K 0Λ K 0 p → K +n p π p →π n π 0 p → K +Λ − 0 One-step process: p p p π- n n Σ p ↔ Λn p p p K+ Hyperon-mixing π − p → K +Σ− − via doorways caused by ΛN-ΣN coupling K0 Λ K 0 p → K +n π − p → K +Σ− Σ− π − p →ΛK 0 Λ Doorway Σ− p Λ n Λ n 21 Λ spectrum by DCX (π−,Κ+) reactions at 1.2GeV/c Harada, Umeya,Hirabayashi, PRC79(2009)014603 Spreading potential dep. WΣ U X = 11 MeV is fixed. PΣ−=0.57% 10B 9Li+Λ −WΣ = 2− (sΛ) 3+ (pΛ) UX = Two-step mechanism 22 Σ− s.p. potentials (fitted to the Σ− atomic data) VΣ ? Density-dependent (DD) potential (Phenomenological ) C.J.Batty et al., Phys.Rep.287(1997)385, E. Friedman and A. Gal, Phys. Rep. 452 (2007)89. DD-A’ Relativistic mean-field (RMF) potential RMF J. Mares et al., NPA594(1995)311. K.Tsubakihara et al., EPJA33(2007)295 LDA Folding-model potential for LDA with G-matrix D. Halderson, Phys. Rev. C40(1989)2173. T.Yamada and Y.Yamamoto, PTP. Suppl. 117(1994)241 J. Dabrowski, Acta Phys. Pol. B31(2001)2179 T.Harada, Y.Hirabayashi, NPA759 (2005) 143; 767(2006)206 YNG-F Σ-1粒子ポテンシャルは強い斥力であることを示唆 23 28Si(π−,Κ+) reaction at 1.2GeV/c 28Si Normalization factor RMF DD-A’ Consistent with the potentials fitted to − Σ - atomic data !! Σ LDA-NF LDA-S3 WS-sh teff ρ T.Harada, Y.Hirabayashi, NPA759 (2005) 143 24 Σ s.p. energies in symmetric nuclear matter −4.9 +10.3 May, 2010 update U Σ (k F , ε Σ ) kF = 1.35 fm −1 G-matrix calc. +40 −10.5 +30 1/2,1S 0 odd +20 3/2,1S 0 −8.0 −17.1 −10 −30 +6.5 −1.5 +5.3 +6.7 −12.0 +6.7 −11.6 −2.5 Bando-Yamamoto 1985 +11.6 +2.4 −12.4 +13.8 −9.2 +41.2 −12.9 NSC89 NSC97f Yamamoto et al. 1999 ESC08b +13.4 −23.9 ESC08a +7.5 fss2 Rijken-Yamamoto 2009 −8.8 −15.3 +20.3 −10.1 −4.2 −11.3 1/2, 3S - 3D 1 1 NHC-D −14.3 +14.9 −14.9 −16.3 −20 +52.6 −24.6 NHC-F 0 +6.7 +44.6 +37.1 3/2, 3S - 3D 1 1 −6.6 −27.0 +4.1 +22.0 +11.3 −11.7 −8.4 −17.1 −10.6 +7.7 −18.9 +10 −5.6 −21.9 −26.9 −26.0 Fujiwara et al. 2006 including Quark exchange terms ESC04d −36.5 (unit in MeV) ESC04a Rijken-Yamamoto 2006 25 Studies of Ξ- s.p. potentials 28Si VΞ ? Ξ-hypernuclei via (K-,K+) reactions [C.B. Dover, A.Gal, Ann. Phys. 146 (1989) 309.] knowledge is limited VΞ0 = −24 ± 4 MeV for r0 = 1.1 fm (WΞ0 −1 MeV) BNL-E885 DWIA analysis of 12C(K-,K+) data at 1.8GeV/c T.Iijima et al.,NPA546(1992)588. Tadokoro et al.,PRC51(1995)2656 12C VΞ0 −16 MeV P.Khaustov et al., PRC61(2000)054603 VΞ0 −14 MeV 12C Semi-Classical Distorted Wave Model Analysis M. Kohno et al.,PTP123(2010)157;NPA835(2010)358. VΞ0 = −20, −10, 0, +10, +20MeV fss2 26 Ξ- spectrum in DCX (K-,K+) reactions at 1.8GeV/c T. Harada, Y. Hirabayashi, A. Umeya, PLB690(2010)363. 16O 15N+Ξ- WΞ0 ( E ) −3 MeV Woods-Saxon = r0 1.1 = fm, a 0.6 fm VΞ0 = −24 MeV 1.5MeV FWHM −14 MeV Spin-stretched Ξ– states can be populated due to the high momentum transfer. ds/dΩ[15N(1/2-)⊗sΞ ](1-) = 6 nb/sr, ds/dΩ [15N(1/2-)⊗pΞ](2+) = 9 nb/sr for VΞ=-14 MeV. 27 Ξ-ΛΛ spectrum in DCX (K-,K+) reactions at 1.8GeV/c 16O 15N+Ξ- Two-step mechanism K − p → π 0Λ π 0 p → K +Λ Ξ− w/o ΞN-ΛΛ coupling One-step mechanism K − p → K +Ξ− Ξ − p ↔ ΛΛ ΞN-ΛΛ coupling Doorway ΛΛ Hyperon-mixing [T. Harada, Y. Hirabayashi, A. Umeya, PLB690(2010)363] E07@J-PARC −14MeV with ΞN-ΛΛ coupling 28 Remark Studies of the DCX reactions (π−,K+),(K−,K+) for hypernuclear productions are very important and promising . Keywords Hyperon mixing + DCX 29 CDCC (連続離散化チャネル結合法) 30 Observation of a Σ4He Bound State BNL-AGS (1995-) 4 Σ T. Nagae, T. Miyachi, T. Fukuda, H. Outa, T. Tamagawa, J. Nakano,R.S.Hayano, H. Tamura, Y. Shimizu, K. Kubota, R. E. Chrien, R. Sutter, A. Rusek, W. J. Briscoe, R. Sawafta, E.V. Hungerford,A. Empl, W. Naing, C. Neerman, K. Johnston, M. Planinic, Phys.Rev.Lett. 80(1998)1605. He B= 4.4 ± 0.3 Σ+ Τ=1/2, 3/2 Τ=3/2 Γ = 7 ± 0.7 T 1/ 2 J π = 0+ MeV MeV 4.6 MeV 7.9 MeV Theoretical Prediction T.Harada, S.Shinmura, Y.Akaishi, H.Tanaka, NPA507(1990)715. 31 Production by 𝐾 − beam from 3He targets 3He 𝚺 72MeV 3H 𝚺 75MeV 3He∗ Λ 77MeV p+p+Λ (𝐊 − , 𝛑− ) 𝟑 3n 𝚺 p+n+Λ (𝐊 − , 𝛑𝟎 ) SCX He n+n+Λ d+Λ 3H Λ (𝐊 − , 𝛑+ ) DCX Model wave functions ϕY Φ (NN) wfs calculated by realistic Tamagaki-C3G pot. “NN” core ......... Ψ ( He) = Φ ({ pp})ϕΛ + Φ ([ pn])ϕΣ+ ,t 3 Y +Φ ({ pn})ϕΣ+ , s + Φ ({ pp})ϕΣ 0 [ N= N1 N 2 − N 2 N1 3S1,T =0 1N2 ] {N1= N 2 } N1 N 2 + N 2 N1 1S0,T =1 Ψ ( n) = Φ ({nn})ϕ Λ + Φ ([ pn ])ϕ Σ− ,t “NN” core ......... ......... ....... ......... For (K-,π+) 3 Y ......... ....... ....... For (K-,π-) +Φ ({ pn})ϕΣ−, s + Φ ({nn})ϕΣ 0 33 Effective “2N”-Y potentials for 3ΣHe (Jπ=1/2+) [pn]Σ+ −{pn}Σ+ {pn}Σ+−{pp}Σ0 {pp}Λ−[pn]Σ+ U 00 = Φ 0 V ex Fˆ ex Φ 0 {pp}Σ0 {pp}Λ [pn]Σ+ [pn]Σ+−{pp}Σ0 Real YN potential NF made by Shinmura Imag. +spreading (2N breakup) Inclusive spectrum by 3He(K−,π-) reactions at 600MeV/c Λ 3 Σ {pp}Λ Λ-Σ conv. He Σ [pn]Σ+ {pp}Σ0 {pn}Σ+ 微視的チャネル結合(MCC)法 ハイパー核物理 YN, YY int. 3BF 相互作用 -KMT, (KAT) -g-matrix, effective int. Folding model OMP(SF,DF,DF,..) 核反応 -Elastic/Inelastic Scatt. -Coupled-channels -Faddeev, SHM, CDCC 核構造 -Shell-model, Cluster-model, -FB-model, MF-model -OCM, RGM, AMD, HF, MF -Ab initio 生成・崩壊 +DWIA,CC,GFM,.. Inclusive/Exclusive spectra 36 Model wave functions ϕY Φ (NN) wfs calculated by realistic Tamagaki-C3G pot. “NN” core ......... Ψ ( He) = Φ ({ pp})ϕΛ + Φ ([ pn])ϕΣ+ ,t 3 Y +Φ ({ pn})ϕΣ+ , s + Φ ({ pp})ϕΣ 0 [ N= N1 N 2 − N 2 N1 3S1,T =0 1N2 ] {N1= N 2 } N1 N 2 + N 2 N1 1S0,T =1 Ψ ( n) = Φ ({nn})ϕ Λ + Φ ([ pn ])ϕ Σ− ,t “NN” core ......... ......... ....... ......... For (K-,π+) 3 Y ......... ....... ....... For (K-,π-) +Φ ({ pn})ϕΣ−, s + Φ ({nn})ϕΣ 0 37 Continuum-Discretized Coupled-Channel Method (CDCC) M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986) projectile r continuum core+n R target by Takashina We can describe the spectra taking into account the continuum couplings together with the nuclear breakup processes. 38 CDCC method for continuum ppΛ states Coupled-Channel Equation (pp-Λ) Microscopic Folding Potential for “pp”-Λ Effective ΛN potential SG-type (Phenomenological) a, reff Method of momentum bins (discretization) Realistic ΝN potential by G3RS kf (fm-1) 0+(L=0) 1.0 ρ 0.8 r 0.4 ⊗Λ 0.6 0.2 0.0 {pp}1S0 Elementary cross section of K-nπΛ reaction Λ 870 MeV/c Coupled-channels DWIA calculation for Λ production Coupled-channel Green’s function T.Harada, NPA672(2000)181 (E ) = G ( 0) ( E ) + G ( 0) ( E )UG (E ) G f f f f GΛ(0)0 (0) G (0) Λ 1 Gˆ ( E f ) = (0) G ΛN Im Gˆ = Uˆ U 0,0 U 0,1 U 0,N U U 1,0 1,1 = U N ,N U N ,0 † ( − )† (0) ˆ ( − ) ˆ ˆ ˆ Ω G Ω + G {Im } ∑ ∑ {WΛi }Gˆ Λi i i Λ escape Strength function Spreading (2N breakup) Green’s function method Morimatsu, Yazaki, NPA483(1988)493 Green’s function 41 Inclusive spectrum in 3He(K−,π−)ppΛ at 870MeV/c Test of convergence nbin=10 0 ≤ 𝑙 ≤ 𝑙max = 0 nbin=5 0 ≤ 𝑘f ≤ 𝑘max = 1.0 fm−1 nbin=5 kf (fm-1) nbin=10 0+(L=0) 1.0 0.8 0.8 ⊗Λ 𝟑 He 0.6 0.4 0.4 0.2 0.2 0.0 (𝐊 − , 𝛑− ) kf (fm-1) 1.0 0.6 nbin=5 nbin=10 p+p 0.0 0+(L=0) Inclusive spectrum in 3He(K−,π−)ppΛ at 870MeV/c 𝑞Λ ~80 MeV/c Total, S =1/2 L= 0+ 1− 2+ Inclusive spectrum in 3He(K−,π−)ppΛ at 870MeV/c 𝑞Λ ~300 MeV/c Total, S =1/2 1− L= 0+ 2+ 3− Remark The coupled-channel framework is very important for calculating the spectra of the 3He(K−,π∓) reactions. taking into account K-N-πY amplitudes and threshold-differences . The effective “2N”-Y potential is constructed from the MS theory with correlation functions. More detailed investigations are needed. Full 3B calculations The calculated spectra of the 3He(K−,π+) reaction may be consistent with the E774 data due to the admixture of the NN core states. depending the ΣNN structure determined from the “2N”-Y potential. Both the π− and π+ spectra provide valuable information to understand the nature of the ΣNN states and also the YN (ΣN) interactions. To determine a quasibound state [+ −] or cusp state [− +]. 45 Conclusion Studies of the production and spectroscopy of strangeness nuclei are very interesting and exciting at J-PARC. ストレンジネスが拓く新しい状態の発見、”エキゾチック”な原子核 バリオン-バリオン間相互作用の理解、短距離斥力の起源 ハイぺロン混合と中性子星の2大問題 中性子星物質の状態方程式の解明 46 Thank you very much. 47