Comments
Description
Transcript
テイラーの冪級数
1 ͳͥϕΩ͔ڃʁ f (z) ͷۙࣅ f (z) = ༨ ”Ԡ༻ֶ̏ʵෳૉؔ” ”ࢿྉ̒” 3.1 3.2 3.3 3.4 ྻɾڃɾऩଋఆ (91–99)ɺ ϕΩ( ڃ100–105)ɺ ςΠϥʔͱڃϚΫϩʔϦϯ( ڃpp.112–119) an z n = n→∞ lim n=0 ∞ ak z k k=n n ak z k k=0 n = f (z) − ෦ͷݶۃ ak z k → 0 k=0 ෦༗ݶʹΑΓʮΉ͚ͩͷਫ਼ʯͷۙࣅ͕ཧ্Մೳ ϕΩڃ߲ผඍՄೳɺ߲ผੵՄೳ f (z) = n an z n f (z) = n nan z n−1 ऩଋԁ෦୯࿈݁ྖҬɻͦͷதͰ z0 ͱ z1 Λ݁Ϳҙͷܦ࿏ C ʹର͠ C ϕΩͰڃ༩͑ΒΕΔؔ (106–110) ∞ f (z)dz = z1 z0 f (z)dz = n z1 z0 an z n dz ʁ ղੳؔͦ͏ͨ͠ʮϕΩڃʯͰද͖ͰݱΔ͔ʁ ˰ ςΠϥʔͷఆཧʢyes, where ϕΩڃͷ ऩଋԁ෦ ʹ͓͍ͯʣ ʢ։ԁ൘ʣ ͞Βʹɼ a0 f (z) a1 = + + a2 + a3 (z − a) + ... 2 2 (z − a) (z − a) z−a ϩʔϥϯཹͱڃͷɽ ɽ ɽ 1 2 2 ͱڃϕΩؔ͢ʹڃΔඞཁࣄ߲ ∞ ෳૉͷڃɿ ෦ɿ n جຊྻ {zn }n ɿ ∀ > 0 ∃ N s.t. p, q > N ˰ |zp − zq | < (zn = xn + iyn ) n=0 n zk = k=0 xk + i k=0 n yk ࣮෦ͱڏ෦ɼ֤ʑͷ෦ i2 4 n i ྻ sn = 2 + i3 8 ऩଋྻ ˱ جຊྻ ʢ࣮ʹର͢Δٞͷ֦ுʣ k=0 i, −1, −i, 1, i... ͷมಈΛؚΈ 1 − in+1 : 1−i ༗ք͕ͩऩଋ͠ͳ͍ʢൃࢄʣ n+1 1 − 2i n+1 1 + ... = n→∞ lim = 1 − 2i 1 − 2i ྫɿ 1 + i + i2 + i3 + ... = n→∞ lim 1 + 2i + Cauchy ͷऩଋఆ 2.1 α ʹऩଋ͢Δͱ͢Δɽ ཁٻਫ਼ /2 ʹର͠ n > N ˰ |zn − α| < /2 for p, q > N , |zp − zq | ≤ |zp − α| + |zq − α| < { ʹٯzn = an + ibn }n ͕جຊྻͱ͢Δɽॴ༩ͷ > 0 : ʹର͠ɼn, m > N ˰ |zn − zm | < ͳΔ N ͕ଘࡏɽ |an − am |, |bn − bm | ≤ |zn − zm | ͔ͩΒ 1 i 1 i 1 i , , − , ... 1, , − , − , 2 4 8 16 32 64 lim sn = 0 {an }n , {bn }n ࣮ͷجຊྻͰऩଋ͢Δ n→∞ n ͕େʢn > N ʣʹͳΔͱɼݪͷճΓͷ͍ڱൣғʢখ ԁ൫ʣ෦ʹ sn , sm (m > n > N ) ີूͯ͠ग़ݱɽ ಛʹɼsn , sm ؒͷڑখɽ ie. جຊྻɿ |sn − sm | < whenever m > n > N ∞ ڃ n=0 n ෦ ͕ڃऩଋɿ ෦͕ෳૉͷྻͱͯ͠ݶۃΛ࣋ͭ ⎞ ⎛ lim n→∞ n k=0 zk = n→∞ lim ⎝ n xk + i k=0 n k=0 (∗) yk ⎠ = n→∞ lim n k=0 Αͬͯɼ z xk + in→∞ lim z ʹऩଋ ෦ͱ z ͷࠩʢ༨ʣ͕ݶΓͳ͘খʹ = 0 ˱ n→∞ lim ˱ zk ͕جຊྻ ∀ > 0, ∃ N s.t. N < p < q ˰ yk n=0 − zn ͕ऩଋ k=0 n lim zk n→∞ k=0 zn = z ˱ k=0 n ͜͜Ͱɼྻͷऩଋ n→∞ lim sn = s ˱ n→∞ lim |sn − s| = 0 ∞ Αͬͯɼlim z = lim a + i lim b n n n n n n ∞ zk → 0 k=n {zn = an + ibn }n ͕جຊྻ ͱ͢Δ Fn = {zk }k≥n ɿ༗ք (*)ɽ࣮෦ͱڏ෦ͷ۠ؒ In , Jn In = [ inf ak , sup ak ], Jn = [ inf bk , sup bk ]ɿ ༗ք k≥n k≥n k≥n k≥n ۠ؒ |In | = sup |ap − aq |ɿn Ҏ߱ͷ ap , aq ͷࠩͷ্ݶɽ p,q≥n ڃʢྻʣ͕ൃࢄ ⇔ ڃʢྻʣ͕ऩଋ͠ͳ͍ def n ΛेେʹͱΕ͍͘ΒͰ͘Ͱ͖Δɽ lim |In | = 0ɽ ∞ n→∞ {In }n ୯ௐݮগྻɽ Αͬͯ, lim In = ∩ In = {a} n→∞ n=0 ڏ෦ͷ۠ؒ Jn ಉ༷ʹ b ΛఆΊɼ݁ہɼ lim zn = a + bi (*) zn = an + ibn → w = a + ib ˰ an → a, bn → b n→∞ |a − an |, |b − bn | < |zn − w| = |(an − a) + i(bn − b)| → 0 ͭ·Γɼ|xn − a| → 0, |yn − b| → 0 3 4 q k=p+1 zk < ྫɿ زԿڃ 2.2 ∞ q = n n=0 ∞ n niθ r e , q = reiθ . n=0 q = 1 + q + ···q , q k n k=0 So, (1 − q) qk = k=0 1 − rn+1 e(n+1)θi 1−q ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ n 2 q = q + q + ···q k k=0 n k n+1 q = 1 − q n+1 1 r < 1 Ͱr → 0ɽ ʹऩଋ 1−q 1 − e(n+1)iθ , θ = 0 r = 1 Ͱൃࢄɿ as 1−q r > 1 Ͱɼൃࢄ ্͔هΒΘ͔Δ͕ɼ ऩଋڃ zn Ͱɼ֤߲ zn → 0 ∞ f (z) = n زԿ| Ͱڃq| = 1 ͷͱ͖ɿ ֤߲ |q n | = 1 → \ 0 Ͱൃࢄ |zn | ≤ bn ʢӈล࣮ʣɼ n n m bn < ∞ ˰ k=n zn ऩଋ ʢCauchyʣɽ ઈରऩଋ ⇔ m k=n zk ≤ ∞ def n=0 n ⎪ ⎩ 1 |q| < 1 1−q ൃࢄ |q| ≥ 1 m f (z) = ⎝f (z) ࢦؔ e z ⎧ ⎪ ⎪ ⎨ z =⎪ n ⎪ ⎩ 1 ։ԁ൘ |z| < 1 1−z ൃࢄ |z| ≥ 1 f (n) (0) 1 ͷ̩ల։... an = = n! n! ⎞ ⎠ z2 zN z N +1 + ··· + + + · · · |z| < N ͳΔ N ΛͱΔ 2! N ! ⎛ (N + 1)! ⎞ N z2 z z ⎝ + + · · ·⎠ ͜ΕΛԼͱهൺֱ 1+ N! N + 1 (N + 2)(N + 1) ⎞ z z 2 |z|N |z|N ⎝ 1 1 + + + · · ·⎠ → N! N N N ! 1 − z N bk < k=n thus, ∞ zn ҙͷ z ʹର͠ɼ ʮઈରऩଋʯ n=0 n! n+1 zn z ్த͔ΒزԿڃͷͳʹܗΕͦΕͰ̤̠˰ ߲ൺ zn < ∞ ˱ ෦ ͋Δෳૉʹऩଋ͢Δ m (*) جຊྻ zk → 0. ಛʹ m = n + 1 ͱͯ͠ɼ|zn+1 | → 0 k=n+1 |z1 + z2 | ≤ |z1 | + |z2 |: γϡϫϧπɽ̏֯ܗͷลͷ͞ʹؔ͢Δੑ࣭ 5 ∞ n=0 ⎛ ⎛ |zn | ͕ऩଋ ˰ ऩଋ ऩଋఆϧʔϧ͍Ζ͍Ζ͋Δ͕ɼඞ༻ʹԠͯ͡ಋೖ ه๏ |zk | ≤ zn n! 1+z+ (*) ⎧ ⎪ ⎪ ⎨ q =⎪ n n=0 n=0 ্|( هzn | = rn ) ʹ͔ΒΊͯΑ͘͏ऩଋఆϧʔϧ an (z − z0 )n ɽͲͷൣғͰऩଋ͢Δ͔͕ϙΠϯτ n=0 n+1 ∞ ∞ ϕΩ ڃf (z) = k=0 q = 1 ͷ߹ʢq = 1 Ͱࣗ໌ʹൃࢄʣ ⎧ n ϕΩڃ 3 n 6 = |z| → 0 ͷ߹ n+1 3.1 ʢʹڃର͢Δʣൺఆ๏ ∞ ڃ zn ∞ n=0 ཧɾҰൠԽɿ ൺఆ๏ ʢൺͷੳ๏ʹͮ͘جʣ z n+1 lim n z n =p<1˰ n zn ઈରऩଋ ेେͳ N s.t. n > N ˰ z n+1 z n k=1 ≤q<1 . zn → 0, · · · +zN +zN +1 +zN +2 · · · · · · +|zN | +|zN +1 | +|zN +2 | · · · · · · +|zN | +q|zN | +q 2 |zN | · · · ྫɿ n zn : n! z n+1 lim n z n z n+1 z n = =p>1˰ n+1 n!z (n + 1)!z n n = zn ൃࢄ ेେͳ N s.t. n > N ˰ |z| →0 n+1 z n+1 z n z n+1 zn → 1 ͷ߹ 1/(n + 1) n = → 1ɼ 1/n n+1 n+1 dt n k+1 dt 1 ≥ = = ln (n + 1) → ∞ 1 k k=1 k t t where z n+1 z n → 1 Ͱऩଋ͢Δྫɿ 1 2 n=1 n ∞ n2 1/(n + 1)2 → 1. = 1/n2 n2 + 2n + 1 n 1 n 1 n k dt =1+ ≤1+ 2 2 2 k=1 k k=2 k k=2 k−1 t =1+ ≥q>1 . |zN +k | ≥ q|zN +k−1 | ≥ q 2 |zN +k−2 | ≥ ... ≥ q k |zN |. zn = 0 (ऩଋ͢ΔͰڃͦͷ֤߲̌ʹऩଋ) so, lim n lim n k=1 1 k n ʢʹڃର͢Δʣൺఆ๏ 3.2 z n+1 ଓ͖ɿ zn = 1 ͷ߹ʁ ˰ Կͱ͍ͳ͑ݴʢ࣍ทʣ ⎡ 1 ⎤n 1 x−1 ⎦ =1+ =2− ≤2 2 t −1 1 n n dt ⎣ n+1 1 1 ≤ ෦୯ௐ૿Ճྻ 2 2 k k=1 k=1 k n ༗ք୯ௐ૿Ճྻऩଋ(*) (*) ্ ݶsupn an ࠷খ্քʢ্քͷɼ࠷খͳͷʣͰɼ{an } ༗քͳͷͰɼsupn an < ∞. ͞Βʹ ୯ௐ૿Ճྻ {an } ͷ߹ɼ lim an = supn an ཱ͕ n→∞ ্ ݶα = supn an ͕࣋ͭੑ࣭ɿ(1) ∀ n an ≤ α, (2) ∀ ∃aN α − < aN ୯ௐੑ͔Β n > N ˰ α − < aN ≤ an ≤ α. ಛʹ |an − α| < . thus, lim an = α n→∞ ༗ք୯ௐ૿Ճྻͷྫɿ 7 1− 1 2n : 0, n≥0 1 3 7 15 , , , , ... 2 4 8 16 8 3.3 ϕΩڃͷऩଋʹؔ͢Δجຊతࣄ࣮ ϕΩ ڃf (z) = n an (z − z0 )n ʹର͠ গͳ͘ͱத৺ z0 Ͱऩଋ z1 Ͱऩଋɼ|z − z0 | < |z1 − z0 | ˰ z Ͱઈରऩଋ z1 Ͱൃࢄɼ|z − z0 | > |z1 − z0 | ˰ z Ͱൃࢄ ऩଋԁɿ ԁपΛআ͖ ऩଋ͢ΔΛ෦ʹશؚͯΉ࠷খͷԁ ʢ෦͕ऩଋ͢ΔͷΈ͔ΒͳΔԁͷ͏ͪ࠷େʣ |z − z0 | = r ऩଋܘ |z − z0 | < r ˰ z Ͱઈରऩଋ |z − z0 | > r ˰ ൃࢄ Note: ऩଋԁप্Ͱɼऩଋɼൃࢄ͍Ζ͍Ζ ˰ ԁपΛ͍ͳ·ؚ։ԁ൘ |z − z0 | < r ͕ڵຯͷରɽ 9 3.4 ϕΩڃͷઈରऩଋੑ 1. ʮz1 Ͱऩଋ ˰ |z| < |z1 | ͳΔ z Ͱऩଋʯͷ؆୯ͳઆ໌ʢத৺̌ͷͱ͖ʣ let n an z1n < ∞ |z| < |z1 | ͳΔ z Λҙʹݻఆ ֤߲̌ʹऩଋ͢Δ͔Β༗քɽ |an z1n | ≤ M n z n z |an z n | = |an z1n | ≤ M z1 n n n z1 زԿڃͷऩଋੑ͔Βɼઈରऩଋ 2. ऩଋԁ෦ʢ։ԁ൘ |z| < rʣͷҙͷ z Ͱઈରऩଋ |z| < |z1 | < r ͳΔ ։ԁ൘ͷ z1 ΛͱΕΔɽ z1 Ͱऩଋ͢Δ͔Βɼz Ͱઈରऩଋ 10 3.5 ϕΩͦͱڃͷऩଋɿྫʢશฏ໘Ͱऩଋʣ ∞ z3 z5 z 2n+1 + − ··· = (−1)n 3! 5! (2n + 1)! n=0 n+2 2 z an+2 z = → 0 (n → ∞) for any z. ߲ൺ (2n + 1)(2n) an z n 3.6 ߲ͷൺͷେ͖͞ a n+1 a n n+1 an a (∗) f (z) = z − ҙͷ z Ͱઈରऩଋɽ ίʔγʔɾΞμϚʔϧͷެࣜʢʹڃର͢Δൺఆ๏ͷܥʣ L∗ = lim n ൺͷେ͖͞ͷྻ͕ऩଋ͢Δͱ͢Δ (*1) an = 0 (*2) 1. T = |z|L∗ < 1 ͳΔҙͷ z ʹରͯ͠ n+1 an+1 z an z n ऩଋܘແݶେ lim n a n+1 an = |z| → |z|L∗ < 1 ʹڃର͢Δൺఆ๏ΑΓ, ͷݶۃͷ͕ٯऩଋܘ n |an zn | ऩଋɽ n an zn ઈରऩଋ ಛʹ L∗ = 0 Ͱɼҙͷ z ʹର͠ |z|L∗ = 0 < 1ɽશฏ໘Ͱऩଋ ίʔγʔɾΞμϚʔϧ ∗ 2. T = |z|L > 1ɿेେͳ n > N ʹର͠ɼ߲ൺ (*) ̏֯ؔͷ̩ల։ɽ ؔحf (−z) = −f (z) Ͱɼsin z n+1 an+1 z an z n ൃࢄʢ֤߲ an zn ͷେ͖͞ڱٛͷ୯ௐ૿Ճྻʣ 3. ͕ͨͬͯ͠ɼݶۃ L∗ ʹର͠ɼऩଋ ܘr = 1/L∗ (*1) L∗ a n+1 n+1 z ͕ ∞ ʹൃࢄͷ߹ɿ߲ൺ ݶΓͳ͘େʹɽ an z n |an+1 z n+1 | > K|an z n | whenever n > N for some N ֤߲̌ʹऩଋͤͣɼҙͷ z = 0 ʹର͠ൃࢄɽऩଋ̌ʹܘ (*2) ൺΛͱΓʹ͍͘߹ɼࠜఆ๏ͳͲ 11 12 >1 3.7 ʮࠜఆ๏ʯ ɿͷઈରͷ n ࠜʣ 3.8 n (1) ेେͳ N Ҏ্Ͱɼ |zn | ≤ q < 1 ʢn > N ʣ n ˰ z ઈରऩଋ n |zn | ≤ q n ɽऩଋൺͰڃ͑ΒΕΔ͔Β ઈରऩଋ n L = lim |zn | < 1 ˰ n n zn ઈରऩଋ |zn | ɼN ΛेେʹͱΕɼ ̍ΑΓਅʹখ͞ͳ q0 ͷۙ (q0 − , q0 + ) ʹूத͢Δɽ q = q0 + ͱͯ͠ɼ(1) Λ͑Δ lim n |an (z − z0 )n | = |z − z0 | = n→∞ lim n |an | < 1 n→∞ |z − z0 | < 1/ ͳΒઈରऩଋ √ (2) ্هͷ߹Θٕͤɿ ෦ྻ ʹର͢Δ n an z n ͷݶۃΛ͏ํ๏ n f ɿ z0 ΛؚΉྖҬ D Ͱղੳత ӈਤͷ։ԁ൘ͷ z ΛؚΉด࿏ C ɽ 1 f (w) dw ੵެࣜΑΓ f (z) = g(z) = def 2πi C w − z g(z) ʹର͢ΔࣜมͰܗɺ f (k) (z0 ) (z − z0 )k + Rn (z), k! k=1 (z − z0 )n+1 f (w) Rn (z) = dw C (w − z0 )n+1 (w − z) 2πi → 0 (as n → ∞) n f (k) (z ) 0 (z − z0 )k ... (*) g(z) = n→∞ lim k! k=0 g(z) = n ςΠϥʔͷެࣜɾڃ 1 + (−1)n + 1 zn 2n |z| 2 n n ʹྻۮର͠ɼ̽ࠜΛͱΔͱɼ (2 + 1/2 )|z|n → |z| 1 ln (2 + 1/2n ) → 0 n ेେͳ N Ҏ্Ͱɼ n |an z n | ≤ |z| ͔ͩΒɼ |z| < 1 Ͱ͋Ε an z n ઈରऩଋ ʹྻحର͠ɼ̽ࠜΛͱΔͱɼn |z|n /2n = n (*) |z − z0 | < r ͳΔҙͷ z ʹର͠ʢC ʹґଘͤͣʹʣཱ͠ɼ ͔ͭɼͦͷൣғͰ f (z) = g(z) f (z) = f (k) (z0 ) (z − z0 )k ... f ͷϕΩڃදݱ k! k=0 ߸ͷཱ͢Δൣғɿ |z − z0 | < r ∞ ۙࣅ௨ৗখ͞ͳԁ൫Ͱߟ͑ΔͷͰɼෳૉղੳؔͷ߹ৗʹ͜ ͏ͨ͠ද͕ݱՄೳͩͱߟ͑ͯྑ͍ n {an }n ʹର͠ɼn |an | ͕ऩଋ͢Δ෦ྻʹղͰ͖ɼ͔ͭͦ ΕΒ࠷େͷݶۃΛ ͱ͢ΔͱɼϕΩڃ n n ܘ 1/ Ͱ͋Δ 13 a (z − z0 )n ͷऩଋ 14 3.9 ࣍ʹɼRn (z) → 0 as n → ∞ ͷূݕɿ ̩ެࣜͷূ໌ུ֓ f (w) dw ... z ΛมԽ͠ɺ(z − z0 ) ͷදݱΛ࡞Δ −z f (w) f (w) dw = = z − z0 dw C (w − z0 ) − (z − z0 ) C (w − z0 ) 1 − w − z0 1 − q2 + q2 q2 1 2 = =1+q+ (z − z0 ) ࢠʹݱΕΔɻͦ͏ͳΔࣜ͘มܗɿ 1−q 1−q 1−q ⎛ ⎞ z − z0 2 f (w) ⎜ z − z 0 w − z0 ⎟ ⎜ ⎟ + 2πig(z) = ⎜1 + ⎟ dw w − z0 1 − z − z0 ⎠ C (w − z0 ) ⎝ w − z0 z − z0 (z − z0 )2 f (w) 1+ + dw = 2 w − z0 (w − z0 ) − (z − z0 )(w − z0 ) C (w − z0 ) 2 z − z0 (z − z0 ) f (w) 1+ + dw = w − z0 (w − z0 )(w − z) C (w − z0 ) f (w) f (w) f (w) dw dw + (z − z0 ) dw + (z − z0 )2 = C w − z0 C (w − z0 )2 C (w − z0 )2 (w − z) 2πi g(z) = Cw ߴ֊ͷੵެࣜ C (w f (w) Λ̢̡ͰධՁ dw − z0 )n+1 (w − z) f (w) <M |w − z0 | = rɺ w − z ʢw = z ɺ༗քͳྖҬͷ࿈ଓؔʹΑΔ૾༗քʣ ҙʹݻఆͨ͠ԁͷ z Λߟ͑Δ (z − z0 )n+1 f (w) Rn (z) = dw C (w − z0 )n+1 (w − z) 2πi |z − z0 |n+1 f (w) |Rn (z)| = dw n+1 C (w − z0 ) 2π (w − z) n+1 |z − z0 | f (w) ≤ dw (L = 2πr) 2πrn+1 C w − z z − z n+1 |z − z0 |n+1 0 2πrM = M r → 0 as |z − z0 | < r < 2πrn+1 r f (n) (z0 ) f (w) 1 = dw ΑΓɼ n! 2πi C (w − z0 )n+1 g(z) = f (z0 ) + f (z0 )(z − z0 ) + f (w) (z − z0 )2 dw 2πi C (w − z0 )2 (w − z) n ≥ 2 ͷ߹ɺ(z − z0 )n+1 Λࢠʹ͢ΔͨΊͷࣜมͯ͠ͱܗԼهΛ͏ɿ 1 1 − q n+1 + q n+1 q n+1 = = 1 + q + · · · qn + 1−q 1−q 1−q 15 16 Ͱݪͷల։ɿϚΫϩʔϦϯల։ͷྫ 1 f (z) = = (1 − z)−1 1−z f (z) = (1 − z)−2 , f (z) = 2(1 − z)−3 , 3.10 f (z) = 2 ∗ 3(1 − z)−4 , ... f (n) (0) =1 f (n) (z) = n!/(1 − z)n+1 , n! ϕΩڃͷऩଋҬͰɼ ͱڃf Ұக 1 = z n (|z| < 1) 1−z n ߸த৺͔ΒಛҟΛ࠷͍ͳ·ؚେͷ։ԁ൘ 17 3.11 ྫʢରɼओʣ f (z) = Ln (1 + z) Λ z = 0 Ͱల։͢Δ (Note: Ln z z = 0 ͰະఆٛނɺϚΫϩʔϦϯ ల։Ͱ͖ͳ͍) f (0) = 0, f (z) = 1/(1 + z), f (0) = 1 f (2) (z) = −(1 + z)−2 , f (2) (0) = −1, a2 = −1/2 f (3) (z) = 2(1 + z)−3 , f (3) (0) = 2, a3 = 2/(2 ∗ 3) = 1/3 f (4) (z) = −3 ∗ 2(1 + z)−4 , f (4) (0) = −3 ∗ 2 ... z2 z3 z4 Ln (1 + z) = z − + − + · · · 2 3 4 (|z| < 1) 18 3.12 ରؔͷϕΩڃදݱɼϕΩڃͷऩଋܘ ओͷର f (z) = Ln z, z0 = i − 1 √ √ 3 f (i − 1) = Ln 2e3/4πi = ln 2 + πi 4 f (z) = z −1 , f (z) = −z −2 , f (3) (z) = 2!z −3 , f (4) (z) = −3!z −4 , · · · f (n) (z0 ) (−1)n−1 f (n) (z) = (−1)n−1 (n − 1)!z −n . an = = (z0 )−n n! n √ z − i + 1 1 (z − i + 1)2 3 − f (z) = ln 2 + πi + + · · · (|z − i + 1| < 1) 4 i−1 2 (i − 1)2 f ͷ T ϕΩڃදࣔ |z − i + 1| < r1 = 1 ͕ͩɼϕΩڃͷऩଋܘ √ |an | n + 1 |z0 |n+1 1 = = 1 + |z | → |z | = 2 0 0 |an+1 | n |z0 |n n ln z ͱͯ͠ɼภ֯Λ 0 < arg z ≤ 2π ʹͱΔରؔ f2 (z) √ 3 ̌࣍ͷ߲ f (i − 1) = f2 (i − 1) = ln 2 + πi 4 f (z) = f2 (z) = 1/z ΑΓɼf (z) ͱ f2 (z) ͷ̩ڃͷ̽࣍ (−1)n−1 (z0 )−n ಉ͡ ͷ߲ an = n 3.13 M ల։ͷྫɿ ߲̎ڃ f (z) = (1 + z)−m f (1) (z) = (−m)(1 + z)−m−1 , f (2) (z) = (−m)(−m − 1)(1 + z)−m−2 , ... f (n) (z) = (−m)(−m − 1) · · · (−m − n + 1)(1 +⎛z)−m−n⎞ f (n) (0) (−m)(−m − 1) · · · (−m − n + 1) ⎜ −m ⎟ ⎠ = =⎝ n! n! n √ 2 −m n : ಛʹɺ ⎛ (1 + z)−m = ⎜ ⎝ n −m 0 −m n m n = m! m(m − 1)...(m − n + 1) ʹशͬͯఆٛ = n!(m − n)! n! = 1 ͱଋ. ⎞ ⎟ n ⎠z (|z| < 1) ݁ہɼ (1 + z)−m = 1 − mz + f2 (z) = f (z) ͷ̩ͱڃಉҰͷڃ √ ߸ |z − i + 1| < 2 ͰϕΩڃͷऩଋԁ൫ͱҰக 19 20 m(m + 1) 2 m(m + 1)(m + 2) 3 z − z + ··· 2 3! 3.14 ྫ ߲̎ڃʢcontinued 1ʣ 1 ͷϚΫϩʔϦϯڃ (z − 2)5 ߟ͑ํɿ ܗ (1 + z)−m = z−2=2 (z − 2) −5 ⎛ ⎜ ⎝ n −m n So, (z − 2) = ⎛ ∞ ⎜ ⎝ n=0 −5 n (1 + z)−m = ⎞ ⎟ n ⎠z (|z| < 1) ⎞ ⎟ n+1 ⎠ (−1) zn 2n+5 ⎛ ⎜ ⎝ −5 n ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ n −m n ⎞ ⎟ n ⎠z (|z| < 1) f (z) = (2 + z)−2 + 2(z − 3)−1 z z − 1 = −2 1 − 2 2 −5 z 1 = (−2)−5 1 + − =− 5 2 2 n −5 ྫ ߲̎ڃʢcontinued 2ʣ 3.15 − z 2 n (| − z/2| < 1 ⇔ |z| < 2) z0 = 1 Λத৺ʹͨ͠ల։ Λߦ͏ͱ͠ɺ(z − 1) ͷࣜʹ͢Δɿ...(∗2) z−1 z−1 2 + z = 3 + (z − 1) = 3 1 + , z − 3 = (z − 1) − 2 = −2 1 − 2 3 z − 1 −2 z − 1 −1 f (z) = 3 1 + −2 2 1− 3 2 ⎞ ⎛ n z−1 n 1 ⎜ −2 ⎟ z − 1 ⎠ ⎝ = − 9n 3 2 n n ⎡ ⎤ (−1)n (n + 1) = − 2−n ⎦ (z − 1)n 3n+2 n z − 1 z − 1 < 1 ͔ͭ < 1 ΑΓ |z − 1| < 2 ऩଋൣғɿ 2 3 ⎣ (*2) ͍Ζ͍Ζͳม͕ܗՄೳ͕ͩɺ͜͜Ͱ؆୯ͳ (1 − z)−1 = (*3) 21 n (−2)(−2 − 1)...(−2 − n + 1) n(n − 1)...3.2.1 n 2(2 + 1)...(2 + n − 1) = (−1)n (n + 1) = (−1) n(n − 1)...3.2.1 −2 n = 22 zn ϕΩڃͷ߲ผඍ 3.16 f (z) ⇔ def n≥0 3.17 an z n ͷ֤߲ an z n Λඍͯ͠࡞ͬͨϕΩڃ g(z) ⇔ def n≥1 nan z n−1 = ϕΩڃऩଋԁ෦Ͱղੳత ϕΩڃऩଋԁ෦ͰඍՄೳͰͦͷಋؔ༠ಋͱڃҰக ূ໌૬ʹٕతɽΑͬͯεΩοϓ (m + 1)am+1 z m f (z) ⇔ a0 + a1 z + a2 z 2 + · · · + an z n + · · · m≥0 def ΛϕΩ ڃf (z) ͷʮ༠ಋڃʯͱ͍͏ɽ̎ͭͷڃͷऩଋܘಉ͡ a 1 n+1 = lim ͕ଘࡏ͢Δ߹ n an r m + 2 am+2 (m + 2)am+2 = (m + 1)am+1 m + 1 am+1 → = 1 r as m+2 →1 m+1 1 = 1 + z + z 2 + z 3 + ... |z| < 1 1−z ⎜ ⎝ −2 0 ⎞ ⎛ ⎟ ⎠ ⎜ ⎝ + −2 1 ⎞ ⎛ ⎟ ⎠ (−z) ⎜ ⎝ + −2 2 ⎞ ⎛ ⎟ 2 ⎠ (−z) ⎜ ⎝ n = 2 : I2 = 2zΔz + (Δz)2 /Δz − 2z n = 3 I3 = (3z 2 Δz + 3z(Δz)2 + (Δz)3 )/Δz − 3z 2 n = 4 I4 = (4z 3 Δz + 6z 2 (Δz)2 + 4z(Δz)3 + (Δz)4 )/Δz − 4z 3 ... → 0 as Δz → 0 Λࣔ͢ = Δz = Δz (3z + Δz) = Δz 6z 2 + 4zΔz + (Δz)2 k z ͷ͕ෳͷ n ʹͯͬލग़)*( ݱ + −2 3 ⎟ 3 ⎠ (−z) n≥0 ⎡ ⎤ ⎢ ⎢ In = Δz ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ⎞ ߲ผඍͰಘΒΕΔڃɿ ༠ಋڃɽݩͷڃͷඍ 23 (z + Δz)n − z n − nz n−1 Δz (z + Δz)n−2 + 2z(z + Δz)n−3 + ... + (n − 1)z n−2 ͕࣍ n − 2 ͱͳΔΈ߹ΘͤͰɼn ݸͷࣜ ͷ࠷େ n − 2 |z|, |z + Δz| ≤ r⎛0 < r ͳΔ r ΑΓখ͞ͳ r0 ͕ͱΕΔ ⎞ + ... (−2) (−2)(−3)(−4) (−2)(−3) =1+ (−z) + (−z)2 + (−z)3 + ... 1 2 3∗2 n = 1 + 2z + 3z 2 + 4z 3 + ... z ͷ֤߲Λඍ 1+n ӈลͷऩଋ ܘlim = 1 ΑΓ̍ n n ্ )*( هͷΛճආ͢ΔͨΊʹɼ͔֬ʹʮٕతʯͳԼهͷࣜมܗΛߦ͏ɿ −1 = (1 − z)−2 . ͦͷ M ల։Լه f (z) = − (1 − z)2 ⎛ def f (z + Δz) − f (z) an I n = − g(z) = Δz n≥2 a m+2 lim m a m+1 Ұൠͷ߹ͷূ໌ ϖʔδ 3.18 ͷ٭ ྫɿ f (z) = g(z) ⇔ a1 + 2a2 z + · · · + an nz n−1 + · · · f ͷ༠ಋڃɽf ͱಉҰͷऩଋ ܘr Αͬͯɼ n≥2 n≥2 an In ≤ |Δz| ⎝RHS = |an |n(n − 1)r0n−2 ⎠ RHS f, g ͱಉҰͷऩଋ ܘr Λ࣋ͭ g ͷ༠ಋؔ h(z) ⇔ def n(n − 1)an z n−2 f ͷ̎ճඍ n≥3 ্͕࣮࣠ͷ z = r0 Ͱઈରऩଋ͢Δ͜ͱΛ͔ࣔࣜͩ͢Βɼऩଋ͢Δɽ f (z + Δz) − f (z) ͭ·Γɼ Δz − g(z) = n≥2 24 an In ≤ |Δz||h(r0 )| → 0 as Δz → 0 3.18 ϕΩڃͷ߲ผඍɿ·ͱΊ 3.19 ϕΩͰڃఆٛ͞Εͨؔ f Λߟ͑Δ f (z) ⇔ def n≥0 an z n f (z) = a0 + a1 z + a2 z 2 + · · · (|z| < r) ͱ͢Δ z a1 a2 ߲ผੵ an wn dw Ͱ F (z) = a0 z + z 2 + z 3 + · · · Λఆٛ 0 2 3 f ͷӈล F ͷ༠ಋ͔ؔͩΒɼf ͷӈลͱ F ͷऩଋܘಉ͡Ͱɼ ಛʹɼF (z) = f (z) for |z| < rɽ ల։த৺ ̌ ऩଋ ܘr ͔̌Β͢ࢄൃͯݟΔΛ෦ʹ࠷͍ͳ·ؚେͷԁ ൃࢄ͢ΔͰ f (z) ະఆٛ |z| < r ͷ z ʹର͠ ̍ɽऩଋԁͰ f (z) ղੳతɽ̩ఆཧͱͷҰҙੑ͔Βɼ f (z) = f (n) (0) n z (|z| < r) n! n≥0 ie an = f (n) (0) n! ̎ɽ߲ผඍɿ֤߲Λඍͯ͠ಘΒΕΔڃ g(z) ⇔ def ϕΩڃͷ߲ผੵ f (n) (0) n−1 ʹ z (m = n − 1) n≥1 (n − 1)! z 0 f (w)dw z 0 n = F (z) − F (0) = F (z) = ؔ࢝ݪ F ͷఆٛ an wn dw = z n 0 an wn dw (|z| < r) f (m+1) (0) m z (|z| < r) m! m≥0 f (z) ͷ ̢ڃ an+1 ͕ൃࢄ͢Δ߹ؚΊɼͱͷϕΩڃ a ίʔγʔɾΞμϚʔϧͷެ͕ࣜ͑ͳ͍߹ɼͭ·Γɼ ͱ༠ಋڃͷऩଋ͕ܘಉ͡Ͱ͋Δ͜ͱͷূ໌ n an z n ͕ |z| < r Ͱऩଋ ˰ n≥0 |z| < r1 < r ͳΔ r1 ΛదʹͱΔɽ |z1 | = r1 ͳΔ z1 Ͱऩଋ͢Δ͔Β |an z1n | = |an |r1n < M ʢ֤߲༗քʣ M M |z n | so, n|an z n−1 | ≤ n n |z n−1 | ≤ n r1 |z| n≥1 r1n n≥1 n≥1 ӈลͷʹڃର͠ Αͬͯɼ | ୈ (n+1) ߲ | (n + 1)|z|n+1 r1n = = |ୈ n ߲| n|z|n r1n+1 n+1 n |z| |z| → <1 r1 r1 nan z n−1 ઈରऩଋɽͦͷऩଋܘΛ ΞμϚʔϧͷެ͔ࣜΒٻΊΔ n≥1 nan z n−1 ʹର͠ n ൪ͷ n|an | = ɽͦͷݶۃɿ n + 1 ൪ͷ (n + 1)|an+1 | |an | lim n→∞ |an+1 | an z n ͷऩଋܘʂ n 25 26 z 2 z1 ∞ z n=0 0 an wn dw f (w)dw ͳͲಉ༷ 3.20 ߲ผੵͱ࣮ੵͷྫ ྫɿ ԋ 3.4.11 S(z) = z 0 3.21 sin t2 dt (∗) f (z) = ez , f (n) (z) = ez , e0 = 1ɽ ez = sin z 2 શฏ໘ͰղੳతͰϕΩʹڃల։Մ z3 z5 sin z ͷ̩ల։ sin z = z − + − · · · (શฏ໘) 3! 5! ⎛ ⎞ 2 3 z z (w z3 (w2 )5 z7 z 11 ) 2 2 ⎝ sin w dw = (w ) − + − · · ·⎠ dw = − + ··· 0 0 3! 5! 3 7 3! 11 5! ʢશฏ໘ʣ ಛघͳ߹ͱͯ͠ z ͕࣮ x ͷ߹࣮ੵͷϕΩࣅۙڃ (*) ࣮ੵ x 0 f (t)dt ΛෳૉੵͰٻΊΔɿ ্࣮࣠ͷ۠ؒ ˰ ෳૉฏ໘্ͷઢɽಛʹੵ࿏ z(t) = t, dz = dt, 0 ≤ t ≤ x, [0,x] f (z)dz = x 0 f (t)dt ݪɼx = x + 0i ΛؚΉ୯࿈݁ྖҬͰղੳత f (z) ͷ ؔ࢝ݪF (z) ʹର͠ɼ x 0 ྫ̎ʢࢦؔɼ̏֯ؔʣ f (t)dt = F (x) − F (0) cos z, sin z eiz + e−iz eiz − e−iz , sin z = 2 2i (iz)n (−iz)n iz −iz + 2 cos z = e + e = n! n! n n 2n 2n+1 2n (iz) (iz) (−iz) (−iz)2n+1 = + + + (2n)! n (2n)! n (2n + 1)! n n (2n + 1)! 2n z (શฏ໘) = 2 (−1)n (2n)! n cos z = z 2n (2n)! n z2 z4 = 1 − + − ··· 2! 4! ʢશฏ໘ʣ cos z = (−1)n ߲ผੵ or (cos z) = − sin z −→ ←− ߲ผඍ ࢦࡾ֯ؔͳͲɼෳૉʹ֦ுͨ͠ղੳతͳؔʹର͠ɼ ڃల։ʹΑΔ࣮ੵͷۙࣅ ࢉܭΛద༻Մ 27 zn f (n) (0) n ʢશฏ໘ʣ z = n! n≥0 n≥0 n! 28 z 2n+1 (2n + 1)! n z3 z5 = z − + − ··· 3! 5! ʢશฏ໘ʣ sin z = (−1)n ྫ̏ʢೖͱඍʣ 1 1 = ೖ: = (−z 2 )n = (−1)n z 2n , 1 + z2 1 − (−z 2 ) n n | − z 2 | < 1 ˱ |z| < 1 3.22 ಋ͕ؔڃల։ࡁ ɻ߲ผੵͰͱͷؔͷڃΛٻΊΔ 1 = (−1)n z 2n (|z 2 | < 1 ⇔ |z| < 1) 2 1+z n z z 2n+1 n z 2n f (w)dw = (−1) w dw = (−1)n (|z| < 1) 0 0 2n + 1 n n f (z) = tan−1 z (∗), f (z) = (*) ڭՊॻ̐̒ϖʔδ 1.8.30 (e) ʢٯਖ਼ͷؔܗʣ w = tan−1 z ˱ z = tan(w = a + bi) = sin w eiw − e−iw ie−2iw − i = = cos w i(eiw + e−iw ) 1 + e−2iw ie−2iw − i −2iw i+z 1 + e−2iw = 2ie = = e−2iw −2iw ie −i i−z 2i i− 1 + e−2iw i+z i i+z 1 ln = ln ... ln ͷଟՁੑΑΓෳͷ Hence, w = −2i i − z 2 i−z ln ͷภ֯ͷબ๏ʹґଘͤͣʹ (ln z) = 1/z i+ i i−z i+z i i+z g f g − f g ln = = 2 i−z 2 i+z i−z f f2 z−i 1 1 i i − z (i − z) + (i + z) = = = 2 i+z (i − z)2 (i + z)(z − i)2 (z + i)(z − i) z 2 + 1 1 ie (tan−1 z) = 2 z +1 Note: ඍΛͱͬͯ n ͷҧ͍͕ʮফ͑Δʯ͕ɼੵ͢ΔͱओͱͦΕҎ֎ͷҧ͍͕෮͢׆Δɽؔ࿈ ͕ɼ 3.4.14 ʢ119 pageʣʹɽ 29