Comments
Description
Transcript
Multiplying Polynomials
5.6. MULTIPLYING POLYNOMIALS 5.6 309 Multiplying Polynomials 1. Use the commutative and associative properties to change the order and regroup. −3(7r) = [(−3)(7)]r = −21r Reorder. Regroup. Multiply: (−3)(7) = −21 3. Use the commutative and associative properties to change the order and regroup. (−9b3 )(−8b6 ) = [(−9)(−8)](b3 b6 ) = 72b 9 Reorder. Regroup. Multiply: (−9)(−8) = 72, b3 b6 = b9 . 5. Use the commutative and associative properties to change the order and regroup. (−7r2 t4 )(7r5 t2 ) = [(−7)(7)](r2 r5 )(t4 t2 ) 7 6 Reorder. Regroup. Multiply: (−7)(7) = −49, r2 r5 = r7 , = −49r t and t4 t2 = t6 7. Use the commutative and associative properties to change the order and regroup. (−5b2 c9 )(−8b4 c4 ) = [(−5)(−8)](b2 b4 )(c9 c4 ) 6 13 Reorder. Regroup. Multiply: (−5)(−8) = 40, b2 b4 = b6 , = 40b c and c9 c4 = c13 9. Use the commutative and associative properties to change the order and regroup. (−8v 3 )(4v 4 ) = [(−8)(4)](v 3 v 4 ) = −32v 7 Reorder. Regroup. Multiply: (−8)(4) = −32, v 3 v 4 = v 7 . Second Edition: 2012-2013 CHAPTER 5. POLYNOMIALS 310 11. We need to first distribute the 9 times each term of the polynomial. Then we multiply the resulting monomials mentally. 9(−2b2 + 2b + 9) = 9(−2b2 ) + 9(2b) + 9(9) = −18b2 + 18b + 81 Alternate solution. Note that it is more efficient to distribute 9 times each term of −2b2 + 2b + 9, performing the calculations mentally as you go. 9(−2b2 + 2b + 9) = −18b2 + 18b + 81 13. We need to first distribute the −4 times each term of the polynomial. Then we multiply the resulting monomials mentally. −4(10t2 − 7t − 6) = −4(10t2 ) − (−4)(7t) − (−4)(6) = −40t2 − (−28t) − (−24) = −40t2 + 28t + 24 Alternate solution. Note that it is more efficient to distribute −4 times each term of 10t2 − 7t − 6, performing the calculations mentally as you go. −4(10t2 − 7t − 6) = −40t2 + 28t + 24 15. We need to first distribute the −8u2 times each term of the polynomial. Then we multiply the resulting monomials mentally. − 8u2 (−7u3 − 8u2 − 2u + 10) = −8u2 (−7u3 ) − (−8u2 )(8u2 ) − (−8u2 )(2u) + (−8u2 )(10) = 56u5 − (−64u4 ) − (−16u3) + (−80u2 ) = 56u5 + 64u4 + 16u3 − 80u2 Alternate solution. Note that it is more efficient to distribute −8u2 times each term of −7u3 − 8u2 − 2u + 10, performing the calculations mentally as you go. −8u2 (−7u3 − 8u2 − 2u + 10) = 56u5 + 64u4 + 16u3 − 80u2 17. We need to first distribute the 10s2 times each term of the polynomial. Then we multiply the resulting monomials mentally. 10s2 (−10s3 + 2s2 + 2s + 8) = 10s2 (−10s3 ) + 10s2 (2s2 ) + 10s2 (2s) + 10s2 (8) = −100s5 + 20s4 + 20s3 + 80s2 Alternate solution. Note that it is more efficient to distribute 10s2 times each term of −10s3 + 2s2 + 2s + 8, performing the calculations mentally as you go. 10s2 (−10s3 + 2s2 + 2s + 8) = −100s5 + 20s4 + 20s3 + 80s2 Second Edition: 2012-2013 5.6. MULTIPLYING POLYNOMIALS 311 19. We need to first distribute the 2st times each term of the polynomial. Then we multiply the resulting monomials mentally. 2st(−4s2 + 8st − 10t2 ) = 2st(−4s2 ) + 2st(8st) − 2st(10t2 ) = −8s3 t + 16s2 t2 − 20st3 Alternate solution. Note that it is more efficient to distribute 2 times each term of −4s2 + 8st − 10t2 , performing the calculations mentally as you go. 2st(−4s2 + 8st − 10t2 ) = −8s3 t + 16s2 t2 − 20st3 21. We need to first distribute the −2uw times each term of the polynomial. Then we multiply the resulting monomials mentally. −2uw(10u2 − 7uw − 2w2 ) = −2uw(10u2) − (−2uw)(7uw) − (−2uw)(2w2 ) = −20u3w − (−14u2 w2 ) − (−4uw3 ) = −20u3w + 14u2 w2 + 4uw3 Alternate solution. Note that it is more efficient to distribute −2 times each term of 10u2 − 7uw − 2w2 , performing the calculations mentally as you go. −2uw(10u2 − 7uw − 2w2 ) = −20u3w + 14u2w2 + 4uw3 23. Let’s imagine that (−9x − 4)(−3x + 2) has the form (b + c)a and multiply −3x + 2 times both terms of −9x − 4. (−9x − 4)(−3x + 2) = −9x(−3x + 2) − 4(−3x + 2) Now we distribute monomials times polynomials, then combine like terms. = 27x2 − 18x + 12x − 8 = 27x2 − 6x − 8 Thus, (−9x − 4)(−3x + 2) = 27x2 − 6x − 8 25. Let’s imagine that (3x + 8)(3x − 2) has the form (b + c)a and multiply 3x − 2 times both terms of 3x + 8. (3x + 8)(3x − 2) = 3x(3x − 2) + 8(3x − 2) Now we distribute monomials times polynomials, then combine like terms. = 9x2 − 6x + 24x − 16 = 9x2 + 18x − 16 Thus, (3x + 8)(3x − 2) = 9x2 + 18x − 16 Second Edition: 2012-2013 CHAPTER 5. POLYNOMIALS 312 27. Let’s imagine that (2x − 1)(−6x2 + 4x + 5) has the form (b + c)a and multiply −6x2 + 4x + 5 times both terms of 2x − 1. (2x − 1)(−6x2 + 4x + 5) = 2x(−6x2 + 4x + 5) − 1(−6x2 + 4x + 5) Now we distribute monomials times polynomials, then combine like terms. = −12x3 + 8x2 + 10x + 6x2 − 4x − 5 = −12x3 + 14x2 + 6x − 5 Thus, (2x − 1)(−6x2 + 4x + 5) = −12x3 + 14x2 + 6x − 5 29. Let’s imagine that (x−6)(−2x2 −4x−4) has the form (b+c)a and multiply −2x2 − 4x − 4 times both terms of x − 6. (x − 6)(−2x2 − 4x − 4) = x(−2x2 − 4x − 4) − 6(−2x2 − 4x − 4) Now we distribute monomials times polynomials, then combine like terms. = −2x3 − 4x2 − 4x + 12x2 + 24x + 24 = −2x3 + 8x2 + 20x + 24 Thus, (x − 6)(−2x2 − 4x − 4) = −2x3 + 8x2 + 20x + 24 31. First, multiply 8u times each term of 8u − 9w, then multiply −9w times each term of 8u − 9w. Finally, combine like terms. (8u − 9w)(8u − 9w) = 8u(8u − 9w) − 9w(8u − 9w) = 64u2 − 72uw − 72uw + 81w2 = 64u2 − 144uw + 81w2 Thus, (8u − 9w)(8u − 9w) = 64u2 − 144uw + 81w2 . 33. First, multiply 9r times each term of 3r − 9t, then multiply −7t times each term of 3r − 9t. Finally, combine like terms. (9r − 7t)(3r − 9t) = 9r(3r − 9t) − 7t(3r − 9t) = 27r2 − 81rt − 21rt + 63t2 = 27r2 − 102rt + 63t2 Thus, (9r − 7t)(3r − 9t) = 27r2 − 102rt + 63t2 . Second Edition: 2012-2013 5.6. MULTIPLYING POLYNOMIALS 313 35. First, multiply 4r times each term of −10r2 + 10rs − 7s2 , then multiply −10s times each term of −10r2 + 10rs − 7s2 . Finally, combine like terms. (4r − 10s)(−10r2 + 10rs − 7s2 ) = 4r(−10r2 + 10rs − 7s2 ) − 10s(−10r2 + 10rs − 7s2 ) = −40r3 + 40r2 s − 28rs2 + 100r2 s − 100rs2 + 70s3 = −40r3 + 140r2 s − 128rs2 + 70s3 Thus, (4r − 10s)(−10r2 + 10rs − 7s2 ) = −40r3 + 140r2 s − 128rs2 + 70s3 . 37. First, multiply 9x times each term of 4x2 − 4xz − 10z 2, then multiply −2z times each term of 4x2 − 4xz − 10z 2 . Finally, combine like terms. (9x − 2z)(4x2 − 4xz − 10z 2 ) = 9x(4x2 − 4xz − 10z 2 ) − 2z(4x2 − 4xz − 10z 2) = 36x3 − 36x2 z − 90xz 2 − 8x2 z + 8xz 2 + 20z 3 = 36x3 − 44x2 z − 82xz 2 + 20z 3 Thus, (9x − 2z)(4x2 − 4xz − 10z 2 ) = 36x3 − 44x2 z − 82xz 2 + 20z 3. 39. First, write 9r + 3t as a factor two times. (9r + 3t)2 = (9r + 3t)(9r + 3t) Next, multiply 9r times each term of 9r + 3t, then multiply 3t times each term of 9r + 3t. Finally, combine like terms. = 9r(9r + 3t) + 3t(9r + 3t) = 81r2 + 27rt + 27rt + 9t2 = 81r2 + 54rt + 9t2 Thus, (9r + 3t)2 = 81r2 + 54rt + 9t2 . 41. First, multiply 4y times each term of 4y − 5z, then multiply 5z times each term of 4y − 5z. Finally, combine like terms. (4y + 5z)(4y − 5z) = 4y(4y − 5z) + 5z(4y − 5z) = 16y 2 − 20yz + 20yz − 25z 2 = 16y 2 − 25z 2 Thus, (4y + 5z)(4y − 5z) = 16y 2 − 25z 2. Second Edition: 2012-2013 CHAPTER 5. POLYNOMIALS 314 43. First, multiply 7u times each term of 7u − 8v, then multiply 8v times each term of 7u − 8v. Finally, combine like terms. (7u + 8v)(7u − 8v) = 7u(7u − 8v) + 8v(7u − 8v) = 49u2 − 56uv + 56uv − 64v 2 = 49u2 − 64v 2 Thus, (7u + 8v)(7u − 8v) = 49u2 − 64v 2 . 45. First, write 7b + 8c as a factor two times. (7b + 8c)2 = (7b + 8c)(7b + 8c) Next, multiply 7b times each term of 7b + 8c, then multiply 8c times each term of 7b + 8c. Finally, combine like terms. = 7b(7b + 8c) + 8c(7b + 8c) = 49b2 + 56bc + 56bc + 64c2 = 49b2 + 112bc + 64c2 Thus, (7b + 8c)2 = 49b2 + 112bc + 64c2 . 47. Multiply 2t2 times each term of 2t2 + 9t + 4, multiply 9t times each term of 2t2 + 9t + 4, and multiply 4 times each term of 2t2 + 9t + 4. Finally, combine like terms. (2t2 + 9t + 4)(2t2 + 9t + 4) = 2t2 (2t2 + 9t + 4) + 9t(2t2 + 9t + 4) + 4(2t2 + 9t + 4) = 4t4 + 18t3 + 8t2 + 18t3 + 81t2 + 36t + 8t2 + 36t + 16 = 4t4 + 36t3 + 97t2 + 72t + 16 Thus, (2t2 + 9t + 4)(2t2 + 9t + 4) = 4t4 + 36t3 + 97t2 + 72t + 16. 49. Multiply 4w2 times each term of 3w2 − 6w + 8, multiply 3w times each term of 3w2 − 6w + 8, and multiply 5 times each term of 3w2 − 6w + 8. Finally, combine like terms. (4w2 + 3w + 5)(3w2 − 6w + 8) = 4w2 (3w2 − 6w + 8) + 3w(3w2 − 6w + 8) + 5(3w2 − 6w + 8) = 12w4 − 24w3 + 32w2 + 9w3 − 18w2 + 24w + 15w2 − 30w + 40 = 12w4 − 15w3 + 29w2 − 6w + 40 Thus, (4w2 + 3w + 5)(3w2 − 6w + 8) = 12w4 − 15w3 + 29w2 − 6w + 40. Second Edition: 2012-2013 5.6. MULTIPLYING POLYNOMIALS 315 51. To find the revenue, we must multiply the number of widgets sold by the price for each widget. That is, we must multiply the demand times the unit price. Revenue = Demand × Unit Price Let R represent the revenue. Because x represents the demand and p represents the unit price, the last equation can be rewritten as follows. R = xp However, the demand is given by the equation x = 320 − 0.95p. Substitute 320 − 0.95p for x in the last equation to get R = (320 − 0.95p)p, or equivalently, R = 320p − 0.95p2 . We’re asked to find when the revenue equals R = 7, 804, so enter Y 1 = 320 ∗ X − 0.95 ∗ X ∧ 2 and Y 2 = 7804 into the Y= menu in your calculator, then set the WINDOW parameters as follows: Xmin=0, Xmax=350, Ymin=0, Ymax=27000. Push the GRAPH button to produce the graph, then use the 5:intersect utility to determine the coordinates of the points of intersection. Report your answer on your homework as follows. R(dollars) 27,000 R = 320p − 0.95p2 R = 7804 0 026.47 310.37350 p(dollars) Hence, the revenue will equal R = $7, 804 if the unit price is set either at $26.47 or $310.37. 53. Because the edge of the outer square is 6 inches longer that 3 times the edge of the inner square, the edge of the outer square is 3x + 6. x 3x + 6 Second Edition: 2012-2013 CHAPTER 5. POLYNOMIALS 316 To find the area of the shaded region, subtract the area of the smaller square from the area of the larger square. Recall that the area of a square is found by squaring the length of one of its sides. Area of shaded region = Area of larger square − Area of smaller square A(x) = (3x + 6)2 − x2 Use the distributive property to multiply. A(x) = (3x + 6)(3x + 6) − x2 A(x) = 9x2 + 18x + 18x + 36 − x2 Combine like terms. A(x) = 8x2 + 36x + 36 Hence, the area of the shaded region is given by the polynomial A(x) = 8x2 + 36x + 36. We can now evaluate the polynomial at x = 5 inches by substituting 5 for x. A(x) = 8x2 + 36x + 36 A(5) = 8(5)2 + 36(5) + 36 Use your calculator to help simplify. A(5) = 416 Hence, the area of the shaded region is 416 square inches. 55. If the width of the entire rectangular garden is 29 feet, and the width of the border lawn is x feet, then the width of the interior rectangular garden is 29 − 2x feet. Simlarly, if the length of the entire rectangular garden is 31 feet, and the width of the border lawn is x feet, then the length of the interior rectangular garden is 31 − 2x feet. 29 − 2x x 29 x x 31 − 2x x 31 Second Edition: 2012-2013