Comments
Description
Transcript
Algebraic Expressions
1.5. ALGEBRAIC EXPRESSIONS 1.5 47 Algebraic Expressions 1. Use the associative property to regroup, then simplify. −3(6a) = ((−3) · 6)a = −18a Apply the associative property. Simplify. 3. Use the associative property to regroup, then simplify. −9(6ab) = ((−9) · 6)ab = −54ab Apply the associative property. Simplify. 5. Use the associative property to regroup, then simplify. −7(3x2 ) = ((−7) · 3)x2 2 = −21x Apply the associative property. Simplify. 7. Use the distributive property to expand the expression, and then use order of operations to simplify. 4(3x − 7y) = 4(3x) − 4(7y) = 12x − 28y Apply the distributive property. Simplify. 9. Use the distributive property to expand the expression, and then use order of operations to simplify. −6(−y + 9) = −6(−y) + (−6)(9) = 6y − 54 Apply the distributive property. Simplify. 11. Use the distributive property to expand the expression, and then use order of operations to simplify. −9(s + 9) = −9(s) + (−9)(9) = −9s − 81 Apply the distributive property. Simplify. 13. To negate a sum, simply negate each term of the sum: −(−3u − 6v + 8) = 3u + 6v − 8 Second Edition: 2012-2013 48 CHAPTER 1. THE ARITHMETIC OF NUMBERS 15. Use the distributive property to expand the expression, and then use order of operations to simplify. −8(4u2 − 6v 2 ) = −8(4u2 ) − (−8)(6v 2 ) 2 = −32u + 48v 2 Apply the distributive property. Simplify. 17. To negate a sum, simply negate each term of the sum: −(7u + 10v + 8) = −7u − 10v − 8 19. First use the distributive property to factor out the common variable part. Then simplify. −19x + 17x − 17x = (−19 + 17 − 17)x = −19x Distributive property. Simplify. 21. First use the distributive property to factor out the common variable part. Then simplify. 14x3 − 10x3 = (14 − 10)x3 3 = 4x Distributive property. Simplify. 23. First use the distributive property to factor out the common variable part. Then simplify. 9y 2 x + 13y 2 x − 3y 2 x = (9 + 13 − 3)y 2 x 2 = 19y x Distributive property. Simplify. 25. First use the distributive property to factor out the common variable part. Then simplify. 15m + 14m = (15 + 14)m = 29m Distributive property. Simplify. 27. Combine like terms and write down the answer. 9 − 17m − m + 7 = 16 − 18m Hint: 9 + 7 = 16 and −17m − m = −18m. Second Edition: 2012-2013 1.5. ALGEBRAIC EXPRESSIONS 49 29. Combine like terms and write down the answer. −6y 2 − 3x3 + 4y 2 + 3x3 = −2y 2 Hint: −6y 2 + 4y 2 = −2y 2 and −3x3 + 3x3 = 0. 31. Combine like terms and write down the answer. −5m − 16 + 5 − 20m = −25m − 11 Hint: −5m − 20m = −25m and −16 + 5 = −11. 33. Combine like terms and write down the answer. −16x2 y + 7y 3 − 12y 3 − 12x2 y = −28x2 y − 5y 3 Hint: −16x2 y − 12x2 y = −28x2 y and 7y 3 − 12y 3 = −5y 3 . 35. Combine like terms and write down the answer. −14r + 16 − 7r − 17 = −21r − 1 Hint: −14r − 7r = −21r and 16 − 17 = −1. 37. Combine like terms and write down the answer. 14 − 16y − 10 − 13y = 4 − 29y Hint: 14 − 10 = 4 and −16y − 13y = −29y. 39. Use the distributive property to expand the expression. Then combine like terms mentally. 3 − (−5y + 1) = 3 + 5y − 1 = 2 + 5y Distribute (negate the sum). Combine like terms. 41. Use the distributive property to expand the expression. Then combine like terms mentally. − (9y 2 + 2x2 ) − 8(5y 2 − 6x2 ) = −9y 2 − 2x2 − 40y 2 + 48x2 2 2 = −49y + 46x Distribute. Combine like terms. Second Edition: 2012-2013 CHAPTER 1. THE ARITHMETIC OF NUMBERS 50 43. Use the distributive property to expand the expression. Then combine like terms mentally. 2(10 − 6p) + 10(−2p + 5) = 20 − 12p − 20p + 50 = 70 − 32p Distribute. Combine like terms. 45. Use the distributive property to expand the expression. Then combine like terms mentally. 4(−10n + 5) − 7(7n − 9) = −40n + 20 − 49n + 63 = −89n + 83 Distribute. Combine like terms. 47. Use the distributive property to expand the expression. Then combine like terms mentally. −4x − 4 − (10x − 5) = −4x − 4 − 10x + 5 = −14x + 1 Distribute (negate the sum). Combine like terms. 49. First use the distributive property to expand the expression. Then rearrange the terms and combine like terms. −7 − (5 + 3x) = −7 − 5 − 3x = −12 − 3x Distribute (negate the sum). Combine like terms. 51. Use the distributive property to expand the expression. Then combine like terms mentally. −8(−5y − 8) − 7(−2 + 9y) = 40y + 64 + 14 − 63y = −23y + 78 Distribute. Combine like terms. 53. Use the distributive property to expand the expression. Then combine like terms mentally. 4(−7y 2 − 9x2 y) − 6(−5x2 y − 5y 2 ) = −28y 2 − 36x2 y + 30x2 y + 30y 2 2 2 = 2y − 6x y Distribute. Combine like terms. 55. Use the distributive property to expand the expression. Then combine like terms mentally. 6s − 7 − (2 − 4s) = 6s − 7 − 2 + 4s = 10s − 9 Second Edition: 2012-2013 Distribute (negate the sum). Combine like terms. 1.5. ALGEBRAIC EXPRESSIONS 51 57. Use the distributive property to expand the expression. Then combine like terms mentally. 9(9 − 10r) + (−8 − 2r) = 81 − 90r − 8 − 2r = 73 − 92r Distribute. Combine like terms. 59. We analyze the expression inside the parentheses first. Multiply first, distributing the −5. −7x + 7[2x − 5[8x + 5]] = −7x + 7(2x − 40x − 25) = −7x + 7(−38x − 25) Next, distribute 7 and simplify. = −7x − 266x − 175 = −273x − 175 61. We analyze the expression inside the parentheses first. Multiply first, distributing the 2. 6x − 4[−3x + 2[5x − 7]] = 6x − 4(−3x + 10x − 14) = 6x − 4(7x − 14) Next, distribute −4 and simplify. = 6x − 28x + 56 = −22x + 56 63. We analyze the expression inside the parentheses first. Multiply first, distributing the −3. −8x − 5[2x − 3[−4x + 9]] = −8x − 5(2x + 12x − 27) = −8x − 5(14x − 27) Next, distribute −5 and simplify. = −8x − 70x + 135 = −78x + 135 Second Edition: 2012-2013