Comments
Transcript
ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ Grothendieck ʖे 中村博昭, 玉川安騎男, 望月新
ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ Grothendieck ʖे ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ ᘙ᫆Ʒ Grothendieck ʖेƱƸŴɟᚕưƍƏƱƢǕƹŴӑႎˊૠዴƷૠᛯႎؕஜ፭Ƹዴ ƷˊૠನᡯLJưܦμƴൿNJƯƠLJƏŴƱƍƏʖेưƋǔŵƜƷբ᫆ƷᄂᆮƸŴᓸᎍƷɟʴ (ɶ) ƴǑǓᲲᲪ࠰ˊƷƴႆᇢƕƔǕŴNjƏɟʴ (ྚ߷) ƴǑǓᲳᲪ࠰ˊЭҞƔǒ (ദૠƷئӳǛ ԃlj) ஜឋႎƳૼޒƕNjƨǒƞǕŴƭƮƍƯஇࢸƷɟʴ (ஓஉ) ƴǑǓŴૼƠƍ (p ᡶႎƳ) ᚐ ǛЈႆໜƱƢǔஇኳႎƳᚐൿƕɨƑǒǕƨŵ ƜƷᛯᛟưƸŴբ᫆ƷᏑǍഭӪƴƭƍƯቇҥƴࣄ፼ƠƨƋƱŴʖेƕɤʴƴǑƬƯഏᇹƴᚐ ଢƞǕƯƍƬƨಮ܇ǛإԓƢǔŵ §1. ૠᛯႎؕஜ፭ — ˊૠ࠹˴Ʊ፭ᛯƷƚ — §1.1. Ǩǿȸȫؕஜ፭ ᡫࠝƷžˮႻ࠹˴ႎƳؕஜ፭ſƸŴǑƘჷǒǕƯƍǔǑƏƴŴ࢟Ʒᡲዓ࢟٭ưɧ٭ƳŴƍǘ ǏǔțȢȈȔȸɧ٭ưƋǓŴ̊ƑƹdzȳȑǯȈƳᙐእˊૠዴưƸؕஜ፭ưൿLJǔƷƸƨƔƩ ƔᆔૠƷLjưƋǔŵࢼƬƯƦƷLJLJưƸ̾ŷƷˊૠዴƷˊૠನᡯLJưൿNJǔDŽƲƷጞኬƳɧ٭ ƴƸƳǓࢽƳƍŵܱᨥŴɥƷʖेưᎋƑƯƍǔૠᛯႎؕஜ፭ƸŴA. Grothendieck ƴǑǓݰλ ƞǕƨžǨǿȸȫؕஜ፭ſƷಒࣞǛNjƪƍƯžǬȭǢ፭ƷࡨᧈſƱƠƯᐯƴܭ፯ƞǕǔNjƷư Ƌǔŵ ƜƷಒࣞƸᲫᲳᲰᲪ࠰ˊƴ [SGA1] ƴƓƍƯˊૠ࠹˴ƴƓƚǔžǹǭȸȠƷǬȭǢྸᛯſǛ ወСƢǔNjƷƱƠƯݰλƞǕƨNjƷưƋǓŴƦǕƴǑǕƹŴᡲኽƳǹǭȸȠ X ƱƦƷɥƷˊૠ ໜ x̄ ƕɨƑǒǕƨƱƖŴǨǿȸȫؕஜ፭ π1 (X, x̄) ƸഏƷǑƏƳžᚐᨼӳſƷኒЗƷፗ੭፭Ʊ ƠƯܭ፯ƞǕǔŵұƪ X ƷஊᨂഏǨǿȸȫᘮᙴ (ˌࢸƠƹƠƹஊᨂഏᘮᙴƱဦƢ) Y ǛμƯឥ ǒƤǔƱƖŴx̄ ɥƷ fiber set Y (x̄) ƨƪƸஊᨂᨼӳƷࢨݧኒǛƳƢƕŴƜƷኒЗƷᐯࠁፗ੭μ ˳ƷƳƢ፭ƕ π1 (X, x̄) ưƋǔŵƜƷ፭ƴƸ̾ŷƷஊᨂᨼӳ Y (x̄) ɥƷፗ੭፭ƷࢨݧಊᨂƱƠƯ profinite ˮႻ፭1) ƷನᡯƕᐯƴλǔƜƱƴදॖƠƯƓƘŵǨǿȸȫؕஜ፭ƷˮႻ፭ƱƠƯƷ ӷƸܭ፯ƴྵǕǔؕໜ x̄ ƷӕǓ૾ƴ̔܍ƠƳƍƜƱƕǘƔǔƷưŴ፭ᛯႎƳನᡯƷLjƕբ ᫆ƱƳǔƱƖƠƹƠƹؕໜǛႾဦƠŴҥƴ π1 (X) ƷǑƏƴNjƘƜƱƴƢǔŵ ˓ॖƷஊᨂഏᘮᙴ Y → X ƴݣƠƯŴY (x̄) Ƹ π1 (X, x̄) ƷᡲዓƳஊᨂፗ੭ᘙྵǛɨƑǔƕŴƜ ƷࣖݣƴǑǓŴX ƷஊᨂഏᘮᙴƷμ˳Ʊ π1 (X, x̄) Ʒᡲዓஊᨂፗ੭ᘙྵƷμ˳ƕחӷ͌ƴƳǔŵཎ ƴ (ᡲኽƳ Y ƴݣƠƯ) Y (x̄) ƷӲໜƴƓƚǔ҄ܭܤ፭Ƹ π1 (X, x̄) ƷᢿЎ፭2) (Ʒσࢫ) Ǜܭ NJŴᡞƴ π1 (X, x̄) ƷᢿЎ፭ H Ƹй˷ᨼӳǁƷፗ੭ᘙྵƴࣖݣƢǔஊᨂഏᡲኽᘮᙴ Y → X (Ʒӷ͌) ǛܭNJǔŵƜƷ ̞᧙ࣖݣH ↔ Y ƸࢸƷᜭᛯưNjƠƹƠƹྵǕǔƷưŴY = Y H , H = HY ƱƍƏᚡӭưࣖݣƢǔNjƷǛᘙƢƜƱƴƢǔŵཎƴ HY ƕ Y ᐯ៲Ʒؕஜ፭ π1 (Y ) Ʊ ӷƴƳǔƱƍƏᚇݑƸؕஜႎưƋǔŵ Typeset by AMS-TEX 1 2 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ ᆰ᧓ X ƕɟໜŴཎƴ˳ K ƷǹȚǯȈȩȠ Spec (K) ƱƠƯɨƑǒǕƨƳǒƹŴᡲኽƳஊ ᨂഏᘮᙴ Y ɥƷ fiber set Y (x̄) Ƹ Y Ǜܭ፯Ƣǔˊૠ૾ᆉࡸƷᚐƷᨼӳƴDŽƔƳǒƣŴؕஜ፭ def π1 (Spec (K)) ƸƋǒǏǔ૾ᆉࡸƷžᚐƷፗ੭፭ſƷዮ˳ưƋǔዌݣǬȭǢ፭ Gal(K) = Gal(K/K) ƱӷɟᙻƞǕǔŵ(ƜƜư K Ƹ K ƷЎᩉѼǛᘙƢŵ) ɟᑍƴǹǭȸȠƷ ݧf : X1 → X2 ƓǑƼ X1 ɥƷˊૠໜ x̄1 ƕɨƑǒǕǔƱŴx̄1 Ʒ Ǜ x̄2 ƱƠƯᐯƳแӷπ1 (X1 , x̄1 ) → π1 (X2 , x̄2 ) ƕࡽƖឪƜƞǕǔŵܱᨥŴஊᨂഏǨǿȸȫ ᘮᙴ Y → X2 ƷࡽƖƠ (ȕǡǤȐȸᆢ) Y → X1 ƸǍƸǓஊᨂഏǨǿȸȫᘮᙴưƋǓŴࠝƴ Y (x̄2 ) ∼ = Y (x̄1 ) ƕǓᇌƭŵƜƷƜƱƔǒŴݣᆅ፭ኒЗǛСᨂƢǔƜƱƴǑƬƯɥƷแӷƕ ဃơǔƷưƋǔŵؕໜ x̄1 ƷӕǓ૾Ǜ٭ƑƯNjƜƷแӷƸᢘ࢘Ƴӧ੭ࡸƷNjƱưӷ͌ƴƳƬ ƯƠLJƏƷưŴˌɦƠƹƠƹؕໜǁƷᚕӏƸႾဦƠƯŴҥƴ π1 (X1 ) → π1 (X2 ) ƷǑƏƳƖ૾ ǛƢǔƜƱƴƢǔŵ X ƕ˳ K ɥܭ፯ƞǕƨˊૠٶಮ˳ƷئӳƴƸŴᐯƴɨƑǒǕƯƍǔ ݧX → Spec (K) Ɠ def ǑƼ Spec K → Spec K ƱƔǒ ݧXK → X (XK = X ×K K) ƕᛔݰƞǕŴƜǕǒƔǒؕஜ፭Ʒ ܦμЗ (1.1) pr −→ Gal(K) −→ 1 1 −→ π1 (XK ) −−−−→ π1 (X) −−−X ƕဃơǔŵ ࢨݧprX ƷఋǛɨƑƯƍǔ፭ π1 (XK ) Ƹ X Ʒž࠹˴ႎſؕஜ፭ƱԠƹǕŴK ƕૠ ᲪƷئӳƴƸŴࣖݣƢǔᙐእٶಮ˳ƷᡫࠝƷˮႻ࠹˴ႎƳؕஜ፭Ʒ profinite ( ҄ͳܦμƯƷஊᨂ ՠ፭Ʒࢨݧಊᨂ) ƱӷƴƳǔƷưŴཎƴ࢟٭ɧ٭ưƋǔ3) ŵƦƜưžૠᛯႎſؕஜ፭ π1 (X) Ʒ Gal(K)-ਘٻ፭ƱƠƯƷನᡯ (1.1) ƕᆰ᧓Ʒ࢟٭ƴ᧙ƠƯƲƏ҄٭ƢǔƔƕբ᫆ƱƳǔŵ ɥƷܦμЗ (1.1) ƴƓƍƯ π1 (XK ) Ƹ π1 (X) ƷദᙹᢿЎ፭ưƋǔƔǒŴσࢫǛƱǔƜƱƴ ǑƬƯแӷπ1 (X) → Aut(π1 (XK )) ƕܭLJǔŵଢǒƔƴƜƷแӷƸ π1 (XK ) ǛƦƷϋᢿᐯࠁ ӷ፭ƴϙƢƔǒŴՠǛƱǕƹŴGal(K) Ɣǒ࠹˴ႎؕஜ፭Ʒٳᢿᐯࠁӷ፭ Out(π1 (XK )) ǁ Ʒแӷٳ( ǬȭǢᘙྵƱƍƏ) (1.2) ρX : Gal(K) → Out(π1 (XK )) ƕဃơǔŵʻƸ prX : π1 (X) → Gal(K) ƔǒЈႆƠƯρX : Gal(K) → Out(π1 (XK )) Ǜ፭ᛯႎƳ દ˺ƴǑƬƯܭ፯ƠƨƕŴπ1 (XK ) Ʒɶ࣎ƕᐯଢƳئӳƴƸŴᡞƴ ρX Ɣǒ፭ᛯႎƳદ˺ƴǑƬ Ư prX ǛࣄΨƢǔƜƱƕưƖǔŵ̊ƑƹŴૠᲪƷ˳ɥܭ፯ƞǕƨӑႎˊૠዴ (ұƪŴ๖ǒ ƔƳˊૠዴưŴᆔૠǛ g ŴᨂᢒໜƷૠǛ n ƱƢǕƹ (g, n) = (0, 0), (0, 1), (0, 2), (1, 0) ưƋ ǔǑƏƳNjƷ) ưƸŴ࠹˴ႎؕஜ፭Ƹ᩼ǢȸșȫƳᐯဌ፭ƳƍƠ᩿፭Ʒ profinite ҄ͳܦƱӷ ƴƳǓŴƦƷɶ࣎ƸᐯଢưƋǔƜƱƕჷǒǕƯƍǔƷưƜƷئӳƴƋƯƸLJǔŵƜƷǑƏƳƱƖ ƸŴ žπ1 (XK ) ǁƷٳǬȭǢ˺ဇ ρX ſǛᎋƑǔƜƱƱžGal(K) Ʒਘٻ፭ π1 (X)ſǛᎋƑǔƜƱ ƸӷሁƱƳǔƷưƋǔŵ §1.2. Grothendieck ƷᢒǢȸșȫʖे Grothendieck([G1-3]) ƕɼࢌƠƨƷƸŴ ˊૠٶಮ˳ X ƕ ‘ᢒǢȸșȫ (anabelian) ˊૠٶಮ ˳’ ƱԠƹǕǔŴӑႎˊૠዴǛԃljƋǔᆔƷˊૠٶಮ˳ƷǯȩǹƴޓƠŴؕᄽ˳ K ƕእ˳ɥ ஊᨂဃƳǒƹŴGal(K) Ʒਘٻ፭ƱƠƯƷ π1 (X) Ʒನᡯ (1.1) Ƹ X Ʒ࠹˴ܖǛdzȳȈȭȸȫ ƢǔưƋǖƏŴƱƍƏႺज़ǛЈႆໜƱƢǔʖे፭ưƋƬƨŵ LJƣᇹɟƴදॖǛƻƘƷƸŴGrothendieck ƕžᢒǢȸșȫˊૠ࠹˴ƷؕஜʖेſƱԠǜưƍ ǔഏƷዮᛯႎɼࢌưƋǖƏŵ ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे 3 (GC1) ؕஜžʖेſ. እ˳ɥஊᨂဃƳ˳ K ɥƷᢒǢȸșȫˊૠٶಮ˳ X Ƹૠᛯႎؕஜ፭ π1 (X) ƷˮႻ፭ನᡯƓǑƼ˄᨟Ƣǔμ ݧprX : π1 (X) → Gal(K) ƷನᡯƔǒ ‘ࣄΨ’ ưƖǔŵ ƜƜưžᢒǢȸșȫˊૠٶಮ˳ſƸžǢȸșȫ፭ƔǒDŽƲᢒƍؕஜ፭ƴǑƬƯƦƷ࠹˴ƕወ СƞǕǔſˊૠٶಮ˳ƱƍƏǑƏƳॖԛưŴGrothendieck ƴǑǓоЈƞǕƨᚕᓶưƋǔƕŴɟ ᑍഏΨƴƓƚǔദᄩƳܭ፯Ǜ Grothendieck ƕ̬သƠƯƠLJƬƨƷƱŴɥƷ ‘ࣄΨ (reconstitute) Ƣǔ’ ƷॖԛNjୱଭƳLJLJസƞǕƨƨNJŴྵנưNj᭗ഏΨưƷʖेƷᇌርǛɧᄩƔƳNjƷƱ ƠƯƍǔ4) ŵƠƔƠૠᲪƷˊૠዴƴƭƍƯƸ Grothendieck ᐯ៲ƴǑǓഏƷǑƏƳଢᅆႎƳ ʖेƕᇌƯǒǕƨŵ (GC2) Hom ʖे. ஊྸૠ˳ɥஊᨂဃƳ˳ K ɥƷӑႎˊૠዴ X, Y ƴݣƠƯ HomK (X, Y ) → HomGal(K) (π1 (X), π1 (Y ))/ ∼ ƴǑƬƯૅᣐႎƳ K-ݧƨƪƱ Gal(K)-ɲᇌႎƳแӷϙƷ (ӫƔǒƷ π1 (YK ) Ʒσࢫ˺ဇ ƴǑǔ) ӷ͌ƨƪƱƷ᧓ƷɟݣɟࣖݣƕɨƑǒǕǔŵ(ƭLJǓŴؕஜ፭ƷแӷƸˊૠ࠹˴ႎ ƳݧƴဌஹƢǔNjƷƴᨂǔŵ) Grothendieck ᐯ៲NjදॖƠƯƍǔǑƏƴŴɥƷʖेƸ G.Faltings ([F1]) ƴǑƬƯᚰଢƞǕƨ Ǣȸșȫٶಮ˳ƷᲫഏΨǨǿȸȫȷțȢȭǸȸ፭ƴ᧙Ƣǔ Tate ʖे: HomK (A, B) ⊗ Ẑ ∼ = HomGal(K) (H1 (AK , Ẑ), H1 (BK , Ẑ)) (ƜƜư A, B Ƹ ˳؏ٻK ɥܭ፯ƞǕƨǢȸșȫٶಮ˳ưŴẐ Ƹ Z Ʒ profinite )҄ͳܦƱ˩ ƠƯƍǔŵLJƨŴƜǕƱӷƴ Faltings ƴǑǓᚐൿƞǕƨ isogeny ( ྸܭǍ Shafarevich ʖेሁ) ǛဇƍǕƹŴȤdzȓٶಮ˳ǛᎋƑǔƜƱƴǑǓŴɨƑǒǕƨᆔૠ 2 ˌɥƷ proper ˊૠዴƱțȢ ȭǸȸ፭ H1 ƕǬȭǢӷƱƳǔዴƸ᭗ŷஊᨂ̾ưƋǔƜƱƕႺƪƴࢼƏŵH1 ƕ π1 ƷǢȸș ȫ҄ưƋǔƜƱƴදॖƢǕƹŴؕஜʖे (GC1) ƸŴțȢȭǸȸ፭Ɣǒؕஜ፭ƴऴإǛࢍNJǔƜ ƱƴǑƬƯŴӷơɧ٭ǛਤƭዴƷӧᏡࣱǛஊᨂ̾ƔǒᲫ̾ƴNJǔƜƱǛᙲᛪƠƯƍǔƱᙸ ǔƜƱƕưƖǔŵƨƩƠŴƜƷᆔƷஊᨂࣱྸܭƷ effectivity Ƹ (̊ٳႎƳئӳ5) ǛᨊƍƯ) order ƕᡦ૾NjƳƘٻƖƍƷƕ୍ᡫưƋǓŴɟᑍƴƸӑႎዴƷ Grothendieck ʖे (GC1)(GC2) Ʊ ƦƷȤdzȓٶಮ˳Ʒ Tate ʖेሁƱƸƔƳǓƷᨠƨǓƕƋǔŵGrothendieck ƸࢬƷʖेƷఌਗ ƱƠƯૠᛯႎؕஜ፭ π1 (X) ƕžࠝݮƳǒƟǔбࣱſǛஊƢǔƜƱŴᚕƍƔƑǕƹƦƷૠᛯႎƳ ‘ՠ’ Gal(K) Ʒ ࠹˴ႎ ‘ᢿЎ’ π1 (XK ) ǁƷ˺ٳဇ (1.2) ƕžࠝݮưƳƍDŽƲࢍƍſƸƣưƋǔƜ ƱǛ (dzțȢȭǸȸྸᛯƴƓƍƯ A.Weil Ǎ P.Deligne ǒƴǑǓᚐଢƞǕƯƖƨǬȭǢᘙྵƷ᩼ ᐯଢࣱƱൔ᠋ƠƯ) ਫƛƯƍǔ ([G3])ŵ இࢸƴNjƏɟƭŴƖƪǜƱ҄ࡸܭưƖǔ (சᚐൿ) ʖेƱƠƯᐻԛขƍNjƷƴഏƷ Section ʖ ेƕƋǔŵ˳ K ɥƷˊૠٶಮ˳ X Ʒ K-ஊྸໜ x ∈ X(K) Ƹನᡯ ݧX → Spec K ƴݣƢǔ section ݧx : Spec K → X ƷƜƱưƋǔƔǒŴK-ஊྸໜ x ƕɨƑǒǕǔƝƱƴɥƷؕஜܦμЗ (1.1) ǛЎᘷƞƤǔ section แӷαx : Gal(K) → π1 (X) (Ʒπ1 (XK )-σࢫ) ƕᛔݰƞǕǔŵ (GC3) Section ʖे. (GC2) Ʊӷơ X/K ƴݣƠƯŴprX : π1 (X) → Gal(K) Ʒ section แӷ α : Gal(K) → π1 (X) ƸŴX Ʒ K-ஊྸໜƴဌஹƢǔNjƷƱŴ‘ᨂᢒ K-ஊྸໜ’ ƴဌஹƢǔ NjƷƴᨂǔ6) ŵ 4 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ ᨂᢒໜƴဌஹƢǔ (tangential) section ƴƭƍƯƸഏƷራưᚑǕǔŵLJƨ Hom ʖेƴƭƍ ƯƸŴGrothendieck ([G2]) Ƹƴ X ƕɟᑍƷ๖ǒƔƳˊૠٶಮ˳ư Y ƕИሁႎᢒǢȸșȫˊ ૠٶಮ˳ (ӑႎዴଈƷӒࣄႎ smooth fibration ƱƠƯࢽǒǕǔٶಮ˳) ƷئӳƴਘࢌƢǔӧ ᏡࣱƴƭƍƯᚕӏƠƯƍǔ7) ŵSection ʖेƸŴHom ʖेƴƓƍƯ X Ǜؕᄽ˳ƷǹȚǯȈȩȠ ưፗƖ੭ƑƨئӳƷ variant ưƋǔ8) ŵƴ X Ǎ Y ƕ᧙ૠ˳ƷǹȚǯȈȩȠƴƳƬƨئӳƴƭ ƍƯNjᎋॾƕƋǓŴɲ૾ƱNjƦƏưƋǔƱƖǛžᢒǢȸșȫʖेƷӑஊྸ༿9) ſƱƠƯŴƜǕNj ʖेƱƠƯƍǔŵ §1.3. ૠᛯႎؕஜ፭ǛNJƙƬƯ Grothendieck Ʒ૨ ([G1-3]) ƴƸŴ§1.2 ưኰʼƠƨǑƏƳʖेƷDŽƔƴNjŴˮႻ᩿ɥƷǰ ȩȕ (dessin d’enfant) ƴǑǔૠ˳ɥƷˊૠዴƷወਙƷӧᏡࣱǍŴዴƷȢǸȥȩǤᆰ᧓Ʒૠᛯ ႎؕஜ፭ƨƪƷ᧓Ʒ݅ƳႻʝ᧙̞ƷᚡᡓŴחᛯႎƳૼƠƍᙻໜƴǑǔᆰ᧓ಒࣞƷ٭᪃ŴƳƲƷ ٶƘƷٹƕᛖǒǕƯƍǔŵLJƨŴK = Q, X = P1 − {0, 1, ∞} ƴݣƢǔٳǬȭǢᘙྵ (1.2) ƕҥ ݧưƋǔƱƍƏᲫᲳᲱᲪ࠰ˊƷ G.V.Belyi ([B]) ƷኽௐƸŴǬȭǢ፭Ʊؕஜ፭Ʒ᧙ǘǓƕ᭗ࡇ ƴ᩼ᐯଢưƋǔχ̊ƱƠƯٶƘƷૠܖᎍƔǒදႸƞǕƨŵƦƷЭࢸƔǒŴ[G1-3] Ǎ˂ƷᇌƳ ឪเǛਤƭ࠹ƭNjƷૠᛯႎؕஜ፭ƴ᧙Ƣǔᄂᆮᛢ᫆Ǎசᚐൿբ᫆ƕݲƠƣƭ᧙ᡲƮƚǒǕƯᛐᜤ ƞǕǔǑƏƴƳǓŴྵנNjLJƢLJƢႆƳᄂᆮƕᘍǘǕƯƍǔ (ǬȭǢƷᡞբ᫆ŴฆӳȢȁȸȕŴ Ǣȇȸȫႎཎഷ᧙ૠŴGrothendieck-Teichmüller ፭ƳƲ)ŵƜǕǒٶૠƷᙲƳɼ᫆ǍஇᡈƷᡶ ޒƳƲƴƭƍƯŴஜᛯᛟưƸኡૠƷᣃӳɥŴ࠹ƭƔƷӋᎋ[( 1–6]) ƓǑƼɼᙲإ૨ ([I2], [H]) ǛਫƛǔƴƱƲNJŴφ˳ႎƳϋܾƴᇌƪλǔƜƱƷưƖƳƍƜƱǛƓᛀƼဎƠɥƛƨƍŵɥƷǑ ƏƳૠᛯႎؕஜ፭ǛNJƙǔૠٶƘƷᄂᆮᛢ᫆ƷٻƷɶƴƋƬƯŴஜᛯᛟưৢƏžGrothendieck ʖेſƸŴǍǍᚇࣞᛯႎƳᑥӳƍƷຜƍƷɟƭƱƍƏƜƱƕЈஹǔưƋǖƏŵ §2. ஊᨂࣱྸܭƔǒбࣱྸܭǁ (ɼƴ X :ᆔૠᲪ, K :ˊૠ˳Ʒئӳ) §2.1. Anderson-˙ҾƷྸܭ Grothendieck ʖेǁƷǢȗȭȸȁƸŴૠᛯႎؕஜ፭Ʒਘٻನᡯ (1.1) ǍƦƜƔǒဃơǔٳǬ ȭǢᘙྵ (1.2) ƷƲƜǛᙸǕƹΨƷᆰ᧓ƷˊૠನᡯƕᑣƘӒପƞǕƯƍǔƔŴƱƍƏբ᫆ǛᎋƑ ǔƜƱƔǒڼLJǔŵƱƜǖưእૠ l ǛܭƠƨƱƖŴٳǬȭǢᘙྵ (1.2) Ƹ π1 (XK ) Ʒஇ ٻpro-l (l) ՠ፭10) π1 (XK ) ƷɥǁƷ˺ٳဇ (l) (l) ρX : Gal(K) → Out(π1 (XK )) ǛNjᐯƴࡽƖឪƜƠƯƍǔŵᲫᲳᲲᲪ࠰ˊƴ˙Ҿࡍᨙ ([I1]) ƸŴƦǕˌЭƷᄂᆮኺዾƔǒ Grothendieck, Deligne ሁƱƸᇌƴ X = P1 − {0, 1, ∞} ƴݣƢǔ pro-l ٳǬȭǢᘙྵƷᄂᆮǛ оڼƠŴƦƷขƍૠᛯࣱ (ȤdzȓԧŴόҥૠƱƷ᧙ǘǓ) ǛଢǒƔƴƠƨ11) ŵƦƠƯƜƷ˙ҾƷ ыǛڎೞƴŴƦƷࣖဇǍ˂ƷƍǖƍǖƳዴǁƷɟᑍ҄ƷแͳƳƲƕɼƴǘƕƷᄂᆮᎍǛɶ ࣎ƴᡶNJǒǕƨ12) ŵ ᲲᲪ࠰ˊࢸҞƴƸŴଏƴഏƷǑƏƳʙܱƕ G.Anderson-˙Ҿ ([AI]) ƷɟྸܭƱƠƯჷǒǕƯ ƍƨŵஊᨂᨼӳ Λ ⊂ P1 (K) ƕ 0, 1, ∞ ǛԃljƱƖŴ (l) ( ྸܭAnderson-˙Ҿ). ᆔૠᲪƷዴ X = P1K − Λ ƴݣƢǔ pro-l ٳǬȭǢᘙྵρX ƷఋƷܭ (l) ˳ KX Ƹᨼӳ Λ ƔǒᙐൔƱ l ʈఌǛӕǔદ˺ǛጮǓᡉƠƯဃơǔˊૠႎૠǛμƯؕᄽ˳ K ƴ ชьƠƯࢽǒǕǔਘ˳ٻưƋǔŵ ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे (l) 5 (l) ƜƷྸܭƸŴpro-l ٳǬȭǢᘙྵ ρX Ɣǒᐯƴဃƣǔ K ƷᢿЎ˳ KX ǛŴЎޟໜᨼӳ Λ ⊂ P1 (K) ƷࡈƔǒɟܭƷưဃƞǕǔžૠſƷኒЗƴǑƬƯᚡᡓƢǔNjƷưƋǔƕŴ (l) ᙸ૾Ǜ٭ƑǔƱŴૠᛯႎؕஜ፭ π1 (X) Ʒ Gal(K)-ਘٻ፭ƱƠƯƷನᡯƔǒ KX ƱƍƏ K Ʒᢿ Ў˳ƴ͌Ǜਤƭ፭ᛯႎɧ٭ǛŴእૠ l ƝƱƴᚡᡓႎƴನƠƯƍǔƱNjLjƳƤǔŵɶƸŴƜ ƷǑƏƳ K ƷᢿЎ˳ƱƠƯܭ፯ƞǕǔૠᛯႎؕஜ፭Ʒɧ٭ǛǑǓኒወႎƴನưƖǕƹŴƦ ǕǒƴǑƬƯᆔૠᲪƷˊૠዴǛኬƔƘғКƢǔƱƍƏ࢟ư Grothendieck ʖेǁƷǢȗȭȸȁ ƕЈஹǔƔNjƠǕƳƍŴƱᎋƑƨŵ §2.2. ǬȭǢፗ੭Ʒž፭ᛯႎſᚡᡓ Anderson-˙ҾƷ૾ඥƸŴ π1 (P1 − Λ) ƴƓƚǔ pro-l ٳǬȭǢᘙྵǛŴ P1 − Λ Ʒ “pro-l ୍ ᢄᘮᙴƷጂ” ƴЎࠋƢǔ Λ ɥƷ “pro-cusp” ໜƨƪƷǬȭǢፗ੭ƷᚕᓶƴᎇᚪƠŴƦǕǛᆔૠᲪ (ƷዴƨƪƷƳƢ) ᘮᙴذƷऴإƴ࠙ბƢǔƱƜǖƕȝǤȳȈƴƳƬƯƍǔŵƦƜưLJƣŴžஊ ᨂഏᘮᙴƷ cusp ໜƨƪƕǬȭǢፗ੭ƞǕǔſƱƍƏ࠹˴ႎƳྵᝋǛžૠᛯႎؕஜ፭Ʒ (ਘ )ٻ፭ ನᡯſƷLjǛဇƍǔ፭ᛯႎƳᚕᓶƴᎇᚪƢǔƜƱǛᎋƑǔŵ ɟᑍƴ X Ǜ K ɥܭ፯ƞǕƨ (˓ॖƷᆔૠƷ) affine ӑႎዴƱƠŴY ǛƦƷஊᨂഏᘮᙴŴ def Y ∗ ǛƦƷ᩼ཎီdzȳȑǯȈ҄ƱƢǕƹŴY Ʒ cusp ໜᨼӳƱƸΣY = Y ∗ − Y ƷƜƱưƋǔŵLJ ƣŴᘮᙴ Y ƷᐯƳܭ፯˳ƸŴࣖݣƢǔ ᢿЎ፭ HY = π1 (Y ) Ʒ prX : π1 (X) → Gal(K) ƴǑ ǔƷ ˳ܭKY ƱƠƯࢽǒǕǔŵLJƨŴY Ʒ࠹˴ႎؕஜ፭ƸσᡫᢿЎ HY ∩ π1 (XK ) ƱƠƯࣄ ΨƞǕǔŵƜǕƸŴY ∗ Ʒᆔૠƕ gY ŴΣY (K) Ʒຜࡇƕ nY ưƋǔƱƢǕƹŴ᨞ૠ 2gY + nY − 1 Ʒ᩼Ǣȸșȫᐯဌ profinite ፭ưƋǔŵƦƷஇ ٻpro-l ǢȸșȫՠƱƠƯ lᡶǨǿȸȫȷțȢȭ (l) Ǹȸ፭ H1 (YK , Zl ) (= π1 (YK )ab ) ƕࢽǒǕŴσࢫǛӕǔƜƱƴǑǓŴƦƜƴƸ Gal(KY )-ь፭ ƱƠƯƷನᡯNjλƬƯƍǔŵƜƜƴŴcusp ໜᨼӳƴƓƚǔόЎፗ੭ᘙྵ13) ƕ (᨞ૠ nY − 1 Ʒ ᢿЎь፭ƱƠƯ) DŽDžλƬƯƍǔƷưŴƜǕǛ፭ᛯႎƴӕǓЈƤǕƹǑƍŵƦǕǛ̬ᚰƢǔƷƕ Riemann-Weil ʖेưƋǔŵܱᨥŴբ᫆Ʒ ‘cusp ᢿЎ’ ƴǑǔ H1 (YK , Zl ) Ʒՠь፭Ƹ᨞ૠ 2gY ƱƳǓŴY ∗ ƷȤdzȓٶಮ˳Ʒ l-ࠉЎໜƨƪƷƳƢ l ᡶ Tate ь፭ƱӷưƋǔŵRiemann-Weil ʖेƸŴƦƜƴƓƚǔ Gal(KY ) Ɣǒဃơǔ Frobenius ˺ဇƷஊ͌Ҟࢲ (weight) ƕŴόЎ˺ဇ ƷئӳƱǹDZȸȫƕီƳǔƜƱǛƍƬƯƍǔƷưŴH1 (YK , Zl ) Ʒ cusp ᢿЎƕ፭ᛯႎƴᜤКƞǕ ǔƜƱƴƳǔŵ §2.3. ஊᨂࣱ[( ྸܭN1]) √ ƦƜư̊Ƒƹ X = P1K − Λ (Λ ⊃ {0, 1, ∞}) Ʒᘮᙴ Y ƷƏƪŴ˳ K( N 1) Ǜܭ፯˳ƱƠŴ XK( N√1) ɥ (Z/N Z)|Λ|−1 ǛǬȭǢ፭ƱƢǔǬȭǢᘮᙴƱƳƬƯƍǔNjƷǛᎋƑǔŵƦƠƯӲ H1 (YK , Zl ) Ʒ cusp ᢿЎƴƓƚǔǬȭǢᘙྵƷఋƷ˳ܭƷŴɥƷǑƏƳ Y Ʊእૠ l ƴǘƨǔ σᡫᢿЎǛᚘምƠƯLjǔƱŴ˳ K((λ − λ )1/N | λ, λ ∈ Λ − {∞}) ƕЈƯƘǔŵƜǕƸ፭Ʒμݧ prX : π1 (X) → Gal(K) Ɣǒᐯૠ N ǛɨƑǔƝƱƴ፭ᛯႎƴਁЈƞǕǔɧ٭ưƋǔŵƴ N ǛѣƔƤƹŴቇҥƳǯȳȞȸᜭᛯ (Ʊҥૠ፭Ʒஊᨂဃࣱ) ƴǑǓŴʈඥ፭ K × ƷƳƔưஊᨂ ᨼӳ {λ − λ | λ, λ ∈ Λ − {∞}, λ = λ } ưဃƞǕǔᢿЎ፭ƕɧ٭ƴƳǔƜƱƕǘƔǔŵƜ Ʒɧ٭ƴǑƬƯŴӷơૠᛯႎؕஜ፭ǛɨƑǔΛ ⊂ P1 (K) ƷӕǓ૾ƕ (ɟഏЎૠ٭੭ǛඥƱƠ Ư) ஊᨂᡫǓƠƔƳƍƜƱŴLJƨ K ƕཎКƳˊૠ˳ƷئӳƴƸؕஜ፭ (ƷȡǿȷǢȸșȫ҄) ƕ P1 − { Ხໜ } ǛൿNJƯƠLJƏƜƱƳƲƕᅆƞǕǔŵ §2.4. бࣱྸܭ ǑǓјྙǑƘ cusp ໜƨƪƷǬȭǢፗ੭ƷऴإǛМဇƢǔƨNJƴŴʻࡇƸπ1 (X) ƷμƯƷᢿ 6 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ Ў፭ H ǛȑȩȡȸǿƱƠƯឥǒƤƯŴࣖݣƢǔᘮᙴ Y H ƴ˄᨟Ƣǔ cusp ᢿЎ ⊂ H1 ((Y H )K , Zl ) ƷऴإǛμᢿᨼNJƯƘǔƜƱǛᎋƑǔŵƜƷ cusp ᢿЎƸ (§2.2 ưᡓǂƨǑƏƴ) weight filtration ƴǑƬƯཎࣉƮƚǒǕƯƍǔƔǒŴμƯƷᢿЎ፭ H ƓǑƼእૠ l ƴǘƨƬƯ I ∩ H ƕࠝƴƦ Ʒ cusp ᢿЎƴᓳƪǔǑƏƳπ1 (XK ) Ʒ߹ׅᢿЎ፭ I Ʒӳ́Ǜ˺ǕƹŴGal(K)-ਘٻ፭ π1 (X) Ɣ ǒ፭ᛯႎƴӕǓЈƤǔ π1 (XK ) ƷᢿЎᨼӳƕࢽǒǕǔŵ ƜƷᢿЎᨼӳƕ ‘cuspidal isotropy ᢿЎ፭’ Ʒ (σࢫ) ԧᨼӳƴႻ࢘ƢǔNjƷŴƍƍƔƑǕ ƹ X Ʒᨂᢒໜ (ұƪ X ᐯ៲ƴݣƢǔ cusp ໜ) ƴƓƚǔ π1 (XK ) ϋƷॄࣱ፭ (∼ = Ẑ) μ˳Ʒ ӳ́ƴƳǔƜƱƕᚰଢƞǕǔ (ᢒǢȸșȫ weight filtration [N2,4])ŵӲॄࣱ፭Ʒദᙹ҄፭ƱƠƯ π1 (X) ϋƷЎᚐ፭ƕࣄΨƞǕǔƕŴƜƷЎᚐ፭ƷɶƴǛਤƭǑƏƳ prX : π1 (X) → Gal(K) Ʒ section แӷ α : Gal(K) → π1 (X) ƨƪǛ X Ʒᨂᢒ K-ஊྸໜƔǒႆƢǔ tangential section ƱԠƿŵGrothendieck Ʒ Section ʖे (GC3) ưբ᫆ƱƞǕǔ section แӷƷƏƪ ᨂᢒ K-ஊྸໜƴဌஹƢǔNjƷƴ᧙ƠƯƸŴƜƷǑƏƴƠƯ፭ᛯႎƳཎࣉƮƚƕɨƑǒǕǔŵ ƞƯŴॄࣱ፭ (ǍࣖݣƢǔЎᚐ፭) Ʒᨼӳƕ፭ᛯႎƴཎࣉƮƚǒǕƨƨNJŴ̊ƑƹʚƭƷዴ X1 , X2 /K Ʒૠᛯႎؕஜ፭Ʒ᧓ƴ Gal(K) ɥƷӷ π1 (X1 ) ∼ = π1 (X2 ) ƕɨƑǒǕƨƳǒƹŴƦ Ʒ፭ӷƸᐯѣႎƴॄࣱ፭ƷᨼӳǛ̬ƬƯƍƳƘƯƸƳǒƣŴƔƭӲŷƴࣖݣƢǔᨂᢒໜƷй ˷˳Nj (Ўᚐ፭Ʒ prX ƴǑǔƷ˳ܭƱƠƯ) ̬ƨǕǔƜƱƴƳǔŵࢼƬƯ X1 ƕ X1 ƴ؈ λƞǕǔƳǒŴX2 Njπ1 (X1 ) ∼ = π1 (X2 ) ƱƳǔ X2 ƴ؈λƞǕƳƘƯƸƳǒƳƍŵཎƴŴᆔૠ 1 ᲪƷዴ P − {n ໜ } ƷࣄΨƷբ᫆Ƹ P1 − { Ხໜ } Ʒئӳƴ࠙ბƞǕǔƜƱƴƳǔŵƴ࠹˴ ႎƳ߹ׅᘮᙴưᲬໜưƷLjЎޟƢǔǑƏƳNjƷƕؕஜ፭Ʊॄࣱ፭ƷᚕᓶưཎܭưƖǔƜƱǛМဇ ƢǔƱŴ[N1] ƷඥǛੲဇƠƯπ1 (P1 − {0, 1, ∞, λ}) Ʒɧ٭ƱƠƯ K × ƷʈඥᢿЎ፭Ʒɤƭ λ ኵ λ, 1 − λ, λ−1 ǛӕǓЈƤǔƜƱƕǘƔǔŵƜǕƕܱᨥ P1 − {0, 1, ∞, λ} ƷӷǛཎ ࣉƮƚǔŵƜƷǑƏƴƠƯ Q ɥஊᨂဃƳ˳ɥƷᆔૠᲪƷӑႎˊૠዴƸؕஜ፭Ɣǒ ‘ࣄΨ’ ƞǕǔƜƱǛᅆƢƜƱƕưƖǔ ([N2])ŵ LJƨŴॄࣱ፭ƷཎࣉƮƚƕɟᑍƷᆔૠƷ affine ዴƷ pro-l ؕஜ፭ưNjӧᏡƳƜƱƔǒŴ Grothendieck ʖेǛ pro-l ؕஜ፭ƴݣƠƯ҄ࡸܭƠƳƓƠƨNjƷƴŴ፭Ʒᨀɶ࣎ЗƳƲǛᡫƠƯ ‘ܭႎƴ’ ǢȗȭȸȁƢǔӧᏡࣱƕဃLJǕƨŵཎƴ pro-l ؕஜ፭Ʒᐯࠁӷ፭Ʒᚸ̖Ʒբ᫆ƴཎഷ ҄ƢǔƱŴ᭗ᆔૠƷዴǍƦƷᣐፗᆰ᧓Ʒ pro-l ٳǬȭǢᘙྵƷჷᜤǛᆔŷƷ filtration Ʒ૾ඥư ኵLjӳǘƤƯŴᏉܭႎኽௐǛ࠹ǒƔኵጢႎƴࢽǔƜƱƕưƖǔ (ᛯᛟ [N7] Ǎ [NTs],[NTa],[MT] Ƴ ƲǛӋༀ)ŵƜƷǑƏƳŴؕஜ፭Ʒᐯࠁӷ፭ƔǒዴƷƦǕǛࣄΨƢǔբ᫆ƸŴ(GC2) Ʒ Isom ༿ǁƷǹȆȃȗƷɟᢿЎƱLjƳƢƜƱNjưƖǔŵƠƔƠŴǑǓஜឋႎƳǛɨƑǔƴƸŴLJƣ ྚ߷Ʒˁʙ (§3) ǛࢳƨƳƚǕƹƳǒƳƔƬƨŵ ƱƜǖưɥƴƓƍƯŴᨂᢒໜƔǒဃƣǔ tangential section ƴݣƠƯᘍƳƬƨǑƏƳŴ ˊૠዴƷૠᛯႎؕஜ፭Ʒਘٻ፭ನᡯ prX : π1 (X) → Gal(K) ƴݣƠ ˴ǒƔƷ࠹˴ႎƳ׆ǛਤƭǑƏƳ section แӷ α : Gal(K) → π1 (X) Ǜ (˂ƷɟᑍƷ section แӷƔǒ) ፭ᛯႎƴᜤКƢǔŴ ƱƍƏǹȆȃȗƸŴˌࢸƷྚ߷ǍஓஉƷˁʙƴƓƍƯNjσᡫƠƯᘍǘǕǔᢿЎƱƳƬƯƍǔŵƦ ƷᨥŴπ1 (X) ƷᢿЎ፭ H ǛȑȩȡȸǿƷǑƏƴឥǒƤƯŴࣖݣƢǔᘮᙴዴ Y H ƨƪƷǨ ǿȸȫȷdzțȢȭǸȸƴԃLJǕǔૠᛯ࠹˴ႎऴإǛžᢒǢȸșȫႎƴſᨼኖƞƤǔŴƱƍƏඥ ƸŴแႎƴဇƍǒǕǔǑƏƴƳƬƨŵƨƩƠŴƞLJƟLJƳૠᛯႎᚨܭƷNjƱưŴY H ƷƲƷǑ ƏƳ࠹˴ႎऴإǛǨǿȸȫȷdzțȢȭǸȸƷɶƴᙸЈƠŴƲƷǑƏƴƦǕǒǛᨼኖƞƤƯኽௐƴ ኽƼƭƚǔƔƱƍƏໜƸŴǑǓች߽Ƴ২ᘐƱૼᮗƳႆेǛᙲƢǔٻƖƳբ᫆ưƋǔŵˌɦƷӲራ ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे 7 ƴƓƍƯŴƜƷǑƏƳբ᫆ƴݣƢǔྚ߷ȷஓஉƷŴƦǕƧǕƷૠᛯႎཞඞƴƓƚǔǢǤȇǣǢƷ ޒǛᚐᛟƢǔƕŴٳᧉݦƷᛠᎍƷ૾ƴNjŴƦƷࡁƴ්ǕǔσᡫƷբ᫆ॖᜤƷ࠼ƕǓ૾Ǜ (ݲٶ ƳǓƱNj) ԛǘƬƯ᪬ƚǔǑƏƴŴɟഩɟഩᇿǛᡶNJǔƜƱƴƠǑƏŵ §3. ദૠˊૠዴƷؕஜ፭Ʊ Grothendieck ʖे §3.1. ஊᨂ˳ɥƷ Grothendieck ʖे ƜƷራưƸŴk Ǜஊᨂ˳ƱƠŴX ǛƦƷɥƷ (᩼ཎီ) affine ዴƱƢǔŵྚ߷ ([T1]) Ʒɼኽ ௐƷɟƭƸŴǹǭȸȠ X ƕ π1 (X) ƔǒࣄΨƞǕǔƜƱ (ǑǓദᄩƴƸ (GC2) Ʒ Isom ༿Ʒ ˩) ǛᅆƠƨƜƱưƋǔŵƦƷᚰଢƷ૾ᤆƸŴ᧙ૠ˳ k(X) ƕƦƷዌݣǬȭǢ፭ Gal(k(X)) Ɣǒ ࣄΨƞǕǔƜƱǛᅆƠƨϋဋᐻʚƷˁʙ ([U]) ǛȢȇȫƴƠƯƓǓŴٻƖƘɤƭƷǹȆȃȗƴЎ ƔǕǔᲴ (i) X ∗ ƷӲໜƴݣƢǔЎᚐ፭Ʒ፭ᛯႎཎࣉƮƚᲵ (ii) ʈඥ፭ k(X)× ƷࣄΨᲵ (iii) k(X) = k(X)× ∪ {0} ƷɥƷьඥನᡯƷࣄΨŵ ƜƜưŴ§2 ƷᡫǓŴX Ʒ᩼ཎီdzȳȑǯȈ҄Ǜ X ∗ ƱᚡƢŵ ǹȆȃȗ (i) ưƸŴϋဋƸ Brauer ፭Ǜဇƍƨ Neukirch ƷǢǤȇǣǢǛ̅ƬƨƕŴǘǕǘǕ ƷئӳŴX ɥƷໜƴݣƠƯƸŴॄࣱ፭ƕෞƑƯЎᚐ፭ƕй˷˳ (ࢼƬƯஊᨂ˳) ƷዌݣǬȭǢ ፭ƱӷƴƳǓŴH 2 ƕෞƑƯƠLJƏƷưŴˊǘǓƴŴˌɦᛟଢƢǔǑƏƳǢǤȇǣǢǛဇƍǔŵ LJƣŴX ƷɥƷӲໜ x ƸŴᡲዓ፭แӷ αx : Gal(k(x)) = π1 (Spec (k(x))) → π1 (X) ưƋƬƯ prX ◦ αx ƕᐯƳҥ ݧGal(k(x)) → Gal(k) ƴɟᐲƢǔǑƏƳNjƷǛɨƑŴαx Ʒ ƕ x ƷЎᚐ፭ƱƳǔƜƱƴදॖƢǔŵཎƴŴx ƕ k-ஊྸໜƷئӳƴƸŴแӷ αx Ƹ prX Ʒ section ǛɨƑǔŵˌɦŴቇҥƷƨNJŴƜƷئӳǛᎋƑǔŵբ᫆ƸŴѨƴɨƑǒǕƨ prX Ʒ section แӷ α ƕŴƋǔ x ∈ X(k) ƴݣƢǔ αx ƱƳǔƨNJƷவˑǛ፭ᛯႎƴᚡᡓƢǔƜƱư Ƌǔŵ(Gal(k) ∼ = Ẑ ƕᐯဌ profinite ፭ƳƷưŴSection ʖे (GC3) Ʒ˩ƦƷNjƷƸᇌƠƑ ƳƍƜƱƴදॖŵ) LJƣஇИƴǘƔǔƷƸŴբ᫆ƷவˑƕŴ α Ʒ Im(α) ǛԃljǑƏƳ π1 (X) Ʒ˓ॖƷᢿЎ፭ H ƴݣƠƯŴ (∗) ࣖݣƢǔ X Ʒᘮᙴ Y H Ʒ k-ஊྸໜᨼӳ Y H (k) ƸᆰƴƳǒƳƍ Ʊӷ͌ưƋǔƱƍƏƜƱưƋǔŵܱᨥŴ࣏ᙲࣱƸŴЎᚐ፭ƷؕஜႎࣱឋƔǒႺƪƴࢼƍŴҗЎ ࣱƸŴᆰưƳƍஊᨂᨼӳƷࢨݧಊᨂƸᆰƴƳǒƳƍƱƍƏʙܱƴǑǓŴIm(α) ƴࣖݣƢǔ X Ʒ (pro-) ᘮᙴNjLJƨ k-ஊྸໜǛਤƭƜƱƕࢼƏƷưŴƦƷ k-ஊྸໜǛɟƭƱƬƯ X ƴƓƚǔǛ x ƱƢǕƹŴα = αx ƱƳǔƜƱƔǒǘƔǔŵƋƱƸŴ(∗) ƕᇌƢǔƔƲƏƔŴƋǔƍƸɟᑍ ƴஊᨂ˳ k ɥƷዴƕஊྸໜǛਤƭƔƲƏƔǛŴૠᛯႎؕஜ፭Ɣǒ፭ᛯႎƴЙܭƢǔƱƍƏբ ᫆ƕസǔƕŴƜǕƸŴஊྸໜƷ̾ૠ (≥ 0) Ǜ l ᡶǨǿȸȫȷdzțȢȭǸȸ፭ (l Ƹ k ƷૠƱီ Ƴǔእૠ) ǁƷ Frobenius ΨƷ˺ဇưᚡᡓƢǔ Lefschetz ួπࡸƴǑƬƯᚐൿƞǕǔŵᨂᢒໜ def x ∈ Σ = X ∗ − X ƴݣƠƯƸŴॄࣱ፭ƕෞƑƳƍƷưŴЎᚐ፭ƷɶǁƷ section แӷ αx Ƹɟ ॖƴƸൿLJǒƣŴLJƨŴαx ƷƸЎᚐ፭ƷჇƷᢿЎ፭ƴƳƬƯƠLJƏŵƠƔƠŴƜƷئӳƴNjŴ 8 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ ɥƷᜭᛯǛᒉ̲ദƠƯᢘဇƢǔƱŴӲ x ∈ Σ ƴݣƠƯᨂ̾Ʒ (ƓƜǓƏǔμƯƷ) αx ƕ፭ ᛯႎƴࣄΨƞǕǔƷưŴƦǕǒƷưဃƞǕǔ π1 (X) ƷᢿЎ፭ƱƠƯŴ x ƷЎᚐ፭ƕࣄΨƞ Ǖǔŵ ǹȆȃȗ (ii) Ƹ [U] ƱDŽDžӷಮưŴ᧙ૠ˳ k(X) Ʒ˳ᛯƷႻʝࢷǛ̅Əŵ˳ᛯƸŴNjƱNj Ʊʈඥ፭ƴǑƬƯǬȭǢ፭ƷǢȸșȫ҄ǛᚡᡓƢǔNjƷƩƕŴᡞƴƜǕǛǬȭǢ፭Ʒɶƴʈඥ፭ ƷऴإƕλƬƯƍǔƱᙸǔƷưƋǔŵǹȆȃȗ (i) ư X ∗ ƷӲໜ x ƴݣƢǔЎᚐ፭ƕࣄΨưƖ x× /O x× ƨƷưŴޅ˳ᛯƴǑǓŴƦƷǢȸșȫ҄ƷžWeil ፭ᢿЎſƱƠƯŴx ∈ X Ƴǒƹ K × ƕŴᐯƳ ݧK × /O × → π1 (X)ab ƱƱNjƴ × → π1 (X)ab ƳƍƠ K (∼ = Z)Ŵx ∈ Σ Ƴǒƹ K x x x x x Ƹޅ OX ∗ ,x Ʒ҄ͳܦŴK x ƸƦƷՠ˳ǛᘙƢŵ) ƦƜ ࣄΨƞǕƨƜƱƴƳǔŵ(ƜƜưŴO ưŴArtin ϙ × × × /O × −→ π1 (X)ab K K x x∈X x x x∈Σ NjLJƨ π1 (X) ƷLjƔǒ፭ᛯႎƴࣄΨƞǕŴƜƷఋƱƠƯʈඥ፭ k(X)× ƕࣄΨƞǕǔŵ(ƜƜưŴ X ƕ affine ưƋǔƜƱǛИNJƯဇƍǔŵ X = X ∗ ƩƱɼ܇׆፭ k(X)× /k × ƠƔࣄΨưƖƳƍŵ) ǹȆȃȗ (iii) ƸŴ২ᘐႎƴƸNjƬƱNjᩊƠƍǹȆȃȗưƋǔŵLJƣŴǹȆȃȗ (ii) ưŴʈඥ ፭ƩƚưƸƳƘŴX ∗ ƷӲໜ x ƴ˄᨟Ƣǔᩉ˄͌ ordx : k(X)× → Z ǍŴx ∈ Σ Ƴǒƹ × × Ʒఋ ƕࣄΨƞǕǔƜƱƴදॖƢǔŵƞƯŴ ƴ reduction ϙ Ker(ordx ) = OX ( ) [U] ∗ ,x → k(x) ∗ ƴƓƍƯƸŴؕᄽ˳ k (ƋǔƍƸk̄) ƷьඥನᡯǛLJƣࣄΨƠŴഏƴŴ(“Σ = X ” ƳƷư) ᨂ ̾ƷໜƴݣƢǔ reduction ϙǛဇƍƯŴ᧙ૠ˳ƷьඥǛй˷˳ƷьඥƔǒࣄΨƢǔƜƱƕưƖ ƨŵǘǕǘǕƷئӳƴƸŴ(Σ ƕஊᨂᨼӳƷƨNJ) இࢸƷᢿЎƕƏLJƘƍƔƳƍƷưŴˊǘǓƴŴ (X = P1k − {0, 1, ∞} = Spec (k[t, t−1 , (t − 1)−1 ]) ƴƓƚǔ t ƷǑƏƳ)žǑƍſ᧙ૠ f ∈ k(X) ǛžƨƘƞǜſӕǓŴஊྸ᧙ૠ˳ƷཎഷࣱǛဇƍƯ k(f ) ⊂ k(X) ƷьඥನᡯǛࣄΨƠŴƦǕǒ ǛžƸǓӳǘƤƯſk(X) ƷьඥನᡯǛࣄΨƢǔŵ §3.2. ஊᨂ˳Ɣǒஊᨂဃ˳ǁ §3.1 ưᛟଢƠƨኽௐƓǑƼᚰଢƸŴX ƕƴӑႎƳئӳƴƸŴ(ૠᛯႎ) ؕஜ፭ π1 (X) Ǜ ƦƷՠưƋǔ tame ؕஜ፭ π1tame (X) ƴ٭ƑƯNjǓᇌƭŵƜƷራưƸŴஊྸૠ˳ɥஊᨂဃƳ ˳ƷɥƷ affine ӑႎዴƴݣƢǔ Grothendieck ʖे (GC2) Ʒ Isom ༿ƕŴஊᨂ˳ɥƷ affine ӑႎዴƷ tame ؕஜ፭ƴ᧙ƢǔƜƷኽௐƔǒݰƚǔƜƱǛᛟଢƢǔŵ§1.2 ư Tate ʖेƱ Grothendieck ʖेƷ˩ǛਦઇƠƨƕŴTate ʖेƷஊᨂ˳༿ưƋǔ Tate ƷྸܭƔǒŴჇƴٻ ؏ႎƳᎋݑǛԃLJƳƍҥኝƳᜭᛯƴǑƬƯ Faltings ƷྸܭƕݰƚǔƱƸᎋƑƴƘƍŵTate ʖे Ʊ Grothendieck ʖेƷૠᛯႎࣱឋƷɟƭƷᢌƍƕƜƜƴƋǔŵ(§4.1 NjӋༀŵ) ૠ˳ƷئӳƔǒஊྸૠ˳ɥஊᨂဃƳ˳ƷئӳǛݰƘƷƸܾତƳƷưŴˌɦưƸŴK Ǜૠ˳ ƱƠŴK ɥƷ affine ӑႎዴ X ǛৢƏŵբ᫆ƸŴK ƷӲஊᨂእໜƴƓƚǔ X Ʒ reduction Ʒ tame ؕஜ፭ǛŴX Ʒૠᛯႎؕஜ፭Ɣǒ፭ᛯႎƴࣄΨƢǔƜƱưƋǔŵƜƜưƸŴޅ˳ɥƷ ӑႎዴƕ good reduction ǛਤƭƔƲƏƔǛ pro-l ؕஜ፭ (l Ƹй˷˳ƷૠƱီƳǔእૠ) ǁƷॄࣱ፭Ʒ˺ٳဇƕᐯଢƔƲƏƔưЙܭưƖǔƱƍƏʙܱ (Ǣȸșȫٶಮ˳Ʒ good reduction Ʒ Serre-Tate ЙܭඥƷ˩) ƕᦆƱƳǔŵ(ƜƷŴӑႎዴƷ good reduction Ʒ፭ᛯႎЙܭඥ ƸŴproper ƳئӳƸጢဋܑ࠳ ([O1,2]) ƴǑǔŵ) ʻŴv Ǜ K ƷஊᨂእໜƱƠŴKv Ǜ K Ʒ v ᡶ҄ͳܦŴOv ǛƦƷૢૠŴkv ǛƦƷй˷˳ ƱƠǑƏŵKv ƷዌݣǬȭǢ፭Ƹᐯƴ K ƷዌݣǬȭǢ፭ƷᢿЎ፭ƱLjƳƞǕŴLJƨŴX Ʒ࠹ ˴ႎؕஜ፭Ʊ XKv Ʒ࠹˴ႎؕஜ፭ƸɟᐲƢǔƷưŴXKv Ʒૠᛯႎؕஜ፭ π1 (XKv ) ƸŴ(1.1) ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे 9 Ʒᚡӭư pr−1 X (Gal(Kv )) ƱƠƯႺƪƴࣄΨƞǕǔŵƜǕƴɥᚡƷЙܭඥǛᢘဇƢǕƹŴXKv ƕ good reduction ǛਤƭƔƲƏƔƕ፭ᛯႎƴЙܭƞǕǔƷưŴˌɦưƸŴXKv ƕ good reduction ǛਤƭƱˎܭƠŴXOv Ǜ XKv Ʒ Ov ɥƷžǑƍſȢȇȫŴXkv ǛƦƷ reduction ƱƢǔŵƜ ƷƱƖŴπ1tame (Xkv ) Ʊ π1 (XOv ) Ʒ᧓ƴᐯƳӷƕƋǔƜƱƕჷǒǕƯƍǔƷưŴπ1tame (Xkv ) ǛŴ π1 (XKv ) Ʒՠ፭ π1 (XOv ) ƱӷɟᙻƢǔƜƱƕưƖǔŵƜƷՠǛ፭ᛯႎƴࣄΨƢǔƨNJƴ ƸŴXKv ƷӲஊᨂഏǨǿȸȫ (ǬȭǢ) ᘮᙴƴݣƠŴƦƷᘮᙴƕ XOv ƷǨǿȸȫᘮᙴƴLJưࡨ ᧈưƖǔƔƲƏƔǛ፭ᛯႎƴЙܭưƖǕƹǑƍƕŴƜǕƸŴӑࣱƴǑǓŴܱƸŴᘮᙴƷዴNj LJƨ good reduction ǛਤƭƱƍƏ (ɟᙸࢊƍ) வˑƱӷ͌ƴƳǔƷưŴέƷЙܭඥƴǑǓ፭ᛯႎ ƴЙܭưƖǔŵˌɥƴǑǓŴૠ˳ K ɥƷӑႎዴ X ƕእໜ v ư good reduction Ǜਤƭئӳ ƴŴƦƷ reduction Xkv Ʒ tame ؕஜ፭ƕŴ(X Ʒૠᛯႎؕஜ፭ƷᢿЎՠƱƠƯ) ፭ᛯႎƴࣄΨ ƞǕƨƜƱƴƳǔŵ ƞƯŴૠ˳ K ɥƷʚƭƷ affine ӑႎዴ X1 , X2 Ʒૠᛯႎؕஜ፭Ʒ᧓ƴŴGal(K) ɥƷӷ π1 (X1 ) ∼ = π1 (X2 ) ƕɨƑǒǕǔƱŴɥƷᜭᛯƴǑǓŴ(X1 , X2 ƕƦƜư good reduction ǛਤƭǑ ƏƳ) DŽƱǜƲμƯƷ K Ʒእໜ v ƴƓƍƯπ1tame ((X1 )kv ) ∼ = π1tame ((X2 )kv ) ƕᛔݰƞǕŴࢼƬƯ ஊᨂ˳ɥƷ affine ӑႎዴƷ tame ؕஜ፭ƴ᧙ƢǔɥᚡƷኽௐƴǑǓŴӷ( X1 )kv ∼ = (X2 )kv ƕݰƔǕǔŵƱƜǖƕʻŴዴƷӑࣱ (ƴǑǔ Isom ǹǭȸȠƷஊᨂࣱ) Ɣǒ Isom(X1 , X2 ) ∼ = Isom((X1 )kv , (X2 )kv ) ƕDŽƱǜƲμƯƷ v ƴݣƠƯǓᇌƭƷưŴX1 ∼ = X2 ƕࢼƏŵƜƏƠƯŴஊᨂ˳ɥƷ affine ӑ ႎዴƷ tame ؕஜ፭ƴ᧙ƢǔɥᚡƷኽௐƔǒૠ˳ɥƷ affine ӑႎዴƴݣƢǔ (GC2) Ʒ Isom ༿ǛݰƘᚰଢƕܦኽƢǔŵ ƳƓŴ[M1] ưƸŴஊᨂ˳ɥƷ affine ӑႎዴƷ tame ؕஜ፭ƴ᧙ƢǔɥᚡƷኽௐƔǒŴૠ ˳ɥƷ proper ƳӑႎዴƴݣƢǔ (GC2) Ʒ Isom ༿ǛݰƍƯƍǔŵƜƜưŴʚƭƷኽௐǛኽ ƿᦆƸŴஊᨂ˳ɥƷ (๖ǒƔưƳƍ) ܭܤዴƷžlog ؕஜ፭ſ ƴݣƢǔ (GC2) Ʒ Isom ༿Ʒ ˩ưƋǔŵ §3.3. ദૠˊૠዴƷ࠹˴ႎؕஜ፭ ૠ 0 ƷئӳŴዴƷ࠹˴ႎؕஜ፭ƷӷƸŴᆔૠ g ƱᨂᢒໜƷૠ n ƷLjưൿLJǔƕŴ ദૠƷئӳƸƦƏưƸƳƍŵܱᨥŴ[T2] ưƸŴFp ɥƷᆔૠ 0 ƷዴƷǹǭȸȠƱƠƯƷӷ ƕŴƦƷؕஜ፭ƴǑƬƯܦμƴൿܭƞǕǔƜƱƕᚰଢƞǕƯƍǔŵƜƷǑƏƳኽௐƕŴദૠ ˊૠ˳ɥƷ (ӑႎ) ˊૠዴƴݣƠƯɟᑍƴǓᇌƭƷƔƲƏƔŴƋǔƍƸ tame ؕஜ፭ƴ ƭƍƯNj˩ƷኽௐƕǓᇌƭƷƔƲƏƔŴᐻԛƕਤƨǕǔŵ §4. ޅ˳༿ƴᐱǔኺዾ §4.1. ˳؏ٻƱޅ˳ §1 ưƸ Grothendieck ʖेǛŴஊྸૠ˳ɥஊᨂဃƳ˳ŴұƪእໜǛᝅ݈ƴਤƭǑƏƳž؏ٻ ႎƳ˳ſɥƷݣᝋƴ᧙ƢǔNjƷƱƠƯኰʼƠƨƕŴஓஉƷɟᡲƷᛯ૨ ([M1-4]) ƸŴƜƷʖेǛ ˳؏ٻǑǓNjljƠǖஜឋႎƴޅ˳ɥƷ p ᡶᚐௌႎྵᝋƱƠƯਵƑǔŴƱƍƏૼƠƍᙻໜǛݰλ ƠƨŵƜƷᙻໜǛؕƴࢽǒǕƨޅ˳༿Ʒ Grothendieck ʖे (§5.1) ƸŴஊྸૠ˳ɥஊᨂဃƳ ˳ɥƴ҄ࡸܭƞǕƯƍƨΨƷʖे (GC2) ǛԃljŴǑǓɟᑍႎƳኽௐƱƳƬƯƍǔƕŴƜƷૼƠ ƍᙻໜǍኽௐƷᛟଢƴλǔЭƴŴLJƣஓஉˌЭƷെ᨞ưŴؕᄽ˳ƴ؏ٻႎƳ˳ǛƱǔƜƱƕᐯ Ʊ࣬ǘǕƯƍƨᏑǛ౨ᚰƠƯLjǑƏŵ 10 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ (A) Ǣȸșȫٶಮ˳Ʒ Tate ʖेᲴ§1 ưNjᚑǕƨǑƏƴŴGrothendieck ƕᢒǢȸșȫʖेǛܭ ࡸ҄ƢǔƴƋƨƬƯਦઇƠƨƜƱƷɟƭƱƠƯŴFaltings ([F1]) ƴǑƬƯᚰଢƞǕƨ Tate ʖेƱ Ʒ˩ƕஊƬƨƕŴFaltings ƷƦƷᚰଢưƸŴૠ˳ɥƷ height ƷྸᛯǍŴǢȸșȫٶಮ˳Ʒ᧓Ʒ ӷᆔƷᨥƴဃơǔŴஊᨂእໜƴǑǔ݃ɨƱᨂእໜƴǑǔ݃ɨƕƪǐƏƲႻࣱᑣƘෞӊƠƋƬƯ ƍǔƱƍƏʙܱƳƲŴஜឋႎƴ؏ٻႎƳཞඞƕஊјƴ̅ǘǕƯƍǔŵɟ૾ưૠ˳ (Ǎஊᨂ˳) Ʊ ᢌƬƯŴQp ƷǑƏƳޅ˳ƷɥưƸŴTate ʖेƸƨƩᇌƠƳƍƷLjƳǒƣŴӷƕʖेƞǕ ǔʚƭƷь፭ƷࠀƕئӳƴǑƬƯƸ᩼ࠝƴٻƖƘƳƬƯƠLJƏŵࢼƬƯŴ žGrothendieck ʖे=Tate ʖेƷӑႎዴ༿ſ ƱƍƏᙻໜƴᇌƯƹŴ(GC2) ƷǑƏƳʖेƷᇌǛLJƣ˳؏ٻɥưƷLjᎋݑƠǑƏƱƢǔ૾Ӽƕ ᐯƱƍƑǑƏŵ (B) Diophantus ࠹˴ǁƷࣖဇᲴᢒǢȸșȫՋܖƷੵቒƴᇌƪ˟ƬƨૠܖᎍƷ᧓ưƸŴGrothendieck ʖेƸŴDiophantus ࠹˴Ŵұƪ؏ٻႎƳ˳ɥƷٶಮ˳ƷஊྸໜƷᄂᆮǁƷૼƠƍǢȗȭȸ ȁƱƠƯᛐᜤƞǕƯƍƨǑƏưƋǔŵƦƷǢȗȭȸȁǛˊᘙƢǔNjƷƱƠƯŴഏƷǑƏƳᜭᛯƕ ƋǔŵƋǔˊૠٶಮ˳ƕஊᨂ̾ƷஊྸໜƠƔਤƨƳƍƜƱǛᚰଢƢǔ૾ඥƱƠƯŴNjƠˎƴᨂ ̾ஊƬƨƱƠƨǒŴƦƷžಊᨂſƱƠƯႆဃƢǔஊྸໜƕಮŷƳžᑣᢅƗǔſࣱឋǛਤƨƟǔǛ ࢽƳƍƜƱƔǒჳႽǛݰƖƨƍƱƠǑƏŵƨƩƠŴƦƷᜭᛯǛܱᘍƢǔƨNJƴƸŴžಊᨂſƕ܍ נƠƳƍƱƍƚƳƍŵƱƜǖƕŴૠ˳ƷǑƏƳ˳Ƹ˴ڦƳǔ (᩼ᐯଢƳ) ˮႻƴ᧙ƠƯNjͳܦƴ ƸƳǒƳƍƷưŴƦƷǑƏƳಊᨂƷנ܍ƸൿƠƯႺƪƴƸЎƔǒƳƍŵɟ૾ưŴ(ࡸ (1.2) ƷǑƏ Ƴ) ǬȭǢᘙྵƸƋǔॖԛưƸžᚐௌႎſƳNjƷƳƷưŴƦƷǑƏƳǬȭǢᘙྵƷЗƴݣƠƯŴ ಊᨂǛਤƭᢿЎЗƕ࣏ƣנ܍ƢǔƜƱƸൔ᠋ႎܾତƴᚰଢưƖǔŵƦƜưŴSection ʖे (GC3) ƕɼࢌƠƯƍǔǑƏƴŴ ஊྸໜƱ (ƋǔவˑǛƨƢ) ǬȭǢᘙྵƕܱƸӷ͌ƳݣᝋưƋǔŴƱ ƍƏƜƱƕЎƔǕƹŴǬȭǢᘙྵƷЗƷಊᨂƷנ܍ƔǒƦǕƴࣖݣƢǔஊྸໜƷЗƷಊᨂƷנ܍ ƕݰƔǕǔƜƱƴƳǔŵɥᡓƷǑƏƳሂᢊƷᜭᛯǛǑǓች݅҄ƢǕƹŴ̊ƑƹŴ᭗ᆔૠƷˊૠ ዴƴݣƢǔžMordell ʖे14) ſƷКᚰଢƕ Section ʖे (GC3) ƔǒݰƚǔӧᏡࣱƕƋǔŵ ƜƷ ǑƏƳஜឋႎƴ؏ٻႎƳࣖဇǛ᪽ࣞƴፗƍƯLjǔƱŴGrothendieck ʖेǛ˳؏ٻɥưƷLjᎋݑ ƠǑƏƱƢǔƷƕǍƸǓᐯƳ්ǕƱƍƑǑƏŵ ƜƷǑƏƳཞඞƷɶưŴž˳؏ٻƔǒ p ᡶ˳ǁſƱƍƏႆेƷ᠃੭ƕஓஉƷˁʙƴǑƬƯNjƨ ǒƞǕƨŵƦƷƖƬƔƚƱƳƬƨᚇໜƴƭƍƯŴˌɦưᚐᛟƠƯLjǔƜƱƴƢǔŵ §4.2. ӑȪȸȞȳ᩿Ʒɟॖ҄ྸᛯƱƷ˩ Grothendieck ʖेƷɼଓƸŴɟᚕưᚕƑƹŴӑႎዴƴ˄᨟ƢǔٳǬȭǢᘙྵ (1.2)Ŵұƪ ዴƷ࠹˴ႎؕஜ፭ᲥƦǕƴλǔᐯƳžૠᛯႎ˄ьನᡯſ Ɣǒዴᐯ៲ǛࣄΨưƖǔưƋǖƏƱƍƏNjƷưƋǔŵƱƜǖƕŴ˳Ʒࣱ؏ٻǛབྷཌƴƠŴžૠ ᛯႎ˄ьನᡯſƱƍƏᘙྵǛ࠼፯ƴᚐƢǕƹŴƜǕƴ˩ƢǔྵᝋƕଏƴҗʋɭኔɶƴჷǒǕ ƯƍƨƜƱƴൢ˄ƘŵƦƷྵᝋƱƸŴӑȪȸȞȳ᩿Ʒɟॖ҄ྸᛯƷƜƱưƋǔŵ ᙐእૠ˳ C ɥƷӑႎዴ X ƕɨƑǒǕƨǒŴX ƔǒӑȪȸȞȳ᩿ X ƕܭLJǓŴƦƷ X Ʒ୍ᢄᘮᙴX˜ → X ƴNjȪȸȞȳ᩿ƷನᡯƕᐯƴλǔŵƱƜǖƕŴȪȸȞȳ᩿Ʒɟॖ҄ܭ def ྸƔǒŴX̃ ƕŴɥҞ᩿ H = {z ∈ C | Im(z) > 0} ƴദЩƴӷƴƳǔƜƱƕЎƔǔŵࢼƬƯŴ ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे 11 Aut(X˜ ) ∼ = Aut(H) = SL2 (R)/{±1} Ǜ̅ƏƱŴX Ʒ (୍ᡫƷˮႻ࠹˴ܖႎƳ) ؕஜ፭π1 (X ) Ʒ X˜ ǁƷ˺ဇƔǒ (4.1) ρX : π1 (X ) → SL2 (R)/{±1} ƱƍƏ (SL2 (R)/{±1} ƴǑǔσࢫǛᨊƍƯ) แႎƳᘙྵƕൿLJǔŵᡞƴŴρX ƕɨƑǒǕǕƹŴ π1 (X ) ƷɥҞ᩿ H ǁƷ˺ဇƕܭLJǓŴH ǛƦƷ˺ဇưлǔƜƱƴǑƬƯŴȪȸȞȳ᩿ X Ŵƻ ƍƯƸΨƷˊૠዴƷ X LJưŴƍƱNjᡯ˺ƳƘࣄΨƞǕǔŵஓஉƸᙐእᚐௌƷɭမƴƓƚǔˌɥ ƷཞඞƴბႸƠŴƴ (1.2) ƷρX Ʊ (4.1) ƷρX ƕŴƍƣǕNjžዴƷ࠹˴ႎؕஜ፭ᲥƦǕƴλǔ ᐯƳૠᛯႎ˄ьನᡯſƱƍƏȑǿȸȳƴᛆ࢘ƢǔƱƷᚇݑƴᚑႆƞǕŴ ᘙྵ ρX Ɣǒ (ƔƘNjႺƔƭᐯƴ) X Ǜ (ϐ) ನưƖǔ ƱƍƏྵᝋƷ p ᡶ༿ƸƳƍƔᲹ ƱᚨբƢǔƴᐱƬƨŵܱᨥŴˌɦ (§5) ưኰʼƢǔ Grothendieck ʖेƷ p ᡶ༿ ( ྸܭ5.1) ƸŴƜ ƷբƍƴݣƠƯɟᆔƷᏉܭႎƳᚐሉǛ੩ᅆƠƯƍǔNjƷƱᙸǔƜƱƕЈஹǔ15) ŵ ࠹˴ႎؕஜ፭π1 (X ) Ʒ H ǁƷ˺ဇƔǒˊૠዴ X Ǜφ˳ႎƴನƢǔƨNJƴƸŴӞχႎƴǑ ƘဇƍǒǕǔඥƱƠƯŴπ1 (X ) Ʒ˺ဇƷɦưɧ٭Ƴ H ɥƷࣇЎ࢟ࡸǛ˺ǔƱƍƏNjƷƕƋǔŵ ƦƷǑƏƳࣇЎ࢟ࡸǛΪЎƴඑ˺ޛǕǕƹŴɥҞ᩿ H ƔǒŴ˴ǒƔƷࢨݧᆰ᧓ PX ǁƷݧ φ : H → PX ƕܭ፯ƞǕŴƦƷݧƷƕŴɟᑍᛯƔǒˊૠٶಮ˳ƴƳǔƜƱƸƢƙЎƔǔƷƩƕŴƜƷئӳŴ (X ƴݣƠƯŴƋǔࢊƍ২ᘐႎƳவˑǛᛢƤƹ) X ᐯ៲ƴƳǔƜƱƕࢼƏŵƜƷᛯඥƸ࣓ٶಮ˳ Ǜݣᆅᆰ᧓ƷՠƱƠƯನƢǔᨥƴŴƦƷՠƕˊૠٶಮ˳ƴƳǔƜƱǛᚰଢƢǔƷƴ̅ǘǕǔƷ ƱӷಮƳNjƷưƋǔŵݲƠૢྸƢǕƹŴƜƷƷᜭᛯƷᙲໜƸŴφǛܭ፯ƢǔƷƴ̅ƏࣇЎ࢟ࡸ ƸѸᛯஇኳႎƴƸ X ɥˊૠႎƳNjƷƴƳǔƷƩƕŴನƷെ᨞ƴƓƍƯƸŴH ɥᚐௌႎƳNjƷ ưƠƔƳƍƱƍƏƜƱưƋǔŵƜƷ žˊૠႎƳࣇЎ࢟ࡸƷᚐௌႎƳᘙᅆǛৢƏſƱƍƏᚇໜƸ ˌɦưኰʼƢǔ ྸܭ5.1 ƷᚰଢƴƓƍƯNjᙲƳࢫлǛௐƨƠƯƍǔŵ §4.3. p ᡶ Hodge ྸᛯƱƷ᧙̞ ƞƯŴ ྸܭ5.1 ǛᚰଢƢǔƴƋƨƬƯŴЭራưኰʼƠƨᙐእૠ˳ɥƷྸᛯƱƷ˩ƸɟƭƷ ੑƔǓƴƸƳǔƕŴƦƷ˩Ǜ p ᡶƷɭမƴƓƍƯܱᨥƴܱྵƢǔƨNJƴƸ᭗ࡇƳ২ᘐƕ࣏ᙲ ƴƳǔŵƦƷ২ᘐǛɨƑƯƘǕƯƍǔNjƷƸ Faltings Ʒ p ᡶ Hodge ྸᛯ ([F2]) ưƋǔŵžp ᡶ Hodge ྸᛯſƱԠƹǕǔNjƷƴƸŴᲫᲳᲰᲪ࠰ˊҞƹƷ Tate ƷέᬝႎƳˁʙƴᢓǔᧈƍഭӪƕ ஊǔƕŴƜƜưᙲƳƜƱƸŴƦƷྸᛯƱ Grothendieck ʖेƱƷขƍ˩ࣱưƋǔŵp ᡶ Hodge ྸᛯƷɼƳȆȸȞƸŴp ᡶ˳ (̊ƑƹŴQp Ʒஊᨂഏਘ )˳ٻɥƷٶಮ˳Ʒ (ǬȭǢ˺ဇ˄ƖƷ) Ǩ ǿȸȫȷdzțȢȭǸȸƱŴȉȷȩȸȠȷdzțȢȭǸȸƱƷ᧓ƷƍǘǏǔൔ᠋ྸܭưƋǔŵұƪŴ ƜƷʚᆔƷdzțȢȭǸȸɧ٭ǛŴʝƍƴ٭੭ƠƋƏǑƏƳžᜋƷ᧙ſ(mysterious functor) ƕנ܍ƢǔưƋǖƏŴƱƍƏज़ᙾƳƍƠʖेƕ p ᡶ Hodge ྸᛯƷҾໜưƋǔŵƜƜưŴȉȷȩȸ ȠȷdzțȢȭǸȸƸ X ɥƷٶࡸ᧙ૠǍƦƷ᧙ૠƷࣇЎƷࣱឋǛଓƘɟƭƷᙐӳ˳ƴLJƱNJǔ ƜƱƴǑƬƯࢽǒǕǔɧ٭ưƋǔƕŴ(GC2) ƷᡀƴЈƯƘǔˊૠٶಮ˳Ʒ᧓ƷݧƱƍƬƨ NjƷNjӷơˊૠ࠹˴ (Ჷٶࡸ) ƷɭမƷ˰ʴưƋǔŵɟ૾ư (GC2) ƷӫᡀƴЈƯƘǔٳǬȭǢ 12 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ ˺ဇ˄ƖƷؕஜ፭ƸŴǢȸșȫȷ᩼ǢȸșȫƷࠀƜƦƋǕŴǨǿȸȫȷdzțȢȭǸȸƱӷơƘŴ բ᫆Ʒٶಮ˳ X ƷǨǿȸȫȷǵǤȈƷᙲƔƭᐯƳɧ٭ưƋǔŵƜƷǑƏƴᎋƑƯLjǔƱŴ mysterious functor ʖेƴƠƯNjŴ(GC2) ƴˊᘙƞǕǔᢒǢȸșȫʖे16) ƴƠƯNjŴƍƣǕNj žˊૠ࠹˴ႎನᡯ ⇐⇒ ǨǿȸȫˮႻᲥǬȭǢ˺ဇſ ƱƍƏᛖƴЩƬƨžൔ᠋ྸܭſƷᇌǛƏƨƬƯƍǔNjƷƱᙸǔƜƱƕЈஹǑƏŵƨƩƠŴp ᡶ Hodge ྸᛯƱ Grothendieck ʖेƷ᧓ƴƜƷǑƏƳžחᛯႎ˩ࣱſƸஊƬƯNjŴǢȸșȫƱ ᩼ǢȸșȫƷࠀƴƸ᩼ᐯଢƳNjƷƕஊǓŴƦƷࠀǛ؈NJǔƜƱƕŴ ྸܭ5.1 ǛᚰଢƢǔɥưƸٻ ƖƳ২ᘐႎᛢ᫆ƱƳƬƨŵ §5. ޅ˳ɥƷ Grothendieck ʖे §5.1. ɼྸܭƷኰʼ ˌɦưƸŴእૠ p ǛܭƠŴQp Ʒஊᨂဃਘ˳ٻƷᢿЎ˳ƱƠƯܱྵӧᏡƳ˳Ǜžэ p ᡶ˳ſ (sub-p-adic field) ƱԠƿƜƱƴƢǔŵэ p ᡶ˳ƷˊᘙႎƳ̊ƱƠƯŴQ ӍƸ Qp ƷஊᨂဃƳਘ ˳ٻƷ˂ƴŴദૢૠ N ƴݣƠƯஊྸૠ˳ Q ƷμƯƷ N ഏˊૠਘ˳ٻǛӳƢǔƜƱƴǑƬƯࢽ ǒǕǔ (Q Ʒᨂഏˊૠਘ˳ )ٻሁƕਫƛǒǕǔŵஓஉ ([M3]) ƷɼƳኽௐƸഏƷྸܭưƋǔŵ ྸܭ5.1. э p ᡶ˳ K ɥƷ˓ॖƷ๖ǒƔƳˊૠٶಮ˳ S Ʊӑႎዴ X ƴݣƠƯŴ open Homdom K (S, X) → HomGal(K) (π1 (S), π1 (X)) (p) (p) → Homopen Gal(K) (π1 (S), π1 (X)) ƱƍƏᐯƳϙƨƪƸμҥݧƴƳǔŵƨƩƠŴƜƜưŴHomdom K ƸžૅᣐႎƳ K ɥƷݧƨƪ open μ˳ſŴHomGal(K) ƸžGal(K) ǁƷࢨݧƱɲᇌƢǔแӷƷ (ӫƔǒƷπ1 (XK ) Ʒσࢫ˺ဇƴ (p) ᧙Ƣǔ) ӷ͌ƨƪμ˳ſǛॖԛƠŴLJƨŴπ1 (V ) Ƹπ1 (V ) ƷᐯƳ pro-p ࣖݣཋ (π1 (V ) Ʒ (p) Ker(π1 (VK ) → π1 (VK )) ƴǑǔՠ፭) ǛᘙƢƱƢǔŵ ƜƷྸܭƸʖे (GC2) Ǜࢍƍ࢟ưᚐൿƠƯƍǔNjƷưƋǔŵ§4.2 ưኰʼƠƨɟॖ҄ྸᛯƱƷ ˩ưᚕƑƹŴᡀƕ X Ʒ S ͌ஊྸໜŴұƪˊૠዴ X ƷžཋྸႎƳܱ˳ſưƋǔƷƴݣƠƯŴ ӫᡀƕૠᛯႎ˄ьನᡯ˄ƖƷ࠹˴ႎؕஜ፭ƔǒႺဃơǔžᚐௌႎƳໜſưƋǔŵƭLJǓŴȪȸ Ȟȳ᩿Ʒɟॖ҄ྸᛯƱӷಮƴŴ ྸܭ5.1 ƸӑႎˊૠዴƷཋྸႎƳܱ˳ƱŴƦƷૠᛯႎ˄ьನ ᡯ˄ƖƷ࠹˴ႎؕஜ፭ƔǒႺဃơǔᚐௌႎƳ࠹˴ႎݣᝋƷӷࣱ͌ǛᚫƑƯƍǔǘƚưƋǔŵ ݵŴ ྸܭ5.1 ƷᒉƷɟᑍ҄ (Ჷ [M3] Ʒ ྸܭA) ƷኒƱƠƯഏƷ Grothendieck ʖेƷӑஊྸ ༿ƕஊǔŵ ኒ 5.2. э p ᡶ˳ K Ǜܭૠ˳ƱƢǔ˓ॖഏΨƷദЩƳ᧙ૠ˳ L Ʊ M ƴݣƠƯŴ HomK (M, L) → Homopen Gal(K) (Gal(L), Gal(M )) ƱƍƏᐯƳϙƸμҥݧƴƳǔŵƨƩƠŴƜƜưŴHomK ƸžK ɥƷแӷƨƪμ˳ſŴ ƸžGal(K) ǁƷࢨݧƱɲᇌƢǔแӷƷ (ӫƔǒƷ Gal(M ⊗K K) Ʒσࢫ˺ဇƴ Homopen Gal(K) ᧙Ƣǔ) ӷ͌ƨƪμ˳ſǛॖԛƢǔƱƢǔŵ ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे 13 ؕᄽ˳ K ƕஊྸૠ˳ɥஊᨂဃƳ˳ƷƱƖŴƜƷኒƷ Isom ༿Ǜ F.Pop ƕ [M3] ˌЭƴμƘᢌƏ ૾ඥƴǑƬƯᚰଢƠƯƍǔ ([P2])ŵ දŵ(i) ྸܭ5.1 Ƹ˳ K ɥƷٶಮ˳Ǎӑႎዴƴ᧙ƢǔNjƷƩƕŴbase ƱƠƯэ p ᡶ˳Ʒˊǘ Ǔƴэ p ᡶ˳ɥ๖ǒƔƳˊૠٶಮ˳ B ǛӕǓŴS Ʊ X ƕƦǕƧǕ B ɥƷٶಮ˳ŴӑႎዴƷ๖ ǒƔƳଈƱƳǔƜƱǛˎܭƢǕƹŴ ྸܭ5.1 ƱӷಮƳྸܭƕǓᇌƭŵܱᨥŴƦƷǑƏƳኽௐƸ (B Ʒ᧙ૠ˳ƕϐƼэ p ᡶ˳ƴƳǔƜƱƴදॖƢǕƹ) ྸܭ5.1 ƔǒႺƪƴࢼƏƷưƋǔŵ (ii) ྸܭ5.1 ƷNjƏɟƭƷ࠙ኽƱƠƯŴӑႎዴɥƷ smooth ƳӑႎዴଈƷμᆰ᧓ƱƠ ƯࢽǒǕǔǑƏƳˊૠ᩿ƴ᧙Ƣǔ (GC2) Ʒ Isom ༿ƕݰƚǔŵᛇƠƘƸ [M4] ǛӋༀƷƜƱŵ §5.2. ྸܭ5.1 ƷᚰଢƷ૾ᤆ ˳ K ƕ Qp ƷஊᨂഏਘٻƴƳǔƱƍƏNjƬƱNjஜឋႎƳئӳƴСᨂƠƯᛅǛᡶNJǔƜƱƴƢ ǔŵ ƴŴቇҥƷƨNJƴŴX(ƓǑƼ S) ƕ proper Ɣƭ non-hyperelliptic ƳӑႎዴưƋǔ ƱƢǔŵܱᨥŴƜǕǒƷᜂŷƷவˑƸᚰଢƷஜឋƴƸɟӼƴᚑǕƳƍƷưŴɟᑍƷئӳƸƜǕǒ ƷவˑǛˎܭƠƨئӳƴႺƪƴ࠙ბƞǕǔƷưƋǔŵஇࢸƴŴ ྸܭ5.1 ưƸŴɤƭƷžHomſƕ ЈƯƘǔƕŴ(NjƬƱNjஜឋႎƳNjƷưƋǔ) ɟ̾ႸƱɤ̾ႸƷ Hom Ʒ᧓ƷϙƴᨼɶƢǔƜƱ (p) ƴƢǔŵբ᫆Ƹ˴ڦƴƠƯπ1 (X) → Gal(K) Ɣǒ X ǛࣄΨƢǔƔƱƍƏƜƱưƋǔŵ def (p) LJƣŴT = π1 (XK )ab ƱƢǔŵࢼƬƯŴX ƕᆔૠ g ƷዴƩƱƢǔƱŴT Ƹ Zp ɥƷ᨞ૠ 2g Ʒᐯဌь፭ƱƳǓŴGal(K)-ь፭ƱƠƯƷᐯƳನᡯNjλǔŵƱƜǖƕŴžp ᡶ Hodge ྸᛯſ ƷŴTate ƴLJưᢓǔNjƬƱNjӞƍᢿЎƷ࠙ኽƱƠƯŴK Ʒ p ᡶ҄ͳܦǛ Cp ưᘙƢƱƢǔƱŴ def (T ⊗Zp Cp )Gal(K) ∼ = DX = H 0 (X, ωX/K ) ƱƍƏᐯƳӷƕǓᇌƭŵƜƜưŴᡀƸŴਙࢆϋƷь፭Ʒ Gal(K)-ɧ٭ᢿЎưŴӫᡀƸŴ X ɥƍƨǔƱƜǖദЩƳࣇЎμ˳ƔǒƳǔ K ɥƷ g ഏΨșǯȈȫᆰ᧓ưƋǔŵഏƴŴDX ƴࣖݣ Ƣǔࢨݧᆰ᧓Ǜ PX ưᘙƢƱƢǔƱŴX ƕ non-hyperelliptic ưƋǔƱƍƏˎܭƔǒŴX ƕ PX Ʒ ɶƴแႎƴ؈NJᡂLJǕǔƜƱƕŴИሁႎˊૠ࠹˴ƴǑǓƢƙЎƔǔŵƭLJǓŴX ƷแႎƳ žλǕNjƷſƱƳǔ PX Ǜ ρX Ɣǒܦμƴž፭ᛯႎƴſࣄΨƢǔƜƱƴыƠƯƍǔŵࢼƬƯբ ᫆Ƹ˴ڦƴƠƯ PX ƷিǔཎКƳᢿЎٶಮ˳ (ƭLJǓŴX) Ǜ፭ᛯႎƴࣄΨƢǔƔŴƱƍƏƜƱƴ Ƴǔŵ ƜƜưŴ§4.2 ưႇئƠƨᚐௌႎƳݧφ : H → PX Ǜ࣬ƍЈƠƯ᪬ƖƨƍŵƦƜưᛇᡓƠƨಮƴŴ ƜƷݧƸˊૠႎƳࣇЎ࢟ࡸǛᚐௌႎƳݣᝋƱƠƯನƢǔƜƱƴǑƬƯܭ፯ƞǕǔNjƷưƋǔŵ ƜǕǛȒȳȈƴŴ࢘Ʒ p ᡶႎƳᚨܭư (িǔॖԛư) ˩ႎƳನǛᘍƍƨƍƷƩƕŴƦƜưȝǤ ȳȈƱƳǔƷƸŴH ƴӕƬƯˊǘǔNjƷƸ˴ƔŴƱƍƏƜƱưƋǔŵ[M2] Ǎ [M3] ƷᚰଢưƸŴ ƦƷࢫႸǛơƯƘǕǔNjƷƸŴX Ʒ᧙ૠ˳ǛিǔžǑƍſࣱឋǛਤƬƨ p ᡶ˄͌ư҄ͳܦƠŴ ƦƷ҄ͳܦƷஇ ٻtame ਘٻǛӕǓŴƴƦƷஇ ٻtame ਘٻǛ p ᡶ҄ͳܦƢǔƜƱƴǑƬƯࢽ ǒǕǔ˳ưƋǔŵƜƷ˳ǛˌɦưƸ L ƱƘƜƱƴƢǔ17) ŵƜƷ˳ L ƸŴQp ƷஊᨂഏਘٻƱӷ ಮŴͳܦƳ p ᡶ˄͌ƷλƬƨ˄͌˳ưƸƋǔƕŴQp ƷஊᨂഏਘٻƱᢌƬƯŴž࠹˴ႎƳഏΨſǛ ɟ̾ԃஊƠƯƍǔNjƷưƋǔŵ̊ƑƹŴƦƷƜƱƷྵǕƷɟƭƱƠƯŴL Ʒй˷˳Ƹஊᨂ˳ɥƷ ɟ٭ૠ᧙ૠ˳ƷஇٻЎᩉਘٻƱƳǔŵƦƠƯŴL ƷNjƏɟƭƷᙲƳࣱឋƱƠƯŴܭ፯ƔǒႺƪ ƴЎƔǔǑƏƴŴᐯƳݧ ξ : Spec(L) → X 14 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ ƕנ܍ƢǔŵƴNjƏɟƭƷදႸƢǂƖࣱឋƱƠƯŴL ƱƍƏ˳ƷӷƸ X ƷȢǸȥȩǤƴƸ ̔܍ƠƳƍŵƜƷࣱឋƴƸŴH ƷȪȸȞȳ᩿ƱƠƯƷӷƕ X ƷȢǸȥȩǤƴ̔܍ƠƳƍƱƍ ƏʙܱǛᡲेƞƤǔNjƷƕƋǔŵ L Ʒ࠹˴ႎƳഏΨƷנ܍ƕ̬ᚰƠƯƘǕǔƜƱƷɟƭƱƠƯŴX ɥƷᩐưƳƍࣇЎǛ (ξ ưNjƬ Ư) L ƴࡽƖƢƜƱƴǑƬƯࢽǒǕǔ Spec(L) ɥƷࣇЎƸ࣏ƣᩐưƳƍNjƷƴƳǔŵࢼƬƯŴ X ɥƷࣇЎǛ Spec(L) ƴࡽƖƢƱƍƏદ˺ƸܱࣙƳદ˺ưƋǓŴƦƷࡽƖƠƨࣇЎǛŴΨ ƷࣇЎƷžᚐௌႎƳᘙᅆſƱᙸǔƜƱƕЈஹǔŵᙐእᚐௌႎƳئӳƱƷ˩ưᚕƑƹŴƜƷદ˺ ƸdzȳȑǯȈƳȪȸȞȳ᩿ X ɥƷࣇЎǛɥҞ᩿ H ɥƷࣇЎƴࡽƖƢƱƍƏદ˺ƴࣖݣƠƯ ƍǔŵ ƞƯŴPX ƷᢿЎٶಮ˳ƱƠƯƷ X Ʒ፭ᛯႎࣄΨƷբ᫆ƴǓƨƍƕŴFaltings Ʒ p ᡶ Hodge ྸᛯƷ࠙ኽƷɟƭƱƠƯŴ(িǔࢊƍ፭ᛯႎƳவˑǛƨƢ) ˓ॖƷᡲዓƳแӷα : Gal(L) → (p) π1 (X) ƴݣƠƯŴK ɥƷݧ φα : Spec(L) → PX ƕܭ፯ƞǕǔŵƭLJǓŴ žᚐௌႎƳ L-ஊྸໜſƴݣƠƯŴ§4.2 ƷᙐእᚐௌƷᛅƴЈƯƖƨφ : H → PX ƱƍƏݧƴ˩ႎƳŴp ᡶᚐௌႎƳݧφα ƕܭLJǔŵբ᫆ƸŴφα ƷƕƲƏƳǔƔƱƍƏƜƱ ưƋǔŵ̊ƑƹŴαƕξ ƷǑƏƳž࠹˴ႎƳſL-ஊྸໜ (ƭLJǓŴX(L) ƷΨ) Ɣǒဃơǔ18) ئӳ ƴƸŴφα ƷǹǭȸȠᛯႎƳƷѼƕ X ƱƽƬƨǓɟᐲƢǔŵࢼƬƯŴ žα ƕ࠹˴ႎƴဃơǔſƱƍƏவˑǛŴX ƴ˄᨟ƢǔಮŷƳݣᝋƷƏƪ (p) π1 (X) → Gal(K) ƩƚƠƔᘙᑈӨƴЈƯƜƳƍǑƏƳᘙྵƴƖႺƢ ƜƱƞƑЈஹǕƹŴᚰଢƸܦƢǔŵ ƦƜưŴྚ߷Ʒᚰଢ19) ƴȒȳȈǛࢽƨഏƷᛯඥƕஊјƴƳǔŵแӷαƸŴX Ʒؕᄽ˳Ǜ K (p) Ɣǒ L ƴ base-change ƢǔƜƱƴǑƬƯࢽǒǕǔዴ XL Ʒૠᛯႎؕஜ፭π1 (XL ) → Gal(L) (p) (p) Ʒ section αL : Gal(L) → π1 (XL ) Ǜܭ፯ƠƯƍǔŵƦƷ section แӷαL Ʒπ1 (XL ) Ʒɶư (p) Ʒ Im(αL ) ƸŴ Gal(L) ƴӷƳŴπ1 (XL ) ƷᢿЎ፭ƴƳǔƕŴƦƷᢿЎ፭ǛԃljӲᢿ (p) Ў፭ H ⊆ π1 (XL ) ƴݣƠƯŴY H → XL ƱƍƏஊᨂഏǨǿȸȫᘮᙴƕܭLJǔŵƜƜưŴY H Ƹ L ɥ࠹˴ႎƴᡲኽƳӑႎˊૠዴƴƳǔƕŴදႸƢǂƖƜƱƸŴƜƷǑƏƴဃơǔᘮᙴƨƪ {Y H → XL } μ˳ƔǒƳǔžᘮᙴƷଈſƕαƴ̔܍ƠƯƍǔƱƍƏƜƱưƋǔŵࢼƬƯŴแӷ α ƔǒࡽƖឪƜƞǕǔ section แӷαL ƴݣƢǔவˑƱƠƯŴഏƷNjƷƕ҄ࡸܭưƖǔᲴ (p) (∗) Im(αL ) Ǜԃlj π1 (XL ) ƷӲᢿЎ፭ H ƴݣƠƯŴ Y H Ʒ L-ஊྸໜƷᨼӳ Y H (L) ƸᆰƴƳǒƳƍŵ ˎƴƜƷவˑƕᇌƢǔƜƱƕᚕƑƨƱƠǑƏŵƦƏƢǔƱŴᢿЎ፭ H Ǜᢘ࢘ƴឥǒƤƨƱ ƖŴY H (L) = ∅ ƳƷưŴY H (L) ƷƱƠƯŴXL (L) ƴಮŷƳໜƨƪƕᓳƪƯƘǔŵƱƜǖƕŴ [F2] Ʒ mod pN ༿ǛᢘဇƢǔƜƱƴǑƬƯŴƜƷǑƏƴဃơǔ XL (L) ƷӲໜƴݣƠƯŴέᆉƷ ϙφα Ʒ mod pN ༿ǛನưƖŴƦƷϙƨƪǛဇƍǔƜƱƴǑƬƯƜƷ XL (L) ƷໜƨƪƕŴ িǔཎܭƷໜ x∞ ∈ XL (L) ƴӓளƢǔƜƱƕᚰଢưƖǔŵƠƔNjŴƜƷໜ x∞ Ɣǒဃơǔแӷ (p) Gal(L) → π1 (X) ƕΨƷแӷ α Ʊ࣏ƣɟᐲƢǔƜƱƸŴƜƷನƔǒႺƪƴࢼƏŵƭLJǓŴ αƷ࠹˴ࣱƕᚕƑƨƜƱƴƳǔŵࢼƬƯŴݲƠૢྸƢǔƱŴαƴݣƢǔவˑ (∗) ƕኝƴž፭ᛯႎſ ưƋǔƜƱƞƑᚕƑǕƹŴᚰଢƸኳǘǔŵ ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे 15 բ᫆ƸᙲƢǔƴ Y H Ʒ L-ஊྸໜƷנ܍Ǜž፭ᛯႎſƴЙܭưƖǔƔƲƏƔƩƕŴƜƷբ᫆ƸŴ ྚ߷ƕৢƬƨஊᨂ˳ƷئӳƷǑƏƴŴஊྸໜƷ̾ૠƷѥܭሁƴǑǔႺႎƳǢȗȭȸȁƴƸᬘ௨ LJƣŴᚐൿƴƸ᧓ݲٶႎƳᜭᛯǛ࣏ᙲƱƢǔNjƷưƋǔŵұƪŴL ɥஊྸƳໜƷˊǘǓƴŴL ɥஊྸƳ (p ƱእƳഏૠƷ) line bundle Ʒנ܍ǛᎋƑǔƷưƋǔŵƦƷྸဌƱƠƯŴline bundle Ʒ૾ƸŴƦƷ Chern ǛƱǔƜƱƴǑƬƯŴዴ Y H ƷǨǿȸȫȷdzțȢȭǸȸƱƠƯᙸǔƜ ƱƕЈஹŴƠƔNjӑႎዴƷǨǿȸȫȷdzțȢȭǸȸƸƦƷૠᛯႎؕஜ፭Ʒ፭dzțȢȭǸȸƱ ᐯƴӷƴƳǔƷưܦμƴž፭ᛯႎſƳݣᝋƱƳǔŵƢǔƱŴdzțȢȭǸȸ፭ƷɶưŴp ƱእƳ ഏૠƷ line bundle Ʒ Chern ƱƠƯဃơǔƨƪƷ፭ᛯႎཎࣉƮƚƕբ᫆ƴƳǔƕŴƜƷբ᫆ Ƹ [BK] Ʒ p ᡶ exponential map ƷྸᛯǛᢘဇƢǔƜƱƴǑƬƯΪЎƴݣϼӧᏡƳբ᫆ƴ࠙ბƞ Ǖǔ20) ŵƭLJǓŴY H ɥƷŴ L ɥஊྸƳໜƱᢌƬƯŴL ɥஊྸƳ (p ƱእƳഏૠƷ) line bundle Ʒנ܍ƸŴൔ᠋ႎႺႎƳ፭ᛯႎЙܭඥǛᚩƢǘƚưƋǔŵƱƜǖƕŴИሁႎˊૠ࠹˴ƔǒƢƙ ЎƔǔǑƏƴŴY H ɥư p ƱእƳഏૠƷ L ɥஊྸƳ line bundle Ʒנ܍ƕᚕƑǕƹŴp ƱእƳഏૠ Ʒ L-ஊྸƳ ample Ƴ line bundle Ʒנ܍ƕᚕƑŴƦƷ line bundle Ǜ effective Ƴ܇׆ƱƠƯ ƘƜƱƴǑƬƯŴY H ƕŴp ƱእƳഏૠƷ L Ʒਘ˳ٻƷɥưஊྸໜǛਤƭƜƱƕЎƔǔŵƠƔƠŴ ƦƷǑƏƳਘ˳ٻƕ࣏ƣ L Ʒ tame ƳਘٻƴƳǔƜƱƱŴL ƕƦƷܭ፯ǑǓ᩼ᐯଢƳ tame ਘٻ ǛਤƨƳƍƜƱƔǒŴY H ƕଏƴ L ɥƷஊྸໜǛਤƬƯƍǔƜƱƕ࠙ኽƞǕǔŵƭLJǓŴˌɥƷ வˑǛƨƢ line bundle Ʒנ܍ЙܭඥƸᐯѣႎƴ L-ஊྸໜƷנ܍ЙܭඥƴNjƳǔƱƍƏƜƱư ƋǔŵࢼƬƯŴƜƷЙܭඥƷᄩᇌƴǑƬƯŴ ྸܭ5.1 ƷᚰଢƸᬍރᑣƘܦኽǛᙸǔƜƱƱƳǔŵ ද 1) ஊᨂ፭ƷࢨݧಊᨂƱƠƯᘙƤǔˮႻ፭Ǜ profinite ፭ (иஊᨂ፭) ƱƍƏŵdzȳȑǯȈƳܦ μɧᡲኽȏǦǹȉȫȕˮႻ፭ƱƍƬƯNjӷ͌ŵ 2) profinite ፭ƴƓƍƯƸᢿЎ፭ưƋǔƜƱƱਦૠஊᨂƳᢿЎ፭ưƋǔƜƱƸӷ͌ŵ 3) இᡈƷྚ߷ƷᄂᆮưƸŴദૠƷئӳƴƸŴ࢟٭ƴஜឋႎƴ̔܍Ƣǔऴإƕ࠹˴ႎؕஜ፭ ƷɶƴNjԃLJǕƯƍǔƜƱƕᚐଢƞǕƭƭƋǔŵ[H] ƓǑƼ §3.3 ǛӋༀƷƜƱŵ 4) Grothendieck ƸӑႎዴƷDŽƔŴƦǕǒƷӒࣄႎ smooth fibration ƱƠƯᘙƤǔᆰ᧓ ǍȢǸȥȩǤᆰ᧓ƳƲǛᢒǢȸșȫٶಮ˳ƷͅᙀƱƠƯᅆՐƠƯƍǔŵஇᡈƷᄂᆮưƸŴᢒǢȸ șȫႎƱƳǔƨNJƷ࣏ᙲவˑƱƠƯŴ࠹˴ႎؕஜ፭ƕ ‘ᘍЗ፭ႎ’ ƱƍƏǑǓ ‘ᐯဌ፭ႎ’ ƳNjƷ ưƋǔƜƱƳƲƕਫƛǒǕƯƍǔŵ[IN] Ӌༀŵ 5) ̊ƑƹŴᖎૠʈඥǛਤƨƳƍ౹όዴưƸ Faltings ƷኽௐǛኵLjӳǘƤƯᲫ̾ƴƢǔᜭᛯ NjӧᏡưƋǔŵ[N6] 5.4 Ӌༀŵ 6) ؕᄽ˳ K ƴᲫƷࠉఌǛμƯชьƠƨ˳Ǜ K∞ ƱƘƱƖŴX Ʒ K-ஊྸໜƴဌஹƢǔNj ƷƸ α(Gal(K∞ )) Ʒ π1 (XK ) ǁƷσࢫ˺ဇƕ᩼ᐯଢƳܭໜǛਤƨƳƍNjƷƱƠƯཎࣉƮƚǒ ǕǔƜƱNjʖेƞǕƯƍǔŵ 7) ƜǕǑǓŴ Grothendieck Ƹ X Ǜ٭ૠႎƴᎋƑƯᢒǢȸșȫٶಮ˳ Y Ʒ X-ஊྸໜƷᨼӳ Y (X) = Hom(X, Y ) Ǜؕஜ፭ƴǑǓࣄΨƢǔƱƍƏחᛯႎྸेǛ࣬ƍ੨ƍƯƍƨƱᎋƑǒǕǔŵ ƜƷྸेǛИNJƯ (ᢿЎႎƴ) ܱྵƠࢽƨƷƸஓஉ ([M3]) ưƋǔŵ§5 Ӌༀŵ 8) ႻီƳǔஊྸໜƴݣƠƯƸσࢫưƳƍ section แӷƕࣖݣƢǔŴƱƍƏƜƱƸŴMordellWeil ƷྸܭƷࣖဇƱƠƯ Grothendieck ([G3]) ƴǑǓᅆƞǕƯƍǔŵƜƷƜƱƷࣖဇƱƠƯŴᙐ እӑ࠹˴ܖƴƓƚǔžჿဋʖेſƷˊૠ࠹˴ႎ˩ǛƋǔᆔƷӑٶಮ˳ƴƭƍƯᅆƢƜƱƕ žႻီƳǔஊྸໜƴࣖݣƢǔ section Јஹǔ ([N5], [N7]2.2 Ӌༀ)ŵƳƓŴஓஉƸŴ ྸܭ5.1 ƔǒŴ แӷƕσࢫƴƸƳǒƳƍſƱƍƏʙܱƷ pro-p ༿ǛݰƍƯƍǔ ([M3], Theorem C ǛӋༀ)ŵ 16 ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ 9) ƜǕƴƭƍƯƸ F.Pop ([P1,2])Ŵஓஉ (§5 Ӌༀ) ƴǑǔᝡྂƕƋǔŵƳƓŴPop ƷᄂᆮƸŴ ƦƷඥNjԃNJƯŴᲫᲳᲰᲪ࠰ˊࢸҞƷ J.Neukirch ([Ne]) ƷоƴڼLJǓŴ൷ဋദ᬴Ŵޥຓͤ ӴǒƷˁʙǛኺƯᲱᲪ࠰ˊࢸҞƴϋဋᐻʚƴǑƬƯܦƞǕƨžˊૠ˳ƷዌݣǬȭǢ፭ƔǒƷࣄ ΨſƱƍƏᄂᆮƷ්ǕǛൽljNjƷưƋǔŵ 10) profinite ፭ G ƷˮႻႎƳՠ፭ưஊᨂ l ፭ƷࢨݧಊᨂƱƠƯƚǔNjƷƷƏƪஇٻƷNjƷ Ǜ G Ʒஇ ٻpro-l ՠ፭ƱƍƏŵ 11) [I1] Ʒࡀ૨ƴᅆՐƞǕƯƍǔǑƏƴŴ˙ҾƸᲫᲳᲰᲪ࠰ˊǑǓᐯƷᚇໜƔǒஊᨂ˳ɥ Ʒ modular ᧙ૠ˳ƴݣƢǔ᩼Ǣȸșȫ˳ᛯƷᚨǛڼNJŴᲱᲪ࠰ˊИ᪽LJưƴƸ Fp2 ɥƷ P1λ − {0, 1, ∞} Ʒ tame ᘮᙴƷƏƪ SL2 (Z[ 1p ]) Ʒ (ӳӷ) ᢿЎ፭ưወСƞǕǔଈƕŴ‘supersingular Ƴ λ-እໜᨼӳƷܦμЎᚐ’ ƱƍƏૠᛯႎƳவˑưཎࣉƮƚǒǕǔƜƱƳƲǛᅆƠƯƍǔŵƜƷǑƏ ƳࢨݧႺዴƷᲭໜЎؕޟஜ፭ƴԃLJǕǔขƍૠᛯࣱƷᄂᆮƸŴ§1.1 ưᡓǂƨǑƏƳ Grothendieck Ʒˊૠ࠹˴ႎƳǬȭǢྸᛯᚨƷѣೞƱƸμƘီឋƳឪเǛਤƭŴ˙ҾཎƷ (᩼Ǣȸșȫ) ˳ᛯႎƳᚇໜƔǒဃLJǕƯƍǔŵƳƓŴ[2] ӓƷ Deligne Ʒᛯ૨ƸŴȢȁȸȕՋܖƷ්ǕƷɶ ưƜƷᲭໜЎؕޟஜ፭Ʒžࠉҥˊૠ፭҄ſǛӕǓɥƛƯƍǔƕŴƜǕNjLJƨᇌƷᚇໜǛឪเƱ ƠƯƍǔƱƍƑǔŵ 12) ƜƷƷᡶޒƴƭƍƯƸɼƴ [I2] ƓǑƼ [1] ӓƷᜂᛯ૨ǛӋༀŵ 13) ƜƜưƸǬȭǢ፭ƷᲫƷࠉఌǁƷ˺ဇƔǒဃơǔᐯƳɟഏΨ l ᡶᘙྵ Zl (1) Ǜቇҥƴ όЎ˺ဇƱԠƼŴƜǕƱ cusp ໜƷᨼӳƴƓƚǔፗ੭ᘙྵƱƷȆȳǽȫᘙྵǛ ‘όЎፗ੭ᘙྵ’ Ʊ Ԡǜưƍǔŵ 14) ૠ˳ɥƷᆔૠ 2 ˌɥƷዴƷஊྸໜƕஊᨂ̾ƠƔƳƍƱƍƏʖेŵFaltings ƴǑƬƯ Tate ʖेƱӷơᛯ૨ ([F1]) ưᚰଢƞǕƨŵ 15) ܱƸŴƜƷբƍƴݣƠƯƸŴNjƏɟƭƷŴݲٶᢌƏࣱឋƷᏉܭႎᚐሉNjࢽǒǕƯƍǔ (ᛇ ƠƘƸ [M5-8] ǛӋༀ)ŵ 16) ܱƸŴmysterious functor Ʒנ܍ǛʖᚕƠƨƷNj˂ưNjƳƍ Grothendieck ƩƕŴʚƭƷ ʖेƷ᧙̞ƴƭƍƯƸŴٻᩃ৭Ƴ࢟Ʒ˩ࣱƸƱNjƔƘŴ§5.2 ưኰʼƢǔǑƏƳᚰଢƴƭƳƕǔ ᆉ݅ƳNjƷƩƱƍƏᛐᜤǛஜʴƕਤƬƯƍƨ࢟ួƸƳƍŵƦƏƍƬƨཞඞƷᏑƴƭƍƯƸŴ §4.1 ǛӋༀŵ 17) ܱƸŴL Ʒܭ፯ƱƠƯƜǕǛဇƢǔƱŴˌɦƷᜭᛯƕݲƠƸɧദᄩƴƳǔƕŴ˷Ǔஜឋ ႎưƳƍ২ᘐႎƳᛅǛஇݱᨂƴƱƲNJǔƨNJƴŴƜƷǑƏƳƜƱƸࣂܾឡ᪬ƘƜƱƴƢǔŵ 18)ž࠹˴ႎƳஊྸໜ Spec(L) → X ƔǒဃơǔſƱƸƭLJǓŴ ݧSpec(L) → X ƴݣƠƯŴπ1 (p) ƱƍƏ᧙ǛƢƜƱƴǑƬƯࢽǒǕǔ ݧGal(L) = π1 (Spec(L)) → π1 (X) → π1 (X) ƱƠƯ ဃơǔƱƍƏॖԛưƋǔŵ 19) ᛇƠƘƸŴ§3.1 (i) ǛӋༀŵ 20) ᛇƠƘƸŴ[M3] ǛӋༀŵ ૨ [AI] [B] [BK] ྂ G.Anderson, Y.Ihara, Pro-l branched coverings of P1 and higher circular l-units, Part 1, Ann. of Math. 128 (1988), 271–293; Part 2, Intern. J. Math. 1 (1990), 119–148. G.V.Belyi, On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk. SSSR 8 (1979), 267–276 (Russian); English transl. in Math. USSR Izv. 14 (1980), no. 2, 247–256. S.Bloch, K.Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Volume I, Birkhäuser, 1990, pp. 333–400. ˊૠዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे [F1] [F2] [SGA1] [G1] [G2] [G3] [H] [I1] [I2] [IN] [MT] [M1] [M2] [M3] [M4] [M5] [M6] [M7] [M8] [N1] [N2] [N3] [N4] [N5] [N6] [N7] [NTa] [NTs] [Ne] [O1] 17 G.Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366. , p-adic Hodge theory, J. of the Amer. Math. Soc. 1 (1988), 255–299. A.Grothendieck, M.Raynaud, Revêtement Etales et Groupe Fondamental (SGA1), Lecture Note in Math., vol. 224, Springer, Berlin Heidelberg New York, 1971. A.Grothendieck, La longue marche à travers de la théorie de Galois, 1981, in preparation by J.Malgoire (first few chapters available since 1996). , Esquisse d’un Programme, 1984, in [6] vol.1, 7–48. , Letter to G.Faltings, June 1983, in [6] vol.1, 49–58. D.Harbater, Fundamental groups of curves in characteristic p, Proc. ICM, Zürich (1994), 654–666. Y.Ihara, Profinite braid groups, Galois representations, and complex multiplications, Ann. of Math. 123 (1986), 43–106. , Braids, Galois groups and some arithmetic functions, Proc. ICM, Kyoto (1990), 99–120. Y.Ihara, H.Nakamura, Some illustrative examples for anabelian geometry in high dimensions, in [6] vol.1, 127–138. M.Matsumoto, A.Tamagawa, Mapping-class-group action versus Galois action on profinite fundamental groups, Preprint 1997. S.Mochizuki, The profinite Grothendieck conjecture for hyperbolic curves over number fields, J. Math. Sci., Univ. Tokyo 3 (1996), 571–627. , The local pro-p Grothendieck conjecture for hyperbolic curves, RIMS Preprint 1045, Kyoto Univ. (1995). , The local pro-p anabelian geometry of curves, RIMS Preprint 1097, Kyoto Univ. (1996). , A Grothendieck conjecture-type result for certain hyperbolic surfaces, RIMS Preprint 1104, Kyoto Univ. (1996). , A theory of ordinary p-adic curves, Publ. of RIMS 32 (1996), 957–1151. , The generalized ordinary moduli of p-adic hyperbolic curves, RIMS Preprint 1051, Kyoto Univ. (1995). , Combinatorialization of p-adic Teichmüller theory, RIMS Preprint 1076, Kyoto Univ. (1996). , Correspondences on hyperbolic curves, J. Pure Appl. Algebra (to appear). H.Nakamura, Rigidity of the arithmetic fundamental group of a punctured projective line, J. reine angew. Math. 405 (1990), 117–130. , Galois rigidity of the étale fundamental groups of punctured projective lines, J. reine angew. Math. 411 (1990), 205–216. , On galois automorphisms of the fundamental group of the projective line minus three points, Math. Z. 206 (1991), 617–622. , Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sci., Univ. Tokyo 1 (1994), 71–136. , Galois rigidity of algebraic mappings into some hyperbolic varieties, Intern. J. Math. 4 (1993), 421–438. , On exterior Galois representations associated with open elliptic curves, J. Math. Sci., Univ. Tokyo 2 (1995), 197–231. , иஊᨂؕஜ፭ƷǬȭǢбࣱ, ૠ ܖ47 (1995), 1–17; English translation to appear in Sugaku Exposition (AMS). H.Nakamura, N.Takao, Galois rigidity of pro-l pure braid groups of algebraic curves, Trans. Amer. Math. Soc. (to appear). H.Nakamura, H.Tsunogai, Some finiteness theorems on Galois centralizers in pro-l mapping class groups, J. reine angew. Math. 441 (1993), 115–144. J.Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent. math. 6 (1969), 296–314. T.Oda, A note on ramification of the Galois representation on the fundamental group of an algebraic curve, J. Number Theory 34 (1990), 225–228. 18 [O2] [P1] [P2] [T1] [T2] [U] [1] [2] [3] [4] [5] [6] ɶҦଯ, ྚ߷ܤᬱဏ, ஓஉૼɟ , A note on ramification of the Galois representation on the fundamental group of an algebraic curve, II, J. Number Theory 53 (1995), 342–355. F.Pop, On Grothendieck’s conjecture of birational anabelian geometry, Ann. of Math. 138 (1994), 145–182. , On Grothendieck’s conjecture of birational anabelian geometry II, Preprint (June 1995). A.Tamagawa, The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), no. 2, 135–194. , On the fundamental groups of curves over algebraically closed fields of characteristic > 0, Preprint 1997. K.Uchida, Isomorphisms of Galois groups of algebraic function fields, Ann. of Math. 106 (1977), 589–598. Y.Ihara (ed.), Galois Representations and Arithmetic Algebraic Geometry, Advanced Studies in Pure Math., vol. 12, Kinokuniya Co. Ltd., North-Holland, 1987. Y.Ihara, K.Ribet, J.-P.Serre (eds.), Galois Groups over Q, Math. Sci. Res. Inst. Publications, vol. 16, Springer, 1989. J.-P.Serre, Topics in Galois Theory, Jones and Bartlett Publ., 1992. L.Schneps (ed.), The Grothendieck Theory of Dessins d’Enfants, London Math. Soc. Lect. Note Ser., vol. 200, Cambridge Univ. Press, 1994. M.Fried et al. (eds.), Recent Developments in the Inverse Galois Problem, Contemp. Math., vol. 186, AMS, 1995. L.Schneps, P.Lochak (eds.), Geometric Galois Actions; 1.Around Grothendieck’s Esquisse d’un Programme, 2.The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups, London Math. Soc. Lect. Note Ser., vol. 242-243, Cambridge Univ. Press, 1997.