...

ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ Grothendieck ʖे 中村博昭, 玉川安騎男, 望月新

by user

on
Category: Documents
11

views

Report

Comments

Transcript

ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ Grothendieck ʖे 中村博昭, 玉川安騎男, 望月新
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ Grothendieck ʖे
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
ᘙ᫆Ʒ Grothendieck ʖेƱƸŴɟᚕưƍƏƱƢǕƹŴӑ୺ႎˊૠ୺ዴƷૠᛯႎؕஜ፭Ƹ୺ዴ
ƷˊૠನᡯLJư‫ܦ‬μƴൿNJƯƠLJƏŴƱƍƏʖेưƋǔŵƜƷբ᫆ƷᄂᆮƸŴᓸᎍƷɟʴ (ɶ஭)
ƴǑǓᲲᲪ࠰ˊƷ஛ƴႆᇢƕ᧏ƔǕŴNjƏɟʴ (ྚ߷) ƴǑǓᲳᲪ࠰ˊЭҞƔǒ (ദ೅ૠƷ‫ئ‬ӳǛ
ԃlj) ஜឋႎƳૼ‫᧏ޒ‬ƕNjƨǒƞǕŴƭƮƍƯஇࢸƷɟʴ (ஓஉ) ƴǑǓŴૼƠƍ (p ᡶႎƳ) ᚐ᣷
ǛЈႆໜƱƢǔஇኳႎƳᚐൿƕɨƑǒǕƨŵ
ƜƷᛯᛟưƸŴբ᫆ƷᏑ୎ǍഭӪƴƭƍƯቇҥƴࣄ፼ƠƨƋƱŴʖेƕɤʴƴǑƬƯഏᇹƴᚐ
ଢƞǕƯƍƬƨಮ‫܇‬Ǜ‫إ‬ԓƢǔŵ
§1. ૠᛯႎؕஜ፭ — ˊૠ࠹˴Ʊ፭ᛯƷ௚ƚ೛ —
§1.1. Ǩǿȸȫؕஜ፭
ᡫࠝƷžˮႻ࠹˴ႎƳؕஜ፭ſƸŴǑƘჷǒǕƯƍǔǑƏƴŴ‫࢟׋‬Ʒᡲዓ‫࢟٭‬ưɧ‫٭‬ƳŴƍǘ
ǏǔțȢȈȔȸɧ‫٭‬᣽ưƋǓŴ̊ƑƹdzȳȑǯȈƳᙐእˊૠ୺ዴưƸؕஜ፭ưൿLJǔƷƸƨƔƩ
ƔᆔૠƷLjưƋǔŵࢼƬƯƦƷLJLJưƸ̾ŷƷˊૠ୺ዴƷˊૠನᡯLJưൿNJǔDŽƲƷጞኬƳɧ‫٭‬
᣽ƴƸƳǓࢽƳƍŵܱᨥŴɥƷʖेưᎋƑƯƍǔૠᛯႎؕஜ፭ƸŴA. Grothendieck ƴǑǓ‫ݰ‬λ
ƞǕƨžǨǿȸȫؕஜ፭ſƷಒࣞǛNjƪƍƯžǬȭǢ፭ƷࡨᧈſƱƠƯᐯ໱ƴ‫ܭ‬፯ƞǕǔNjƷư
Ƌǔŵ
ƜƷಒࣞƸᲫᲳᲰᲪ࠰ˊƴ [SGA1] ƴƓƍƯˊૠ࠹˴ƴƓƚǔžǹǭȸȠƷǬȭǢྸᛯſǛ
ወСƢǔNjƷƱƠƯ‫ݰ‬λƞǕƨNjƷưƋǓŴƦǕƴǑǕƹŴᡲኽƳǹǭȸȠ X ƱƦƷɥƷˊૠ
᧍ໜ x̄ ƕɨƑǒǕƨƱƖŴǨǿȸȫؕஜ፭ π1 (X, x̄) ƸഏƷǑƏƳžᚐᨼӳſƷኒЗƷፗ੭፭Ʊ
ƠƯ‫ܭ‬፯ƞǕǔŵұƪ X ƷஊᨂഏǨǿȸȫᘮᙴ (ˌࢸƠƹƠƹஊᨂഏᘮᙴƱဦƢ) Y ǛμƯឥ
ǒƤǔƱƖŴx̄ ɥƷ fiber set Y (x̄) ƨƪƸஊᨂᨼӳƷ‫ࢨݧ‬ኒǛƳƢƕŴƜƷኒЗƷᐯࠁፗ੭μ
˳ƷƳƢ፭ƕ π1 (X, x̄) ưƋǔŵƜƷ፭ƴƸ̾ŷƷஊᨂᨼӳ Y (x̄) ɥƷፗ੭፭Ʒ‫ࢨݧ‬ಊᨂƱƠƯ
profinite ˮႻ፭1) Ʒನᡯƕᐯ໱ƴλǔƜƱƴදॖƠƯƓƘŵǨǿȸȫؕஜ፭ƷˮႻ፭ƱƠƯƷ
ӷ‫׹‬᫏Ƹ‫ܭ‬፯ƴྵǕǔؕໜ x̄ ƷӕǓ૾ƴ̔‫܍‬ƠƳƍƜƱƕǘƔǔƷưŴ፭ᛯႎƳನᡯƷLjƕբ
᫆ƱƳǔƱƖƠƹƠƹؕໜǛႾဦƠŴҥƴ π1 (X) ƷǑƏƴNj୿ƘƜƱƴƢǔŵ
˓ॖƷஊᨂഏᘮᙴ Y → X ƴ‫ݣ‬ƠƯŴY (x̄) Ƹ π1 (X, x̄) ƷᡲዓƳஊᨂፗ੭ᘙྵǛɨƑǔƕŴƜ
Ʒ‫ࣖݣ‬ƴǑǓŴX ƷஊᨂഏᘮᙴƷμ˳Ʊ π1 (X, x̄) Ʒᡲዓஊᨂፗ੭ᘙྵƷμ˳ƕ‫ח‬ӷ͌ƴƳǔŵཎ
ƴ (ᡲኽƳ Y ƴ‫ݣ‬ƠƯ) Y (x̄) ƷӲໜƴƓƚǔ‫҄ܭܤ‬፭Ƹ π1 (X, x̄) Ʒ᧏ᢿЎ፭2) (Ʒσࢫ᫏) Ǜ‫ܭ‬
NJŴᡞƴ π1 (X, x̄) Ʒ᧏ᢿЎ፭ H Ƹ߼й˷᫏ᨼӳǁƷፗ੭ᘙྵƴ‫ࣖݣ‬Ƣǔஊᨂഏᡲኽᘮᙴ Y → X
(Ʒӷ͌᫏) Ǜ‫ܭ‬NJǔŵƜƷ‫ ̞᧙ࣖݣ‬H ↔ Y ƸࢸƷᜭᛯưNjƠƹƠƹྵǕǔƷưŴY = Y H ,
H = HY ƱƍƏᚡӭư‫ࣖݣ‬ƢǔNjƷǛᘙƢƜƱƴƢǔŵཎƴ HY ƕ Y ᐯ៲Ʒؕஜ፭ π1 (Y ) Ʊ
ӷ‫׹‬ƴƳǔƱƍƏᚇ‫ݑ‬ƸؕஜႎưƋǔŵ
Typeset by AMS-TEX
1
2
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
ᆰ᧓ X ƕɟໜŴཎƴ˳ K ƷǹȚǯȈȩȠ Spec (K) ƱƠƯɨƑǒǕƨƳǒƹŴᡲኽƳஊ
ᨂഏᘮᙴ Y ɥƷ fiber set Y (x̄) Ƹ Y Ǜ‫ܭ‬፯Ƣǔˊૠ૾ᆉࡸƷᚐƷᨼӳƴDŽƔƳǒƣŴؕஜ፭
def
π1 (Spec (K)) ƸƋǒǏǔ૾ᆉࡸƷžᚐƷፗ੭፭ſƷዮ˳ưƋǔዌ‫ݣ‬ǬȭǢ፭ Gal(K) = Gal(K/K)
ƱӷɟᙻƞǕǔŵ(ƜƜư K Ƹ K ƷЎᩉ᧍ѼǛᘙƢŵ)
ɟᑍƴǹǭȸȠƷ‫ ݧ‬f : X1 → X2 ƓǑƼ X1 ɥƷˊૠ᧍ໜ x̄1 ƕɨƑǒǕǔƱŴx̄1 Ʒ΂
Ǜ x̄2 ƱƠƯᐯ໱Ƴแӷ‫׹‬π1 (X1 , x̄1 ) → π1 (X2 , x̄2 ) ƕࡽƖឪƜƞǕǔŵܱᨥŴஊᨂഏǨǿȸȫ
ᘮᙴ Y → X2 ƷࡽƖ৏Ơ (ȕǡǤȐȸᆢ) Y → X1 ƸǍƸǓஊᨂഏǨǿȸȫᘮᙴưƋǓŴࠝƴ
Y (x̄2 ) ∼
= Y (x̄1 ) ƕ঺ǓᇌƭŵƜƷƜƱƔǒŴ‫ݣ‬ᆅ፭ኒЗǛСᨂƢǔƜƱƴǑƬƯɥƷแӷ‫׹‬ƕ
ဃơǔƷưƋǔŵؕໜ x̄1 ƷӕǓ૾Ǜ‫٭‬ƑƯNjƜƷแӷ‫׹‬Ƹᢘ࢘Ƴӧ੭‫ࡸ׋‬ƷNjƱưӷ͌ƴƳƬ
ƯƠLJƏƷưŴˌɦƠƹƠƹؕໜǁƷᚕӏƸႾဦƠƯŴҥƴ π1 (X1 ) → π1 (X2 ) ƷǑƏƳ୿Ɩ૾
ǛƢǔƜƱƴƢǔŵ
X ƕ˳ K ɥ‫ܭ‬፯ƞǕƨˊૠ‫ٶ‬ಮ˳Ʒ‫ئ‬ӳƴƸŴᐯ໱ƴɨƑǒǕƯƍǔ‫ ݧ‬X → Spec (K) Ɠ
def
ǑƼ Spec K → Spec K ƱƔǒ‫ ݧ‬XK → X (XK = X ×K K) ƕᛔ‫ݰ‬ƞǕŴƜǕǒƔǒؕஜ፭Ʒ
‫ܦ‬μЗ
(1.1)
pr
−→ Gal(K) −→ 1
1 −→ π1 (XK ) −−−−→ π1 (X) −−−X
ƕဃơǔŵ‫ ࢨݧ‬prX ƷఋǛɨƑƯƍǔ፭ π1 (XK ) Ƹ X Ʒž࠹˴ႎſؕஜ፭ƱԠƹǕŴK ƕ೅ૠ
ᲪƷ‫ئ‬ӳƴƸŴ‫ࣖݣ‬Ƣǔᙐእ‫ٶ‬ಮ˳ƷᡫࠝƷˮႻ࠹˴ႎƳؕஜ፭Ʒ profinite ‫( ҄ͳܦ‬μƯƷஊᨂ
ՠ፭Ʒ‫ࢨݧ‬ಊᨂ) Ʊӷ‫׹‬ƴƳǔƷưŴཎƴ‫࢟٭‬ɧ‫٭‬᣽ưƋǔ3) ŵƦƜưžૠᛯႎſؕஜ፭ π1 (X)
Ʒ Gal(K)-ਘ‫ٻ‬፭ƱƠƯƷನᡯ (1.1) ƕᆰ᧓Ʒ‫࢟٭‬ƴ᧙ƠƯƲƏ‫҄٭‬ƢǔƔƕբ᫆ƱƳǔŵ
ɥƷ‫ܦ‬μЗ (1.1) ƴƓƍƯ π1 (XK ) Ƹ π1 (X) ƷദᙹᢿЎ፭ưƋǔƔǒŴσࢫǛƱǔƜƱƴ
ǑƬƯแӷ‫׹‬π1 (X) → Aut(π1 (XK )) ƕ‫ܭ‬LJǔŵଢǒƔƴƜƷแӷ‫׹‬Ƹ π1 (XK ) ǛƦƷϋᢿᐯࠁ
ӷ‫׹‬፭ƴϙƢƔǒŴՠǛƱǕƹŴGal(K) Ɣǒ࠹˴ႎؕஜ፭Ʒ‫ٳ‬ᢿᐯࠁӷ‫׹‬፭ Out(π1 (XK )) ǁ
Ʒแӷ‫ٳ( ׹‬ǬȭǢᘙྵƱƍƏ)
(1.2)
ρX : Gal(K) → Out(π1 (XK ))
ƕဃơǔŵʻƸ prX : π1 (X) → Gal(K) ƔǒЈႆƠƯρX : Gal(K) → Out(π1 (XK )) Ǜ፭ᛯႎƳ
દ˺ƴǑƬƯ‫ܭ‬፯ƠƨƕŴπ1 (XK ) Ʒɶ࣎ƕᐯଢƳ‫ئ‬ӳƴƸŴᡞƴ ρX Ɣǒ፭ᛯႎƳદ˺ƴǑƬ
Ư prX ǛࣄΨƢǔƜƱƕưƖǔŵ̊ƑƹŴ೅ૠᲪƷ˳ɥ‫ܭ‬፯ƞǕƨӑ୺ႎˊૠ୺ዴ (ұƪŴ๖ǒ
ƔƳˊૠ୺ዴưŴᆔૠǛ g Ŵ໯ᨂᢒໜƷૠǛ n ƱƢǕƹ (g, n) = (0, 0), (0, 1), (0, 2), (1, 0) ưƋ
ǔǑƏƳNjƷ) ưƸŴ࠹˴ႎؕஜ፭Ƹ᩼ǢȸșȫƳᐯဌ፭ƳƍƠ୺᩿፭Ʒ profinite ‫҄ͳܦ‬Ʊӷ‫׹‬
ƴƳǓŴƦƷɶ࣎ƸᐯଢưƋǔƜƱƕჷǒǕƯƍǔƷưƜƷ‫ئ‬ӳƴƋƯƸLJǔŵƜƷǑƏƳƱƖ
ƸŴ
žπ1 (XK ) ǁƷ‫ٳ‬ǬȭǢ˺ဇ ρX ſǛᎋƑǔƜƱƱžGal(K) Ʒਘ‫ٻ‬፭ π1 (X)ſǛᎋƑǔƜƱ
ƸӷሁƱƳǔƷưƋǔŵ
§1.2. Grothendieck ƷᢒǢȸșȫʖे
Grothendieck([G1-3]) ƕɼࢌƠƨƷƸŴ ˊૠ‫ٶ‬ಮ˳ X ƕ ‘ᢒǢȸșȫ (anabelian) ˊૠ‫ٶ‬ಮ
˳’ ƱԠƹǕǔŴӑ୺ႎˊૠ୺ዴǛԃljƋǔᆔƷˊૠ‫ٶ‬ಮ˳Ʒǯȩǹƴ‫ޓ‬ƠŴؕᄽ˳ K ƕእ˳ɥ
ஊᨂဃ঺ƳǒƹŴGal(K) Ʒਘ‫ٻ‬፭ƱƠƯƷ π1 (X) Ʒನᡯ (1.1) Ƹ X Ʒ࠹˴‫ܖ‬ǛdzȳȈȭȸȫ
ƢǔưƋǖƏŴƱƍƏႺज़ǛЈႆໜƱƢǔʖे፭ưƋƬƨŵ
LJƣᇹɟƴදॖǛƻƘƷƸŴGrothendieck ƕžᢒǢȸșȫˊૠ࠹˴ƷؕஜʖेſƱԠǜưƍ
ǔഏƷዮᛯႎɼࢌưƋǖƏŵ
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
3
(GC1) ؕஜžʖेſ. እ˳ɥஊᨂဃ঺Ƴ˳ K ɥƷᢒǢȸșȫˊૠ‫ٶ‬ಮ˳ X Ƹૠᛯႎؕஜ፭
π1 (X) ƷˮႻ፭ನᡯƓǑƼ˄᨟Ƣǔμ‫ ݧ‬prX : π1 (X) → Gal(K) ƷನᡯƔǒ ‘ࣄΨ’ ưƖǔŵ
ƜƜưžᢒǢȸșȫˊૠ‫ٶ‬ಮ˳ſƸžǢȸșȫ፭ƔǒDŽƲᢒƍؕஜ፭ƴǑƬƯƦƷ࠹˴ƕወ
СƞǕǔſˊૠ‫ٶ‬ಮ˳ƱƍƏǑƏƳॖԛưŴGrothendieck ƴǑǓоЈƞǕƨᚕᓶưƋǔƕŴɟ
ᑍഏΨƴƓƚǔദᄩƳ‫ܭ‬፯Ǜ Grothendieck ƕ̬သƠƯƠLJƬƨƷƱŴɥƷ ‘ࣄΨ (reconstitute)
Ƣǔ’ ƷॖԛNjୱଭƳLJLJസƞǕƨƨNJŴྵ‫נ‬ưNj᭗ഏΨưƷʖेƷ঺ᇌር‫׊‬ǛɧᄩƔƳNjƷƱ
ƠƯƍǔ4) ŵƠƔƠ೅ૠᲪƷˊૠ୺ዴƴƭƍƯƸ Grothendieck ᐯ៲ƴǑǓഏƷǑƏƳଢᅆႎƳ
ʖेƕᇌƯǒǕƨŵ
(GC2) Hom ʖे. ஊྸૠ˳ɥஊᨂဃ঺Ƴ˳ K ɥƷӑ୺ႎˊૠ୺ዴ X, Y ƴ‫ݣ‬ƠƯ
HomK (X, Y ) → HomGal(K) (π1 (X), π1 (Y ))/ ∼
ƴǑƬƯૅᣐႎƳ K-‫ݧ‬ƨƪƱ Gal(K)-ɲᇌႎƳ᧏แӷ‫׹‬ϙ΂Ʒ (ӫƔǒƷ π1 (YK ) Ʒσࢫ˺ဇ
ƴǑǔ) ӷ͌᫏ƨƪƱƷ᧓Ʒɟ‫ݣ‬ɟ‫ࣖݣ‬ƕɨƑǒǕǔŵ(ƭLJǓŴؕஜ፭Ʒ᧏แӷ‫׹‬Ƹˊૠ࠹˴ႎ
Ƴ‫ݧ‬ƴဌஹƢǔNjƷƴᨂǔŵ)
Grothendieck ᐯ៲NjදॖƠƯƍǔǑƏƴŴɥƷʖेƸ G.Faltings ([F1]) ƴǑƬƯᚰଢƞǕƨ
Ǣȸșȫ‫ٶ‬ಮ˳ƷᲫഏΨǨǿȸȫȷțȢȭǸȸ፭ƴ᧙Ƣǔ Tate ʖे:
HomK (A, B) ⊗ Ẑ ∼
= HomGal(K) (H1 (AK , Ẑ), H1 (BK , Ẑ))
(ƜƜư A, B Ƹ‫ ˳؏ٻ‬K ɥ‫ܭ‬፯ƞǕƨǢȸșȫ‫ٶ‬ಮ˳ưŴẐ Ƹ Z Ʒ profinite ‫ )҄ͳܦ‬Ʊ᫏˩
ƠƯƍǔŵLJƨŴƜǕƱӷ଺ƴ Faltings ƴǑǓᚐൿƞǕƨ isogeny ‫( ྸܭ‬Ǎ Shafarevich ʖेሁ)
ǛဇƍǕƹŴȤdzȓ‫ٶ‬ಮ˳ǛᎋƑǔƜƱƴǑǓŴɨƑǒǕƨᆔૠ 2 ˌɥƷ proper ˊૠ୺ዴƱțȢ
ȭǸȸ፭ H1 ƕǬȭǢӷ‫׹‬ƱƳǔ୺ዴƸ᭗ŷஊᨂ̾ưƋǔƜƱƕႺƪƴࢼƏŵH1 ƕ π1 ƷǢȸș
ȫ҄ưƋǔƜƱƴදॖƢǕƹŴؕஜʖे (GC1) ƸŴțȢȭǸȸ፭Ɣǒؕஜ፭ƴऴ‫إ‬ǛࢍNJǔƜ
ƱƴǑƬƯŴӷơɧ‫٭‬᣽Ǜਤƭ୺ዴƷӧᏡࣱǛஊᨂ̾ƔǒᲫ̾ƴ጑NJǔƜƱǛᙲᛪƠƯƍǔƱᙸ
ǔƜƱƕưƖǔŵƨƩƠŴƜƷᆔƷஊᨂࣱ‫ྸܭ‬Ʒ effectivity Ƹ (̊‫ٳ‬ႎƳ‫ئ‬ӳ5) ǛᨊƍƯ) order
ƕᡦ૾NjƳƘ‫ٻ‬ƖƍƷƕ୍ᡫưƋǓŴɟᑍƴƸӑ୺ႎ୺ዴƷ Grothendieck ʖे (GC1)(GC2) Ʊ
ƦƷȤdzȓ‫ٶ‬ಮ˳Ʒ Tate ʖेሁƱƸƔƳǓƷᨠƨǓƕƋǔŵGrothendieck ƸࢬƷʖेƷఌਗ
ƱƠƯૠᛯႎؕஜ፭ π1 (X) ƕž‫ࠝݮ‬ƳǒƟǔбࣱſǛஊƢǔƜƱŴᚕƍƔƑǕƹƦƷૠᛯႎƳ
‘ՠ’ Gal(K) Ʒ ࠹˴ႎ ‘ᢿЎ’ π1 (XK ) ǁƷ‫˺ٳ‬ဇ (1.2) ƕž‫ࠝݮ‬ưƳƍDŽƲࢍƍſƸƣưƋǔƜ
ƱǛ (dzțȢȭǸȸྸᛯƴƓƍƯ A.Weil Ǎ P.Deligne ǒƴǑǓᚐଢƞǕƯƖƨǬȭǢᘙྵƷ᩼
ᐯଢࣱƱൔ᠋ƠƯ) ਫƛƯƍǔ ([G3])ŵ
இࢸƴNjƏɟƭŴƖƪǜƱ‫҄ࡸܭ‬ưƖǔ (சᚐൿ) ʖेƱƠƯᐻԛขƍNjƷƴഏƷ Section ʖ
ेƕƋǔŵ˳ K ɥƷˊૠ‫ٶ‬ಮ˳ X Ʒ K-ஊྸໜ x ∈ X(K) Ƹನᡯ‫ ݧ‬X → Spec K ƴ‫ݣ‬Ƣǔ
section ‫ ݧ‬x : Spec K → X ƷƜƱưƋǔƔǒŴK-ஊྸໜ x ƕɨƑǒǕǔƝƱƴɥƷؕஜ‫ܦ‬μЗ
(1.1) ǛЎᘷƞƤǔ section แӷ‫׹‬αx : Gal(K) → π1 (X) (Ʒπ1 (XK )-σࢫ᫏) ƕᛔ‫ݰ‬ƞǕǔŵ
(GC3) Section ʖे. (GC2) Ʊӷơ X/K ƴ‫ݣ‬ƠƯŴprX : π1 (X) → Gal(K) Ʒ section แӷ
‫ ׹‬α : Gal(K) → π1 (X) ƸŴX Ʒ K-ஊྸໜƴဌஹƢǔNjƷƱŴ‘໯ᨂᢒ K-ஊྸໜ’ ƴဌஹƢǔ
NjƷƴᨂǔ6) ŵ
4
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
໯ᨂᢒໜƴဌஹƢǔ (tangential) section ƴƭƍƯƸഏƷራưᚑǕǔŵLJƨ Hom ʖेƴƭƍ
ƯƸŴGrothendieck ([G2]) Ƹ୼ƴ X ƕɟᑍƷ๖ǒƔƳˊૠ‫ٶ‬ಮ˳ư Y ƕИሁႎᢒǢȸșȫˊ
ૠ‫ٶ‬ಮ˳ (ӑ୺ႎ୺ዴଈƷӒࣄႎ smooth fibration ƱƠƯࢽǒǕǔ‫ٶ‬ಮ˳) Ʒ‫ئ‬ӳƴਘࢌƢǔӧ
ᏡࣱƴƭƍƯᚕӏƠƯƍǔ7) ŵSection ʖेƸŴHom ʖेƴƓƍƯ X Ǜؕᄽ˳ƷǹȚǯȈȩȠ
ưፗƖ੭Ƒƨ‫ئ‬ӳƷ variant ưƋǔ8) ŵ୼ƴ X Ǎ Y ƕ᧙ૠ˳ƷǹȚǯȈȩȠƴƳƬƨ‫ئ‬ӳƴƭ
ƍƯNjᎋॾƕƋǓŴɲ૾ƱNjƦƏưƋǔƱƖǛžᢒǢȸșȫʖेƷӑஊྸ༿9) ſƱƠƯŴƜǕNj
ʖेƱƠƯƍǔŵ
§1.3. ૠᛯႎؕஜ፭ǛNJƙƬƯ
Grothendieck Ʒ૨୿ ([G1-3]) ƴƸŴ§1.2 ưኰʼƠƨǑƏƳʖेƷDŽƔƴNjŴˮႻ୺᩿ɥƷǰ
ȩȕ (dessin d’enfant) ƴǑǔૠ˳ɥƷˊૠ୺ዴƷወਙƷӧᏡࣱǍŴ୺ዴƷȢǸȥȩǤᆰ᧓Ʒૠᛯ
ႎؕஜ፭ƨƪƷ᧓Ʒ݅੗ƳႻʝ᧙̞ƷᚡᡓŴ‫ח‬ᛯႎƳૼƠƍᙻໜƴǑǔᆰ᧓ಒࣞƷ‫٭‬᪃ŴƳƲƷ
‫ٶ‬ƘƷ‫ٹ‬ƕᛖǒǕƯƍǔŵLJƨŴK = Q, X = P1 − {0, 1, ∞} ƴ‫ݣ‬Ƣǔ‫ٳ‬ǬȭǢᘙྵ (1.2) ƕҥ
‫ݧ‬ưƋǔƱƍƏᲫᲳᲱᲪ࠰ˊ஛Ʒ G.V.Belyi ([B]) ƷኽௐƸŴǬȭǢ፭Ʊؕஜ፭Ʒ᧙ǘǓƕ᭗ࡇ
ƴ᩼ᐯଢưƋǔχ‫̊׹‬ƱƠƯ‫ٶ‬ƘƷૠ‫ܖ‬ᎍƔǒදႸƞǕƨŵƦƷЭࢸƔǒŴ[G1-3] Ǎ˂Ʒ཯ᇌƳ
ឪเǛਤƭ࠹ƭNjƷૠᛯႎؕஜ፭ƴ᧙Ƣǔᄂᆮᛢ᫆Ǎசᚐൿբ᫆ƕ‫ݲ‬Ơƣƭ᧙ᡲƮƚǒǕƯᛐᜤ
ƞǕǔǑƏƴƳǓŴྵ‫נ‬NjLJƢLJƢ෇ႆƳᄂᆮƕᘍǘǕƯƍǔ (ǬȭǢƷᡞբ᫆ŴฆӳȢȁȸȕŴ
Ǣȇȸȫႎཎഷ᧙ૠŴGrothendieck-Teichmüller ፭ƳƲ)ŵƜǕǒ‫ٶ‬ૠƷ᣻ᙲƳɼ᫆ǍஇᡈƷᡶ
‫ޒ‬ƳƲƴƭƍƯŴஜᛯᛟưƸኡૠƷᣃӳɥŴ࠹ƭƔƷӋᎋ‫[( ୿׋‬1–6]) ƓǑƼɼᙲ‫إ‬૨ ([I2], [H])
ǛਫƛǔƴƱƲNJŴφ˳ႎƳϋܾƴᇌƪλǔƜƱƷưƖƳƍƜƱǛƓᛀƼဎƠɥƛƨƍŵɥƷǑ
ƏƳૠᛯႎؕஜ፭ǛNJƙǔૠ‫ٶ‬ƘƷᄂᆮᛢ᫆Ʒ‫ٻ‬೔ƷɶƴƋƬƯŴஜᛯᛟưৢƏžGrothendieck
ʖेſƸŴǍǍᚇࣞᛯႎƳᑥӳƍƷຜƍ௑ƷɟƭƱƍƏƜƱƕЈஹǔưƋǖƏŵ
§2. ஊᨂࣱ‫ྸܭ‬Ɣǒбࣱ‫ྸܭ‬ǁ (ɼƴ X :ᆔૠᲪ, K :ˊૠ˳Ʒ‫ئ‬ӳ)
§2.1. Anderson-˙ҾƷ‫ྸܭ‬
Grothendieck ʖेǁƷǢȗȭȸȁƸŴૠᛯႎؕஜ፭Ʒਘ‫ٻ‬ನᡯ (1.1) ǍƦƜƔǒဃơǔ‫ٳ‬Ǭ
ȭǢᘙྵ (1.2) ƷƲƜǛᙸǕƹΨƷᆰ᧓ƷˊૠನᡯƕᑣƘӒପƞǕƯƍǔƔŴƱƍƏբ᫆ǛᎋƑ
ǔƜƱƔǒ‫ڼ‬LJǔŵƱƜǖưእૠ l Ǜ‫ܭ׍‬ƠƨƱƖŴ‫ٳ‬ǬȭǢᘙྵ (1.2) Ƹ π1 (XK ) Ʒஇ‫ ٻ‬pro-l
(l)
ՠ፭10) π1 (XK ) ƷɥǁƷ‫˺ٳ‬ဇ
(l)
(l)
ρX : Gal(K) → Out(π1 (XK ))
ǛNjᐯ໱ƴࡽƖឪƜƠƯƍǔŵᲫᲳᲲᲪ࠰ˊƴ˙Ҿࡍᨙ ([I1]) ƸŴƦǕˌЭƷᄂᆮኺዾƔǒ
Grothendieck, Deligne ሁƱƸ཯ᇌƴ X = P1 − {0, 1, ∞} ƴ‫ݣ‬Ƣǔ pro-l ‫ٳ‬ǬȭǢᘙྵƷᄂᆮǛ
о‫ڼ‬ƠŴƦƷขƍૠᛯࣱ (ȤdzȓԧŴόҥૠƱƷ᧙ǘǓ) ǛଢǒƔƴƠƨ11) ŵƦƠƯƜƷ˙ҾƷ
঺ыǛ‫ڎ‬ೞƴŴƦƷࣖဇǍ˂ƷƍǖƍǖƳ୺ዴǁƷɟᑍ҄ƷแͳƳƲƕɼƴǘƕ‫׎‬ƷᄂᆮᎍǛɶ
࣎ƴᡶNJǒǕƨ12) ŵ
ᲲᲪ࠰ˊࢸҞƴƸŴଏƴഏƷǑƏƳʙܱƕ G.Anderson-˙Ҿ ([AI]) Ʒɟ‫ྸܭ‬ƱƠƯჷǒǕƯ
ƍƨŵஊᨂᨼӳ Λ ⊂ P1 (K) ƕ 0, 1, ∞ ǛԃljƱƖŴ
(l)
‫( ྸܭ‬Anderson-˙Ҿ). ᆔૠᲪƷ୺ዴ X = P1K − Λ ƴ‫ݣ‬Ƣǔ pro-l ‫ٳ‬ǬȭǢᘙྵρX ƷఋƷ‫ܭ׍‬
(l)
˳ KX Ƹᨼӳ Λ ƔǒᙐൔƱ l ʈఌǛӕǔદ˺ǛጮǓᡉƠƯဃơǔˊૠႎૠǛμƯؕᄽ˳ K ƴ
ชьƠƯࢽǒǕǔਘ‫˳ٻ‬ưƋǔŵ
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
(l)
5
(l)
ƜƷ‫ྸܭ‬ƸŴpro-l ‫ٳ‬ǬȭǢᘙྵ ρX Ɣǒᐯ໱ƴဃƣǔ K ƷᢿЎ˳ KX ǛŴЎ‫ޟ‬ໜᨼӳ
Λ ⊂ P1 (K) Ʒࡈ೅Ɣǒɟ‫ܭ‬Ʒ৖᪯ưဃ঺ƞǕǔžૠſƷኒЗƴǑƬƯᚡᡓƢǔNjƷưƋǔƕŴ
(l)
ᙸ૾Ǜ‫٭‬ƑǔƱŴૠᛯႎؕஜ፭ π1 (X) Ʒ Gal(K)-ਘ‫ٻ‬፭ƱƠƯƷನᡯƔǒ KX ƱƍƏ K Ʒᢿ
Ў˳ƴ͌Ǜਤƭ፭ᛯႎɧ‫٭‬᣽ǛŴእૠ l ƝƱƴᚡᡓႎƴನ঺ƠƯƍǔƱNjLjƳƤǔŵɶ஭ƸŴƜ
ƷǑƏƳ K ƷᢿЎ˳ƱƠƯ‫ܭ‬፯ƞǕǔૠᛯႎؕஜ፭Ʒɧ‫٭‬᣽ǛǑǓኒወႎƴನ঺ưƖǕƹŴƦ
ǕǒƴǑƬƯᆔૠᲪƷˊૠ୺ዴǛኬƔƘғКƢǔƱƍƏ࢟ư Grothendieck ʖेǁƷǢȗȭȸȁ
ƕЈஹǔƔNjƠǕƳƍŴƱᎋƑƨŵ
§2.2. ǬȭǢፗ੭Ʒž፭ᛯႎſᚡᡓ
Anderson-˙ҾƷ૾ඥƸŴ π1 (P1 − Λ) ƴƓƚǔ pro-l ‫ٳ‬ǬȭǢᘙྵǛŴ P1 − Λ Ʒ “pro-l ୍
ᢄᘮᙴƷጂ” ƴЎࠋƢǔ Λ ɥƷ “pro-cusp” ໜƨƪƷǬȭǢፗ੭ƷᚕᓶƴᎇᚪƠŴƦǕǛᆔૠᲪ
(Ʒ୺ዴƨƪƷƳƢ) ᘮᙴ‫ذ‬Ʒऴ‫إ‬ƴ࠙ბƢǔƱƜǖƕȝǤȳȈƴƳƬƯƍǔŵƦƜưLJƣŴžஊ
ᨂഏᘮᙴƷ cusp ໜƨƪƕǬȭǢፗ੭ƞǕǔſƱƍƏ࠹˴ႎƳྵᝋǛžૠᛯႎؕஜ፭Ʒ (ਘ‫ )ٻ‬፭
ನᡯſƷLjǛဇƍǔ፭ᛯႎƳᚕᓶƴᎇᚪƢǔƜƱǛᎋƑǔŵ
ɟᑍƴ X Ǜ K ɥ‫ܭ‬፯ƞǕƨ (˓ॖƷᆔૠƷ) affine ӑ୺ႎ୺ዴƱƠŴY ǛƦƷஊᨂഏᘮᙴŴ
def
Y ∗ ǛƦƷ᩼ཎီdzȳȑǯȈ҄ƱƢǕƹŴY Ʒ cusp ໜᨼӳƱƸΣY = Y ∗ − Y ƷƜƱưƋǔŵLJ
ƣŴᘮᙴ Y Ʒᐯ໱Ƴ‫ܭ‬፯˳ƸŴ‫ࣖݣ‬Ƣǔ ᧏ᢿЎ፭ HY = π1 (Y ) Ʒ prX : π1 (X) → Gal(K) ƴǑ
ǔ΂Ʒ‫ ˳ܭ׍‬KY ƱƠƯࢽǒǕǔŵLJƨŴY Ʒ࠹˴ႎؕஜ፭ƸσᡫᢿЎ HY ∩ π1 (XK ) ƱƠƯࣄ
ΨƞǕǔŵƜǕƸŴY ∗ Ʒᆔૠƕ gY ŴΣY (K) Ʒຜࡇƕ nY ưƋǔƱƢǕƹŴ᨞ૠ 2gY + nY − 1
Ʒ᩼Ǣȸșȫᐯဌ profinite ፭ưƋǔŵƦƷஇ‫ ٻ‬pro-l ǢȸșȫՠƱƠƯ lᡶǨǿȸȫȷțȢȭ
(l)
Ǹȸ፭ H1 (YK , Zl ) (= π1 (YK )ab ) ƕࢽǒǕŴσࢫǛӕǔƜƱƴǑǓŴƦƜƴƸ Gal(KY )-ь፭
ƱƠƯƷನᡯNjλƬƯƍǔŵƜƜƴŴcusp ໜᨼӳƴƓƚǔόЎፗ੭ᘙྵ13) ƕ (᨞ૠ nY − 1 Ʒ
ᢿЎь፭ƱƠƯ) DŽDžλƬƯƍǔƷưŴƜǕǛ፭ᛯႎƴӕǓЈƤǕƹǑƍŵƦǕǛ̬ᚰƢǔƷƕ
Riemann-Weil ʖेưƋǔŵܱᨥŴբ᫆Ʒ ‘cusp ᢿЎ’ ƴǑǔ H1 (YK , Zl ) Ʒՠь፭Ƹ᨞ૠ 2gY
ƱƳǓŴY ∗ ƷȤdzȓ‫ٶ‬ಮ˳Ʒ l-ࠉЎໜƨƪƷƳƢ l ᡶ Tate ь፭Ʊӷ‫׹‬ưƋǔŵRiemann-Weil
ʖेƸŴƦƜƴƓƚǔ Gal(KY ) Ɣǒဃơǔ Frobenius ˺ဇƷ‫׍‬ஊ͌Ҟࢲ (weight) ƕŴόЎ˺ဇ
Ʒ‫ئ‬ӳƱǹDZȸȫƕီƳǔƜƱǛƍƬƯƍǔƷưŴH1 (YK , Zl ) Ʒ cusp ᢿЎƕ፭ᛯႎƴᜤКƞǕ
ǔƜƱƴƳǔŵ
§2.3. ஊᨂࣱ‫[( ྸܭ‬N1])
√
ƦƜư̊Ƒƹ X = P1K − Λ (Λ ⊃ {0, 1, ∞}) Ʒᘮᙴ Y ƷƏƪŴ˳ K( N 1) Ǜ‫ܭ‬፯˳ƱƠŴ
XK( N√1) ɥ (Z/N Z)|Λ|−1 ǛǬȭǢ፭ƱƢǔǬȭǢᘮᙴƱƳƬƯƍǔNjƷǛᎋƑǔŵƦƠƯӲ
H1 (YK , Zl ) Ʒ cusp ᢿЎƴƓƚǔǬȭǢᘙྵƷఋƷ‫˳ܭ׍‬ƷŴɥƷǑƏƳ Y Ʊእૠ l ƴǘƨǔ
σᡫᢿЎǛᚘምƠƯLjǔƱŴ˳ K((λ − λ )1/N | λ, λ ∈ Λ − {∞}) ƕЈƯƘǔŵƜǕƸ፭Ʒμ‫ݧ‬
prX : π1 (X) → Gal(K) Ɣǒᐯ໱ૠ N ǛɨƑǔƝƱƴ፭ᛯႎƴਁЈƞǕǔɧ‫٭‬᣽ưƋǔŵ୼ƴ
N ǛѣƔƤƹŴቇҥƳǯȳȞȸᜭᛯ (Ʊҥૠ፭Ʒஊᨂဃ঺ࣱ) ƴǑǓŴʈඥ፭ K × ƷƳƔưஊᨂ
ᨼӳ {λ − λ | λ, λ ∈ Λ − {∞}, λ = λ } ưဃ঺ƞǕǔᢿЎ፭ƕɧ‫٭‬᣽ƴƳǔƜƱƕǘƔǔŵƜ
Ʒɧ‫٭‬᣽ƴǑƬƯŴӷơૠᛯႎؕஜ፭ǛɨƑǔΛ ⊂ P1 (K) ƷӕǓ૾ƕ (ɟഏЎૠ‫٭‬੭ǛඥƱƠ
Ư) ஊᨂᡫǓƠƔƳƍƜƱŴLJƨ K ƕཎКƳˊૠ˳Ʒ‫ئ‬ӳƴƸؕஜ፭ (ƷȡǿȷǢȸșȫ҄) ƕ
P1 − { Ხໜ } ǛൿNJƯƠLJƏƜƱƳƲƕᅆƞǕǔŵ
§2.4. бࣱ‫ྸܭ‬
ǑǓјྙǑƘ cusp ໜƨƪƷǬȭǢፗ੭Ʒऴ‫إ‬ǛМဇƢǔƨNJƴŴʻࡇƸπ1 (X) ƷμƯƷ᧏ᢿ
6
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
Ў፭ H ǛȑȩȡȸǿƱƠƯឥǒƤƯŴ‫ࣖݣ‬Ƣǔᘮᙴ Y H ƴ˄᨟Ƣǔ cusp ᢿЎ ⊂ H1 ((Y H )K , Zl )
Ʒऴ‫إ‬ǛμᢿᨼNJƯƘǔƜƱǛᎋƑǔŵƜƷ cusp ᢿЎƸ (§2.2 ưᡓǂƨǑƏƴ) weight filtration
ƴǑƬƯཎࣉƮƚǒǕƯƍǔƔǒŴμƯƷ᧏ᢿЎ፭ H ƓǑƼእૠ l ƴǘƨƬƯ I ∩ H ƕࠝƴƦ
Ʒ cusp ᢿЎƴᓳƪǔǑƏƳπ1 (XK ) Ʒ߹‫ׅ‬ᢿЎ፭ I Ʒӳ́Ǜ˺ǕƹŴGal(K)-ਘ‫ٻ‬፭ π1 (X) Ɣ
ǒ፭ᛯႎƴӕǓЈƤǔ π1 (XK ) ƷᢿЎᨼӳƕࢽǒǕǔŵ
ƜƷᢿЎᨼӳƕ ‘cuspidal isotropy ᢿЎ፭’ Ʒ (σࢫ᫏) ԧᨼӳƴႻ࢘ƢǔNjƷŴƍƍƔƑǕ
ƹ X Ʒ໯ᨂᢒໜ (ұƪ X ᐯ៲ƴ‫ݣ‬Ƣǔ cusp ໜ) ƴƓƚǔ π1 (XK ) ϋƷॄࣱ፭ (∼
= Ẑ) μ˳Ʒ
ӳ́ƴƳǔƜƱƕᚰଢƞǕǔ (ᢒǢȸșȫ weight filtration [N2,4])ŵӲॄࣱ፭Ʒദᙹ҄፭ƱƠƯ
π1 (X) ϋƷЎᚐ፭ƕࣄΨƞǕǔƕŴƜƷЎᚐ፭Ʒɶƴ΂ǛਤƭǑƏƳ prX : π1 (X) → Gal(K)
Ʒ section แӷ‫ ׹‬α : Gal(K) → π1 (X) ƨƪǛ X Ʒ໯ᨂᢒ K-ஊྸໜƔǒႆƢǔ tangential
section ƱԠƿŵGrothendieck Ʒ Section ʖे (GC3) ưբ᫆ƱƞǕǔ section แӷ‫׹‬ƷƏƪ໯
ᨂᢒ K-ஊྸໜƴဌஹƢǔNjƷƴ᧙ƠƯƸŴƜƷǑƏƴƠƯ፭ᛯႎƳཎࣉƮƚƕɨƑǒǕǔŵ
ƞƯŴॄࣱ፭ (Ǎ‫ࣖݣ‬ƢǔЎᚐ፭) Ʒᨼӳƕ፭ᛯႎƴཎࣉƮƚǒǕƨƨNJŴ̊ƑƹʚƭƷ୺ዴ
X1 , X2 /K Ʒૠᛯႎؕஜ፭Ʒ᧓ƴ Gal(K) ɥƷӷ‫ ׹‬π1 (X1 ) ∼
= π1 (X2 ) ƕɨƑǒǕƨƳǒƹŴƦ
Ʒ፭ӷ‫׹‬Ƹᐯѣႎƴॄࣱ፭ƷᨼӳǛ̬ƬƯƍƳƘƯƸƳǒƣŴƔƭӲŷƴ‫ࣖݣ‬Ƣǔ໯ᨂᢒໜƷй
˷˳Nj (Ўᚐ፭Ʒ prX ƴǑǔ΂Ʒ‫˳ܭ׍‬ƱƠƯ) ̬ƨǕǔƜƱƴƳǔŵࢼƬƯ X1 ƕ X1 ƴ᧏؈
λƞǕǔƳǒŴX2 Njπ1 (X1 ) ∼
= π1 (X2 ) ƱƳǔ X2 ƴ᧏؈λƞǕƳƘƯƸƳǒƳƍŵཎƴŴᆔૠ
1
ᲪƷ୺ዴ P − {n ໜ } ƷࣄΨƷբ᫆Ƹ P1 − { Ხໜ } Ʒ‫ئ‬ӳƴ࠙ბƞǕǔƜƱƴƳǔŵ୼ƴ࠹˴
ႎƳ߹‫ׅ‬ᘮᙴưᲬໜưƷLjЎ‫ޟ‬ƢǔǑƏƳNjƷƕؕஜ፭Ʊॄࣱ፭Ʒᚕᓶưཎ‫ܭ‬ưƖǔƜƱǛМဇ
ƢǔƱŴ[N1] Ʒ৖ඥǛੲဇƠƯπ1 (P1 − {0, 1, ∞, λ}) Ʒɧ‫٭‬᣽ƱƠƯ K × ƷʈඥᢿЎ፭Ʒɤƭ
λ
ኵ λ, 1 − λ, λ−1
ǛӕǓЈƤǔƜƱƕǘƔǔŵƜǕƕܱᨥ P1 − {0, 1, ∞, λ} Ʒӷ‫׹‬᫏Ǜཎ
ࣉƮƚǔŵƜƷǑƏƴƠƯ Q ɥஊᨂဃ঺Ƴ˳ɥƷᆔૠᲪƷӑ୺ႎˊૠ୺ዴƸؕஜ፭Ɣǒ ‘ࣄΨ’
ƞǕǔƜƱǛᅆƢƜƱƕưƖǔ ([N2])ŵ
LJƨŴॄࣱ፭ƷཎࣉƮƚƕɟᑍƷᆔૠƷ affine ୺ዴƷ pro-l ؕஜ፭ưNjӧᏡƳƜƱƔǒŴ
Grothendieck ʖेǛ pro-l ؕஜ፭ƴ‫ݣ‬ƠƯ‫҄ࡸܭ‬ƠƳƓƠƨNjƷƴŴ፭Ʒᨀɶ࣎ЗƳƲǛᡫƠƯ
‘‫ܭ‬᣽ႎƴ’ ǢȗȭȸȁƢǔӧᏡࣱƕဃLJǕƨŵཎƴ pro-l ؕஜ፭Ʒᐯࠁӷ‫׹‬፭Ʒᚸ̖Ʒբ᫆ƴཎഷ
҄ƢǔƱŴ᭗ᆔૠƷ୺ዴǍƦƷᣐፗᆰ᧓Ʒ pro-l ‫ٳ‬ǬȭǢᘙྵƷჷᜤǛᆔŷƷ filtration Ʒ૾ඥư
ኵLjӳǘƤƯŴᏉ‫ܭ‬ႎኽௐǛ࠹ǒƔኵጢႎƴࢽǔƜƱƕưƖǔ (ᛯᛟ [N7] Ǎ [NTs],[NTa],[MT] Ƴ
ƲǛӋༀ)ŵƜƷǑƏƳŴؕஜ፭Ʒᐯࠁӷ‫׹‬፭Ɣǒ୺ዴƷƦǕǛࣄΨƢǔբ᫆ƸŴ(GC2) Ʒ Isom
༿ǁƷǹȆȃȗƷɟᢿЎƱLjƳƢƜƱNjưƖǔŵƠƔƠŴǑǓஜឋႎƳ৙᧏ǛɨƑǔƴƸŴLJƣ
ྚ߷Ʒˁʙ (§3) ǛࢳƨƳƚǕƹƳǒƳƔƬƨŵ
ƱƜǖưɥƴƓƍƯŴ໯ᨂᢒໜƔǒဃƣǔ tangential section ƴ‫ݣ‬ƠƯᘍƳƬƨǑƏƳŴ
ˊૠ୺ዴƷૠᛯႎؕஜ፭Ʒਘ‫ٻ‬፭ನᡯ prX : π1 (X) → Gal(K) ƴ‫ݣ‬Ơ
˴ǒƔƷ࠹˴ႎƳ঺‫׆‬ǛਤƭǑƏƳ section แӷ‫ ׹‬α : Gal(K) → π1 (X)
Ǜ (˂ƷɟᑍƷ section แӷ‫׹‬Ɣǒ) ፭ᛯႎƴᜤКƢǔŴ
ƱƍƏǹȆȃȗƸŴˌࢸƷྚ߷ǍஓஉƷˁʙƴƓƍƯNjσᡫƠƯᘍǘǕǔᢿЎƱƳƬƯƍǔŵƦ
ƷᨥŴπ1 (X) Ʒ᧏ᢿЎ፭ H ǛȑȩȡȸǿƷǑƏƴឥǒƤƯŴ‫ࣖݣ‬Ƣǔᘮᙴ୺ዴ Y H ƨƪƷǨ
ǿȸȫȷdzțȢȭǸȸƴԃLJǕǔૠᛯ࠹˴ႎऴ‫إ‬ǛžᢒǢȸșȫႎƴſᨼኖƞƤǔŴƱƍƏ৖ඥ
ƸŴ೅แႎƴဇƍǒǕǔǑƏƴƳƬƨŵƨƩƠŴƞLJƟLJƳૠᛯႎᚨ‫ܭ‬ƷNjƱưŴY H ƷƲƷǑ
ƏƳ࠹˴ႎऴ‫إ‬ǛǨǿȸȫȷdzțȢȭǸȸƷɶƴᙸЈƠŴƲƷǑƏƴƦǕǒǛᨼኖƞƤƯኽௐƴ
ኽƼƭƚǔƔƱƍƏໜƸŴǑǓች߽Ƴ২ᘐƱૼᮗƳႆेǛᙲƢǔ‫ٻ‬ƖƳբ᫆ưƋǔŵˌɦƷӲራ
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
7
ƴƓƍƯŴƜƷǑƏƳբ᫆ƴ‫ݣ‬Ƣǔྚ߷ȷஓஉƷŴƦǕƧǕƷૠᛯႎཞඞƴƓƚǔǢǤȇǣǢƷ
‫᧏ޒ‬ǛᚐᛟƢǔƕŴ‫ٳᧉݦ‬ƷᛠᎍƷ૾ƴNjŴƦƷࡁƴ්ǕǔσᡫƷբ᫆ॖᜤƷ࠼ƕǓ૾Ǜ (‫ݲٶ‬
ƳǓƱNj) ԛǘƬƯ᪬ƚǔǑƏƴŴɟഩɟഩᇿǛᡶNJǔƜƱƴƠǑƏŵ
§3. ദ೅ૠˊૠ୺ዴƷؕஜ፭Ʊ Grothendieck ʖे
§3.1. ஊᨂ˳ɥƷ Grothendieck ʖे
ƜƷራưƸŴk Ǜஊᨂ˳ƱƠŴX ǛƦƷɥƷ (᩼ཎီ) affine ୺ዴƱƢǔŵྚ߷ ([T1]) Ʒɼኽ
ௐƷɟƭƸŴǹǭȸȠ X ƕ π1 (X) ƔǒࣄΨƞǕǔƜƱ (ǑǓദᄩƴƸ (GC2) Ʒ Isom ༿Ʒ᫏
˩) ǛᅆƠƨƜƱưƋǔŵƦƷᚰଢƷ૾ᤆƸŴ᧙ૠ˳ k(X) ƕƦƷዌ‫ݣ‬ǬȭǢ፭ Gal(k(X)) Ɣǒ
ࣄΨƞǕǔƜƱǛᅆƠƨϋဋᐻʚƷˁʙ ([U]) ǛȢȇȫƴƠƯƓǓŴ‫ٻ‬ƖƘɤƭƷǹȆȃȗƴЎ
ƔǕǔᲴ
(i) X ∗ ƷӲ᧍ໜƴ‫ݣ‬ƢǔЎᚐ፭Ʒ፭ᛯႎཎࣉƮƚᲵ
(ii) ʈඥ፭ k(X)× ƷࣄΨᲵ
(iii) k(X) = k(X)× ∪ {0} ƷɥƷьඥನᡯƷࣄΨŵ
ƜƜưŴ§2 ƷᡫǓŴX Ʒ᩼ཎီdzȳȑǯȈ҄Ǜ X ∗ ƱᚡƢŵ
ǹȆȃȗ (i) ưƸŴϋဋƸ Brauer ፭Ǜဇƍƨ Neukirch ƷǢǤȇǣǢǛ̅ƬƨƕŴǘǕǘǕ
Ʒ‫ئ‬ӳŴX ɥƷ᧍ໜƴ‫ݣ‬ƠƯƸŴॄࣱ፭ƕෞƑƯЎᚐ፭ƕй˷˳ (ࢼƬƯஊᨂ˳) Ʒዌ‫ݣ‬ǬȭǢ
፭Ʊӷ‫׹‬ƴƳǓŴH 2 ƕෞƑƯƠLJƏƷưŴˊǘǓƴŴˌɦᛟଢƢǔǑƏƳǢǤȇǣǢǛဇƍǔŵ
LJƣŴX ƷɥƷӲ᧍ໜ x ƸŴᡲዓ፭แӷ‫׹‬
αx : Gal(k(x)) = π1 (Spec (k(x))) → π1 (X)
ưƋƬƯ prX ◦ αx ƕᐯ໱Ƴҥ‫ ݧ‬Gal(k(x)) → Gal(k) ƴɟᐲƢǔǑƏƳNjƷǛɨƑŴαx Ʒ΂
ƕ x ƷЎᚐ፭ƱƳǔƜƱƴදॖƢǔŵཎƴŴx ƕ k-ஊྸໜƷ‫ئ‬ӳƴƸŴแӷ‫ ׹‬αx Ƹ prX Ʒ
section ǛɨƑǔŵˌɦŴቇҥƷƨNJŴƜƷ‫ئ‬ӳǛᎋƑǔŵբ᫆ƸŴѨ৖ƴɨƑǒǕƨ prX Ʒ
section แӷ‫ ׹‬α ƕŴƋǔ x ∈ X(k) ƴ‫ݣ‬Ƣǔ αx ƱƳǔƨNJƷவˑǛ፭ᛯႎƴᚡᡓƢǔƜƱư
Ƌǔŵ(Gal(k) ∼
= Ẑ ƕᐯဌ profinite ፭ƳƷưŴSection ʖे (GC3) Ʒ᫏˩ƦƷNjƷƸ঺ᇌƠƑ
ƳƍƜƱƴදॖŵ) LJƣஇИƴǘƔǔƷƸŴբ᫆ƷவˑƕŴ
α Ʒ΂ Im(α) ǛԃljǑƏƳ π1 (X) Ʒ˓ॖƷ᧏ᢿЎ፭ H ƴ‫ݣ‬ƠƯŴ
(∗)
‫ࣖݣ‬Ƣǔ X Ʒᘮᙴ Y H Ʒ k-ஊྸໜᨼӳ Y H (k) ƸᆰƴƳǒƳƍ
Ʊӷ͌ưƋǔƱƍƏƜƱưƋǔŵܱᨥŴ࣏ᙲࣱƸŴЎᚐ፭ƷؕஜႎࣱឋƔǒႺƪƴࢼƍŴҗЎ
ࣱƸŴᆰưƳƍஊᨂᨼӳƷ‫ࢨݧ‬ಊᨂƸᆰƴƳǒƳƍƱƍƏʙܱƴǑǓŴIm(α) ƴ‫ࣖݣ‬Ƣǔ X Ʒ
(pro-) ᘮᙴNjLJƨ k-ஊྸໜǛਤƭƜƱƕࢼƏƷưŴƦƷ k-ஊྸໜǛɟƭƱƬƯ X ƴƓƚǔ΂Ǜ
x ƱƢǕƹŴα = αx ƱƳǔƜƱƔǒǘƔǔŵƋƱƸŴ(∗) ƕ঺ᇌƢǔƔƲƏƔŴƋǔƍƸɟᑍ
ƴஊᨂ˳ k ɥƷ୺ዴƕஊྸໜǛਤƭƔƲƏƔǛŴૠᛯႎؕஜ፭Ɣǒ፭ᛯႎƴЙ‫ܭ‬ƢǔƱƍƏբ
᫆ƕസǔƕŴƜǕƸŴஊྸໜƷ̾ૠ (≥ 0) Ǜ l ᡶǨǿȸȫȷdzțȢȭǸȸ፭ (l Ƹ k Ʒ೅ૠƱီ
Ƴǔእૠ) ǁƷ Frobenius ΨƷ˺ဇưᚡᡓƢǔ Lefschetz ួπࡸƴǑƬƯᚐൿƞǕǔŵ໯ᨂᢒໜ
def
x ∈ Σ = X ∗ − X ƴ‫ݣ‬ƠƯƸŴॄࣱ፭ƕෞƑƳƍƷưŴЎᚐ፭ƷɶǁƷ section แӷ‫ ׹‬αx Ƹɟ
ॖƴƸൿLJǒƣŴLJƨŴαx Ʒ΂ƸЎᚐ፭ƷჇƷᢿЎ፭ƴƳƬƯƠLJƏŵƠƔƠŴƜƷ‫ئ‬ӳƴNjŴ
8
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
ɥƷᜭᛯǛᒉ࠮̲ദƠƯᢘဇƢǔƱŴӲ x ∈ Σ ƴ‫ݣ‬ƠƯ໯ᨂ̾Ʒ (ƓƜǓƏǔμƯƷ) αx ƕ፭
ᛯႎƴࣄΨƞǕǔƷưŴƦǕǒƷ΂ưဃ঺ƞǕǔ π1 (X) ƷᢿЎ፭ƱƠƯŴ x ƷЎᚐ፭ƕࣄΨƞ
Ǖǔŵ
ǹȆȃȗ (ii) Ƹ [U] ƱDŽDžӷಮưŴ᧙ૠ˳ k(X) Ʒ᫏˳ᛯƷႻʝࢷǛ̅Əŵ᫏˳ᛯƸŴNjƱNj
Ʊʈඥ፭ƴǑƬƯǬȭǢ፭ƷǢȸșȫ҄ǛᚡᡓƢǔNjƷƩƕŴᡞƴƜǕǛǬȭǢ፭Ʒɶƴʈඥ፭
Ʒऴ‫إ‬ƕλƬƯƍǔƱᙸǔƷưƋǔŵǹȆȃȗ (i) ư X ∗ ƷӲ᧍ໜ x ƴ‫ݣ‬ƢǔЎᚐ፭ƕࣄΨưƖ
x× /O
x×
ƨƷưŴ‫ޅ‬৑᫏˳ᛯƴǑǓŴƦƷǢȸșȫ҄ƷžWeil ፭ᢿЎſƱƠƯŴx ∈ X Ƴǒƹ K
× ƕŴᐯ໱Ƴ‫ ݧ‬K
× /O
× → π1 (X)ab ƱƱNjƴ
× → π1 (X)ab ƳƍƠ K
(∼
= Z)Ŵx ∈ Σ Ƴǒƹ K
x
x
x
x
x Ƹ‫ޅ‬৑࿢ OX ∗ ,x Ʒ‫҄ͳܦ‬ŴK
x ƸƦƷՠ˳ǛᘙƢŵ) ƦƜ
ࣄΨƞǕƨƜƱƴƳǔŵ(ƜƜưŴO
ưŴArtin ϙ΂
× ×
× /O
× −→ π1 (X)ab
K
K
x
x∈X
x
x
x∈Σ
NjLJƨ π1 (X) ƷLjƔǒ፭ᛯႎƴࣄΨƞǕŴƜƷఋƱƠƯʈඥ፭ k(X)× ƕࣄΨƞǕǔŵ(ƜƜưŴ
X ƕ affine ưƋǔƜƱǛИNJƯဇƍǔŵ X = X ∗ ƩƱɼ‫܇׆‬፭ k(X)× /k × ƠƔࣄΨưƖƳƍŵ)
ǹȆȃȗ (iii) ƸŴ২ᘐႎƴƸNjƬƱNjᩊƠƍǹȆȃȗưƋǔŵLJƣŴǹȆȃȗ (ii) ưŴʈඥ
፭ƩƚưƸƳƘŴX ∗ ƷӲ᧍ໜ x ƴ˄᨟Ƣǔᩉ૝˄͌ ordx : k(X)× → Z ǍŴx ∈ Σ Ƴǒƹ୼
×
× Ʒఋ ƕࣄΨƞǕǔƜƱƴදॖƢǔŵƞƯŴ
ƴ reduction ϙ΂ Ker(ordx ) = OX
(
)
[U]
∗ ,x → k(x)
∗
ƴƓƍƯƸŴؕᄽ˳ k (ƋǔƍƸk̄) ƷьඥನᡯǛLJƣࣄΨƠŴഏƴŴ(“Σ = X ” ƳƷư) ໯ᨂ
̾Ʒໜƴ‫ݣ‬Ƣǔ reduction ϙ΂ǛဇƍƯŴ᧙ૠ˳ƷьඥǛй˷˳ƷьඥƔǒࣄΨƢǔƜƱƕưƖ
ƨŵǘǕǘǕƷ‫ئ‬ӳƴƸŴ(Σ ƕஊᨂᨼӳƷƨNJ) இࢸƷᢿЎƕƏLJƘƍƔƳƍƷưŴˊǘǓƴŴ
(X = P1k − {0, 1, ∞} = Spec (k[t, t−1 , (t − 1)−1 ]) ƴƓƚǔ t ƷǑƏƳ)žǑƍſ᧙ૠ f ∈ k(X)
ǛžƨƘƞǜſӕǓŴஊྸ᧙ૠ˳ƷཎഷࣱǛဇƍƯ k(f ) ⊂ k(X) ƷьඥನᡯǛࣄΨƠŴƦǕǒ
ǛžƸǓӳǘƤƯſk(X) ƷьඥನᡯǛࣄΨƢǔŵ
§3.2. ஊᨂ˳Ɣǒஊᨂဃ঺˳ǁ
§3.1 ưᛟଢƠƨኽௐƓǑƼᚰଢƸŴX ƕ୼ƴӑ୺ႎƳ‫ئ‬ӳƴƸŴ(ૠᛯႎ) ؕஜ፭ π1 (X) Ǜ
ƦƷՠưƋǔ tame ؕஜ፭ π1tame (X) ƴ‫٭‬ƑƯNj঺ǓᇌƭŵƜƷራưƸŴஊྸૠ˳ɥஊᨂဃ঺Ƴ
˳ƷɥƷ affine ӑ୺ႎ୺ዴƴ‫ݣ‬Ƣǔ Grothendieck ʖे (GC2) Ʒ Isom ༿ƕŴஊᨂ˳ɥƷ affine
ӑ୺ႎ୺ዴƷ tame ؕஜ፭ƴ᧙ƢǔƜƷኽௐƔǒ‫ݰ‬ƚǔƜƱǛᛟଢƢǔŵ§1.2 ư Tate ʖेƱ
Grothendieck ʖेƷ᫏˩ǛਦઇƠƨƕŴTate ʖेƷஊᨂ˳༿ưƋǔ Tate Ʒ‫ྸܭ‬ƔǒŴჇƴ‫ٻ‬
؏ႎƳᎋ‫ݑ‬ǛԃLJƳƍҥኝƳᜭᛯƴǑƬƯ Faltings Ʒ‫ྸܭ‬ƕ‫ݰ‬ƚǔƱƸᎋƑƴƘƍŵTate ʖे
Ʊ Grothendieck ʖेƷૠᛯႎࣱឋƷɟƭƷᢌƍƕƜƜƴƋǔŵ(§4.1 NjӋༀŵ)
ૠ˳Ʒ‫ئ‬ӳƔǒஊྸૠ˳ɥஊᨂဃ঺Ƴ˳Ʒ‫ئ‬ӳǛ‫ݰ‬ƘƷƸܾତƳƷưŴˌɦưƸŴK Ǜૠ˳
ƱƠŴK ɥƷ affine ӑ୺ႎ୺ዴ X ǛৢƏŵբ᫆ƸŴK ƷӲஊᨂእໜƴƓƚǔ X Ʒ reduction
Ʒ tame ؕஜ፭ǛŴX Ʒૠᛯႎؕஜ፭Ɣǒ፭ᛯႎƴࣄΨƢǔƜƱưƋǔŵƜƜưƸŴ‫ޅ‬৑˳ɥƷ
ӑ୺ႎ୺ዴƕ good reduction ǛਤƭƔƲƏƔǛ pro-l ؕஜ፭ (l Ƹй˷˳Ʒ೅ૠƱီƳǔእૠ)
ǁƷॄࣱ፭Ʒ‫˺ٳ‬ဇƕᐯଢƔƲƏƔưЙ‫ܭ‬ưƖǔƱƍƏʙܱ (Ǣȸșȫ‫ٶ‬ಮ˳Ʒ good reduction
Ʒ Serre-Tate Й‫ܭ‬ඥƷ᫏˩) ƕᦆƱƳǔŵ(ƜƷŴӑ୺ႎ୺ዴƷ good reduction Ʒ፭ᛯႎЙ‫ܭ‬ඥ
ƸŴproper Ƴ‫ئ‬ӳƸጢဋܑ࠳ ([O1,2]) ƴǑǔŵ)
ʻŴv Ǜ K ƷஊᨂእໜƱƠŴKv Ǜ K Ʒ v ᡶ‫҄ͳܦ‬ŴOv ǛƦƷૢૠ࿢Ŵkv ǛƦƷй˷˳
ƱƠǑƏŵKv Ʒዌ‫ݣ‬ǬȭǢ፭Ƹᐯ໱ƴ K Ʒዌ‫ݣ‬ǬȭǢ፭ƷᢿЎ፭ƱLjƳƞǕŴLJƨŴX Ʒ࠹
˴ႎؕஜ፭Ʊ XKv Ʒ࠹˴ႎؕஜ፭ƸɟᐲƢǔƷưŴXKv Ʒૠᛯႎؕஜ፭ π1 (XKv ) ƸŴ(1.1)
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
9
Ʒᚡӭư pr−1
X (Gal(Kv )) ƱƠƯႺƪƴࣄΨƞǕǔŵƜǕƴɥᚡƷЙ‫ܭ‬ඥǛᢘဇƢǕƹŴXKv ƕ
good reduction ǛਤƭƔƲƏƔƕ፭ᛯႎƴЙ‫ܭ‬ƞǕǔƷưŴˌɦưƸŴXKv ƕ good reduction
ǛਤƭƱˎ‫ܭ‬ƠŴXOv Ǜ XKv Ʒ Ov ɥƷžǑƍſȢȇȫŴXkv ǛƦƷ reduction ƱƢǔŵƜ
ƷƱƖŴπ1tame (Xkv ) Ʊ π1 (XOv ) Ʒ᧓ƴᐯ໱Ƴӷ‫׹‬ƕƋǔƜƱƕჷǒǕƯƍǔƷưŴπ1tame (Xkv )
ǛŴ π1 (XKv ) Ʒՠ፭ π1 (XOv ) ƱӷɟᙻƢǔƜƱƕưƖǔŵƜƷՠǛ፭ᛯႎƴࣄΨƢǔƨNJƴ
ƸŴXKv ƷӲஊᨂഏǨǿȸȫ (ǬȭǢ) ᘮᙴƴ‫ݣ‬ƠŴƦƷᘮᙴƕ XOv ƷǨǿȸȫᘮᙴƴLJưࡨ
ᧈưƖǔƔƲƏƔǛ፭ᛯႎƴЙ‫ܭ‬ưƖǕƹǑƍƕŴƜǕƸŴӑ୺ࣱƴǑǓŴܱƸŴᘮᙴƷ୺ዴNj
LJƨ good reduction ǛਤƭƱƍƏ (ɟᙸࢊƍ) வˑƱӷ͌ƴƳǔƷưŴέƷЙ‫ܭ‬ඥƴǑǓ፭ᛯႎ
ƴЙ‫ܭ‬ưƖǔŵˌɥƴǑǓŴૠ˳ K ɥƷӑ୺ႎ୺ዴ X ƕእໜ v ư good reduction Ǜਤƭ‫ئ‬ӳ
ƴŴƦƷ reduction Xkv Ʒ tame ؕஜ፭ƕŴ(X Ʒૠᛯႎؕஜ፭ƷᢿЎՠƱƠƯ) ፭ᛯႎƴࣄΨ
ƞǕƨƜƱƴƳǔŵ
ƞƯŴૠ˳ K ɥƷʚƭƷ affine ӑ୺ႎ୺ዴ X1 , X2 Ʒૠᛯႎؕஜ፭Ʒ᧓ƴŴGal(K) ɥƷӷ‫׹‬
π1 (X1 ) ∼
= π1 (X2 ) ƕɨƑǒǕǔƱŴɥƷᜭᛯƴǑǓŴ(X1 , X2 ƕƦƜư good reduction ǛਤƭǑ
ƏƳ) DŽƱǜƲμƯƷ K Ʒእໜ v ƴƓƍƯπ1tame ((X1 )kv ) ∼
= π1tame ((X2 )kv ) ƕᛔ‫ݰ‬ƞǕŴࢼƬƯ
ஊᨂ˳ɥƷ affine ӑ୺ႎ୺ዴƷ tame ؕஜ፭ƴ᧙ƢǔɥᚡƷኽௐƴǑǓŴӷ‫( ׹‬X1 )kv ∼
= (X2 )kv
ƕ‫ݰ‬ƔǕǔŵƱƜǖƕʻŴ୺ዴƷӑ୺ࣱ (ƴǑǔ Isom ǹǭȸȠƷஊᨂࣱ) Ɣǒ
Isom(X1 , X2 ) ∼
= Isom((X1 )kv , (X2 )kv )
ƕDŽƱǜƲμƯƷ v ƴ‫ݣ‬ƠƯ঺ǓᇌƭƷưŴX1 ∼
= X2 ƕࢼƏŵƜƏƠƯŴஊᨂ˳ɥƷ affine ӑ
୺ႎ୺ዴƷ tame ؕஜ፭ƴ᧙ƢǔɥᚡƷኽௐƔǒૠ˳ɥƷ affine ӑ୺ႎ୺ዴƴ‫ݣ‬Ƣǔ (GC2) Ʒ
Isom ༿Ǜ‫ݰ‬Ƙᚰଢƕ‫ܦ‬ኽƢǔŵ
ƳƓŴ[M1] ưƸŴஊᨂ˳ɥƷ affine ӑ୺ႎ୺ዴƷ tame ؕஜ፭ƴ᧙ƢǔɥᚡƷኽௐƔǒŴૠ
˳ɥƷ proper Ƴӑ୺ႎ୺ዴƴ‫ݣ‬Ƣǔ (GC2) Ʒ Isom ༿Ǜ‫ݰ‬ƍƯƍǔŵƜƜưŴʚƭƷኽௐǛኽ
ƿᦆƸŴஊᨂ˳ɥƷ (๖ǒƔưƳƍ) ‫୺ܭܤ‬ዴƷžlog ؕஜ፭ſ ƴ‫ݣ‬Ƣǔ (GC2) Ʒ Isom ༿Ʒ᫏
˩ưƋǔŵ
§3.3. ദ೅ૠˊૠ୺ዴƷ࠹˴ႎؕஜ፭
೅ૠ 0 Ʒ‫ئ‬ӳŴ୺ዴƷ࠹˴ႎؕஜ፭Ʒӷ‫׹‬᫏ƸŴᆔૠ g Ʊ໯ᨂᢒໜƷૠ n ƷLjưൿLJǔƕŴ
ദ೅ૠƷ‫ئ‬ӳƸƦƏưƸƳƍŵܱᨥŴ[T2] ưƸŴFp ɥƷᆔૠ 0 Ʒ୺ዴƷǹǭȸȠƱƠƯƷӷ‫׹‬
᫏ƕŴƦƷؕஜ፭ƴǑƬƯ‫ܦ‬μƴൿ‫ܭ‬ƞǕǔƜƱƕᚰଢƞǕƯƍǔŵƜƷǑƏƳኽௐƕŴദ೅ૠ
ˊૠ᧍˳ɥƷ (ӑ୺ႎ) ˊૠ୺ዴƴ‫ݣ‬ƠƯɟᑍƴ঺ǓᇌƭƷƔƲƏƔŴƋǔƍƸ tame ؕஜ፭ƴ
ƭƍƯNj᫏˩Ʒኽௐƕ঺ǓᇌƭƷƔƲƏƔŴᐻԛƕਤƨǕǔŵ
§4. ‫ޅ‬৑˳༿ƴᐱǔኺዾ
§4.1. ‫˳؏ٻ‬Ʊ‫ޅ‬৑˳
§1 ưƸ Grothendieck ʖेǛŴஊྸૠ˳ɥஊᨂဃ঺Ƴ˳ŴұƪእໜǛᝅ݈ƴਤƭǑƏƳž‫؏ٻ‬
ႎƳ˳ſɥƷ‫ݣ‬ᝋƴ᧙ƢǔNjƷƱƠƯኰʼƠƨƕŴஓஉƷɟᡲƷᛯ૨ ([M1-4]) ƸŴƜƷʖेǛ
‫˳؏ٻ‬ǑǓNjljƠǖஜឋႎƴ‫ޅ‬৑˳ɥƷ p ᡶᚐௌႎྵᝋƱƠƯਵƑǔŴƱƍƏૼƠƍᙻໜǛ‫ݰ‬λ
ƠƨŵƜƷᙻໜǛؕƴࢽǒǕƨ‫ޅ‬৑˳༿Ʒ Grothendieck ʖे (§5.1) ƸŴஊྸૠ˳ɥஊᨂဃ঺Ƴ
˳ɥƴ‫҄ࡸܭ‬ƞǕƯƍƨΨƷʖे (GC2) ǛԃljŴǑǓɟᑍႎƳኽௐƱƳƬƯƍǔƕŴƜƷૼƠ
ƍᙻໜǍኽௐƷᛟଢƴλǔЭƴŴLJƣஓஉˌЭƷെ᨞ưŴؕᄽ˳ƴ‫؏ٻ‬ႎƳ˳ǛƱǔƜƱƕᐯ໱
Ʊ࣬ǘǕƯƍƨᏑ୎Ǜ౨ᚰƠƯLjǑƏŵ
10
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
(A) Ǣȸșȫ‫ٶ‬ಮ˳Ʒ Tate ʖेᲴ§1 ưNjᚑǕƨǑƏƴŴGrothendieck ƕᢒǢȸșȫʖेǛ‫ܭ‬
ࡸ҄ƢǔƴƋƨƬƯਦઇƠƨƜƱƷɟƭƱƠƯŴFaltings ([F1]) ƴǑƬƯᚰଢƞǕƨ Tate ʖेƱ
Ʒ᫏˩ƕஊƬƨƕŴFaltings ƷƦƷᚰଢưƸŴૠ˳ɥƷ height ƷྸᛯǍŴǢȸșȫ‫ٶ‬ಮ˳Ʒ᧓Ʒ
ӷᆔƷᨥƴဃơǔŴஊᨂእໜƴǑǔ݃ɨƱ໯ᨂእໜƴǑǔ݃ɨƕƪǐƏƲႻࣱᑣƘෞӊƠƋƬƯ
ƍǔƱƍƏʙܱƳƲŴஜឋႎƴ‫؏ٻ‬ႎƳཞඞƕஊјƴ̅ǘǕƯƍǔŵɟ૾ưૠ˳ (Ǎஊᨂ˳) Ʊ
ᢌƬƯŴQp ƷǑƏƳ‫ޅ‬৑˳ƷɥưƸŴTate ʖेƸƨƩ঺ᇌƠƳƍƷLjƳǒƣŴӷ‫׹‬ƕʖेƞǕ
ǔʚƭƷь፭Ʒࠀƕ‫ئ‬ӳƴǑƬƯƸ᩼ࠝƴ‫ٻ‬ƖƘƳƬƯƠLJƏŵࢼƬƯŴ
žGrothendieck ʖे=Tate ʖेƷӑ୺ႎ୺ዴ༿ſ
ƱƍƏᙻໜƴᇌƯƹŴ(GC2) ƷǑƏƳʖेƷ঺ᇌǛLJƣ‫˳؏ٻ‬ɥưƷLjᎋ‫ݑ‬ƠǑƏƱƢǔ૾Ӽƕ
ᐯ໱ƱƍƑǑƏŵ
(B) Diophantus ࠹˴ǁƷࣖဇᲴᢒǢȸșȫՋ‫ܖ‬Ʒੵቒ஖ƴᇌƪ˟Ƭƨૠ‫ܖ‬ᎍƷ᧓ưƸŴGrothendieck ʖेƸŴDiophantus ࠹˴Ŵұƪ‫؏ٻ‬ႎƳ˳ɥƷ‫ٶ‬ಮ˳ƷஊྸໜƷᄂᆮǁƷૼƠƍǢȗȭȸ
ȁƱƠƯᛐᜤƞǕƯƍƨǑƏưƋǔŵƦƷǢȗȭȸȁǛˊᘙƢǔNjƷƱƠƯŴഏƷǑƏƳᜭᛯƕ
ƋǔŵƋǔˊૠ‫ٶ‬ಮ˳ƕஊᨂ̾ƷஊྸໜƠƔਤƨƳƍƜƱǛᚰଢƢǔ૾ඥƱƠƯŴNjƠˎƴ໯ᨂ
̾ஊƬƨƱƠƨǒŴƦƷžಊᨂſƱƠƯႆဃƢǔஊྸໜƕಮŷƳžᑣᢅƗǔſࣱឋǛਤƨƟǔǛ
ࢽƳƍƜƱƔǒჳႽǛ‫ݰ‬ƖƨƍƱƠǑƏŵƨƩƠŴƦƷᜭᛯǛܱᘍƢǔƨNJƴƸŴžಊᨂſƕ‫܍‬
‫נ‬ƠƳƍƱƍƚƳƍŵƱƜǖƕŴૠ˳ƷǑƏƳ˳Ƹ‫˴ڦ‬Ƴǔ (᩼ᐯଢƳ) ˮႻƴ᧙ƠƯNj‫ͳܦ‬ƴ
ƸƳǒƳƍƷưŴƦƷǑƏƳಊᨂƷ‫נ܍‬ƸൿƠƯႺƪƴƸЎƔǒƳƍŵɟ૾ưŴ(ࡸ (1.2) ƷǑƏ
Ƴ) ǬȭǢᘙྵƸƋǔॖԛưƸžᚐௌႎſƳNjƷƳƷưŴƦƷǑƏƳǬȭǢᘙྵƷЗƴ‫ݣ‬ƠƯŴ
ಊᨂǛਤƭᢿЎЗƕ࣏ƣ‫נ܍‬ƢǔƜƱƸൔ᠋ႎܾତƴᚰଢưƖǔŵƦƜưŴSection ʖे (GC3)
ƕɼࢌƠƯƍǔǑƏƴŴ ஊྸໜƱ (ƋǔவˑǛ฼ƨƢ) ǬȭǢᘙྵƕܱƸӷ͌Ƴ‫ݣ‬ᝋưƋǔŴƱ
ƍƏƜƱƕЎƔǕƹŴǬȭǢᘙྵƷЗƷಊᨂƷ‫נ܍‬ƔǒƦǕƴ‫ࣖݣ‬ƢǔஊྸໜƷЗƷಊᨂƷ‫נ܍‬
ƕ‫ݰ‬ƔǕǔƜƱƴƳǔŵɥᡓƷǑƏƳሂᢊƷᜭᛯǛǑǓች݅҄ƢǕƹŴ̊ƑƹŴ᭗ᆔૠƷˊૠ୺
ዴƴ‫ݣ‬ƢǔžMordell ʖे14) ſƷКᚰଢƕ Section ʖे (GC3) Ɣǒ‫ݰ‬ƚǔӧᏡࣱƕƋǔŵ ƜƷ
ǑƏƳஜឋႎƴ‫؏ٻ‬ႎƳࣖဇǛ᪽ࣞƴፗƍƯLjǔƱŴGrothendieck ʖेǛ‫˳؏ٻ‬ɥưƷLjᎋ‫ݑ‬
ƠǑƏƱƢǔƷƕǍƸǓᐯ໱Ƴ්ǕƱƍƑǑƏŵ
ƜƷǑƏƳཞඞƷɶưŴž‫˳؏ٻ‬Ɣǒ p ᡶ˳ǁſƱƍƏႆेƷ᠃੭ƕஓஉƷˁʙƴǑƬƯNjƨ
ǒƞǕƨŵƦƷƖƬƔƚƱƳƬƨᚇໜƴƭƍƯŴˌɦưᚐᛟƠƯLjǔƜƱƴƢǔŵ
§4.2. ӑ୺‫׹‬ȪȸȞȳ᩿Ʒɟॖ҄ྸᛯƱƷ᫏˩
Grothendieck ʖेƷɼଓƸŴɟᚕưᚕƑƹŴӑ୺ႎ୺ዴƴ˄᨟Ƣǔ‫ٳ‬ǬȭǢᘙྵ (1.2)Ŵұƪ
୺ዴƷ࠹˴ႎؕஜ፭ᲥƦǕƴλǔᐯ໱Ƴžૠᛯႎ˄ьನᡯſ
Ɣǒ୺ዴᐯ៲ǛࣄΨưƖǔưƋǖƏƱƍƏNjƷưƋǔŵƱƜǖƕŴ˳Ʒ‫ࣱ؏ٻ‬ǛབྷཌƴƠŴžૠ
ᛯႎ˄ьನᡯſƱƍƏᘙྵǛ࠼፯ƴᚐ᣷ƢǕƹŴƜǕƴ᫏˩ƢǔྵᝋƕଏƴҗʋɭኔɶƴჷǒǕ
ƯƍƨƜƱƴൢ˄ƘŵƦƷྵᝋƱƸŴӑ୺‫׹‬ȪȸȞȳ᩿Ʒɟॖ҄ྸᛯƷƜƱưƋǔŵ
ᙐእૠ˳ C ɥƷӑ୺ႎ୺ዴ X ƕɨƑǒǕƨǒŴX Ɣǒӑ୺‫׹‬ȪȸȞȳ᩿ X ƕ‫ܭ‬LJǓŴƦƷ
X Ʒ୍ᢄᘮᙴX˜ → X ƴNjȪȸȞȳ᩿Ʒನᡯƕᐯ໱ƴλǔŵƱƜǖƕŴȪȸȞȳ᩿Ʒɟॖ҄‫ܭ‬
def
ྸƔǒŴX̃ ƕŴɥҞ࠯᩿ H = {z ∈ C | Im(z) > 0} ƴദЩƴӷ‫׹‬ƴƳǔƜƱƕЎƔǔŵࢼƬƯŴ
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
11
Aut(X˜ ) ∼
= Aut(H) = SL2 (R)/{±1} Ǜ̅ƏƱŴX Ʒ (୍ᡫƷˮႻ࠹˴‫ܖ‬ႎƳ) ؕஜ፭π1 (X ) Ʒ
X˜ ǁƷ˺ဇƔǒ
(4.1)
ρX : π1 (X ) → SL2 (R)/{±1}
ƱƍƏ (SL2 (R)/{±1} ƴǑǔσࢫǛᨊƍƯ) ೅แႎƳᘙྵƕൿLJǔŵᡞƴŴρX ƕɨƑǒǕǕƹŴ
π1 (X ) ƷɥҞ࠯᩿ H ǁƷ˺ဇƕ‫ܭ‬LJǓŴH ǛƦƷ˺ဇưлǔƜƱƴǑƬƯŴȪȸȞȳ᩿ X Ŵƻ
ƍƯƸΨƷˊૠ୺ዴƷ X LJưŴƍƱNjᡯ˺ƳƘࣄΨƞǕǔŵஓஉƸᙐእᚐௌƷɭမƴƓƚǔˌɥ
ƷཞඞƴბႸƠŴ୼ƴ (1.2) ƷρX Ʊ (4.1) ƷρX ƕŴƍƣǕNjž୺ዴƷ࠹˴ႎؕஜ፭ᲥƦǕƴλǔ
ᐯ໱Ƴૠᛯႎ˄ьನᡯſƱƍƏȑǿȸȳƴᛆ࢘ƢǔƱƷᚇ‫ݑ‬ƴᚑႆƞǕŴ
ᘙྵ ρX Ɣǒ (ƔƘNjႺ੗Ɣƭᐯ໱ƴ) X Ǜ (ϐ) ನ঺ưƖǔ
ƱƍƏྵᝋƷ p ᡶ༿ƸƳƍƔᲹ
ƱᚨբƢǔƴᐱƬƨŵܱᨥŴˌɦ (§5) ưኰʼƢǔ Grothendieck ʖेƷ p ᡶ༿ (‫ ྸܭ‬5.1) ƸŴƜ
Ʒբƍƴ‫ݣ‬ƠƯɟᆔƷᏉ‫ܭ‬ႎƳᚐሉǛ੩ᅆƠƯƍǔNjƷƱᙸǔƜƱƕЈஹǔ15) ŵ
࠹˴ႎؕஜ፭π1 (X ) Ʒ H ǁƷ˺ဇƔǒˊૠ୺ዴ X Ǜφ˳ႎƴನ঺ƢǔƨNJƴƸŴӞχႎƴǑ
ƘဇƍǒǕǔ৖ඥƱƠƯŴπ1 (X ) Ʒ˺ဇƷɦưɧ‫٭‬Ƴ H ɥƷࣇЎ࢟ࡸǛ˺ǔƱƍƏNjƷƕƋǔŵ
ƦƷǑƏƳࣇЎ࢟ࡸǛΪЎƴඑ‫˺ޛ‬ǕǕƹŴɥҞ࠯᩿ H ƔǒŴ˴ǒƔƷ‫ࢨݧ‬ᆰ᧓ PX ǁƷ‫ݧ‬
φ : H → PX
ƕ‫ܭ‬፯ƞǕŴƦƷ‫ݧ‬Ʒ΂ƕŴɟᑍᛯƔǒˊૠ‫ٶ‬ಮ˳ƴƳǔƜƱƸƢƙЎƔǔƷƩƕŴƜƷ‫ئ‬ӳŴ
(X ƴ‫ݣ‬ƠƯŴƋǔࢊƍ২ᘐႎƳவˑǛᛢƤƹ) X ᐯ៲ƴƳǔƜƱƕࢼƏŵƜƷᛯඥƸ࣓஭‫ٶ‬ಮ˳
Ǜ‫ݣ‬ᆅᆰ᧓ƷՠƱƠƯನ঺ƢǔᨥƴŴƦƷՠƕˊૠ‫ٶ‬ಮ˳ƴƳǔƜƱǛᚰଢƢǔƷƴ̅ǘǕǔƷ
ƱӷಮƳNjƷưƋǔŵ‫ݲ‬ƠૢྸƢǕƹŴƜƷ৖ƷᜭᛯƷᙲໜƸŴφǛ‫ܭ‬፯ƢǔƷƴ̅ƏࣇЎ࢟ࡸ
ƸѸᛯஇኳႎƴƸ X ɥˊૠႎƳNjƷƴƳǔƷƩƕŴನ঺Ʒെ᨞ƴƓƍƯƸŴH ɥᚐௌႎƳNjƷ
ưƠƔƳƍƱƍƏƜƱưƋǔŵƜƷ žˊૠႎƳࣇЎ࢟ࡸƷᚐௌႎƳᘙᅆǛৢƏſƱƍƏᚇໜƸ
ˌɦưኰʼƢǔ‫ ྸܭ‬5.1 ƷᚰଢƴƓƍƯNj᣻ᙲƳࢫлǛௐƨƠƯƍǔŵ
§4.3. p ᡶ Hodge ྸᛯƱƷ᧙̞
ƞƯŴ‫ ྸܭ‬5.1 ǛᚰଢƢǔƴƋƨƬƯŴЭራưኰʼƠƨᙐእૠ˳ɥƷྸᛯƱƷ᫏˩ƸɟƭƷ৖
ੑƔǓƴƸƳǔƕŴƦƷ᫏˩Ǜ p ᡶƷɭမƴƓƍƯܱᨥƴܱྵƢǔƨNJƴƸ᭗ࡇƳ২ᘐƕ࣏ᙲ
ƴƳǔŵƦƷ২ᘐǛɨƑƯƘǕƯƍǔNjƷƸ Faltings Ʒ p ᡶ Hodge ྸᛯ ([F2]) ưƋǔŵžp ᡶ
Hodge ྸᛯſƱԠƹǕǔNjƷƴƸŴᲫᲳᲰᲪ࠰ˊҞƹƷ Tate ƷέᬝႎƳˁʙƴᢓǔᧈƍഭӪƕ
ஊǔƕŴƜƜư᣻ᙲƳƜƱƸŴƦƷྸᛯƱ Grothendieck ʖेƱƷขƍ᫏˩ࣱưƋǔŵp ᡶ Hodge
ྸᛯƷɼƳȆȸȞƸŴp ᡶ˳ (̊ƑƹŴQp Ʒஊᨂഏਘ‫ )˳ٻ‬ɥƷ‫ٶ‬ಮ˳Ʒ (ǬȭǢ˺ဇ˄ƖƷ) Ǩ
ǿȸȫȷdzțȢȭǸȸƱŴȉȷȩȸȠȷdzțȢȭǸȸƱƷ᧓ƷƍǘǏǔൔ᠋‫ྸܭ‬ưƋǔŵұƪŴ
ƜƷʚᆔ᫏ƷdzțȢȭǸȸɧ‫٭‬᣽ǛŴʝƍƴ‫٭‬੭ƠƋƏǑƏƳžᜋƷ᧙৖ſ(mysterious functor)
ƕ‫נ܍‬ƢǔưƋǖƏŴƱƍƏज़ᙾƳƍƠʖेƕ p ᡶ Hodge ྸᛯƷҾໜưƋǔŵƜƜưŴȉȷȩȸ
ȠȷdzțȢȭǸȸƸ X ɥƷ‫ٶ‬᪮ࡸ᧙ૠǍƦƷ᧙ૠƷࣇЎƷࣱឋǛଓƘɟƭƷᙐӳ˳ƴLJƱNJǔ
ƜƱƴǑƬƯࢽǒǕǔɧ‫٭‬᣽ưƋǔƕŴ(GC2) Ʒ߼ᡀƴЈƯƘǔˊૠ‫ٶ‬ಮ˳Ʒ᧓Ʒ‫ݧ‬ƱƍƬƨ
NjƷNjӷơˊૠ࠹˴ (Ჷ‫ٶ‬᪮ࡸ) ƷɭမƷ˰ʴưƋǔŵɟ૾ư (GC2) ƷӫᡀƴЈƯƘǔ‫ٳ‬ǬȭǢ
12
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
˺ဇ˄ƖƷؕஜ፭ƸŴǢȸșȫȷ᩼ǢȸșȫƷࠀƜƦƋǕŴǨǿȸȫȷdzțȢȭǸȸƱӷơƘŴ
բ᫆Ʒ‫ٶ‬ಮ˳ X ƷǨǿȸȫȷǵǤȈƷ᣻ᙲƔƭᐯ໱Ƴɧ‫٭‬᣽ưƋǔŵƜƷǑƏƴᎋƑƯLjǔƱŴ
mysterious functor ʖेƴƠƯNjŴ(GC2) ƴˊᘙƞǕǔᢒǢȸșȫʖे16) ƴƠƯNjŴƍƣǕNj
žˊૠ࠹˴ႎನᡯ ⇐⇒ ǨǿȸȫˮႻᲥǬȭǢ˺ဇſ
ƱƍƏ೅ᛖƴЩƬƨžൔ᠋‫ྸܭ‬ſƷ঺ᇌǛƏƨƬƯƍǔNjƷƱᙸǔƜƱƕЈஹǑƏŵƨƩƠŴp
ᡶ Hodge ྸᛯƱ Grothendieck ʖेƷ᧓ƴƜƷǑƏƳž‫ח‬ᛯႎ᫏˩ࣱſƸஊƬƯNjŴǢȸșȫƱ
᩼ǢȸșȫƷࠀƴƸ᩼ᐯଢƳNjƷƕஊǓŴƦƷࠀǛ؈NJǔƜƱƕŴ‫ ྸܭ‬5.1 ǛᚰଢƢǔɥưƸ‫ٻ‬
ƖƳ২ᘐႎᛢ᫆ƱƳƬƨŵ
§5. ‫ޅ‬৑˳ɥƷ Grothendieck ʖे
§5.1. ɼ‫ྸܭ‬Ʒኰʼ
ˌɦưƸŴእૠ p Ǜ‫ܭ׍‬ƠŴQp Ʒஊᨂဃ঺ਘ‫˳ٻ‬ƷᢿЎ˳ƱƠƯܱྵӧᏡƳ˳Ǜžэ p ᡶ˳ſ
(sub-p-adic field) ƱԠƿƜƱƴƢǔŵэ p ᡶ˳ƷˊᘙႎƳ̊ƱƠƯŴQ ӍƸ Qp Ʒஊᨂဃ঺Ƴਘ
‫˳ٻ‬Ʒ˂ƴŴദૢૠ N ƴ‫ݣ‬ƠƯஊྸૠ˳ Q ƷμƯƷ N ഏˊૠਘ‫˳ٻ‬Ǜӳ঺ƢǔƜƱƴǑƬƯࢽ
ǒǕǔ (Q Ʒ໯ᨂഏˊૠਘ‫˳ )ٻ‬ሁƕਫƛǒǕǔŵஓஉ ([M3]) ƷɼƳኽௐƸഏƷ‫ྸܭ‬ưƋǔŵ
‫ ྸܭ‬5.1. э p ᡶ˳ K ɥƷ˓ॖƷ๖ǒƔƳˊૠ‫ٶ‬ಮ˳ S Ʊӑ୺ႎ୺ዴ X ƴ‫ݣ‬ƠƯŴ
open
Homdom
K (S, X) → HomGal(K) (π1 (S), π1 (X))
(p)
(p)
→ Homopen
Gal(K) (π1 (S), π1 (X))
ƱƍƏᐯ໱Ƴϙ΂ƨƪƸμҥ‫ݧ‬ƴƳǔŵƨƩƠŴƜƜưŴHomdom
K ƸžૅᣐႎƳ K ɥƷ‫ݧ‬ƨƪ
open
μ˳ſŴHomGal(K) ƸžGal(K) ǁƷ‫ࢨݧ‬ƱɲᇌƢǔ᧏แӷ‫׹‬Ʒ (ӫƔǒƷπ1 (XK ) Ʒσࢫ˺ဇƴ
(p)
᧙Ƣǔ) ӷ͌᫏ƨƪμ˳ſǛॖԛƠŴLJƨŴπ1 (V ) Ƹπ1 (V ) Ʒᐯ໱Ƴ pro-p ‫ࣖݣ‬ཋ (π1 (V ) Ʒ
(p)
Ker(π1 (VK ) → π1 (VK )) ƴǑǔՠ፭) ǛᘙƢƱƢǔŵ
ƜƷ‫ྸܭ‬Ƹʖे (GC2) Ǜࢍƍ࢟ưᚐൿƠƯƍǔNjƷưƋǔŵ§4.2 ưኰʼƠƨɟॖ҄ྸᛯƱƷ
᫏˩ưᚕƑƹŴ߼ᡀƕ X Ʒ S ͌ஊྸໜŴұƪˊૠ୺ዴ X ƷžཋྸႎƳܱ˳ſưƋǔƷƴ‫ݣ‬ƠƯŴ
ӫᡀƕૠᛯႎ˄ьನᡯ˄ƖƷ࠹˴ႎؕஜ፭ƔǒႺ੗ဃơǔžᚐௌႎƳໜſưƋǔŵƭLJǓŴȪȸ
Ȟȳ᩿Ʒɟॖ҄ྸᛯƱӷಮƴŴ‫ ྸܭ‬5.1 Ƹӑ୺ႎˊૠ୺ዴƷཋྸႎƳܱ˳ƱŴƦƷૠᛯႎ˄ьನ
ᡯ˄ƖƷ࠹˴ႎؕஜ፭ƔǒႺ੗ဃơǔᚐௌႎƳ࠹˴ႎ‫ݣ‬ᝋƷӷࣱ͌ǛᚫƑƯƍǔǘƚưƋǔŵ
‫ݵ‬Ŵ‫ ྸܭ‬5.1 Ʒᒉ࠮Ʒɟᑍ҄ (Ჷ [M3] Ʒ‫ ྸܭ‬A) ƷኒƱƠƯഏƷ Grothendieck ʖेƷӑஊྸ
༿ƕஊǔŵ
ኒ 5.2. э p ᡶ˳ K Ǜ‫ܭ‬ૠ˳ƱƢǔ˓ॖഏΨƷദЩƳ᧙ૠ˳ L Ʊ M ƴ‫ݣ‬ƠƯŴ
HomK (M, L) → Homopen
Gal(K) (Gal(L), Gal(M ))
ƱƍƏᐯ໱Ƴϙ΂Ƹμҥ‫ݧ‬ƴƳǔŵƨƩƠŴƜƜưŴHomK ƸžK ɥƷ࿢แӷ‫׹‬ƨƪμ˳ſŴ
ƸžGal(K) ǁƷ‫ࢨݧ‬ƱɲᇌƢǔ᧏แӷ‫׹‬Ʒ (ӫƔǒƷ Gal(M ⊗K K) Ʒσࢫ˺ဇƴ
Homopen
Gal(K)
᧙Ƣǔ) ӷ͌᫏ƨƪμ˳ſǛॖԛƢǔƱƢǔŵ
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
13
ؕᄽ˳ K ƕஊྸૠ˳ɥஊᨂဃ঺Ƴ˳ƷƱƖŴƜƷኒƷ Isom ༿Ǜ F.Pop ƕ [M3] ˌЭƴμƘᢌƏ
૾ඥƴǑƬƯᚰଢƠƯƍǔ ([P2])ŵ
දŵ(i) ‫ ྸܭ‬5.1 Ƹ˳ K ɥƷ‫ٶ‬ಮ˳Ǎӑ୺ႎ୺ዴƴ᧙ƢǔNjƷƩƕŴbase ƱƠƯэ p ᡶ˳Ʒˊǘ
Ǔƴэ p ᡶ˳ɥ๖ǒƔƳˊૠ‫ٶ‬ಮ˳ B ǛӕǓŴS Ʊ X ƕƦǕƧǕ B ɥƷ‫ٶ‬ಮ˳Ŵӑ୺ႎ୺ዴƷ๖
ǒƔƳଈƱƳǔƜƱǛˎ‫ܭ‬ƢǕƹŴ‫ ྸܭ‬5.1 ƱӷಮƳ‫ྸܭ‬ƕ঺ǓᇌƭŵܱᨥŴƦƷǑƏƳኽௐƸ
(B Ʒ᧙ૠ˳ƕϐƼэ p ᡶ˳ƴƳǔƜƱƴදॖƢǕƹ) ‫ ྸܭ‬5.1 ƔǒႺƪƴࢼƏƷưƋǔŵ
(ii) ‫ ྸܭ‬5.1 ƷNjƏɟƭƷ࠙ኽƱƠƯŴӑ୺ႎ୺ዴɥƷ smooth Ƴӑ୺ႎ୺ዴଈƷμᆰ᧓ƱƠ
ƯࢽǒǕǔǑƏƳˊૠ୺᩿ƴ᧙Ƣǔ (GC2) Ʒ Isom ༿ƕ‫ݰ‬ƚǔŵᛇƠƘƸ [M4] ǛӋༀƷƜƱŵ
§5.2. ‫ ྸܭ‬5.1 ƷᚰଢƷ૾ᤆ
˳ K ƕ Qp Ʒஊᨂഏਘ‫ٻ‬ƴƳǔƱƍƏNjƬƱNjஜឋႎƳ‫ئ‬ӳƴСᨂƠƯᛅǛᡶNJǔƜƱƴƢ
ǔŵ ୼ƴŴቇҥƷƨNJƴŴX(ƓǑƼ S) ƕ proper Ɣƭ non-hyperelliptic Ƴӑ୺ႎ୺ዴưƋǔ
ƱƢǔŵܱᨥŴƜǕǒƷᜂŷƷவˑƸᚰଢƷஜឋƴƸɟӼƴᚑǕƳƍƷưŴɟᑍƷ‫ئ‬ӳƸƜǕǒ
ƷவˑǛˎ‫ܭ‬Ơƨ‫ئ‬ӳƴႺƪƴ࠙ბƞǕǔƷưƋǔŵஇࢸƴŴ‫ ྸܭ‬5.1 ưƸŴɤƭƷžHomſƕ
ЈƯƘǔƕŴ(NjƬƱNjஜឋႎƳNjƷưƋǔ) ɟ̾ႸƱɤ̾ႸƷ Hom Ʒ᧓Ʒϙ΂ƴᨼɶƢǔƜƱ
(p)
ƴƢǔŵբ᫆Ƹ‫˴ڦ‬ƴƠƯπ1 (X) → Gal(K) Ɣǒ X ǛࣄΨƢǔƔƱƍƏƜƱưƋǔŵ
def
(p)
LJƣŴT = π1 (XK )ab ƱƢǔŵࢼƬƯŴX ƕᆔૠ g Ʒ୺ዴƩƱƢǔƱŴT Ƹ Zp ɥƷ᨞ૠ
2g Ʒᐯဌь፭ƱƳǓŴGal(K)-ь፭ƱƠƯƷᐯ໱ƳನᡯNjλǔŵƱƜǖƕŴžp ᡶ Hodge ྸᛯſ
ƷŴTate ƴLJưᢓǔNjƬƱNjӞƍᢿЎƷ࠙ኽƱƠƯŴK Ʒ p ᡶ‫҄ͳܦ‬Ǜ Cp ưᘙƢƱƢǔƱŴ
def
(T ⊗Zp Cp )Gal(K) ∼
= DX = H 0 (X, ωX/K )
ƱƍƏᐯ໱Ƴӷ‫׹‬ƕ঺ǓᇌƭŵƜƜưŴ߼ᡀƸŴਙࢆϋƷь፭Ʒ Gal(K)-ɧ‫٭‬ᢿЎưŴӫᡀƸŴ
X ɥƍƨǔƱƜǖദЩƳࣇЎμ˳ƔǒƳǔ K ɥƷ g ഏΨșǯȈȫᆰ᧓ưƋǔŵഏƴŴDX ƴ‫ࣖݣ‬
Ƣǔ‫ࢨݧ‬ᆰ᧓Ǜ PX ưᘙƢƱƢǔƱŴX ƕ non-hyperelliptic ưƋǔƱƍƏˎ‫ܭ‬ƔǒŴX ƕ PX Ʒ
ɶƴ೅แႎƴ؈NJᡂLJǕǔƜƱƕŴИሁႎˊૠ࠹˴ƴǑǓƢƙЎƔǔŵƭLJǓŴX Ʒ೅แႎƳ
žλǕNjƷſƱƳǔ PX Ǜ ρX Ɣǒ‫ܦ‬μƴž፭ᛯႎƴſࣄΨƢǔƜƱƴ঺ыƠƯƍǔŵࢼƬƯբ
᫆Ƹ‫˴ڦ‬ƴƠƯ PX ƷিǔཎКƳᢿЎ‫ٶ‬ಮ˳ (ƭLJǓŴX) Ǜ፭ᛯႎƴࣄΨƢǔƔŴƱƍƏƜƱƴ
Ƴǔŵ
ƜƜưŴ§4.2 ưႇ‫ئ‬ƠƨᚐௌႎƳ‫ݧ‬φ : H → PX Ǜ࣬ƍЈƠƯ᪬ƖƨƍŵƦƜưᛇᡓƠƨಮƴŴ
ƜƷ‫ݧ‬ƸˊૠႎƳࣇЎ࢟ࡸǛᚐௌႎƳ‫ݣ‬ᝋƱƠƯನ঺ƢǔƜƱƴǑƬƯ‫ܭ‬፯ƞǕǔNjƷưƋǔŵ
ƜǕǛȒȳȈƴŴ࢘Ʒ p ᡶႎƳᚨ‫ܭ‬ư (িǔॖԛư) ᫏˩ႎƳನ঺ǛᘍƍƨƍƷƩƕŴƦƜưȝǤ
ȳȈƱƳǔƷƸŴH ƴӕƬƯˊǘǔNjƷƸ˴ƔŴƱƍƏƜƱưƋǔŵ[M2] Ǎ [M3] ƷᚰଢưƸŴ
ƦƷࢫႸǛ๫ơƯƘǕǔNjƷƸŴX Ʒ᧙ૠ˳ǛিǔžǑƍſࣱឋǛਤƬƨ p ᡶ˄͌ư‫҄ͳܦ‬ƠŴ
ƦƷ‫҄ͳܦ‬Ʒஇ‫ ٻ‬tame ਘ‫ٻ‬ǛӕǓŴ୼ƴƦƷஇ‫ ٻ‬tame ਘ‫ٻ‬Ǜ p ᡶ‫҄ͳܦ‬ƢǔƜƱƴǑƬƯࢽ
ǒǕǔ˳ưƋǔŵƜƷ˳ǛˌɦưƸ L Ʊ୿ƘƜƱƴƢǔ17) ŵƜƷ˳ L ƸŴQp Ʒஊᨂഏਘ‫ٻ‬Ʊӷ
ಮŴ‫ͳܦ‬Ƴ p ᡶ˄͌ƷλƬƨ˄͌˳ưƸƋǔƕŴQp Ʒஊᨂഏਘ‫ٻ‬ƱᢌƬƯŴž࠹˴ႎƳഏΨſǛ
ɟ̾ԃஊƠƯƍǔNjƷưƋǔŵ̊ƑƹŴƦƷƜƱƷྵǕƷɟƭƱƠƯŴL Ʒй˷˳Ƹஊᨂ˳ɥƷ
ɟ‫٭‬ૠ᧙ૠ˳Ʒஇ‫ٻ‬Ўᩉਘ‫ٻ‬ƱƳǔŵƦƠƯŴL ƷNjƏɟƭƷ᣻ᙲƳࣱឋƱƠƯŴ‫ܭ‬፯ƔǒႺƪ
ƴЎƔǔǑƏƴŴᐯ໱Ƴ‫ݧ‬
ξ : Spec(L) → X
14
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
ƕ‫נ܍‬Ƣǔŵ୼ƴNjƏɟƭƷදႸƢǂƖࣱឋƱƠƯŴL ƱƍƏ˳Ʒӷ‫׹‬᫏Ƹ X ƷȢǸȥȩǤƴƸ
̔‫܍‬ƠƳƍŵƜƷࣱឋƴƸŴH ƷȪȸȞȳ᩿ƱƠƯƷӷ‫׹‬᫏ƕ X ƷȢǸȥȩǤƴ̔‫܍‬ƠƳƍƱƍ
ƏʙܱǛᡲेƞƤǔNjƷƕƋǔŵ
L Ʒ࠹˴ႎƳഏΨƷ‫נ܍‬ƕ̬ᚰƠƯƘǕǔƜƱƷɟƭƱƠƯŴX ɥƷᩐưƳƍࣇЎǛ (ξ ưNjƬ
Ư) L ƴࡽƖ৏ƢƜƱƴǑƬƯࢽǒǕǔ Spec(L) ɥƷࣇЎƸ࣏ƣᩐưƳƍNjƷƴƳǔŵࢼƬƯŴ
X ɥƷࣇЎǛ Spec(L) ƴࡽƖ৏ƢƱƍƏદ˺ƸܱࣙƳદ˺ưƋǓŴƦƷࡽƖ৏ƠƨࣇЎǛŴΨ
ƷࣇЎƷžᚐௌႎƳᘙᅆſƱᙸǔƜƱƕЈஹǔŵᙐእᚐௌႎƳ‫ئ‬ӳƱƷ᫏˩ưᚕƑƹŴƜƷદ˺
ƸdzȳȑǯȈƳȪȸȞȳ᩿ X ɥƷࣇЎǛɥҞ࠯᩿ H ɥƷࣇЎƴࡽƖ৏ƢƱƍƏદ˺ƴ‫ࣖݣ‬ƠƯ
ƍǔŵ
ƞƯŴPX ƷᢿЎ‫ٶ‬ಮ˳ƱƠƯƷ X Ʒ፭ᛯႎࣄΨƷբ᫆ƴ৏ǓƨƍƕŴFaltings Ʒ p ᡶ Hodge
ྸᛯƷ࠙ኽƷɟƭƱƠƯŴ(িǔࢊƍ፭ᛯႎƳவˑǛ฼ƨƢ) ˓ॖƷᡲዓƳแӷ‫׹‬α : Gal(L) →
(p)
π1 (X) ƴ‫ݣ‬ƠƯŴK ɥƷ‫ݧ‬
φα : Spec(L) → PX
ƕ‫ܭ‬፯ƞǕǔŵƭLJǓŴ
žᚐௌႎƳ L-ஊྸໜſƴ‫ݣ‬ƠƯŴ§4.2 ƷᙐእᚐௌƷᛅƴЈƯƖƨφ : H →
PX ƱƍƏ‫ݧ‬ƴ᫏˩ႎƳŴp ᡶᚐௌႎƳ‫ݧ‬φα ƕ‫ܭ‬LJǔŵբ᫆ƸŴφα Ʒ΂ƕƲƏƳǔƔƱƍƏƜƱ
ưƋǔŵ̊ƑƹŴαƕξ ƷǑƏƳž࠹˴ႎƳſL-ஊྸໜ (ƭLJǓŴX(L) ƷΨ) Ɣǒဃơǔ18) ‫ئ‬ӳ
ƴƸŴφα ƷǹǭȸȠᛯႎƳ΂Ʒ᧍Ѽƕ X ƱƽƬƨǓɟᐲƢǔŵࢼƬƯŴ
žα ƕ࠹˴ႎƴဃơǔſƱƍƏவˑǛŴX ƴ˄᨟ƢǔಮŷƳ‫ݣ‬ᝋƷƏƪ
(p)
π1 (X) → Gal(K) ƩƚƠƔᘙᑈӨƴЈƯƜƳƍǑƏƳᘙྵƴ୿ƖႺƢ
ƜƱƞƑЈஹǕƹŴᚰଢƸ‫঺ܦ‬Ƣǔŵ
ƦƜưŴྚ߷Ʒᚰଢ19) ƴȒȳȈǛࢽƨഏƷᛯඥƕஊјƴƳǔŵแӷ‫׹‬αƸŴX Ʒؕᄽ˳Ǜ K
(p)
Ɣǒ L ƴ base-change ƢǔƜƱƴǑƬƯࢽǒǕǔ୺ዴ XL Ʒૠᛯႎؕஜ፭π1 (XL ) → Gal(L)
(p)
(p)
Ʒ section αL : Gal(L) → π1 (XL ) Ǜ‫ܭ‬፯ƠƯƍǔŵƦƷ section แӷ‫׹‬αL Ʒπ1 (XL ) Ʒɶư
(p)
Ʒ΂ Im(αL ) ƸŴ Gal(L) ƴӷ‫׹‬ƳŴπ1 (XL ) Ʒ᧍ᢿЎ፭ƴƳǔƕŴƦƷᢿЎ፭ǛԃljӲ᧏ᢿ
(p)
Ў፭ H ⊆ π1 (XL ) ƴ‫ݣ‬ƠƯŴY H → XL ƱƍƏஊᨂഏǨǿȸȫᘮᙴƕ‫ܭ‬LJǔŵƜƜưŴY H Ƹ
L ɥ࠹˴ႎƴᡲኽƳӑ୺ႎˊૠ୺ዴƴƳǔƕŴදႸƢǂƖƜƱƸŴƜƷǑƏƴဃơǔᘮᙴƨƪ
{Y H → XL } μ˳ƔǒƳǔžᘮᙴƷଈſƕαƴ̔‫܍‬ƠƯƍǔƱƍƏƜƱưƋǔŵࢼƬƯŴแӷ‫׹‬
α ƔǒࡽƖឪƜƞǕǔ section แӷ‫׹‬αL ƴ‫ݣ‬ƢǔவˑƱƠƯŴഏƷNjƷƕ‫҄ࡸܭ‬ưƖǔᲴ
(p)
(∗)
Im(αL ) Ǜԃlj π1 (XL ) ƷӲ᧏ᢿЎ፭ H ƴ‫ݣ‬ƠƯŴ
Y H Ʒ L-ஊྸໜƷᨼӳ Y H (L) ƸᆰƴƳǒƳƍŵ
ˎƴƜƷவˑƕ঺ᇌƢǔƜƱƕᚕƑƨƱƠǑƏŵƦƏƢǔƱŴ᧏ᢿЎ፭ H Ǜᢘ࢘ƴឥǒƤƨƱ
ƖŴY H (L) = ∅ ƳƷưŴY H (L) Ʒ΂ƱƠƯŴXL (L) ƴಮŷƳໜƨƪƕᓳƪƯƘǔŵƱƜǖƕŴ
[F2] Ʒ mod pN ༿ǛᢘဇƢǔƜƱƴǑƬƯŴƜƷǑƏƴဃơǔ XL (L) ƷӲໜƴ‫ݣ‬ƠƯŴέᆉƷ
ϙ΂φα Ʒ mod pN ༿Ǜನ঺ưƖŴƦƷϙ΂ƨƪǛဇƍǔƜƱƴǑƬƯƜƷ XL (L) ƷໜƨƪƕŴ
িǔཎ‫ܭ‬Ʒໜ x∞ ∈ XL (L) ƴӓளƢǔƜƱƕᚰଢưƖǔŵƠƔNjŴƜƷໜ x∞ Ɣǒဃơǔแӷ‫׹‬
(p)
Gal(L) → π1 (X) ƕΨƷแӷ‫ ׹‬α Ʊ࣏ƣɟᐲƢǔƜƱƸŴƜƷನ঺ƔǒႺƪƴࢼƏŵƭLJǓŴ
αƷ࠹˴ࣱƕᚕƑƨƜƱƴƳǔŵࢼƬƯŴ‫ݲ‬ƠૢྸƢǔƱŴαƴ‫ݣ‬Ƣǔவˑ (∗) ƕኝƴž፭ᛯႎſ
ưƋǔƜƱƞƑᚕƑǕƹŴᚰଢƸኳǘǔŵ
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
15
բ᫆ƸᙲƢǔƴ Y H Ʒ L-ஊྸໜƷ‫נ܍‬Ǜž፭ᛯႎſƴЙ‫ܭ‬ưƖǔƔƲƏƔƩƕŴƜƷբ᫆ƸŴ
ྚ߷ƕৢƬƨஊᨂ˳Ʒ‫ئ‬ӳƷǑƏƴŴஊྸໜƷ̾ૠƷѥ‫ܭ‬ሁƴǑǔႺ੗ႎƳǢȗȭȸȁƴƸᬘ௨
LJƣŴᚐൿƴƸ‫᧓ݲٶ‬੗ႎƳᜭᛯǛ࣏ᙲƱƢǔNjƷưƋǔŵұƪŴL ɥஊྸƳໜƷˊǘǓƴŴL
ɥஊྸƳ (p ƱእƳഏૠƷ) line bundle Ʒ‫נ܍‬ǛᎋƑǔƷưƋǔŵƦƷྸဌƱƠƯŴline bundle
Ʒ૾ƸŴƦƷ Chern ᫏ǛƱǔƜƱƴǑƬƯŴ୺ዴ Y H ƷǨǿȸȫȷdzțȢȭǸȸ᫏ƱƠƯᙸǔƜ
ƱƕЈஹŴƠƔNjӑ୺ႎ୺ዴƷǨǿȸȫȷdzțȢȭǸȸƸƦƷૠᛯႎؕஜ፭Ʒ፭dzțȢȭǸȸƱ
ᐯ໱ƴӷ‫׹‬ƴƳǔƷư‫ܦ‬μƴž፭ᛯႎſƳ‫ݣ‬ᝋƱƳǔŵƢǔƱŴdzțȢȭǸȸ፭ƷɶưŴp ƱእƳ
ഏૠƷ line bundle Ʒ Chern ᫏ƱƠƯဃơǔ᫏ƨƪƷ፭ᛯႎཎࣉƮƚƕբ᫆ƴƳǔƕŴƜƷբ᫆
Ƹ [BK] Ʒ p ᡶ exponential map ƷྸᛯǛᢘဇƢǔƜƱƴǑƬƯΪЎƴ‫ݣ‬ϼӧᏡƳբ᫆ƴ࠙ბƞ
Ǖǔ20) ŵƭLJǓŴY H ɥƷŴ L ɥஊྸƳໜƱᢌƬƯŴL ɥஊྸƳ (p ƱእƳഏૠƷ) line bundle
Ʒ‫נ܍‬ƸŴൔ᠋ႎႺ੗ႎƳ፭ᛯႎЙ‫ܭ‬ඥǛᚩƢǘƚưƋǔŵƱƜǖƕŴИሁႎˊૠ࠹˴ƔǒƢƙ
ЎƔǔǑƏƴŴY H ɥư p ƱእƳഏૠƷ L ɥஊྸƳ line bundle Ʒ‫נ܍‬ƕᚕƑǕƹŴp ƱእƳഏૠ
Ʒ L-ஊྸƳ ample Ƴ line bundle Ʒ‫נ܍‬ƕᚕƑŴƦƷ line bundle Ǜ effective Ƴ‫܇׆‬ƱƠƯ୿
ƘƜƱƴǑƬƯŴY H ƕŴp ƱእƳഏૠƷ L Ʒਘ‫˳ٻ‬ƷɥưஊྸໜǛਤƭƜƱƕЎƔǔŵƠƔƠŴ
ƦƷǑƏƳਘ‫˳ٻ‬ƕ࣏ƣ L Ʒ tame Ƴਘ‫ٻ‬ƴƳǔƜƱƱŴL ƕƦƷ‫ܭ‬፯ǑǓ᩼ᐯଢƳ tame ਘ‫ٻ‬
ǛਤƨƳƍƜƱƔǒŴY H ƕଏƴ L ɥƷஊྸໜǛਤƬƯƍǔƜƱƕ࠙ኽƞǕǔŵƭLJǓŴˌɥƷ
வˑǛ฼ƨƢ line bundle Ʒ‫נ܍‬Й‫ܭ‬ඥƸᐯѣႎƴ L-ஊྸໜƷ‫נ܍‬Й‫ܭ‬ඥƴNjƳǔƱƍƏƜƱư
ƋǔŵࢼƬƯŴƜƷЙ‫ܭ‬ඥƷᄩᇌƴǑƬƯŴ‫ ྸܭ‬5.1 ƷᚰଢƸᬍ‫ރ‬ᑣƘ‫ܦ‬ኽǛᙸǔƜƱƱƳǔŵ
ද
1) ஊᨂ፭Ʒ‫ࢨݧ‬ಊᨂƱƠƯᘙƤǔˮႻ፭Ǜ profinite ፭ (иஊᨂ፭) ƱƍƏŵdzȳȑǯȈƳ‫ܦ‬
μɧᡲኽȏǦǹȉȫȕˮႻ፭ƱƍƬƯNjӷ͌ŵ
2) profinite ፭ƴƓƍƯƸ᧏ᢿЎ፭ưƋǔƜƱƱਦૠஊᨂƳ᧍ᢿЎ፭ưƋǔƜƱƸӷ͌ŵ
3) இᡈƷྚ߷ƷᄂᆮưƸŴദ೅ૠƷ‫ئ‬ӳƴƸŴ‫࢟٭‬ƴஜឋႎƴ̔‫܍‬Ƣǔऴ‫إ‬ƕ࠹˴ႎؕஜ፭
ƷɶƴNjԃLJǕƯƍǔƜƱƕᚐଢƞǕƭƭƋǔŵ[H] ƓǑƼ §3.3 ǛӋༀƷƜƱŵ
4) Grothendieck Ƹӑ୺ႎ୺ዴƷDŽƔŴƦǕǒƷӒࣄႎ smooth fibration ƱƠƯᘙƤǔᆰ᧓
ǍȢǸȥȩǤᆰ᧓ƳƲǛᢒǢȸșȫ‫ٶ‬ಮ˳ƷͅᙀƱƠƯᅆՐƠƯƍǔŵஇᡈƷᄂᆮưƸŴᢒǢȸ
șȫႎƱƳǔƨNJƷ࣏ᙲவˑƱƠƯŴ࠹˴ႎؕஜ፭ƕ ‘ᘍЗ፭ႎ’ ƱƍƏǑǓ ‘ᐯဌ፭ႎ’ ƳNjƷ
ưƋǔƜƱƳƲƕਫƛǒǕƯƍǔŵ[IN] Ӌༀŵ
5) ̊ƑƹŴᖎૠʈඥǛਤƨƳƍ౹ό୺ዴưƸ Faltings ƷኽௐǛኵLjӳǘƤƯᲫ̾ƴƢǔᜭᛯ
NjӧᏡưƋǔŵ[N6] 5.4 Ӌༀŵ
6) ؕᄽ˳ K ƴᲫƷࠉఌǛμƯชьƠƨ˳Ǜ K∞ Ʊ୿ƘƱƖŴX Ʒ K-ஊྸໜƴဌஹƢǔNj
ƷƸ α(Gal(K∞ )) Ʒ π1 (XK ) ǁƷσࢫ˺ဇƕ᩼ᐯଢƳ‫ܭ׍‬ໜǛਤƨƳƍNjƷƱƠƯཎࣉƮƚǒ
ǕǔƜƱNjʖेƞǕƯƍǔŵ
7) ƜǕǑǓŴ Grothendieck Ƹ X Ǜ‫٭‬ૠႎƴᎋƑƯᢒǢȸșȫ‫ٶ‬ಮ˳ Y Ʒ X-ஊྸໜƷᨼӳ
Y (X) = Hom(X, Y ) Ǜؕஜ፭ƴǑǓࣄΨƢǔƱƍƏ‫ח‬ᛯႎྸेǛ࣬ƍ੨ƍƯƍƨƱᎋƑǒǕǔŵ
ƜƷྸेǛИNJƯ (ᢿЎႎƴ) ܱྵƠࢽƨƷƸஓஉ ([M3]) ưƋǔŵ§5 Ӌༀŵ
8) ႻီƳǔஊྸໜƴ‫ݣ‬ƠƯƸσࢫưƳƍ section แӷ‫׹‬ƕ‫ࣖݣ‬ƢǔŴƱƍƏƜƱƸŴMordellWeil Ʒ‫ྸܭ‬ƷࣖဇƱƠƯ Grothendieck ([G3]) ƴǑǓᅆƞǕƯƍǔŵƜƷƜƱƷࣖဇƱƠƯŴᙐ
እӑ୺࠹˴‫ܖ‬ƴƓƚǔžჿဋʖेſƷˊૠ࠹˴ႎ᫏˩ǛƋǔᆔƷӑ୺‫ٶ‬ಮ˳ƴƭƍƯᅆƢƜƱƕ
žႻီƳǔஊྸໜƴ‫ࣖݣ‬Ƣǔ section
Јஹǔ ([N5], [N7]2.2 Ӌༀ)ŵƳƓŴஓஉƸŴ‫ ྸܭ‬5.1 ƔǒŴ
แӷ‫׹‬ƕσࢫƴƸƳǒƳƍſƱƍƏʙܱƷ pro-p ༿Ǜ‫ݰ‬ƍƯƍǔ ([M3], Theorem C ǛӋༀ)ŵ
16
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
9) ƜǕƴƭƍƯƸ F.Pop ([P1,2])Ŵஓஉ (§5 Ӌༀ) ƴǑǔᝡྂƕƋǔŵƳƓŴPop ƷᄂᆮƸŴ
ƦƷ৖ඥNjԃNJƯŴᲫᲳᲰᲪ࠰ˊࢸҞƷ J.Neukirch ([Ne]) Ʒ཯оƴ‫ڼ‬LJǓŴ൷ဋദ᬴Ŵ‫ޥ‬ຓͤ
ӴǒƷˁʙǛኺƯᲱᲪ࠰ˊࢸҞƴϋဋᐻʚƴǑƬƯ‫঺ܦ‬ƞǕƨžˊૠ˳Ʒዌ‫ݣ‬ǬȭǢ፭ƔǒƷࣄ
ΨſƱƍƏᄂᆮƷ්ǕǛൽljNjƷưƋǔŵ
10) profinite ፭ G ƷˮႻႎƳՠ፭ưஊᨂ l ፭Ʒ‫ࢨݧ‬ಊᨂƱƠƯ୿ƚǔNjƷƷƏƪஇ‫ٻ‬ƷNjƷ
Ǜ G Ʒஇ‫ ٻ‬pro-l ՠ፭ƱƍƏŵ
11) [I1] Ʒࡀ૨ƴᅆՐƞǕƯƍǔǑƏƴŴ˙ҾƸᲫᲳᲰᲪ࠰ˊǑǓ཯ᐯƷᚇໜƔǒஊᨂ˳ɥ
Ʒ modular ᧙ૠ˳ƴ‫ݣ‬Ƣǔ᩼Ǣȸșȫ᫏˳ᛯƷ࡫ᚨǛ‫ڼ‬NJŴᲱᲪ࠰ˊИ᪽LJưƴƸ Fp2 ɥƷ
P1λ − {0, 1, ∞} Ʒ tame ᘮᙴƷƏƪ SL2 (Z[ 1p ]) Ʒ (ӳӷ) ᢿЎ፭ưወСƞǕǔଈƕŴ‘supersingular
Ƴ λ-እໜᨼӳƷ‫ܦ‬μЎᚐ’ ƱƍƏૠᛯႎƳவˑưཎࣉƮƚǒǕǔƜƱƳƲǛᅆƠƯƍǔŵƜƷǑƏ
Ƴ‫ࢨݧ‬ႺዴƷᲭໜЎ‫ؕޟ‬ஜ፭ƴԃLJǕǔขƍૠᛯࣱƷᄂᆮƸŴ§1.1 ưᡓǂƨǑƏƳ Grothendieck
Ʒˊૠ࠹˴ႎƳǬȭǢྸᛯ࡫ᚨƷѣೞƱƸμƘီឋƳឪเǛਤƭŴ˙Ҿ཯ཎƷ (᩼Ǣȸșȫ) ᫏
˳ᛯႎƳᚇໜƔǒဃLJǕƯƍǔŵƳƓŴ[2] ৑ӓƷ Deligne Ʒᛯ૨ƸŴȢȁȸȕՋ‫ܖ‬Ʒ්ǕƷɶ
ưƜƷᲭໜЎ‫ؕޟ‬ஜ፭Ʒžࠉҥˊૠ፭҄ſǛӕǓɥƛƯƍǔƕŴƜǕNjLJƨ཯ᇌƷᚇໜǛឪเƱ
ƠƯƍǔƱƍƑǔŵ
12) ƜƷ଺஖Ʒᡶ‫ޒ‬ƴƭƍƯƸɼƴ [I2] ƓǑƼ [1] ৑ӓƷᜂᛯ૨ǛӋༀŵ
13) ƜƜưƸǬȭǢ፭ƷᲫƷࠉఌǁƷ˺ဇƔǒဃơǔᐯ໱ƳɟഏΨ l ᡶᘙྵ Zl (1) Ǜቇҥƴ
όЎ˺ဇƱԠƼŴƜǕƱ cusp ໜƷᨼӳƴƓƚǔፗ੭ᘙྵƱƷȆȳǽȫᘙྵǛ ‘όЎፗ੭ᘙྵ’ Ʊ
Ԡǜưƍǔŵ
14) ૠ˳ɥƷᆔૠ 2 ˌɥƷ୺ዴƷஊྸໜƕஊᨂ̾ƠƔƳƍƱƍƏʖेŵFaltings ƴǑƬƯ Tate
ʖेƱӷơᛯ૨ ([F1]) ưᚰଢƞǕƨŵ
15) ܱƸŴƜƷբƍƴ‫ݣ‬ƠƯƸŴNjƏɟƭƷŴ‫ݲٶ‬ᢌƏࣱឋƷᏉ‫ܭ‬ႎᚐሉNjࢽǒǕƯƍǔ (ᛇ
ƠƘƸ [M5-8] ǛӋༀ)ŵ
16) ܱƸŴmysterious functor Ʒ‫נ܍‬ǛʖᚕƠƨƷNj˂ưNjƳƍ Grothendieck ƩƕŴʚƭƷ
ʖेƷ᧙̞ƴƭƍƯƸŴ‫ٻ‬ᩃ৭Ƴ࢟Ʒ᫏˩ࣱƸƱNjƔƘŴ§5.2 ưኰʼƢǔǑƏƳᚰଢƴƭƳƕǔ
ᆉ݅੗ƳNjƷƩƱƍƏᛐᜤǛஜʴƕਤƬƯƍƨ࢟ួƸƳƍŵƦƏƍƬƨཞඞƷᏑ୎ƴƭƍƯƸŴ
§4.1 ǛӋༀŵ
17) ܱƸŴL Ʒ‫ܭ‬፯ƱƠƯƜǕǛ੔ဇƢǔƱŴˌɦƷᜭᛯƕ‫ݲ‬ƠƸɧദᄩƴƳǔƕŴ˷Ǔஜឋ
ႎưƳƍ২ᘐႎƳᛅǛஇ‫ݱ‬ᨂƴƱƲNJǔƨNJƴŴƜƷǑƏƳƜƱƸࣂܾឡ᪬ƘƜƱƴƢǔŵ
18)ž࠹˴ႎƳஊྸໜ Spec(L) → X ƔǒဃơǔſƱƸƭLJǓŴ‫ ݧ‬Spec(L) → X ƴ‫ݣ‬ƠƯŴπ1
(p)
ƱƍƏ᧙৖Ǜ଀ƢƜƱƴǑƬƯࢽǒǕǔ‫ ݧ‬Gal(L) = π1 (Spec(L)) → π1 (X) → π1 (X) ƱƠƯ
ဃơǔƱƍƏॖԛưƋǔŵ
19) ᛇƠƘƸŴ§3.1 (i) ǛӋༀŵ
20) ᛇƠƘƸŴ[M3] ǛӋༀŵ
૨
[AI]
[B]
[BK]
ྂ
G.Anderson, Y.Ihara, Pro-l branched coverings of P1 and higher circular l-units, Part 1, Ann. of
Math. 128 (1988), 271–293; Part 2, Intern. J. Math. 1 (1990), 119–148.
G.V.Belyi, On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk. SSSR 8 (1979),
267–276 (Russian); English transl. in Math. USSR Izv. 14 (1980), no. 2, 247–256.
S.Bloch, K.Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift,
Volume I, Birkhäuser, 1990, pp. 333–400.
ˊૠ୺ዴƷؕஜ፭ƴ᧙Ƣǔ GROTHENDIECK ʖे
[F1]
[F2]
[SGA1]
[G1]
[G2]
[G3]
[H]
[I1]
[I2]
[IN]
[MT]
[M1]
[M2]
[M3]
[M4]
[M5]
[M6]
[M7]
[M8]
[N1]
[N2]
[N3]
[N4]
[N5]
[N6]
[N7]
[NTa]
[NTs]
[Ne]
[O1]
17
G.Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983),
349–366.
, p-adic Hodge theory, J. of the Amer. Math. Soc. 1 (1988), 255–299.
A.Grothendieck, M.Raynaud, Revêtement Etales et Groupe Fondamental (SGA1), Lecture Note in
Math., vol. 224, Springer, Berlin Heidelberg New York, 1971.
A.Grothendieck, La longue marche à travers de la théorie de Galois, 1981, in preparation by
J.Malgoire (first few chapters available since 1996).
, Esquisse d’un Programme, 1984, in [6] vol.1, 7–48.
, Letter to G.Faltings, June 1983, in [6] vol.1, 49–58.
D.Harbater, Fundamental groups of curves in characteristic p, Proc. ICM, Zürich (1994), 654–666.
Y.Ihara, Profinite braid groups, Galois representations, and complex multiplications, Ann. of Math.
123 (1986), 43–106.
, Braids, Galois groups and some arithmetic functions, Proc. ICM, Kyoto (1990), 99–120.
Y.Ihara, H.Nakamura, Some illustrative examples for anabelian geometry in high dimensions, in [6]
vol.1, 127–138.
M.Matsumoto, A.Tamagawa, Mapping-class-group action versus Galois action on profinite fundamental groups, Preprint 1997.
S.Mochizuki, The profinite Grothendieck conjecture for hyperbolic curves over number fields, J. Math.
Sci., Univ. Tokyo 3 (1996), 571–627.
, The local pro-p Grothendieck conjecture for hyperbolic curves, RIMS Preprint 1045, Kyoto
Univ. (1995).
, The local pro-p anabelian geometry of curves, RIMS Preprint 1097, Kyoto Univ. (1996).
, A Grothendieck conjecture-type result for certain hyperbolic surfaces, RIMS Preprint 1104,
Kyoto Univ. (1996).
, A theory of ordinary p-adic curves, Publ. of RIMS 32 (1996), 957–1151.
, The generalized ordinary moduli of p-adic hyperbolic curves, RIMS Preprint 1051, Kyoto
Univ. (1995).
, Combinatorialization of p-adic Teichmüller theory, RIMS Preprint 1076, Kyoto Univ.
(1996).
, Correspondences on hyperbolic curves, J. Pure Appl. Algebra (to appear).
H.Nakamura, Rigidity of the arithmetic fundamental group of a punctured projective line, J. reine
angew. Math. 405 (1990), 117–130.
, Galois rigidity of the étale fundamental groups of punctured projective lines, J. reine angew.
Math. 411 (1990), 205–216.
, On galois automorphisms of the fundamental group of the projective line minus three points,
Math. Z. 206 (1991), 617–622.
, Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sci., Univ. Tokyo
1 (1994), 71–136.
, Galois rigidity of algebraic mappings into some hyperbolic varieties, Intern. J. Math. 4
(1993), 421–438.
, On exterior Galois representations associated with open elliptic curves, J. Math. Sci., Univ.
Tokyo 2 (1995), 197–231.
, иஊᨂؕஜ፭ƷǬȭǢбࣱ, ૠ‫ ܖ‬47 (1995), 1–17; English translation to appear in
Sugaku Exposition (AMS).
H.Nakamura, N.Takao, Galois rigidity of pro-l pure braid groups of algebraic curves, Trans. Amer.
Math. Soc. (to appear).
H.Nakamura, H.Tsunogai, Some finiteness theorems on Galois centralizers in pro-l mapping class
groups, J. reine angew. Math. 441 (1993), 115–144.
J.Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent.
math. 6 (1969), 296–314.
T.Oda, A note on ramification of the Galois representation on the fundamental group of an algebraic
curve, J. Number Theory 34 (1990), 225–228.
18
[O2]
[P1]
[P2]
[T1]
[T2]
[U]
[1]
[2]
[3]
[4]
[5]
[6]
ɶ஭Ҧଯ, ྚ߷‫ܤ‬ᬱဏ, ஓஉૼɟ
, A note on ramification of the Galois representation on the fundamental group of an algebraic
curve, II, J. Number Theory 53 (1995), 342–355.
F.Pop, On Grothendieck’s conjecture of birational anabelian geometry, Ann. of Math. 138 (1994),
145–182.
, On Grothendieck’s conjecture of birational anabelian geometry II, Preprint (June 1995).
A.Tamagawa, The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), no. 2,
135–194.
, On the fundamental groups of curves over algebraically closed fields of characteristic > 0,
Preprint 1997.
K.Uchida, Isomorphisms of Galois groups of algebraic function fields, Ann. of Math. 106 (1977),
589–598.
Y.Ihara (ed.), Galois Representations and Arithmetic Algebraic Geometry, Advanced Studies in Pure
Math., vol. 12, Kinokuniya Co. Ltd., North-Holland, 1987.
Y.Ihara, K.Ribet, J.-P.Serre (eds.), Galois Groups over Q, Math. Sci. Res. Inst. Publications, vol. 16,
Springer, 1989.
J.-P.Serre, Topics in Galois Theory, Jones and Bartlett Publ., 1992.
L.Schneps (ed.), The Grothendieck Theory of Dessins d’Enfants, London Math. Soc. Lect. Note Ser.,
vol. 200, Cambridge Univ. Press, 1994.
M.Fried et al. (eds.), Recent Developments in the Inverse Galois Problem, Contemp. Math., vol. 186,
AMS, 1995.
L.Schneps, P.Lochak (eds.), Geometric Galois Actions; 1.Around Grothendieck’s Esquisse d’un Programme, 2.The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups, London Math.
Soc. Lect. Note Ser., vol. 242-243, Cambridge Univ. Press, 1997.
Fly UP