Comments
Description
Transcript
Title 長鎖ノンコーディングRNAによる遺伝子発現制御と生物 多様化機構
Title Author(s) Citation Issue Date 長鎖ノンコーディングRNAによる遺伝子発現制御と生物 多様化機構( Dissertation_全文 ) 上坂, 将弘 Kyoto University (京都大学) 2015-03-23 URL https://doi.org/10.14989/doctor.k18832 Right 許諾条件により本文は2016/03/23に公開 Type Thesis or Dissertation Textversion ETD Kyoto University RNA 1 緒言 ............................................................................................................. 3 第 1 章 一本鎖 lncRNA、pancRNA による遺伝子発現制御の普遍性 .......................... 11 序論 ......................................................................................................................................... 11 材料と方法 .............................................................................................................................. 14 結果 ......................................................................................................................................... 25 考察 ......................................................................................................................................... 56 第 2 章 pancRNA を介した遺伝子発現制御の種間多様性 ......................................... 62 序論 ......................................................................................................................................... 62 材料と方法 .............................................................................................................................. 66 結果 ......................................................................................................................................... 80 考察 ....................................................................................................................................... 108 総括 ......................................................................................................... 122 謝辞 ......................................................................................................... 128 リファレンス .............................................................................................. 130 2 緒言 DNA DNA (Kuratani, 2004) (Carroll et al., 2009) DNA (Kimura, 1968) 1990 2000 (Lander et al., 2001) DNA (Moroz et al., 2014; Prüfer et al., 2014; Wang et al., 2013) 3 2 (Carroll, 2005) Pax6 (Gehring and Ikeo, 1999) François Jacob 1969 Roy J. Britten (Britten and Davidson, 1969; Romero et al., 2012) (Guenther et al., 2014; Herrera et al., 2013; McLean et al., 2011; Sasaki et al., 2008) DNA 4 Conrad Waddington (Waddington, 1942) Arthur D. Riggs 1996 DNA Epigenetic Inheritance / (Bird, 2007; Russo et al., 1996) DNA DNA H1 H2A 2 H2B H3 H4 8 H2A H2B H3 H4 DNA (Cedar and Bergman, 2009) 4 (H3K4) MLL H3 27 SETD1 (H3K27) ASH1L (me1 me2 me3) H3K4 3 (Ruthenburg et al., 2007) H3K4me2 H3K4me1 H3K27 PRC2 5 EZH2 H3K4me3 (Bernstein et al., 2007) H3K27 DNA DNA CpG CpG 5 60~90% (Bird, 2002) X 3 DNA DNA (DNMT1 DNMT1 DNMT3A DNMT3B) DNA DNMT3 DNA TET DNA (Pastor DNA et al., 2013) DNA DNA DNA DNA DNA DNA (Wu and Zhang, 2010) 6 TET DNA TET (He et al., 2011; Ito et al., 2011) DNA DNA DNA DNA Chromatin Immuno-Precipitation sequencing (ChIP-seq) Whole Genome Bisulfite Sequencing (WGBS) (Ho et al., 2014; Pope et al., 2014) 7 RNA-seq RNA non-coding RNA (ncRNA) ncRNA (Carninci et al., ncRNA (lncRNA) 2005) ncRNA 200 nt ncRNA (Imamura et promoter-associated ncRNA (pancRNA) al., 2004) (Figure 1) ncRNA pancRNA Khps1 Sphk1 pancRNA Sphk1 Khps1 lncRNA Khps1 Sphk1 (Imamura et al., 2004) DNA pancRNA in vitro DNA Sphk1 pancRNA Sphk1 Nefl Esr1 Ar Pgr pancRNA Vim Gck pancRNA DNA (Tomikawa et al., 2011) Vim Nefl pancRNA 8 A TSS B TSS mRNA mRNA pancRNA Figure 1. pancRNA DNA pancRNA (TSS) CpG (A) pancRNA mRNA pancRNA (B) pancRNA DNA 9 mRNA pancRNA pancRNA lncRNA pancRNA pancRNA (Carroll, 2008; Uesaka and Imamura, 2012) pancRNA pancRNA pancRNA 1 pancRNA 2 pancRNA ncRNA pancRNA pancRNA 10 第 1 章 一本鎖 lncRNA、pancRNA による遺伝子発現制御の普遍 性 序論 (Lander et al., 1.5% 2001) FANTOM ENCODE 62% ncRNA (Carninci et al., 2005; The ENCODE Project Consortium, 2012) ncRNA micro RNA (miRNA) interacting RNA (piRNA) small RNA RNA-RNA RNA (Moazed, 2009; RNA Nishi et al., 2013; Siomi and Siomi, 2009) lncRNA RNA-RNA piwi- small RNA RNA (Beltran et al., 2008; Carrieri et al., 2012; Ebralidze et al., 2008; Hastings et al., 2000; Kimelman and Kirschner, 1989; Munroe and Lazar, 1991; Spigoni et al., 2010; Wagner et al., 1989) RNA-RNA 4,520 RNA-RNA sense-antisense transcript (SAT) pair (Katayama et al., 2005) ncRNA mRNA DNA (Ambros, 2004; Matzke 11 and Birchler, 2005; Morris et al., 2004; Turner and Morris, 2010) mRNA ncRNA RNA-RNA mRNA RNA-RNA mRNA HOTTIP HOXA lncRNA 5’ lncRNA WD repeat-containing protein 5 (WDR5) mixed-lineage (Wang et al., 2011) leukaemia (MLL) histone methyltransferase HOTTIP-WDR5-MLL1 H3K4me3 DBE-T 4q35 lncRNA group 1 ASH1L (Cabianca et al., 2012) ASH1L DBE-T DBE-T Trithorax 4q35 H3K36 4q35 lncRNA RNA-RNA RNA-RNA small RNA RNA-RNA lncRNA 12 CpG CpG (CGI) (Antequera, 2003; Lavia et al., 1987) head-to-head (HtH) mRNA pancRNA mRNA (Imamura et al., 2004; Tomikawa et al., 2011) pancRNA mRNA HtH pancRNA mRNA 13 材料と方法 (Mus musculus; Japan SLC) C57BL6 14 10 (5:00~19:00 ) 16 -80 (Great Ape Information Network; GAIN) (Pan troglodytes) 28 BA10 -80 TRIzol (Life Technologies) total RNA 17.5 ICR (Mus musculus; Japan SLC) 4.17 mM NaHCO3 Ca2+ Mg2+ HBSS (Hank’s balanced solt solution; SIGMA) 0.33 g/l L-cystein (Nacalai Tesque) 0.33 g/l BSA (SIGMA) 8.33 g/l glucose 3.3% papain from papaya latex (SIGMA) 37 20 500 U/ml DNase I (SIGMA) Ca2+ 0.6% glucose 14 Mg2+ 5% FBS 1% Antibiotic- PBS Antimycotic Mixed Stock Solution (Nacalai Tesque) MEM Alpha (Gibco) poly-L- lysine MEM alpha CO2 3 1% GlutaMax (Life Technologies) 37 2% B27 supplement (Life Technologies) 1% Antibiotic-Antimycotic Mixed Stock Solution Neurobasal medium (Gibco) 37 3 CO2 10 µM AraC (SIGMA) shRNA RNA shRNA pLLX-shRNA C GFP shRNA shRNA Table 1 HEK293T VSV-G pLLX-shRNA shRNA 5 RNA 15 pLLX- Table 1. shRNA Target pancVwa5b2 pancPacsin1 pancSh3rf3 Sequence TGATATGAACAAATACTAAAGATTCAAGAGATCTTTAGTATTTGTTCATATCTTTTTTGGAAC TGCTGCTGCCTTGTATTCTAACTTCAAGAGAGTTAGAATACAAGGCAGCAGCTTTTTTGGAAC TGCAGATTCTCCTAAGCCATGTTTCAAGAGAACATGGCTTAGGAGAATCTGCTTTTTTGGAAC 16 Directional RNA Directional RNA (Directional RNA-seq) Illumina cDNA µg total RNA Sera-Mag Magnetic Oligo (dT) Beads (Thermo Scientific) RNA 5 polyA+ RNA rRNA 2 2% Bioanalyzer chip (Agilent) buffer (Affymetrix) Total RNA Pico polyA+ RNA 94 Fragmentation 3 RNA TAP (Nippongene) PCI RNA 3’ Antarctic phosphatase 5' kinase (NEB) RNA MinElute kit (Qiagen) (NEB) T4 polynucleotide RNeasy T4 RNA ligase 2, truncated K277Q 4 v1.5 sRNA 3’ adaptor (Illumina) RNA RNA 5’ RNA ligase (Illumina) SRA 5’ adaptor (Illumina) 20 T4 1 SRA 5’ adaptor SuperScriptIII First-Strand Synthesis System (Life Technologies) cDNA 2 Phusion DNA polymerase (FInnzymes) 98 15 3 cDNA 30 98 12 72 17 10 10 60 30 72 PCR AMPure XP (Beckman Coulter) cDNA ) 1st 2 (100 bp ) 2nd (50 bp HiSeq 2000 Directional RNA-seq FASTX-Toolkit ( 99% ) 20 nt 50 bp 3’ 2nd RNA TopHat (mm9) (Trapnell et al., 2009) (hg19) TopHat v2.0.4 18 1st (Figure 2) PCR 1 (Djebali et al., 2012) Directional RNA-seq MACS (Zhang et al., 2008) v1.4.1 --nonmodel FDR MACS 0.05 Ensembl Genes Database (Flicek et al., 1,000 bp 2011) 100 bp Directional RNA-seq RNA 1,000 bp RNA 1,000 bp Reads Per Kilobase per Million mapped reads (RPKM) ncRNA 2 19 HtH A Chr16:27,439,951-27,453,748 B Chr7:133,970,753-133,973,864 Ccdc55 Prcc Before Before After After C Chr3:87,673,360-87,676,342 2310061C15R Before After Figure 2. Directional RNA-seq PCR 20 Cufflinks (Trapnell et al., 2010) RPKM RNA RNA MACS HtH RNA RNA 2,000 bp (ORF) ORF EMBOSS (Rice et al., 2000) ORF ORF De novo R Bioconductor rGADEM 2014; Gentleman et al., 2004) CCGCCG 1,000 bp (Droit et al., v1.0.1 CGGCGG 1,000 bp 100 bp RT-PCR RT-PCR TRIzol cDNA (Life Techmologies) total RNA 21 DNase I (Life Technologies) Oligo-dT SuperScriptIII First-Strand Synthesis System (Life Technologies) RT-PCR KAPA SYBR Fast qPCR Kit (KAPA Biosystems) Applied Biosystems StepOnePlus Real-Time PCR System (Life Technologies) Gapdh Table 2 Strand-specific RT-PCR Table 3 22 Table 2. Target Vwa5b2 RT-PCR Forward Reverse pancVwa5b2 Forward Reverse Pacsin1 Forward Reverse pancPacsin1 Forward Reverse Sh3rf3 Forward Reverse pancSh3rf3 Forward Reverse Gapdh Forward Reverse Primer sequence CCAGAGGAGGTGTTATCCGC GTCAGAGCTTCCATACTCTGCT GGGAAGTGAGCGAAGGTAAGT AGTTCTGACTGCTCCCACCT TGATGGTGTCCGGTGCTC TTGTAGTTCCCCACCTCCCA TGCATGCAGACGCTTGTATTG TTAGTCAGGGAACCGAGGGA CATCTGTCCTGCACTGTCCC ACTTTGGGAGACATGCCCTG CAGCCCTTAGCCTGTAGTCC GAGAGGGTCCAGAATGCCTG TCCACCACCCTGTTGCTGTA ACCACAGTCCATGCCATCAC 23 Table 3. Locus Pacsin1 Kcnmb4 RT-PCR Name a b c d e f g h q r s i j k l m n o p v w x y Primer sequence CGATCTGATAAGCCCCTTCGTAA AGCTGCTGCCTTGTATTCTAACT ATCCCTCGGTTCCCTGACTAATA CTTGAGAGACCTGGATGTTCACA CTTCTCTCACCTCCGGATCTCTC GGAGACTCTTTGGTGGACTCTAT GGAGAAGTATGAGAAGGTGCTGG AGATGTGACATTGGGTTAAGTCC CGCTCCTAATACCTGCTTCTCAT ATGAGAAGCAGGTATTAGGAGCG CTTCCTCCTTCCCGCAGC GTTTTTCCAAGTCCTGCAGCC TGCGAAGCGGGAATCTTCAA GCCAGCTAAGGGTGGCAATA CGTGCAGGCTAACACGATTG ACGTGAACAACTCCGAGTCC CCAACTGTGCCTGTTTCTGC GATCGGTTCCCAGCCATTCA ACCACGATGAGAACACCCAC GAGCTGCTCTCGGAATCCTC AGGAGCAGCCTCGCTCAA TTCGAGTGCACCTTCACCTG GGAGTTGGACTCGGAGTTGTT 24 結果 方向と 方向の転写が同じ領域から起こる場合は非常に稀である Directional RNA-seq 1st 2nd 2 7.6 ± 0.1×10! 1st 2.3 ± 0.1×10! 2nd (Table 4) 1st 0.1×10! 7.2 ± 2.0 ± 0.1×10! 2nd Directional RNA-seq ( 86.1% 1 ) 85.4% 78.1% 72.6% 82.0% PCR 1.9×10! 1.8×10! 2.3×10! 3.0×10! 1.9×10! ( ) 25 26 220,364,813 Mouse Heart (n=2) e d c b a 233,051,369 Mouse Heart (n=1) 76,687,574 Mouse Cerebral Cortex (n=2) 238,989,445 76,557,221 Mouse Cerebral Cortex (n=1) Mouse Cerebellum (n=2) 76,081,033 Chimpanzee Cerebellum (n=2) 220,787,053 76,342,191 Chimpanzee Cerebellum (n=1) 2nd run Mouse Cerebellum (n=1) 77,141,984 Chimpanzee Cerebral Cortex (n=2) (%) b 191,584,172 86.9% 201,311,951 86.4% 207,347,311 86.8% 192,894,809 87.4% 72,437,179 94.5% 72,322,648 94.5% 71,963,443 94.6% 72,237,582 94.6% 72,913,619 94.5% 70,894,403 94.5% Total # reads # Valid reads 75,012,641 Sample a c (PCR 181,795,500 94.9% 190,937,364 94.8% 195,402,638 94.2% 181,763,145 94.2% 68,665,190 94.8% 68,635,440 94.9% 63,973,178 88.9% 64,283,120 89% 63,089,059 86.5% 61,404,334 86.6% # Mapped reads (%) Directional RNA-seq 1st run Chimpanzee Cerebral Cortex (n=1) Table 4. ) 139,227,099 72.7% 146,153,387 72.6% 177,060,051 85.4% 164,728,033 85.4% 62,418,231 86.2% 62,286,305 86.1% 58,955,648 81.9% 59,273,070 82.1% 56,935,814 78.1% 55,436,357 78.2% # Uniquely mapped reads (%) d 17,875,501 18,243,843 30,571,226 30,097,533 19,814,914 18,552,890 22,396,483 22,562,341 19,057,212 18,894,958 after removal of duplication # Uniquely mapped reads 1.01 1.01 1.03 1.03 1.02 1.02 1.04 1.04 1.03 1.03 / Bottom strand-mapped readse Top strand-mapped reads ( ) 1.0 (Table 4) Directional RNA-seq Pacsin1 pancPacsin1 Kcnmb4 Strand-specific RT-PCR (Figure 3A, B) pancKcnmb4 Strand-specific RT-PCR Directional RNA-seq Directional RNA-seq RPKM Kendall 0.96 (p < 0.001) 2 1 polyA+ RNA 25.0% 30.0% 21.6% (Table 5) polyA+ RNA 0.7% 1.3% 0.7% (Table 5) 27 A +1 Pacsin1 locus 5' a c d b e c-d PCR primer a RT primer RT rxn + - + a - + b - - f - + e - + f - + - +1 5' i k j m i RT rxn + - + i - + j - + Figure 3. pancRNA m n - + - Heart m n + - + - Kcnmb4 Pacsin1 locus PCR primer c - d RT rxn + - Cx RT rxn + - 3' n o-p RT primer pancKcnmb4 c p Samples Heart j o PCR primer Cx Samples RT primer l k-l PCR primer 5' Heart Pacsin1 Kcnmb4 locus C e RT rxn + pancPacsin1 B Cx RT primer + 3' f g-h Samples Heart b h PCR primer Cx Samples g D +1 d q r c-q + - s h r-h + - s-h + - Kcnmb4 locus 3' 5' k l PCR primer k - l RT rxn + - +1 t u k-t + - v w u-w v-w + - + - mRNA Pacsin1 (A) (C) Kcnmb4 (B) (D) pancRNA mRNA + (A) (B) specific RT-PCR (Cx) (Heart) (C) (D) (Cx) Strand-specific RT-PCR 28 Strand(Heart) 3' Table 5. Mouse Cerebral Cortex Mouse Cerebellum Mouse Heart Chimpanzee Cerebral Cortex Chimpanzee Cerebellum Transcribed Unidirectionally Bidirectionally a regions transcribed regions transcribed regionsb 25.0% 24.3% 0.7% 30.0% 28.7% 1.3% 21.6% 20.9% 0.7% 24.5% 23.6% 0.9% 23.4% 22.2% 1.2% a b 29 (Figure 4) RNA-RNA pancRNA HtH ENCODE GENCODE 48% CAGE-seq 100 bp (Djebali et al., 2012) lncRNA 2 HtH RNA ORF 1,000 bp 1,000 bp ORF 191.5 319.6 213.0 305.0 30 B Mouse Cereberal Cortex Mouse Cerebellum 0.35 0.35 0.30 0.30 0.25 0.25 Density Density A 0.20 0.15 0.20 0.15 0.10 0.10 0.05 0.05 0.00 0.00 10 -3 10 -2 10 -1 1 10 1 10 2 10 10-4 2 10-2 1 104 10 sense mapped read count / antisense mapped read count 3 sense mapped read count / antisense mapped read count C D Mouse Heart Chimpanzee Cerebral Cortex 0.30 0.35 0.25 0.30 0.25 Density Density 0.20 0.15 0.10 0.20 0.15 0.10 0.05 0.05 0.00 0.00 10-4 10-2 1 102 104 sense mapped read count / antisense mapped read count E -2 Chimpanzee Cerebellum 0.35 0.30 Density 0.25 0.20 0.15 0.10 0.05 0.00 10-4 2 10 1 10 sense mapped read count / antisense mapped read count 10-2 1 102 104 sense mapped read count / antisense mapped read count Figure 4. DNA 31 ORF 900 nt (Figure 5) ORF NCBI (Marchler-Bauer et al., 2011) Conserved Domain Database 1,000 bp Conserved Protein Domain 1.9% bp 4.8% 1,000 Conserved Protein Domain 20.3% 15.5% ncRNA RNA RNA pancRNA mRNA (Figure 6; Table 6) pancRNA 100 100 1,000 bp RPKM pancRNA RPKM 32 A Mouse Cerebral Cortex Sequences of the downstream regions 0.006 0.006 0.005 0.005 0.004 0.004 Density Density Reverse complementary sequences of the upstream regions 0.003 0.003 0.002 0.002 0.001 0.001 0.000 0.000 0 200 400 600 Length (nt) 800 1000 0 200 400 600 Length (nt) 800 1000 B Chimpanzee Cerebral Cortex Sequences of the downstream regions 0.006 0.006 0.005 0.005 0.004 0.004 Density Density Reverse complementary sequences of the upstream regions 0.003 0.003 0.002 0.002 0.001 0.001 0.000 0.000 0 200 400 600 Length (nt) 800 1000 0 Figure 5. 200 400 600 Length (nt) ORF 33 800 1000 Mouse Cerebral Cortex B pancRNAs with the 100 top-ranked RPKM 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0 500 1000 -1000 -500 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Antisense mapped read count Sense mapped read count Antisense mapped read count 1.6 mRNAs with the 100 bottom-ranked RPKM Sense mapped read count mRNAs with the 100 top-ranked RPKM D Sense mapped read count 0.6 0.8 sense antisense 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Figure 6. 34 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 pancRNAs with the 100 top-ranked RPKM (Group III) Antisense mapped read count Sense mapped read count 0.8 0.8 -1000 -500 0 500 1000 Position relative to TSS pancRNAs with the 100 top-ranked RPKM (Group II) pancRNAs with the 100 top-ranked RPKM (Group I) Antisense mapped read count Antisense mapped read count Sense mapped read count C pancRNAs with the 100 bottom-ranked RPKM Sense mapped read count 0.6 Sense mapped read count sense antisense 0.8 Antisense mapped read count Antisense mapped read count Sense mapped read count Total Genes Antisense mapped read count A 0.8 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS (A) (B) (C) (D) (E) (F) (G) (H) (K) (L) (I) (J) (M) (N) (O) (P) (S) (T) (Q) (R) (A) (E) (I) (M) (Q) 100 pancRNA pancRNA ( ) ( (B) (F) (J) (N) (R) ) 100 (C) (G) (K) (O) (S) 3 100 pancRNA I 1,000 bp 1,000 bp 5 (Group I; ) II 1,000 bp 1,000 bp 2 I 100 (Group II; II (Group III; ( ) 100 35 ) ) III (D) (H) (L) (P) (T) ( ) Mouse Cerebellum F pancRNAs with the 100 top-ranked RPKM 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0 500 1000 -1000 -500 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Antisense mapped read count Sense mapped read count Antisense mapped read count 1.6 mRNAs with the 100 bottom-ranked RPKM Sense mapped read count mRNAs with the 100 top-ranked RPKM H Sense mapped read count 0.6 0.8 sense antisense 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Figure 6. continued 36 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 pancRNAs with the 100 top-ranked RPKM (Group III) Antisense mapped read count Sense mapped read count 0.8 0.8 -1000 -500 0 500 1000 Position relative to TSS pancRNAs with the 100 top-ranked RPKM (Group II) pancRNAs with the 100 top-ranked RPKM (Group I) Antisense mapped read count Antisense mapped read count Sense mapped read count G pancRNAs with the 100 bottom-ranked RPKM Sense mapped read count sense antisense Sense mapped read count 0.8 Antisense mapped read count Antisense mapped read count Sense mapped read count Total Genes Antisense mapped read count E 0.8 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS Mouse Heart J pancRNAs with the 100 top-ranked RPKM 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0 500 1000 -1000 -500 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Antisense mapped read count Sense mapped read count Antisense mapped read count 1.6 mRNAs with the 100 bottom-ranked RPKM Sense mapped read count mRNAs with the 100 top-ranked RPKM L Sense mapped read count 0.6 0.8 sense antisense 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Figure 6. continued 37 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 pancRNAs with the 100 top-ranked RPKM (Group III) Antisense mapped read count Sense mapped read count 0.8 0.8 -1000 -500 0 500 1000 Position relative to TSS pancRNAs with the 100 top-ranked RPKM (Group II) pancRNAs with the 100 top-ranked RPKM (Group I) Antisense mapped read count Antisense mapped read count Sense mapped read count K pancRNAs with the 100 bottom-ranked RPKM Sense mapped read count sense antisense Sense mapped read count 0.8 Antisense mapped read count Antisense mapped read count Sense mapped read count Total Genes Antisense mapped read count I 0.8 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS Chimpanzee Cerebral Cortex N pancRNAs with the 100 top-ranked RPKM 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0 500 1000 -1000 -500 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Antisense mapped read count Sense mapped read count Antisense mapped read count 1.6 mRNAs with the 100 bottom-ranked RPKM Sense mapped read count mRNAs with the 100 top-ranked RPKM P Sense mapped read count 0.6 0.8 sense antisense 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Figure 6. continued 38 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 pancRNAs with the 100 top-ranked RPKM (Group III) Antisense mapped read count Sense mapped read count 0.8 0.8 -1000 -500 0 500 1000 Position relative to TSS pancRNAs with the 100 top-ranked RPKM (Group II) pancRNAs with the 100 top-ranked RPKM (Group I) Antisense mapped read count Antisense mapped read count Sense mapped read count O pancRNAs with the 100 bottom-ranked RPKM Sense mapped read count sense antisense Sense mapped read count 0.8 Antisense mapped read count Antisense mapped read count Sense mapped read count Total Genes Antisense mapped read count M 0.8 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS Chimpanzee Cerebellum R pancRNAs with the 100 top-ranked RPKM 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0 500 1000 -1000 -500 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS -1000 -500 0 500 1000 Position relative to TSS 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Antisense mapped read count Sense mapped read count Antisense mapped read count 1.6 mRNAs with the 100 bottom-ranked RPKM Sense mapped read count mRNAs with the 100 top-ranked RPKM T Sense mapped read count 0.6 0.8 sense antisense 1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2 1.6 -1000 -500 0 500 1000 Position relative to TSS Figure 6. continued 39 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 pancRNAs with the 100 top-ranked RPKM (Group III) Antisense mapped read count Sense mapped read count 0.8 0.8 -1000 -500 0 500 1000 Position relative to TSS pancRNAs with the 100 top-ranked RPKM (Group II) pancRNAs with the 100 top-ranked RPKM (Group I) Antisense mapped read count Antisense mapped read count Sense mapped read count S pancRNAs with the 100 bottom-ranked RPKM Sense mapped read count sense antisense Sense mapped read count 0.8 Antisense mapped read count Antisense mapped read count Sense mapped read count Total Genes Antisense mapped read count Q 0.8 sense antisense 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 -1000 -500 0 500 1000 Position relative to TSS Table 6. TSS RPKM Upstream region Downstream region Sample Subgroup Antisense RPKM Sense RPKM Antisense RPKM Sense RPKM Mouse Cerebral Cortex Total genes Top 100 ranked antisense RPKM located upstreama 15.1 734.3 10.7 9.1 4.9 195.6 145 267.5 & Low antisense RPKM located downstreamb & Middle antisense RPKM located downstreamb 427.5 165 b & High antisense RPKM located downstream Mouse Cerebellum 141.8 Bottom 100 ranked antisense RPKM located upstreamc Top 100 ranked sense RPKM located downstreamd Bottom 100 ranked sense RPKM located downstreame Total genes Top 100 ranked antisense RPKM located upstreama 0 26.4 3.3 19.4 790.7 & Low antisense RPKM located downstreamb & Middle antisense RPKM located downstreamb 0 50.1 2.1 15.7 848.6 & Low antisense RPKM located downstreamb & Middle antisense RPKM located downstreamb 579 120.7 & High antisense RPKM located downstreamb Chimpanzee Cerebral Cortex 0 70.4 2.0 16.2 653.6 & Low antisense RPKM located downstreamb & Middle antisense RPKM located downstreamb 401.4 147.7 & High antisense RPKM located downstreamb Chimpanzee Cerebellum 0 25.3 5.4 16.1 649.9 & Low antisense RPKM located downstreamb & Middle antisense RPKM located downstreamb 402.1 85 & High antisense RPKM located downstreamb 0 59.9 4.4 a TSS RPKM 100 b TSS RPKM 100 1,000 bp (Low antisense RPKM in downstream region) 40 131.2 22.8 158.6 0.5 44.8 4.8 1,000 bp 5 40.4 78.4 1636.6 0 102.4 214.5 27.9 24.7 1.6 9.3 119.2 0.6 146.6 44 82.8 0.9 14.5 5.1 6.3 211.2 24.2 0.7 162.8 Bottom 100 ranked antisense RPKM located upstreamc Top 100 ranked sense RPKM located downstreamd Bottom 100 ranked sense RPKM located downstreame 113 121.6 2542.2 0 114.3 231 18.7 48.5 0.5 9.5 94.9 1.0 10.7 26.6 246.8 129.3 137.9 0.5 40.9 1.6 5.9 150 5.1 1.7 104.4 Bottom 100 ranked antisense RPKM located upstreamc Top 100 ranked sense RPKM located downstreamd Bottom 100 ranked sense RPKM located downstreame Total genes Top 100 ranked antisense RPKM located upstreama 39.8 88.1 1736.3 0 211.2 489.1 27.9 41.5 3.1 8.9 181.6 0.3 10 7.3 206.1 124.6 115.3 0.5 22.7 1.9 6.5 207.2 15.2 1.1 148.9 Bottom 100 ranked antisense RPKM located upstreamc Top 100 ranked sense RPKM located downstreamd Bottom 100 ranked sense RPKM located downstreame Total genes Top 100 ranked antisense RPKM located upstreama 11.1 88.0 2054.4 0 174.8 370.5 32.3 65.6 0.6 8.4 236.3 0.3 10.5 19.4 181.5 74.9 116.4 0.4 7.3 2.9 8.1 213.2 7.4 7.3 137.3 Bottom 100 ranked antisense RPKM located upstreamc Top 100 ranked sense RPKM located downstreamd Bottom 100 ranked sense RPKM located downstreame Total genes Top 100 ranked antisense RPKM located upstreama 22.8 56.4 1.0 9.0 278.4 0.3 11.3 15.2 463 190.4 & High antisense RPKM located downstreamb Mouse Heart 5.9 2.2 60.4 65.1 1484.9 0 3 1,000 bp 1,000 bp 2 (High antisense RPKM in downstream region) (Middle antisense RPKM in downstream region) c TSS RPKM 100 d TSS RPKM 100 e TSS RPKM 100 41 2 pancRNA pancRNA 100 100 (Figure 6A, B, E, F, I, J) RPKM pancRNA mRNA Figure 7) (p < 0.001; pancRNA 100 I 3 1,000 bp 1,000 bp 5 II 1,000 bp 1,000 bp 2 III (Figure 6C, G, K) I II pancRNA mRNA 5’ Pacsin1 pancRNA Kcnmb4 pancRNA mRNA HtH (Figure 3C, D) RNA-RNA RNA mRNA 100 pancRNA mRNA 100 pancRNA (Figure 6D, H, L) 42 B 5.0 Relative Average of RPKM Relative Average of RPKM A 4.0 3.0 2.0 1.0 *** 0 Figure 7. 100 2.5 2.0 pancRNAs with the 100 top-ranked RPKM 1.5 pancRNAs with the 100 bottom-ranked RPKM 1.0 *** 0.5 0 pancRNA pancRNA RPKM (A) mRNA 100 1,000 bp RPKM RPKM p < 0.01; Student 43 t (B) pancRNA pancRNA mRNA mRNA pancRNA (Figure 6M-T; Table 6) pancRNA mRNA pancRNA mRNA (Imamura et al., 2001; 2004) pancRNA RPKM pancRNA pancRNA pancRNA mRNA (Figure 8A; Table 7) pancRNA (Figure 8B; Table 7) pancRNA mRNA pancRNA mRNA pancRNA mRNA 44 Figure 8. pancRNA pancRNA (A) pancRNA (B) pancRNA pancRNA (C) (D) 45 Table 7. pancRNA TSS RPKM Upstream region Downstream region Antisense RPKM Sense RPKM Antisense RPKM Sense RPKM Cerebral Cortex vs Heart (mouse) Cerebral Cortex-specific pancRNA-bearing genes Heart-specific pancRNA-bearing genes Cerebellum vs Heart (mouse) Cerebellum-specific pancRNA-bearing genes Heart-specific pancRNA-bearing genes Cerebral Cortex vs Cerebellum (mouse) Cerebral Cortex-specific pancRNA-bearing genes Cerebellum-specific pancRNA-bearing genes Cerebral Cortex 98.1 18.5 12.9 369.9 Heart 2.2 4.6 2.9 163.8 Cerebral Cortex 3.7 12.1 1.4 172.3 Heart 83.7 18.6 6.4 516.6 Cerebellum 96.5 29.2 14.8 410.6 Heart 2.5 11.1 2.1 192.2 Cerebellum 5.2 9.1 3.7 203.3 Heart 144.8 16.7 7.7 486.1 Cerebral Cortex 74.6 16.1 7.8 304.3 Cerebellum 4.9 15.1 5.3 201.5 Cerebral Cortex 4.5 16 1.3 220.8 Cerebellum 70.5 21.8 7.8 302.6 pancRNA RPKM RPKM 0.3 0.1 46 mRNA pancRNA mRNA (Figure 8C, D; Table 7) pancRNA mRNA Vwa5b2 pancRNA Pacsin1 pancRNA 17.5 pancRNA pancRNA PCR mRNA RT- pancRNA mRNA pancRNA (Figure 9) mRNA pancRNA mRNA NCBI Gene Expression Omnibus 19 2 Directional RNA-seq pancRNA pancRNA mRNA (Shen et al., 2012) Pearson pancRNA pancRNA mRNA ncRNA mRNA 47 0.93 HtH 0.81 .0 .8 .6 ** .4 .2 0 mRNA Relative Expression Level .2 Pacsin1 locus 1.2 1.2 1.0 1.0 0.8 0.8 ** 0.6 0.4 0.2 0.2 pancRNA ** 0.6 0.4 0 Relative Expression Level Vwa5b2 locus 0 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 ** 0.4 0 Figure 9. pancRNA knockdown 0.4 0.2 0.2 mRNA Control * pancRNA 0 mRNA pancRNA y RT-PCR mRNA RNA Gapdh RT-PCR p < 0.01 p < 0.01; 48 Student t pancRNA pancRNA CGI (CpG ) pancRNA pancRNA pancRNA 92.8% 91.4% 92.3% CGI pancRNA 94.7% pancRNA 93.4% CGI pancRNA CGI CGI pancRNA de novo HtH pancRNA CCG (Figure 10A, C, E) CGG (Figure 10G, I) CCG (Figure 10G-J) CCGCCG 1,000 bp CGG CCG CGG CGGCGG 1,000 bp pancRNA 49 Mouse Cerebral Cortex A -100bp ~ +100bp 2 1.5 Bits 1.5 Bits +300bp ~ +400bp 2 1 1 0.5 0.5 0 0 1 B 5 10 15 20 1 5 10 0.30 0.25 0.25 0.20 0.20 0.15 CCGCCG CGGCGG 0.15 0.10 0.10 0.05 0.05 0.00 -1000 Figure 10. pancRNA CCGCCG CGGCGG 0.00 -1000 -500 0 500 1000 Position relative to TSS -500 0 500 1000 Position relative to TSS DNA (A) (C) (E) (G) (I) ( ) CCGCCG (D) 20 HtH Promoter 0.30 Frequency Frequency Total Genes 15 (B) (D) (F) (H) (J) pancRNA ( CGGCGG ) (A) (B) (E) (F) (G) (H) (I) (J) 50 (C) Mouse Cerebellum C -100bp ~ +100bp 2 1.5 Bits 1 1 0.5 0.5 0 0 1 D 5 10 1 15 5 Total Genes 0.30 0.25 0.25 0.20 0.20 0.15 CCGCCG CGGCGG 0.15 0.10 0.10 0.05 0.05 0.00 -1000 10 15 20 HtH Promoter 0.30 Frequency Bits 1.5 Frequency +200bp ~ +300bp 2 0.00 -1000 -500 0 500 1000 Position relative to TSS Figure 10. continued 51 CCGCCG CGGCGG -500 0 500 1000 Position relative to TSS Mouse Heart E -100bp ~ +100bp 2 1.5 Bits 1 1 0.5 0.5 0 0 1 F 5 10 1 15 5 Total Genes 0.30 0.25 0.25 0.20 0.20 0.15 CCGCCG CGGCGG 0.15 0.10 0.10 0.05 0.05 0.00 -1000 10 15 20 HtH Promoter 0.30 Frequency Bits 1.5 Frequency +100bp ~ +200bp 2 0.00 -1000 -500 0 500 1000 Position relative to TSS Figure 10. continued 52 CCGCCG CGGCGG -500 0 500 1000 Position relative to TSS Chimpanzee Cerebral Cortex G -100bp ~ +100bp 2 1.5 Bits 1 1 0.5 0.5 0 0 1 H 5 10 15 20 1 5 Total Genes 0.30 0.25 0.25 0.20 0.20 0.15 CCGCCG CGGCGG 0.15 0.10 0.10 0.05 0.05 0.00 -1000 10 15 20 HtH Promoter 0.30 Frequency Bits 1.5 Frequency +400bp ~ +600bp 2 0.00 -1000 -500 0 500 1000 Position relative to TSS Figure 10. continued 53 CCGCCG CGGCGG -500 0 500 1000 Position relative to TSS Chimpanzee Cerebellum I +1bp ~ +200bp 2 1.5 Bits 1 1 0.5 0.5 0 0 1 J 5 10 15 20 1 5 Total Genes 0.30 0.30 0.25 0.25 0.20 0.20 0.15 CCGCCG CGGCGG 0.15 0.10 0.10 0.05 0.05 0.00 -1000 10 15 20 HtH Promoter Frequency Bits 1.5 Frequency +100bp ~ +300bp 2 0.00 -1000 -500 0 500 1000 Position relative to TSS Figure 10. continued 54 CCGCCG CGGCGG -500 0 500 1000 Position relative to TSS pancRNA CGI (Figure 10B, D, F, H, J) CCGCCG CGGCGG pancRNA CCGCCG CGGCGG pancRNA 47.8% pancRNA pancRNA 47.3% 47.5% 19.7% pancRNA 61.2% pancRNA 60.9% 36.8% HtH GC CCG 55 CGG 考察 Directional RNA-seq Directional RNA-seq 81.4% 80.1% 94.7% 87.8% ENCODE (Djebali et al., 2012) 88.7% 72.4% 78.2% Ensembl Genes 19,895 197,870 RNA Directional RNA-seq 25.0% 56 Directional RNA-seq 24.5% ENCODE Directional RNA-seq 20% (Djebali et al., 2012) Directional RNA-seq lncRNA ncRNA RNA ncRNA (Beltran RNA-RNA et al., 2008; Carrieri et al., 2012; Hastings et al., 2000; Kimelman and Kirschner, 1989; Munroe and Lazar, 1991; Wagner et al., 1989) ncRNA mRNA (Ebralidze et al., 2008; Spigoni et al., 2010) (Wang et al., ncRNA 2011) 0.7% 1.4% 0.7% ncRNA 57 pancRNA ncRNA lncRNA mRNA pancRNA lncRNA mRNA 2 1 mRNA lncRNA lncRNA mRNA mRNA (Beltran et al., 2008; Ebralidze et al., 2008; Hastings et al., 2000; Spigoni et al., 2010) PU.1 mRNA (Ebralidze et al., 2008) ncRNA 2 mRNA lncRNA pancRNA pancRNA mRNA pancRNA mRNA RNA-RNA (Imamura et al., 2004; Tomikawa et al., 2011) Sphk1 pancRNA Khps1 Sphk1 Sphk1 CpG (Imamura et al., 2004) pancRNA pancRNA 58 mRNA (Figure 9) pancRNA mRNA pancRNA mRNA pancRNA mRNA pancRNA mRNA mRNA pancRNA mRNA pancRNA pancRNA pancRNA mRNA mRNA pancRNA pancRNA lncRNA 3 HOTTIP lncRNA RNA-RNA (Wang et al., 2011) 2 SAT (Katayama et al., 2005) lncRNA pancRNA 59 3 pancRNA CCG/CGG pancRNA pancRNA 90% CGI pancRNA CCG pancRNA CpG CGG DNA pancRNA CpG pancRNA DNA GC CGI 3 CGI pancRNA pancRNA CCG CGG pancRNA R DNA-RNA-DNA R (Ginno DNA et al., 2013; 2012) pancRNA CCG DNA pancRNA R R 60 CGG pancRNA CCG pancRNA CGG DNA pancRNA pancRNA ncRNA pancRNA 61 第 2 章 pancRNA を介した遺伝子発現制御の種間多様性 序論 (Wray, 2007) (Carroll, 2008) Hox KITLG (KIT Ligand ) AR (Androgen receptor ) 62 (Guenther et al., 2014; McLean et al., 2011) cDNA mRNA ncRNA RNA 1 (Carninci et al., 2005) ncRNA RNA pancRNA Xist miRNA ncRNA ncRNA 10 ncRNA lncRNA (Baker, 2011) lncRNA ncRNA DNA (Carroll, 2005) lncRNA (Engström et al., 2006; Kutter et al., 2012; Necsulea et al., 2014) lncRNA 2 63 lncRNA lncRNA ncRNA (Khaitovich et al., 2005) (Metzker, 2010) DNA RNA-seq RNA (Wang et al., 2009) mRNA isoform ncRNA pancRNA 1 pancRNA (Imamura et al., 2004; Tomikawa et al., 2011; Uesaka et al., 2014) pancRNA pancRNA pancRNA 64 pancRNA 65 材料と方法 (Great Ape Information Network; GAIN) ( (Macaca mulatta) )1 (Pan troglodytes) -80 TRIzol RNA 28 total RNA (Life Technologies) total 1 Directional RNA-seq Directional RNA-seq Directional RNA-seq Directional RNA-seq Table 8 1 66 67 b a 101 101 101 Peng et al., 2014 Peng et al., 2014 Peng et al., 2014 Kidney (n=2) Liver (n=1) Liver (n=2) 50 50 101 This manuscript Heart (n=2) 50 Peng et al., 2014 This manuscript Heart (n=1) 100 Kidney (n=1) This manuscript Cerebellum (n=2) 100 50 This manuscript Cerebellum (n=1) 50 This manuscript This manuscript Cerebral Cortex (n=4) 76 Heart (n=4) This manuscript Cerebral Cortex (n=3) 100 This manuscript This manuscript Cerebral Cortex (n=2) 100 Heart (n=3) This manuscript Reference Read Length (nt) Cerebral Cortex (n=1) Chimpanzee Samples 26,736,656 25,050,505 47,285,536 69,204,269 172,129,601 153,616,605 172,682,050 182,261,526 76,081,033 76,342,191 198,660,786 150,132,652 77,141,984 75,012,641 # Raw readsa 24,779,948 23,238,657 43,925,321 63,801,245 159,985,054 143,146,155 159,865,447 168,421,525 72,404,439 72,412,322 185,044,719 140,684,461 73,114,615 71,196,725 # Valid readsb Table 8. 第 2 章における Directional RNA-seq データの概要 92.7% 92.8% 92.9% 92.2% 92.9% 93.2% 92.6% 92.4% 95.2% 94.9% 93.1% 93.7% 94.8% 94.9% (%)c 20,744,093 19,640,598 38,143,827 55,073,435 148,860,939 132,769,168 148,910,355 156,252,434 64,178,888 64,107,107 170,686,551 125,404,297 64,262,655 62,660,605 # Mapped readsd 83.7% 84.5% 86.8% 86.3% 93.0% 92.8% 93.1% 92.8% 88.6% 88.5% 92.2% 89.1% 87.9% 88.0% (%)e 19,007,358 17,979,578 35,213,809 50,737,584 119,900,136 106,635,802 116,363,203 121,490,883 59,560,160 59,594,686 150,481,677 113,505,310 58,439,377 57,036,267 #Uniquely mapped readsf 76.7% 77.4% 80.2% 79.5% 74.9% 74.5% 72.8% 72.1% 82.3% 82.3% 81.3% 80.7% 79.9% 80.1% (%)g 95.8% 95.6% 96.5% 96.9% 96.7% 97.0% 97.3% 97.3% 93.3% 93.2% 89.8% 92.6% 96.8% 96.7% Strandnessh 68 h g f e d c 69 Merkin et al., 2012 Merkin et al., 2012 Liver (n=3) Merkin et al., 2012 Kidney (n=1) Liver (n=2) Merkin et al., 2012 Heart (n=3) Merkin et al., 2012 Merkin et al., 2012 Heart (n=2) Liver (n=1) Merkin et al., 2012 Heart (n=1) Merkin et al., 2012 This manuscript Cerebellum (n=2) Kidney (n=3) This manuscript Cerebellum (n=1) Merkin et al., 2012 This manuscript Cerebral Cortex (n=2) Kidney (n=2) This manuscript 40 80 40 40 80 40 40 80 40 50 50 50 100 Reference Read Length (nt) Cerebral Cortex (n=1) Macaque Samples Table 8. continued 26,700,682 113,094,939 28,555,788 40,389,069 108,637,672 31,891,747 36,101,619 109,193,093 35,248,042 241,173,391 232,575,935 272,056,320 76,074,284 # Raw readsa 22,839,833 104,559,333 24,426,241 35,291,681 100,348,848 27,527,410 31,669,553 99,169,204 29,370,416 208,583,939 201,001,979 227,840,845 72,341,454 # Valid readsb 85.5% 92.5% 85.5% 87.4% 92.4% 86.3% 87.7% 90.8% 83.3% 86.5% 86.4% 83.7% 95.1% (%)c 19,216,226 95,061,998 20,620,967 30,623,422 90,028,805 23,835,660 28,251,878 90,299,167 26,329,604 189,016,875 182,131,497 201,824,544 59,951,525 # Mapped readsd 84.1% 90.9% 84.4% 86.8% 89.7% 86.6% 89.2% 91.1% 89.6% 90.6% 90.6% 88.6% 82.9% (%)e 16,875,095 85,848,577 18,091,129 26,956,916 81,025,752 19,542,632 22,771,079 79,574,651 21,023,351 171,334,356 165,144,558 174,613,505 51,971,253 #Uniquely mapped readsf 73.9% 82.1% 74.1% 76.4% 80.7% 71.0% 71.9% 80.2% 71.6% 82.1% 82.2% 76.6% 71.8% (%)g 94.7% 98.1% 93.1% 97.7% 98.9% 98.4% 98.5% 98.9% 97.6% 96.1% 96.2% 97.8% 98.8% Strandnessh 70 Cortez et al., 2014 Cortez et al., 2014 Cortez et al., 2014 Cortez et al., 2014 Heart (n=1) Heart (n=2) Kidney (n=1) Kidney (n=2) Cortez et al., 2014 Cortez et al., 2014 Cerebellum (n=2) Liver (n=2) Cortez et al., 2014 Cerebellum (n=1) Cortez et al., 2014 Cortez et al., 2014 Cerebral Cortex (n=2) Liver (n=1) 100 Cortez et al., 2014 Cerebral Cortex (n=1) 100 100 100 100 100 100 100 100 100 Reference Read Length (nt) Marmoset Samples Table 8. continued 47,504,110 32,192,774 24,017,790 24,553,329 30,211,556 24,859,231 29,474,916 38,437,551 26,093,403 36,544,979 # Raw readsa 43,840,256 29,934,177 22,068,454 22,835,038 27,507,700 22,993,386 27,127,725 35,742,273 24,080,926 34,049,298 # Valid readsb 92.3% 93.0% 91.9% 93.0% 91.1% 92.5% 92.0% 93.0% 92.3% 93.2% (%)c 38,591,315 24,204,841 18,441,811 18,867,572 19,756,929 10,979,550 22,878,776 29,873,766 20,450,593 27,997,099 # Mapped readsd 88.0% 80.9% 83.6% 82.6% 71.8% 47.8% 84.3% 83.6% 84.9% 82.2% (%)e 36,012,068 22,687,447 16,835,897 17,382,297 17,388,050 9,822,862 21,744,037 28,410,481 19,165,202 26,505,853 #Uniquely mapped readsf 82.1% 75.8% 76.3% 76.1% 63.2% 42.7% 80.2% 79.5% 79.6% 77.8% (%)g 98.0% 97.7% 97.9% 97.7% 98.2% 98.4% 97.0% 97.1% 97.8% 98.7% Strandnessh 71 This manuscript Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Heart (n=3) Heart (n=4) Heart (n=5) Heart (n=6) Kidney (n=1) Kidney (n=2) Kidney (n=3) This manuscript Cerebellum (n=2) Heart (n=2) This manuscript Cerebellum (n=1) This manuscript Lin et al., 2014 Cerebral Cortex (n=6) Heart (n=1) Lin et al., 2014 Cerebral Cortex (n=5) Lin et al., 2014 This manuscript Cerebral Cortex (n=4) Cerebellum (n=4) This manuscript Cerebral Cortex (n=3) Lin et al., 2014 This manuscript Cerebral Cortex (n=2) Cerebellum (n=3) This manuscript 76 76 76 76 76 76 76 50 50 100 100 50 50 100 100 50 50 100 100 Reference Read Length (nt) Cerebral Cortex (n=1) Mouse Samples Table 8. continued 18,788,286 35,536,674 38,866,777 39,528,591 41,443,334 35,570,309 39,038,956 220,364,813 233,051,369 144,705,041 150,974,801 238,989,445 220,787,053 166,188,101 155,680,801 163,175,074 190,260,665 76,687,574 76,557,221 # Raw readsa 17,593,099 30,938,735 35,914,919 36,550,245 37,095,579 32,289,619 35,744,773 191,584,172 201,311,951 130,861,596 132,292,186 207,347,311 192,894,809 150,895,675 141,873,780 152,258,703 176,888,419 72,678,857 72,746,201 # Valid readsb 93.6% 87.1% 92.4% 92.5% 89.5% 90.8% 91.6% 86.9% 86.4% 90.4% 87.6% 86.8% 87.4% 90.8% 91.1% 93.3% 93.0% 94.8% 95.0% (%)c 15,529,202 27,067,678 32,299,831 33,135,980 33,498,158 29,860,544 31,789,795 181,603,560 190,758,663 115,989,016 118,402,104 195,296,960 181,665,861 132,383,301 127,236,073 142,266,235 165,286,797 63,976,355 66,724,119 # Mapped readsd 88.3% 87.5% 89.9% 90.7% 90.3% 92.5% 88.9% 94.8% 94.8% 88.6% 89.5% 94.2% 94.2% 87.7% 89.7% 93.4% 93.4% 88.0% 91.7% (%)e 13,917,877 23,919,090 28,323,094 25,432,767 25,957,233 22,419,330 24,561,362 137,960,243 144,938,073 106,370,671 108,717,401 175,845,744 163,580,348 117,518,324 115,162,949 128,385,369 149,117,432 58,706,145 61,100,809 #Uniquely mapped readsf 79.1% 77.3% 78.9% 69.6% 70.0% 69.4% 68.7% 72.0% 72.0% 81.3% 82.2% 84.8% 84.8% 77.9% 81.2% 84.3% 84.3% 80.8% 84.0% (%)g 98.3% 98.1% 97.9% 98.7% 98.8% 98.9% 98.9% 99.3% 99.2% 98.3% 98.1% 99.2% 98.8% 98.2% 98.1% 99.2% 99.0% 99.3% 99.2% Strandnessh 72 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Lin et al., 2014 Kidney (n=4) Kidney (n=5) Kidney (n=6) Liver (n=1) Liver (n=2) Liver (n=3) Liver (n=4) Liver (n=5) Liver (n=6) 76 76 76 76 76 76 76 76 76 30,633,616 24,234,923 27,549,415 31,913,472 17,894,796 30,461,949 39,936,163 37,408,520 40,542,680 28,280,772 22,640,190 25,736,055 28,387,634 16,716,090 28,393,959 37,392,167 34,593,130 37,987,761 92.3% 93.4% 93.4% 89.0% 93.4% 93.2% 93.6% 92.5% 93.7% 25,566,780 20,512,191 23,322,751 25,341,851 14,865,944 25,386,926 33,458,636 30,951,511 33,682,613 90.4% 90.6% 90.6% 89.3% 88.9% 89.4% 89.5% 89.5% 88.7% 22,038,962 17,822,001 20,147,045 21,750,682 12,922,577 21,868,110 28,460,726 26,019,856 28,461,665 77.9% 78.7% 78.3% 76.6% 77.3% 77.0% 76.1% 75.2% 74.9% 97.4% 97.7% 97.5% 97.9% 98.4% 97.9% 97.1% 97.3% 97.1% 73 Cortez et al., 2014 Cortez et al., 2014 Cortez et al., 2014 Cortez et al., 2014 Heart (n=1) Heart (n=2) Kidney (n=1) Kidney (n=2) Cortez et al., 2014 Cortez et al., 2014 Cerebellum (n=2) Liver (n=2) Cortez et al., 2014 Cerebellum (n=1) Cortez et al., 2014 Cortez et al., 2014 Cerebral Cortex (n=2) Liver (n=1) 100 Cortez et al., 2014 Cerebral Cortex (n=1) 100 100 100 100 100 100 100 100 100 Reference Read Length (nt) Rat Samples Table 8. continued 26,289,552 23,597,799 36,549,711 21,810,314 35,058,694 26,302,354 24,967,326 18,342,078 33,437,741 28,897,182 # Raw readsa 24,233,756 21,791,604 33,844,963 20,225,194 31,991,715 24,181,347 23,169,302 16,972,473 30,823,546 26,737,835 # Valid readsb 92.2% 92.3% 92.6% 92.7% 91.3% 91.9% 92.8% 92.5% 92.2% 92.5% (%)c 21,289,707 19,699,548 30,416,117 17,749,598 28,556,375 21,510,417 21,135,267 15,365,296 27,985,037 24,229,865 # Mapped readsd 87.9% 90.4% 89.9% 87.8% 89.3% 89.0% 91.2% 90.5% 90.8% 90.6% (%)e 19,026,214 17,821,199 27,617,209 16,392,406 26,185,375 20,048,125 19,706,098 14,233,071 25,946,502 21858844 #Uniquely mapped readsf 78.5% 81.8% 81.6% 81.0% 81.9% 82.9% 85.1% 83.9% 84.2% 81.8% (%)g 99.2% 99.3% 98.3% 98.0% 97.8% 98.2% 97.2% 96.7% 97.9% 97.5% Strandnessh RNA TopHat (Trapnell et al., 2009) rheMac3 calJac3 TopHat panTro4 mm10 rn5 v2.0.8b TopHat (Anders et al., 2015) HTSeq 2,000 bp HTSeq v0.6.0 Ensembl Genes Database protein_coding ncRNA HtH 2 pancRNA-partnered gene rheMac3 Ensembl Genes Database UCSC Genome Browser Database 74 LiftOver rheMac2 Ensembl Genes Database rheMac3 (Fujita et al., 2010; Meyer et al., 2013) DEGES (Sun et al., 2013) Spearman 1 R Ensembl Compara 1 (Flicek et al., 2013) pancRNA-partnered gene mRNA pancRNA (Pearson pancRNA-lacking gene pancRNA (Pearson pancRNA-partnered gene 0.7 mRNA 0.4 ) pancRNA mRNA (Pearson ) 4 (Pearson ) 0.7 0.4 ) Spearman 1 1 75 Tissue-specificity Index (TSI) (Yanai et al., 2005) TSI Tukey-Kramer (mm10) PhastCons (Siepel et al., 2005) DNA 21 Tukey-Kramer DNA LASTZ LASTZ DNA 2 LASTZ UCSC Genome Browser Database Chain Track 76 Net Track (Meyer et al., 2013) panTro4 calJac3 rn5 5 calJac3 rn5 mm10 Mbp 2,000 bp 5 DEGES Tukey-Kramer FDR < 0.05 5 14.5 ICR (Mus musculus; Japan SLC) 4.17 mM Mg2+ HBSS (SIGMA) 77 NaHCO3 Ca2+ poly-L-ornithine bFGF fibronectin 10ng /ml 1% Antibiotic-Antimycotic Mixed Stock Solution (Nacalai Tesque) N2-supplemented DMEM-F12 medium (Life Technologies) 37 CO2 1 2 3 4 5 0.5% FBS N2 medium 4 7 17.5 shRNA 1 RNA 1 shRNA Table 1 RT-PCR 1 Table 2 78 bFGF PBS 4% green fluorescent protein beta III Tubulin protein Tesque) (Tuj-1; 1:500; Sigma) glial fibrillary acidic (1:500; Sigma) IgG CF647 (1:1000; Aves Labs) CF488A (Biotium) IgG CF555 (Biotium) 3 79 IgG (Biotium) Hoechst33258 (Nacalai 結果 pancRNA pancRNA Directional RNA-seq 1 Directional RNA-seq Directional RNA-seq (Cortez et al., Directional RNA-seq 2014; Lin et al., 2014; Merkin et al., 2012; Peng et al., 2014)(Table 8) 5 76 60 Directional RNA-seq (Table 8) 87.3% 88.7% (Table 8) ENCODE project (Djebali et al., 2012) 80 Directional RNA-seq 5 97.4% (Table 8) Spearman mRNA 0.9 (Figure 11A) (Figure 11A Spearman pancRNA ) (Figure 11B) 2 0.96 Spearman pancRNA 81 Kidney 2 Kidney 1 Heart 2 Heart 1 Liver 2 Liver 1 Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 1 Cerebellum 2 0.00 0.05 0.10 Height 0.15 0.20 Cerebral Cortex 5 Cerebral Cortex 6 Cerebral Cortex 3 Cerebral Cortex 4 Cerebral Cortex 1 Cerebral Cortex 2 Cerebellum 1 Cerebellum 2 Cerebellum 3 Cerebellum 4 Heart 1 Heart 2 Heart 5 Heart 6 Heart 3 Heart 4 Kidney 5 Kidney 4 Kidney 6 Kidney 3 Kidney 1 Kidney 2 Liver 5 Liver 4 Liver 6 Liver 2 Liver 1 Liver 3 0.00 Liver 2 Liver 1 Kidney 2 Kidney 1 Heart 2 Heart 1 Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 2 Cerebellum 1 0.00 Height 82 0.05 0.10 0.10 Height 0.05 0.15 0.15 0.20 0.20 0.25 Marmoset mRNA Kidney 2 Kidney 1 Kidney 3 Liver 3 Liver 1 Liver 2 Heart 3 0.05 Heart 2 0.00 0.10 Height 0.10 Height 0.05 0.15 0.15 0.20 0.20 0.25 0.25 Chimpanzee mRNA Heart 1 Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 2 Cerebellum 1 Liver 2 Liver 1 Kidney 2 Kidney 1 Heart 2 Heart 1 Heart 4 Heart 3 Cerebral Cortex 4 Cerebral Cortex 3 Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 2 Cerebellum 1 0.00 A Macaque mRNA Mouse mRNA Rat mRNA Figure 11. Spearman 1 (A) (B) pancRNA Liver 2 Kidney 2 Heart 2 Heart 1 Cerebellum 2 Kidney 1 0.30 Liver 1 Cerebellum 1 Cerebral Cortex 2 Cerebral Cortex 1 0.25 0.35 Height 0.40 0.45 0.50 Rat pancRNA Figure 11. continued 83 Liver 2 Liver 1 Kidney 2 Kidney 1 0.35 0.4 0.40 0.45 0.5 Mouse pancRNA Heart 2 Heart 1 0.30 0.3 Liver 2 Kidney 3 Kidney 2 Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 2 0.20 Heart 2 Heart 1 Heart 4 0.15 0.2 Liver 1 Heart 3 Cerebellum 1 Cerebral Cortex 4 Cerebral Cortex 3 Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 2 Cerebellum 1 Kidney 2 Kidney 1 0.1 0.30 Heart 3 Heart 1 Liver 2 0.4 0.35 Heart 2 Kidney 1 Liver 3 Liver 1 0.25 Height 0.3 Height 0.40 0.5 0.45 Chimpanzee pancRNA Cerebral Cortex 2 Cerebral Cortex 1 Cerebellum 2 0.25 Height Liver 6 Liver 4 Liver 5 Liver 2 Liver 1 Liver 3 0.20 Cerebellum 1 Height 0.2 Cerebral Cortex 3 Cerebral Cortex 4 Cerebral Cortex 1 Cerebral Cortex 2 Cerebellum 1 Cerebellum 2 Cerebral Cortex 5 Cerebral Cortex 6 Cerebellum 3 Cerebellum 4 Kidney 5 Kidney 4 Kidney 6 Kidney 3 Kidney 1 Kidney 1 Heart 1 Heart 2 Heart 5 Heart 6 Heart 3 Heart 4 0.1 B Macaque pancRNA Marmoset pancRNA (Figure 12A) 2 pancRNA pancRNA (Figure 12B) pancRNA RNA 84 A mRNA 0.5 0.7 0.9 Macaque Kidney Marmoset Kidney Chimpanzee Kidney Rat Kidney Mouse Kidney Marmoset Liver Macaque Liver Chimpanzee Liver Rat Liver Mouse Liver Chimpanzee Heart Macaque Heart Marmoset Heart Mouse Heart Rat Heart Chimpanzee Cerebral Cortex Chimpanzee Cerebellum Macaque Cerebellum Macaque Cerebral Cortex Marmoset Cerebellum Marmoset Cerebral Cortex Rat Cerebellum Rat Cerebral Cortex Mouse Cerebellum Mouse Cerebral Cortex Figure 12. Spearman ( ) ( ) (A) mRNA (B) RNA pancRNA 85 (C) 5 B pancRNA 0.2 0.6 1 Chimpanzee Cerebral Cortex Chimpanzee Cerebellum Chimpanzee Heart Chimpanzee Kidney Chimpanzee Liver Marmoset Kidney Marmoset Heart Marmoset Liver Marmoset Cerebellum Marmoset Cerebral Cortex Macaque Kidney Macaque Liver Macaque Heart Macaque Cerebellum Macaque Cerebral Cortex Mouse Heart Mouse Kidney Mouse Liver Mouse Cerebellum Mouse Cerebral Cortex Rat Cerebellum Rat Cerebral Cortex Rat Heart Rat Kidney Rat Liver C Conserved pancRNA −1 0 0.5 1 Macaque Kidney Rat Kidney Mouse Kidney Chimpanzee Kidney Marmoset Kidney Mouse Heart Macaque Heart Chimpanzee Heart Marmoset Heart Rat Heart Macaque Liver Mouse Liver Marmoset Liver Rat Liver Chimpanzee Liver Rat Cerebellum Mouse Cerebellum Mouse Cerebral Cortex Rat Cerebral Cortex Chimpanzee Cerebellum Macaque Cerebellum Marmoset Cerebellum Macaque Cerebral Cortex Chimpanzee Cerebral Cortex Marmoset Cerebral Cortex Figure 12. continued 86 pancRNA pancRNA (Uesaka et al., 2014) mRNA pancRNA 5 mRNA pancRNA pancRNA (p < 0.05) 92.6% 96.7% 1 pancRNA mRNA 1 2 3 94.1% 95.2% pancRNA 96.1% (Table 9) RNA pancRNA pancRNA (pancRNA-partnered gene) 13.2 18.9 11.2% 10.4% 9.6 pancRNA 1 pancRNA pancRNA Sphk1 (Imamura et DNA 87 Table 9. pancRNA-partnered genes pancRNA-partnered genes Species Total genes a Any correlation pancRNA-partnered genes b c (%) d /Total genes (%) e Chimpanzee 15,599 2,229 2,063 92.6% 13.2% Macaque 12,107 1,441 1,356 94.1% 11.2% Marmoset 17,228 1,877 1,786 95.2% 10.4% Mouse 17,783 3,418 3,304 96.7% 18.9% Rat 19,602 1,959 1,882 96.1% 9.6% a b mRNA pancRNA Pearson p< pancRNA Pearson p< Pearson p< 0.05 c mRNA 0.05 d mRNA 0.05 r > 0.7 pancRNA r > 0.7 e pancRNA-partnered genes 88 al., 2001; 2004) 1 pancRNA pancRNA pancRNApartnered gene TSI (Tissue-specificity Index) TSI TSI TSI pancRNA-partnered gene 0.05; Figure 13) TSI (p < pancRNA (pancRNA-lacking gene) gene TSI TSI (p < 0.05) pancRNA-partnered pancRNA-partnered gene (HtH ) TSI pancRNA-partnered gene TSI (p < 0.05) 5 pancRNA TSI 0.9 pancRNA-partnered gene (Figure 14A, B) 89 pancRNA Chimpanzee Macaque Marmoset Mouse Rat Tissue-specificity index 1.00 0.75 Total genes Genes containing other genes within their promoters pancRNA-partnered genes pancRNA-lacking genes 0.50 0.25 0.00 Figure 13. Tissue-specificity index ( ) Total genes Genes containing other genes within their promoters ( pancRNA-partnered genes genes pancRNA pancRNA ( ( ) 90 ) ) pancRNA-lacking ( pancRNA ( (TSI > 0.9) (B) ) Mouse ) 91 pancRNA-lacking genes Total genes Genes containing other genes within their promoters pancRNA-partnered genes Mouse pancRNA-lacking genes Total genes Genes containing other genes within their promoters pancRNA-partnered genes Marmoset pancRNA-lacking genes Total genes Genes containing other genes within their promoters pancRNA-partnered genes pancRNA-lacking genes Marmoset pancRNA-lacking genes Total genes Genes containing other genes within their promoters pancRNA-partnered genes pancRNA-lacking genes Macaque Total genes Genes containing other genes within their promoters pancRNA-partnered genes pancRNA-lacking genes Macaque Total genes Genes containing other genes within their promoters pancRNA-partnered genes pancRNA-lacking genes Chimpanzee Total genes Genes containing other genes within their promoters pancRNA-partnered genes pancRNA-lacking genes Total genes Genes containing other genes within their promoters pancRNA-partnered genes Organ distribution Chimpanzee Total genes Genes containing other genes within their promoters pancRNA-partnered genes B pancRNA-lacking genes Total genes Genes containing other genes within their promoters pancRNA-partnered genes Organ distribution A 1.00 Rat 0.75 Cerebral Cortex 0.50 Cerebellum Heart Kidney 0.25 Liver 0.00 1.00 Rat 0.75 Cerebral Cortex 0.50 Cerebellum Heart Kidney 0.25 Liver 0.00 Figure 14. pancRNA-partnered gene (A) Total genes ( ( ) pancRNA-lacking genes ) pancRNA Genes containing other genes within their promoters pancRNA-partnered genes pancRNA pancRNA pancRNA pancRNA pancRNA 21 PhastCons pancRNA-partnered gene pancRNApartnered gene pancRNA-lacking gene 4 3 (p < 0.001; Figure 15) pancRNA-partnered gene pancRNA-lacking gene (p < 0.05) pancRNA 92 PhastCons score 1.00 CDS 0.75 Promoter Promoter (pancRNA-partnered genes) Promoter (pancRNA-lacking genes) 0.50 0.25 0.00 Figure 15. mm10 CDS ( ) 21 ( PhastCons score ) Promoter Promoter (pancRNA-partnered genes) ( ) pancRNA-partnered genes Promoter (pancRNA-lacking genes) ( ) 93 pancRNA-lacking genes pancRNA pancRNA pancRNA pancRNA pancRNA pancRNA-partnered gene 8.1% 11.2% partnered gene 5.0% 10.3% 6.3% (Table 10) Table 11 pancRNA- ( ) pancRNA DNA pancRNA bp 50 bp DNA (McLean et al., 2011; DNA Sasaki et al., 2008) DNA pancRNA-partnered gene pancRNA-partnered gene DNA 1.7% 94 Table 10. Species-specific pancRNA-partnered genes Species-specific pancRNA-partnered genes Species pancRNA-partnered genes Species-specific (One-to-one orthologs) pancRNA-partnered genes (%) / Total genes (%) a b 1,447 117 8.1% 0.75% 928 96 10.3% 0.79% Marmoset 1,238 78 6.3% 0.45% Mouse 2,251 251 11.2% 1.41% Rat 1,307 65 5.0% 0.33% Chimpanzee Macaque a pancRNA-partnered genes c 5 b pancRNA-partnered genes pancRNA Pearson c pancRNA-partnered genes d Total genes mRNA r < 0.4 Species-specific pancRNA-partnered genes Species-specific pancRNA-partnered genes 95 d Table 11. pancRNA-partnered genes Chimpanzee-specific pancRNA-partnered genes LOC746089 PLEK2 MYO3B TXNDC3 OPRM_PANTR EYA3 BDKRB2 HIBCH AP1S1 LOC463277 CDKN2C Q6J9M1_PANTR CRYGB CPA1 TXNDC3 FRRS1 TRIM69 LOC459913 GIMAP6 AP1S1 CDC14A MYO1E DEFB126 CRYGB CPA1 NGF_PANTR ITGA11 SLC24A3 LOC459913 GIMAP6 GJA8 STARD5 CDK5RAP1 DEFB126 DOCK5 LYAM1_PANTR SLC28A1 LOC469932 SLC24A3 ZMAT4 ELF3 MCTP2 WFD12_PANTR CDK5RAP1 TRIM55 IL24 LOC453949 LOC737961 LOC469932 ATP6V0D2 CAPN9 NOD2 HLCS WFD12_PANTR GEM GDI2 SLC6A2 PNPLA5 LOC737961 WISP1 SLC39A12 NFAT5 ATG7 HLCS PTGS1 HKDC1 ATP2C2 DCLK3 PNPLA5 EXOSC2 WAPAL LOC454401 KCNMB3 ATG7 BMP15 HPSE2 RCVRN ADAMTS3 DCLK3 TBX22 GPAM ARL4D AREG KCNMB3 POF1B CLRN3 RNF157 HPSE ADAMTS3 Q8HZD4_PANTR LDHC SMAD4 BANK1 AREG NECAP1 EHF_PANTR LMNB2 CCDC109B HPSE DAPK1 SLC3A2 CREB3L3 ANXA10 BANK1 DCX CCDC88B TNFSF14 TMEM173 CCDC109B CLPSL2 MOGAT2 CD22 CAMK2A ANXA10 LOC739514 LOC100608161 SNTG2 SLC36A1 TMEM173 CTXN3 GLB1L3 LOC745055 HAVCR2 CAMK2A KRT40 PDZRN4 LOC459212 DRD1 SLC36A1 PAQR5 LRRC43 LOC742221 CRISP2 HAVCR2 MMP17 CNGA3 SPACA1 DRD1 SPERT IL1R1 IL20RA CRISP2 PCCA STEAP3 OPRM_PANTR SPACA1 RHOJ CLASP1 LOC463277 IL20RA 96 Table 11. continued Macaque-specific pancRNA-partnered genes OR52W1 MED1 SPINK7 CHRNA9 PROSC LOC718873 POU6F2 LOC710021 GPR87 CAV3 EIF3G LOC709223 F13A1 RTTN LOC702601 CEL AQP8 LOC702013 LOC721411 LOC711561 KLRD1_MACMU GPR50 CHAC2 KLHL30 Q9TTU8_MACMU TNFAIP6 MDM1 TMED4 CRISPLD2 HSD17B13 NDST4 TTC18 Q8MJ12_MACMU PI15 MYSM1 CD5L KIRREL CHST9 LOC718439 PCCB OCA2 TESK2 FRMD7 C9orf174 CALCB LOC703939 PGPEP1L KCNN2 SLC14A2 PADI3 SERPINA12 RPS6KL1 PLAC1L CHRDL2 IQCF1 ASXL3 HJURP LOC709312 Q09HA9_MACMU RNF128 LOC715315 Q4G413_MACMU ACTA1 SNRNP70 GPBP1 SRI PPEF1 SDR16C5 BCDIN3D LOC696940 LOC713422 SPATA24 LOC704166 LY6D LDB2 INSIG2 SLC25A20 OTOP3 ZNF648 STYK1 MAEL MUSK ZDHHC4 ATP2A1 LOC711164 Q9BDC4_MACMU Q6H2Y1_MACMU CPLX4 BANF2 VGLL2 TYOBP_MACMU SELE GON1_MACMU ST18 LIPK DPEP3 97 Table 11. continued Marmoset-specific pancRNA-partnered genes SLC17A7 CRTAM DCLK1 RERE CHRNA6 TSNAX CST11 TEX35 CWH43 NDUFV1 RABGAP1L TECTB SUCNR1 DNAJC5B TTC1 TMEM196 CHRNB4 C1QTNF2 MLEC UBE2D1 GABRP SLC35F6 LRRC16A CHRNA2 PLEKHF1 PRSS16 PDE4DIP CEP170B P2RX1 CPQ PRSS45 MLANA IL22RA1 BATF2 MARE PAK6 NMI IGFBP5 CD74 INTU DENND2C NPY2R NEK10 IL13 THRSP TREML2 IL4 ENTPD2 COL10A1 KCNN1 CBR4 CLDN1 SLC25A43 SLC25A35 NCF2 ETV5 LIPA RASSF3 CDKL5 PRSS27 S100A9 CCL16 NRSN1 PSMD7 MAB21L3 DNMT3B SYNE3 SERPIND1 DENND1A JAGN1 LAX1 IL12RB2 HTATIP2 INO80B CSRP3 MTR CLCA2 CYP1A2 98 Table 11. continued Mouse-specific pancRNA-partnered genes Fgf6 Cobl Htr4 Rab30 Neu3 Il25 Fbxo28 Gtf2i Glra1 Rgs9 Ccnt2 Plekhb1 Tab3 Plekhh2 Pirt Sfmbt2 Dlg3 Krt12 Nucks1 Cd19 Krt25 Mtap7d2 Zfp710 Med9 Slc26a3 Arg2 Spna1 Scnn1b Metap2 Kcnj1 Ndnf Armc4 Sync BC002230 Ccdc19 Dock11 Pnpla8 L3mbtl4 Prokr1 Fabp4 Kpnb1 Gpr132 Myoc Cul4b Etl4 Uggt2 Arhgap15 E130309F12Rik Pdcd2l Ddx46 Tsc1 Syp Wnt4 Slc35f2 Armcx4 Cadm2 Rps6ka1 Ckmt2 Itgb6 Rs1 2410004B18Rik Slc26a9 Rlf Gpr139 Tyr Pde8b Baz2b Map3k15 Lphn3 Tfap2d Dscam Arid3c Ccdc130 Ppp3cb Atf2 Asb11 Wdtc1 Ppp1r3a Rictor Tnfsf18 Apc Dhrs2 Api5 Plekha2 Slc16a9 Gpr151 Snx21 Olfr76 Fhl2 Cmbl Vps39 Tenm3 Sh2d4b Ccdc63 Taf7 Olfr1428 Gprc5b Rrm2b Fabp12 Slc7a2 Fgd3 Zfp536 Plekhm3 Gbx1 Slc1a7 Slc38a4 Car3 Pou4f2 Spats2l Setx Ncald Mllt4 Wnt3a Lsg1 Itch Cdyl2 Camp Nkx2-6 Slc6a7 4933402J07Rik Steap4 Ptk2 Eif4e Acsbg1 Txnip Olfr221 Rgs14 Gm572 Lphn1 Zbtb20 Manba Impg1 Med30 Aplnr Epx Gm1043 Igf2bp1 Kansl2 Zdhhc21 Ltf Cnot4 Ankrd45 Dlg2 Gprin2 4933402N03Rik Prpf40b Dab1 Atp2c1 Tasp1 Syt16 Tnrc6a Gdf2 St3gal1 Gpr115 Pde4b Ip6k1 Cntn5 Lingo2 Ctif Ccdc164 Fcrls Tff1 Dock7 2810474O19Rik Atp8b1 Wdr81 Hrh1 Zfp449 Zfyve27 Myom1 Edn2 Dhrs7c Fam190a Ifit2 Tanc2 Lrrc31 E2f2 Pou4f3 Trit1 Resp18 Kcne1 Pnlip Gemin6 Zbtb2 Dnahc1 Napg Dmbx1 Shf Exo1 Fut10 Nkain3 Fam186b Akt3 Csf1r Hp1bp3 Gtf2a2 Spsb1 Chrm3 Col8a2 4930417G10Rik Vip Kat5 Hspg2 Vps8 Plcb4 Adamts6 Stk30 Tmem182 Rev3l Pik3ap1 Rspo1 Atp6v1h Ttc12 Zfp518b Capg Fam150a Dcn Kazald1 Ablim2 Sik3 Bcor Gpr1 Dnahc9 Ifngr1 Sacm1l Sparcl1 Dynlrb2 Erc2 Myct1 Chst3 Gm872 Cbx2 Prkg2 Rasd2 Mthfd1l Gpr156 Las1l Mypn Xiap Prickle2 Zcchc11 Il17rd Mc4r Sh3rf2 Tbata Thoc3 8430419L09Rik Neil2 Spen Gap43 1700007G11Rik 99 Table 11. continued Rat-specific pancRNA-partnered genes Cd82 Skap2 Slc5a9 Rhobtb1 Shisa2 Cyth1 Dao Slc6a13 Spata4 Fam101a Tgm2 Fam222a Snapin P2rx7 Ttll13 Rwdd2b Pgk2 Cldn14 Slc9a4 Adipoq Gdf3 Lnx1 Jup Epgn Lman2 Psen2 Zfp580 Cdx4 Tat Blmh Fam171a1 Il1rn Pla2g2f Gclc Plk3 Clvs1 Olr48 Utp11l Slc30a5 Smpx Eri3 Acox3 Mrps18a Pdlim2 Scgb1a1 RGD1564345 Olr1462 Dnajc11 Tctex1d1 Arhgap25 Ophn1 Fgr Hmcn1 Rin2 Eppin Cald1 Dab2 Ccno Scmh1 Esm1 A1cf Scp2 Myoz1 Alg14 Rgs10 100 2.1% 1.3% 2.8% pancRNA pancRNA DNA pancSh3rf3 pancRNA-partnered gene 3.1% pancVwa5b2 (Table 10) pancRNA pancRNA 2 RNA-seq pancRNA (Hofman, 1982) pancRNA (TSI > 0.95) (r > 0.95) pancRNA pancRNA mRNA pancRNA 29 mRNA 14 101 Directional pancSh3rf3 pancRNA pancSh3rf3 pancRNA (Figure 16A,B) pancSh3rf3 pancVwa5b2 1 pancVwa5b2 pancVwa5b2 Vwa5b2 (Figure 9, 16C, D) pancSh3rf3 mRNA shRNA pancRNA pancRNA mRNA (Figure 17) pancSh3rf3 mRNA pancRNA 14.5 pancSh3rf3 pancVwa5b2 14.5 ßIII-tubulin Gfap pancSh3rf3 ßIII-tubulin (Figure 18) pancSh3rf3 102 A SH3RF3/Sh3rf3 Chimpanzee Macaque Marmoset Mouse Rat Normarized Expression Level 3000 Cerebral Cortex Cerebellum Heart Kidney Liver 2000 1000 0 B pancSH3RF3/pancSh3rf3 Chimpanzee Macaque Marmoset Mouse Rat Normarized Expression Level 150 100 Cerebral Cortex Cerebellum Heart Kidney Liver 50 0 Figure 16. (A) SH3RF3/Sh3rf3 VWA5B2/Vwa5b2 (B) pancSH3RF3/pancSh3rf3 (D) pancVWA5B2/pancVwa5b2 VWA5B2 (C) (D) 103 (C) C VWA5B2/Vwa5b2 Chimpanzee Marmoset Mouse Rat Normarized Expression Level 5000 4000 Cerebral Cortex Cerebellum Heart Kidney Liver 3000 2000 1000 0 D pancVWA5B2/pancVwa5b2 Chimpanzee Marmoset Mouse Rat Normarized Expression Level 500 400 Cerebral Cortex Cerebellum Heart Kidney Liver 300 200 100 0 Figure 16. continued 104 0.8 ** ** 0.6 0.4 0.2 pancRNA 0 Relative Expression Level 1.0 Relative Expression Level 1.2 1.2 1.0 0.8 1.2 1.2 1.2 1.0 1.0 1.0 0.8 0.6 0.6 0.4 0.4 0.2 0 mRNA Vwa5b2 locus 0.8 0.8 0.6 0.6 **0.4 0.4 0.2 0.2 0.2 0 0 ** pancRNA pancRNA * ** 0 1.2 1.2 1.0 1.0 Control pancRNA knockdown 0.8 0.8 ** 0.6 0.4 0.2 0.2 pancRNA ** 0.6 0.4 0 mRNA mRNA Pacsin1 locus 0 y RNA Student 105 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 t Gapdh ** 0 0.4 0.2 0.2 Sh3rf3 RT-PCR p < 0.01; 1.2 mRNA pancSh3rf3 Figure 17. Relative Expression Level Sh3rf3 Pacsin1 locuslocus Relative Expression Level b2 locus pancRNA 0 mR A B Figure 18. pancSh3rf3 pancVwa5b2 14.5 pancRNA 7 (A) GFP ( 250 µm ) ß-III tubulin ( ) (B) GFP Gfap ( ) ßIII-tubulin Gfap 3 0.05 p < 0.01 p< p < 0.01; Student 106 t Gfap pancVwa5b2 pancRNA ßIII-tubulin Gfap (Figure 18) 107 pancVwa5b2 考察 pancRNA pancRNA 5 5 Directional RNA-seq pancRNA (Figure 12A) (Brawand et al., 2011; Chan et al., 2009; Jordan et al., 2005) (Figure 12B) pancRNA pancRNA pancRNA (Figure 11) pancRNA mRNA 5 pancRNA 108 mRNA pancRNA (Figure 12C) pancRNA ncRNA 5 pancRNA 2 pancRNA DNA pancRNA pancRNA pancRNA-partnered gene mRNA mRNA pancRNA pancRNA-partnered gene 5 pancRNA-partnered gene pancRNA-partnered gene 9.6~18.9% (Table 9) pancRNA pancRNA-partnered gene pancRNA-partnered gene pancRNA mRNA 109 pancRNA-partnered gene 5 pancRNA-partnered genes pancRNA-partnered gene pancRNA-lacking gene (Figure 13) pancRNA (Imamura et al., 2004; Tomikawa et al., 2011) Sphk1 pancRNA (Imamura et al., 2001; 2004) DNA pancRNA-partnered gene Vim Nefl Pacsin1 1 (Tomikawa et al., 2011; Uesaka et al., 2014) pancRNA- partnered gene (Figure 14) pancRNA-partnered gene pancRNA pancRNA 110 pancRNA-partnered gene pancRNA pancRNA pancRNA 65~251 mRNA pancRNA pancRNA pancRNA-partnered genes TSI 4 pancRNA-partnered genes TSI (Figure 19) 1 pancRNA pancRNA pancSh3rf3 pancRNA (Figure 16) pancVwa5b2 14.5 2 pancRNA (Figure 9, 17) Sh3rf3 pancRNA 40% shRNA 111 Vwa5b2 Tissue-specificity index 1.00 0.75 Species-specific pancRNA-partnered genes Orthologous genes of species-specific pancRNA-partnered genes 0.50 0.25 0.00 Figure 19. pancRNA-partnered gene 5 pancRNA-partnered gene pancRNA-partnered gene TSI ( ) 112 4 TSI ( ) 5 pancRNA pancRNA pancRNA mRNA pancRNA pancRNA pancSh3rf3 pancVwa5b2 (Figure 18) pancRNA pancRNA 1 Sh3rf3 (Wu et al., 2013) (Figure 20) Vwa5b2 Sh3rf3 Vwa5b2 Sh3rf3 Sh3rf3 Vwa5b2 Sh3rf3 pancRNA Sh3rf3 Vwa5b2 113 Vwa5b2 Vwa5b2 A B Figure 20. SH3RF3/Sh3rf3 VWA5B2/Vwa5b2 SH3RF3 (A) Sh3rf3 (B) (C) VWA5B2 Vwa5b2 114 (D) B Figure 20. continued 115 C D Figure 20. continued 116 D Figure 20. continued 117 Sh3rf3 Sh3rf3 Vwa5b2 Vwa5b2 (Figure 21) Vwa5b2 Sh3rf3 JNK JNK (Hirai et al., 2011; 2002; Kärkkäinen et al., 2006; 2010; Nix et al., 2011) Sh3rf3/pancSh3rf3 Vwa5b2/pancVwa5b2 pancRNA pancRNA DNA ncRNA pancRNA pancRNA pancRNA 21 (Figure 15) pancRNA-partnered gene pancRNA-lacking gene < 0.05) (p pancRNA 118 Vwa5b2 Sh3rf3 150 Normarized Expression Level Normarized Expression Level 1500 1000 500 E11 NSC E14 NSC E14 NSC (4DIV) 100 E18 NSC Neuron Astrocyte Oligodendrocyte 50 0 0 Sh3rf3 Figure 21. 11.5 (E11 NSC) (E14 NSC) (E14 NSC 4DIV) (Neuron) 4 Vwa5b2 14.5 14.5 18.5 (E18 NSC) (Astrocyte) (Oligodendrocyte) 119 pancRNA (Figure 22) DNA RNA DNA pancRNA pancRNA pancRNA 120 A mRNA Promoter region 5' 3' Sequence diversity B ++ − • Mutaion • bGCC • Deamination of 5-methylcytosin mRNA Promoter region 5' 3' Sequence diversity C ++ − mRNA R loop structure 5' 3' pancRNA-mediated transcription regulation pancRNA mRNA 5' 3' pancRNA Sequence diversity + − Figure 22. pancRNA (A) pancRNA (B) pancRNA (Mutaion) GC-biased gene conversion (bGCC) (Deamination of 5-metylcytosin) GC (C) pancRNA pancRNA pancRNA R mRNA mRNA 121 pancRNA 総括 1 pancRNA lncRNA pancRNA pancRNA pancRNA CGI (CpG ) CCG 2 5 pancRNA pancRNA pancRNA pancRNA (Figure 22) pancRNA のレパートリーの進化 2 pancRNA pancRNA (Figure 22A) CGI pancRNA bp 122 50 bp pancRNA-partnered gene DNA DNA pancRNA DNA pancRNA NECAP1 pancRNA NECAP1 5 2 NECAP1 DNA pancRNA NECAP1 (Murshid et al., 2006) NECAP1 (Alazami et al., 2014) NECAP1 pancRNA pancRNA 1 pancRNA CG GC pancRNA 123 GC GC-biased gene conversion (Galtier and Duret, 2007; Galtier et al., 2009) DNA (Lander et al., GC 2001) CGI pancRNA (Figure 22B) (Khaitovich et al., 2005) partnered gene 2 pancRNApancRNA pancRNA pancRNA 124 pancRNA の作用機序解明が多様性研究に与えるインパクト pancRNA pancRNA 1 RNA-DNA DNA- R (Ginno et al., 2012; Uesaka et al., 2014) pancRNA pancRNA pancRNA ( 1 ) HOTTIP RNA pancRNA RNA DNA R (Figure 22C) pancRNA pancRNA 125 pancRNA の比較オミックス解析がもたらす RNA 研究の発展 ncRNA lncRNA RNA-seq pancRNA lncRNA RNA mRNA isoform poly A (Barbosa-Morais et al., 2012; FANTOM Consortium and the RIKEN PMI and CLST (DGT), 2014; Merkin et al., 2012; Necsulea et al., 2014; Ozsolak and Milos, 2011) 5’ RNA 3’UTR RNA piRNA (Araya et al., 2014; Brown et al., 2014; Ho et al., 2014; Yue et al., 2014) pancRNA pancRNA 126 ncRNA 結語 pancRNA 127 謝辞 (GAIN) RNA-seq 128 COE 129 リファレンス Alazami, A.M., Hijazi, H., Kentab, A.Y., and Alkuraya, F.S. (2014). NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J. Med. Genet. 51, 224‒228. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350‒355. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166‒169. Antequera, F. (2003). Structure, function and evolution of CpG island promoters. Cell. Mol. Life Sci. 60, 1647‒1658. Araya, C.L., Kawli, T., Kundaje, A., Jiang, L., Wu, B., Vafeados, D., Terrell, R., Weissdepp, P., Gevirtzman, L., Mace, D., et al. (2014). Regulatory analysis of the C. elegans genome with spatiotemporal resolution. Nature 512, 400‒405. Baker, M. (2011). Long noncoding RNAs: the search for function. Nat. Methods 8, 379‒383. Barbosa-Morais, N.L., Irimia, M., Pan, Q., Xiong, H.Y., Gueroussov, S., Lee, L.J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., et al. (2012). The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587‒1593. 130 Beltran, M., Puig, I., Peña, C., García, J.M., Alvarez, A.B., Peña, R., Bonilla, F., and de Herreros, A.G. (2008). A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 22, 756‒769. Bernstein, B.E., Meissner, A., and Lander, E.S. (2007). The mammalian epigenome. Cell 128, 669‒681. Bird, A. (2007). Perceptions of epigenetics. Nature 447, 396‒398. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6‒21. Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csárdi, G., Harrigan, P., Weier, M., Liechti, A., Aximu-Petri, A., Kircher, M., et al. (2011). The evolution of gene expression levels in mammalian organs. Nature 478, 343‒348. Britten, R.J., and Davidson, E.H. (1969). Gene regulation for higher cells: a theory. Science 165, 349‒357. Brown, J.B., Boley, N., Eisman, R., May, G.E., Stoiber, M.H., Duff, M.O., Booth, B.W., Wen, J., Park, S., Suzuki, A.M., et al. (2014). Diversity and dynamics of the Drosophila transcriptome. Nature 512, 393‒399. 131 Cabianca, D.S., Casa, V., Bodega, B., Xynos, A., Ginelli, E., Tanaka, Y., and Gabellini, D. (2012). A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149, 819 ‒831. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559‒1563. Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., et al. (2012). Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454‒457. Carroll, S.B., Grenier, J.K., and Weatherbee, S.D. (2009). From DNA to diversity: molecular genetics and the evolution of animal design (John Wiley & Sons). Carroll, S.B. (2005). Evolution at Two Levels: On Genes and Form. PLoS Biol. 3, e245. Carroll, S.B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25‒36. 132 Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295‒304. Chan, E.T., Quon, G.T., Chua, G., Babak, T., Trochesset, M., Zirngibl, R.A., Aubin, J., Ratcliffe, M.J.H., Wilde, A., Brudno, M., et al. (2009). Conservation of core gene expression in vertebrate tissues. J Biol. 8, 33. Cortez, D., Marin, R., Toledo-Flores, D., Froidevaux, L., Liechti, A., Waters, P.D., Grützner, F., and Kaessmann, H. (2014). Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488‒493. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature 489, 101‒108. Droit, A., Gottardo, R., Robertson, G., and Li, L. (2014). rGADEM: de novo motif discovery. R package version 2.8.0. Ebralidze, A.K., Guibal, F.C., Steidl, U., Zhang, P., Lee, S., Bartholdy, B., Jorda, M.A., Petkova, V., Rosenbauer, F., Huang, G., et al. (2008). PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev. 22, 2085‒2092. 133 Engström, P.G., Suzuki, H., Ninomiya, N., Akalin, A., Sessa, L., Lavorgna, G., Brozzi, A., Luzi, L., Tan, S.L., Yang, L., et al. (2006). Complex loci in human and mouse genomes. PLoS Genet. 2, e47. FANTOM Consortium and the RIKEN PMI and CLST (DGT) (2014). A promoterlevel mammalian expression atlas. Nature 507, 462‒470. Flicek, P., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., et al. (2011). Ensembl 2012. Nucleic Acids Res. 40, D84‒D90. Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fairley, S., et al. (2013). Ensembl 2013. Nucleic Acids Res. 41, D48‒D55. Fujita, P.A., Rhead, B., Zweig, A.S., Hinrichs, A.S., Karolchik, D., Cline, M.S., Goldman, M., Barber, G.P., Clawson, H., Coelho, A., et al. (2010). The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39, D876‒D882. Galtier, N., and Duret, L. (2007). Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet. 23, 273‒277. 134 Galtier, N., Duret, L., Glémin, S., and Ranwez, V. (2009). GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet. 25, 1‒5. Gehring, W.J., and Ikeo, K. (1999). Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371‒377. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80. Ginno, P.A., Lim, Y.W., Lott, P.L., Korf, I., and Chédin, F. (2013). GC skew at the 5 and 3 ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 23, 1590‒1600. Ginno, P.A., Lott, P.L., Christensen, H.C., Korf, I., and Chédin, F. (2012). R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814‒825. Guenther, C.A., Tasic, B., Luo, L., Bedell, M.A., and Kingsley, D.M. (2014). A molecular basis for classic blond hair color in Europeans. Nat. Genet. 46, 748‒ 752. 135 Hastings, M.L., Ingle, H.A., Lazar, M.A., and Munroe, S.H. (2000). Posttranscriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J. Biol. Chem. 275, 11507‒ 11513. He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303‒1307. Herrera, A.M., Shuster, S.G., Perriton, C.L., and Cohn, M.J. (2013). Developmental basis of phallus reduction during bird evolution. Curr. Biol. 23, 1065‒1074. Hirai, S., Banba, Y., Satake, T., and Ohno, S. (2011). Axon formation in neocortical neurons depends on stage-specific regulation of microtubule stability by the dual leucine zipper kinase-c-Jun N-terminal kinase pathway. J. Neurosci. 31, 6468‒6480. Hirai, S., Kawaguchi, A., Hirasawa, R., and Baba, M. (2002). MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo. Development 129, 4483‒4495. 136 Ho, J.W.K., Jung, Y.L., Liu, T., Alver, B.H., Lee, S., Ikegami, K., Sohn, K.-A., Minoda, A., Tolstorukov, M.Y., Appert, A., et al. (2014). Comparative analysis of metazoan chromatin organization. Nature 512, 449‒452. Hofman, M.A. (1982). Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav. Evol. 20, 84‒96. Imamura, T., Ohgane, J., Ito, S., Ogawa, T., Hattori, N., Tanaka, S., and Shiota, K. (2001). CpG island of rat sphingosine kinase-1 gene: tissue-dependent DNA methylation status and multiple alternative first exons. Genomics 76, 117‒125. Imamura, T., Yamamoto, S., Ohgane, J., Hattori, N., Tanaka, S., and Shiota, K. (2004). Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem. Biophys. Res. Commun. 322, 593‒600. Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300‒1303. Jordan, I.K., Mariño-Ramírez, L., and Koonin, E.V. (2005). Evolutionary significance of gene expression divergence. Gene 345, 119‒126. 137 Katayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., Nishida, H., Yap, C.C., Suzuki, M., Kawai, J., et al. (2005). Antisense transcription in the mammalian transcriptome. Science 309, 1564‒1566. Kärkkäinen, S., Hiipakka, M., Wang, J.H., Kleino, I., Vähä-Jaakkola, M., Renkema, G.H., Liss, M., Wagner, R., and Saksela, K. (2006). Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep. 7, 186‒191. Kärkkäinen, S., van der Linden, M., and Renkema, G.H. (2010). POSH2 is a RING finger E3 ligase with Rac1 binding activity through a partial CRIB domain. FEBS Lett. 584, 3867‒3872. Khaitovich, P., Hellmann, I., Enard, W., Nowick, K., Leinweber, M., Franz, H., Weiss, G., Lachmann, M., and Pääbo, S. (2005). Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850 ‒1854. Kimelman, D., and Kirschner, M.W. (1989). An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59, 687‒696. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217, 624‒626. 138 Kuratani, S. (2004). Evolutionary morphology: Bauplan and embryonic development of vertebrates (Tokyo Daigaku Shuppankai). Kutter, C., Watt, S., Stefflova, K., Wilson, M.D., Gonçalves, A., Ponting, C.P., Odom, D.T., and Marques, A.C. (2012). Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 8, e1002841. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860‒921. Lavia, P., Macleod, D., and Bird, A. (1987). Coincident start sites for divergent transcripts at a randomly selected CpG-rich island of mouse. EMBO J. 6, 2773‒ 2779. Lin, N., Chang, K.-Y., Li, Z., Gates, K., Rana, Z.A., Dang, J., Zhang, D., Han, T., Yang, C.-S., Cunningham, T.J., et al. (2014). An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell 53, 1005‒1019. Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., et al. (2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225‒D229. 139 Matzke, M.A., and Birchler, J.A. (2005). RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24‒35. McLean, C.Y., Reno, P.L., Pollen, A.A., Bassan, A.I., Capellini, T.D., Guenther, C., Indjeian, V.B., Lim, X., Menke, D.B., Schaar, B.T., et al. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471, 216‒219. Merkin, J., Russell, C., Chen, P., and Burge, C.B. (2012). Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 338, 1593‒1599. Metzker, M.L. (2010). Sequencing technologies―the next generation. Nat. Rev. Genet. 11, 31‒46. Meyer, L.R., Zweig, A.S., Hinrichs, A.S., Karolchik, D., Kuhn, R.M., Wong, M., Sloan, C.A., Rosenbloom, K.R., Roe, G., Rhead, B., et al. (2013). The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64‒D69. Moazed, D. (2009). Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413‒420. Moroz, L.L., Kocot, K.M., Citarella, M.R., Dosung, S., Norekian, T.P., Povolotskaya, I.S., Grigorenko, A.P., Dailey, C., Berezikov, E., Buckley, K.M., et 140 al. (2014). The ctenophore genome and the evolutionary origins of neural systems. Nature 510, 109‒114. Morris, K.V., Chan, S.W.-L., Jacobsen, S.E., and Looney, D.J. (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289‒1292. Munroe, S.H., and Lazar, M.A. (1991). Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem. 266, 22083‒22086. Murshid, A., Srivastava, A., Kumar, R., and Presley, J.F. (2006). Characterization of the localization and function of NECAP 1 in neurons. J. Neurochem. 98, 1746‒ 1762. Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J.C., Grützner, F., and Kaessmann, H. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635‒640. Nishi, K., Nishi, A., Nagasawa, T., and Ui-Tei, K. (2013). Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19, 17‒35. 141 Nix, P., Hisamoto, N., Matsumoto, K., and Bastiani, M. (2011). Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. U. S. A. 108, 10738‒10743. Ozsolak, F., and Milos, P.M. (2011). RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12, 87‒98. Pastor, W.A., Aravind, L., and Rao, A. (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341‒356. Peng, X., Thierry-Mieg, J., Thierry-Mieg, D., Nishida, A., Pipes, L., Bozinoski, M., Thomas, M.J., Kelly, S., Weiss, J.M., Raveendran, M., et al. (2014). Tissuespecific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR). Nucleic Acids Res. 43, D737‒D742. Pope, B.D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D.L., Wang, Y., Hansen, R.S., Canfield, T.K., et al. (2014). Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402‒405. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., de Filippo, C., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43‒49. 142 Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276‒277. Romero, I.G., Ruvinsky, I., and Gilad, Y. (2012). Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13, 505‒516. Russo, V.E., Martienssen, R.A., and Riggs, A.D. (1996). Epigenetic mechanisms of gene regulation. (Cold Spring Harbor Laboratory Press). Ruthenburg, A.J., Allis, C.D., and Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15‒30. Sasaki, T., Nishihara, H., Hirakawa, M., Fujimura, K., Tanaka, M., Kokubo, N., Kimura-Yoshida, C., Matsuo, I., Sumiyama, K., Saitou, N., et al. (2008). Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl. Acad. Sci. U. S. A. 105, 4220‒4225. Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., et al. (2012). A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116‒120. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al. (2005). Evolutionarily 143 conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034‒1050. Siomi, H., and Siomi, M.C. (2009). On the road to reading the RNA-interference code. Nature 457, 396‒404. Spigoni, G., Gedressi, C., and Mallamaci, A. (2010). Regulation of Emx2 expression by antisense transcripts in murine cortico-cerebral precursors. PLoS ONE 5, e8658. Sun, J., Nishiyama, T., Shimizu, K., and Kadota, K. (2013). TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14, 219. The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57‒74. Tomikawa, J., Shimokawa, H., Uesaka, M., Yamamoto, N., Mori, Y., Tsukamura, H., Maeda, K.-I., and Imamura, T. (2011). Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J. Biol. Chem. 286, 34788‒34799. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105‒1111. 144 Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511‒515. Turner, A.-M.W., and Morris, K.V. (2010). Controlling transcription with noncoding RNAs in mammalian cells. Biotech. 48, ix‒xvi. Uesaka, M., and Imamura, T. (2012). Cell- to species-level diversity of epigenetic setting for androgen receptor expression in mammals. J. Steroids Hormon. Sci. 01. Uesaka, M., Nishimura, O., Go, Y., Nakashima, K., Agata, K., and Imamura, T. (2014). Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15, 35. Waddington, C.H. (1942). The epigenotype (Endeavour). Wagner, R.W., Smith, J.E., Cooperman, B.S., and Nishikura, K. (1989). A doublestranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl. Acad. Sci. U. S. A. 86, 2647‒2651. Wang, K.C., Yang, Y.W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B.R., Protacio, A., Flynn, R.A., Gupta, R.A., et al. (2011). A long 145 noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120‒124. Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57‒63. Wang, Z., Pascual-Anaya, J., Zadissa, A., Li, W., Niimura, Y., Huang, Z., Li, C., White, S., Xiong, Z., Fang, D., et al. (2013). The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701‒706. Wray, G.A. (2007). The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206‒216. Wu, C., Macleod, I., and Su, A.I. (2013). BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res. 41, D561‒D565. Wu, S.C., and Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607‒620. Yanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., et al. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650‒659. 146 Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B.D., et al. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355‒364. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. 147