Comments
Description
Transcript
新しい拡大則の時代を迎えた世界の大型レーザー研究
新しい拡大則の時代を迎えた 世界の大型レーザー研究 固体レーザーは生き残れるか? 植田憲一 電通大レーザー研、浜松ホトニクス 将来展望を議論するシンポジウム 阪大レーザー研 2013年3月1日 超高出力レーザー関係 国際会議 (この半年だけでも) レーザー核融合だけ見ている時代は終わった。(少なくともレーザー技術については) ICUIL 2012 @ Malibu, Rumania, Sep. 17-21, 2012 (高強度レーザー、レーザー加速) ASILS 2012 @ Tokyo, Nov. 8-9, 2012 IZEST 2012 @ Glasgow Nov. 13-16, 2012 (レーザーと高エネルギー物理) Russian ELI @ Nizhiny Novgorod, Russia, Dec. 3, 2012. LCS 2012 @ Nizhiny Novgorod, Russia, Dec. 4-6, 2012 ICAN WS @ Southampton, UK, Jan. 21-22, 2013 (光コム増幅) (セラミックレーザー) (ファイバーレーザーアレイ) DOE WS on Laser Technologies on Accelerators @ Napa Valley, US, Jan. 23-25, 2013 IZEST DLO WS @ Dusseldorf, Germany, Mar. 21-22, 2013. Damage-Less Optics and C3 (Cascaded Compression Conversion) 将来構想:何年後?装置寿命? 20年?30年?50年? Lamp pump -> LD pump Nd:glass -> ceramic The path to LIFE is a four-step process: 1. NIF: Construction and operation of a laser facility at the scale required for energy production (Achieved 2009) 2. Ignition: Demonstration of net energy gain from fusion fuel (In progress) 3. LIFE demonstration: Integration of all the technologies required for a power station (Planned for mid-2020s) 4. Commercial LIFE fleet: Rollout of LIFE plants onto the electric grid (Late 2020s and beyond) Laser Ceramic Symposium (Kaminskii, Strek, Ueda) 1st International Laser Ceramic Symposium, Warsaw, Poland, 2005 2nd International Laser Ceramic Symposium, Tokyo, Japan, 2006 3rd International Laser Ceramic Symposium, Paris, France, 2007 4th International Laser Ceramic Symposium, Shanghai, China, 2008 5th International Laser Ceramic Symposium, Biobao, Spain, 2009 6th International Laser Ceramic Symposium, Munster, Germany, 2010 7th International Laser Ceramic Symposium, Singapore, 2011 8th International Laser Ceramic Symposium, Nizhny Novgorod, Russia, 2012 5th Laser Ceramics Symposium: International Symposium on Transparent Ceramics for Photonic Applications Bilbao, Spain, December 9-11, 2009 1064 nm Absorption in YAG Ceramics and Single crystals Absorption Coefficient (ppm/cm) 10000 Reactive Sintered Ceramics 1000 Non-Reactive Sintered Ceramics Al2O3 100 single crystal (Standard 1) Ceramic SC 10 YAG Nd:YAG Gd:YAG Tm:YAG Yb:YAG Fused silica (Standard 2) Gaume, LCS 2010, Munster Nature of Scattering Centers Non-reactive sintering is essential from stoichiometry. Effect of deviations from stoichiometry on the nature of scattering centers Non‐reactive sintering is important for ceramics fabrication.: conclusion of Gaume and Ueda phase diagram issue Vp(defect) From Fit to Mie’s Model V(Al2O3) calculated Vp(Al2O3_calculated) V(YAlO3) calculated Vp(YAP_calculated) Pore density (cm‐3) Volume fraction of inclusions Vp2defect 0.01 Stoichiometric point 1E-3 Al2O3 rich -1.0 -0.8 Al2O3 rich Y2O3 rich -0.6 -0.4 -0.2 0.0 0.2 0.4 stoichio(mol %) Deviation from stoichiometry (mol %) 0.6 0.8 Y2O3 rich 1.0 Deviation from stoichiometry (mol %) The reason of 10 times smaller scattering in nano‐crystalline powder sintering is stoichiometric control of ceramics. It is very hard to keep stoichiometric condition in reactive sintering. : Our conclusion. Importance for controlling the stoichiometry Stoichiometry control during the whole process! Powder phase purity of YAG YAG Phase formation Densification Raw materials Processing: weighting errors, concentration of the starting solution (wet chemistry), moisture and absorbing, uniformity of the power, powder mixing process… Microstructure Optical Quality! Scattering loss @1064 nm: single pass Scattering loss measurements setup Nd:YAG-3 is a control sample: 0.6 at.%---Konoshima Chemicals The fabricated ceramics owns pretty good optical quality The single pass scattering loss is around 0.001~0.003 cm-1 TEXTRON: Nd:YAG ceramics, ~100 kW Northrop-Grumman’s high power laser system: 105 kW, 85 min 中国、ロシアからの情報 Now ceramic lasers are moving to 600 kW~1 MW level! Requirements for HiPER Laser gain material •1 kJ beamlet • • ~ 1 kJ beamlet 10 off 22 cm aperture slabs 5000 cm3 ceramic Yb:YAG •10 kJ bundle • • 10 beamlets = 100 slabs 50,000 cm3 ceramic Yb:YAG •IFE plant with 50 beamlines (0.5 MJ) • • 50 beamlines = 10,000 slabs 2.5 m3 ceramic Yb:YAG Large aperture Faraday rotator ~ 10 kJ bundle •Aperture 10 to 20 cm capable of handling 10 kW average power •Ceramic TGG/GGG ? 2nd ICFA/ICUIL Joint WS in LBNL, US 9/20‐22/2011 High energy Short pulse High rep rate Wall plug eff. 2 m is better High power 30fs/30J module Wavefront dividing interference generates satelite lobes by diffraction theory. Diffraction pattern 波面分割型干渉によるビーム結合は、空間強度変調によるサテラ イトピークの発生により、半分以上の光は集光できない光となる。 強度分割型干渉によるビーム結合が不可欠という(私の)結論 米国は T.Y. Fan (MIT, Lincoln Lab.)の Spectrum Beam Combining へ Jenaグループのアイデア:高次回折光からのビーム結合 (同一波長ビーム ただし、強度比は大きい。) 高次回折光への分散 高次回折光からのビーム結合 透過型回折格子の場合 以下は、IZEST、DOE WSにおける私の提案 Ceramic Laser Technology and Thermal Management Ken-ichi Ueda Institute for Laser Science Univ. of Electro-Communications Chofu, Tokyo Japan [email protected] DOE WS in Napa Valley, CA, US Jan. 24, 2013 Fiber laser array DOE/DOD MOU for HPL Solid state laser FEL We have MJ, PW, fs lasers today. We need another scaling for our future. NIF and LMJ are almost scaling limit in a conventional large aperture amplifier system. Multi‐stage amplifier & Aperture scaling 40 x 40 cm beam Scaling limit Beam number scaling: Coherent addition in parallel: Phase matched beams Small and thin amplifiers Coherent combining of small beams: Scaling is unlimited. Phase control feedback tech is key. Beam combination Aperture scaling: Coherent addition in series: Laser Amplification Scaling is limited by ASE and heating. Automatic phase locked by stimulated emission process. Osc Pre-Amp Main-Amp Boost-Amp We need paradigm shifting technology. Another type of power scaling. Aperture scaling to Coherent beam combining or These combination Combination of Amplitude Dividing Beam Combining and Aperture Scaling We need high quality and large aperture amplifiers. 0.5 5 1.0 0.5 1 0 5 50 5 x10 amplifiers 100 50 5 500 50 1000 x10 amplifiers Constant Fluence amplification concept 50 500 x10 amplifiers Thin Disk Laser: 1. Reflection geometry of thin disks (Active mirror concept) 2. Transmission geometry of thin disks 透過型Thin Disk 増幅器の提案 My proposal: Transmitting thin disk laser 透過光学系であるべきだ。 Transmission optics is better than reflection optics for monochromatic light. Wavefront distortion is always small in transmission optics. 波面歪みは透過光学系の方が“必ず”よい。 冷却と熱問題の解決が最も重要 How to solve the problem on wavefront distortion? • Propagation mode control fiber laser • Beam cleaning tech in OPCPA, SRS, SBS including phase conjugating optics. • Efficient cooling geometry thin disk laser • Efficient cooling tech high speed He cooling & multi‐disk geometry • What is next? Efficient cooling system for solid state lasers LLNL Mercury laser 1 mm gap He cooling 50 psi 0.1 Mach flow velocity 1-3 W/cm2 cooling 50 psi = 3.4 atm 100 m/s flow DiPOLE Amplifier Concept ~175K • Diode-pumped multi-slab amplifier • • Ceramic Yb:YAG gain medium Co-sintered absorber cladding for ASE suppression • Distributed face-cooling by stream of cold He gas • Low overall aspect ratio & high surface area • Operation at cryogenic temperatures • • • Higher o-o efficiency – reduction of re-absorption Increased gain cross-section Better thermo-optical & thermo-mechanical properties • Graded doping profile • • Equalised heat load in each slab Reduces overall thickness (up to factor of ~2) • Scalable design • 10 J, 100 J & 1 kJ Schematic of 1 kJ head design Circulation cooling is available for liquid lasers (My Work in Osaka Univ.) 600 J output modular-type amplifier 500 kV, 4x100 kA ASE limited amplifier 600J from 30x20x100 cm3 @ 10%/cm gain, 1MJ/cc pump 600 kJ from 3x2x10 m3 @ 1%/cm gain, 100 kW/cc pump Electra 30 cm x 30 cm Amplifier stage Electra title page 730 J Plano-Parallel Oscillator ~100 ns FWHM, 5 Hz operation E-Beam KrF Pump Source 500 kV, 110 kA 140 ns pulse Laser gas recirculates (provides cooling and quiescent flow) Discharging through the 1:12 step-up transformer Charging of the PFL to 1 MV (3-4 s) 30x30 x100 cm Capacitor charging to +/- 43 kV (>160 ms) Gas flow = 8.7 m/s for 5 Hz operation Discharge Gas flow 3D orthogonal system in high rep. rate discharge laser KrF, ArF, XeCl laser TEA CO2 laser Laser beam Cooling section Most efficient cooling is achieved by exhauting hot material from lasing volume. Comparison between Nd:YAG, Nd:glass, Yb:YAG, Ti:sapphire, KrF, and CO2 lasers Solid state lasers High efficiency pumping High density pumping High density heating Small volume Thermal lens problem Operating in thermal equilibrium condition Gas lasers Low density Low efficiency pumping Large volume Low distortion Heat (removal) capacity is large in solid state. 1. Solid state laser vs Gas laser YAG KrF Ratio density [g/cc] 4.55 0.00498 914 Specific heat [J/g/K] 0.59 0.33 1.79 Specific heat [J/cc/K] 2.68 0.00164 1634 14 m/s 7.8 ms for 3.5”” HD drive @7200 rpm in ELECTRA @ 5 Hz operation Typical moving speed [m/s] comparable 2. Solid state laser vs Liquid laser Optical distortion Disk rotation Liquid circulation Nothing n P (pressure drop) Pressure gap is a driving force of liquid flow. Unavoidable! Moving active medium lasers: glass laser system Thermal conductivity is low Byer/HOYA moving slab SIOM/China Rotation Active area Moving slab 50cm/s Cooling Lamp pumping Cooling chamber Lamp house Tube‐type glass laser Moving speed is not so high, because the active media are so heavy. Merging of electronics and laser tech.: Is it possible? High technology in opto‐electronics area might be available for our future. High Speed Rotary Thin Disk for efficient cooling of solid state lasers Most efficient cooling is fast movement of hot material from lasing volume. High speed rotation of thin disk laser is one of the good ideas. What is a commercial Hard Disk Device? Effect of mass production. 500 GB HD: Only $50 3.5 inch in diameter High speed motor 7200 rpm power 2.4 – 4 W @120 Hz Edge speed >14 m/s Gap space: 10 nm A commercial Hard Disk technology is available for transmissiontype thin disk laser amplifiers. Al -> glass -> ceramic : existing technology Platter, ceramic disk 3.5 inches 0.63 mm thick Mirror finish < nm YAG ceramic disk is available. 10 times larger thermal conductivity. Al Glass 15 nm Composed from two original images IBM Corporation Cooling power of high speed rotary thin disk laser R=1600 for 5mm beam, 5 Hz pumping For short pulse pumping No thermal lensing is possible Dynamic scaling for pulse pumping Transmission thin disk laser He gas N Hz rotation Ceramic laser Cooling plate Lasing Hard Disk Driver: Basic Components for Coherent Beam Combining. Multiple transparent thin disks Multiple Lasing HD stages We need new ideas for our future. Laser plasma accelerator is a really new regime. We need new technology for new science. How to realize a photonic century? 温故知新 We learn a lot from past, knowledge and experiences. They are always fresh enough.