Comments
Description
Transcript
立命館大学審査博士論文 神経系における細胞骨格関連 - R-Cube
Novel functions of cytoskeletal protein ezrin in nervous system 2015 3 March, 2015 Doctoral Program In Advanced Life Sciences Graduate School of Life Sciences Ritsumeikan University MATSUMOTO Yosuke Supervisor Professor ASANO Shinji 1 7 14 14 19 21 21 RhoA/ROCK RhoA 23 25 26 27 28 29 33 1 Dotti et al., 1988; Arimura and Kaibuchi, 2007 1-1 º 1 º 2 3 4/5 1 1 Rho GTPase RhoA Rac1 Cdc42 1-2 Govek et al., 2005 Dent and Getler, 2003; Gupton and Gertler, 2010 Rho GDP GTP Rho Rac1 Cdc42 p21-activated kinase PAK Hayashi et al., 2007 Rho kinase RhoA ROCK Redmond and Ghosh, 2001 II myosin light chain 2 MLC2 ROCK Kollins et al., 2009 Rho Schmidt and Hall, 2002; Tcherkezian and Lamarche-Vane, 2007 Rho guanine nucleotide exchange factor GDP Rho GTP 1-3A GTPase-activating protein RhoGAP GDP RhoGEF Rho GTPase Rho nucleotide dissociation inhibitor RhoGDI GTP 1-3B Rho Rho GDP 1-3C 2 Rho Rho guanine Ezrin/Radixin/Moesin º Tsukita and Yonemura, 1999 1-4 ERM N four-point-one, ezrin, radixin, moesin FERM C II nf2 ERM FERM 85% º 61% 84% ERM ERM º ERM N C phosphatidylinositol 4,5-bisphosphate PIP2 1-5 3T3 lysophosphatidic acid LPA 567 º ROCK C 564 º C 3 558 311-583 564 FERM Matsui et al., 1998 RhoA/ROCK C RhoA N FERM Takahashi et al., 1997 RhoA GDP RhoGDI RhoGDI RhoA Vil2-/- Casaletto et al., 2011 LLC-PK1 Speck et al., 2003 RhoA RhoA RhoA/ROCK RhoA ERM 13H9 ERM ERM Goslin et al., 1989; Everett and Nichol, 1990 º Paglini et al., 1998 º 4 Vil2kd/kd 1 Tamura et al., 2005 Vil2+/+ Vil2kd/kd Vil2kd/kd Vil2kd/kd Vil2+/+ Vil2+/+ RhoA Vil2kd/kd 3 RhoA/ROCK MLC2 Rac1 ROCK Cdc42 Vil2+/+ II Vil2kd/kd Vil2kd/kd 8 Vil2+/+ V V RhoA/ROCK/MLC2 5 2 ERM lrrk2 repeat kinase 2 LRRK2 leucine-rich Jaleel et al., 2007: Parisiadou et al., 2009 6-hydroxydopamine 6-OHDA 6-OHDA iPS 6 Vil2kd/kd Tamura et al., 2005 Vil2kd/kd C57BL/6J Jcl ICR 12 BKC Vil2kd/kd 2 3 1-6 Tamura et al., 2005 5% 10% Tamura et al., 2005 Hatano et al., 2013 3 mm 95ºC 10 Hatano et al., 2014 50 mM 10 1 M Tris-HCl 12,000 rpm pH 8.0 PCR KOD FX TOYOBO PCR º 7 1 PCR 380 bp 290 bp PCR Vil2+/+: Vil2+/kd: Vil2kd/kd = 1:2:1 15.5 HBSS 0.25% trypsin/EDTA Invitrogen 20 Viesselmann et al., 2011 10% FBS Invitrogen 24 60 mm B27 Invitrogen 37.5 mM NaCl Neurobasal GlutaMAX Invitrogen 0.3% glucose Invitrogen 5% blebbistatin Opti-MEM 15 0.1 mg/ml poly-D-lysine CO2 37ºC 40 µM Y-27632 37ºC Wako 50 µM Wako 10 mM pH 7.4 4% 4% 15% º 2 º 100 mM 20 µm 0.3% TritonX-100 8 100 mM 4 C 2 IgG 4 4 C Vector IgG 2 Vector VECTASTIN ABC 0.02% DAB 0.0045% º Vector 0.3% ( 50 mM Tris-HCl ) pH 7.6 º FD Rapid GolgiStain Kit FD NeuroTechnologies 250 µm º º Axioplan II, Carl Zeiss º 95% º 50% 1 15 1 2 2 70% 2 70% 0.5% 1 95% 2 50% 100% Axioplan II, Carl Zeiss 9 1 1 1 4% 4% 10 º 0.1% Triton X-100 BSA 4ºC 10 1% 30 4ºC 2 fluorescein isothiocyanate FITC Jackson ImmunoResearch Alexa Fluor 633 45 IgG IgG Vector rhodamine phalloidin Invitrogen FV-1000D FV-10i Olympus Hirai et al., 2011 10 µm 1 3 Shelly et al., 2007 ImageJ 40 µm 2 40 µm 2 neuronal class III β-tubulin NeuronJ º protease inhibitors Nacalai Tesque 5 mM Tris-HCl, pH 7.4, 250 mM sucrose 10 lysis buffer 20 4ºC 17,500×g protease inhibitors phosphatase inhibitors Nacalai Tesque Cell BioLabs RIPA buffer 25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS 10 50 mM Tris-HCl, pH 6.8, 2% SDS, 2% 2-mercaptoethanol, 20% glycerol, 0.01% BPB SDS-PAGE 5 PVDF 2 HRP 95ºC 5% 60 Millipore 4ºC 14,000×g SDS IgG 10 IgG 4ºC Millipore 1 HRP Immobilon Western Chemiluminescent HRP Substrate Millipore LAS-3000 Fujifilm ImageJ Rho lysis buffer 25 mM HEPES, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 10 mM MgCl2, 2% glycerol 14,000×g 4ºC 10 GST-rhotekin-RBD Cytoskeleton 11 GST-PAK-PBD Cell BioLabs RhoA 3 1 Rac1 Cdc42 lysis buffer SDS SDS-PAGE 4ºC 5 PVDF 95ºC RhoA Rac1 Cdc42 6 1 cm 2.7 mm bregma Uhobby 0.8 mm 0.02% 6-OHDA 2 µl 0.7 mm 10 µg 5 6-OHDA 2 6 6-OHDA 18 5 3 100 cm 10 cm º º 2 cm 24 C 15 º 12 15 º 1 10 º 3 I II III IV 4 I I 1 cm º 10 cm º 4 60 SMART º Bio Research Center º 10 º 1 º 2 7 60 º º I % º 2 HPLC EDTA 50 mg/l 3,4-dihydroxybenzylamine hydrobromide 0.1 N dihydroxyphenylacetic acid 15 DOPAC 13 4ºC 15,000×g Vil2+/+ Vil2+/+ 2-1 1 Vil2kd/kd 3 Vil2kd/kd 1 Vil2kd/kd 2-2A Vil2+/+ 80 kDa 2-2B Vil2kd/kd Vil2+/+ 10 µg Vil2kd/kd Vil2kd/kd 5% 14 1 µg 0.5 µg Vil2kd/kd neuronal class III β-tubulin rhodamine phalloidin 2-3A,B Vil2+/+ 48 Vil2kd/kd 2-3C Vil2+/+: 8.8 ± 1.4% Vil2kd/kd 1 Vil2kd/kd: 17.3 ± 2.3% Vil2+/+: 55.8 ± 4.2% 3 Vil2kd/kd: 43.1 ± 4.1% 3 Vil2kd/kd Vil2+/+: 2.7 ± 0.2 Vil2kd/kd: 1.5 ± 0.2 2-3D 2-3E,F 96 Vil2+/+ 2-4A,B Vil2kd/kd 48 Vil2+/+: 4.2 ± 0.6 Vil2kd/kd: 1.4 ± 0.2 2-4C 2-4D,E Vil2kd/kd RhoA GTPase RhoA Rac1 Cdc42 Govek et al., 2005; Negishi and Katoh, 2002 Vil2kd/kd RhoA Rac1 RhoA 15 Cdc42 GTP Vil2kd/kd RhoA Vil2+/+ RhoA 2-5A,D Vil2+/+ Rac1 3 2-5B,E Cdc42 2-5C,F Vil2kd/kd RhoA Vil2kd/kd RhoA MLC2 2-6A,B MLC2 ROCK º Vil2+/+ 2-6C,D Vil2kd/kd Y-27632 2-7A,B MLC2 ERM 2-7C-E MLC2 Vil2kd/kd ROCK ROCK ROCK º II Vil2kd/kd RhoA RhoA ROCK Y-27632 Bito et al., 2000; Ishizaki et al., 2000; Da Silva et al., 2003; Peris et al., 2012 ROCK Vil2kd/kd 16 Y-27632 2-8A-D Vil2kd/kd DMSO 2-8E Vil2+/+ Vil2+/+ Vil2kd/kd Y-27632 DMSO Y-27632 DMSO 2-8E Vil2+/+ Y-27632 Vil2kd/kd Y-27632-treated Vil2+/+: 4.0 ± 0.3, Y-27632-treated Vil2kd/kd: 3.4 ± 0.3 Y-27632 2-8F,G Vil2kd/kd ROCK II blebbistatin Vil2+/+ Y-27632 2-8E 2-9A,B Vil2kd/kd blebbistatin DMSO blebbistatin 2-9C Vil2+/+ DMSO blebbistatin Vil2kd/kd blebbistatin-treated Vil2+/+: 7.7 ± 0.8, blebbistatin -treated Vil2kd/kd: 8.4 ± 1.0 2-9C ROCK 2-9D,E RhoA/ROCK/MLC2 2-10 17 Vil2kd/kd Vil2kd/kd Vil2kd/kd 2-11 Vil2kd/kd 2-12A Vil2kd/kd Vil2+/+: 368.0 ± 16.1 µm, Vil2kd/kd: 2-12B 299.3 ± 4.5 µm 2-12C Vil2kd/kd V neuronal class III β-tubulin 2-13A microtubule associated proteins 2 MAP2 2-13B 2-14A,B 6 2/3 Larkum et al., 1999 5 1 1 2/3 5 Laramée et al., 2013 Vil2kd/kd V 18 2-14C Vil2+/+: 212.4 ± 8.5 µm, Vil2kd/kd: 159.9 ± 11.7 µm 2-14D 6-OHDA Vil2+/+: 4.9 ± 0.3, Vil2kd/kd: 4.0 ± 0.2 6 % º 6-OHDA 3-1A º 50% 6-OHDA 3-1B 6-OHDA 18 6 6-OHDA º % 2 3-2A 6 º 40% 6-OHDA 3-2B 6-OHDA TH L-DOPA 19 L-DOPA DOPA 6-OHDA TH 6-OHDA TH 3-3A DOPAC HPLC 6-OHDA DOPAC 3-3B,C 6-OHDA º 3-4 6-OHDA 2 º 20 6-OHDA RhoA/ROCK/MLC2 RhoA ROCK 1C11 Da Silva et al., 2003 II RhoA Dent et al., 2007; Kollins et al., 2009 RhoA II RhoA MLC2 II Vil2+/+ Amano et al., 1998; Krey et al., 2013 RhoA/ROCK MLC2 II 2-10A Vil2kd/kd blebbistatin ROCK RhoA/ROCK/MLC2 2-10B II 2-8,9 Y-27632 Vil2kd/kd blebbistatin Y-27632 2-9D,E II 21 Vil2+/+ Vil2kd/kd V in vitro in vivo ERM Goslin et al., 1989; Antoine-Bertrand et al., 2011; Marsick et al., 2012 º Gonzalez-Agosti and Solomon, 1996 º microscale chromophore-assisted laser inactivation micro-CALI º al., 1999 30% º Castelo et º Paglini et al., 1998 º ERM deleted in colorectal carcinoma DCC netrin-1 Netrin-1 ERM ERM Antoine-Bertrand et al., 2011 N1E-115 DCC DCC C siRNA 22 55% netrin-1 netrin-1 º Vil2kd/kd 5% º 3 Everett and Nichol, 1990; Paglini et al., 1998 2-1 RhoA GTPase RhoA Rac1 Cdc42 Govek et al., 2005 RhoA/ROCK/MLC2 23 Speck LLC-PK1 Speck et al., 2003 RhoA RhoA Vil2−/− Casaletto MLC2 Casaletto et al., 2011 RhoA Vil2kd/kd RhoA/ROCK/MLC2 Schmieder MDCK RhoGDI podocalyxin RhoA Schmieder et al., 2004 RhoA 1 Rac1 Cdc42 PAK Hayashi et al., 2007; Redmond and Ghosh, 2001 FERM Rac1 Schulz et al., 2010 RhoA GTPase 24 RhoA/ROCK RhoA ROCK Matsui et al., 1998; Jeon et al., 2002 RhoA/ROCK 4-1A ROCK Vil2+/+ Y-27632 º 2-7A,C-E Vil2kd/kd RhoA º 2-6C,D ERM ROCK RhoA/ROCK 4-1B ERM 3-kinase PI3 kinase phosphoinositide protein kinase C PKC LRRK2 Gallo, 2008; Parisiadou et al., 2009; Kim et al., 2010 LRRK2 G2019S lrrk2 2019 Jaleel et al., 2007 LRRK2 G2019S º ERM Parisiadou et al., 2009 25 ERM ERM 3-4 ERM º ERM Kashimoto et al., 2013 Vil2kd/kd 26 1. RhoA/ROCK/MLC2 2. ERM Vil2kd/kd in vitro in vivo 1 27 Vil2kd/kd HPLC 1. Matsumoto Y, Inden M, Tamura A, Hatano R, Tsukita S, Asano S. Ezrin mediates neuritogenesis via down-regulation of RhoA activity in cultured cortical neurons. PLoS One. 2014 Aug 21;9(8):e105435. 2. Matsumoto Y, Murakami H, Hattori N, Yoshimoto K, Asano S, Inden M. Excessive expression of hippocampal ezrin is induced by intrastriatal injection of 6-hydroxydopamine. Biol Pharm Bull. 2011;34(11):1753-8. 28 1. Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells. 1998 Mar;3(3):177-88. 2. Antoine-Bertrand J, Ghogha A, Luangrath V, Bedford FK, Lamarche-Vane N. The activation of ezrin-radixin-moesin proteins is regulated by netrin-1 through Src kinase and RhoA/Rho kinase activities and mediates netrin-1-induced axon outgrowth. Mol Biol Cell. 2011 Oct;22(19):3734-46. 3. Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci. 2007 Mar;8(3):194-205. 4. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki T, Narumiya S. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron. 2000 May;26(2):431-41. 5. Casaletto JB, Saotome I, Curto M, McClatchey AI. Ezrin-mediated apical integrity is required for intestinal homeostasis. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11924-9. 6. Castelo L, Jay DG. Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol Biol Cell. 1999 May;10(5):1511-20. 7. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG. RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol. 2003 Sep 29;162(7):1267-79. 8. Dent EW, Gertler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron. 2003 Oct 9;40(2):209-27. 9. Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB. Filopodia are required for cortical neurite initiation. Nat Cell Biol. 2007 Dec;9(12):1347-59. 10. Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci. 1988 Apr;8(4):1454-68. 11. Everett AW, Nichol KA. Ezrin immunoreactivity in neuron subpopulations: cellular distribution in relation to cytoskeletal proteins in sensory neurons. J Histochem Cytochem. 1990 Aug;38(8):1137-44. 29 12. Gallo G. Semaphorin 3A inhibits ERM protein phosphorylation in growth cone filopodia through inactivation of PI3K. Dev Neurobiol. 2008 Jun;68(7):926-33. 13. Gonzalez-Agosti C, Solomon F. Response of radixin to perturbations of growth cone morphology and motility in chick sympathetic neurons in vitro. Cell Motil Cytoskeleton. 1996;34(2):122-36. 14. Goslin K, Birgbauer E, Banker G, Solomon F. The role of cytoskeleton in organizing growth cones: a microfilament-associated growth cone component depends upon microtubules for its localization. J Cell Biol. 1989 Oct;109(4 Pt 1):1621-31. 15. Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev. 2005 Jan 1;19(1):1-49. 16. Gupton SL, Gertler FB. Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis. Dev Cell. 2010 May 18;18(5):725-36. 17. Hatano R, Akiyama K, Tamura A, Hosogi S, Marunaka Y, Caplan MJ, Ueno Y, Tsukita S, Asano S. Knockdown of ezrin causes intrahepatic cholestasis by the dysregulation of bile fluidity in the bile duct epithelium. Hepatology. 2014 Oct 13. 18. Hatano R, Fujii E, Segawa H, Mukaisho K, Matsubara M, Miyamoto K, Hattori T, Sugihara H, Asano S. Ezrin, a membrane cytoskeletal cross-linker, is essential for the regulation of phosphate and calcium homeostasis. Kidney Int. 2013 Jan;83(1):41-9. 19. Hayashi K, Ohshima T, Hashimoto M, Mikoshiba K. Pak1 regulates dendritic branching and spine formation. Dev Neurobiol. 2007 Apr;67(5):655-69. 20. Hirai S, Banba Y, Satake T, Ohno S. Axon formation in neocortical neurons depends on stage-specific regulation of microtubule stability by the dual leucine zipper kinase-c-Jun N-terminal kinase pathway. J Neurosci. 2011 Apr 27;31(17):6468-80. 21. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000 May;57(5):976-83. 22. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem J. 2007 Jul 15;405(2):307-17. 23. Jeon S, Kim S, Park JB, Suh PG, Kim YS, Bae CD, Park J. RhoA and Rho kinase-dependent phosphorylation of moesin at Thr-558 in hippocampal neuronal cells by glutamate. J Biol Chem. 2002 May 10;277(19):16576-84. 24. Kashimoto R, Yamanaka H, Kobayashi K, Okubo M, Yagi H, Mimura O, Noguchi K. 30 Phosphorylation of ezrin/radixin/moesin (ERM) protein in spinal microglia following peripheral nerve injury and lysophosphatidic acid administration. Glia. 2013 Mar;61(3):338-48. 25. Kim HS, Bae CD, Park J. Glutamate receptor-mediated phosphorylation of ezrin/radixin/moesin proteins is implicated in filopodial protrusion of primary cultured hippocampal neuronal cells. J Neurochem. 2010 Jun;113(6):1565-76. 26. Kollins KM, Hu J, Bridgman PC, Huang YQ, Gallo G. Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity. Dev Neurobiol. 2009 Apr;69(5):279-98. 27. Krey JF, Paşca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, Dolmetsch RE. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013 Feb;16(2):201-9. 28. Laramée ME, Rockland KS, Prince S, Bronchti G, Boire D. Principal component and cluster analysis of layer V pyramidal cells in visual and non-visual cortical areas projecting to the primary visual cortex of the mouse. Cereb Cortex. 2013 Mar;23(3):714-28. 29. Larkum ME, Zhu JJ, Sakmann B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 1999 Mar 25;398(6725):338-41. 30. Marsick BM, San Miguel-Ruiz JE, Letourneau PC. Activation of ezrin/radixin/moesin mediates attractive growth cone guidance through regulation of growth cone actin and adhesion receptors. J Neurosci. 2012 Jan 4;32(1):282-96. 31. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol. 1998 Feb 9;140(3):647-57. 32. Negishi M, Katoh H. Rho family GTPases as key regulators for neuronal network formation. J Biochem. 2002 Aug;132(2):157-66. 33. Paglini G, Kunda P, Quiroga S, Kosik K, Cáceres A. Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons. J Cell Biol. 1998 Oct 19;143(2):443-55. 34. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J 31 Neurosci. 2009 Nov 4;29(44):13971-80. 35. Peris B, Gonzalez-Granero S, Ballester-Lurbe B, García-Verdugo JM, Pérez-Roger I, Guerri C, Terrado J, Guasch RM. Neuronal polarization is impaired in mice lacking RhoE expression. J Neurochem. 2012 Jun;121(6):903-14. 36. Redmond L, Ghosh A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol. 2001 Feb;11(1):111-7. 37. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002 Jul 1;16(13):1587-609. 38. Schmieder S, Nagai M, Orlando RA, Takeda T, Farquhar MG. Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. J Am Soc Nephrol. 2004 Sep;15(9):2289-98. 39. Schulz A, Geissler KJ, Kumar S, Leichsenring G, Morrison H, Baader SL. Merlin inhibits neurite outgrowth in the CNS. J Neurosci. 2010 Jul 28;30(30):10177-86. 40. Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell. 2007 May 4;129(3):565-77. 41. Speck O, Hughes SC, Noren NK, Kulikauskas RM, Fehon RG. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature. 2003 Jan 2;421(6918):83-7. 42. Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem. 1997 Sep 12;272(37):23371-5. 43. Tamura A, Kikuchi S, Hata M, Katsuno T, Matsui T, Hayashi H, Suzuki Y, Noda T, Tsukita S, Tsukita S. Achlorhydria by ezrin knockdown: defects in the formation/expansion of apical canaliculi in gastric parietal cells. J Cell Biol. 2005 Apr 11;169(1):21-8. 44. Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007 Feb;99(2):67-86. 45. Tsukita S, Yonemura S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem. 1999 Dec 3;274(49):34507-10. 46. Viesselmann C, Ballweg J, Lumbard D, Dent EW. Nucleofection and primary culture of embryonic mouse hippocampal and cortical neurons. J Vis Exp. 2011 Jan 24;(47). pii: 2373. 32 Primer GenoA1 EK29 En2A 1 Sequence 5’-CATGGTGCCACACAGGACTC-3’ 5’-GTGTGGCACTCTGCCTTCAAG-3’ 5’-AGCGGATCTCAAACTCTCCTC-3’ Primer sequences used in genotyping. Antigen Ezrin Source Cell Signaling Technology Species (Clone) Rabbit Ezrin Acris Mouse (3C12) Radixin Moesin pan-ERM phospho-ERM GAPDH β-actin α-tubulin Class III β-tubulin Class III β-tubulin MAP2 MLC2 Phospho-MLC2 RhoA Rac1 Cdc42 TH Gift from Dr. Tsukita Gift from Dr. Tsukita Cell Signaling Technology Cell Signaling Technology Sigma Cell Signaling Technology Abcam Covance Sigma Chemicon Cell Signaling Technology Cell Signaling Technology Cytoekeleton Cell BioLabs Cytoekeleton Sigma Rat (R21) Mouse (2287) Rabbit Rabbit Rabbit Rabbit Mouse Rabbit Mouse (2G10) Mouse (HM-2) Rabbit Rabbit Mouse Mouse Mouse Mouse 2 Antibodies used in this study. 33 Dilution (Application) 1:1000 (WB) 1:100 (IF) 1:1000 (WB) 1:100 (IHC) 1:1000 (WB) 1:1000 (WB) 1:1000 (WB) 1:1000 (WB) 1:5000 (WB) 1:5000 (WB) 1:100 (IF) 1:100 (IF) 1:5000 (IHC) 1:3000 (IHC) 1:100 (WB) 1:100 (WB) 1:500 (WB) 1:500 (WB) 1:500 (WB) 1:10000 (IHC) Stage 1 Stage 2 Stage 3 Stage 4/5 Dendrites Filopodia Spines Lamellipodia Neurites Axon Growth cone 1-1 Schematic representation of morphological changes in cultured neurons. ↓ ↓ ↓ RhoA Rac1 Cdc42 ↓ ↓ ↓ ROCK PAK PAK ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Retraction 1-2 Elongation Rho signaling pathways in neuronal morphogenesis. 34 A RhoGEF Rho GDP →→→→→ Rho GEF ↓ ↓ ↓ Rho activity: Increased GTP Effector B RhoGAP Rho GDP ←←←←← Rho GAP ↓ ↓ ↓ Rho activity: Decreased GTP Effector C RhoGDI Rho GDP →→→→→ ↓ ↓ ↓ GDI Rho activity: Decreased 1-3 Rho Effector Regulation of Rho GTPase activities. 35 GTP N C Four-point-one, ezrin, radixin, moesin (FERM) domain Ezrin Actin binding domain T567 Phosphorylation Radixin 85% 586 T564 583 Moesin 84% T558 577 Merlin 61% 591 1-4 Structures of ezrin, radixin, moesin and merlin. 36 Membrane proteins L1-CAM DCC receptor etc… →→→→→→→→ Phosphorylation P-Thr Ezrin Radixin Moesin F-actin Inactive Active “Closed form” “Opened form” 1-5 Activation of ERM proteins. 1-6 Targeting strategy of mouse ezrin gene (gene symbol Vil2). Tamura et al., J Cell Biol 2005. 37 Stage 2 Stage 3 Merge α-tubulin Phalloidin Ezrin Stage 1 2-1 Distribution of ezrin was observed in wild-type cultured cortical neurons at the stages 1, 2 and 3 by immunofluorescence. Neurons at the stages 1, 2 and 3 were stained with an anti-ezrin antibody, rhodamine phalloidin, and an anti-α-tubulin antibody, respectively. In the bottom lane, neurons were triple stained with an anti-ezrin antibody (green), rhodamine phalloidin (red) and an anti-α-tubulin antibody (blue). Scale bars, 50 µm. 38 A +/+ kd/kd 0.2 µg +/+ kd/kd 0.5 µg +/+ kd/kd 1 µg +/+ kd/kd 10 µg +/+ B kd/kd Ezrin 80 kDa 2-2 Detection of ezrin in the Vil2+/+ and Vil2kd/kd neurons. A, Immunofluorescence of the Vil2+/+ and Vil2kd/kd neurons at stage 1 using an anti-ezrin antibody. Scale bar, 50 µm. B, Western blotting of cell extracts (10 µg, 1 µg, 0.5 µg or 0.2 µg) from the Vil2+/+ and Vil2kd/kd neurons (2 DIV) with an anti-ezrin antibody. 39 βIII-tubulin/Phalloidin +/+ kd/kd A 2-3 B Neuritogenesis is impaired by ezrin knockdown. A, B, The Vil2+/+ (A) and Vil2kd/kd (B) neurons were fixed at 2 DIV and stained with an anti-neuronal class III β-tubulin antibody (green) and rhodamine phalloidin (red). Scale bars, 50 µm. 40 C D 120% Stage: ■ 1 ■ 2 ■ 3 3 Number of neurites Neurons in stage (%) 100% * 80% 60% 40% 20% 0% ** +/+ kd/kd F 200 Length of axon (µm) 25 Length of neurites (µm) 1 0 +/+ kd/kd E 20 15 10 5 0 2-3 *** 2 +/+ 150 100 50 0 kd/kd +/+ kd/kd Continued. C, Stacked bar graph showing stage progression in the Vil2+/+ (n = 153) and Vil2kd/kd (n = 162) neurons. Stages of cells were defined by the length of the longest neurite as reported previously. D-F, Quantitation of number (D) and length (E) of neurites, and length of axon (F) in the Vil2+/+ (gray columns, n = 50) and Vil2kd/kd (green columns, n = 50) neurons. Three independent experiments were performed. *p<0.05, **p<0.01, ***p<0.001, Student's t test. Data represent mean ± SE. 41 A B +/+ kd/kd C 5 4 3 1 0 2-4 ** 2 +/+ kd/kd E 25 Length of axon (µm) Number of neurites 6 Length of neurites (µm) D 20 15 10 5 0 +/+ kd/kd 250 200 150 100 50 0 +/+ kd/kd Morphological abnormalities in Vil2kd/kd neurons in 4 DIV. A, B, The Vil2+/+ (A) and Vil2kd/kd (B) neurons were fixed at 4 DIV and stained with an anti-neuronal class III β-tubulin antibody. Scale bars, 50 µm. C-E, Quantitation of number (C) and length (D) of neurites, and length of axon (E) in the Vil2+/+ (white columns, n = 5) and Vil2kd/kd (black columns, n = 5) neurons. Three independent experiments were performed. **p<0.01, Student's t test. Data represent mean ± SE. 42 A +/+ kd/kd B +/+ kd/kd Active Rac1 Active Cdc42 Total RhoA Total Rac1 Total Cdc42 E 3 2 1 +/+ kd/kd 1.5 Active/Total Cdc42 ratio * 4 0 F 1.5 Active/Total Rac1 ratio 5 Active/Total RhoA ratio C Active RhoA D 2-5 +/+ kd/kd 1 0.5 0 +/+ kd/kd 1 0.5 0 +/+ kd/kd Increased RhoA activity in the Vil2kd/kd neurons. A-C, The amounts of active and total RhoA (A), Rac1 (B) and Cdc42 (C) from cell lysates of the Vil2+/+ and Vil2kd/kd neurons (2 DIV). Representative patterns were presented. D-F, The ratios of active RhoA (D), Rac1 (E) and Cdc42 (F) to total amount of proteins were compared between the Vil2+/+ (white columns) and Vil2kd/kd (black columns) neurons. Each experiment was performed in triplicate. *p<0.05 , Student's t test. Data represent mean ± SE. 43 A +/+ kd/kd C pERM pEzrin pRadixin pMoesin MLC2 panERM Ezrin Radixin Moesin GAPDH GAPDH D 1.5 ** 3 2 1 0 +/+ Phospho/Total ratio 4 Phospho/Total ratio kd/kd pMLC2 Ser19 B 2-6 +/+ 1 0.5 0 kd/kd Ezrin Radixin Moesin Up-regulation of MLC2 phosphorylation. A, Western blotting of the Vil2+/+ and Vil2kd/kd neurons (2 DIV) using an antibody recognizing phospho-MLC2 (Ser19, top), MLC2 (middle) and GAPDH (bottom), respectively. Representative blotting patterns were shown. 8 µg of cell lysate was applied onto each lane. B, The ratio of phosphorylated MLC2 to total MLC2 in the lysate of the Vil2+/+ (white column) and Vil2kd/kd (black column) neurons was shown. C, Western blotting of the Vil2+/+ and Vil2kd/kd neurons (2 DIV) using an antibody recognizing phospho-ERM (top), pan-ERM (middle) and GAPDH (bottom), respectively. Representative blotting patterns were shown. 8 µg of cell lysate was applied onto each lane. D, The ratios of phosphorylated ezrin, radixin and moesin to each total protein in the lysate of the Vil2+/+ (white columns) and Vil2kd/kd (black columns) neurons were shown. Each experiment was performed in triplicate. **p<0.01 , Student's t test. Data represent mean ± SE. 44 kd/kd +/+ Y-27632 - - + + pMLC2 Ser19 pERM GAPDH C 1.4 D 0.5 +/+ * 0.8 0.6 * 0.4 0.2 kd/kd +/+ E 1.6 pMoesin/GAPDH ratio pRadixin/GAPDH ratio 1 2-7 1 1.6 1.5 0 1.2 0 2 pEzrin/GAPDH ratio B pMLC2/GAPDH ratio A 1.4 1.2 1 0.8 0.6 0.4 0.2 0 kd/kd +/+ 1.4 1.2 1 0.8 0.6 0.4 0.2 0 +/+ kd/kd Phosphorylation was affected by Y-27632 in the MLC2, not in the ERM proteins. A, Western blotting of the DMSO- or Y-27632-treated Vil2+/+ and Vil2kd/kd neurons (2 DIV) using an antibody recognizing phospho-MLC2 (Ser19, top), phospho-ERM (middle) and GAPDH (bottom), respectively. Representative blotting patterns were shown. 8 µg of cell lysate was applied onto each lane. B-E, The ratios of phosphorylated MLC2, ezrin, radixin and moesin to GAPDH in the lysate of the DMSO-treated (white columns) and Y-27632-treated (black columns) Vil2+/+ and Vil2kd/kd neurons were shown. Each experiment was performed in triplicate. *p<0.05, Student's t test. Data represent mean ± SE. 45 βIII-tubulin/Phalloidin +/+ + DMSO +/+ + Y-27632 B A kd/kd + DMSO kd/kd + Y-27632 C 2-8 D Y-27632 rescues neuritogenesis. A-D, The Vil2+/+ and Vil2kd/kd neurons treated with DMSO (A,C) or 40 µM Y-27632 (24 h, B,D) were fixed at 2 DIV and stained with an anti-neuronal class III β-tubulin antibody (green) and rhodamine phalloidin (red). Scale bars, 50 µm. 46 E F 40 ** *** 4 3 ### 2 1 0 Length of neurites (µm) Number of neurites 5 *** * 20 10 0 kd/kd +/+ 30 +/+ kd/kd G Length of axon (µm) 250 ** 150 100 50 0 2-8 * 200 +/+ kd/kd Continued. E-G, The number (E) and length (F) of neurites, and length of axon (G) were quantified in the Vil2+/+ and Vil2kd/kd neurons treated with DMSO (white columns, n = 30) or 40 µM Y-27632 (black columns, n = 30). Three independent experiments were performed. *p<0.05, **p<0.01, ***p<0.001 (DMSO-treated vs. Y-27632-treated), ###p<0.001 (DMSO-treated Vil2+/+ vs. DMSO-treated Vil2kd/kd), Student's t test. Data represent mean ± SE. 47 +/+ + Blebbistatin kd/kd + Blebbistatin A 2-9 B Blebbistatin rescues neuritogenesis. A, B, The Vil2+/+ and Vil2kd/kd neurons treated with 50 µM blebbistatin (24 h) were fixed at 2 DIV and stained with an anti-neuronal class III β-tubulin antibody. Scale bar, 50 µm. 48 C 10 *** *** 9 Number of neurites 8 7 6 5 4 3 1 0 D # 2 +/+ kd/kd E 35 180 2-9 160 25 Length of axon (µm) Length of neurites (µm) 30 20 15 10 5 0 200 140 120 100 80 60 40 20 0 +/+ kd/kd +/+ kd/kd Continued. C-E, The number (C) and length (D) of neurites, and length of axon (E) were quantified in the Vil2+/+ and Vil2kd/kd neurons treated with DMSO (white columns, n = 10) or 50 µM blebbistatin (black columns, n = 10). Three independent experiments were performed. ***p<0.001 (DMSO-treated vs. blebbistatin-treated), #p<0.05 (DMSO-treated Vil2+/+ vs. DMSO-treated Vil2kd/kd), Student's t test. Data represent mean ± SE. 49 A Vil2+/+ neurons B Vil2kd/kd neurons Activate Ezrin RhoA Ezrin RhoA Inactivation 2-10 ROCK ROCK MLC2 MLC2 Neuritogenesis Impairment of Neuritogenesis Schematic representation of the relationship between ezrin and RhoA/Rho kinase/MLC2 pathway in neuritogenesis. 50 A B Vil2+/+ Vil2kd/kd Cx Hip Am Hy 2-11 Ezrin is not detected in Vil2kd/kd mice brain. Immunohistochemical analyses of ezrin expression in adult (8 week-old) wild-type (A) and Vil2kd/kd (B) mouse brains using an anti-ezrin antibody (clone, 3C12). Scale bars, 1 mm. Cx, cerebral cortex; Hip, hippocampus; Am, amygdala; Hy, hypothalamus. 51 A Vil2+/+ Vil2kd/kd C B 140 450 120 350 *** 300 250 200 150 100 Number of neurons (%) Length of layers (µm) 400 80 60 40 20 50 0 0 +/+ 2-12 100 +/+ kd/kd kd/kd Structure of cerebral cortex in the adult Vil2+/+ and Vil2kd/kd mice. A, Nissl staining in the cerebral cortex of Vil2+/+ and Vil2kd/kd mice. The length of cortical layers (B), and the number of Nissl-positive neurons (C) in Vil2+/+ and Vil2kd/kd mouse brains. Three independent experiments were performed. ***p < 0.001, Student’s t test. Data represent mean ± SE. Scale bar, 100 µm. 52 A βIII-tubulin Vil2+/+ Vil2kd/kd a b a 2-13 b Impairment of neuronal morphology in Vil2kd/kd cerebral cortex. Immunohistochemistry of Vil2+/+ and Vil2kd/kd cerebral cortices using antibodies against class III β-tubulin (A) and MAP2 (B). High magnification images in Vil2+/+ (a) and Vil2kd/kd (b) were shown. Scale bars, 50 µm. 53 B MAP2 Vil2+/+ Vil2kd/kd a b a 2-13 b Continued. Immunohistochemistry of Vil2+/+ and Vil2kd/kd cerebral cortices using antibodies against class III β-tubulin (A) and MAP2 (B). High magnification images in Vil2+/+ (a) and Vil2kd/kd (b) were shown. Scale bars, 50 µm. 54 A B Vil2+/+ Vil2kd/kd Vil2+/+ Vil2kd/kd C D 150 100 50 0 * 4 3 2 1 0 +/+ 2-14 6 5 ** 200 Number of basal dendrites Length of apical dendrites (µm) 250 kd/kd +/+ kd/kd Ezrin knockdown causes abnormal dendritic outgrowth. Golgi staining of Vil2+/+ and Vil2kd/kd cerebral cortices. Representative images of apical dendrites (A) and basal dendrites (shown by triangles, B) of layer V pyramidal neurons were shown. C, Quantification of length of apical dendrites (C) and number of basal dendrites (D) in the Vil2+/+ and Vil2kd/kd layer V pyramidal neurons. *p < 0.05, **p < 0.01, Student’s t test. Data represent mean ± SE. Scale bar, 5 µm. 55 A 6-OHDA (6 w) Vehicle (6 w) 1 day 7 day 1 day 7 day B *** I 3-1 6-OHDA (6 w) II Time in target quadrant (%) Time in target quadrant (%) Vehicle (6 w) 50 45 40 35 30 25 20 15 10 5 0 III IV 50 45 40 35 30 25 20 15 10 5 0 I II III IV Intrastriatal Injection of 6-OHDA Impairs Long-Term Spatial Memory at 6 weeks. A, Representative traces of the swimming paths of vehicle- and 6-OHDA-microinjected mice at the 1 and 7 d of acquisition trials. 6-OHDA-microinjected mice had significantly impaired water maze performance that was associated with (B) a preference of the target quadrant (quadrant I). ***p < 0.001, Student’s t test. Data represent mean ± SE. 56 A 6-OHDA (18 w) Vehicle (18 w) 1 day 7 day 1 day 7 day B Vehicle (18 w) 40 6-OHDA ( 18 w) * Time in target quadrant (%) Time in target quadrant (%) 45 35 30 25 20 15 10 5 0 I 3-2 II III IV 50 45 40 35 30 25 20 15 10 5 0 I II III IV Intrastriatal Injection of 6-OHDA Impairs Long-Term Spatial Memory at 18 weeks. A, Representative traces of the swimming paths of vehicle- and a 6-OHDA-microinjected mouse at the 1 and 7 d of acquisition trials. 6-OHDA-microinjected mice had significantly impaired water maze performance that was associated with (B) a preference of the target quadrant (quadrant I). *p < 0.05, Student’s t test. Data represent mean ± SE. 57 A Vehicle 3-3 6-OHDA Striatum Striatum Substantia nigra Substantia nigra Immunohistochemical and neurochemical analyses in the nigrostriatal DA system. A, Representative photomicrographs of striatum and substantia nigra of vehicle- or 6-OHDA-microinjected mice at 6 weeks after the microinjection. These slices were immunostained by an antibody against TH. Scale bars, 1 mm (in striatum), 200 µm (in substantia nigra). 58 C 30 6 25 5 DOPAC levels (pmol/mg tissue) DA levels (pmol/mg tissue) B 20 15 10 * 5 0 3-3 4 3 2 1 0 Vehicle 6-OHDA * Vehicle 6-OHDA Continued. B, C, Striatal dopamine (DA) and DOPAC contents after intrastriatal injection of 6-OHDA. Amounts of DA (B) and DOPAC (C) in the striatum from treated mice were measured using an HPLC-ECD system. *p<0.05, Student's t test. Data represent mean ± SE. 59 B Radixin * 250 % of vehicle Ezrin 300 6-OHDA Vehicle A 200 150 100 Moesin GAPDH 3-4 50 0 Ezrin Radixin Moesin Level of ERM proteins in the hippocampus. A, Western blotting for ezrin, radixin, moesin and GAPDH (control protein) presented protein bands of 82, 80, 75 and 37 kDa, respectively. B, Quantitative results were obtained by measuring the optical density of each band using computerized image analysis. *p<0.05, Student's t test. Data represent mean ± SE. 60 A B RhoA LRRK2 PI3K ROCK PKC ? Ezrin Ezrin Radixin Moesin RhoA Phosphorylation ROCK Inhibition 4-1 Ezrin acts as negative regulator for RhoA in up-stream of RhoA/ROCK. 61