Comments
Description
Transcript
高集積化フロントエンドのトレンド - Open-It
高集積化フロントエンドのトレンド ~CMOSピクセル・放射線耐性~ University of Bonn 岸下 徹一 [email protected] 20-21 Nov. 2014, 計測システム研究会@J-PARC Outline ✓ Introduction (自己紹介) ✓ ハイブリッドピクセル検出器 (HEP Tracker) • Pixels@LHC ✓ (セミ) モノリシックピクセル検出器 • DEPFET • Depleted MAPS ✓ テクノロジーのトレンド • Smaller feature-size (TSMC 65 nm CMOS) etc… T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 2 Bonn大学における研究状況 Bonn大学における研究状況 2010.06~ ./012"#,3$ 2014.06 (現在) H,G0!,&4$,60 Group Prof. Norbert Wermes 高エネルギー実験用のfront-end ASIC及び N>=OMP>05Q?>R=0JLD0&"0 =%B/0E-@0!0J-A0""F0 S#4/0#&.0?6/#$0'%7< :#'405Q0$#";0T,$0?6/#$0 H#.-05#$.0;$,I/.02E@0>$#.90 ピクセル検出器の開発で中心的な役割 ATLAS ,&' .5!678' B@'=D5=E5>?' E(%/'"%./"('9%7()" A9"45">>F" 26"1=0!" ASIC design RW" - FE-I3, FE-I4 chip design - Hybrid pixel detector, bump - IBL module production - Diamond detector - 3D sensor, TSV technology Belle II - DHP chip design - PXD module testing - DEPFET sensor testing !"#$%&#'()&%*+,&&-./0 Borrowed from home page Our group is developing full custom chips since 1994. Up to now, more than 40 designs have been submitted and successfully tested. They vary from simple transistor test structures to full readout chips for silicon strip and pixel detectors. At the moment, we are working on 8 workstations with the CADENCE software using different CMOS technologies. Further down this page lists the designs starting with the most recent submissions. アナログfront-endデザインを中心となって進めている T. Kishishita %-'$ '4%$ !" 20-21 Nov. 2014, 計測システム研究会@J-PARC 2 3 ハイブリッドピクセル検出器 + + - T. Kishishita good S/N←fully depleted fast R/O→~ns time stamp radiation length→ 3.5% x/X0 spatial resolution→~10 μm bump bonding 20-21 Nov. 2014, 計測システム研究会@J-PARC 4 LHCにおけるピクセル検出器の現状 ハイブリッドピクセル検出器 (state of the art) Hybrid Pixel Detectors for the LHC sensorとASICは別プロセス first use in 1992, OmegaD (103 pixels) ATLAS Hybrid Pixel Detector (state of the art) シリコンピクセル検出器 ~1.8 m2, 50x400 um2 cells, 80x106 pixels フリップチップ CMS バンプボンディング フロントエンドASIC • amplification by a dedicated R/O chip • 1-1 cell correspondence ALICE ~0.2 m2, 50x450 um2 cells, 10x106 pixels ~1m2, 100x150um2 cells, 33x106 pixels 全実験でInnermost layerにハイブリッドピクセルを使用 T. Kishishita SSI, 07/20/2006 20-21 Nov. 2014, 計測システム研究会@J-PARC 5 ATLASシリコンピクセル検出器 Siセンサー ✓50 × 400 um2, 250 um thickness ✓n+ pixel on n- material ✓rad-hard (1015neq, 80 Mrad) ✓p- after irrad. (can be operated partially depleted) ハイブリッドプロセス ✓PbSn or In bumping (wafer scale) ✓IC wafers thinned after bumping ~180 um Hybridto Pixels / HEP / technical issues / hybridization bumping & flip chip of thinned bumped (!) chips (~ 180µ m, 8“ wafers) ➼ ATLAS / CMS / ALICE Indium 50 µ m photo AMS, Rome T. Kishishita 20-21 • „lift off“ + thermo compression • bumps „soft“ + „thin“ (~6 µ m) Nov. 2014, 計測システム研究会@J-PARC - module handling more „touchy“ ATLAS / ALICE Solder (PbSn) 50 µ m photo IZM, Berlin • electroplating + reflow • automated wafer scale process @ v • bumps strong and „larger“ (~25 µ m 7 ハイブリッドピクセルの読み出し原理 センサーで電荷生成→フロントエンドASICで信号処理 indiv. cell R/O 各BX time間のヒット信号を保持 (dig./ana.) トリガー同期のヒットピクセル読み出し RAM pixel cell ✓PNダイオード→Qsignal ✓センサーに最適化したFront-end ASICで信号増幅+波形整形 (ピクセル電極と読み出し回路をバンプボンディングで接続) ✓各ピクセルのヒット情報を保持(アドレス、電荷、時間情報) ✓End of Columnロジック(トリガー待機) ✓カラム読み出し transfer on chip Store end of column storage & logic • アドレス • 電荷 (ToT) T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC • 時間情報 6 ATLASフロントエンドASIC: FE-I3 複数のプロセスで試作(DMILL, BiCMOS) ✓0.25 μm CMOSプロセス ✓80 Mrad, 1015 neq/cm2 Pixel cell ✓ピクセルサイズ: 50×400 11 mm μm2 ✓18 column × 160 rows = 2880 cells ✓各ピクセルにCSA, zero-suppression ✓低消費電力: ~50 μW/pix ✓低雑音: ~250 e✓閾値のばらつき: ~70e- (after tuning) 7.4 mm End of columnロジック ✓40 MHz clockでタイムスタンプ ✓データバッファリング(2.5 μs trigger latency) ✓ヒットセレクション T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 8 • Planar Slim Edge Sensors (CiS) • oxygenated n-in-n silicon; 200 µm thick IBL(Insertable B-Layer) • minimize inactive edge by shifting • 3D Slim Edge Sensors (FBK and CNM) • partial 3D: electrodes etched from both side • p-type substrate; 230 µm thick • no active edge V ~10V, spatial resolution as for layer)! C.depl. Gemme will discuss this tomorrow sLHC data rates layout pixels guard-ringIBL underneath Innermost layerに4層目を追加(nearest BX sensor technologies: Hit inefficiency rises withμm) planarsteeply pixels (~12 e chip (DC) modules with 2 FE-I4 and 1 planar n-in-n sensor tile the hit rate 2種類のセンサーを採用 chip (SC) modules with 1 FE-I4 and 1 n-in-p 3D sensor tile Planar sensor (n-in-n) 3D sensors (n-in-p) Bottleneck: congestion in double 200 230 m thickness inactive edge <250 (minimize gaps in m , no overlap) low Q generated after irradiation ! low threshold operation and high HV cheaper and easier to fabricate m thickness inactive edge 200 1- column readout m 50 μm more local in-pixel storage (130 nm !) low depletion voltage (<180V) >99% of hits are not triggered even after high doses electrode orientation suitable don’t move them for highly inclined tracks 75% planar 25% 3D sensors (large (drawing outdate: columnsCNM(Barcelona) penetrate full s Stanford, SINTEF(Oslo), IRST(Trieste), ) フロントエンドASICも改良(FE-I4) ✓250 nm→130 nm CMOS ✓ピクセルサイズ: 50×400 μm2 →50×250 μm2 Fabian Hügging ✓データレート:40 Mb/s→160 Mb/s Fabian Hügging – University of Bonn – September - 17 - 2013 ✓ローカルバッファを採用 – University of Bonn – September - 17 - 2013 7 6 ✓(Serial powering) T. Kishishita PSD8計測システム研究会@J-PARC Glasgow, 9/5/2008 – N. Wermes, Bonn 20-21 Nov. 2014, 9 フロントエンドアーキテクチャ(ATLAS) Functions inCMSはアナログ”アーキテクチャ the cell (binary readout + „poor man‘s“ analog) “ATLASはデジタル, ToT Feedback tr tf Bump bond contact Hit Calibration charge injection Strobe Select Calibration voltage Address ROM (6+1)-bit local threshold DAC Global time stamp (40 MHz gray counter) Global threshold - Integration of signal charge by charge sensitive amplifier - Pulse shaping by feedback circuit with constant current feed back ✓Integration of signal charge by charge sensitive - Hit detection by comparator ✓Pulse shaping with constant current feedback - ~5 bit analog information via „time over threshold“ ✓Hit detection byandcomparator - storage of address time stamps in RAM at the periphery Falling edge RAM Leading edge Priority logic RAM Hit data & Arbitration logic Bus to column controller amplifier ✓~5 bit analog info. via “time over threshold” (small time etwalk with small Q) L. Blanquart al., NIM-A 456 (2001) 217-231 ✓storage SSI, 07/20/2006 of address and time stamps in RAM at the periphery T. Kishishita N. Wermes 20-21 Nov. 2014, 計測システム研究会@J-PARC 52 10 mechanism, comparator threshold: analog readout of PSI46 フロントエンドアーキテクチャ(CMS) 8 bits global 4 bits local trim 40 MHz, 20 MHz fallback pixel address: アナログブロック 3 cycles header per chip 9 bits digital header dc pixel aout 251 transistors per pixel addresses analog coded g Pixel 6 levels address X1 2 cycles double columnA se, 0-1V 9 D global 3threshold cycles pixel row Trim 4 bit Mask bit 1 cycle analog pulse height address Double column bus repeated ✓0.25 μm CMOS for each hit ✓pixel size: 100 × 150 μm2 readout pass returns data ✓CSA,each Shaper, Sample/hold, comparator ✓251 fets pixone trigger number for per only ✓52 × 80 = 4160 pixels pulse height 1 pixel hit ✓5 clock cycleで11ビットのアドレス情報を エンコード(6 levels) ✓1 clock cycleでアナログ波高値 T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 11 放射線によるピクセル検出器への影響 Total ionizing dose (TID) effects FEへの影響 X-ray irradiation at CERN センサーへの影響 ✓ゲート酸化膜への電荷蓄積 1) Positive chargesバルクダメージ(NIEL) in the gate oxide ......... ✓change 3) STI effect of doping concentration RD50 approaches to de RD50 (Shallow Trench inversion” Isolation) →”type +++ radiation harder tracking onics … and cure Top view of MOSFET ✓leakage current →noise, power • Material Engineering -Defect Engineering of Silicon +++ +++ iO and • Understanding radiation damage ✓チャージトラップ →signal 2 Feld-Oxid GateOxid Gate Drain Source n+ n+ ✓界面トラップ (Si-SiO2) sizes µm) 2)(≤ 0,35 Interface traps (Si02- Si) nnel out ✓STI トランジスタのVth shift (good in DSM, p-Substrat Leckstrom e-electrodes + • Macroscopic effects and Microscopic defects • Simulation of defect properties & kinetics サーフィスダメージ(IEL) • Irradiation with different particles & energies • Oxygen rich Silicon D S G • DOFZ, Cz, MCZ, EPI ✓界面トラップ, SiO2への電荷蓄積 • Oxygen dimer & hydrogen enriched Silicon →breakdown behavior • Influence of processing technology Either the nm STI oxide and STIgate interface but larger leak),traps influence the dox<10 • Material Engineering-New Materials (work concluded) (SiC), Gallium Nitride (GaN) field of the current→ELT gate, and therefore the electrical parameters. •+++Silicon Carbide +++ leakage SEU (ビット反転)→DICE SRAM T. Kishishita CPIX14, 15-17 Sep. 2014, Bonn Gate Drain T. Kishishita Source diamond • Device Engineering (New Detector Designs) W • p-type silicon detectors 17/21 (n-in-p) • thin detectors • 3D detectors • Simulation of highly irradiated detectors • Semi 3D detectors and Stripixels • Cost effective detectors 20-21 Nov. 2014, 計測システム研究会@J-PARC Related •“Cryo • “Diam • Mono • Detec 12 Pixels@HL-LHC Pixels at sLHC: radiation tolerance trend: n+ on n→n+ on p (FZ or MCZ) signal [electrons] 25000 FZ Silicon Strip Sensors p-Fz (500V) p-Fz (800V) 20000 Data from Gianluigi Casse et al. (Liverpool) presented on VERTEX 2008 3D simulation Pennicard 2007 15000 @1016 n-FZ (500V) 10000 7500 diamond 5000 6000 2500 14 10 15 5 10 -2 [cm ] eq 16 5 10 M.Moll - 08/2008 n-in-p (FZ), 300 n-in-p (FZ), 300 n-in-p (FZ), 300 n-in-p (FZ), 300 n-in-p (FZ), 300 n-in-p (FZ), 300 p-in-n (FZ), 300 p-in-n (FZ), 300 m, 500V, 23GeV p m, 500V, neutrons m, 500V, 26MeV p m, 800V, 23GeV p m, 800V, neutrons m, 800V, 26MeV p m, 500V, 23GeV p m, 500V, neutrons Double-sided 3D, 250 m, simulation! [1] Diamond (pCVD), 500 m [2] (RD42 data!) 3D Si simulation p – FZ planar Si N.Wermes diamond ATLAS DBM [1] 3D, double sided, 250 m columns, 300 m substrate [Pennicard 2007] o [2] [3] Diamond p/n-FZ, 300 [RD42 m, (-30 Collaboration] C, 25ns), strip [Casse 2008] note: neq (Si) normalization (correct for diamond?) & diamond better in S/N terms T. Kishishita 20-21 1317 PSD8 Glasgow, 9/5/2008 – N. Wermes, Bonn Nov. 2014, 計測システム研究会@J-PARC (セミ) モノリシックピクセル検出器 + + + + - T. Kishishita no bump bonding very thin (50-75 μm)→~0.2% x/X0 small pixel size (20-50 μm)→~1μm resolution low power→less cooling radiation hardness R/O speed 20-21 Nov. 2014, 計測システム研究会@J-PARC 14 モノリシックピクセルの読み出し原理 select line 電荷生成と信号処理に共通のSi-sub.を用いる ✓PNダイオード→Qsignal pixel cell ✓rowセレクト(row-wise selection) read out line read out line ✓column読み出し(column-wise R/O) ✓select/resetスイッチ CMOS active pixels (MAPS) pixel cell pixel matrix 電荷収集と駆動+信号処理回路が同じ基盤上に配置 DEPFET pixels (セミモノリシック) row selection and clear ✓sense node (transistor gate) ✓初段FETを完全空乏化したバルク上に配置 ✓駆動+信号処理のASICはマトリックスの側面に配置 T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC column readout frame R/O 15 DEPFETピクセル検出器 ✓初段FETにPMOS (完全空乏化したバルク上に配置) • ピクセルサイズ:小 • driftによる電荷収集(fast collection, large signal) ✓Internal gate (IG): n-implant, potential min. for e✓IGに蓄積された電荷に応じてドレイン電流が変化 • low Cdet + amp.→低雑音 ✓蓄積電荷をパンチスルー効果によって除去 • 余分なresetが必要(non-commercial process) source external gate internal gate - ✓FETは電荷収集時はOFF clear gate • 低消費電力 clear ✓電流信号をフロントエンドASICで処理 • マトリックス駆動用ASIC+信号処理ASIC (CDS) が必須 drain >10 yrs R&D Collaboration: Aachen, Bonn, Heidelberg, MPI Munich, Karlsruhe, Plaque, Valencia T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 16 電圧読み出し vs. 電流読み出し 電圧読み出し(ソース) 電流読み出し(ドレイン) Cgs Qin on internal gate CL ΔU Cgs Cgd Rf CL Cgd ΔI 電圧は一定 TIA Qin I⇠ ⇥ gm Cgd + Cgs Qin U⇠ Cg ⌧ = very small CL · (1 + Cgs /Cgd ) ⌧ = 2.2 ⇥ ⇠ µs gm ✓Cgs, Cgdはゲインとスピードのトレードオフ ✓ドレイン電圧が一定なので高速 ✓CLが立ち上がり時間に影響 でリミット) 読み出しが可能 (virtual ground, Rdrainとgate settling time Belle II用Depfetは電流読み出しを採用 T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 17 SICs ge 0.35µm mm2 signal 30V en (36Mrad) delberg U. elona U. DHP (Data Handling Processor) DEPFETフロントエンドASIC (Belle II) 846 Data reduction and Processing ARTICLE IN PRESS P. Fischer et al. / Nuclear Instruments and Methods in Physics Research A 582 (2007) 843–848 " Minimum number of supply, bias and control signals to devices on a substrate with a resistivity of 150 O cm. The leakage currents of typically 100 pA=cm2 (at 50 V) are excellent values. Only ! 10% of the devices have leakage currents increased by a factor of five. No significant difference in behavior between normal and thin diodes has been observed. simplify wiring on the sensor frame. マトリックスの駆動/読み出しに3種類のASICを用いる 4.1. HV switch 4. The Switcher3 gate/clear steering chip In the existing test setups, the control of the gate and clear signals is achieved with the Switcher2 steering chip. This chip has been designed 2002 in a 0:8 mm high voltage technology in order to be able to deliver voltage steps of up to 30 V for test purposes. This chip is not suited for ILC, however, for several reasons (geometry, power dissipation, speed, insufficient radiation hardness). A new chip, Switcher3, has therefore been designed with the following main goals: ASIC #2: DCD (Drain Current Digitizer) • ASICはセンサーサブストレートにバンプボンド DCD-B " Geometry suited for module construction (slim and Jelena Ninkovic, MPI HLL Munich long). Two-dimensional arrangement of bump bonding pads, 128 channels. " Voltage steps of up to 10 V, sufficient for operation of the latest DEPFET devices. " !"#$%&'()*&+"#(,Minimal dynamic power dissipation, close to zero static '(0 !,.'%$&,/( power dissipation. " Settling time of ! 20 ns for a 9 V step and a load capacitance of 20 pF. " Radiation tolerance of at least 1 Mrad. " Flexible sequencer allowing multiple readout of regions of interest. UMC 180nm Size 3.3 5.0 mm2 Integrated ADC Noise 40 nA Irradiation up to 7Mrad IBM CMOS 90nm Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing signal generation • 10 Mrad (5 yr) b 9V 6V 9V 9V 6V c 9V 9V 9V 6V 9V • SRAM • • 6V 6V 6V 6V • 6V 9V 6V 3V 3V 9V AMS high voltage 0.18 um CMOS Designed by Uni. Heidelberg6V 3V Size: 3.6×1.5 mm2 6V 3V 3V contains additional logic for gated-mode SwitcherB18 (Gated Mode) 3V operationReference Manual 6V in 0V ✓AMS HV 180 nm CMOS • • ✓Univ. Heidelberg ✓速い駆動信号を供給 (Cd~50 pF) Requirements to the ASIC • 0V Document revision: 3.2 for chip version 2.0 February 17, 2014 FF Ld2 EnCMC Ld3 EnInjLoc T. Kishishita Cal VPDAC SmpLB SmpRB r o it n o M EnDKSB VDC EnDC Presamp. CMC SmpL AmpOrADC(Global) CMC CMP CMP CMC L CMC CMP CMP DAC1 DAC0 DAC CMC ADCL VNSubIn Receiver VNSubOut SmpR ✓256チャンネル CMC CMP CMP CMC Sync(0:1), SmpEn(L:R) Rd01 = Sync0 Strobe Rd23(L:R) = Sync0B & SmpEn(L:R)B Smp(L:R) = Sync0B & SmpEn(L:R) V(P:N)Del WrSignal = Strobe & not sample Rd01, Wr(0:3), Rd23(L:R) WrSignal L CMC CMP CMP CMC ADCR Decoder Trans-impedance amplifier • performance adjustment with DACs • Each channel with two current mode cyclic ADCs Figure 2.1: Basic circuits of the analogue channel. based on current-memory cells • 80 ns sampling period with 8 bits resolution 16 • 9V 0V x+3V 0V 3V x 0V 3V SRAM 0V 3V 0V 0V NIM A, v582, p843, 2007 • stacked-transistor output stage thin gate oxide transistors for rad.-hard Design review in Oct. 2014→final submission in 2015! Prof. Dr. Peter Fischer, Dr. Ivan Perić, Dr. Christian Kreidl Lehrstuhl für Schaltungstechnik und Simulation Universität Heidelberg TIPP 2014, 2-6 InjectLoc EnInjLoc Config SerIn, Ck, ShEn Fig. 4. Simplified schematic of the ‘high voltage’ switch. The operation points for a supply of 9 V are shown for high output (a) and low output (b). The required gate voltages are generated by AC-coupled SRAM cells. Fast HV up to 20 V for complete clear within ~20 ns VPInjSig TIPP 2014, 2-6 June. Amsterdam 3V • Fast pulse to drive large line cap. (~50 pF) ✓信号クリア用高電圧信号生成 (~20 V) • • Ld1 EnDC UMC 180 nm Designed by Uni. Heidelberg Size: 3.3×5.0 mm2 Noise: 40 nA Irradiation up to 7 Mrad out SRAM EnDKS 0V 3V 0V • 3V WrSignal RefIn SerOut #1: SWITCHER-B a Requirements to the ASIC • Low-noise fast settling current receiver ✓UMC 180 &nm CMOS (Rs=200Ω, Cd=50 pF) ✓Univ. • 10 Heidelberg M Sample/s • 256 input channels ✓Current Receiv. (TIA)+ ADC ASIC #3 ✓low Noise & fastFront-end settling DHPT (Rs=200Ω, Cd=50 pF) ✓10 Mサンプル/s total area: 0.014 m2 SWITCHER-B Front-end ASIC • Analog frontend and ADC • センサー部の厚さは75 μm, 周辺部は450Front-end μm @MPP DCDB (Drain Current Digitizer for BelleII) 19 One of the biggest challenges for this new chip was the design of a radiation tolerant analog switch able to operate at up to 10 V. Irradiations of Switcher2 chips had shown, that the used HV-devices with thick gate oxides severely degrade after small (o50 krad) doses already, as expected. Thin gate devices, on the other hand, do not withstand the required voltage. The adopted solution is illustrated in Fig. 4: three stacked 3.3 V NMOS/PMOS devices are used to pull the output to ground or to the positive switch voltage, respectively (similar to a circuit in [9]). The transistors are operated such that under no circumstances the voltage differences at the terminals exceed the allowed limit. Fig. 4(a) and (b) shows the required voltages for high or low output, respectively, for an illustrating supply voltage of 9 V. The gate voltages of the middle NMOS (PMOS) can always be held at 3 V (6 V), while the other gates must be switched between 0 V/3 V, 6 V/3 V and 6 V/9 V. The required level-shifting is achieved with SRAM cells which are operated with the corresponding supply voltages and which are flipped by capacitive coupling of a 3 V step signal onto the internal storage node. The feedback inverters in the SRAM cells are current limited so that flipping is simplified and capacitors of ! 200 fF are sufficient. A reset/set signal in the SRAM cells can be used to define the initial polarity. This level shifting has no DC current consumption, as required. June. Amsterdam 20-21 Nov. 2014, 計測システム研究会@J-PARC 13 ✓TSMC 65 nm CMOS TIPP 2014, 2✓Univ. Bonn ✓SW, DCDへのクロック供給 ✓Zero-Suppression ✓G-bitデータリンク 18 MAPS-epi テクノロジー “スタンダード3T” VRESET ✓センサーと読み出しを同じSiウェハーに形成 AVDD RE_SEL ROW_SEL • commercial CMOSプロセス(安価) ✓low-dopedエピタキシャル層で電荷生成 MAPS-epi (10-15 um, e.g., AMS 0.35 μm) COL_LINE • MIP signal < 1000 e-→低雑音読み出しが課題 -H.V. ✓ eliminate: base levels, 1/f noise, fixed patter noise ✓ do this either offline-> slow or on-chip R&D ✓拡散による電荷収集(~100 ns) (p-well, sub.による散乱、n-well/epiで収集) →信号が複数ピクセルに分布 10-15 um ✓NMOSのみをエレキに使用 (n-well/epiがcollection node) ✓小ピクセルサイズ (20-30umピッチ) →spatial resolution < 2 um ✓Large detector→19.4x17.4 mm2 (1 Mpix) Meynants, Diericks, Scheffer, SPIE 3410:68-76 (1998) T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC SF 19 STAR PXL sensors MAPS-epi テクノロジーの現状(@STAR) Three generations of sensors have been specifically designed for the PXL detector STAR PXL sensors R&D illustrates evolution>15 of CPS development 初のMAPSベースのtracker (Strasburg+LBNL, yrs R&D) point: Ultimate chip2004-2006 in STAR First MAPS prototypes for the STAR PXL detector ne 2014 n 2008 2011-2012 Full size sensor with digital readout Final sensor for the PXL detector Complementary detector readout Sensing analog signals elements sensor generations 1st 4 ms integration time 2nd 3rd ADC digital Preamplifier analog + CDS CDS Digital signals ADC Data sparsification DAQ column level discr. and 0-suppr. 640 µs integration time < 200 µs integration time MIMOSA28 C. Hu-Guo Courtesy of M. Szelezniak, HICforFAIR Workshop 2014 ✓ ピクセルサイズ: 20.7 × 20.7 μm2, 厚さ: 50 μm Architecture (rolling shutter column✓parallel readout with integrated zero suppression 400 sensors, 356 Mpixels, ~0.15 m2 logic) developed for STAR PXL is well✓suited twin-well CMOS process 20 toto 90akrad/yr 11to 12µm 2 New architectures are being developed with TJ 0.18 CIS process (quadruple well process) ✓ 2×10 10 n /cm eq MIMOSA28 (ULTIMATE) ✓design 室温で動作 See Marc Winter talk on sensors for ALICE-ITS upgrade ✓ 積分時間: 185 μs CPIX14 15-17 September 2014, University of Bonn T. Kishishita IPHC [email protected] IPHC [email protected] 20-21 Nov. 2014, 計測システム研究会@J-PARC 21 15 20 Basic R. device cross-section (a (2001) la HV-CMOS/CC Turchetta, NIM-A 458:677-689 Deep P Well Implants many activities: France, UK, US, Italy (MAPS, CAPS, FAPS …..) 最近のMAPS開発の現状 • PMOS Transistors require an n-well Hybrid • PMOS n-well competes with n-well diode Pixel MAPS vsdeep-Nwell Hybrid Pix MAPS reducing the charge collection extended collecting electrode Sensors Te • To improve charge collection efficiency a deep implanted (STM p-well 130 nm is triple well cmos) complete signal processing chain Granularity + • Reflects charge back into the epitaxial layer trend: epi→high-R sub., CMOS electronics Signal charge & time resolution Pros # speed High signalReadout ! full depletion possible) Radiation tolerance # Fast ! charge collection by drift # Small pixels Charge collection by drift No Pavia, Bergamo,(Ref. Pisa: V.[2]) Re, G. Rizzo et al. INMAPS Material budget Cons+ Yes INMAPS # +- NMOS in active ++ area ! Only limited PMOS usage +- ++ PSD8 Glasgow, 9/5/2008 – N. Wermes, Bonn Fabian Hügging – University of Bonn – September - 17 - 2013 Yes “INMAPS” High voltage technology High resistive substrate D-MAPS STANDARD CMOS epi with deep p-well (RAL, UBirmingham…) quadrupel well 0.18 um CMOS to shield the n-wells that contains PMOMS Monolithic pixel on depleted Si INMAPS deep-p cannot be made too small Sensor geometrie James Mylroie-Smith HV-MAPS Basic device cross-section (a la HV-CMOS/C No Full CMOS in pixel area In-pixel signal processing Epi-layer or bulk CMOS T. Kishishita Std. MAPS HV-MAPS “LePIX” Leading institutes: Heidelberg, Bonn, CPPM, Strasburg Type9A:!The!collecting!node!loc Cross-section AVDD AVSS high resistive sub. (UHeidelberg), CCPD HV-CMOS 0.18 μm, working up to 1015 cm-2 PW NW 20-21 Nov. 2014, 計測システム研究会@J-PARC Pros NW PW Cons NW 21 P MAPS-SOIテクノロジー(OKI/Rapis) 4/25 ✓ハンドルウェハーをセンサーに使用 SOI Monolithic ✓読み出しをBOX層の上に配置 Insulator (SiO2) Low R Si High R Si pixel sensor →本当の意味でのモノリシックピクセル… borrowed from Miyoshi-san, TWEPP-2014 Targets High-Energy Physics X-ray astronomy Material science Non-Destructive inspection Medical application Miyoshi The features of SOI monolithic pixel sensor •No mechanical bump bonding. Fabricated with semiconductor process only • Fully depleted (thick & thin) sensing region with low sense node capacitance (~10 fF@17 m pixel) high sensor gain ・SOI-CMOS; Analog and digital circuit can be closer smaller pixel size • Wide temperature range (1-570K) ✓センサー/エレキのカップリング • Low single event cross section • Technology based on industry standards; cost benefit →charge injection from CMOS swing ✓BOX層への正電荷蓄積によるVthシフト 4 T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC back bias effect →PD… 22 MAPS-SOIテクノロジー@BONN XFAB 180 nm HV SOI CMOSプロセス HVPW Feature size: 180 nm Supply rail: 1.8 V p-type bulk, 4 metal layers Resistivity: ~100 Ω cm High voltage: ~several 100 V HVNW (BOX) Thickness: gate oxide: 4.1 nm BOX: 1 μm Chip: 300 μm Distance from Gate to BOX: 3 μm ✓ BOX isolates electronics part from the sensor part p ✓ full depletion possible→ fast & high signals d ⇠ ⇢ · V ✓ full CMOS electronics (CSA, shaper etc. if needed) ✓ theoretically rad-hard (less SEU) + separated with HV-layers No BOX effects to FETs, sensor optimization is necessary, e.g., Ileak T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 23 HEPに要求される放射線耐性 Innermost pixel layer BX time higher lumi. & radiation→smaller pixel Particle rate Fluence Ion. dose ns MHz/cm2 neq/cm2 per lifetime* kGy per lifetime LHC(1034cm-2s-1) 25 100 1015 790 HL-LHC(1035cm-2s-1) 25 1000 >1016 5000 SuperBF(1035cm-2s-1) 2 40 ILC(1034cm-2s-1) 350 25 1012 4 RHIC(8 1027cm-2s-1) 110 0.38 1.5 1013 8 T. Kishishita 😨 😨 😃 😃 😃 ✓higher rates ✓higher radiation ✓more power ✓more material ✓bigger pixel 100 *lifetime: LHC, HL-LHC for 7yrs, ILC for 10 yrs, others for 5 yrs ハイブリッドピクセル モノリシックピクセル ✓lower rates ✓lower radiation ✓less power ✓less material ✓smaller pixel 3 1012 😃 😃 😨 😨 😨 20-21 Nov. 2014, 計測システム研究会@J-PARC 25 テクノロジーのトレンド ✓ ✓ ✓ T. Kishishita 3D integration CCPD (Charge Coupled Pixel Detector) 65 nm CMOS 20-21 Nov. 2014, 計測システム研究会@J-PARC 24 FJ"'(!E>(9"$"7$F'C adopted from Y. Yarema, Vertex 2007 $H(9B"($F(%B6$8#6"($8"'C(FI( 3D Integration (CB&C$'3$"(%3$"'836C(IF'( Detector physicists’ dream… Tapered TSV process for ATLA E#$8736 >? 5FV"' >? G87( E#$8736 EB$ E#$F N6"7$'F?87C 3?9RF' 0F6$3@" S"@B63$8F? Tapered Side Wall TSV (Through Silicon Via) @IZM, Berlin Al pad =8@8$36 23H"' L?36F@ 23H"' Cu plug TSV: Main proces flow U. B% !"?CF' 23H"' 90 um Cu pad 5GHC878C$TC ='"3% ./-(234"(563789-(:;< ✓チップを積層(analog, Chip metal layers digital) 7 glass supp.wafer • TSV formed in the peripheral bond pad – Pad size of 150µm Max Si thickness: 100µm • etch TSV formation is a back side processing – Backside thinning to 90µm stop – TSV etched BEOL fromSiO the2 back side until the BEOL SiO2 stack • Front side processing to connect TSV bottom to Al pad Cu p – No metal layers in the pad – ~9µm thick BEOL SiO2 stack technically difficult to etch fro the TSV opening on the bottom ✓各layerで異なるTechnology Technologies are also Important! FE wafer 750 µm を使用可能 SiGe, opto) earn(BiCMOS, the DEPFET/pixel technologies ✓reduced R, L, and C→speed ication fields of analog ASICs... ✓reduced interconnect power, x-talk ✓reduce pixel size here, Cu 7 Laura Gonella – University of Bonn – 26/02/20 first initiative from Fermilab→France, Germany following… T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC need more time… 26 Capacitive Coupled Pixel Detector (CCPD) 520 Fig. 9. 3D view of the g IEEE TRANSACTIONS ON NUCLEAR S Fig. 7. Block scheme and photograph of the multi-purpose detector chip. 1st prototype The input-referred noise can be formula bumpless hybrid approach CTION ✓“in-house” ✓non-conducting glue Fig. 10. Photographs of 522 522 521 Fig. 2. Capacitive coupled pixel-detector with passive sensor. IEEE TRANSACTIONS ON NUCLEAR SCIENCE AC signal transmiss IEEE TRANSA Pericremain . un where we assumed I. matrices, each chip contains o not combine the rea gate-source capacitance of the CSA Fig. 8. Two chips are precisely aligned and glued onto each other. Chip A is used only disabled, Fig. 8. the parasitic back-side capacitance The chips are glue between the readout electrodes in x-direction is used for the (PCB in Fig. 9), c By taking this into account Bwe obt power lines in the top metal-layer. (The additional monolithic The second identica pixel-matrix, placed on the chip and shown in Fig. 7, is pre- B and the boards are sented in [6] and [7].) Only the upper pad-row of the chip is in PCB B allows the used to read out the CCPD matrices; the bottom-side pads are Photographs of tw used for the monolithic pixels. shown in Fig. 10. T The detector module is built in the following way. Two chips Fig. 10(b). from Fig. 7 are precisely aligned and glued onto each other using a precise flip-chip bonder. This is done in the following way. V. S A drop of non-conducting glue is dispensed and spread on the bottom chip (chip B in Fig. 8) manually. Chip B is then placed Fig. 11 shows th on the chuck of the bonder, while chip A is fixed on the bonding pixel. The pixel circ arm. Mirror-based alignment microscope shows the overlap of are mostly the resu I. Peric the projections of both chips. The chuck is aligned using alignare embedded insid ment markers shown in Fig. 7 and Fig. 8 and the bonding arm The input of ampli is lowered until the chips touch each other. Pressure (about 1 N using to the per chip area) and temperature are applied. In this way, the gap since the input DCbetween the chips is reduced to minimum. potential of the -w When the chips are glued in the way describer above, the PMOS transistors, m sensor- and receiver electrodes form the capacitors for the that the PMOS sour approximative formula (for noise analysis of pixel detectors see, for instance, [1]) Depending on the values of , (2) the following three cases: 1) Ideal case—the coupling . Compari with epi-MAPS with with HV-MAPS the feedback capaci- with DEPFET being the detector capacitance, , we tance of the CSA, the part of the amplifier input-node capacholds as w Fig. 5. Active pixel sensor in high-voltage CMOS technology. Fig. 4. Active pixel sensor in low-voltage CMOS technology with epi-layer. T. Kishishita itance that does 20-21 not originate from the detector (for instance the Fig. 6. Active Nov. 2014, 計測システム研究会@J-PARC MAPS… 27 pixel sensor in DEPFET technolog Fig. 5. Active pixel sensor in high-voltage CMOS technology. the signal to noise ratio (S/N 着任後の抱負 HEPとCMOSテクノロジー Borrowed from J. Schmitz TIPP 2014 KEK測定器開発室 !""#$%&$213$'$4567,)$144.8./1-9/,)$:;,69<($ +Brilliance of synchrotron sources, # channels in trackers# HEPでの要求 ASICデザイン ✓小ピクセル化 ✓低消費電力 コラボレーション ✓高速信号処理 企業 大学 ✓more “intelligence” in each pixel IndustrialSensor ✓放射線耐性 !technology driven progress" FE-I4 !"##$%&'()$*+,-./01+$ FE-?? 5 applications Physics65-nm CMOSが主流になりつつある New technolog applications 開発における課題 -基盤となるアナログIP・環境の整備 (ex. MEDIPIX@CERN) FE-I3 ✓Expensive… ✓低電源(😨アナログデザイン) -先端技術を用いたチップ・センサー開発→CMOS pixel (複数プロセスex. DEPFET←MAPS) 130 nm technology 65 nm technology 250 nm technology pixel size 400 × 50 µm2 pixel size 250 × 50 µm2 pixel size 125 × 25 µm2 ✓ゲート漏れ電流(tunneling) ✓デザインルール増(EGT not arrowed) -積極的なコラボレーション(ASICの応用範囲を広げる) 80 mil. transistors ~ 500 mil. transistors ✓デザインの複雑化 3.5 mil. transistors 12 (RD53: ATLAS, CMSのpixel FE) T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 28 次世代高エネルギー実験のための65 フロントエンドへの応用@BONN nm CMOS プロセスを用いたfront-end ASICの開発(1) M. Havranek NE#)F#0*<=)292G1 ! O.=.0%>#?%'0G# #######7#.P*)0.L%>#32'#*&*'1#?.@*># @ T. Kishishita Q' *9 .F .) %' 1 130 nm 65 nm 2 250 × 50 µm2 180 × 25 µm 65 nm O=*#/F%99*/0# 156 × 50 µm2 59 × 25 µm2 0'%)/./02'#.)#$PQ#RR 2 stages 1 stage NE#)F#0*<=)292G1# 7.8*9#/.J*#SAA#T#EA#UF 7.8*9#/.J*#@EA#T#EA#UF 7.8*9#/.J*#C@E#T#@E#UF ## continuous /dynamic ## continuous Comparator D"E#F.9"#0'%)/./02'/ Z#EAA#F.9"#0'%)/./02'/ VA#F.9"#0'%)/./02'/ E:#CD Analog power consumption 21.9 µW / pixel 10.6 µW (18 µW) / pixel !"#$%&'()*+,#-).&*'/.01#23#42)) ✓FE-I4と同性能 Analog power density 1.75 mW / mm2 2.36 mW / mm2 (4 mW / mm2) FE-I4と同程度のアナログ性能でピクセル面積1/4まで縮小可能で not final design… @# @ 20-21 Nov. 2014, 計測システム研究会@J-PARC borrowed from M. Havranek Technology WP:XD Pixel size Dimensions of analog part Charge sensitiveCDA#)F#0*<=)292G1# amplifier @EA#)F#0*<=)292G1# #######7#L2)3.=J'%0.2)#'*=./0*'#;:7K.0/# WP:YY #######7#A7K.0#/M.30#'*=./0*'7L2J)0*'# WP:XS FE-T65-1 #######7#D%/+7K.0# FE-I4 #######7#$.0Q'# [O>[I#Q.8*9#WP#<=.7/ Chip design !2)29.0=.<#;*0*<02'#"#"#" 56789:7;#<#/.)=>*#?.@*> DK#.)0*G'%0.2)#LCDA#)FM# - CSA+comparator - TDAC - 8 bit counter - config. register - mask, HitOr ;AB#CD $1\'.;#;*0*<02'# ! F)%>2=#?%'0G# IF%99*'#7.8*9#/.J*# #######7#HIF#0J)%K>*#.)?J0#L%?%L.0%)L*# ! !2/0#<'.0.<%9#%'*#0=*#.))*'F2/0#7.8*9#9%1*'/ 567RS 56789:7; ! $.G=*'#'%;.%0.2)#;2/*/# #######7#?'2='%DD%K>*#LM%'=*#.)N*L0.2)# ! $.G=*'#9HF.)2/.01,#=.G=*'#=.0#'%0*# #######7#5OFH#<#0J)%K>*#3**PK%L+#LJ''*)0# ! $>:>$?#.)#~#@A@@#B#CADE#<F:@#/:C# #######7#8OFH#<#0J)%K>*#0M'*/M2>P# 5*6#7.8*9#3'2)0:*);#<=.7#)**;*; #######7#L2D?%'%02'## !"#$%&'()*+,#-).&*'/.01#23#42)) Borrowed from M. Havranek borrowed from M. Havranek Chip design ✓ピクセル面積1/4 30 nchronous) control logic 次世代高エネルギー実験のための65 nm CMOS SAR-ADC 超低消費電力ADCデザイン DHPT !"#$%&'($()"*+!,*!-.* プロセスを用いたfront-end ASICの開発(2) $%'"%9$/!(*!+<$!'"55"#(*1!0+$80E M%29$#"%6!"'! Z2+("*25! J*0+%39$*+0!+"! )"993*()2+$] )"*+%"5!/(1(+25! 0(1*250 Digital output 200 150 100 50 Digital output DAC differential inputs C7 C6 C5 C4 OUTN C3 C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 mini ASIC DAC layout . T. Kishishita (A) LSB Bit Summary of the ADC chip Bit Technology 65 nm CMOS, 9 metals Supply voltage 1.2 V Core & 1.8 V IO Number of Channels 8 ch (4 ch asynch.+4 ch synch.) Input range, resolution 0-1.2 V/0.3-0.9 V with 8 bits 40!"um x 70 um (unoptimized) 4( uW@1MS/s, 38 uW@10MS/s !"# !"# Area (1ch, typical) !"# !"# Power (asynch.) 3D integration, MAPS, photon counting… Summary run→新しいアイデアを積極的に取り入れたデザインの試作 (B) . Ch OUTP . Asynchronous logic Switched cap. network . . . LSB dynamic comp. S&H LSB LSB . . 0+2+$!#<$%$!+<$!A>F!(0!<(1<! 0 0 0.2 0.4 0.6 0.8 1.0 1.2 5"#: Analog input voltage [V] Conventional ADCs are power consuming... DNL & INL <$!)282)(+"%0!HG-,.I: !!!,))3%2)D!"'!+<$!-,.!(0!/$8$*/$*+!"*!+<$!92+)<(*1!"'! !"#$%&#'()*+(,-#%&.)%!%/0123#45% !"#$%&#'()*+(,-#%&.)%!%/0123#45% .K!G -,.!(0!)"982%$/!+"!G ?LM:!J*! comparator 9$+25!$+)<(*1!2*/!*"(0$!(*!+<$!)282)(+"%!2%%2D:!@<$!4$0+! →SC circuit + dynamic + small cap. #6789:%"7;:;%3<;:% .6==:>:7?6@9%3<;:% #6789:%"7;:;%3<;:% .6==:>:7?6@9%3<;:% +#"!<25=$0!2%$!)"982%$/!+"! !"#$%&#'()*+(,-#%&.)%!%/0123#45% 20D*)<%"*"30!,-.!H-,.!52D"3+&,I!0<"#0!1""/!-Z[!P! !"#$%&#'()*+(,-#%&.)%!%/0123#45% JZ[!8$%'"%92*)$0!#(+<!"8$%2+(*1!'%$\3$*)D!"'!NX:C!A>]0: ! ! #6789:%"7;:;%3<;:% .6==:>:7?6@9%3<;:% #6789:%"7;:;%3<;:% .6==:>:7?6@9%3<;:% 0!('!+<$!A>F!0<"35/!%$92(*! DAC layout with metals single-ended mode @ 12.5MS/s 6(7,-'8!9('+*:;!<(201*:=*!>*0=*0=*2-;!<7+-0?!@(+&('(A;!@-, differential mode !+<$!)"*=$%0("*: [INL] [INL] 2*/!+<$!8%")$/3%$!(0!%$8$2+$/K! 2=$!4$$*!/"*$!'"%!O!4(+0: #!2!/(1(+25!%$8%$0$*+2+("*!"'! Bit [DNL] Bit [DNL] 1$: 20-21 Nov.!"#$%!P!2%$2!$''()($*+!,-.!(0!03(+245$!20!'%"*+&$*/!/$0(1*: 2014, 計測システム研究会@J-PARC 5 29 65 nmプロセスの放射線耐性 Core NMOS, leakage current core NMOS, leakage current borrowed from CERN group 10 10 Ileak [A] 10 10 10 130 nm 10 106 107 -6 ELT 120 60nm 240 60nm 360 60nm 480 60nm 600 60nm 1000 60nm 10 1 m 10 10 m -7 -8 65 nm -9 -10 -11 108 TID [rad] F.Faccio et al., “Radiation-induced edge effects in deep submicron CMOS transistors”, IEEE Tr. Nucl. Sci. 2005 10 -12 10 4 10 5 10 6 10 7 10 8 10 9 TID [rad] ✓a rebound effect is visible in 130 nm 65nm has better performance with respect to 130nm: (Plots are in the same scale) ✓all 130 nm devices are peaking at ~100 nA a rebound effect is visible in 130 nm: W devices increase Ileak by 2 orders of magnitude all ✓small 130nm devices are peaking at ~100nA ✓Ileakdevices is ~1 nA@136 Mrad Narrow increase Ileak by 3 orders of magnitude Ileak is ~1nA @136 Mrad lower Vth shift than 130 nm (core FET) T. Kishishita 20-21 Nov. 2014,- PH/ESE 計測システム研究会@J-PARC Sandro Bonacini - [email protected] 9 31 Conclusions ハイブリッドピクセル needs heavy R&D on sensor materials, ICs and modules, 3D integ. ✓state of art, 技術的には成熟 ✓sensorとエレキを別々に選べる ✓rad-hard OK ✓production yieldの問題, アセンブリーが大変, 複雑なオペレーション(many modules) ✓比較的高価 (50-100 EUR/cm2)←innermost layerならOK ✓smaller pixel →50 x 50 um2 with smaller feature-sized technology (65 nm CMOS) モノリシックピクセル needs heavy R&D on full CMOS integration, radiation tolerance ✓技術的にはこれから(rad-hard, sensor propertyはprocess optionに依存) ✓大面積を安価に実現できる可能性(commercial CMOS, no bump, <10 EUR/cm2) ✓3D integrationが実現できればより高速かつ、intelligentなpixel検出器が可能 ✓Monolithic for ILC; MAPS, DEPFET, new tech. like SOI pix, a-Si:H pixels Next challenge ✓HL-LHC radiation tolerance up to 1016neq/cm2→新しいセンサー (diamond, 3D) ✓light weight→less power, new cooling, new mechanism ✓data band width: 40MHz→GHz T. Kishishita 20-21 Nov. 2014, 計測システム研究会@J-PARC 32