...

三角関数、指数関数 1 三角関数 正弦定理 a sinα = b sinβ = c sinγ 余弦

by user

on
Category: Documents
8

views

Report

Comments

Transcript

三角関数、指数関数 1 三角関数 正弦定理 a sinα = b sinβ = c sinγ 余弦
三角関数、指数関数
三角関数 a
b
c
=
=
sin ! sin " sin # 余弦定理 a 2 = b 2 + c 2 ! 2bc cos ! 加法定理 sin(! + " ) = sin ! cos " + cos ! sin " , sin(! ! " ) = sin ! cos " ! cos ! sin " cos(! + " ) = cos ! cos " ! sin ! sin " , cos(! ! " ) = cos ! cos " + sin ! sin " tan(! + " ) =
倍角の公式、半角の公式 sin 2! = 2sin ! cos ! , cos2! = cos2 ! ! sin 2 ! = 1! 2sin 2 ! sin 3! = 3sin ! cos2 ! ! sin 3 ! , cos3! = cos3 ! ! 3sin 2 ! cos ! = 4 cos3 ! ! 3cos ! 正弦定理 cos2
sin(! + " ) tan ! + tan "
sin(! ! " ) tan ! ! tan "
=
tan(! ! " ) =
=
, cos(! + " ) 1! tan ! tan "
cos(! ! " ) 1+ tan ! tan "
! 1+ cos !
! 1! cos !
, sin 2 =
=
2
2
2
2
和積の公式 sin A + sin B = 2sin
cos A + cos B = 2 cos
三角関数の逆関数 A+B
A!B
A+B
A!B
cos
sin
, sin A ! sin B = 2 cos
2
2
2
2
A+B
A!B
A+B
A!B
, cos A ! cos B = !2sin
cos
sin
2
2
2
2
y = sin !1 x = arcsin x , dy
1
dy
1
, y = cos!1 x = arccos x , =
=!
2
dx
dx
1! x
1! x 2
三角関数の微分積分 (sin ! )! = cos! , (cos! )! = "sin ! , (tan ! )! =
! sin! d! = "cos! + C , ! cos! d! = sin! + C 三角関数の極限公式 1
= 1+ tan 2 ! 2
cos !
sin !
= 1 ! !0 !
lim
lim
! !0
tan !
= 1 (sin ! < ! < tan ! )
!
1
三角関数、指数関数
1" cos! 1
= ! !0
!2
2
lim
指数関数・対数関数 e x+y = e x e y , exp(x + y) = exp x ! exp y log e x = log x = ln x ln xy = ln x + ln y ln e = 1 , ln1 = 0 log a b =
log c b
(log c a ! log a b = log c b) (底の変換公式: log a b = x とおくと、‒−‒) log c a
ネイピア数 e の定義 e h "1
e h+0 # e 0
ehe0 # e0
e h #1
= 1 ( f !(0) = lim
= lim
= lim
) h!0
h"0
h"0
h"0
h
h
h
h
lim
lim
h!0
ln (1+ h )
=1
h
n
1
# 1&
e = lim %1+ ( = lim (1+ h ) h n!" $
n ' h!0
指数関数・対数関数の微分積分 (e x )! = e x e x+h # e x
e h #1 x
x
(e )! = lim
= e lim
= e h"0
h"0
h
h
x
(a x )! = a x " ln a x
! e dx = e
(ln x )! =
x
1
x
( ln f (x))! =
!
+ C f !(x)
f (x)
dx
= ln x + C x
! ln xdx = x ln x " x + C 2
Fly UP