Comments
Transcript
三角関数、指数関数 1 三角関数 正弦定理 a sinα = b sinβ = c sinγ 余弦
三角関数、指数関数 三角関数 a b c = = sin ! sin " sin # 余弦定理 a 2 = b 2 + c 2 ! 2bc cos ! 加法定理 sin(! + " ) = sin ! cos " + cos ! sin " , sin(! ! " ) = sin ! cos " ! cos ! sin " cos(! + " ) = cos ! cos " ! sin ! sin " , cos(! ! " ) = cos ! cos " + sin ! sin " tan(! + " ) = 倍角の公式、半角の公式 sin 2! = 2sin ! cos ! , cos2! = cos2 ! ! sin 2 ! = 1! 2sin 2 ! sin 3! = 3sin ! cos2 ! ! sin 3 ! , cos3! = cos3 ! ! 3sin 2 ! cos ! = 4 cos3 ! ! 3cos ! 正弦定理 cos2 sin(! + " ) tan ! + tan " sin(! ! " ) tan ! ! tan " = tan(! ! " ) = = , cos(! + " ) 1! tan ! tan " cos(! ! " ) 1+ tan ! tan " ! 1+ cos ! ! 1! cos ! , sin 2 = = 2 2 2 2 和積の公式 sin A + sin B = 2sin cos A + cos B = 2 cos 三角関数の逆関数 A+B A!B A+B A!B cos sin , sin A ! sin B = 2 cos 2 2 2 2 A+B A!B A+B A!B , cos A ! cos B = !2sin cos sin 2 2 2 2 y = sin !1 x = arcsin x , dy 1 dy 1 , y = cos!1 x = arccos x , = =! 2 dx dx 1! x 1! x 2 三角関数の微分積分 (sin ! )! = cos! , (cos! )! = "sin ! , (tan ! )! = ! sin! d! = "cos! + C , ! cos! d! = sin! + C 三角関数の極限公式 1 = 1+ tan 2 ! 2 cos ! sin ! = 1 ! !0 ! lim lim ! !0 tan ! = 1 (sin ! < ! < tan ! ) ! 1 三角関数、指数関数 1" cos! 1 = ! !0 !2 2 lim 指数関数・対数関数 e x+y = e x e y , exp(x + y) = exp x ! exp y log e x = log x = ln x ln xy = ln x + ln y ln e = 1 , ln1 = 0 log a b = log c b (log c a ! log a b = log c b) (底の変換公式: log a b = x とおくと、‒−‒) log c a ネイピア数 e の定義 e h "1 e h+0 # e 0 ehe0 # e0 e h #1 = 1 ( f !(0) = lim = lim = lim ) h!0 h"0 h"0 h"0 h h h h lim lim h!0 ln (1+ h ) =1 h n 1 # 1& e = lim %1+ ( = lim (1+ h ) h n!" $ n ' h!0 指数関数・対数関数の微分積分 (e x )! = e x e x+h # e x e h #1 x x (e )! = lim = e lim = e h"0 h"0 h h x (a x )! = a x " ln a x ! e dx = e (ln x )! = x 1 x ( ln f (x))! = ! + C f !(x) f (x) dx = ln x + C x ! ln xdx = x ln x " x + C 2