Comments
Description
Transcript
鈴木雅代 - 徳島文理大学薬学部
DNA ................................................................................................................................. 1 .......................................................................................................................... 4 1 ..................................................................................................................... 5 2 ................... 10 1 .............................................................................................................. 10 2 .............................................................................................................. 12 3 ................................................................................................... 13 4 .............................................................................................................. 23 3 DNA ........... 24 1 .............................................................................................................. 24 2 .............................................................................................................. 27 3 ................................................................................................... 32 4 .............................................................................................................. 42 4 Oz ...................................................................... 44 1 .............................................................................................................. 44 2 ...................................................................................................... 46 3 ................................................................................................... 56 4 .............................................................................................................. 76 5 Oz DNA ............................... 78 1 .............................................................................................................. 78 2 ...................................................................................................... 80 3 ................................................................................................... 85 4 .............................................................................................................. 96 6 7 Oz DNA ...................................... 97 1 .............................................................................................................. 97 2 ...................................................................................................... 99 3 ................................................................................................. 102 4 ............................................................................................................ 112 ................................................................................................................. 114 ...................................................................................................................... 118 ............................................................................................................................. 129 DNA DNA G:C-T:A G:C-C:G p53 K-ras K-ras codon 12 G:C-C:G G:C-T:A 8 (8-oxoG) 8-oxoG G:C-T:A 8-oxoG G:C-C:G 8-oxoG (Iz) (Oz) DNA Oz (Pol) α Klenow fragment exonuclease- (KF exo-) IV Pol β Pol γ Pol ε Pol η Pol Oz G:C-C:G Oz G:C-C:G 8-oxoG (Gh) (Sp) (Ia) KF exoGh/Ia Sp Oz 1 Oz Gh/Ia Oz Gh/Ia Sp G:C-C:G G:C-C:G Oz 2 3 Oz Gh/Ia Sp DNA DNA DNA Oz > Gh/Ia > Sp 2 Oz:G 3 Ia:G sp3 Gh/Ia DNA Sp Sp:G Oz sp3 DNA Gh/Ia Sp DNA Oz DNA DNA DNA DNA DNA Oz G:C-C:G Oz DNA Pol β Pol γ Pol ε Pol η Pol IV KF exo- Pol α Oz Oz DNA 4 Oz DNA DNA DNA Pol ι DNA Pol κ REV1 Oz Pol δ Oz 5 Oz REV1 DNA DNA DNA Oz:G Oz:G 2 Oz:A Oz:C Oz:T Pol ζ DNA KF exo- 6 Pol α Pol β Pol ζ Pol η Pol ι Pol κ REV1 Oz DNA 4 6 Oz Oz REV1 Oz REV1 DNA KF exo5 DNA Oz DNA Oz G:C-C:G Oz DNA REV1 DNA Oz Oz DNA Pol ζ Oz DNA DNA Oz DNA DNA Oz Oz Pol ζ DNA REV1 REV1 Oz DNA Oz Oz G:C-C:G Oz Oz in vitro Oz 3 8-oxoG 8-oxo-7,8-dihydroguanine (8 ) 2-ME 2-mercaptoethanol BRCT BRCA1 C-terminal BSA bovine serum albumin CPD cyclobutane pyrimidine dimer ( ct calf thymus DFT density functional theory ( Gh guanidinohydantoin ( h human Ia iminoallantoin ( Iz 2,5-diamino-4H-imidazol-4-one ( KF exo- Klenow fragment exonuclease- Oz 2,2,4-triamino-5(2H)-oxazolone ( PMSF phenylmethylsulfonyl fluoride Pol DNA polymerase (DNA Pur purine ( Pyr pyrimidine ( SCRF self-consistent reaction field ( Sp spiroiminodihydantoin ( THF tetrahydrofuran ( Tm melting temperature ( XP xeroderma pigmentosum ( y yeast ) ) ) ) ) ) ) ) ) ) ) ) ) ) 4 1 DNA DNA DNA DNA DNA DNA 1) G:C-T:A G:C-C:G (Fig.1) B2 ( ) K3 ( ) γ Fe2+ 2) G:C-C:G 3) p53 K-ras 1) 3-6) 12 13 K-ras (Table GTPase 5 CpG Fig.1 The mutations caused from oxidatively damaged guanine. Table 1 Type of genetic mutation in K-ras gene and its frequency in type of cancer 6). mutation type codon 12 codon 13 colon cancer pancreatic cancer lung cancer CGT (Arg) 1.1% 12.2% 2.4% GCT (Ala) 6.3% 2.3% 6.3% TGT (Cys) 8.5% 3.3% 40.7% GTT (Val) 22.6% 29.7% 19.8% CGC (Arg) 0.5% 0.1% 3.1% GCC (Ala) 0.2% 0.0% 0.1% TGC (Cys) 0.5% 0.1% 3.1% GTC (Val) 0.1% 0.1% 0.1% GGT (Gly) GGC (Gly) 6 8 (8-oxo-7,8-dihydroguanine 8-oxoG) (Scheme 1) 8-oxoG 7) 8-oxoG:A (Fig.2) 8-10) 8-oxoG 8-oxoG:C G:C-T:A 8-oxoG K-ras G:C-C:G (Table 1) 3-6) 8-oxoG G:C-C:G O N NH N dR N N dR NH 2 N NH 2 HN O N O H N O N dR Iz O ∗ N dR O Sp NH 2 NH N H NH 2 ∗ N 8-oxoG NH 2 HN dR O HN NH O G N O H N NH 2 O O N ∗ N dR N H Ia Gh +H2O H 2N N HN dR NH 2 NH O O Oz (closed-ring) N dR N H NH 2 COOH Oz (open-ring) Scheme 1 Oxidation products of guanine. Asterisk indicates the sp3 carbon. 7 NH 2 H N H 2N O N dR H H N N H N O N N N N O H N O dR 8-oxoG (syn) : A (anti) N NH N dR H H N N N N H H O dR 8-oxoG (anti) : C (anti) Fig.2 The structures of 8-oxoG:A and 8-oxoG:C base pair 8-10). 8-oxoG (Scheme 1) 11-13) Iz (2,5-diamino-4H-imidazol-4-one Iz) 13-15) DNA in vitro in vivo Iz G:C-C:G 16, 17) Iz pH 7 37 ºC 147 (Scheme 1) 11) (2,2,4-triamino-5(2H)-oxazolone Oz) 107 DNA 18) 2 6 Oz 5- CpG p53 19) Oz Oz Iz Oz DNA (DNA Pol β Pol γ Pol ε Pol η Pol IV Klenow fragment exonuclease- polymerase Pol) α (KF exo-) 20, 21) Oz Oz G:C-C:G G:C-C:G (guanidinohydantoin (spiroiminodihydantoin Sp) Sp Gh) (Scheme 1) Gh 12, 22-24) 8-oxoG Gh (iminoallantoin (Scheme 1) 25) DNA 8 Ia) KF exoSp 26) Gh/Ia Oz Oz 20) Gh/Ia Gh/Ia Sp 2 3 G:C-C:G Oz G:C-C:G Oz Oz Gh/Ia Sp DNA 20, 26) DNA Pol β Pol γ Pol ε Pol η Pol IV KF exo- Pol α Oz DNA DNA DNA 5 Oz DNA DNA 9 15 DNA 4 DNA DNA 6 Oz Oz 2 ( Molecules, 17, 6705-6715 (2012) ) 1 1 G:C-T:A G:C-C:G 8-oxoG G:C-C:G G:C-C:G Oz (Scheme 1) Gh/Ia Gh/Ia Sp Sp Oz 20, 26) DNA DNA DNA N- DNA 27) A-rule (tetrahydrofuran THF) (Fig.3) 28) THF G:C A:T ( THF 20) 10 ) OH HO O O OH HO Pyrene : THF Fig.3 The structures of Pyrene:THF base pair 28). Oz:G Ia:G Gh:G Sp:G DNA Oz > Gh/Ia > 20, 26) Sp Oz:G Ia:G 20) 2 Sp:G 2) Gh:G 29) Beckman (density functional theory SCRF) Oz:G Ia:G DFT) (self-consistent reaction field Sp:G Gh:G 11 Oz:G 2 2'C1' 1 C1' C1' 2 Gaussian 03 30) NB3LYP/6-31G** Onsager reaction field (ε = 78.39) (1) ΔE = E(base pair complex ‘X:Y’)-[E(isolated base ‘X’)+E(isolated base ‘Y’)] GaussView Fig.4, 6, 8, 9 12 (1) 3 3-1. Ia:G Ia 3 kino 2) 3 8 Ia B3LYP/6-31G** (Ia1-Ia8) Ia1:G-Ia8:G Fig.4 Ia:G Table 2 Ia1:G 29.5 kcal/mol C:G (30.9 kcal/mol) Ia:G C:G 3 Ia3:G Ia4:G Ia5:G Ia7:G Ia8:G Ia2:G Ia6:G 29.5 kcal/mol (O4-H8) (Fig.4B) 28.7 kcal/mol O4 Ia:G 8 Ia:G SCRF Ia1:G Ia5:G S 24.1 kcal/mol Ia1 R (+)-S Ia5 Ia5:G Ia3:G Ia4:G Ia7:G Ia8:G Onsager reaction field 13 24.0 kcal/mol ( )-R 31) Ia1:G Ia1:G Ia5:G Ia1 Ia5 32) S Ia3 > Ia4 > Ia1 Ia7 > Ia8 > Ia5 Table 2 Ia1:G Stabilization energies (kcal/mol) R Ia5:G of base pairs, obtained from the B3LYP/6-31G**-optimized geometriesa. Reproduced from Suzuki M. et al., Molecules, 17, 6705-6715 (2012) with permission from MDPI. Δ EDFT Δ ESCRF Δ EDFT Δ ESCRF Ia1:G 29.5 24.1 Gh7:G 19.9 19.5 Ia2:G 28.7 19.3 Gh8:G 19.8 16.9 Ia3:G 29.5 17.0 Gh9:G 21.0 19.1 Ia4:G 29.5 23.5 Gh10:G 20.9 17.3 Ia5:G 29.5 24.0 Gh11:G 20.6 20.6 Ia6:G 28.7 19.7 Gh12:G 20.4 19.6 Ia7:G 29.5 18.1 Gh13:G 20.3 16.6 Ia8:G 29.5 22.6 Gh14:G 20.5 17.1 Gh1:G 21.0 18.9 Gh15:G 20.8 18.5 Gh2:G 20.9 16.7 Gh16:G 21.1 19.0 Gh3:G 20.5 21.4 Sp1:G 28.2 18.8 Gh4:G 20.4 19.5 Sp2:G 28.2 19.9 Gh5:G 20.4 18.2 Oz:G 20.7 16.3 Gh6:G 20.5 16.8 Base pair a Base pair ΔEDFT, in vacuo; ΔESCRF, SCRF = Dipole, dielectric = 78.39, in water 14 A B H O H 2N HN ∗ N dR H N H O N N H N N O N H N HN 1 dR N6 dR O H N H 7 5 O N 2 3 4 8 N H H N N H N N O dR H N H C Ia1:G Ia2:G Ia3:G Ia4:G Ia5:G Ia6:G Ia7:G Ia8:G Fig.4 The Ia:G base pairs. (A) The proposed Ia:G base pair. Asterisk indicates the sp3 carbon. (B) The proposed Ia:G base pairs and the associated hydrogen bonds. This numbering is the same as used in reference 25. (C) The geometries of Ia1:G-Ia8:G optimized by ab initio calculation. The stabilization energies are shown in Table 2. Reproduced from Suzuki M. et al., Molecules, 17, 6705-6715 (2012) with permission from MDPI. 15 3-2. Gh:G Beckman Gh:G 29) 2 33) (Fig.5A) 1 16 Gh (Fig.5B) Beckman (Gh1-Gh16) 3 Gh:G Gh1:G-Gh16:G (Fig.6 Table 2) Gh1-Gh16 Gh1-Gh8 ( )-S Gh9-Gh16 Gh:G (+)-R 2 kcal/mol Gh3:G 21.4 kcal/mol 16.8 kcal/mol S Gh6:G S 3-1 Gh:G Gh3:G Gh11:G 20.6 kcal/mol Gh3 R Gh11 S R S R S R 12, 34) Aller DNA 34) Gh S Aller Gh:G Ia:G Ia:G Gh/Ia Gh Ia 16 A O N HO ∗ N dR N H H N NH O O ∗ N dR NH 2 enol-1 N H OH N NH O ∗ N dR NH 2 NH N H NH 2 enol-2 diketo B H N O N O N H ∗ N H dR NH 2 Fig.5 The structure of Gh. (A) Neutral Tautomers of Gh shown by Verdolino et al.33) The diketo form showed only one form in here, which used Gh:G base pair proposed by Beckman et al.29) The enol tautomers showed three forms having the same guanidinium group as the diketo form used in Gh:G base pair. (B) The curly arrows indicate the rotation axis. Asterisk indicates the sp3 carbon and chiral center. A H N O H 2N HN ∗ N dR N H O O N N H N N dR H 2N B Gh1:G Gh2:G Fig.6 Cont. 17 Gh3:G Fig.6 Cont. Gh4:G Gh5:G Gh6:G Gh7:G Gh8:G Gh9:G Gh10:G Gh11:G Gh12:G Gh13:G Gh14:G Gh15:G Gh16:G Fig.6 The Gh:G base pairs. (A) The proposed Gh:G base pair. (B) The geometries of Gh1:G -Gh16:G optimized by ab initio calculation. The stabilization energies are shown in Table 2. Reproduced from Suzuki M. et al., Molecules, 17, 6705-6715 (2012) with permission from MDPI. 18 3-3. Sp:G Sp Ia:G 3 Sp:G 2) Sp 33) Sp1 ( )-S Sp2 Sp 2 Sp1 (+)-R Sp1:G 28.2 kcal/mol kcal/mol (Fig.7) Sp1:G Sp2:G 18.8 kcal/mol Sp2:G (Fig.8 Table 2) 3-1 Sp2:G Sp:G Ia1:G Sp Ia:G Kornyushyna Gh/Ia Sp 19.9 Sp2:G Sp1:G Gh/Ia Sp2 26) Kornyushyna 19 DNA O HN N HO N O HN NH 2 HN N ∗ N O dR O ∗ N triketo O O N ∗ N ∗ NH 2 N dR O imine enol-2 NH 2 N HN N O dR O imine enol-1 OH HN NH 2 N dR OH imine enol-3 Fig.7 Neutral Tautomers of Sp shown by Verdolino et al.33) The diketo form showed only one form in here, which can form Sp:G base pair proposed by Kino et al.2) The imine enol tautomers showed two forms, and the position of their imine enol is at hydantoin ring. Asterisk indicates the sp3 carbon and chiral center. A B H O HN HN O N dR N H N O N N H N N O dR H N H Sp1:G Sp2:G Fig.8 The Sp:G base pairs. (A) The proposed Sp:G base pair. (B) The geometries of Sp1:G and Sp2:G optimized by ab initio calculation. The stabilization energies are shown in Table 2. Reproduced from Suzuki M. et al., Molecules, 17, 6705-6715 (2012) with permission from MDPI. 20 3-4. Oz:G Ia:G Gh:G Sp:G 20) Oz:G 20.3 kcal/mol 16.3 kcal/mol (Fig.9 Table 2) 3 Oz:G Ia:G 2 Ia:G DNA Oz > 20, 26) Gh/Ia > Sp Oz:G Sp Gh/Ia sp3 DNA sp3 DNA DNA Sp (melting temperature Tm ) DNA 20 ºC 35) Sp DNA DNA 2'C1' C:G 36) 21.0 kcal/mol DFT 25.0 kcal/mol B3LYP/6-31G** 4.0 kcal/mol C1' 3 21 A B H N H 2N N O H O N N H N N dR NH O dR H N H Fig.9 The Oz:G base pair. (A) The proposed Oz:G base pair. (B) The geometries of Oz:G optimized by ab initio calculation. The stabilization energies are shown in Table 2. Reproduced from Suzuki M. et al., Molecules, 17, 6705-6715 (2012) with permission from MDPI. 22 4 Ia1:G-Ia8:G Gh3:G Ia1:G 21.4 kcal/mol 24.1 kcal/mol Ia Gh1:G-Gh16:G Gh Ia1:G Gh/Ia Gh Ia Sp:G Sp2:G Sp1:G 19.9 kcal/mol Ia:G Sp:G Sp:G Ia:G Sp Gh/Ia 26) Oz:G 16.3 kcal/mol Gh/Ia Sp Ia:G Kino Kornyushyna Oz:G Ia:G Oz 20, 26) Gh:G Sp:G DNA Kino DNA 23 Kornyushyna 3 DNA ( Molecules, 19, 11030-11044 (2014) ) 1 G:C-C:G Oz Gh/Ia Sp G:Oz G:Gh G:Ia G:Sp G:Ia > G:Sp > G:Gh > G:Oz 1 2 DNA Oz Gh/Ia Oz Gh/Ia Sp Sp 20, 26) 20, 26) DNA DNA DNA DNA DNA DNA 37, 38) DNA DNA DNA DNA DNA DNA (Fig.10) DNA DNA DNA 39) DNA 39) DNA 37) DNA sp3 DNA G:Ia 24 Fig.11 G:Sp G:Oz sp3 Fig.10 DNA synthesis by DNA polymerases. (A) DNA synthesis of undamaged DNA is efficient. (B) DNA synthesis of damaged DNA is inefficient. 25 A B O N N dR H O N H H N NH O H N O N N dR N N N H C H NH O N N H N ∗ dR N NH 2 N H O dR N HN dR H H N O N H N H N N N H H O H NH O ∗ N NH dR O Fig.11 The proposed hydrogen bonding of (A) G:Oz, (B) G:Ia, and (C) G:Sp base pairs. Asterisk indicates the sp3 carbon. Sp sp3 DNA Oz Ia Ia Sp DNA DNA DNA DNA 20, 26) Oz > Gh/Ia > Sp G:Ia G:Gh Ia Ia G:Oz G:Ia G:Sp 20, 26) DNA DNA hPol β-DNA 40) 3 DNA 26 2 2-1. (PDB entry: 1BPY) 40) hPol β S-Ia R-Ia S-Sp R-Sp) 1 G:X (X = Oz hPol β-DNA DNA 5' T - Oz 20, 21) dATP dCTP 5 T dATP hPol β-DNA dCTP 3' G G:C 2 G:X DNA G:X 9.0 T Macromodel OPLS2005/water 2-2. ab initio Macromodel 9.0 G:X 2 C1' C1' (Fig.12) 20) 2-1 B3LYP/6-31G** C1' 2 “A1T1” 1 N “G2X2” “G3C3” “A1T1” (Fig.12 Fig.15) Gaussian 03 30) 78.39) G:X Onsager reaction field “A1T1” “G3C3” “A1T1 + G3C3” (ΔE1 27 ΔE3 ΔE1+3) (2)–(4) (ε = ΔE1 = E(“A1T1” of G:X complex (X = C)) (2) – E(“A1T1” of G:X complex (X = Oz, S-Ia, R-Ia, S-Sp or R-Sp)) ΔE3 = E(“G3C3” of G:X complex (X = C)) (3) – E(“G3C3” of G:X complex (X = Oz, S-Ia, R-Ia, S-Sp or R-Sp)) ΔE1+3 = E(“A1T1+G3C3” of G:X complex (X = C)) (4) – E(“A1T1+G3C3” of G:X complex (X = Oz, S-Ia, R-Ia, S-Sp or R-Sp)) Fig.12 An overview of calculating the destabilization energies of DNA duplexes. Each Pol β-DNA complex containing a G:X (where X = C, Oz, S-Ia, R-Ia, S-Sp or R-Sp) base pair was minimized. G:X and each base pair adjacent to G:X is delineated in Fig.15. A:T base pair on the 5'-side of X was designated “A1T1”, G:X base pair was designated “G2X2”, and G:C base pair on the 3'-side of X was designated “G3C3”. The destabilization energies of “A1T1” (ΔE1), “G3C3” (ΔE3), and “A1T1 + G3C3” (ΔE1+3) were calculated ab initio as the parts common to each model duplex; each G2X2 base pair was excluded from the calculations. Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. 28 2-3. 5 (A1 T1 G2 G3 C3) N3 (xN3, yN3, zN3) C5 (xC5, yC5, zC5) N1 (xN1, yN1, zN1) C5N1 Pn C5N3 2 (Fig.13A) (5) (Fig.13B) A1 T1 G2 G3 C3 Pn n Pn (xn, yn, zn) = C5N1 × C5N3 = (xN1 – xC5, yN1 – yC5, zN1 – zC5) × (xN3 – xC5, yN3 – yC5, zN3 – zC5) = ((yN1 – yC5)•(zN3 – zC5) (zN1 – zC5)•(yN3 – yC5), (5) (zN1 – zC5)•(xN3 – xC5) – (xN1 –xC5)•(zN3 – zC5), (xN1 – xC5)•(yN3 – yC5) (yN1 – yC5)•(xN3 – xC5)) Fig.13 (A) Vector C5N1 and vector C5N3 in A, T, G, or C. (B) Normal vector Pn was calculated from C5N1 and vector C5N3 (Equation (5)). Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. 29 G2 G3)) G2 A1 (θ (G2–A1)) C3 (θ (G2–C3)) G3 G2 T1 (θ (G2–T1)) C3 (θ (G3–C3)) ( A1 T1 (θ (A1–T1)) 6 G2 G3 (θ (G2– (Fig.14) (6)-(11)) Fig.14 Calculated dihedral angle θ (G2–A1), θ (G2–T1) and θ (A1–T1) showed red arrows, and the calculated dihedral angle θ (G2–G3), θ (G2–C3) and θ (G3–C3) showed blue arrows. Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. θ (G2–A1) = arccos (PG2 • PA1 / |PG2| |PA1|) (6) θ (G2–T1) = arccos (PG2 • PT1 / |PG2| |PT1|) (7) θ (A1–T1) = arccos (PA1 • PT1 / |PA1| |PT1|) (8) θ (G2–G3) = arccos (PG2 • PG3 / |PG2| |PG3|) (9) θ (G2–C3) = arccos (PG2 • PC3 / |PG2| |PC3|) (10) θ (G3–C3) = arccos (PG3 • PC3 / |PG3| |PC3|) (11) 30 DNA δ1 δ3 (12) (13) δ1 = θ (G2–A1) + θ (G2–T1) + θ (A1–T1) (12) δ3 = θ (G2–G3) + θ (G2–C3) + θ (G3–C3) (13) 31 3 3-1. G:X 1 DNA 2 (Oz Ia sp3 Sp “G:X (X = Oz Ia Sp) S S-Ia R-Ia S-Sp R-Sp)” >> G:R-Sp > G:S-Sp >> G:Oz DNA DNA (PDB entry: 1BPY) 40) hPol β hPol β-DNA G:X G:S-Ia > G:R-Ia 2 G:X 1 R G:X G:X 2 2 hPol β-DNA hPol β-DNA G:X hPol β-DNA G:X 5' (Fig.12 Fig.15) Fig.12 X 5' A:T A1T1 G2X2 G3C3 “A1T1” X 3' G:X 3' “G2X2” “G3C3” Fig.15 3 DNA X2 X2 X2 A1T1 DNA 32 G3C3 G2 X2 Fig.15 Minimized geometries of “A1T1, G2X2, G3C3” containing X2 = (A) C, (B) Oz, (C) S-Ia, (D) R-Ia, (E) S-Sp, or (F) R-Sp as viewed from the minor groove. Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. 33 3-2. X 5' 3' DNA DNA “G2X2” 3-2-1. X X2 5' 5' “A1T1” (ΔE1) (2) ΔE1DFT (Table 3) ΔE1SCRF ΔE1DFT ΔE1SCRF R-Sp > S-Sp > S-Ia > Oz > R-Ia Kornyushyna Gh/Ia Sp 26) Ia 5' Sp Oz “A1T1” Kornyushyna R-Ia ΔE1 Table 3 Destabilization energies (kcal/mol) of “A1T1” (ΔE1), “G3C3” (ΔE3), and “A1T1 + G3C3” (ΔE1 + 3), each value was calculated with minimized geometries. Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. Xa A1T1 G3C3 A1T1 + G3C3 Δ E1DFT Δ E1SCRF Δ E3DFT DE3SCRF Δ E1+3DFT Δ E1+3SCRF Oz 1.3 1.1 −0.1 0.6 1.1 1.0 S-Ia 1.4 1.3 2.6 1.3 4.1 4.5 R-Ia 0.5 0.6 4.0 3.9 4.8 4.6 S-Sp 2.1 2.1 2.7 2.8 4.8 5.3 R-Sp 12.6 12.4 5.3 4.5 18.3 18.3 a X = the damage contained in the minimized structure. 34 5' “A1T1” Ia Oz DNA 20) 3' “G3C3” 3-2-2. X 3' X2 3' “G3C3” ΔE3DFT ( ΔE3SCRF) (3) (Table 3) ΔE3DFT X2 ΔE3SCRF 3' “G3C3” Oz “G3C3” X2 3' “G3C3” Oz Ia Sp Oz 20, 26) DNA S-Sp “G3C3” R-Ia “G3C3” X2 3-2-3. G2X2 X2 5' 3' X 5' 3' G2 X2 “A1T1” ΔE1+3DFT ( Sp Sp ΔE1+3DFT ΔE1+3DFT S “A1T1 + G3C3” “A1T1 + G3C3” (4) ΔE1+3SCRF Oz ΔE1+3SCRF Ia ΔE1+3DFT R > S-Sp~R-Ia > S-Ia > Oz ΔE1+3SCRF DNA “G3C3” ΔE1+3SCRF) (Table 3) Ia 3' 20, 26) “G3C3” Oz R-Sp > R-Ia > S-Sp > S-Ia > Oz R-Sp R-Sp > S-Sp > R-Ia > S-Ia > Oz “A1T1 + G3C3” DNA 35 DNA DNA 39) DNA DNA DNA DNA 37) Ia Sp Oz DNA 20, 26) R-Ia S-Sp ΔE1+3DFT 26) 20, 26) DNA DNA ΔE1+3SCRF DNA ΔE1+3SCRF R-Ia S-Sp 26) in vivo S-Sp S-Sp R-Sp R-Sp 41) X2 “G3C3” 5' G:Oz “A1T1” G:Ia G:Sp X2 1 3' DNA “A1T1 + G3C3” G:X DNA Oz S-Ia R-Ia S-Sp R-Sp “A1T1” DNA 3-3. G:C Fig.15 DNA Oz S-Ia R-Ia S-Sp R-Sp (12) 1 (13) 3-3-1. 5' 36 DNA “G3C3” G2 X2 5' (θ (G2–T1)) A1 G2 T1 (θ (A1–T1)) (Fig.14 3 T1 (6)-(8) ) (δ 1 ) (12) θ (G2–A1) d1 S-Sp > R-Sp > S-Ia > Oz > θ (G2–T1) θ (A1–T1) C > R-Ia A1 (θ (G2–A1)) G2 (Table 4) R-Ia δ1 “A1T1” (Table 4 Fig.15A ΔE1 > R-Ia 15D) R-Ia ΔE1 δ1 S-Ia > Oz “A1T1” δ1 X2 R-Sp S-Sp ΔE1 Ia δ1 ΔE1 R ΔE1 S-Ia (Fig.15C 15E) X2 Sp S-Sp S C1' 5' “A1T1” S R 20, 26) δ1 ΔE1 Table 4 Dihedral angles θ (G2–A1), θ (G2–T1), and θ (A1–T1) (red arrows in Fig.14), and the degree of distortion δ1. Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. Xa θ (G2–A1) θ (G2–T1) θ (A1–T1) δ1 C 25.2° 12.5° 13.3° 51.0° Oz 19.4° 18.2° 18.0° 55.6° S-Ia 38.3° 28.2° 11.3° 77.8° R-Ia 3.3° 4.0° 4.0° 11.3° S-Sp 56.1° 29.9° 26.4° 112.4° 37 R-Sp a 10.9° 32.4° 43.2° 86.5° X = the damage contained in the minimized structure. 38 3-3-2. 3' X2 5' (G2–C3)) G3 (3-3-1) C3 (θ (G3–C3)) (Fig.14 G2 3 (δ 3 ) (13) θ (G2–C3) θ (G3–C3) θ (G2–G3) δ3 R-Ia > R-Sp > S-Sp > S-Ia (Table 5) X2 3' δ3 Oz δ1 “G3C3” (Table 5 ΔE3 S-Sp > S-Ia > Oz G3C3 Fig.15A 15B) 3.3.1 δ3 δ1 G2 X2 δ1 R-Ia 15F) C3 (θ (9)-(11) ) > C > Oz G3 (θ (G2–G3)) G2 R-Sp R-Ia Ia δ3 C1' R-Sp Sp R S “G3C3” C3 R-Ia δ3 (Fig.15D R-Sp C1' 20, 26) δ1 ΔE3 Table 5 Dihedral angles θ (G2–G3), θ (G2–C3), and θ (G3–C3) (blue arrows in Fig.14), and the degree of distortion δ3. Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. Xa θ (G2–G3) θ (G2–C3) θ (G3–C3) δ3 C 9.5° 8.0° 17.2° 34.6° Oz 11.1° 3.1° 11.9° 26.1° S-Ia 5.4° 13.9° 19.2° 38.5° R-Ia 17.9° 42.6° 49.2° 109.7° S-Sp 5.5° 25.7° 23.2° 54.4° R-Sp 22.9° 36.2° 43.3° 102.5° a X = the damage contained in the minimized structure. 39 3-3-3. 5' X2 3' 5' 3' δ1 (“δ1 + δ3”) δ3 “ δ1 + δ3 ” Table 6 > S-Sp > R-Ia > S-Ia > C > Oz ΔE1+3 “ δ1 + δ3 ” Oz C Oz ΔE1+3 “G2C2” R-Sp “G2Oz2” DNA “A1T1 + G3C3” “A1T1 + G3C3” “ δ1 + δ3 ” “A1T1 + G3C3” Table 6 Total degree of distortion (“δ1 + δ3”). Reproduced from Suzuki M. et al., Molecules, 19, 11030-11044 (2014) with permission from MDPI. Xa a 3-3-4. 3-3-3 δ1 + δ3 C 85.6° Oz 81.7° S-Ia 116.3° R-Ia 121.1° S-Sp 166.8° R-Sp 189.0° X = the damage contained in the minimized structure. C “G2Oz2” “G2C2” “δ1 + δ3” “A1T1 + G3C3” “ δ1 + δ3 ” C 40 “ δ1 + δ3 ” C 35.4° C “G2Oz2” Oz S-Ia R-Ia “ δ1 + δ3 ” “A1T1 + G3C3” “ δ1 + δ3 ” 4.0° “G2S-Ia2” “A1T1 + G3C3” 30.7° “G2R-Ia2” Fig.15 C S-Sp R-Sp “G2R-Sp2” “ δ1 + δ3 ” 81.1° 103.3° “A1T1 + G3C3” “G2S-Sp2” “G2C2” Fig.15 “G2C2” “G2X2” “ δ1 + δ3 ” δ1 “A1T1 + G3C3” C δ3 S-Sp > δ1 R-Ia > R-Sp > S-Ia > Oz δ3 R-Ia > R-Sp > S-Sp > Oz > S-Ia C δ3 δ1 “ δ1 + δ3 ” δ3 δ1 δ1 δ1 “ δ1 + δ3 ” δ3 DNA δ3 20, 26) “G2X2” ΔE1+3 “A1T1 + G3C3” DNA G:Oz DNA DNA 41 4 DNA Oz Ia Sp 20, 26) G:Oz 2 G:Ia G:Sp DNA 3 “G2X2” DNA “G2X2” 5' X2 “A1T1” R-Ia > Oz > S-Ia > S-Sp > R-Sp “G3C3” X2 3' Oz > S-Ia > S-Sp > R-Ia > R-Sp 20, 26) “G3C3” “A1T1” “A1T1 + G3C3” “A1T1 + G3C3” Oz > S-Ia > R-Ia > S-Sp > R-Sp X2 3' 5' DNA 20, 26) DNA X2 5' δ1 3' δ3 “A1T1” “G3C3” 20, 26) 3' X2 “ δ1 + δ3 ” “ δ1 + δ3 ” G2C2 DNA R-Sp >> S-Sp >> R-Ia > S-Ia >> Oz “ δ1 + δ3 ” “A1T1 + G3C3” DNA DNA G:Oz G:Ia G:Sp DNA G:Oz DNA G:Ia 42 G:Sp 5' DNA G:Oz G:Ia G:Sp DNA DNA DNA DNA DNA DNA 43 DNA 4 Oz ( Chem. Res. Toxicol., 28, 1307-1316 (2015) ) Reprinted (adapted) with permission from “Suzuki M., Kino K., Kawada T., Morikawa M., Kobayashi T., and Miyazawa H. (2015) Analysis of nucleotide insertion opposite 2,2,4-triamino-5(2H)-oxazolone by eukaryotic B- and Y-family DNA polymerases. Chem. Res. Toxicol., 28, 1307-1316. (DOI: 10.1021/acs.chemrestox.5b00114)”. Copyright 2015 American Chemical Society. 1 1 20, 26) DNA G:C-C:G Gh/Ia Oz 3 Oz DNA Sp DNA Oz G:C-C:G G:C-C:G Oz DNA DNA DNA 5 15 DNA DNA Pol δ Pol α Pol ε 3 (Table 7) 42, 43) Pol γ Pol δ Pol ε DNA DNA 42-44) DNA Pol α 42, 43) 42) 46) DNA DNA Pol δ Pol ε B Pol α45) Pol δ Pol γ Pol α Pol ε A DNA (Table 7) 43) DNA DNA DNA 44 DNA DNA DNA Pol ζ DNA Pol ζ 42, 43, 48) B- Pol η Pol η (Table 7) Pol ι Pol κ REV1 43, 47, 48) Y DNA DNA DNA DNA DNA 1 Pol α Pol γ Pol ε Pol η 20, 21) Pol γ Oz Pol α Pol ε Oz Pol η DNA Oz Oz Oz Pol κ REV1 DNA (Table 7) 42, 43, 48, 49) Oz DNA Pol ι DNA Pol δ Pol ζ Pol ι Pol κ REV1 DNA Oz Table 7 The function of DNA polymerases 42, 43). function DNA polymerase family Pol γ A-family Pol α Replicative DNA polymerases Pol δ B-family Pol ε Pol ζ DNA polymerases Pol η involved in translesion Pol ι synthesis Pol κ REV1 45 Y-family 2 2-1. 20) DNA Oz (5'-CTCATCAACATCTTXAATTCACAATCAATA-3' (Fig.16) Gh 30-mer 30-mer X = Oz) (X = Gh) 22) DNA (Fig.17) 8-oxoG 30-mer (X = G 8-oxoG THF) (5'-*TATTGATTGTGAATT-3') Alexa680 (Saitama, Japan) Fig.16 Outline of the preparation of 30-mer DNA containing the Oz lesion. O O H O Fig.17 Structure of THF. 46 THF 5' 2-2. DNA yeast Pol ζ (yPol ζ) yeast REV1 (yREV1) Human Pol (hPol) δ 4 Enzymax (Lexington, KY) (p125 p50 POLD1 POLD2 POLD3 POLD4 p66 p12) p125 (Fig.18) C 6×His p125 pTriEx-1.1/p125-His6 pTriEx-1.1/p125-His6 (Fig.19A) Rosetta2 (DE3) pLysS 25 ºC ºC 1 mM IPTG 3 -80 lysis (20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride (PMSF)) HisTrap HP 1 ml (GE Healthcare, Tokyo, Japan) P40 (20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 40 mM imidazole, 0.5 mM PMSF) P500 (20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 500 mM imidazole, 0.5 mM PMSF) p125 vivaspin 15 (Sartorius, Tokyo, Japan) hPol δ (25 mM Bis-Tris-HCl (pH 6.5), 0.5 mM EDTA, 0.1 mM EGTA, 20% glycerol, 1 mM DTT, 0.5 mM PMSF) -80 ºC 50) hPol δ Fig.19) p125 pTriEx-1.1/p125 N FLAG p12 p50 pCOLADuet-1/p50-p66-p12 pCOLADuet-1/p50-p66-p12 (DE3) pLysS (Fig.18 16×His p66 (Fig.19B) pTriEx-1.1/p125 2 Rosetta2 1 mM IPTG 16 ºC -80 ºC p125 -80 ºC 47 12 Fig.18 Construction of recombinant hPol δ. (A) p125 (without the p50, p66 and p12 subunits), and (B) hPol δ full complex. Fig.19 Expression and purification (A) of p125 (without the p50, p66 and p12 subunits), (B) of hPol δ full complex. hPol δ subunits (p125, p50, p66, and p12) are encoded by cDNAs POLD1, POLD2, POLD3, and POLD4, respectively. 48 hPol ι POLI GST 83 kDa hPol ι (Fig.20) N pGEX6P1/hPol ι pGEX6P1/hPol ι Rosetta2 (DE3) pLysS 25 ºC -80 ºC 1 mM IPTG 3 binding (PBS (pH 7.3); 140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 0.5 mM PMSF) GSTrap HP 1 ml (GE Healthcare) binding PG (pH 7.4), 10 mM reduced glutathione, 0.5 mM PMSF) vivaspin 15 (Sartorius) (50 mM Tris-HCl hPol ι hPol ι (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% glycerol, 5 mM 2-mercaptoethanol (2-ME), 0.5 mM PMSF) -80 ºC Fig.20 Expression and purification of hPol ι. 49 hPol κ 6×His POLK 99 kDa hPol κ N pET15b/hPol κ (Fig.21) pET15b/hPol κ Rosetta2 (DE3) pLysS 25 ºC -80 ºC 1 mM IPTG 3 lysis HisTrap HP 1 ml (GE Healthcare) P40-T (20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 40 mM imidazole, 0.01% Triton X-100, 0.5 mM PMSF) P100-T (20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 100 mM imidazole, 0.01% Triton X-100, 0.5 mM PMSF) P200-T (20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 200 mM imidazole, 0.01% Triton X-100, 0.5 mM PMSF) vivaspin 15 (Sartorius) hPol κ hPol κ (50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 50% glycerol, 1 mM DTT, 0.5 mM PMSF) -20 ºC Fig.21 Expression and purification of hPol κ. 50 Human REV1 (hREV1) REV1 138 kDa REV1 REV1 REV1 51) hREV1(341-829) 65 kDa N (Fig.22) 6×His 25 ºC Pol δ 829 hREV1(341-829) hREV1(341-829) pET15b/ hREV1(341-829) Rosetta2 (DE3) pLysS 341 (Fig.23) pET15b/ hREV1(341-829) 1 mM IPTG 3 -80 ºC hREV1(341-829) (50 mM HEPES-NaOH (pH 7.5), 0.5 M NaCl, 10% glycerol, 10 mM 2-ME, 0.5 mM PMSF) -80 ºC Fig.22 Structure of hREV1 and the region used for construction of recombinant of hREV1(341-829). 51 Fig. 23 Expression and purification of REV1(341-829). 52 2-3. CBB (62.5 mM Tris-HCl (pH 6.8), 10% glycerol, 2% SDS, 0.05 mg/ml bromophenol blue) 5 95 ºC CBB Stain One (nacalai tesque, Kyoto, Japan) SDS-PAGE LAS3000 (Fujifilm, Tokyo, Japan) 2-4. CBB (62.5 mM Tris-HCl (pH 6.8), 10% glycerol, 2% SDS, 0.05 mg/ml bromophenol blue) SDS-PAGE 10% methanol) 5 95 ºC (25 mM Tris, 189 mM glycine, Immobilon-P transfer membrane (Merck Millipore, Darmstadt, Germany) Trans-Blot Turbo Transfer System (Bio-Rad, Hercules, CA) 1 1 5% 0.1% PBS-T (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4•12H2O, 1.47 mM KH2PO4, 0.1% Tween 20) 1 0.1% PBS-T Immobilon Western chemiluminescent HRP substrate (Merck Millipore) (Fujifilm) 1 2 LAS3000 Anti-His-tag (MBL, Nagoya, Japan) Anti-DNA polymerase δ p125 catalytic subunit (MBL) Anti-DNA polymerase δ p50 small subunit (MBL) DNA δ p66 (Bio Academia, Osaka, Japan) ANTI-FLAG® M2 antibody (Sigma-Aldrich, St. Louis, MO), Anti-GST (Mouse IgG2a-κ), Monoclonal (GS019), AS, POD Conjugated (nacalai tesque) 2 Peroxidase-conjugated AffiniPure Goat Anti-Mouse IgG (H+L) (Jackson ImmunoResearch, West Grove, PA), Goat F(ab')2 Fragment Anti-Rat IgG (H+L)-Peroxidase (BECKMAN COULTER, Brea, CA) 53 2-3. DNA DNA p125 hPol δ 50 mM Tris-HCl (pH 7.4), 2 mM MgCl2, 2 mM DTT, 100 µg/mL bovine serum albumin (BSA) yPol ζ hPol κ hREV1(341-829) yREV1 50 mM Tris-HCl (pH 8.0), 2 mM MgCl2, 5 mM DTT, 100 µg/mL BSA hPol ι 40 mM Tris-HCl (pH 7.5), 8 mM MgCl2, 150 mM NaCl, 1 mM DTT, 10 µg/mL BSA, 10% glycerol hPol δ 100 fmol yPol ζ hPol ι hPol κ hREV1(341-829) yREV1 DNA 50 fmol p125 100 fmol 5' Alexa680 DNA 50 fmol [32P] dNTP DNA 5 µl 30 ºC 30 30 p125 hPol ι 5 µl 30 ºC stop 8M 15 5' DNA dNTP Fig.24 hPol δ yPol ζ yREV1 hPol κ 37 ºC (15 mM EDTA, 10% glycerol) 16% 1×TBE (89 mM Tris, 89 mM boric acid, 2 mM EDTA) 2.5 µl 5' 30 W 90 Alexa680 Imaging System (LI-COR, Lincoln, NE) Odyssey® Infrared 5' [32P] BAS2500 bioimaging analyzer (Fujifilm) 54 Fig.24 Experimental design of DNA polymerase assay. The 15-mer primer is labelled with Alexa 680 or [32P] indicated by ‘*’. 2-4. 16) hREV1(341-829) G Oz THF 8-oxoG Gh DNA dCTP 4-20% dCTP dCTP DNA 2-3 2-3 30 ºC 1 Km Vmax 3 55 2 DNA 2 3 3-1. hPol δ Oz DNA Pol δ Pol α Pol ε B DNA hPol δ DNA p125 p50 p66 Oz 20) Oz 4 DNA hPol δ Pol α Pol ε dGTP 4 4 52) p125 p125 p12 p125 hPol δ CBB (Fig.25 Fig.26) hPol δ Fig.25 Expression and purification of recombinant p125. (A) p125 was electrophoresed and stained with CBB. (B) p125 was identified by immunoblotting with anti-His antibody. 56 Fig.26 Expression and purification of recombinant hPol δ full complex. (A) hPol δ full complex was electrophoresed and stained with CBB. (B) hPol δ full complex was identified by immunoblotting with anti-p125, anti-p50, anti-p66, anti-FLAG antibody. p125 Oz 30-mer DNA (Fig.27A p125 (Fig.27B (Fig.27B 1) 7) Oz dGTP p125 DNA dGTP (Fig.28A (Fig.28B Pol ε dCTP hPol δ 30-mer Pol α G 20) 5) 7) Oz dGTP 57 Oz 5) hPol δ Oz Fig.27 DNA synthesis with p125 across Oz. (A) Primer extension across Oz by p125. Decreasing amounts of p125 (96.5 ng in lanes 1 and 5, 9.65 ng in lanes 2 and 6, 0.965 ng in lanes 3 and 7) were incubated with template (containing G in lanes 1-4 and Oz in lanes 5-7) in the presence of each of the four dNTPs (500 µM each). (B) Nucleotide selectivity of p125 opposite Oz. p125 (9.65 ng) was incubated with template (containing G in lanes 1-5, and Oz in lanes 6-9) in the presence of 500 µM of a single dNTP (N = C, G, A or T) (lanes 1-4 and lanes 6-9). Copyright 2015 American Chemical Society. 58 Fig. 28 DNA synthesis with hPol δ full complex across Oz. (A) Primer extension across Oz by hPol δ full complex. Decreasing amounts of hPol δ full complex (154 ng in lanes 1 and 5, 15.4 ng in lanes 2 and 6, 1.54 ng in lanes 3 and 7) were incubated with template (containing G in lanes 1-4 and Oz in lanes 5-7) and each of the four dNTPs (100 µM each). (B) Nucleotide selectivity of hPol δ full complex opposite Oz. hPol δ full complex (154 ng) was incubated with template (containing G in lanes 1-5, containing Oz in lanes 6-9) and 100 µM of a single dNTP (N = C, G, A or T) (lanes 1-4 and lanes 6-9). Lane 4 in panel A and lane 5 in panel B contained no enzyme and are negative controls. Copyright 2015 American Chemical Society. 59 p125 3'-5' hPol DNA δ DNA 53) G DNA DNA Oz 3'-5' (Fig.28A 6-9 Fig.28B 5 1-4 Oz Fig.28A ) 1 hPol δ Fig.28B 3'-5' DNA Oz Oz dGTP G:C-C:G Oz DNA 20, 21) dGTP Oz 2 G hPol δ dGTP hPol δ G:C-C:G 60 Oz Oz DNA 3-2. yPol ζ Oz DNA Pol ζ DNA UV 47, 54, 55) DNA DNA Pol ζ (6-4) 56) DNA O6 - 8-oxoG (O6-methylguanine O6-MeG) DNA 57) THF (cyclobutane pyrimidine dimer CPD) (Fig.29) 56, 58) DNA yPol ζ Oz DNA O O HN O NH N N dR dR O Fig.29 Structure of CPD. yPol ζ Oz G 5-7 (Fig.30A DNA 1-3 hPol δ (Fig.30A ) DNA G DNA DNA yPol ζ DNA DNA 20, 21) DNA Oz yPol ζ 5-7) Oz Oz Pol ζ DNA G G dCTP 61 (Fig.30B Fig.30 DNA synthesis with yPol ζ across Oz. (A) Primer extension across Oz by yPol ζ. Decreasing amounts of yPol ζ (50 ng in lanes 1 and 5, 17 ng in lanes 2 and 6, 5.0 ng in lanes 3 and 7) were incubated with template (containing G in lanes 1-4, containing Oz in lanes 5-8) and each of the four dNTPs (100 µM). Lanes 4 and 8 contained no enzyme as the negative control. (B and C) Nucleotide selectivity of yPol ζ opposite Oz. yPol ζ (17 ng) was incubated with template (containing G in B, and Oz in C) and 100 µM of a single dNTP (N = C, G, A or T) (lanes 1-4). Lane 5 contained no enzyme as the negative control. (D and E) Primer extension and nucleotide selectivity of yPol ζ opposite Oz. yPol ζ (1.7 ng) was incubated with template (containing G in D, and Oz in E) and 100 µM of each of the four dNTPs (lane 2) or 100 µM of a single dNTP (N = C, G, A or T) (lanes 3-6). Lane 1 contained no enzyme as the negative control. Copyright 2015 American Chemical Society. 62 1) dGTP dTTP (Fig.30B 18-mer 3) (Fig.30C (Fig.30B DNA Oz 2) Oz 5' T Oz G DNA 20-mer (Fig.30C (Fig.30C dGTP dGTP dATP 18-mer 3) 1 Oz dCTP dTTP 4) 30E) Pol ζ 4) dATP 20-mer Oz (Fig.30D 2 Pol ζ G Oz 58) THF 8-oxoG O6-MeG 57) DNA Pol ζ DNA Pol ζ DNA Pol ζ 47, 56, 59-61) DNA yPol ζ Oz DNA G DNA yPol ζ DNA Oz Oz yPol ζ 63 dCTP DNA 3-3. hPol ι Oz DNA Pol ι DNA DNA 1 in vitro G 62-65) dTTP Pol ι 2 66) 3 hPol ι (Fig.31) DNA G DNA dCTP (Fig.32A (Fig.32A 3, 5) dTTP 2 2) hPol ι G 3 hPol ι DNA Fig.31 Expression and purification of recombinant hPol ι. (A) hPol ι was electrophoresed and stained with CBB. (B) hPol ι was identified by immunoblotting with anti-GST antibody. 64 Fig.32 DNA synthesis with hPol ι across Oz. hPol ι (0.5 µg) was incubated with template (containing G in A, and Oz in B) and 100 µM of each of the four dNTPs (lane 2) or 100 µM of a single dNTP (N = C, G, A or T) (lanes 3-6). Lane 1 contained no enzyme as the negative control. Copyright 2015 American Chemical Society. Oz Pol ι dATP G (Fig.32B 4, 5) dTTP G (Fig.32B Oz 6) dGTP DNA dCTP (Fig.32B 3) DNA dTTP hPol ι DNA hPol ι Y-family hPol η dGTP 67) hPol ι 21) dATP hPol ι hPol η hPol ι dGTP dATP Oz (Fig.32B 2) hPol ι 8-oxoG 8-oxoG THF 68) DNA THF DNA hPol η DNA Oz DNA yPol ζ 65 THF hPol ι Oz hPol ι Oz hPol ι 3-4. hPol κ Oz Pol κ DNA 2 1 Pol κ DNA 1 69-71) 2 DNA DNA 72) Wolfle 2 Pol κ 69-71) dCTP dGTP dATP dTTP 70) hPol κ (Fig.33) G 2 DNA hPol κ DNA 1 1) dATP 29-mer G (Fig.34A (Fig.34A Oz 1) (Fig.34B 1 (Fig.34B 4) dCTP 2) dGTP 3-5) DNA (Fig.34B (Fig.34A dCTP dTTP 30-mer 2 29-mer G Fig.34A DNA 1 3) ) Oz dGTP dATP dTTP (Fig.34B (Fig.34B Pol ι Pol κ Oz DNA DNA DNA 66 2 DNA 5) Fig.33 Expression and purification of recombinant hPol κ. (A) hPol κ was electrophoresed and stained with CBB. (B) hPol κ was identified by immunoblotting with anti-His antibody. Fig.34 DNA synthesis with hPol κ across Oz. hPol κ (9.2 ng in A and B) was incubated with template (containing G in A, and Oz in B) in the presence of 100 µM of each of the four dNTPs (lane 1) or 100 µM of a single dNTP (N = C, G, A or T) (lanes 2-5). Lane 6 contained no enzyme as the negative control. Copyright 2015 American Chemical Society. 67 3-5. hREV1(341-829) REV1 yREV1 Oz Y DNA DNA 49, 73) G A C REV1 T 8-oxoG N2- dCTP 73-76) hREV1 R357 dCTP dCTP 77) G dCTP REV1 dCTP 341 829 hREV1(341-829) (Fig.35) DNA Fig.35 Expression and purification of recombinant hREV1(341-829). (A) hREV1(341-829) was electrophoresed and stained with CBB. (B) hREV1(341-829) was identified by immunoblotting with anti-His antibody. 68 hREV1(341-829) G THF 8-oxoG dCTP (Fig.36B 36D 36E 3) Oz DNA hREV1(341-829) (Fig.36C 3) Oz dCTP Oz G:C-C:G 1 (Fig.36F Oz Gh/Ia 3) hREV1(341-829) dCTP hREV1 Gh/Ia dCTP Oz dNTP G Gh/Ia Oz THF G:C-C:G 8-oxoG Gh/Ia REV1 dNTP 5' hREV1(341-829) dCTP (Fig.37A (Fig.37A 4 dCTP dGTP 4 6) (Fig.37B dGTP hREV1(341-829) (Fig.37D G 37C 37E 6) 3) G 3) G dTTP 8-oxoG Oz dTTP 5' THF Gh/Ia (Fig.37B 5' dCTP 37C 37E 3) 5' DNA hREV1(341-829) yREV1 hREV1 yREV1 (Fig.38B Oz Oz Oz THF Gh/Ia dCTP dCTP 3) THF (Fig.38B 3 Oz 38C dCTP G:C-C:G 69 dCTP 3 ) REV1 Oz Fig.36 DNA synthesis with hREV1(341-829) across Oz. (A) Interaction between incoming dCTP and R357 of hREV1. The structure of the dCTP:R357 pair was determined from the X-ray crystal structure of hREV1 in a ternary complex with DNA and dCTP 77) . (B-F) hREV1(341-829) (1.7 ng) was incubated with template (containing G in B, and Oz in C, THF in D, 8-oxoG in E, Gh/Ia in F) and 1 µM in B, C and F, 10 µM in D and E of each of the four dNTPs (lane 2) or 1 µM in B, C and F, 10 µM in D and E of a single dNTP (N = C, G, A or T) (lanes 3-6). Lane 1 contained no enzyme as the negative control. Copyright 2015 American Chemical Society. 70 Fig.37 DNA synthesis with hREV1(341-829) across lesions with 100 µM of dNTP. hREV1(341-829) (1.7 ng) was incubated with template (containing G in A, Oz in B, THF in C, 8-oxoG in D, Gh/Ia in E) and 100 µM of each of the four dNTPs (lane 2) or 100 µM of a single dNTP (N = C, G, A or T) (lanes 3-6). Lane 1 contained no enzyme as the negative control. Copyright 2015 American Chemical Society. Fig.38 DNA synthesis with yREV1 across lesions. yREV1 (12.5 ng) was incubated with template (containing G in A, Oz in B, and THF in C) and 100 µM of each of the four dNTPs (lane 2) or 100 µM of a single dNTP (N = C, G, A or T) (lanes 3-6). Lane 1 contained no enzyme as the negative control. Copyright 2015 American Chemical Society. 71 DNA Oz dCTP REV1 DNA Oz dCTP G Oz THF 8-oxoG Gh/Ia dCTP dCTP (Vmax/ Km) (fins) THF (Table 8) G dCTP fins DNA fins 0.19 (Table 8) THF dCTP G 8-oxoG fins 6 DNA Oz > THF > 8-oxoG Gh/Ia 8-oxoG 0.03 0.01 51) Oz 19 dCTP 8-oxoG >> THF > 8-oxoG THF REV1 fins Oz fins 0.12 (Table 8) fins DNA dCTP Oz > Gh/Ia > THF > 8-oxoG Table 8 Steady-state kinetics parameters for dCTP insertion opposite Oz, THF, 8-oxoG, Gh/Ia, and unmodified control template G by hREV1(341-829). Copyright 2015 American Chemical Society. template Vmax (µM•s-1) Km (µM) Vmax/Km (s-1) finsa G 1.33 × 10-2 2.06 × 10-2 6.45 × 10-1 1 Oz 1.15 × 10-2 9.48 × 10-2 1.21 × 10-1 0.19 THF 1.35 × 10-2 6.18 × 10-1 2.18 × 10-2 0.03 8-oxoG 1.21 × 10-2 1.70 0.71 × 10-2 0.01 Gh/Ia 1.62 × 10-2 2.07 × 10-1 7.82 × 10-2 0.12 72 REV1 dCTP Oz dCTP Gh/Ia hREV1 yREV1 THF 8-oxoG DNA (hREV1 G R357 yREV1 R324) dCTP 77, 78) REV1 (hREV1 L358 yREV1 DNA hREV1 H774 DNA L325) G DNA N7 G G775 yREV1 M658 O6 G686 REV1 (Fig.39A) 77, 78) G 8-oxoG DNA DNA H7 hREV1 G 8-oxoG 51, 79) dCTP dCTP dCTP Howell DNA 8-oxoG (Fig.39B) 79) Km H774 Km DNA REV1 Table 8 Gh/Ia > Oz Km dCTP hREV1 Oz > Gh/Ia > 8-oxoG 8-oxoG Oz Oz hREV1 Oz G N6 Oz O6 G (Fig.39C) 8-oxoG (Fig.39D) Oz 2 2 8-oxoG Gh hREV1 Gh H774 hREV1 dCTP hREV1 dCTP 8-oxoG Gh Gh G775 Gh Table 8 1 8-oxoG > dCTP 8-oxoG dCTP Ia (Scheme 1) 25) Ia 73 Ia Oz pH hREV1 Gh A R G775 O NH H 2N C N H NH N HN O H N R G775 O O REV1 H774 O dR N HN N O X H R N H H NH REV1 E H 2N dR N HN R N H O O ? Gh H774 O N H 2N Oz H774 D R G775 O NH 2 X NH N H H H 2N O O O N H 8-oxoG R R N N REV1 G dR dR N N H O N O H774 O H N dR N B R N R G775 O REV1 H774 O H N N R G775 O H 2N Ia REV1 Fig.39 Proposed interactions between template bases and the main-chain amides of H774 and G775 of hREV1. (A) The N7 and O6 atoms of template G (Hoogsteen edge) interact with the H774 and G775 main-chain amides of hREV1 77) . (B) The interaction described by Howell et al.79) between an 8-oxoG and G775 of hREV1. Our proposed interaction between main-chain amides of hREV1 and Oz (C), Gh (D) and Ia (E). The red X shows that there is no hydrogen bond. Copyright 2015 American Chemical Society. 74 2 Ia (Fig.39E) O7 Ia Oz Ia hREV1 sp3 Oz O7 Ia hREV1 hREV1 dCTP Gh/Ia 8-oxoG dCTP dCTP Oz hREV1 Gh/Ia Gh/Ia dCTP Ia Gh/Ia 8-oxoG Oz hREV1 hREV1 Oz Oz REV1 Oz dCTP REV1 NTH1 G:C-C:G 80) Oz Oz dCTP Oz:C dCTP REV1 Oz Oz dCTP DNA REV1 C REV1 DNA DNA Pol ζ 81-85) Pol ι Pol κ Oz 8-oxoG Oz:C REV1 Pol δ Gh/Ia Oz NEIL1 Oz:A dCTP REV1 Oz Oz:G G:C-C:G REV1 Oz G775 dCTP DNA 75 DNA Pol η 4 Pol δ Pol ι Pol κ Oz DNA Oz (Table 9) Pol ζ Oz DNA Oz RVE1 Oz Oz G DNA (Table 9) dCTP (Table 9) G:C-C:G DNA REV1 Pol ζ Oz DNA DNA DNA Oz DNA Table 9 Summary of chapter 4 with previous results relating to Pols α, ε and η 20, 21). Replicative DNA polymerases DNA polymerases involved in translesion synthesis Insertion Extension Pol α G 20) low efficiency 20) Pol δ G 20) low efficiency Pol ε G low efficiency 20) Pol ζ G, A, C, T high efficiency Pol η G, A, C 21) low efficiency 21) Pol ι G, A, C, T stall Pol κ G, A low efficiency REV1 C stall 76 DNA Oz 20, 21) REV1 DNA dGTP B DNA 3 Oz Oz Oz dGTP 2 G DNA DNA Oz Oz 77 dGTP G A T C 5 DNA Oz ( J. Nucleic Acids, 2014, 178350 (2015) ) 1 2 Oz Gh/Ia Sp 3 DNA DNA DNA 20, 26) Oz > Gh/Ia > Sp Oz DNA 2 Gh/Ia 3 G:C-C:G Oz DNA Oz 20, 21) Pol γ Pol κ Pol IV Sp KF exo- 4 Oz Pol η Pol ζ DNA Pol ι Oz G:C-C:G (Pur:Pur) (Pyr:Pyr) Pur:Pyr Pyr:Pur DNA DNA DNA DNA (G:G C:C C:A ) 86) G:G > C:C > C:A Beard DNA Pur:Pyr 78 Pyr:Pur Pur:Pur 87) Pyr:Pyr DNA 20, 21) 4 REV1 DNA Oz Oz G A C T Oz:G Oz:A 20) DNA Oz Oz:G Oz:A Oz:C Oz:T Oz:G Oz:G Oz:A Oz:C Oz:T Oz Oz 3 DNA ( KF exo- Pol β Pol η) Tm 79 DNA 2 2-1. DNA 30-mer DNA (5'-CTCATCAACATCTTXAATTCACAATCAATA-3' X = Oz) 9-mer DNA 20) (5'-TGCTXGCGT-3' X = Oz) DNA (5'-CTCATCAACATCTTGAATTCACAATCAATA-3') 5' (5'-TATTGATTGTGAATTN-3' N = C G A T) 9-mer DNA T 5'-ACGCNAGCA-3' Alexa680 (5'-TGCTNGCGT-3' N = C N = C G A T) 2-2. DNA KF exo- Fermentas (Waltham, MA) hPol η POLH 6×His hPol β CHIMERx (Milwaukee, WI) 78 kDa hPol η N pET15b/hPol η (Fig.40) pET15b/hPol η Rosetta2 (DE3) pLysS 37 ºC -80 ºC 4 1 mM IPTG 3 hPol δ hPol η (20 mM sodium phosphate (pH 7.4), 0.1 M NaCl, 1 mM EDTA, 10% glycerol, 10 mM 2-ME, 0.5 mM PMSF) -80 ºC 80 Fig.40 Expression and purification of hPol η. 2-3. CBB hPol η (62.5 mM Tris-HCl (pH 6.8), 10% glycerol, 2% SDS, 0.05 mg/ml bromophenol blue) 5 95 ºC 4 2-4. 4 Anti-His-tag (MBL) 2 1 Peroxidase-conjugated AffiniPure Goat Anti-Mouse IgG (H+L) (Jackson ImmunoResearch) 81 2-5. KF exo- hPol β hPol η KF exo- DNA 50 mM Tris-HCl (pH 8.0), 5 mM MgCl2, 1 mM DTT, 100 µg/ml BSA hPol 50 mM Tris-HCl (pH 8.8), 10 mM MgCl2, 1 mM DTT, 400 µg/ml BSA β hPol η 50 mM Tris-HCl (pH 8.0), 2 mM MgCl2, 5 mM DTT, 100 µg/mL KF exo- BSA 50 fmol dATP 5' hPol β hPol η 100 fmol Alexa680 DNA 100 µM dNTPs (dCTP dGTP dTTP) DNA DNA Fig.41 hPol β hPol η KF exo- 5 µl 37 ºC 30 8 M 5 µl stop 16% 1×TBE 2.5 µl 30 W 60 Odyssey® Infrared Imaging System (LI-COR Biosciences) (14) (Bandfull) (Bandtotal) Fig.41 Experimental design of DNA polymerase assay for primer extension. The 16-mer primer is labeled with Alexa 680 indicated by ‘*’. 82 Extension!efficiency!(%) = 2-6. G G Oz Band!"## ×100 Band!"!#$ (14) 5' Oz dNTP nM DNA Oz G 10 nM 20 10 nM 5'-TATTGATTGTGAATTAC-3' 5'-TATTGATTGTGAATTAG-3' DNA Fig.42 100 µM dNTP (dCTP dGTP dATP dTTP) Fig.42 Experimental design of DNA polymerase assay for incorporation opposite 5'-neighboring bases of G or Oz. The 16-mer primer is labeled with Alexa 680 indicated by ‘*’. 83 2-7. Tm 9-mer (5'-ACGCNAGCA-3' DNA (5'-TGCTXGCGT-3' X = C N = G A 50 mM sodium phosphate (pH 7.0) 1 M NaCl 1:1 9-mer DNA 4 µM 9-mer (100 µl) 90 µl 5 min (Life Technologies) Ultrospec 3100 pro (GE Healthcare) 80 ºC 9-mer C T) 60 ºC 20 ºC T Oz) 1 ºC/min 260 nm Tm 84 3 3-1. hPol β Oz hPol β 30 G G Oz DNA Oz 3' 16 4 G DNA hPol β 3' 3 C (Fig.43A 7 10 1 4 ) G:T (Fig.43A Pur:Pyr 2 10 4 7 Fig.43C) 87) Pur:Pur Oz DNA Oz (Fig.43B G 4 1 7 8 10 ) (Fig.43D) 20) Oz hPol β Oz Oz:G Oz:G G:G (Fig.43B 4 43A G:A 4 DNA DNA Pur:Pur 85 7 ) hPol β Oz:G Fig.43 Extension from primer ends by hPol β. Each primer contained a different nucleotide at the 3' end (indicated by N, where N was C, G, A, or T in lanes 1-3, 4-6, 7-9, and 8-12, respectively) opposite G (A) or Oz (B). The amount of hPol β was 25 mU in lanes 1, 4, 7, and 10 or 2.5 mU in lanes 2, 5, 8 and 11. The extension efficiency beyond G:C, G:G, G:A or G:T (C), and Oz:C, Oz:G, Oz:A or Oz:T (D). Reproduced from Suzuki M. et al., J. Nucleic Acid, 2014, 178350, (2014) with permission from the Hindawi Publishing Corporation. 86 3-2. KF exoKF exo- (Fig.44) KF exo- hPol β G:C (Fig.44A 1 4 7 10 3' G:G KF exo- ) hPol β G:C > G:T > G:A > (Fig.44A, C) 20) Oz 3' (Fig.44B Oz:G 4) Oz:T Oz:G 2 10 (Fig.44B Fig.44D) Oz:G Oz:C 4 1 Oz:G 87 7 Oz:A 20) Oz:A Oz:A Fig.44 Extension from primer ends by KF exo-. Each primer contained a different nucleotide at the 3' end (indicated by N, where N was C, G, A, or T in lanes 1-3, 4-6, 7-9, and 8-12, respectively) opposite G (A) or Oz (B). The amount of KF exo- was 250 mU in lanes 1, 4, 7, and 10 or 25 mU in lanes 2, 5, 8, and 11. The extension efficiency beyond G:C, G:G, G:A or G:T (C), and Oz:C, Oz:G, Oz:A or Oz:T (D). Reproduced from Suzuki M. et al., J. Nucleic Acid, 2014, 178350, (2014) with permission from the Hindawi Publishing Corporation. 88 3-3. hPol η KF exo- hPol β hPol η G Oz hPol η CBB (Fig.45) hPol β KF exo- 3' (Fig.46A 1 G:C 4 7 10 ) exo- hPol β (G:G 50% Fig.46C) (Fig.46A hPol η hPol η KF G:A G:T) 4 7 10 DNA 88-90) hPol η Oz 20) hPol η DNA 88-90) Oz:C Oz:A Oz:T 4 1 DNA Oz:G 3' 2 7 10 (Fig.46B Fig.46D) hPol β Oz:G KF exo- Fig.45 Expression and purification of recombinant hPol η. (A) hPol η was electrophoresed and stained with CBB. (B) hPol η was identified by immunoblotting with anti-His antibody. 89 Fig.46 Extension from primer ends by hPol η. Each primer contained a different nucleotide at the 3' end (indicated by N, where N was C, G, A, or T in lanes 1-3, 4-6, 7-9, and 8-12, respectively) opposite G (A) or Oz (B). The amount of hPol η was 11.5 ng in lanes 1, 4, 7, and 10 or 1.15 ng in lanes 2, 5, 8, and 11. The extension efficiency beyond G:C, G:G, G:A (C) or G:T, and Oz:C, Oz:G, Oz:A or Oz:T (D). Reproduced from Suzuki M. et al., J. Nucleic Acid, 2014, 178350, (2014) with permission from the Hindawi Publishing Corporation. 90 3-4. Oz DNA Oz:G Oz:A Oz:C Oz:T DNA Tm DNA Oz 3-1 3-2 3-3 DNA Tm (Fig.47A C:G 47B) A:T C:G 55.1 ºC 48.9 ºC (Table 10) (Fig.47C (Table 10) 47D) A:T Oz:G DNA Oz:A (Tm Tm 45.7 ºC Oz:C Oz:T DNA < 40.0 ºC) Oz:G (Table 10) (Fig.47E Tm (Table 10) (Fig.47G-L) Oz:A Oz:C Oz:T Table 10 The Tm values of C:G, A:T, Oz:G, Oz:A, Oz:C and Oz:T. base pair Tm value (ºC) C:G 55.1 A:T 48.9 Oz:G 45.7 Oz:A < 40.0 Oz:C < 40.0 Oz:T < 40.0 91 Tm 47F) Fig.47 Cont. 92 Fig.47 Cont. Fig.47 Melting curves of (A) C:G, (C) T:A, (E) Oz:G, (G) Oz:A, (I) Oz:C and (K) Oz:T 9-mer DNA duplexes at 4 µM duplex concentration. The first derivative of the melting curve of (B) C:G, (D) T:A, (F) Oz:G, (H) Oz:A, (J) Oz:C and (L) Oz:T. Y-axis is the first derivative of absorbance at 260 nm with respect to temperature. Reproduced from Suzuki M. et al., J. Nucleic Acid, 2014, 178350, (2014) with permission from the Hindawi Publishing Corporation. 93 3-5. G Oz 5' hPol β Oz:C Oz:T KF exo- hPol η Oz:A Oz:G DNA hPol β KF exo- hPol η Oz:G DNA G Oz 5' DNA G:C Oz:G G DNA dATP (Fig.48A 48B dGTP hPol β (Fig.48A KF exo- G KF exo- hPol β 3'-TTCT-5' T dGTP 4) G 48B 3) dTTP hPol η 3-5) 88-90) KF exo- hPol β dATP (Fig.48A 48B 3'-TTCT-5' dTTP dATP (Fig.48C hPol η Oz T hPol β KF exo- DNA G DNA T dGTP hPol β KF exo- dCTP 94 (Fig.48C Oz hPol η G DNA G Oz 8-10) Oz 9) G hPol η 7) T (Fig.48C DNA 3'-TT-5 3'-TT-5' dATP hPol η Oz G DNA Oz Fig.48 Nucleotide incorporation opposite the bases adjacent to G or Oz by hPol β (A), KF exo(B), or hPol η (C). Left panels of (A), (B), and (C) show the control, which was extension of primers containing C opposite an undamaged G in the template. Right panels of (A), (B), and (C) show the extension of primers containing G opposite Oz in the template. The amount of hPol β or hPol η was 25 mU or 11.5 ng; the amount of KF exo- was 25 mU for the left panel, or 250 mU for the right panel. Reproduced from Suzuki M. et al., J. Nucleic Acid, 2014, 178350, (2014) with permission from the Hindawi Publishing Corporation. 95 4 20, 21) 4 Oz DNA dGTP DNA 2 Oz Pol β DNA KF exo- Pol β Oz:C Oz:G Pol η Oz:A Oz:C Oz:T Oz:G 1 Oz:C DNA Oz:G Oz:A Oz:T Oz:A Oz:T KF exo- Pol η Oz:C Tm Oz:G Oz:A Oz:T DNA Oz:G Oz:G 20) Oz:A G:C-C:G Oz Oz:G Oz:G 96 6 Oz DNA ( J. Biochem., 159, 323-329 (2016) ) 1 1 Oz DNA 91, 92) 93) K-ras DNA DNA 8-oxoG Pol α Pol β 8-oxoG 94, 95) DNA DNA (5'-GG-3') Iz 13) (5'-IzIz-3') 11) Oz Iz Oz Iz (5'-OzOz-3') 8-oxoG Oz 4 Iz Oz DNA Pol α DNA Oz Pol δ Pol ε 1 DNA DNA Oz Oz 1 DNA KF exo- calf thymus Pol (ctPol) α hPol β yPol ζ hPol η hPol ι hPol κ 97 yREV1 Oz DNA DNA Oz Oz DNA DNA DNA DNA Table 11 Table 11 The function of DNA polymerases used in this chapter 42, 43). DNA polymerase Pol α Replicative DNA polymerases Pol β DNA polymerases KF exo- involved in DNA repair Pol ζ Pol η Pol ι DNA polymerases involved in translesion synthesis Pol κ REV1 98 2 2-1. DNA Oz 30-mer (5'-CTCATCAACATCTXXAATTCACAATCAATA-3' XX = OzOz) 13) (Fig.49) 6-mer (5'-CTGGAA-3') Iz UV (365 nm) 6-mer 65 ºC 2 (5'-CTIzIzAA-3') 75 Oz 6-mer 11) (5'-CTOzOzAA-3') Oz 13-mer 6-mer (5'-TTCACAATCAATA-3') (New England Biolabs, Ipswich, MA) Oz 5' 6-mer (5'-CTCATCAACAT-3') T4 DNA 5' 3' T4 11-mer 13-mer (Takara Bio, Otsu, Japan) 30-mer DNA-RNA (5'-TATTGATTgTGAATTGCAGATgTTGATGAG-3', “g” ) HPLC Yokohama, Japan) 2'- Oz 30-mer time-of-flight mass spectrometer (Bruker Daltonics K.K., Oz 30-mer DNA 30-mer CPD (XX = GG CPD) (5'-*TATTGATTGTGAATT-3') 99 5' Alexa680 Fig.49 Outline of the preparation of 30-mer DNA containing the OzOz lesion. XX represents OzOz. “g” represents guanosine, not deoxyguanosine. Reproduced from Suzuki M. et al., J. Biochem., 159, 323-329 (2016) with permission from the Oxford University Press. 2-2. DNA KF exoyREV1 Fermentas ctPol α hPol β CHIMERx yPol ζ Enzymax hPol η 5 hPol ι hPol κ hPol κ yREV1 DNA 4 2-3. DNA yPol ζ hPol ι hPol β hPol η ctPol α DNA 4 5 DNA ctPol α 100 KF exo- 40 mM Tris-HCl (pH 8.0), 5 mM MgCl2, 10 mM NaCl, 45 mM KCl, 10 mM DTT, 250 µg/ml BSA, 5% glycerol 5' ctPol α 100 fmol DNA 50 fmol Alexa680 dNTP DNA DNA dNTP Fig.50 37 ºC 8M 30 5 µl 5 µl ctPol α stop 16% 1×TBE 2.5 µl 30 W 90 Odyssey® Infrared Imaging System (LI-COR Biosciences) Fig.50 Experimental design of DNA polymerase assay. The 15-mer primer is labelled with Alexa 680 indicated by ‘*’. 101 3 3-1. Oz 30-mer DNA 13) Iz 6-mer 6-mer Oz (Fig.51A) 6-mer (Fig.51B) Oz 6-mer 1.3% 5' 11-mer 3' Oz Oz 6-mer 13-mer 30-mer (Fig.48C) DNA 6-mer Oz 30-mer 0.12% Oz 6-mer 5' 30-mer 30-mer DNA DNA 30-mer HPLC RNA HPLC Oz 13-mer DNA-RNA Oz DNA 11-mer 3' 30-mer (Fig. 51C) 30-mer DNA 102 DNA-RNA Fig.51 HPLC analysis for preparation of 30-mer DNA template containing the OzOz lesion. HPLC isolated (A) 6-mer-IzIz, (B) 6-mer-OzOz, or (C) 30-mer-OzOz. Sample analyzed by HPLC with a CHEMCOBOND 5-ODS-H columun (Chemcoplus, Osaka, Japan, 5 mm, 150 × 4.6 mm, elution with a solvent mixture of 50 mM TEAA (pH 7), (A, B) 6.2-7.2 % during 0-30 min, (C) 10-10.5% during 0-30 min, CH3CN at a flow rate of 1.0 ml min-1) and monitored at 260 nm absorbance. 103 3-2. KF exo- ctPol α KF exo- ctPol α hPol β Oz hPol β DNA Oz DNA DNA KF exo- ctPol α 1-3) α hPol β Oz (Fig.52A-C KF exo- DNA hPol β 3' Oz 1 (Fig.52A-C KF exo- ctPol α hPol β KF exo8) ctPol α 7) 3' 3' Oz Oz Oz 1 8) hPol β (Fig.52E dCTP dGTP (Fig.52F KF exo- hPol β 3' Oz dGTP 20) dGTP Oz Pol α Pol β (Fig.52D dGTP Oz ctPol α 1 dATP dATP 6 7) KF exo- 5) dGTP (Fig.52E dATP 3' ctPol Oz DNA DNA 43) DNA exo- KF Pol α Pol β DNA Oz KF exo- 1 20) Pol α Pol β Oz DNA DNA DNA Oz DNA 104 DNA Fig.52 DNA synthesis by KF exo-, ctPol α or hPol β across OzOz. (A-C) Primer extension across OzOz by KF exo- (A), ctPol α (B), or hPol β (C). Decreasing amounts of KF exo- (250 µU in lanes 1 and 5, 25 µU in lanes 2 and 6, 2.5 µU in lanes 3 and 7), ctPol α (100 mU in lanes 1 and 5, 33 mU in lanes 2 and 6, 10 mU in lanes 3 and 7) or hPol β (25 mU in lanes 1 and 5, 2.5 mU in lanes 2 and 6, 250 µU in lanes 3 and 7), was incubated with template (containing GG in lanes 1-4, containing OzOz in lanes 5-8) and 100 µM of each of the four dNTPs. Lanes 4 and 8 contained no enzyme as negative controls. (D-F) Nucleotide selectivity of KF exo- (D), ctPol α (E) or hPol β (F) opposite OzOz. KF exo- (250 µU), ctPol α (100 mU) or hPol β (2.5 mU) was incubated with template (containing GG in lanes 1-5, or OzOz in lanes 6-10) and 100 µM of a single dNTP (N = C, G, A, or T) (lanes 1-4 and 6-9). Lanes 5 and 10 contained no enzyme as negative controls. Reproduced from Suzuki M. et al., J. Biochem., 159, 323-329 (2016) with permission from the Oxford University Press. 105 3-3. hPol ι hPol κ hPol ι yREV1 hPol κ yREV1 4 Oz DNA Oz hPol ι DNA yREV1 1 Oz hPol ι yREV1 Oz hPol ι 3' 53B 5' G 3' Oz yREV1 dCTP 3) Oz 3' (Fig.53A Oz 53B (Fig.53A Oz 8) hPol κ DNA (Fig.53C 1-3) OzOz DNA (Fig.53C hPol ι Oz 3' (Fig.53A Oz 9-12) dCTP dGTP yREV1 Oz (Fig.53B dATP dTTP 3' 9) Oz 5-7) Oz 3' Oz (Fig.53A 53B 3-6 9-12 yREV1 ) 4 hPol ι dCTP Oz hPol ι yREV1 Oz Pol ι Pol κ REV1 43, 96) DNA DNA DNA DNA DNA Pol ι Pol κ 1 4 Pol κ REV1 Oz Oz Oz DNA Pol ι 5' 1 Pol κ REV1 DNA Oz DNA Oz 3' DNA DNA DNA 106 Fig.53 DNA synthesis with hPol ι, hPol κ, or yREV1 across OzOz. (A, B) Primer extension across OzOz and nucleotide incorporation opposite OzOz by hPol ι (A) or yREV1 (B). hPol ι (0.5 µg) or yREV1 (4.2 ng) was incubated with template (containing GG in lanes 1-6, containing OzOz in lanes 7-12) and 100 µM of each of the four dNTPs (lanes 2 and 8) or 100 µM of a single dNTP (N = C, G, A, or T) (lanes 3-6 and 9-12). Lanes 1 and 7 contained no enzyme as negative controls. (C) Primer extension across OzOz by hPol κ. Decreasing amounts of hPol κ (31 ng in lanes 1 and 5, 9.2 ng in lanes 2 and 6, 3.1 ng in lanes 3 and 7) were incubated with template (containing GG in lanes 1-4, containing OzOz in lanes 5-8) and 100 µM of each of the four dNTPs. Lanes 4 and 8 contained no enzyme as negative controls. Reproduced from Suzuki M. et al., J. Biochem., 159, 323-329 (2016) with permission from the Oxford University Press. 107 3-4. hPol η Oz DNA Pol η 43, 96) DNA 88-90) DNA CPD 88) DNA 1 21) REV1 DNA Oz KF exo- DNA Pol α Oz Pol β DNA 5-7) CPD (Fig.54A hPol η DNA 5-7 Oz Oz 3' dATP dTTP dCTP dGTP 5' G (Fig.54B dATP 1-3 3' (Fig.54A hPol η DNA Oz (Fig.54A ) Pol κ Pol η hPol η 9-11 Pol ι 5' 5) dCTP dGTP 1-4) Oz dTTP (Fig.54B 6-9) Oz (Fig.54B 1-4 6-9 ) hPol η Oz DNA CPD DNA Oz hPol η DNA Pol η Oz 3' Oz KF exo- Oz Pol η Oz 5' Pol α Oz Pol β Pol ι DNA DNA DNA 108 Pol κ REV1 Fig.54 DNA synthesis with hPol η across OzOz. (A) Primer extension across OzOz by hPol η. Decreasing amounts of hPol η (12 ng in lanes 1, 5, and 9, 4.0 ng in lanes 2, 6, and 10, 1.2 ng in lanes 3, 7, and 11) were incubated with template (containing GG in lanes 1-4, containing OzOz in lanes 5-8, containing CPD in lanes 9-12) and 100 µM of each of the four dNTPs. Lanes 4, 8, and 12 contained no enzyme as negative controls. (B) Nucleotide selectivity of hPol η opposite OzOz. hPol η (4.0 ng) was incubated with template (containing GG in lanes 1-5, and OzOz in lanes 6-10) and 100 µM of a single dNTP (N = C, G, A, or T) (lanes 1-4 and 6-9). Lanes 5 and 10 contained no enzyme as the negative control. Reproduced from Suzuki M. et al., J. Biochem., 159, 323-329 (2016) with permission from the Oxford University Press. 109 3-5. yPol ζ Oz DNA Pol ζ 43) DNA Oz DNA DNA Oz DNA yPol ζ Oz DNA (Fig.55A 5-7) Oz 5-7 DNA 1-3 (Fig.55A ) DNA dCTP 17-mer dTTP G 3' (Fig.55B 7) 3' 6 9 (Fig.55B 3' Oz Pol ζ (Fig.55B 5' Oz 1) dGTP Oz dCTP 2 dGTP dTTP (Fig.55B 9) (Fig.55B 1 4 ) Oz Pol ζ Oz 6 dATP (Fig.55B Pol ζ 4) 8 3 ) 1 DNA DNA UV 47, 54, 55) 4 DNA G Pol ζ Oz DNA Oz Oz 1 1 Pol ζ Pol ζ 110 Oz DNA Fig.55 DNA synthesis with yPol ζ across OzOz. (A) Primer extension across OzOz by yPol ζ. Decreasing amounts of yPol ζ (50 ng in lanes 1 and 5, 17 ng in lanes 2 and 6, 5.0 ng in lanes 3 and 7) were incubated with template (containing GG in lanes 1-4, containing OzOz in lanes 5-8) and 100 µM of each of the four dNTPs. Lanes 4 and 8 contained no enzyme as negative controls. (B) Nucleotide selectivity of yPol ζ opposite OzOz. yPol ζ (17 ng) was incubated with template (containing GG in lanes 1-5, and OzOz in lanes 6-10) and 100 µM of a single dNTP (N = C, G, A, or T) (lanes 1-4 and 6-9). Lanes 5 and 10 contained no enzyme as negative controls. Reproduced from Suzuki M. et al., J. Biochem., 159, 323-329 (2016) with permission from the Oxford University Press. 111 4 KF exo- Pol α Pol β Pol ι REV1 Oz 3' Oz Oz 5' (Table 12) 3' Oz Oz Oz DNA Pol κ Oz Pol κ 3' Oz Oz DNA (Table 12) Oz DNA DNA DNA DNA CPD DNA DNA Pol η (Table 12) Oz Oz 3' 5' Oz Oz DNA Pol ζ Oz DNA Oz DNA (Table 12) Oz DNA DNA Pol ζ Oz DNA Oz DNA Pol ζ DNA Oz DNA Oz dGTP Oz REV1 KF exo- 20, 21) REV1 DNA 4 Oz DNA Oz 112 dGTP Oz Oz G:C-C:G Table 12 Summary of chapter 6. Insertion opposite 3' Oz Extension opposite 5' Oz Replicative DNA polymerases Pol α G, A, C stall DNA polymerases KF exo- A stall involved in DNA repair Pol β G stall Pol ζ G, A, C, T G, A high efficiency DNA polymerases Pol η G, A, C, T G, A, C, T low efficiency involved in translesion Pol ι G, A, T synthesis Pol κ stall stall REV1 C 113 stall 7 K-ras codon 12 G:C-C:G G:C-T:A K-ras (Table 1) G:C-C:G Oz Sp DNA Gh/Ia Oz 8-oxoG 11-13) 6) 2 DNA DNA 20, 26) 2 Oz Gh/Ia 3 Oz Sp G:C-C:G Gh/Ia Sp DNA 2 Oz:G 3 Ia:G sp3 Gh/Ia Sp Oz DNA Sp sp3 DNA Oz Gh/Ia Sp:G DNA DNA DNA DNA DNA Oz DNA G:C-C:G Oz 4 6 Oz Oz Oz DNA REV1 REV1 DNA KF exo- DNA 114 5 Oz DNA Oz G:C-C:G Oz REV1 DNA DNA Oz Oz DNA DNA Oz DNA DNA DNA DNA NEIL1 Oz:C Oz Oz:C Oz:A 80) Oz:A NTH1 Oz:G Oz:G Oz Oz Oz Oz Oz REV1 Oz Oz DNA DNA DNA (xeroderma pigmentosum XP) V Pol η 115 97) Pol η CPD DNA DNA Oz REV1 REV1 ι Pol ζ Pol κ Pol η Pol DNA 81-85) REV1 DNA Oz Oz DNA DNA Oz G:C-C:G Oz Oz DNA DNA Pol ζ mRNA 98) REV1 mRNA 16 99) DNA Oz Oz in vitro Oz Oz 8-oxoG Oz Oz DNA Oz 1 116 18) Oz 8-oxoG Oz Oz Oz Oz Oz Oz Oz DNA Oz Oz Oz 117 (1) Steenken, S., and Jovanovic, S. V. (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc., 119, 617-618. (2) Kino, K., and Sugiyama, H. (2005) UVR-induced G-C to C-G transversions from oxidative DNA damage. Mutat. Res., 571, 33-42. (3) Khaled, H. M., Bahnassi, A. A., Zekri, A. R., Kassem, H. A., and Mokhtar, N. (2003) Correlation between p53 mutations and HPV in bilharzial bladder cancer. Urol. Oncol., 21, 334-341. (4) Maehira, F., Miyagi, I., Asato, T., Eguchi, Y., Takei, H., Nakatsuki, K., Fukuoka, M., and Zaha, F. (1999) Alterations of protein kinase C, 8-hydroxydeoxyguanosine, and K-ras oncogene in rat lungs exposed to passive smoking. Clin. Chim. Acta, 289, 133-144. (5) Giaretti, W., Rapallo, A., Geido, E., Sciutto, A., Merlo, F., Risio, M., and Rossini, F. P. (1998) Specific K-ras2 mutations in human sporadic colorectal adenomas are associated with DNA near-diploid aneuploidy and inhibition of proliferation. Am. J. Pathol., 153, 1201-1209. (6) Sugio, K. (2009) Ras mutation . , 7, 195-202. (7) Suzuki, M., Kino, K., and Miyazawa, H. (2012) DNA . Rad. Biol. Res. Comm., 47, 137-164. (8) Oda, Y., Uesugi, S., Ikehara, M., Nishimura, S., Kawase, Y., Ishikawa, H., Inoue, H., and Ohtsuka, E. (1991) NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res., 19, 1407-1412. (9) McAuley-Hecht, K. E., Leonard, G. A., Gibson, N. J., Thomson, J. B., Watson, W. P., Hunter, W. N., and Brown, T. (1994) Crystal structure of a DNA duplex containing 8-hydroxydeoxyguanine-adenine base pairs. Biochemistry, 33, 10266-10270. (10) Lipscomb, L. A., Peek, M. E., Morningstar, M. L., Verghis, S. M., Miller, E. M., Rich, A., 118 Essigmann, J. M., and Williams, L. D. (1995) X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proc. Natl. Acad. Sci. U.S.A., 92, 719-723. (11) Cadet, J., Berger, M., Buchko, G. W., Joshi, P. C., Raoul, S., and Ravanat, J.-L. (1994) 2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-β-D-erythro-pentofuranosyl)amino]-5-(2H)-ox azolone: A novel and predominant radical oxidation product of 3',5'-di-O-acetyl-2'-deoxyguanosine. J. Am. Chem. Soc., 116, 7403-7404. (12) Luo, W., Muller, J. G., and Burrows, C. J. (2001) The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett., 3, 2801-2804. (13) Kino, K., Saito, I., and Sugiyama, H. (1998) Product analysis of GG-specific photooxidation of DNA via electron transfer:# 2-aminoimidazolone as a major guanine oxidation product. J. Am. Chem. Soc., 120, 7373-7374. (14) Morikawa, M., Kino, K., Oyoshi, T., Suzuki, M., Kobayashi, T., and Miyazawa, H. (2013) Product analysis of photooxidation in isolated quadruplex DNA; 8-oxo-7,8-dihydroguanine and its oxidation product at 3'-G are formed instead of 2,5-diamino-4H-imidazol-4-one. RSC Adv., 3, 25694. (15) Morikawa, M., Kino, K., Oyoshi, T., Suzuki, M., Kobayashi, T., and Miyazawa, H. (2014) Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA. Biomolecules, 4, 140-159. (16) Kino, K., and Sugiyama, H. (2001) Possible cause of G-C-->C-G transversion mutation by guanine oxidation product, imidazolone. Chem. Biol., 8, 369-378. (17) Neeley, W. L., Delaney, J. C., Henderson, P. T., and Essigmann, J. M. (2004) In vivo bypass efficiencies and mutational signatures of the guanine oxidation products 2-aminoimidazolone and 5-guanidino-4-nitroimidazole. J. Biol. Chem., 279, 43568-43573. (18) Matter, B., Malejka-Giganti, D., Csallany, A. S., and Tretyakova, N. (2006) Quantitative analysis of the oxidative DNA lesion, 119 2,2-diamino-4-(2-deoxy-β-D-erythro- pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone), in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS. Nucleic Acids Res, 34, 5449-5460. (19) Ming, X., Matter, B., Song, M., Veliath, E., Shanley, R., Jones, R., and Tretyakova, N. (2014) Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation. J. Am. Chem. Soc., 136, 4223-4235. (20) Kino, K., Sugasawa, K., Mizuno, T., Bando, T., Sugiyama, H., Akita, M., Miyazawa, H., and Hanaoka, F. (2009) Eukaryotic DNA polymerases α, β and ε incorporate guanine opposite 2,2,4-triamino-5(2H)-oxazolone. ChemBioChem, 10, 2613-2616. (21) Kino, K., Ito, N., Sugasawa, K., Sugiyama, H., and Hanaoka, F. (2004) Translesion synthesis by human DNA polymerase η across oxidative products of guanine. Nucleic Acids Symp. Ser., 171-172. (22) Kino, K., Morikawa, M., Kobayashi, T., Kobayashi, T., Komori, R., Sei, Y., and Miyazawa, H. (2010) The oxidation of 8-oxo-7,8-dihydroguanine by iodine. Bioorg. Med. Chem. Lett., 20, 3818-3820. (23) Luo, W., Muller, J. G., Rachlin, E. M., and Burrows, C. J. (2000) Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett., 2, 613-616. (24) Ye, Y., Munk, B. H., Muller, J. G., Cogbill, A., Burrows, C. J., and Schlegel, H. B. (2009) Mechanistic aspects of the formation of guanidinohydantoin from spiroiminodihydantoin under acidic conditions. Chem. Res. Toxicol., 22, 526-535. (25) Luo, W., Muller, J. G., Rachlin, E. M., and Burrows, C. J. (2001) Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem. Res. Toxicol., 14, 927-938. (26) Kornyushyna, O., Berges, A. M., Muller, J. G., and Burrows, C. J. (2002) In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow Fragment). Biochemistry, 41, 15304-15314. 120 (27) Shibutani, S., Takeshita, M., and Grollman, A. P. (1997) Translesional synthesis on DNA templates containing a single abasic site. A mechanistic study of the “A rule”. J. Biol. Chem., 272, 13916-13922. (28) Matray, T. J., and Kool, E. T. (1999) A specific partner for abasic damage in DNA. Nature, 399, 704-708. (29) Beckman, J., Wang, M., Blaha, G., Wang, J., and Konigsberg, W. H. (2010) Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP and dGMP to be inserted opposite Guanidinohydantoin. Biochemistry, 49, 8554-8563. (30) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T. J., Kudin, K. N., and Burant, J. C. et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA, 2004. (31) Ding, S., Jia, L., Durandin, A., Crean, C., Kolbanovskiy, A., Shafirovich, V., Broyde, S., and Geacintov, N. E. (2009) Absolute configurations of spiroiminodihydantoin and allantoin stereoisomers: comparison of computed and measured electronic circular dichroism spectra. Chem. Res. Toxicol., 22, 1189-1193. (32) Wong, M. W., Frisch, M. J., and Wiberg, K. B. (1991) Solvent effects. 1. The mediation of electrostatic effects by solvents. J. Am. Chem. Soc., 113, 4776-4782. (33) Verdolino, V., Cammi, R., Munk, B. H., and Schlegel, H. B. (2008) Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. J. Phys. Chem. B, 112, 16860-16873. (34) Aller, P., Ye, Y., Wallace, S. S., Burrows, C. J., and Doublie, S. (2010) Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin. Biochemistry, 49, 2502-2509. (35) Chinyengetere, F., and Jamieson, E. R. (2008) Impact of the oxidized guanine lesion spiroiminodihydantoin on the conformation and thermodynamic stability of a 15-mer DNA duplex. Biochemistry, 47, 2584-2591. (36) Yanson, I. K., Teplitsky, A. B., and Sukhodub, L. F. (1979) Experimental studies of 121 molecular interactions between nitrogen bases of nucleic acids. Biopolymers, 18, 1149-1170. (37) Prakash, S., and Prakash, L. (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev., 16, 1872-1883. (38) Morikawa, M., Kino, K., and Miyazawa, H. (2010) DNA . Rad. Biol. Res. Comm., 45, 268-285. (39) Wu, M., Yan, S., Patel, D. J., Geacintov, N. E., and Broyde, S. (2002) Relating repair susceptibility of carcinogen-damaged DNA with structural distortion and thermodynamic stability. Nucleic Acids Res., 30, 3422-3432. (40) Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J., and Pelletier, H. (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36, 11205-11215. (41) Neeley, W. L., Delaney, S., Alekseyev, Y. O., Jarosz, D. F., Delaney, J. C., Walker, G. C., and Essigmann, J. M. (2007) DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. J. Biol. Chem., 282, 12741-12748. (42) Garg, P., and Burgers, P. M. (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol., 40, 115-128. (43) Pavlov, Y. I., Shcherbakova, P. V., and Rogozin, I. B. (2006) Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int. Rev. Cytol., 255, 41-132. (44) Rothwell, P. J., and Waksman, G. (2005) Structure and mechanism of DNA polymerases. Adv. Protein Chem., 71, 401-440. (45) Nick McElhinny, S. A., Gordenin, D. A., Stith, C. M., Burgers, P. M., and Kunkel, T. A. (2008) Division of labor at the eukaryotic replication fork. Mol. Cell, 30, 137-144. (46) Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E., and Kunkel, T. A. (2007) Yeast DNA polymerase ε participates in leading-strand DNA replication. Science, 317, 127-130. (47) Zhu, F., and Zhang, M. (2003) DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development. World J. Gastroenterol., 9, 122 1165-1169. (48) Yang, W., and Woodgate, R. (2007) What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. U.S.A., 104, 15591-15598. (49) Ohmori, H., Friedberg, E. C., Fuchs, R. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., and Woodgate, R. (2001) The Y-family of DNA polymerases. Mol. Cell, 8, 7-8. (50) Fazlieva, R., Spittle, C. S., Morrissey, D., Hayashi, H., Yan, H., and Matsumoto, Y. (2009) Proofreading exonuclease activity of human DNA polymerase δ and its effects on lesion-bypass DNA synthesis. Nucleic Acids Res., 37, 2854-2866. (51) Piao, J., Masuda, Y., and Kamiya, K. (2010) Specific amino acid residues are involved in substrate discrimination and template binding of human REV1 protein. Biochem. Biophys. Res. Commun, 392, 140-144. (52) MacNeill, S. A., Baldacci, G., Burgers, P. M., and Hubscher, U. (2001) A unified nomenclature for the subunits of eukaryotic DNA polymerase δ. Trends Biochem. Sci., 26, 16-17. (53) Jin, Y. H., Garg, P., Stith, C. M., Al-Refai, H., Sterling, J. F., Murray, L. J., Kunkel, T. A., Resnick, M. A., Burgers, P. M., and Gordenin, D. A. (2005) The multiple biological roles of the 3'-->5' exonuclease of Saccharomyces cerevisiae DNA polymerase δ require switching between the polymerase and exonuclease domains. Mol. Cell. Biol., 25, 461-471. (54) Lawrence, C. W. (2002) Cellular roles of DNA polymerase ζ and Rev1 protein. DNA Repair (Amst), 1, 425-435. (55) Lawrence, C. W. (2004) Cellular functions of DNA polymerase ζ and Rev1 protein. Adv. Protein Chem., 69, 167-203. (56) Guo, D., Wu, X., Rajpal, D. K., Taylor, J. S., and Wang, Z. (2001) Translesion synthesis by yeast DNA polymerase ζ from templates containing lesions of ultraviolet radiation and acetylaminofluorene. Nucleic Acids Res., 29, 2875-2883. 123 (57) Haracska, L., Prakash, S., and Prakash, L. (2003) Yeast DNA polymerase ζ is an efficient extender of primer ends opposite from 7,8-dihydro-8-oxoguanine and O6-methylguanine. Mol. Cell. Biol., 23, 1453-1459. (58) Haracska, L., Unk, I., Johnson, R. E., Johansson, E., Burgers, P. M., Prakash, S., and Prakash, L. (2001) Roles of yeast DNA polymerases δ and ζ and of Rev1 in the bypass of abasic sites. Genes Dev., 15, 945-954. (59) Gan, G. N., Wittschieben, J. P., Wittschieben, B. O., and Wood, R. D. (2008) DNA polymerase zeta (pol ζ) in higher eukaryotes. Cell Res., 18, 174-183. (60) Andersen, P. L., Xu, F., Ziola, B., McGregor, W. G., and Xiao, W. (2011) Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol. Biol. Cell, 22, 2373-2383. (61) Xie, W., Yang, X., Xu, M., and Jiang, T. (2012) Structural insights into the assembly of human translesion polymerase complexes. Protein Cell, 3, 864-874. (62) Tissier, A., Frank, E. G., McDonald, J. P., Iwai, S., Hanaoka, F., and Woodgate, R. (2000) Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase ι. EMBO J., 19, 5259-5266. (63) Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., and Prakash, L. (2000) Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature, 406, 1015-1019. (64) Zhang, Y., Yuan, F., Wu, X., and Wang, Z. (2000) Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase ι. Mol. Cell Biol., 20, 7099-7108. (65) Choi, J. Y., and Guengerich, F. P. (2006) Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase ι. J. Biol. Chem., 281, 12315-12324. (66) Tissier, A., McDonald, J. P., Frank, E. G., and Woodgate, R. (2000) polι, a remarkably error-prone human DNA polymerase. Genes Dev., 14, 1642-1650. (67) McDonald, J. P., Tissier, A., Frank, E. G., Iwai, S., Hanaoka, F., and Woodgate, R. 124 (2001) DNA polymerase iota and related rad30-like enzymes. Philos. Trans. R. Soc. Lond Ser. B, 356, 53-60. (68) Zhang, Y., Yuan, F., Wu, X., Taylor, J. S., and Wang, Z. (2001) Response of human DNA polymerase ι to DNA lesions. Nucleic Acids Res., 29, 928-935. (69) Zhang, Y., Yuan, F., Wu, X., Wang, M., Rechkoblit, O., Taylor, J. S., Geacintov, N. E., and Wang, Z. (2000) Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res., 28, 4138-4146. (70) Zhang, Y., Yuan, F., Xin, H., Wu, X., Rajpal, D. K., Yang, D., and Wang, Z. (2000) Human DNA polymerase κ synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Res., 28, 4147-4156. (71) Choi, J. Y., Angel, K. C., and Guengerich, F. P. (2006) Translesion synthesis across bulky N2-alkyl guanine DNA adducts by human DNA polymerase κ. J. Biol. Chem., 281, 21062-21072. (72) Wolfle, W. T., Washington, M. T., Prakash, L., and Prakash, S. (2003) Human DNA polymerase κ uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions. Genes Dev., 17, 2191-2199. (73) Nelson, J. R., Lawrence, C. W., and Hinkle, D. C. (1996) Deoxycytidyl transferase activity of yeast REV1 protein. Nature, 382, 729-731. (74) Zhang, Y., Wu, X., Rechkoblit, O., Geacintov, N. E., Taylor, J. S., and Wang, Z. (2002) Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion. Nucleic Acids Res., 30, 1630-1638. (75) Masuda, Y., and Kamiya, K. (2002) Biochemical properties of the human REV1 protein. FEBS Lett., 520, 88-92. (76) Choi, J. Y., and Guengerich, F. P. (2008) Kinetic analysis of translesion synthesis opposite bulky N2- and O6-alkylguanine DNA adducts by human DNA polymerase REV1. J. Biol. Chem., 283, 23645-23655. (77) Swan, M. K., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2009) Structure of the human Rev1-DNA-dNTP ternary complex. J. Mol. Biol., 390, 699-709. 125 (78) Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2005) Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science, 309, 2219-2222. (79) Howell, C. A., Prakash, S., and Washington, M. T. (2007) Pre-steady-state kinetic studies of protein-template-directed nucleotide incorporation by the yeast Rev1 protein. Biochemistry, 46, 13451-13459. (80) Kino, K., Takao, M., Miyazawa, H., and Hanaoka, F. (2012) A DNA oligomer containing 2,2,4-triamino-5(2H)-oxazolone is incised by human NEIL1 and NTH1. Mutat. Res., 734, 73-77. (81) Murakumo, Y., Ogura, Y., Ishii, H., Numata, S., Ichihara, M., Croce, C. M., Fishel, R., and Takahashi, M. (2001) Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem., 276, 35644-35651. (82) Ohashi, E., Murakumo, Y., Kanjo, N., Akagi, J., Masutani, C., Hanaoka, F., and Ohmori, H. (2004) Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells, 9, 523-531. (83) Kim, M. S., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A., Pang, Y. P., and Machida, Y. J. (2013) Regulation of error-prone translesion synthesis by Spartan/C1orf124. Nucleic Acids Res., 41, 1661-1668. (84) Acharya, N., Johnson, R. E., Pages, V., Prakash, L., and Prakash, S. (2009) Yeast Rev1 protein promotes complex formation of DNA polymerase ζ with Pol32 subunit of DNA polymerase δ. Proc. Natl. Acad. Sci. U.S.A., 106, 9631-9636. (85) Kikuchi, S., Hara, K., Shimizu, T., Sato, M., and Hashimoto, H. (2012) Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins. J. Biol. Chem., 287, 33847-33852. (86) Yang, L., Beard, W., Wilson, S., Roux, B., Broyde, S., and Schlick, T. (2002) Local deformations revealed by dynamics simulations of DNA polymerase β with DNA mismatches at the primer terminus. J. Mol. Biol., 321, 459-478. (87) Beard, W. A., Shock, D. D., and Wilson, S. H. (2004) Influence of DNA structure on 126 DNA polymerase β active site function: extension of mutagenic DNA intermediates. J. Biol. Chem., 279, 31921-31929. (88) Masutani, C., Kusumoto, R., Iwai, S., and Hanaoka, F. (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J., 19, 3100-3109. (89) Matsuda, T., Bebenek, K., Masutani, C., Rogozin, I. B., Hanaoka, F., and Kunkel, T. A. (2001) Error rate and specificity of human and murine DNA polymerase η. J. Mol. Biol., 312, 335-346. (90) Kano, C., Hanaoka, F., and Wang, J. Y. (2012) Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to G and G to C transversions during Ig gene hypermutation. Int. Immunol., 24, 169-174. (91) Sugiyama, H., and Saito, I. (1996) T Theoretical studies of GG-specific photocleavage of DNA via electron transfer: significant lowering of ionization potential and 5’-localization of HOMO of stacked GG bases in B-form DNA. J. Am. Chem. Soc., 118, 7063-7068. (92) Saito, I., Nakamura, T., Nakatani, K., Yoshioka, Y., Yamaguchi, K., and Sugiyama, H. (1998) Mapping of the hot spots for DNA damage by one-electron oxidation: efficacy of GG doublets and GGG triplets as a trap in long-range hole migration. J. Am. Chem. Soc., 120, 12686-12687. (93) Hirakawa, K., Kawanishi, S., Hirano, T., and Segawa, H. (2007) Guanine-specific DNA oxidation photosensitized by the tetraphenylporphyrin phosphorus(V) complex via singlet oxygen generation and electron transfer. J. Photochem. Photobiol. B, 87, 209-217. (94) Jaloszynski, P., Masutani, C., Hanaoka, F., Perez, A. B., and Nishimura, S. (2003) 8-Hydroxyguanine in a mutational hotspot of the c-Ha-ras gene causes misreplication, ‘action-at-a-distance’ mutagenesis and inhibition of replication. Nucleic Acids Res., 31, 6085-6095. (95) Jaloszynski, P., Ohashi, E., Ohmori, H., and Nishimura, S. (2005) Error-prone and inefficient replication across 8-hydroxyguanine (8-oxoguanine) in human and mouse ras gene fragments by DNA polymerase κ. Genes Cells, 10, 543-550. (96) Washington, M. T., Carlson, K. D., Freudenthal, B. D., and Pryor, J. M. (2010) 127 Variations on a theme: eukaryotic Y-family DNA polymerases. Biochim. Biophys. Acta, 1804, 1113-1123. (97) Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F. (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature, 399, 700-704. (98) Xiao, W., Lechler, T., Chow, B. L., Fontanie, T., Agustus, M., Carter, K. C., and Wei, Y. F. (1998) Identification, chromosomal mapping and tissue-specific expression of hREV3 encoding a putative human DNA polymerase ζ. Carcinogenesis, 19, 945-949. (99) Lin, W., Xin, H., Zhang, Y., Wu, X., Yuan, F., and Wang, Z. (1999) The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res., 27, 4468-4475. 128 ( ) 129