...

β-Ga2O3 単結晶における自己束縛励起子の安定性の評価

by user

on
Category: Documents
9

views

Report

Comments

Transcript

β-Ga2O3 単結晶における自己束縛励起子の安定性の評価
E-Ga2O3 ༢⤖ᬗ䛻䛚䛡䜛⮬ᕫ᮰⦡ບ㉳Ꮚ䛾Ᏻᐃᛶ䛾ホ౯
ᒣᒸඃ䚸୰ᒣṇ᫛
኱㜰ᕷ❧኱Ꮫ኱Ꮫ㝔ᕤᏛ◊✲⛉㟁Ꮚ᝟ሗ⣔ᑓᨷ
Characterization of stability of self-trapped excitons in a E-Ga2O3 single crystal
Suguru Yamaoka and Masaaki Nakayama
Department of Applied Physics, Graduate School of Engineering, Osaka City University
We have investigated photoluminescence (PL) and absorption properties of a E-Ga2O3 single crystal
from the viewpoint of the stability of self-trapped excitons (STEs). A broad PL band with a large
Stokes shift, which is conventionally assigned to the STE, was observed. To reveal the stability of
the STE, we precisely measured the temperature dependence of the Urbach tails in absorption
spectra. It was confirmed that Urbach tails at all temperatures converge into a given point, which
verifies the validity of the treatment of the Urbach tail. We analysed the temperature dependence of
the exponential slope, the so-called steepness constant, of the Urbach tail and evaluated the
exciton-phonon coupling constant g, which defines the stability of the STE, to be g=5.4. Based on a
previously reported theory for exciton-phonon interactions, g>1 generally results in that the STE is a
stable state relative to a free exciton. Consequently, the above large g factor demonstrates that the
STE formation is stable in E-Ga2O3.
1. ࡣࡌࡵ࡟
㓟໬≀༙ᑟయ࡛࠶ࡿE-Ga2O3 ࡣࠊᚑ᮶ࡢࣃ
࣮࣡ࢹࣂ࢖ࢫ࡟⏝࠸ࡽࢀ࡚࠸ࡿ࣡࢖ࢻࢠࣕ
ࢵࣉ༙ᑟయ࡛࠶ࡿ GaN ࡸ SiC ࡟ẚ࡭࡚ࠊ኱
ࡁ࡞ࣂࣥࢻࢠࣕࢵࣉ࢚ࢿࣝࢠ࣮(4.7 eV)ࢆ
ࡶࡘࡇ࡜࠿ࡽ[1]ࠊࡼࡾ୍ᒙࡢపᦆኻࠊ㧗⪏
ᅽࡢࢹࣂ࢖ࢫ≉ᛶࢆᣢࡘࡇ࡜ࡀᮇᚅࡉࢀ࠾
ࡾࠊ㏆ᖺࠊE-Ga2O3 ࢆ⏝࠸ࡓ FET ࡀ㛤Ⓨࡉ
ࢀ[2]ࠊ኱ࡁ࡞ὀ┠ࡀ㞟ࡲࡗ࡚࠸ࡿࠋࡉࡽ࡟ࠊ
E-Ga2O3 ࡣ㏱᫂ᑟ㟁⭷ࠊ῝⣸እග᳨ฟჾ➼࡟
ࡶᛂ⏝ࡉࢀ࡚࠸ࡿ[3-6]ࠋ
E-Ga2O3 ࡣ༢ᩳᬗᵓ㐀ࢆ࡜ࡿ[7]ࠋ྾཰ࢫ
࣌ࢡࢺࣝࡣࠊb ㍈ࠊཬࡧࠊc ㍈࡟ᑐࡋ࡚೫ග
≉ᛶࢆ♧ࡍ[8-11]ࠋE-Ga2O3 ࠿ࡽࡢⓎගࡣࠊ
㠀ᖖ࡟ࣈ࣮ࣟࢻ࡛࠶ࡾࠊ኱ࡁ࡞ࢫࢺ࣮ࢡࢫ
ࢩࣇࢺࢆక࠺ࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ[10, 11]ࠋ
ࡇࡢࣈ࣮ࣟࢻ࡞Ⓨගᖏࡣࠊ⌧㇟ㄽⓗ࡟ࠊ⮬
ᕫ᮰⦡ṇᏍ࡜ࡑࡢṇᏍ࡟࡜ࡽ࠼ࡽࢀࡓ㟁Ꮚ
࠿ࡽᵓᡂࡉࢀࡿ⮬ᕫ᮰⦡ບ㉳Ꮚ࠿ࡽࡢࡶࡢ
࡛࠶ࡿ࡜⪃࠼ࡽࢀ࡚࠸ࡿ[10, 11]ࠋ⮬ᕫ᮰⦡
267
ບ㉳Ꮚࡣ࠾ࡶ࡟ࠊ࢔ࣝ࢝ࣜࣁࣛ࢖ࢻ࡛ほ ࡉࢀࡿ[12]ࠋE-Ga2O3 ࡟࠾࠸࡚ࠊVarley ࡽࡢ
⌮ㄽィ⟬࡟ᇶ࡙ࡃ࡜[13]ࠊ㔜࠸᭷ຠ㉁㔞ࢆࡶ
ࡘṇᏍࡣࠊ᱁Ꮚṍࡳࢆకࡗ࡚ᒁᅾ໬ࡍࡿࠋ
ࡑࡋ࡚ࠊᑠࡉ࡞࣏࣮ࣛࣟࣥ(⮬ᕫ᮰⦡ṇᏍ)
ࡀᙧᡂࡉࢀࠊ⮬ᕫ᮰⦡ṇᏍࡣࠊ㓟⣲ཎᏊࡢ
2p ㌶㐨࡟ᒁᅾ໬ࡍࡿ࡜ሗ࿌ࡉࢀ࡚࠸ࡿࠋࡋ
࠿ࡋ࡞ࡀࡽࠊE-Ga2O3 ࡟࠾࠸࡚ࠊ⮬ᕫ᮰⦡ບ
㉳ᏊᙧᡂࡢᏳᐃᛶ࡟㛵ࡍࡿ᫂☜࡞ᐇ㦂ⓗド
ᣐࡣࠊࡇࢀࡲ࡛ሗ࿌ࡉࢀ࡚࠸࡞࠸ࠋ
Schreiber ࡜㇏ἑ࡟ࡼࡿບ㉳Ꮚ-᱁Ꮚ┦஫
స⏝࡟㛵ࡍࡿ⌮ㄽ࡟ࡼࡿ࡜[14]ࠊ⮬⏤ບ㉳Ꮚ
࡜ẚ㍑ࡋࡓ⮬ᕫ᮰⦡ບ㉳ᏊࡢᏳᐃᛶࡣࠊ྾
཰ࢫ࣌ࢡࢺࣝ࡟⌧ࢀࡿᣦᩘ㛵ᩘⓗ࡞ࡩࡿࡲ
࠸ࢆ♧ࡍప࢚ࢿࣝࢠ࣮ഃࡢ〈(࢔࣮ࣂࢵࢡ
ࢸ࢖ࣝ)ࡢゎᯒ࠿ࡽồࡲࡿບ㉳Ꮚ̿᱁Ꮚ┦
஫స⏝ᐃᩘ g ࠿ࡽ᫂ࡽ࠿࡜࡞ࡿࠋg ࡀ 1 ࡼ
ࡾ኱ࡁ࠸ሙྜࠊ୍⯡ⓗ࡟⮬ᕫ᮰⦡ບ㉳Ꮚࡣࠊ
⮬⏤ບ㉳Ꮚ࡟ẚ࡭࡚Ᏻᐃ࡜࡞ࡿࠋᮏ◊✲࡛
ࡣࠊE-Ga2O3 ༢⤖ᬗ࡟࠾࠸࡚ࠊ࢔࣮ࣂࢵࢡࢸ
2. ヨᩱ࡜ᐇ㦂᪉ἲ
ᮏ◊✲࡛⏝࠸ࡓヨᩱࡣࠊ⼥ᾮᡂ㛗ἲ࡟ࡼ
ࡾ (010) 㠃 ᪉ ఩ ࡟ ᡂ 㛗 ࡉ ࢀ ࡓ ࢔ ࣥ ࢻ ࣮ ࣉ
E-Ga2O3 ༢⤖ᬗ࡛࠶ࡿ(ࢱ࣒ࣛ〇సᡤస〇)ࠋ
ヨᩱࡢཌࡉࡣ 0.60 mm ࡛࠶ࡿࠋගᏛ ᐃࡣ
྾཰ࠊⓎගࠊཬࡧࠊⓎගບ㉳ࢫ࣌ࢡࢺࣝࡢ
ᐃࢆ⾜ࡗࡓࠋ྾཰ࢫ࣌ࢡࢺࣝࡢ ᐃ࡟ࡣࠊ
ࢲࣈࣝࣅ࣮࣒ᆺศගගᗘィ(ศゎ⬟ 0.1 nm)
ࢆ⏝࠸ࠊ10 K ࠿ࡽ 280 K ࡲ࡛ࡢ ᗘ౫Ꮡᛶ
ࢆ⣔⤫ⓗ࡟ ᐃࡋࡓࠋࡲࡓࠊⓎගࢫ࣌ࢡࢺ
ࣝࡣࠊບ㉳ග※࡟ YAG ࣮ࣞࢨ࣮ࡢ➨ 5 㧗ㄪ
Ἴࢆ⏝࠸ࠊ࣐ࣝࢳࢳࣕࣥࢿࣝศගჾ᳨࡛ฟ
ࡋࡓ(ศゎ⬟ 1.5 nm)ࠋⓎගບ㉳ࢫ࣌ࢡࢺࣝࡢ
ບ㉳ග※࡟ࡣࠊࣉࣜࢬ࣒ศගჾ࡟ࡼࡗ࡚༢
Ⰽ໬ࡉࢀࡓ㔜Ỉ⣲ࣛࣥࣉࢆ⏝࠸ࠊࣇ࢛ࢺࣥ
࢝࢘ࣥࢸ࢕ࣥࢢࢩࢫࢸ᳨࣒࡛ฟࡋࡓ(ศゎ
⬟ 1.4 nm)ࠋ࡞࠾ࠊⓎගࠊⓎගບ㉳ࢫ࣌ࢡࢺ
ࣝࡣࠊ10 K ࡛ ᐃࢆ⾜ࡗࡓࠋ
3. ᐇ㦂⤖ᯝ࡜⪃ᐹ
ᅗ 1 ࡣࠊE-Ga2O3 ༢⤖ᬗࡢ 10 K ࡟࠾ࡅࡿ
Ⓨගࢫ࣌ࢡࢺࣝࠊཬࡧࠊ▮༳ࡢ࢚ࢿࣝࢠ࣮
࡛ཷගࡋࡓⓎගບ㉳ࢫ࣌ࢡࢺࣝࢆ⾲ࡋ࡚࠸
PL
PLE
det.
Normalized PL Intensity
10 K
2.0
3.0
4.0
5.0
Absorption Coefficient (cm-1)
࢖ࣝࡢ ᗘ౫Ꮡᛶࢆ⣔⤫ⓗ࡟ ᐃࡋࠊࡑࡢ
⤖ᯝࢆཧ⪃ᩥ⊩[14, 15]࡟ᇶ࡙࠸࡚ゎᯒࡋࡓࠋ
ࡑࡢ⤖ᯝࠊ⮬ᕫ᮰⦡ບ㉳ᏊࡢᏳᐃᛶࡀ᫂ࡽ
࠿࡜࡞ࡗࡓࠋ
103
102
280 K
10
10 K
30 K step
4.4
4.6
4.8
5.0
Photon Energy (eV)
ᅗ 2. β-Ga2O3 ༢⤖ᬗ࡟࠾ࡅࡿ྾཰ࢫ࣌ࢡࢺࣝ
ࡢ ᗘ౫Ꮡᛶࠋᐇ⥺ࡣᐇ㦂⤖ᯝࠊ◚⥺ࡣᘧ(1)
࡟ᇶ࡙࠸ࡓࣇ࢕ࢵࢸ࢕ࣥࢢ⤖ᯝࢆ♧ࡋ࡚࠸
ࡿࠋ
ࡿࠋᅗ 1 ࡟࠾࠸࡚ࠊⓎගບ㉳ࢫ࣌ࢡࢺࣝࡢ
ࣆ࣮ࢡࢆᇶ‽࡟ 1.5 eV ࡢࢫࢺ࣮ࢡࢫࢩࣇࢺ
ࢆకࡗࡓࣈ࣮ࣟࢻ࡞Ⓨගࣂࣥࢻࡀࠊほ ࡉ
ࢀࡓࠋ୍⯡ⓗ࡟ࠊ⮬ᕫ᮰⦡ບ㉳Ꮚ࠿ࡽࡢⓎ
ගࡣࠊᙉ࠸᱁Ꮚ⦆࿴࡟ࡼࡗ࡚ࠊ኱ࡁ࡞ࢫࢺ
࣮ࢡࢫࢩࣇࢺࢆకࡗࡓࣈ࣮ࣟࢻ࡞Ⓨගࡀほ
ࡉࢀࡿࠋࡺ࠼࡟ࠊᅗ 1 ࡢⓎගࡣࠊ⌧㇟ㄽ
ⓗ࡟⮬ᕫ᮰⦡ບ㉳Ꮚ࠿ࡽࡢࡶࡢ࡛࠶ࡿ࡜⪃
࠼ࡽࢀ࡚࠸ࡿ[10, 11]ࠋ
ᅗ 2 ࡣ྾཰ࢫ࣌ࢡࢺࣝ࡟⌧ࢀࡿ࢔࣮ࣂࢵ
ࢡࢸ࢖ࣝࡢ ᗘ౫Ꮡᛶࡢ⤖ᯝࢆ 10 K ࠿ࡽ
280 K ࡲ࡛ࠊ30 K ࡈ࡜࡟ᐇ⥺࡛⾲♧ࡋ࡚࠸
ࡿࠋᅗ 2 ࡟࠾࠸࡚ࠊ࢔࣮ࣂࢵࢡࢸ࢖ࣝ࡟ᑐ
ᛂࡍࡿᣦᩘ㛵ᩘⓗ࡞〈ࢆ᫂☜࡟ほ ࡋࡓࠋ
ࡲࡓࠊ඲࡚ࡢ ᗘ࡛ࢫࢸࢵࣉᵓ㐀ࡀほ ࡉ
ࢀࡓࠋࡇࢀࡣࠊගᏛ␗᪉ᛶ࡟㉳ᅉࡍࡿ࡜⪃
࠼ࡽࢀࡿ[8-11]ࠋࡇࡢゎᯒ࡛ࡣࠊ⡆༢ࡢࡓࡵࠊ
ప࢚ࢿࣝࢠ࣮ഃࡢ࢔࣮ࣂࢵࢡࢸ࢖ࣝࡔࡅࢆ
ྲྀࡾᢅ࠺ࠋ࢔࣮ࣂࢵࢡࢸ࢖ࣝࡣ௨ୗࡢᘧ࡛
⾲ࡉࢀࡿ[14]ࠋ
α
Photon Energy (eV)
ᅗ 1. 10 K ࡟࠾ࡅࡿE-Ga2O3 ࡢⓎග(ᐇ⥺)
࡜Ⓨගບ㉳ࢫ࣌ࢡࢺࣝ(㯮୸)ࠋ▮༳ࡣⓎග
ບ㉳ࢫ࣌ࢡࢺࣝࡢཷග࢚ࢿࣝࢠ̿ࢆ♧ࡋ
࡚࠸ࡿࠋ
104
ª
E Eº
α 0 exp « σ (T ) 0
»
k BT ¼
¬
(1)
ࡇࡇ࡛ࠊE0 ࡣᴟప ࡛ࡢບ㉳Ꮚ࢚ࢿࣝࢠ࣮
࡟ᑐᛂࡍࡿ཰᮰࢚ࢿࣝࢠ̿ࠊ V(T)ࡣ ᗘ࡟
౫Ꮡࡍࡿࢫࢸ࢕࣮ࣉࢿࢫಀᩘ࡛࠶ࡿࠋᅗ 2
268
E
0.2
V(T)
B
Ea
B
EST
ELR
0.1
0
0
100
200
300
ELR
Temperature (K)
Q
ᅗ 4. ⮬⏤ບ㉳Ꮚࠊཬࡧࠊ⮬ᕫ᮰⦡ບ㉳Ꮚ࡟
ᅗ 3. ࢔࣮ࣂࢵࢡࢸ࢖ࣝࡢഴࡁ࠿ࡽᚓࡽࢀࡓ
ࢫࢸ࢕࣮ࣉࢿࢫಀᩘࡢ ᗘ౫Ꮡᛶࠋ㯮୸ࡣᐇ
㦂⤖ᯝࠊᐇ⥺ࡣᘧ(2)࡟ᇶ࡙࠸ࡓࣇ࢕ࢵࢸ࢕ࣥ
ࢢ⤖ᯝࢆ♧ࡋ࡚࠸ࡿࠋ
ᑐࡍࡿ㓄఩ᗙᶆࣔࢹࣝࠋᶓ㍈ࡣ᱁Ꮚṍࡳ Q ࢆ
⾲ࡍࠋ
⾲ࡉࢀࡿࠋ
ࡢ◚⥺ࡣࠊᘧ(1)࡟ᇶ࡙࠸ࡓࣇ࢕ࢵࢸ࢕ࣥࢢ
⤖ᯝࢆ♧ࡋ࡚࠾ࡾࠊ◚⥺ࡣ࠶ࡿ୍Ⅼ࡟཰᮰
ࡍࡿ⤖ᯝࡀᚓࡽࢀࡓࠋࡇࡢ⤖ᯝࡣࠊ࢔࣮ࣂ
ࢵࢡࢸ࢖ࣝࡢྲྀࡾᢅ࠸ࡀࠊጇᙜ࡛࠶ࡿࡇ࡜
ࢆ♧ࡋ࡚࠸ࡿࠋࡇࡢ཰᮰Ⅼ࠿ࡽ཰᮰࢚ࢿࣝ
ࢠ̿E0=4.98 eV, D0=5.3™103 cm-1 ࡜ồࡲࡗ
ࡓࠋ཰᮰࢚ࢿࣝࢠ̿E0 ࡣࠊ10 K ࡟࠾ࡅࡿⓎ
ගບ㉳ࢫ࣌ࢡࢺ࡛ࣝᚓࡽࢀࡓࣆ࣮ࢡ࢚ࢿࣝ
ࢠ࣮4.9 eV ࡟࡯ࡰ୍⮴ࡋ࡚࠸ࡿࠋ
ᅗ 3 ࡢ㯮୸ࡣࠊ࢔࣮ࣂࢵࢡࢸ࢖ࣝࡢഴࡁ
࠿ࡽᚓࡽࢀࡓࢫࢸ࢕࣮ࣉࢿࢫಀᩘ V(T)ࡢ ᗘ౫Ꮡᛶࡢ⤖ᯝࢆ⾲ࡋ࡚࠸ࡿࠋᩥ⊩[15]࡟ᇶ
࡙ࡃ࡜ࠊࢫࢸ࢕࣮ࣉࢿࢫಀᩘ V(T)ࡢ ᗘ౫
Ꮡᛶࡣࠊ
σ (T )
σ0
ª E ph º
2 k BT
tanh «
»
E ph
¬ 2 k BT ¼
g
E LR
B
(3)
ࡇࡇ࡛ࠊELR ࡣ᱁Ꮚ⦆࿴࢚ࢿࣝࢠ̿ࠊB ࡣບ
㉳Ꮚࣂࣥࢻ༙ᖜ࡛࠶ࡿࠋᅗ 4 ࡣࠊ⮬⏤ບ㉳
Ꮚࠊཬࡧࠊ⮬ᕫ᮰⦡ບ㉳Ꮚ࡟ᑐࡍࡿ㓄఩ᗙ
ᶆࣔࢹࣝࢆ⾲ࡋ࡚࠸ࡿࠋg ࡀ 1 ࡼࡾ኱ࡁ࠸
ሙྜࠊ⮬ᕫ᮰⦡≧ែࡀ᭱ప࢚ࢿࣝࢠ̿࡜࡞
ࡾࠊ⮬⏤ບ㉳Ꮚ࡟ẚ࡭࡚ࠊ⮬ᕫ᮰⦡ບ㉳Ꮚ
ࡀᏳᐃ࡜࡞ࡿࠋg ࡣࡲࡓࠊ௨ୗࡢᘧ࡛ࡶᐃ
⩏ࡉࢀࡿ[14]ࠋ
g
s
σ0
(4)
ࡇࡇ࡛ࠊs ࡣḟඖ࡟౫Ꮡࡍࡿࢫࢸ࢕࣮ࣉࢿࢫ
ᐃᩘ࡛࠶ࡿࠋ3 ḟඖ⤖ᬗ࡛ࡣࠊs=1.5 ࡛࠶ࡿ
[14]ࠋࡓࡔࡋࠊཝᐦ࡟ࡣࠊs=1.5 ࡣ༢⣧࡞❧
᪉ᬗ⣔࡟࠾ࡅࡿィ⟬್࡛࠶ࡿࠋࡋ࠿ࡋ࡞ࡀ
ࡽࠊs=1.5 ࡢ್ࡣࠊ⤒㦂ⓗ࡟ศᏊᛶ⤖ᬗࢆྵ
ࡴᵝࠎ࡞❧᪉ᬗ⣔௨እࡢ≀㉁࡛ࡶ⏝࠸ࡽࢀ
࡚࠾ࡾࠊ⮬ᕫ᮰⦡ບ㉳ᏊࡢᏳᐃᛶࡢド᫂࡟
㐺⏝ࡉࢀ࡚࠸ࡿ[12]ࠋE-Ga2O3 ࡟࠾࠸࡚ࠊᅗ
3 ࡛ᘧ(2)ࢆ⏝࠸࡚ࢫࢸ࢕࣮ࣉࢿࢫಀᩘࡢ ᗘ౫Ꮡᛶࡢࣇࢵࢸ࢕ࣥࢢ࡟ࡼࡾᚓࡽࢀࡓV
ࡣ 0.28 ࡛࠶ࡿࡓࡵࠊg=5.4 ࡜ồࡲࡗࡓࠋࡇ
ࢀࡣ 1 ࡼࡾ༑ศ࡟኱ࡁ࡞್࡛࠶ࡿࠋࡍ࡞ࢃ
ࡕࠊE-Ga2O3 ࡟࠾࠸࡚ࠊ⮬ᕫ᮰⦡ບ㉳Ꮚࡣࠊ
⮬⏤ບ㉳Ꮚ࡟ẚ࡭࡚Ᏻᐃ࡛࠶ࡿࡇ࡜ࡀࠊᐇ
(2)
࡛୚࠼ࡽࢀࡿࠋࡇࡇ࡛ࠊEph ࡣບ㉳Ꮚ࡜┦஫
స⏝ࡍࡿ⌧㇟ㄽⓗ࡞ࣇ࢛ࣀ࢚ࣥࢿࣝࢠ̿ࠊ
Vࡣ㧗 ࡟࠾ࡅࡿࢫࢸ࢕࣮ࣉࢿࢫಀᩘࡢ཰
᮰್࡛࠶ࡿࠋᅗ 3 ࡢᐇ⥺ࡣࠊᘧ(2)ࢆ⏝࠸ࡓ
ࣇ࢕ࢵࢸ࢕ࣥࢢ⤖ᯝࢆ♧ࡋ࡚࠸ࡿࠋࣇ࢕ࢵ
ࢸ࢕ࣥࢢࣃ࣓࣮ࣛࢱࡣࠊࡑࢀࡒࢀࠊV=0.28,
Eph=31 meV ࡜ồࡲࡗࡓࠋ
Schreiber ࡜㇏ἑ࡟ࡼࡾሗ࿌ࡉࢀࡓ⌮ㄽ࡟
ᇶ࡙ࡃ࡜[14]ࠊ⮬ᕫ᮰⦡ບ㉳ᏊࡢᏳᐃᛶࢆ♧
ࡍບ㉳Ꮚ̿᱁Ꮚ┦஫స⏝ᐃᩘࡣ௨ୗࡢᘧ࡛
269
࡞ࡿࠋᚑࡗ࡚ࠊE-Ga2O3 ࡛ࡣࠊ⮬ᕫ᮰⦡ບ㉳
ᏊࡀᏳᐃ࡛࠶ࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋࡉ
ࡽ࡟ࠊ⮬ᕫ᮰⦡ບ㉳ᏊᙧᡂࡢᏳᐃ໬࢚ࢿࣝ
ࢠ̿ࡣࠊ0.68 eV ࡜ホ౯ࡉࢀࠊࡇࢀࡣ⮬ᕫ᮰
⦡ṇᏍᙧᡂࡢᏳᐃ໬࢚ࢿࣝࢠ࣮ࡢィ⟬್
0.53 eV[13]࡟࡯ࡰ୍⮴ࡋࡓࠋࡑࢀࡺ࠼ࠊ኱
ࡁ࡞ࢫࢺ࣮ࢡࢫࢩࣇࢺࢆకࡗࡓࣈ࣮ࣟࢻ࡞
Ⓨගᖏࡣࠊ᫂☜࡟⮬ᕫ᮰⦡ບ㉳Ꮚ࠿ࡽࡢࡶ
ࡢ࡛࠶ࡿࡇ࡜࡛࠶ࡿ࡜⤖ㄽ࡙ࡅࡽࢀࡿࠋ
㦂ⓗ࡟ド᫂ࡉࢀࡓࠋ
㇏ἑ࡟ࡼࡿ⮬ᕫ᮰⦡ບ㉳Ꮚࣔࢹࣝ(ᅗ 4)
࡟ᇶ࡙ࡃ࡜[16]ࠊᅗ 2 ࡟♧ࡋࡓ࢔࣮ࣂࢵࢡࢸ
࢖ࣝࡢ཰᮰࢚ࢿࣝࢠ̿ࡣ E0=Ea㸫Bࠊ⮬ᕫ᮰
⦡ບ㉳Ꮚ࠿ࡽࡢⓎග࢚ࢿࣝࢠ̿ࡣ Ea㸫2ELR
࡛୚࠼ࡽࢀࡿࠋ࡞࠾ࠊEa ࡣບ㉳Ꮚࣂࣥࢻࡢ
୰ᚰ࢚ࢿࣝࢠ࣮࡛࠶ࡿࠋࡺ࠼࡟ࠊࢫࢺ࣮ࢡ
ࢫࢩࣇࢺ Es ࡣ௨ୗࡢᘧ࡛୚࠼ࡽࢀࡿࠋ
(5)
Es 2 E LR B
᪤࡟㏙࡭ࡓࡼ࠺࡟ࠊᅗ 1 ࠿ࡽࠊࢫࢺ࣮ࢡࢫ
ࢩࣇࢺࡣࠊES=1.5 eV ࡛࠶ࡿࠋg=5.4ࠊEs=1.5
eVࠊཬࡧࠊᘧ(3)࡜(5)࠿ࡽࠊ᱁Ꮚ⦆࿴࢚ࢿࣝ
ࢠ̿ELR=0.83 eVࠊບ㉳Ꮚࣂࣥࢻ༙ᖜ B=0.15
eV ࡜ぢ✚ࡶࡽࢀࡓࠋ
᭱ᚋ࡟ࠊ⮬ᕫ᮰⦡ບ㉳ᏊࡢᏳᐃ໬࢚ࢿࣝ
ࢠ̿࡟ࡘ࠸࡚㆟ㄽࡍࡿࠋᩥ⊩[16]࡟ᇶ࡙ࡃ࡜ࠊ
Ᏻᐃ໬࢚ࢿࣝࢠ̿EST ࡣᅗ 4 ࡼࡾࠊ௨ୗࡢᘧ
࡛୚࠼ࡽࢀࡿࠋ
EST E LR B
(6)
ᘧ(6)ࢆ⏝࠸࡚ࠊᐇ㦂್࠿ࡽ EST=0.68 eV ࡜
ồࡲࡗࡓࠋᩥ⊩[13]࡛ࠊE-Ga2O3 ࡟࠾ࡅࡿ⮬
ᕫ᮰⦡ṇᏍᙧᡂࡢᏳᐃ໬࢚ࢿࣝࢠ̿ࡣ➨୍
ཎ⌮ⓗ࡞⌮ㄽィ⟬࡟ࡼࡾࠊEST=0.53 eV ࡜ồ
ࡵࡽࢀ࡚࠸ࡿࠋ⮬ᕫ᮰⦡ບ㉳Ꮚࡢᒁᅾ୰ᚰ
ࡣ⮬ᕫ᮰⦡ṇᏍ࡛࠶ࡿࡇ࡜࠿ࡽࠊ⮬ᕫ᮰⦡
ບ㉳ᏊᙧᡂࡢᏳᐃᛶࡣࠊ୺࡟⮬ᕫ᮰⦡ṇᏍ
ࡢᏳᐃ໬࢚ࢿࣝࢠ̿࡟ࡼࡗ࡚Ỵᐃࡉࢀࡿࠋ
ࡇࡢゎᯒ࠿ࡽᚓࡽࢀࡓ EST=0.68 eV ࡣࠊ⮬ᕫ
᮰⦡ṇᏍࡢᏳᐃ໬࢚ࢿࣝࢠ̿ࡢィ⟬್
EST=0.53 eV ࡜Ⰻ࠸୍⮴ࢆ♧ࡋ࡚࠸ࡿࠋࡇࡢ
⤖ᯝࡣࠊ⮬ᕫ᮰⦡ບ㉳ᏊᙧᡂࡢᏳᐃᛶ࡟㛵
ࡍࡿࡇࢀࡽࡢゎᯒࡣጇᙜ࡛࠶ࡿࡇ࡜ࢆ⿬௜
ࡅ࡚࠸ࡿࠋ
4. ࡲ࡜ࡵ
E-Ga2O3 ༢⤖ᬗ࡟࠾ࡅࡿ⮬ᕫ᮰⦡ບ㉳Ꮚࡢ
Ᏻᐃᛶࡢゎ᫂ࢆ┠ⓗ࡜ࡋ࡚◊✲ࢆ⾜ࡗࡓࠋ
Schreiber ࡜㇏ἑ࡟ࡼࡿࠊບ㉳Ꮚ̿᱁Ꮚ┦஫
స⏝ࡢ⌮ㄽ࡟ᇶ࡙࠸࡚[14]ࠊ࢔࣮ࣂࢵࢡࢸ࢖
ࣝࡢ ᗘ౫Ꮡᛶ࡟ࡘ࠸࡚ゎᯒࢆ⾜ࡗࡓࠋࡑ
ࡢ⤖ᯝࠊບ㉳Ꮚ̿᱁Ꮚ┦஫స⏝ᐃᩘ g=5.4
࡜ồࡲࡗࡓࠋ୍⯡ⓗ࡟ g>1 ࡢሙྜࠊ⮬⏤ບ
㉳Ꮚ࡟ẚ࡭ࠊ⮬ᕫ᮰⦡ບ㉳Ꮚࡢ᪉ࡀᏳᐃ࡜
270
ཧ⪃ᩥ⊩
[1] H. H. Tippins, Phys. Rev. 140, A316,
(1965).
[2] M. Higashiwaki, K. Sasaki, A. Kuramata, T.
Masui, and S. Yamakoshi, Appl. Phys.
Lett. 100, 013504 (2012).
[3] N. Ueda, H. Hosono, R. Waseda, and H.
Kawazoe, Appl. Phys. Lett. 70, 3561
(1997).
[4] M. Orita, H. Hiramatsu, H. Ohta, M. Hirano,
and H. Hosono, Thin Solid Films 411, 134
(2002).
[5] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S.
Ohira, and S. Fujita, Appl. Phys. Express 1,
011202 (2008).
[6] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X.
Guo, H. Yan, G. Wang, C. Sun, L. Li, and
W. Tang, Opt. Mat. Express 4, 1067 (2014).
[7] S. Geller, J. Chem. Phys. 33, 676 (1960).
[8] N. Ueda, H. Hosono, R. Waseda, and H.
Kawazoe, Appl. Phys. Lett. 71, 933 (1997).
[9] T. Matsumoto, M. Aoki, A. Kinoshita, and
T. Aono, Jpn. J. Appl. Phys. 13, 1578
(1974).
[10] M. Yamaga, T. Ishikawa, M. Yoshida, T.
Hasegawa, E. G. Villora, and K.
Shimamura, Phys. Status Solidi C 8, 2621
(2011).
[11] K. Shimamura, E. G. Villora, T. Ujiie, and
K. Aoki, Appl. Phys. Lett 92, 201914
(2008).
[12] K. S. Song and R. T. Williams,
Self-Trapped Excitons (Springer, Berlin,
1993), pp. 1-31 and pp. 123-219.
[13] J. B. Varley, A. Janotti, C. Franchini, and
C. G. Van de Walle, Phys. Rev. B 85,
081109(R) (2012).
[14] M. Schreiber and Y. Toyozawa, J. Phys.
Soc. Jpn. 51, 1544 (1982).
[15] H. Mahr, Phys. Rev. 125, 1510 (1962).
[16] Y. Toyozawa, Optical Processes in Solids
(Cambridge University Press, United
Kingdom, 2003), pp. 149-230.
Fly UP