情報理論 3 5 相互情報量 3.5相互情報量 ¦¦ ¦ ¦¦ ¦m ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ 4
by user
Comments
Transcript
情報理論 3 5 相互情報量 3.5相互情報量 ¦¦ ¦ ¦¦ ¦m ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ ¦¦ 4
I ( A; B) n m ¦¦ P (ak , bl ) log 2 P(ak ) k 1 l 1 n m ¦¦ P (ak , bl ) log 2 P(ak | bl ) k 1 l 1 ሗ⌮ㄽ n ¦¦ P(a , b ) log k k 1 l 1 n l P(ak | bl ) P ( ak ) 2 P(ak , bl ) P(ak ) P(bl ) m ¦¦ P(a , b ) log 2011/10/28 2 m k k 1 l 1 l 䛣䛾䜘䛖䛻ᒎ㛤䛷䛝䜛 (p.90 ᘧ(7.29)) 4 3 5 ┦ሗ㔞 3.5┦ሗ㔞 • H(A) H(A),H(B),H(A|B),H(B|A),H(A, H(B) H(A|B) H(B|A) H(A B), B) I(A; B) 䛾㛫䛾㛵ಀ • ┦ሗ㔞 ┦ ሗ㔞 (MutualInformation) I(A; ( ; B)) = H(A) ( ) – H(A|B) ( | ) = (㇟⣔A䛾ሗ㔞) 䛜ศ䛛䛳䛯䛾 䛯䛾 A 䛾ሗ㔞) – (๓ሗ䛸䛧䛶 B 䛜ศ䛛 = (๓ሗ B 䜢▱䜛䛣䛸䛷ᚓ䜙䜜䜛ሗ㔞) 1 H(A|B) ӌ H(A) 1. H(B|A) ӌ H(B) я ๓ሗ䜢ᚓ䜛䛣䛸䛷ሗ㔞䛜ῶ䜛 2. H(A, B) = H(A) + H(B|A) = H(B) + H(A|B) 3. H(A) – H(A|B) = H(B) – H(B|A) = H(A) ( ) + H(B) ( ) – H(A, ( , B)) = H(A, B) – H(A|B) – H(B|A) = I(A; ( B)) 1 5 4 ሗ※ 4. • 䛥䛔䛣䜝䛾 H ( A) log 2 6 䍦 2.58 2 58 • 4.1⠇ ⠇ 䡚 4.6⠇ ⠇ 䛸 4.8⠇ ⠇ • 4.7⠇ 4 7⠇ 䛸 4.10⠇ 4 10⠇ (ḟᅇ 11᭶8᪥(ⅆ)) • 4.9⠇䛿┬␎ H ( A | B ) log 2 3 䍦1.58 I ( A; B) 2.58 1.58 1.00 ๓ሗ B (അᩘ䛛ወᩘ䛛) 䜢▱䜛䛣䛸䛷 ᚓ䜙䜜䜛ሗ㔞 2 I ( A; B) 6 H ( A) H ( A | B) 4 1 ሗ※䝰䝕䝹 4.1ሗ※䝰䝕䝹 n ¦ P (ak ) logg 2 P(ak ) • 䝅䝱䝜䞁䞉䝣䜯䝜䛾㏻ಙ䝅䝇䝔䝮 ㏻ಙ k 1 ½ ® ¦¦ P(ak , bl ) log l 2 P(ak | bl )¾ ¯ k1l1 ¿ n 䛣䛣䛷䠈 P (a k ) I ( A; B) n m (㞧㡢) እ m ¦ P(ak , bl ) 䛾㛵ಀ䜢⏝䛔䛶 ሗ※ l 1 m ¦¦ P(ak , bl ) log 2 P(ak ) ሗ ※ ➢ ྕ ㏻ ಙ ㊰ ➢ ྕ ㏻ಙ㊰ ㏻ ಙ ㊰ ྕ ሗ ※ ྕ ཷಙ⪅ k 1 l 1 n m ¦¦ P(ak , bl ) log 2 P(ak | bl ) k 1 l 1 3 7 • 䝬䝹䝁䝣㐣⛬(Markovprocess) 䝬䝹䝁䝣㐣⛬(Markov process) • ሗ※ • 䛒䜛㇟䛾⏕㉳䛩䜛☜⋡䛜䠈┤๓䛾 m ᅇ䛾㇟ 䛻౫Ꮡ䛩䜛☜⋡㐣⛬ • m㝵䝬䝹䝁䝣㐣⛬ (m㔜䝬䝹䝁䝣㐣⛬) • ┤๓䛾 m ᅇ䛾㇟䜢䜂䛸䜎䛸䜎䜚䛸⪃䛘䜜䜀䠈 ༢⣧䝬䝹䝁䝣㐣⛬䛸䛧䛶⾲⌧ྍ⬟ • 㞳ᩓⓗሗ※ • 㐃⥆ⓗሗ※ • ሗ※䛷Ⓨ⏕䛩䜛グྕิ S = {s1, s2, 䞉䞉䞉, sn} グྕ sk ( k = 1, 2, 䞉䞉䞉, n) э ሗ※グྕ 䜎䛯䛿 ሗ※䝅䞁䝪䝹 • ༢⣧䝬䝹䝁䝣㐣⛬ (m ( m=11 ) • ⌧ᅾ䛾㇟ Xn 䛿䠈୍䛴๓䛾㇟ Xn-1 䛻౫Ꮡ э ᮲௳䛴䛝☜⋡ P(Xn|Xn-1) 䛸䛧䛶⾲⌧ྍ⬟ ሗ※ ሗ※䜰䝹䝣䜯䝧䝑䝖 8 12 4 3 ↓グ᠈ሗ※䝰䝕䝹 4.3↓グ᠈ሗ※䝰䝕䝹 • ሗ※䝰䝕䝹 䠙 ሗ※䜰䝹䝣䜯䝧䝑䝖 䠇 ☜⋡ⓗᛶ㉁ • ↓グ᠈ሗ※䝰䝕䝹 ↓ ᠈ሗ 䝕 • ☜⋡ⓗᛶ㉁ • グྕ䛾Ⓨ⏕☜⋡ (↓グ᠈ሗ※ 4.3⠇) • グྕ䛾᮲௳䛝Ⓨ⏕☜⋡ (䝬䝹䝁䝣ሗ※ 4.5⠇) ሗ※䜰䝹䝣䜯 䝑䝖:S ሗ※䜰䝹䝣䜯䝧䝑䝖: S = {s1, s2, 䞉䞉䞉,, sn} Ⓨ⏕☜⋡:P(sk) ( k = 1, 2, 䞉䞉䞉, n) S s1 , s2 , , sn ½ ® ¾ ¯ P( s1 ), P( s2 ), , P( sn )¿ 9 4 2 ሗ※䛾✀㢮 4.2ሗ※䛾✀㢮 13 • グྕ䛒䛯䜚䛾Ⓨ⏕ᖹᆒሗ㔞 (Ⓨ⏕䜶䞁䝖䝻䝢䞊) • グ᠈䛾䛺䛔ሗ※ (↓グ᠈ሗ※䠈⊂❧ሗ※) n ¦ P ( sk ) log 2 P ( sk ) H (S ) • ⌧ᅾ䛾ሗ䛜㐣ཤ䛻౫Ꮡ䛧䛺䛔ሗ※ ( ) • Ⓨ⏕䛩䜛グྕ䛿⊂❧ (᮲௳䛝☜⋡䛿せ) [[bit //ሗ※グྕ]] k 1 • ༢㛫ᙜ䛯䜚䛾Ⓨ⏕ᖹᆒሗ㔞 • グ᠈䛾䛒䜛ሗ※ ((䝬䝹䝁䝣ሗ※) 䝹 䝣ሗ※) H * (S ) • ⌧ᅾ䛾≧ែ䛜㐣ཤ䛻౫Ꮡ䛩䜛ሗ※ • 䝬䝹䝁䝣㐃㙐䛸䜀䜜䜛☜⋡㐣⛬䛻䜘䜚≉ᚩ䛵 䛡䜙䜜䜛 r *H (S ) [bit /༢㛫] r * :グྕ䛾Ⓨ⏕㏿ᗘ [ಶ /༢㛫] 10 14 4 4 ㏻ሗ 4.4㏻ሗ • 䝬䝹䝁䝣ᛶ • ☜⋡㐣⛬䛾≧ែ Xn+1 䛜䠈⌧ᅾ䛾≧ែ Xn 䛾䜏䛻 ౫Ꮡ䛧 X0, X1, 䞉䞉䞉, ౫Ꮡ䛧䠈X 䞉䞉䞉 Xn-1 䛸䛿↓㛵ಀ䛷䛒䜛䜘䛖䛺 ᛶ㉁䛾䛣䛸 • ㏻ሗ (message) э ሗ※䛛䜙Ⓨ⏕䛩䜛グྕิ )㛗䛥 n 䛾㏻ሗ xt X0 X1 䞉䞉䞉 Xn-1 Xn (n) xt ( n 1) xt ( n 2 ) xt 1 xt xt: ้ t 䛷䛾Ⓨ⏕グྕ Xn+1 11 15 )㛗䛥 n 䛾㏻ሗ xt (n) (ཧ) ↓グ᠈ሗ※ xt ( n 1) xt ( n 2 ) xt 1 xt • ⌧ᅾ䛾ሗ䛜㐣ཤ䛻౫Ꮡ䛧䛺䛔ሗ※ t , n xt: ้ t 䛷䛾Ⓨ⏕グྕ (n) P( xt | xt 1 ) ้ t 䛛䜙㐣ཤ n ಶ䛾グྕ䛛䜙ᵓᡂ䛥䜜䜛グྕิ (n) ้䛜ၥ㢟䛸䛺䜙䛺䛔ሙྜ: x x1 x2 xn 1 xn P( xt ) t , n (n) P( xt | xt 1 ) P( xt | xt 1 ) 16 4 5 䝬䝹䝁䝣ሗ※ 4.5䝬䝹䝁䝣ሗ※ 4 6 䝬䝹䝁䝣㐃㙐 (䝬䝹䝁䝣䝏䜵䞊䞁) 4.6䝬䝹䝁䝣㐃㙐 • ㏻ሗ䛻䜘䜛᮲௳䛝Ⓨ⏕☜⋡䛻䜘䜛⾲⌧ ㏻ሗ 䜛᮲௳ 䛝 ⏕☜⋡ 䜛⾲ • ᵓᡂせ⣲ ᵓᡂ ⣲ t , n(t m) (n) P( xt | xt 1 ) P( xt | xt 1 (m) 20 ) ᕥ㎶: 㛗䛥 n 䛾㏻ሗ䛜Ⓨ⏕䛧䛯ᚋ䛻 xt 䛜Ⓨ⏕䛩䜛☜⋡ ᕥ㎶:㛗䛥 ྑ㎶:㛗䛥 m 䛾㏻ሗ䛜Ⓨ⏕䛧䛯ᚋ䛻 xt 䛜Ⓨ⏕䛩䜛☜⋡ • • • • ้ t 䛷䛾≧ែ䜢⾲䛩☜⋡ኚᩘ ≧ែ䜢⾲䛩☜⋡ኚᩘ x(t) () ≧ែ㞟ྜ Q = {q1, q2, 䞉䞉䞉, qN} ≧ែ☜⋡䝧䜽䝖䝹 u(t) = (u1(t), (t) u2(t), (t) 䞉䞉䞉, 䞉䞉䞉 uN(t)) ≧ែ㑄⛣☜⋡⾜ิ P § P11 P1N · ¨ ¸ ¨ ¸ ¨ ¸ © PN 1 PNN ¹ 17 t , n(t m) (n) P( xt | xt 1 ) P( xt | xt 1 (m) 21 • ≧ែ☜⋡䝧䜽䝖䝹 u(t) = (u1(t), u2(t), 䞉䞉䞉, uN(t)) ) 0 d uk (t ) d 1 (k 1, , N ), ) ᕥ㎶:㛗䛥 n 䛾㏻ሗ䛜Ⓨ⏕䛧䛯ᚋ䛻 xt 䛜Ⓨ⏕䛩䜛☜⋡ ྑ㎶:㛗䛥 m 䛾㏻ሗ䛜Ⓨ⏕䛧䛯ᚋ䛻 xt 䛜Ⓨ⏕䛩䜛☜⋡ N ¦u k 1 k (t ) 1 ┤๓䛾 m ಶ䛾≧ែ䛻䜘䛳䛶⌧ᅾ䛾≧ែ䛜Ỵ䜎䜛 m 㔜䝬䝹䝁䝣ሗ※ 18 • ≧ែ㑄⛣☜⋡⾜ิ • ┤๓䛾 m ಶ䛾≧ែ䛷⌧ᅾ䛾≧ែ䛜Ỵ䜎䜛 t , n ༢⣧䝬䝹䝁䝣ሗ※ (n) P( xt | xt 1 ) § P11 P1N · ¨ ¸ ¨ ¸ ¨P ¸ © N 1 PNN ¹ P m 㔜䝬䝹䝁䝣ሗ※ • m=1 䛾䛸䛝 22 䛿 1 0 d Pkl d 1 (k,l 1, , N ), P( xt | xt 1 ) Pkl P(ql | qk ) N ¦P l 1 kl 1 P(qk o ql ) ≧ែ㑄⛣☜⋡ ( ) (ཧ)↓グ᠈ሗ※ t , n ((nn ) P( xt | xt 1 ) P( xt ) 19 23 • ≧ែ䛾㑄⛣䜢ᅗ䛷⾲䛩 э ≧ែ㑄⛣ᅗ ) P11 q1 q3 P13 P32 P21 • ሗ※䜰䝹䝣䜯䝧䝑䝖 S = {0, 1} • ≧ែ㞟ྜ Q = {q1, q2, q3, q4} = {00, {00 01 01, 10 10, 11} q4 P54 q2 q5 qN • ሗ※䛻ᑐ䛧䛶䛿䝅䝱䝜䞁⥺ᅗ(4.8⠇)䛸䜒 24 4 8 䝅䝱䝜䞁⥺ᅗ 4.8䝅䝱䝜䞁⥺ᅗ • ≧ែ㑄⛣☜⋡ (᮲௳䛝Ⓨ⏕☜⋡) P(0|00) = a, P(1|00) = 1-a P(0|01) = b, b P(1|01) = 1-b 1b P(0|10) = c, P(1|10) = 1-c P(0|11) = d, P(1|11) = 1-d • ≧ែ㑄⛣☜⋡⾜ิ § a 1 a 0 • ሗ※䛻䛚䛡䜛≧ែ㑄⛣ᅗ ሗ 䛚 䜛≧ែ ⛣ )ሗ※ S = {0, 1} ≧ែ㑄⛣⾜ิ § a P ¨¨ ©1 b 28 1 a · ¸ b ¸¹ P P(0|0) = a, P(1|0) = 1-a P(0|1) = 1-b, P(1|1) = b 0 · ¨ ¸ 0 b 1 b ¸ ¨0 ¨ c 1 c 0 0 ¸ ¨ ¸ ¨0 0 d 1 d ¸¹ © 25 䛣䛾ሗ※䛻ᑐ䛩䜛䝅䝱䝜䞁⥺ᅗ 1-a a 0 1 b 1-b ⮬ᕫ㑄⛣ 29 㑄⛣ ᪂䛧䛔≧ែ 㑄⛣☜⋡ 000 00 P(0|00) = a 001 01 P(1|00) = 1-a 010 10 P(0|01) = b 01 1 011 11 P(1|01) = 1-b 100 00 P(0|10) = c 10 1 01 P(1|10) = 1-c 11 0 0 10 P(0|11) = d 11 1 111 11 P(1|11) = 11-dd 26 30 䝅䝱䝜䞁⥺ᅗ )2㔜䝬䝹䝁䝣ሗ※ ) 2㔜䝬䝹䝁䝣ሗ※ э┤๓䛾 2 ಶ䛾≧ែ䛷⌧ᅾ䛾≧ែ䛜Ỵᐃ a 1-a 00 c ሗ※䜰䝹䝣䜯䝧䝑䝖 S = {{0,, 1}} 䛸䛩䜛 b ≧ែ䛾㑄⛣䛿 ≧ែ䛾㑄⛣䛿䠈 000,001 010,011 10 0 10 1 100,10 1 11 0,111 01 10 1-c 1-b 11 d 1d 1-d 27 31 ((4.6⠇䛻ᡠ䜛) ⠇䛻ᡠ䜛) • ึᮇ้ 0 䛻䛚䛔䛶≧ែ q1 䛻䛔䛯䜒䛾䛜䠈 ้ t 䛾䛸䛝䛻 䛒䜛≧ែ䛻Ꮡᅾ䛩䜛☜⋡ • ึᮇ้ 0 䛻䛚䛔䛶≧ែ q1 䛻䛔䜛 u(0) = (1, 0, 䞉䞉䞉, 0) • ้ t 䛻䛚䛡䜛≧ែ☜⋡ 䛻䛚䛡䜛≧ែ☜⋡䝧䜽䝖䝹 䜽䝖䝹 u(t) = (u1(t), u2(t), 䞉䞉䞉, uN(t)) u(0) 䛸 u(t) 䛾㛵ಀ䜢≧ែ㑄⛣☜⋡䜢䛳䛶⪃䛘䜛 32 1 u(0) u(1) 1. u(1) = u(0)P 2. u(1) ( ) u(2) ( ) 2 u(2) = u(1)P = u(0)PP = u(0)P (้ t 䜎䛷⧞䜚㏉䛩) 3. u(t-1) ( ) u(t) () 2 t u(t) = u(t-1)P = u(t-2)P = 䞉䞉䞉 = u(0)P 33 t • u(t) = u(0)P ึᮇ≧ែ䛸≧ែ㑄⛣☜⋡⾜ิ䛛䜙䠈 ึᮇ≧ែ䛸≧ែ㑄⛣☜⋡⾜ิ䛛䜙 ้ t 䛾≧ែ䛜Ỵᐃ䛷䛝䜛 34