Comments
Description
Transcript
講義スライド3
Japanese Young Physicist Summer School Tokyo, August 19 – 24, 2008 Heavy Element Synthesis In Supernovae Taka Kajino National Astronomical Observatory Department of Astronomy, University of Tokyo 1 !!!!!"#$%&'()*+,!!()*./012(3456789:;<=;>?@AB)* CDE'+FG1!HCDIJK CDEL>MNO@0BPQR137 +/- 2 SIR --- Model dependent! !!!T!We donUV know the true nature of DARK MATTER nor DARK ENERGY. WCDIXY (Nucleo-cosmochronololy) !!!232ThZ[\]140.5SI^_238UZ[\]45.7SI^6`]aXbc@def_ !!`]bc+IJ6PQRgh@01_ijkCDIJ+lmn6PQoBR !!CDEL>MNO@pqrstufv3R !!`])*56PQoBwxyzBR !!!!!!!!!!!!"#$%&_()*{|}~•_€•N9:‚ƒ„…†+‡ˆ‰R !!!!!!!!!!!!CD+‰YŠ‰_()*+,-E'+FG1R 2 Solar System Abundance BIG-BANG Constrains Cosmology ! Supernova, prompt or delayed ? Neutron Star Merger ? Gamma-Ray Burst ? STARS !! !!! R S!ZN=50) !!! R SZN=82) COSMIC-RAYS R-process elements, UNKNOWN!ORIGIN ? AGB STARS !!! R ! SZN=126) ++ + P Actinide 232Th 238U (14.05Gy) (4.47 Gy) Supernova-! Process ? 3 ‹W!!!!!! !!!!!!!!! SW !! !!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!! RW 4 Very Rapid Neutron-Capture Process (! = 14.05 Gy) 232 90 153 63 Z Th 142 Pt, Au Eu A=195 90 Pb I, Xe Chart r-p ss ro c e p a th A=130 Se, Br, Kr A=80 3-rd peak Ba Sr, Y, Zr 2-nd peak Fe-Co-Ni (stable) 1-st peak No structure These ate not “seeds” because r-process is a primary process starting from prorons & neutrons ! N 5 We detected "’s, then NEUTRON STAR once formed ! SN1987A Can core-collapse supernova produce R-PROCESS elements 6 232 like Th(!1/2=14.05Gy) which is an celestial cosmic clock ? Subaru Telescope OBSEVES Extremely MetalDeficient Stars [Fe/H]=0 SOLAR [Fe/H]<-3 !Th II HD6268 7 Honda, Aoki, Kajino et al. !!(SUBARU/HDS Collaboration), 2004, ApJS 152, 113; 2004, ApJ 607, 474 solar s-ratio 0 + AGB [Fe/H] SN II [Ba/Eu] [Ba/Fe] SUBARU Telescope HDS 0 solar r-ratio SN I + II [Eu/Fe] R-process elements from Type II SNe ! Large abundance scatter at [Fe/H]<-2 is an evidence for INDIVIDUAL supernova episode. 0 Lack due to obs. limit. Early Galaxy [Fe/H] = log(NFe/NH) - log(NFe/NH) Only Core-Collapse TYPE II SUPERNOVAE are the likely astrophysical sites of the R-Process ! 8 UNIVERSAL SCALING OF R-PROCESS ABUNDANCES Ba SOLAR C. Sneden et al. (1996 – 2005) METAL-POOR STARS Eu HD 115444 CS 22892-052 BD +173248 R-Element Abundance Pattern is: METAL-INDEPENDENT ! UNIVERSAL ! 9 Cosmic Clock Collapse of the Core Prompt core bounce E(iron core) ~ GM2/r ~ 1051 erg E(neutron star) ~ GM2/r ~ 1053 erg E(neutron star) - E(iron core) ~ 1053 erg 99% is emitted as neutrinos! E(shock) ~ 1051 erg 1% is kinetic energy! Usually the shock is absorbed by dissociating the iron core. Neutrino-heated explosion DELAYED SUPERNOVA10 Steps to a Core Collapse Supernova • Stars with M ~ 10 - 40 M! build up an Fe/Ni core. Maximum core size Mch = 5 Ye2 M! ~ 1.3 M! (Electron Capture). • Collapse Separates, inner homologous (v #r) core = 1.1 M! . outer slowly collapsing core = 0.2 M! . The central density increases and reaches nuclear matter density, $nucl ~ 2x1014 g cm-3 (Nuclear EOS). • An outward moving shock develops due to nuclear saturation. • The shock dissociates the outer iron core into free nucleons. • Neutrinos scatter off the heated material behind the shock and deposit energy into p, n, and e+e-. • A high entropy heated region forms and begins to lift the outer layers 11 of the star (neutrino-driven wind). "#$%&+Œn•Ž••‘•’N•“? !”•;–Z—:˜™š^ 10 km 300 km 12 Before Explosion 28Si Fe Co Ni SN1987A MODEL: Where occurs r-process ? After Explosion ? ? Ejected Fe-Co-Ni are explosively reproduced in Si-burning ! 13 General Relativistic Models of "-Driven Winds Otsuki, Tagoshi, Kajino and Wanajo 2000, ApJ 533, 424 14 Nucleosynthesis + Diffusion Equation for Z < 100 (~3000 species) Given T & $ : Nuclear Reactions %-decays Diffusion Thermonuclear Reaction Rate Boltzmann average Cross Section 15 t=0 Pb SUPERNOVA R-PROCESS !t = 0 !Neutrino-driven wind forms !right after SN core collapse. ! n+p+& Z Otsuki, Tagoshi, Kajino & Wanajo 2000, ApJ 533, 424 Wanajo, Kajino, Mathews & Otsuki 2001, ApJ 554, 578 › Fe › N Pb208 › Fe56 › !t = 18 ms Seeds form. Exotic neutron-rich Ni78 78Ni !t = 568 ms – 1 s Heavy r-elements synthesize. Pb › Fe › 16 Very Rapid Neutron-Capture Process (! = 14.05 Gy) 232 90 153 63 Z Th 142 Pt, Au Eu A=195 90 Pb I, Xe Chart r-p ss ro c e p a th A=130 Se, Br, Kr A=80 3-rd peak Ba Sr, Y, Zr 2-nd peak Fe-Co-Ni (stable) 1-st peak No structure These ate not “seeds” because r-process is a primary process starting from prorons & neutrons ! N 17 RIKEN-RIBF New Ring Cyclotron (2007) 132Sn 2nd r-peak element ! 78Ni, expected ! seed element for r-process ! 18 œ•žZŸ> ¡:N^¢(xv Z£^W¤¥¦§¨© REACTION NETWORK BIG-BANG NUCLEOSYNTHESIS R-PROCESS NUCLEOSYNTHESIS )*{|@ª«B¬-+ ®¯¦Q5°@© 19 Reaction Sensitivity Sasaqui, Kajino, Mathews, Otsuki & Nakamura !!!!!!!!! Astrophys. J. (2005), submitted. 20 Identified Important Reaction Flow Paths Woosley & Hoffman (1992) (3) Sasaqui, Kajino, Mathews, Otsuki & Nakamura ApJ (2005), submitted. (1) (2) Terasawa, Sumiyoshi, Kajino, Mathews & Tanihata ApJ 562 (2001) 470. 21 (1) &(&n,')9Be(&,n)12C!!!35%(1() 22 R-Process Sensitivity to Individual Reaction Factor of 2 change of &(&n,')9Be reaction rate About factor 50 change in r-element yields ! (slowly expanding "-wind model) ± &(&n,')9Be² ~ 50 ± &(&n,')9Be²x 2 23 Nucleosynthesis proceeds: NSE ³ "-process ³ r-process Rich Neutron 1. High Entropy/beryon :-- primary process 2. Low initial-Ye :-- neutron-richness T9 = T / 109 3. Short #dyn :-- high neutron-to-seed n+p +4He Neutron/Seed n + p + 4He ³ seeds n + seeds ³ r-elements r-process #dyn time (sec) freezeout 24 25 Neutron-Capture Cross Section ((18C(n,')19C) [µb] Experiment (Coulomb Diss. + Detail. Balance) Nakamura et al. PRL83 (1999) 1112. 100 Hausser-Feshbach Estimate 26 Abundance Evolution of Carbon Isotopes Abundance YA 16C(&,n)19O Sasaqui et al. (2005) 18C(&,n)21O 100 19C Time (sec) 27 New Waiting Points in Light-Mass Nuclei 130In HEAVY LIGHT % 129Cd 130Cd 131Cd ) N = 82 (&,n WAITING % Both (n,') and (&,n) are FAST enough so that 18C waits for %-decay. NEW WAITING 28 (2) &(t,')7Li!! 30%(1() R-PROCESS & BIG-BANG Kajino et al. (2005) 29 ! REMOVING UNCERTAINTY 30%(1 (3) 7Li(n,')8Li(&,n)11B Factor 2 (1() H. Ishiyama et al. AIP Conf. Proc. 704 (2004) 453. THEORY, unfinished. Yamamoto, Kubo, Ogawa & Kajino 11 11 Bg + several B* (EXCLUSIVE EXP.) Excited 11B* R-PROCESS !!!!´ INHOMOGENEOUS BIG-BANG Ground 11Bg 30 SENSITIVITY of Relevant Reactions to R-Process !!! Sasaqui, Kajino, Mathews, Otsuki & Nakamura, ApJ (2005) submitted. !Otsuki, Tagoshi, Kajino & Wanajo, ApJ 533 (2000), 424. Y0,r+)Yr = Y0,r {1+2(}& (1) &(&n,')9Be 1( = 35% (Y0+)Y)/Y0 = 0.35 µ 11.2 (2) &(t,')7Li 1( = 30% 0.27 µ 13.2 (3)(4) 7Li (n,')8Li(&,n)11B 1( = 35%, x2 *(Th/Eu)=0.7 0.79 µ 1.7 *TG = 7.2 Gy ! 31 SENSITIVITY of 232Th & 235,238U to 18C(&,n)21O Sasaqui, Kajino, Mathews, Otsuki & Nakamura, ApJ (2005) submitted. 13.7 Gy Th/Eu-Chronometer 6.47 Gy 32 ¶E ·"#$œŸ•¸¹¦Ÿ> ¡:N•žRº»5@t¼v3R !!k!"º»½¾$+o¿BbÀÁÂ'{ÃR !!k!ÄÅÆÇÈ«³ !!!HRŸ•¸¹¦ÉÊkɈËÌÍ¢ŒÎÏ@ŠÐoB%&°)*{| !!!!•ž¢z1_¿¼¿¼+ÑÒÓ'ÔÓ¨¼ÕpBRÖQv/×)*6 !!!!wx'fv3RK ·(3ØÓW+Ò4!Sn_!%_((n,')_(("+A) ¿¨1¢vs_£ 3ÑÒÓ•ÙW+ ((n,')_((&,n)y(xR !!k!Th/U_Th/Eu vÚWCDÛ•+‡Ë6Ü8rÝ@_ØÓW¤¥Þ6 !!!!¯¼@ßàžË+‡Ë¢áQoBwxyzBR ·âãä”?)*{|ZŸ> ¡:N•ž^'åæçès_CD !!E}~•6®sémoBR 33