Comments
Description
Transcript
第46巻 第4号
ࡄݪ̺ͤ͢! ! ! Field-effect in oxides Division of Nanoscale Science, Mikk LIPPMAA 1 Introduction Transition metals offer a rich playground for a number of different areas of physics, from basic theory to applications. Even well-studied compounds that have seemingly simple structure, like the well-known perovskites SrTiO3 and BaTiO3, still continue to baffle us, both in terms of a theoretical understanding and experimental control over the structure and properties of these materials. A good example of the challenges presented by oxides in general is provided by the family of superconducting cuprates. Despite being subjected to an unprecedented level of scrutiny over the past 20 years, the mechanism of superconductivity still remains unexplained. One of the reasons for these difficulties is the tight interplay between the electronic structure and minute changes in the crystal structure of oxides. Due to the compositional complexity, the dominating electronic phase is often determined by the microstructure of a sample, rather than the structural model that might be inferred from the chemical composition. Changes in microstructure, such as the formation of nanoscale grains, can alter the lattice spacing, which can alter metal-oxygen bond angles and defect formation, leading to band structure changes, and ultimately resulting in a material switching to a different ground state, e.g. an insulator instead of a superconductor, or a ferroelectric instead of a paraelectric, etc. The work in this laboratory is directed at achieving a better control over oxides in the form of thin films. The basic idea is that in oxide heterostructures it is possible to tune one certain characteristic of a crystal more or less independently from others. We can, for example, change the lattice parameter by epitaxial strain, without changing the chemical composition. We can also change the density of charge carriers by field effect without altering the dopant concentration or the structure of a crystal. This approach will, hopefully, allow us to decouple the electronic and structural aspects of oxides and thus lead to a better understanding of these fascinating materials. 2 Advantages of Thin films The properties of oxides can be probed in many different types of samples. A common approach is to strive for perfection in crystal quality and grow the best possible single crystals for detailed characterization. Single crystals, however, limit us to compositions and structures that are in or at least close to a thermodynamic equilibrium. A complementary approach is to acknowledge that perfect crystals of complex oxides cannot be grown anyway, and to deposit thin films instead. Although the crystallinity of films is often lower than that of single crystals, films do offer a number of additional degrees of freedom for controlling the material properties. The biggest advantage of thin film growth is that the process is governed by the growth kinetics and it is therefore possible to impose an artificial nonequilibrium structure on a sample. Simple examples are epitaxial heterostructures, but more complex lattices can also be grown, e.g. nanostructure arrays, nanoscale composites, and even complete epitaxial device structures. [1,2] Another advantage of thin films is the high speed at which samples can be grown. Typical thickness of an oxide film is measured in tens of nanometers and it is therefore perfectly feasible to grow several crystals in one day. Integration of many different thin film samples on a single substrate can push this number much higher. [3] This can be very useful, because it means that we can map the variation of material properties across sections of the phase space. 1 3 Crystal growth Oxide thin films can be grown by many different techniques. For research purposes, physical vapor techniques like molecular beam epitaxy (MBE), sputtering, and laser ablation are usually preferred. Among these techniques, laser ablation, or laser-MBE, is used in our group because it is technically relatively simple yet extremely versatile in terms of materials and structures that can be grown. We can routinely achieve sub-monolayer deposition rate control and fabricate samples containing heterostructures, superlattices, nanodots or nanowires. The largest challenge is to achieve repeatable and accurate control of crystal composition, defect density, and grain structure. The usual process parameters that we have at our disposal for controlling crystal growth are the growth temperature, growth rate, and chemical composition. Composition control can be done at two levels. On a rough scale, we ensure correct stoichiometry in the film by preparing a deposition target with the desired chemical composition. This will usually give us films that are within about a tenth of a percent of the desired composition and therefore possess the crystal structure and electronic phase that we desire. In many complex oxides, however, this accuracy is not sufficient because we study materials that are close to electronic phase transitions, where the transport behavior is very sensitive to the density of carriers, or the average valence state of cations. One such material is SrTiO3, where an insulating parent compound transforms into a semiconductor, metal, and even a superconductor at doping levels of 1018 to 1020 cm-3. It is thus clear that a much finer composition control is required than what is easily accessible by simple composition adjustment of deposition targets. One way of achieving such control is to utilize the slightly element-selective nature of the laser ablation process. Specifically, by changing the fluence of the ablation laser, and thus the momentary heating of the evaporation target surface, we can fine-tune the cation composition in the growing film. This process is illustrated in Fig. 1(a), which shows a collection of x-ray diffraction patterns from a series of about 50 thin film samples grown at various ablation laser fluence levels. In all cases, SrTiO3 films were grown homoepitaxially on a SrTiO3 substrate. The substrate (200) diffraction peak is visible at an angle of 46.5°. It is obvious that the films, despite having the same nominal composition as the substrate, have significantly different lattice parameters from the substrate. This indicates that cation nonstoichiometry is present in the films, resulting in lattice parameters that deviate from the bulk value. Figure 1: (a) X-ray diffraction patterns of a series of homoepitaxial SrTiO3 films, taken in the vicinity of the substrate (200) peak. The splitting of film peaks from the substrate peak shows that the lattice of the films is larger than in the substrate. (b) The lattice expansion is a strong function of the ablation laser fluence, and thus the cation stoichiometry. Blue lines are guides for the eye to illustrate the general tendency. The deviation of the lattice parameter in the film is plotted as a function of ablation fluence in Fig. 1(b). The plot shows that below a critical fluence of about 0.3 J/cm2, the lattice quickly expands. Careful analysis of TEM images has shown that this expansion is caused by the incorporation of extra Sr in the film, i.e. preferential evaporation of Sr 2 from the target at low fluence. At fluence values above 0.3 J/cm2, evaporation favors Ti, and the films thus have a slight Ti excess. [4] This type of experiment can be used to answer the question of how the electronic properties of the Sr1+xTi1-xO3 vary as a function of x for small deviations from the ideal stoichiometry. Stoichiometry deviations obviously result in lattice parameter changes. The associated vacancies or other defects can also function as donors for carriers. In systems that are sensitive to small changes in carrier concentration, this means that composition variations always change both the band filling and the band width. In thin films, it is possible to decouple these two effects. By using epitaxial strain, we can alter the lattice parameter without changing the carrier density. In heterostructures, we can introduce carriers by charge transfer or by field effect, without changing the lattice parameter. 3.1 Strain control The crystal lattices of many oxides can be viewed as stacks of two or more different types of atomic layers. Thin film growth offers a way of extending such layering by growing crystals one atomic layer at a time and thus opens a way to explore the properties of very thin heteroepitaxial layers that can behave quite differently from bulk materials. The electronic structure of interfacial layers can be influenced by a number of factors, many of which we have experimental control over. These factors include large compressive or tensile strains of several percent, which would be unreachable in bulk single crystals. Strain is imposed on thin layers due to a lattice constant mismatch between materials that are combined. The level of strain can thus be tuned by suitable materials selection or by tuning the compositions of interface layers. [5,6] Tuning strain in thin films has been shown to affect the type of magnetic ordering that is observed in manganites, change the critical temperature of high-temperature superconductors, turn paraelectric titanates into ferroelectrics, and generally affect the easy axis of magnetization and magnetic ordering temperatures in various oxides. Examples for SrRuO3 behavior under various levels of strain are shown in Fig. 2. Compressive Relaxed Tensile Figure 2: The influence of epitaxial strain on the magnetization of SrRuO3. By changing the in-plane lattice parameter of the substrate, thin layers of SrRuO3 can be grown under compressive strain (green), relaxed state (brown) or under tensile strain (violet). The easy axis of magnetization can be seen to rotate into the film plane under tensile strain but orient parallel to the surface normal under compressive strain. Tensile strain also increases the magnetic ordering temperature by about 10%. 3.2 Charge transfer Another important effect at interfaces is charge transfer between atomic layers. Redistribution of charge across an interface is a common feature in oxide heterostructures which contain elements that can assume more than one valence state. Charge redistribution can be directly observed by valence-band photoemission in, e.g. manganite thin films that are combined in heterostructures with Ti or Fe oxides. Variations of the valence band photoemission 3 spectra of La1-xSrxMnO3 films are shown in Fig. 3 [7,8] The surface layers of thin films can, obviously, be probed directly by photoemission spectroscopy. The advantage here, compared to bulk crystals, is that reasonably well-ordered surfaces can be prepared in situ, even for cubic materials that cannot be easily cleaved. Figure 3: The left panel shows the valence band spectra of La1-xSrxMnO3 for various carrier doping levels x. Spectral feature A corresponds to the eg levels of Mn, B corresponds to the t2g levels, and C is the O 2p peak. The electron density drops in the eg levels as the hole doping x increases. In a Mn/Fe heterostructure, the redistribution of charge can be monitored in the Mn oxide layer by measuring resonant 2p-3d Mn valence band spectra for various thicknesses of the Fe oxide capping layer. Only the eg and t2g spectral features are visible due to the resonant enhancement of the Mn emission. A cartoon of the measurement is shown on the right. Measuring the electronic states of buried interfaces layers by photoemission is more difficult, but still possible when resonant excitation is used. By tuning the x-ray source to the 2p-3d resonance of an element in the buried layer, the emission intensity from that layer can be greatly enhanced, allowing valence band spectra to be measured for layers that are covered by a thin cap layer of up to a few unit cell thickness. For the La1-xSrxMnO3 / La1-xSrxFeO3 system, we are therefore interested in the resonant energy of Mn, which is at around 644 eV[9] and of Fe, which is at around 710 eV.[10] The advantage of resonant spectroscopy is illustrated in Fig.3, where the valence band spectra of a Mn/Fe heterostructure are shown. A thick La1-xSrxMnO3 film was covered with a thin La1-xSrxFeO3 layer and the transfer of charge between Mn and Fe was studied. Measurements of samples with a variable cover layer thickness showed that when La1-xSrxMnO3 is combined with La1-xSrxFeO3, electrons are transferred from the Mn to Fe within a distance of approximately three unit cells closest to the interface. Effectively, this means that the hole concentration x is significantly increased close to the interface on the Mn side. Indeed, the change is large enough to destroy the ferromagnetic phase of La1-xSrxMnO3 within a few unit cells of the interface, which would be bad news if the Mn oxide were used in a tunnel junction, for example. While charge transfer at interfaces can be an advantage, in applications it is usually an undesirable effect, because it means that interface layers behave differently from what one might expect based on bulk material characterization data. Charge transfer effects often result in thin interfacial layers that are simply called dead layers and accepted as inevitable, particularly in applications like tunnel junctions. Recent work on measuring the valence band structure of thin surface and interface layer has opened a new path to correcting such unintended changes in electronic structure by compensating for charge transfer in each atomic layer by intentionally grading the chemical composition for each atomic layer in a heterostructure. 3.3 Field effect The carrier density in an oxide can be modulated by chemical doping and by transfer of charge over short distances at heterointerfaces. A third method that can be used to modulate the doping level is field effect. Field-effect transistors are arguably the most successful electronic devices ever invented and form the basis for all modern 4 electronics. In oxides, field effect doping of materials offers a way to probe the electronic phase transitions without creating disorder and lattice parameter changes that inevitably accompanies chemical doping. Field-effect doping also allows material properties to be modulated repeatedly in a single structure, unlike other doping methods, where the dopant concentration is fixed during synthesis. The basic tool of field-effect doping is a field-effect transistor (FET). A number of different device geometries can be used, but essentially the device has two electrodes, the source and the drain, that feed current into a channel. The conductivity of the channel is modulated by applying an electric field. The electric field can be applied by covering the channel with a ferroelectric film, as shown in Fig. 4 (a), or by constructing a parallel-plate capacitor and applying a bias voltage to the gate electrode, as shown in Fig. 5 (a). The advantage of using a ferroelectric material as the gate electrode is the ease with which very high electric fields can be obtained, without having to handle the problem of leak currents and breakdown phenomena that always affect dielectric gate insulator designs. The capacitor-type device illustrated in Fig. 5 (a) has the advantage that the gate bias can be changed continuously, unlike the ferroelectric, which can only be poled to a fixed polarization level of either sign. The effectiveness of using a ferroelectric film to induce charge at an interface can be seen in Fig. 4 (b).[11] In this case, a Nb-doped SrTiO3 film was covered with a ferroelectric layer of Pb(Zr,Ti)O3. The slightly underdoped Nb:SrTiO3 film had a superconducting transition temperature of about 250 mK. The ferroelectric cover layer was polarized with either a positive or a negative bias of a conducting AFM tip, thereby inducing a charge at the top surface of the superconducting film. The P+ polarity corresponds to a reduction of electron density in the superconductor, while P- corresponds to an increase of carrier density. As a result, the superconducting transition temperature of the Nb:SrTiO3 film could be shifted by about 50 mK. If the sample temperature is held at 250 mK, it is possible to switch the film between normal and superconducting states. An interesting potential application of this technique is the ability to draw superconducting shapes in the film with an AFM tip. The inset in Fig. 4 (b) shows a line of different polarity drawn on the sample surface. If the polarity is selected so that the red line corresponds to normal state, the structure could function as a Josephson junction. Drawing more complex shapes, like nanoscale dot or wire arrays would also be possible. The AFM can be used to erase and rewrite different patterns in the same sample. Figure 4: A Hall bar field-effect device (a), consisting of a superconducting Nb-doped SrTiO3 film and a ferroelectric Pb(Zr,Ti)O3 cap layer. The ferroelectric can be poled with a conducting AFM tip, inducing local shifts of the superconducting transition temperature (b). A more traditional top-gate field effect transistor (FET) can be used to continuously vary the carrier density in the channel layer. Our current work is focused on using intrinsic SrTiO3 substrates as the channel of the FET. Source and drain electrodes are patterned in the substrate surface and an epitaxial or amorphous gate insulator is deposited. The usual choice for the insulator layer in our devices is either CaHfO3 or DyScO3. Both materials are wide-gap insulators with low leak currents. A gate field of up to about 8 MV/cm can be applied to the gate electrode, 5 corresponding to a sheet carrier density of 5×1013 cm-2. Assuming a channel layer thickness of 10 nm, the carrier density induced by field effect in the active region of the transistor can be in the range of 1019 cm-3, which covers the region where an insulator-metal transition occurs in SrTiO3. This transition can indeed be seen in SrTiO3 devices, as shown in Fig. 5 (b). The crossover from an insulating into metallic state occurs at a critical gate bias of 1.3 V. All the gate bias curves cross at a single point at this bias. The transition from insulating to metallic state is even more obvious in a temperature dependence plot of the channel current, shown in Fig. 5 (c). The behavior of the device can be understood if we assume that the Fermi level of undoped SrTiO3 is close enough to the conduction band bottom for carriers to be thermally excited to the conduction band. Due to the low density of in-gap states, even a fairly small field-induced sheet carrier density can push the chemical potential in SrTiO3 higher, until it reaches the band edge and the devices switches to a metallic state. While the temperature dependence of channel conductivity has a thermally-activated shape in the insulating state and a negative slope in the metallic state, the critical bias value is determined only by the distance of the Fermi level from the band bottom and is thus independent of temperature. Figure 5: The basic top-gate field-effect transistor structure (a) using SrTiO3 as the substrate and channel material, metallic LaTiO3 / SrTiO3 films as source and drain electrodes, and CaHfO3 as the gate insulator. The insulator consists of a thin epitaxial layer and an amorphous cover layer. An insulator – metal transition occurs at a gate bias of 1.3 V (b). The temperature dependence of channel current at various gate bias levels clearly shows the transition to metallic state when the gate bias exceeds 1.3 V (c). 4 Conclusion Thin films, combined with fairly simple device fabrication tools, offer an interesting way to probe phase transitions in complex oxides. The active region that is probed by transport measurements in strained heterostructures or field-effect devices is usually very thin, on the order of a few nanometers. The next challenge for us is to integrate oxide nanostructures into these devices and attempt to probe the properties of oxides in structurally and electronically confined geometries. Figure 6: Our research group in front of the ISSP building in October 2006. 6 References [㧝] M. Lippmaa, K. Terai, N. Nakagawa, K. Shibuya, M. Kawasaki, and H. Koinuma, Proc. SPIE 4467, 128 (2001). [㧞] N. Nakagawa, M. Lippmaa, K. Shibuya, H. Koinuma, and M. Kawasaki, Jpn. J. Appl. Phys. 41, L302 (2002). [㧟] T. Ohnishi, D. Komiyama, T. Koida, S. Ohashi, C. Stauter, H. Koinuma, A. Ohtomo, M. Lippmaa, N. Nakagawa, M. Kawasaki, T. Kikuchi, and K. Omote, Appl. Phys. Lett. 79, 535 (2001). [㧠] T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, and H. Koinuma, Appl. Phys. Lett. 87, 241919 (2005). [㧡] K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, T. Fujii, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 80, 4437 (2002). [㧢] K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, H. Koinuma, M. Ohtani, and M. Kawasaki, Appl. Surf. Sci. 223, 183 (2004). [㧣] H. Kumigashira, K. Horiba, H. Ohguchi, D. Kobayashi, M. Oshima, N. Nakagawa, T. Ohnishi, M. Lippmaa, K. Ono, M. Kawasaki, and H. Koinuma, J. of Electron Spectroscopy and Related Phenomena 136, 31 (2004). [㧤] H. Kumigashira, D. Kobayashi, R. Hashimoto, A. Chikamatsu, M. Oshima, N. Nakagawa, T. Ohnishi, M. Lippmaa, H. Wadati, A. Fujimori, K. Ono, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 84, 5353 (2004). [㧥] K. Horiba, H. Ohguchi, D. Kobayashi, H. Kumigashira, M. Oshima, N. Nakagawa, M. Lippmaa, K. Ono, M. Kawasaki, and H. Koinuma, J. Magn. Magn. Mat. 272-276, 436 (2004). [10] H. Wadati, D. Kobayashi, A. Chikamatsu, R. Hashimoto, M. Takizawa, K. Horiba, H. Kumigashira, T. Mizokawa, A. Fujimori, M. Oshima, M. Lippmaa, M. Kawasaki, and H. Koinuma, J. Electron Spectrosc. Relat. Phenom. 144-147, 877 (2005). [11] K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, and J.-M. Triscone, Nature 441, 195 (2006). ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 7 ֥ݖ૽࣭ٸਫ਼֥ͬࠐࡑ̱̀! Cun-Zheng NING Visiting Professor from June 20 to September 20, 2006 Home institution: NASA Ames Research Center As was originally planned, the themes of my research activities are around many-body physics of semiconductor nanostructures. My activities are summarized as follows: 1) Collaboration on the Mott transition in one-dimensional system The Mott transition in an optically excited semiconductor has been one of the most important issues of many-body physics of semiconductors, especially for one-dimensional systems. It was a very opportune time and place to conduct research on this topic. Akiyama san’s group has the cleanest quantum wire samples in the world with the best spectroscopic data obtained recently. They have for the first time measured both photoluminescence and absorption spectra simultaneously under the same conditions. Such clean spectroscopic data allow some of the very central issues of the Mott transition be analyzed in detail. I have spent a lot of time trying to understand the full implication of their recent data to the Mott transition. I had almost daily discussions with Akiyama san on this issue and on the understanding of their data. Together we have concluded the following on the Mott transition: a) The optical gain observed in their system is due to biexciton to exciton transition. This is the first observation of biexciton gain in a 1D system. This conclusion is based on the following features of the spectral data:γ) the gain bandwidth is very narrow, corresponding to a dephasing time of more than 5 picosecond which is longer than the typical dephasing time in a plasma, excluding degenerate plasma as a source of gain; δ) optical gain occurs at a much lower density and when the photoluminescence spectrum still shows clear exciton and biexciton peaks; and ε) the gain occurs when the biexciton peak overtakes exciton peak in the PL as total pair density increases. The observation and understanding of such biexcitonic gain are significant in several ways: It shows for the first time that optical gain can occur in a 1D system before the Mott transition and it will allow much lower threshold quantum wire lasers be made than is achieved hitherto. b) The Mott transition occurs through several stages of coexistence between excitons, biexcitons, and free electron-hole plasma. We have identified four stages from free exciton gas, through biexcitons, to free plasma. These research results provide a more complete picture for the Mott transition and shed light on the nature of the Mott transitions in 1D system. We have plans of conducting more experimental investigations to fully establish a complete picture of the Mott transition. The results of our collaboration are contained in a manuscript entitled “Biexciton gain and the Mott transition in GaAs quantum wires”, authored by Hayamizu, Yoshita, Ning, Takahashi, Akiyama, Pfeiffer, and West and just submitted to Phys. Rev. Lett. 2) Investigation of the possibility of two-photon laser based on semiconductors Together with Akiyama san we analyzed different possibilities of a semiconductor two-photon laser. We analyzed both intersubband transitions in semiconductor quantum wells and biexcitons in CuCl system. The very long phase coherence time of biexciton waves in CuCl provides a very appealing alternative to our original idea of using intersubband transitions. In addition, the large biexciton binding energy (of ~20 meV in CuCl) allows enhanced degenerate two-photon process, while keeping the competing one-photon exciton process sufficiently detuned far offresonance. But we realized that the published results by Gonokami’s group on this system are not likely to lead to a 8 continuous-wave optical gain because of the pre-dominating absorption process. We also had discussions with Prof. Gonokami of Applied Physics Department, University of Tokyo. Our discussion led to a possibility of arranging samples and pumping beam configurations such that two-photon emission process is kept unchanged, while twophoton absorption process is inhibited or significantly weakened. Such scenario is likely to lead to a CW two-photon gain in CuCl. Currently we are still analyzing this scenario in more detail. Possible collaboration with Prof. Gonokami on this issue will be pursued. 3) Bandgap renormalization in 1D system One of the well-known phenomena in semiconductor optics is the bandgap renormalization due to Coulomb interaction. So far theories and experiments have shown strikingly conflicting results: While experiments by Akiyama san’s groups and others have shown almost no bandgap shrinkage up to a very high density, while all the theories so far have predicted continuous bandgap shrinkage starting from a very low density. This issue is also closely related to the Mott transition. After my extensive study of the existing literature in the field and extensive discussions with Akiyama san, we realized that the reason for such conflicting pictures between theories and experiments is because all the theories have used the total electron-hole pair density for the calculation of bandgap renormalization. We believe that such a use of the total density is not justified, since at very low density, majority of the total density is in the form of exciton gas or in the co-existence phase of excitons and biexcitons. They do not contribute to bandgap renormalization in the way as assumed in the current theories. This idea is the key in a possible resolution of this contradiction. Dr. Huai of Osaka University has conducted preliminary estimate based on our assumption and the results have show a much more consistent bandgap renormalization with experimental measurements. The work is still continuing on this issue in collaboration with Prof. Ogawa’s group. 4) Interactions with other groups in Japan In addition to my activities at ISSP described above, I also used this opportunity to interact with other groups in Japan. We had extensive interaction with Prof. Ogawa’s group at Osaka University. Prof. Akiyama and I visited Osaka group and Dr. Ping Huai (Postdoc of the Osaka group on a joint Akiyama-Ogawa project) visited Akiyama san and me twice during my stay. Currently we are still continuing our collaboration on semiconductor quantum wire lasers. We have also visited Prof. Gonokami’s group of the Applied Physics Department, University of Tokyo and had extensive discussions with him on the two-photon laser as mentioned above. 5) Talks and conferences During my stay, I also participated in two international conferences on behalf of ISSP and gave following talks: b) Plenary talk entitled “Semiconductor Nanowires for Nanophotonics: Progress in Theory and Experiment”, Conference on Optical Properties of Condensed Matter, Xiamen, China, August 4th-August 10th , 2006 c) Invited talk entitled “Compound semiconductor nanowires as nanolasers” at International Symposium on Compound Semiconductors, Vancouver, Canada, August 13-August 17, 2006 In addition, I gave following talks at Akiyama group seminar d) Selected issues of many-body effects in semiconductors, August 26, 2006 e) Semiconductor nanowire nanophotonics, September, 2006 Acknowledgement: First of all, I would like to thank the ISSP Director and his staff for arranging a very fruitful visit. I would like to thank in particular my host, Professor Akiyama for his readiness to discuss physics all the time and anytime. He has made my visit a very successful collaboration. I would also like to thank Kameda san of the ISSP-ILO for being very thoughtful and helpful with every thing from small to big. She is great! I also thank Bessho san and Kubo san for all the business related helps. They all together made my stay a very memorable one. I enjoyed it very much. I hope to maintain my relationship with all of them and with ISSP. 9 ֥ݖ૽࣭ٸਫ਼֥ͬࠐࡑ̱̀ Yuriy BUNKOV Directeur de Recherches Centre de Recherches sur les Très Basses Tempèratures, CNRS Grenoble, France My participation in ISSP fundamental physics investigations started a few years ago, when Kubota laboratory decided to use the NMR method of Homogeneous Precession Domain (HPD) for studies of superfluid 3He in Aerogel under rotation. Why are these investigations so important, so that a physicist like me from the other side of the globe comes repeatedly to Kashiwa and leaves his own investigations for a time? The answer is simple: because ISSP has a unique installation, the nuclear demagnetization refrigerator on a fast rotating platform. Now we have three such platforms, in Helsinky, Manchester and Kashiwa. The rotation of superfluid 3He is very fundamental problem of macroscopic quantum physics. The coherent quantum state can not rotate at all. The same effect appears in superconductors, where role of rotation is played by magnetic field. The vacuum of our universe is also in a coherent quantum state. The rotation indeed can be performed with creation of topological defects (vortices, cosmic strings as well as other types of defects) In Helsinki, where I have been taking part in investigations during last 25 years, starting from montage of the first rotating platform, we found and investigated, surely under rotation, about 15 different types of vortices in superfluid 3He, including vortex sheets and spin-mass vortex. Many of these vortices have been predicted, but for the cosmic strings in the Universe. And this is the main beauty of fundamental physics. One can study the properties of one system in full analogy with another which looks completely different. Manchester group studied the rotation of 3He in a slab geometry and found… the additional mechanism of vortex dissipation, which was explained by Volovik as an analogy of hypothetical mechanism of particles creation in the Universe. Particularly it is interesting that this mechanism can explain the fact that in our part of the Universe we can see only matter but not antimatter. It remains hypothesis for the Universe, but it is now reality for superfluid 3He! ISSP platform can rotate at least a few times faster than others. It is really an extreme condition for superfluid 3He. We can study here the vortex types and the phase diagrams, which no one else has observed before. Furthter more, we can even put, inside 3He, Aerogel, a network of impurities, and see the effects of rotation. These studies have been performed in ISSP during last a few years. My particular interest is the influence of mass rotation on another coherent quantum state, HPD. This is the magnetic coherent state, which manifests itself as the condensation of spin waves in a single quantum state. We have found it in 3He-B in 1984 in Kapitza institute, Moscow. The full collection of quantum phenomena, usual for superfluidity and superconductivity, was demonstrated, including Josephson effect on Spin Supercurrent. HPD has been used in Helsinki to investigate the transient processes at the acceleration of rotation, as well as the spin-mass vortex and its dynamics. Now in Kashiwa we suppose to use HPD for studying the transient processes at acceleration 3He in aerogel. My three months visit to Kashiwa was organized to make these investigations. But, as usual in physics, the nice surprise can suddenly appear. In addition to the planned study, we have found a new magnetic coherent quantum state, now in A phase of 3He. This state was predicted by Volovik and me in 1993. Manchester group tried to observe it in a slab geometry, but unsuccessful. In our ISSP experiment we have used pressurized aerogel, which oriented the order parameter in a single direction, preferable for the observation of the new coherent state. This our discovery is very fundamental for physics of magnetic coherent states, as well as a new and fast developing field of applied physics. 10 ֥ݖ૽࣭ٸਫ਼֥ͬࠐࡑ̱̀ Carlos WEXLER Associate Professor of Physics University of Missouri My stay at the ISSP during the months of September to November of 2006 was hosted by Prof. M. Kohmoto. For about ten years I have been doing research in areas closely related to the quantum Hall effect (QHE), and have known of Prof. Kohmoto’s extensive research in problems related to electron transport in incommensurate and quasiperiodic systems for about the same amount of time. In particular, Prof. Kohmoto’s research has been key in understanding the effects of the crystalline structure in the QHE in connection to the elegant Hofstadter’s problem and beautiful “Hofstadter’s butterfly.” In late 2005 I contacted Prof. Kohmoto and prepared an application for the visiting professorship for the 2006-2007 period and the application was accepted in early 2006. Upon my arrival in September 1st, we had a period of intense scientific discussions and many members of Kohmoto’s group (Dr. Masatoshi Sato, Dr. Takahiro Aoyama, and Mr. Daijiro Tobe) gave short presentations of their research for my enlightenment. After that we focused on the problem of electronic spin transport. Given our common backgrounds in the QHE and the Hofstadter problem, we decided to consider the effects of spin-orbit coupling in the transport of electrons in systems with competing periods. Our efforts have uncovered a possible spin-induced delocalization in these systems and the results obtained so far were presented in an ISSP seminar last week (Spin-orbit induced delocalization in quasiperiodic systems). We have also submitted an abstract to the American Physical Society’s March 2007 meeting (Spinorbit coupling in quasiperiodic systems, C. Wexler, D. Tobe, and M. Kohmoto) and we are working on a manuscript to be submitted to the Physical Review B. Overall, I gained significant experience in an area I had not previously worked directly, and have made new scientific contacts with whom I expect to keep collaborating in the future. On a more personal level, I would like to thank the hospitality of all people here in the ISSP, but in particular of Ms. Akiko Kameda and Ms. Mihoko Kubo of the ILO, who worked hard to make our stay very pleasant. The accommodations (apartment) provided for myself and my family (my wife and 5 year old son) were excellent. Ms. Kameda also helped locate an Englishspeaking kindergarten/pre-school (almost) nearby (in Kita-Kashiwa) which proved very good for my son. We all had a wonderful experience in Japan; in fact, my son says he wants to come to live here! I do have one negative comment to make, whose solution seems very easy, so I will provide it as well. The problem is that, while there is excellent science being done at the ISSP, it is not easy for a visitor to get a real sense of the research here because of difficulty in establishing contacts between the foreign visitors and local researchers. Conversely, I believe that the fraction of ISSP researchers who become aware of the visitors’ research is also minimal due to the same lack of contact. I, for once, was not asked to give a single seminar based on my research background which I find very surprising and counterproductive (why not use the opportunity given by the presence of numerous visitors to get a broader vision of what is being done elsewhere?). Although some of the lack of interaction may be attributed to language issues, this is not a sufficient reason and a solution should be sought. In most institutions I visited, visitors are asked to give a seminar early-on after their arrival. This helps “break the 11 ice,” and facilitates further contacts. I believe that this should be instituted as an “unofficial policy” of the foreign visitors program: visitors should give a seminar upon arrival and the seminar should have plenty of time for informal discussions afterwards. Of course, “locals” should also give plenty of seminars for the benefit of the “visitors,” but this is done to a certain degree already, and it may be logistically difficult to implement on a wider scale given the large number of ISSP researchers. As for my impressions of the science done at the ISSP: it seems quite excellent, indeed. The research done here is on par with the best institutions in the world. Being a theorist, I cannot say much about the laboratories, but the parts that affect me (computer support, networking, libraries, access to information and office space) are truly excellent. Secretarial staff was very competent and the students and postdocs I was fortunate to interact with were all very bright and selfmotivated. Overall, I was very happily impressed with the ISSP and Japan in general. I had an excellent visit from the science point of view, and my family and I truly enjoyed the unique experience that a visit to Japan is. I would like to thank the ISSP for its hospitality, organization, and the generous financial support provided. 12 ࡄݪਫ਼ౣݪࡄܢٛ! ! ! କȂຕȂକள̹̱ͬࣞ͂ܖգ͈́ئ౷ݩთି͂ڠشڠش ᣣᤨ㧦 ᐕ ᣣ Ἣ㨪 ᣣ ᳓ ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ ጊ↰ࡎ࡞㧔᧲ᶏ㧕 ឭ᩺ઍ⠪ ㎛ ਯ ᧲੩ᄢቇℂቇㇱ ഥᢎ ߘߩઁߩឭ᩺⠪ ጊቶ ୃ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ഥᢎ ᧁ ஜᒾ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ᢎ 㕍ᧁ ൎᢅ ේሶജ⎇ⓥᯏ᭴ ⎇ⓥਥછ ᄢ⼱ ᩕᴦ ᧲ർᄢቇℂቇㇱ ᢎ ⥵ ᔀ↵ ᗲᇫᄢቇ ᷓㇱ࠳ࠗ࠽ࡒࠢࠬ⎇ⓥࡦ࠲ ᢎ ടୖਭ ේሶജ⎇ⓥᯏ᭴ ਥછ⎇ⓥຬ ᧄ⎇ⓥળߪޔ᳓⚛᳓ࠍࠠࡢ࠼ߣߒߡޔ㜞⑼ቇޔ⑼ቇᖺᤊ⑼ቇ‛ޔᕈ⑼ቇߩធὐࠍߛߒߥ߇ࠄޔᣂߒ ⎇ⓥߩಾࠅญࠍតࠆߎߣࠍ⋡ᮡߦ㐿ߐࠇߚޕᖡᄤߩਛޔᐢಽ㊁ߦ߹ߚ߇ࠆ⚂ 65 ฬߩෳട⠪ࠍᓧࠆߎߣ߇ߢ߈ߚޕ ⧯ᚻਛၷ⎇ⓥ⠪߇ෳട⠪ߩᄙߊࠍභߚ߇ޔቇㇱ↢߆ࠄࠪ࠾ࠕ⎇ⓥ⠪ߦ⥋ࠆᐕ㦂᭴ᚑߩᐢ߇ࠅ߽․ᓽ⊛ߢߞߚࠄߐޕ ߦᣣᧄේሶജ⎇ⓥᯏ᭴ߩදജࠍᓧߡ৻ޔᣣ⋡ߦߪ J-PARC ࠍޔੑᣣ⋡ߦߪ JRR-3 ߩቇ߽ⴕߞߚޕ᳓ޔ᳖ޔ᳓⚛ߩᧄ⾰ ࠍℂ⸃ߔࠆߚߦߪޔਛᕈሶᢔੂߩታ㛎߇ᔅ㗇ߢࠆߎߣߪߦߚߩߘߡߒߘޔᒝജߥࡄ࡞ࠬਛᕈሶ✢Ḯߦ㜞᷷㜞ߣ ߞߚ․ᱶ᧦ઙߢߩ᷹ቯ߇น⢻ߥⵝ⟎ࠍዉߔࠆߎߣ߇ᔅⷐߢࠆߎߣߥߤ߽⼏⺰ߐࠇߚᦨޕᓟߦ⎇ᧄޔⓥળࠍ㐿ߊߦ ߚߞߡ‛ޔᕈ⎇ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߩ⊝᭽ޔේሶജ⎇ⓥᚲߩ⊝᭽ߦߏදജࠍߚߛ߈߹ߒߚߎߣߦෘߊᗵ⻢↳ߒߍ߹ߔޕ ࡊ ࡠ ࠣ ࡓ 21 35 )!*غ 13:10-13:15 Opening ᐳ㐳㧦㎛ ㎛ ਯ㧔᧲ᄢ㧕 ਯ 13:15-13:40 ‛ᕈ⎇ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߩⷐߣ⎇ⓥᵴേ ᑝ↰ 㚍㧔᧲ᄢ㧕 13:40-14:05 J-PARC ⸘↹ߩⷐߣ⁁ ⮮ ᒾ㧔ේሶജᯏ᭴㧕 14:05-14:30 ࠢࠬ࠻᳓‛ߩ⒎ᐨൻ⋧ォ⒖ߣࠕࡕ࡞ࡈࠔࠬൻ 㧙㜞⎇ⓥ߳ߩዷ㐿㧙 ጊቶ ᐳ㐳㧦ጊቶ ୃ㧔᧲ᄢ㧕 ୃ 14:40-15:05 㜞ਅߩ᳓㧦ਛᕈሶ߳ߩᦼᓙ ጊ ⧐ೣ㧔ේሶജᯏ᭴㧕 15:05-15:30 ᳖⚿᥏ਛߩಽሶᢔ ᷓỈ ୶ሶ㧔ᴦᄢ㧕 16:00-17:00 J-PARC ቇ 18:00-20:00 ᙣⷫળ 13 21 36 )କ*! ᐳ㐳㧦ᅏ ᜏ↢ 9:00-9:25 J-PARC ߦ߅ߌࠆࡆࡓࠗࡦᑪ⸳ߩ⁁ ጊ 9:25-9:50 H2O ice ߩૐ᷷⋧ォ⒖ߩߘߩ႐ࡑࡦಽశᴺߦࠃࠆⷰኤ ศ ᐘᶈ㧔㒐ⴡᄢ㧕 ፏ㧔KEK㧕 9:50-10:15 ᳖߅ࠃ߮ࠢࠬ࠻ࡂࠗ࠼࠻ߩᒝ⺃㔚ᕈ 㧙᳖ᄤౝㇱߩࡊࡠ࠻ࡦߩേ㧙 ᷓỈ 10:15-10:40 ᳖ᄤߩౝㇱᵹേ 㧔ේሶജᯏ᭴㧕 ਭ 㧔ᄢ㧕 ᐳ㐳㧦᳗ 㓉 10:50-11:15 ࠟࠬࡂࠗ࠼࠻ߩ㜞ቯᕈߣ⋧↪ ᐔ ኼሶ㧔╳ᵄᄢ㧕 11:15-11:40 Theory and computation of hydrous minerals and melt under high pressure ደ ථਭ㧔ᗲᇫᄢ㧕 11:40-12:05 ᳓⚛ࡂࠗ࠼࠻ߩㅦಽሶᢔ 㧙࿕ߩਛߩᶧ㧙 ᅏ ᜏ↢㧔ฬฎደᄢ㧕 ᐳ㐳㧦 ጊ ⧐ೣ 13:10-13:35 ࡔ࠰ࡐࠬࠪࠞౝߦๆ⌕ߒߚ᳓ߩ᭴ㅧߣ࠳ࠗ࠽ࡒࠢࠬ ᄢ ቄ㧔KEK㧕 13:35-14:00 ਇⷙೣ♽᳓⚛♽‛⾰ߩਛᕈሶ᭴ㅧ⸃ᨆ ㋈⼱ ⾫ᄥ㇢㧔ේሶജᯏ᭴㧕 14:00-14:25 ਛᕈሶ㕖ᒢᕈᢔੂߢߺߚᶧ Se-Te ♽ߩ᭴ㅧ ජ⪲ ᢥ㊁㧔ᘮᔕᄢ㧕 ᐳ㐳㧦ᧁ ஜᒾ 14:35-15:00 Palm Cubic Anvil ജ⊒↢ⵝ⟎ࠍ↪ߚਛᕈ࿁᛬ታ㛎ߩ⹜ߺ ᐥ ⟤㧔᧲ᄢ㧕 15:00-15:25 ᳓⚛߇㎛ࠍីࠆ㊄ዻ᳓⚛ൻ‛ߩജ⺃᭴ㅧ㔚ሶォ⒖ 㕍ᧁ ൎᢅ㧔ේሶജᯏ᭴㧕 15:25-15:40 Closing Address ᧁ ஜᒾ㧔᧲ᄢ㧕 16:00-17:00 ේ⎇ਃภἹቇ ⎇ⓥળߢߩ⸛⺰ߩ᭽ሶ 14 J-PARC ቇߩ᭽ሶ ࡄಎঊݪࡄڠشঔ୭͈ٽါ͂ࡄڰݪ൲! ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ᑝ↰ 㚍 ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲߪో࿖ห↪⎇ⓥᚲߣߒߡ 1957 ᐕߦ⸳┙ߐࠇޔᚒ߇࿖ߩ‛ᕈ‛ℂቇಽ㊁ߩ⎇ⓥ⸳ࠍ࿖ 㓙⊛᳓Ḱߦ㜞ޔవ┵⊛ߥታ㛎ᛛⴚࠍ㐿⊒ߒߡ߈ߚޕਛᕈሶ߳ߩขࠅ⚵ߺߪߏߊೋᦼߦ㆚ࠆ߇ޔ1969 ᐕߦਛᕈሶ࿁᛬ㇱ 㐷㧔㧟ᚲຬ㧕߇Ⴧ⸳ߐࠇޔᣣᧄේሶജ⎇ⓥᚲ JRR-2 ⎇ⓥἹߦࠃࠆห↪⎇ⓥߦࠃߞߡᧄᩰൻߒߚޕ1990 ᐕઍߦࠅޔ JRR-3 ߇ᣂઍߩ⎇ⓥἹߣߒߡᢛߐࠇߚߎߣߦࠊߖߡޔ1993 ᐕߦਛᕈሶᢔੂ⎇ⓥᣉ⸳㧔㧠ᚲຬ㧕ߣߒߡౣ✬ߐࠇߚޕ એᓟ᧲ޔർᄢ੩ㇺᄢߣߣ߽ߦ 10 ᢙบߩಽశེࠍో࿖ห↪ߦឭଏߔࠆ߇᭴▽ߐࠇޔᲤᐕ 175 ᣣ㑆ߩࡆࡓ࠲ࠗ ࡓਛߦޔ250-300 ߩ⺖㗴 ⚂ޔ5000 ੱᣣߩ↪⠪߇⎇ⓥࠍⴕ߁ߣ߁‛ޔᕈ⎇ᦨᄢߩో࿖ห↪ࡊࡠࠣࡓߣߥߞߚޕ 2003 ᐕߦߪਛᕈሶ⑼ቇ⎇ⓥᣉ⸳㧔5 ᚲຬ㧕ߦᡷ⚵ߐࠇޔSpin-Echo ⵝ⟎ iNSEዊⷺᢔੂⵝ⟎ SANS-UTOF ဳಽశེ AGNES ߘߒߡ㧟ゲಽశེ⟲ߩ㜞ᐲൻ߇ታᣉߐࠇߚ߇⟎ⵝߩߡో߷߶ߦߢߔޕᣂઍߩᓮⅣႺࠍ߃ࠆߣߣ߽ߦޔታല ࡆࡓᒝᐲߩჇᄢ߿ᣂߒ⹜ᢱⅣႺߩᢛ߇ߥߐࠇޔ᷹ቯߩല₸ൻߣߣ߽ߦᣂߒ⎇ⓥ㗔ၞ߳ߩዷ㐿߇ߪ߆ࠄࠇࠆࠃ߁ߦ ߥߞߡࠆࠍ৻ޕߍࠇ߫ᧄޔᣉ⸳ߩጊቶᚲຬ߇▤ℂߔࠆ AGNES ߢߪోߩ⟎ⵝޔ㕙⊛ߥౣ㐿⊒ߦࠃߞߡᒝᐲ߇㧟ޔ ࡁࠗ࠭ࡌ࡞߇ 10 ಽߩ㧝ߦߥࠅޔS/N Ყߦߒߡታߦ 30 ߽ߩᡷༀࠍታߒߚޔߡߞࠃߦࠇߎޕએ೨ߢߪ⠨߃ࠄࠇߥ ߆ߞߚ♖ᐲߢߩታ㛎⎇ⓥ߇น⢻ߣߥߞߚ⻠ޕṶߢߪޔਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߩⷐࠍ⚫ߔࠆߣߣ߽ߦ⎇ߥ߁ࠃߩߤޔⓥᚑ ᨐ߇ᓧࠄࠇߡࠆߩ߆ޔᓟߤߩࠃ߁ߥᣇะ߳⊒ዷߐߖࠃ߁ߣߒߡࠆ߆ߦߟߡ⼏⺰ߔࠆޕ J-PARC ْ͈ࠗٽါ࡛͂ે! ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴㊂ሶࡆࡓᔕ↪⎇ⓥㇱ㐷 ⮮ ᒾ ᄢᒝᐲ㓁ሶടㅦེᣉ⸳ J-PARC Japan Proton Accelerator Research Complexߪޔᢥㇱ⋭⑼ቇᛛⴚᐡ⛔วߩࠪࡦࡏ ࡞ߣߒߡޔᐔᚑ 13 ᐕᐲߦ㜞ࠛࡀ࡞ࠡടㅦེ⎇ⓥᯏ᭴ KEK ᒰᤨߩ㜞ࠛࡀ⎇ߣᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ JAEA ᒰᤨߩ ේ⎇߇หߢᑪ⸳ࠍ㐿ᆎߒߚޕᒰೋ 6 ᐕ⸘↹ߢߞߚ╙৻ᦼ⸘↹߇ 7 ᐕ㑆ߦᄌᦝߐࠇߚ߽ߩߩޔᐔᚑ 19 ᐕᐲᣉ⸳ቢᚑ ߦะߌߡ߶߷੍ቯㅢࠅᑪ⸳ߪㅴࠎߢ߅ࠅޔᐔᚑ 18 ᐕ 10 ㅴ₸ߪ⚂ 70㧑ߢࠆࠃࠃޕᐕ 12 ߦߪ࠾ ࠕ࠶ࠢ LINAC ߢߩࡆࡓ⹜㛎߇ᆎ߹ࠅ ⚂ࠄ߆ࠇߘޔ1 ᐕᓟߦߪ 3GeV ࠪࡦࠢࡠ࠻ࡠࡦ RCS ߢߩࡆࡓ⹜㛎ޔ2 ᐕᓟߦ ߪ‛⾰↢ታ㛎ᣉ⸳ MLF ߢਛᕈሶߣࡒࡘࠝࡦߩࡈࠔࠬ࠻ࡆࡓ߇ᓧࠄࠇࠆ੍ቯߢࠆ ౮⌀ෳᾖ㧦ߚߛߒᓇߪᐔᚑ 18 ᐕ 2 ߷߶ޕหᤨᦼߦ 50GeV ࠪࡦࠢࡠ࠻ࡠࡦߦ߽㓁ሶࡆࡓ߇ଏ⛎ߐࠇࡆࡓ⺞ᢛ⹜㛎ߩᓟޔ㗅ᰴࡂ࠼ࡠࡦޔ ࠾ࡘ࠻ࡁታ㛎߇㐿ᆎߐࠇࠆ੍ቯߢࠆ ߒߊߪ http://j-parc.jp/ޕ 3GeV RCS㧔350m㧕 LINAC (330m) MLF (Neutron & Muon) Neutrino Facility Hadron Beam Facility 50GeV Synchrotron (1600m) 15 ‛⾰↢ታ㛎ᣉ⸳ߩᑪ‛ߪ┫Ꮏߒޔౝㇱߢߪਛᕈሶ߅ࠃ߮ࡒࡘࠝࡦ✢ḮߩᎿ߇ᕆࡇ࠶࠴ߢㅴࠎߢࠆ߇ޔ᷹ቯⵝ⟎ࠍ ⸳⟎ߔࠆࡒࡘࠝࡦߩ 4 ࡆࡓࡐ࠻ޔਛᕈሶߩ 23 ࡆࡓࠗࡦߩᢛ߽ᆎ߹ߞߚޕਛᕈሶታ㛎ⵝ⟎ߦߟߡߪޔᐔᚑ 14 ᐕᐲ߆ࠄߔߢߦᲤᐕⵝ⟎ឭ᩺ࠍฃߌઃߌਛᕈሶታ㛎ⵝ⟎⸘↹ᬌ⸛ᆔຬળߢክᩏߒߡࠆ߇㧔ࡎࡓࡍࠫෳᾖ㧕ߩߘޔ ߁ߜᑪ⸳੍▚ߩㅢߒߩઃߡࠆⵝ⟎ߪޔJAEA 2ޔKEK 2 㨪4┹ޔ⊛ᄖㇱ⾗㊄ߦࠃࠆ߽ߩ 3⨙ޔၔ⋵ 2ߦࠇߘޔ ࡆࡓࡕ࠾࠲㧛R&D ↪ߩ 1 บߢࠆޕ J-PARC ߪᐔᚑ 19 ᐕᐲߢᑪ⸳ࠍ⚳ੌߒᐔᚑ 20 ᐕᐲ߆ࠄᣉ⸳ㆇ↪ߩࡈࠚ࠭ߦࠆߚߩߘޕหᑪ⸳ਥߢࠆ KEK, JAEA ߇ޔᒁ߈⛯߈ᣉ⸳ࠍหߢㆇ༡ߔࠆߚߩදቯࠍ✦⚿ߒޔᐔᚑ 18 ᐕ 2 ߦߪߎߩㆇ༡ࠍᜂ߁⚵❱ߢࠆ ޟJ-PARC ࡦ࠲ޠ㧔᳗ችࡦ࠲㐳㧕ࠍਔᯏ㑐ߩታ⚵❱ߣߒߡ⸳⟎ߒߚ࠲ࡦߡߒߘޕ㐳ߩਅߦฦ⒳ߩᆔຬળޔ ࡢࠠࡦࠣࠣ࡞ࡊ╬ࠍ⸳ߌߡޔㆇ↪ߦ㑐ࠊࠆ⻉㗴㧔ታ㛎⺖㗴ክᩏߩࠅᣇޔ↪⠪ฃߌࠇࡈࡦࠗޔᢛ ╬㧕ࠍ♖ജ⊛ߦᬌ⸛ߒߡࠆޔߚ߹ޕਛᕈሶࡒࡘࠝࡦߩᄖㇱ࡙ࠩߩჿࠍᤋߒߡޔJ-PARC㧛MLF ↪⠪ᙣ⺣ ળ㧔⒓㧕ߩ⸳┙Ḱ߇ߐࠇߡࠆޕ ·ρΑτȜΠକგ͈ಉ੬اഢ֊͂ͺκσέΑ !اȽࣞգࡄ͈͒ݪജٳȽ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ጊቶ ୃ ࠢࠬ࠻᳓‛ߪᦨޔㄭޔᶏᐩߦᄙ㊂ߦၒ⬿ߐࠇߡࠆࡔ࠲ࡦ᳓‛߇ᧂ᧪ߩᄤὼࠟࠬ⾗Ḯߦߥࠆߎߣ߿ޔ᷷ ᥦൻߩේ࿃ߢࠆੑ㉄ൻ⚛ࠍᶏᐩ࿕ቯߔࠆߩߦ↪ߢ߈ࠆߎߣ߇ಽ߆ࠅޔᕆㅦߦᵈ⋡ࠍ㓸ߡࠆ߁ࠃߩߘޔߒ߆ߒޕ ߥᔕ↪⊛⥝ߛߌߢߥߊ࠻ࠬࠢޔ᳓‛ߪฎߊ߆ࠄ㊀ⷐߥၮ␆‛ᕈ⎇ⓥߩኻ⽎ߢߞߚ࠻ࠬࠢޕ᳓‛߇⥝ ᷓߩߪ࠻ࠬࠥޔಽሶߩ㈩ะή⒎ᐨߣߣ߽ߦߩ࠻ࠬࡎޔ᳓ಽሶ߇ࠊࠁࠆޟ᳖ߩⷙೣࠍޠḩߚߒߥ߇ࠄ㈩ะή⒎ᐨߒߡ ࠆߎߣߢࠆޕ ᚒޔߪޘ1980 ᐕઍᓟඨ߆ࠄᏗࠟࠬ᳓‛߅ࠃ߮ᄙᢙߩᯏࠥࠬ࠻ಽሶ㧔THF, TMO, EO, acetone ߥߤ㧕ߩࠢࠬ ࠻᳓‛ߩᾲኈ㊂⺃ޔ㔚₸ޔਛᕈሶ࿁᛬ࠍ᷹ቯߒޔ᳓ಽሶߪ᳖ߣห᭽ߦࠟࠬォ⒖ࠍ⚻ߡಓ⚿ߔࠆߎߣ࠻ࠬࠥޔಽሶߪૐ ᷷߹ߢ㊂ሶജቇ⊛ߥ࿁ォㆇേࠍߒߡࠆߎߣࠍߛߒߚޔߚ߹ޕᣇ᥏᳖ߢⴕߞߚࠃ߁ߦ⹜ޔᢱߦ᳓㉄ൻࠞ࠙ࡓ 㧔KOH㧕ࠍਇ⚐‛ߣߒߡ 0.1mol/dm3 ⒟ᐲ࠼ࡊߔࠆߎߣߦࠃࠅޔ᳓ಽሶߩᦨ㈩ะㆇേࠍᵴᕈൻߒޔ⒎ᐨൻ⋧ォ⒖ࠍᒁ ߈ߎߔߎߣߦᚑഞߒߚ⋧ߩߎޕォ⒖ߢߪޔ᳓ಽሶߣࠥࠬ࠻ಽሶߩਔ⠪߇หᤨߦ㈩ะ⒎ᐨൻߔࠆޕ ᦨㄭߪ⚿ޔ᥏ߩࠢࠬ࠻᳓‛ࠍ㔌ࠇޔૐ᷷⫳⌕ᴺߢ↢ᚑߒߚࠕࡕ࡞ࡈࠔࠬ⁁ᘒߩࠢࠬ࠻᳓‛ࠍ⎇ⓥߒߡ ࠆࠬࠔࡈ࡞ࡕࠕޕ᳓‛ߪޔㅢᏱߢߪṁߌߥṁ⾰㧔߃߫Ꮧࠟࠬ㧕ߩỚෘ᳓ṁᶧࠟࠬߣ⠨߃ࠆߎߣ߽ߢ߈ߊోޔᣂ ߒ࠲ࠗࡊߩ᳓ṁᶧ㧔⇹᳓ᕈ᳓ṁᶧ㧫㧕ߩࠟࠬ⎇ⓥࠍน⢻ߦߒߡࠆ ߦߢ߹ࠇߎޕAr, Xe, SF6, CD4 ߩࠕࡕ࡞ࡈࠔࠬ᳓ ‛ߦߟߡޔਛᕈሶ࿁᛬߆ࠄߘߩዪᚲ᭴ㅧࠍࠄ߆ߦߔࠆߣߣ߽ߦޔ㕖ᒢᕈᢔੂ߆ࠄࠕࡕ࡞ࡈࠔ᳖ࠬߢࠄࠇߚ 6meV એਅߩૐࠛࡀ࡞ࠡബᒝᐲ߇ࠥࠬ࠻ỚᐲߩჇടࠆߪࠥࠬ࠻ಽሶࠨࠗ࠭ߩჇᄢߣߣ߽ߦ㗼⪺ߦᷫዋߔࠆߎߣࠍߛ ߒߚ⎇ޕⓥળߢߪޔએߩ⚿ᨐߩ⇛ࠍ⸃⺑ߔࠆߣߣ߽ߦ⎇ߩߢ߹ࠇߎޔⓥ߇㜞ਅߦ߅ߡ᧪ߤߩࠃ߁ߦ⊒ዷߒ߁ࠆ ߆ߦߟߡ߽ㅀߴߚޕ ࣞգ͈ئକȇಎঊ͈͒ܢఞ! ᣣᧄේሶജ㐿⊒⎇ⓥᯏ᭴㊂ሶࡆࡓᔕ↪⎇ⓥㇱ㐷 ጊ ⧐ೣ ᳓ߪᚒ߽ᦨߡߞߣߦޘ㊀ⷐߥᶧߢࠅޔ᭽ߥޘ㕙߆ࠄ⎇ⓥ߇ߥߐࠇߡࠆޕ᳓ߪޔߚ߹ޔ᥉ㅢߩಽሶᕈᶧߣߪ㆑ߞ ߚ․⇣ߥᕈ⾰ࠍᜬߟߎߣߢ߽⍮ࠄࠇߡࠆޔߪࠇߎޕ᳓ߦ᳓⚛⚿วߦࠃࠆ 4 ㈩ߩࡀ࠶࠻ࡢࠢ᭴ㅧ߇ᱷߞߡࠆߚ ߢࠆߥ߁ࠃߩߎޕ㓗㑆ߩᄙ᭴ㅧߪടߦࠃߞߡᄢ߈ߊᄌൻߔࠆߣ⠨߃ࠄࠇࠆޕᚒߪޘᶧ㧔ᵹ㧕ߩ᳓ߩ X ✢࿁᛬ ࠍޔశᣉ⸳ SPring-8 ߩ BL14B1 ߩࠠࡘࡆ࠶ࠢဳࡑ࡞࠴ࠕࡦࡆ࡞ࡊࠬߢ⚂ 9GPa ߹ߢޔBL04B1 ߩᎹဳࡊࠬ ࠍ↪ߡ⚂ 17GPa ߹ߢ᷹ቯߔࠆߎߣߦᚑഞߒߚ⚿ߩߘޕᨐ ⚂ޔ4GPa ߹ߢߦ᳓ಽሶߩ㈩ᢙߪ 10 ⒟ᐲ߳ᕆỗߦߒޔ ߢߐࠇࠆࠃ߁ߥන⚐ߥᶧߩ᭴ㅧ߳ߣㄭߠߊߎߣࠍߒߚޕ X ✢࿁᛬ታ㛎ߢߪޔ㔚ሶ߇ 1 ߒ߆ߥ᳓⚛ߪ߶ߣࠎߤ࿁᛬ߦነਈߒߥߦ․ޕ᳓ߢߪ㔚⩄⒖േߦࠃߞߡߐࠄߦ᳓⚛ ߩ㔚ሶ߇ዋߥߊߥߞߡࠆߣ⠨߃ࠄࠇࠆ⚛㉄⚛㉄ޔߚߩߘޕ㑆ߩേᓘಽᏓ㑐ᢙߒ߆ᓧࠆߎߣ߇ߢ߈ߥߪࠇߎޕ᳓ ߩ᭴ㅧࠍ⠨߃ࠆߢᦨ߽㊀ⷐߥ᳓⚛⚿วߦ㑐ߒߡ߶ߣࠎߤᖱႎ߇ᓧࠄࠇߥߎߣࠍᗧߔࠆߦࠇߎޕኻߒਛᕈሶ࿁᛬ߢߪޔ ᳓⚛ේሶᩭ߇ᄢ߈ߥᢔੂᢿ㕙Ⓧࠍᜬߟߚޔ᳓⚛ߦ㑐ߔࠆᖱႎࠍᓧࠆߎߣ߇ߢ߈ࠆޕታ㓙ޔ6.5GPa ߹ߢߩ᳓ߩਛᕈሶ࿁ ᛬ታ㛎ߩ⚿ᨐ߇ᦨㄭႎ๔ߐࠇߚޔߪߢ⊒ᧄޕᚒߩޘశታ㛎ᦨޔㄭႎ๔ߐࠇߚਛᕈሶታ㛎ࠆࠃߦࡦ࡚ࠪࡘࡒࠪޔ 㜞ਅߩ᳓ߩ᭴ㅧ⎇ⓥߥߤࠍ⚫ߒޔ㜞᷷㜞ਅߩ᳓ߩਛᕈሶ࿁᛬ߦࠃߞߡ߇ࠊ߆ࠆߩ߆ࠍㅀߴࠆޕ 16 ຕࠫએಎ͈ঊڐ८! ᴦᄢቇℂᎿቇㇱᔕ↪ൻቇ⑼ ᷓỈ ୶ሶ ධᭂᄢ㒽ߪޔ᳖ᐥߣࠃ߫ࠇࠆᏂᄢߥ᳖ߩ႙ߢⷒࠊࠇߡࠆޕ᳖ᐥߪޔ㒠ࠅⓍ߽ߞߚ㔐߇❗ߐࠇߡ᧪ߚ⚿᥏ߢࠆߚ ޔᢙචਁᐕߩ㑆ߦ㔐ߣߦၸⓍߒߚ᭽ߥޘᚑಽࠍ⾂߃ߡ߅ࠅޔฎⅣႺߦߟߡߩ⾆㊀ߥᖱႎḮߣߥࠆޔ߫߃ޕ᳖ᐥ߆ ࠄជߒߚ᳖⹜ᢱߦ߹ࠇࠆⓨ᳇ᚑಽߩ⚵ᚑಽᨆߦࠃࠅ↥ޔᬺ㕟એ㒠ߩᄢ᳇ਛߩੑ㉄ൻ⚛ỚᐲჇട߿ ⚂ޔ10 ਁᐕ ᦼߩ᳖ᦼ㧙㑆᳖ᦼࠨࠗࠢ࡞ߦ߁ᄢ᳇⚵ᚑߩᄌേ╬ޔฎⅣႺߦ㑐ߔࠆ㊀ⷐߥ⍮߇ᓧࠄࠇߡࠆޕ ߣߎࠈ߇ᦨㄭߦߥߞߡޔฎⅣႺߩᜰᮡߣߥࠆⓨ᳇ಽሶ߇ޔ㐳ᤨ㑆ࠍ߆ߌߡ᳖ᐥౝㇱࠍᢔߒߡࠆߎߣ߇ࠄ߆ߦ ߥߞߚ[1,2]ޕಽሶᢔߪ᳖ᐥਛߩⓨ᳇ಽሶߩಽᏓࠍᄌൻߐߖࠆߚޔជߒߚ᳖⹜ᢱ߆ࠄಽᨆߒߚⓨ᳇ᚑಽߩ⚵ᚑߪᱜ ⏕ߥㆊߩᄢ᳇⚵ᚑࠍ␜ߒߡߥߎߣߦߥࠆޕ᳖ᐥ᳖⹜ᢱ߆ࠄޔㆊߩᄢ᳇⚵ᚑߩᖱႎࠍᱜ⏕ߦ⺒ߺขࠆߚߦߪޔಽ ሶᢔߩࡔࠞ࠾࠭ࡓࠍ⸃ߒߩߘޔᓇ㗀ࠍᛠីߒߥߊߡߪߥࠄߥޕ ᧄ⎇ⓥߢߪޔಽሶേജቇ⸘▚ߦࠃࠅޔ᳖⚿᥏ਛߩಽሶᢔߩࡔࠞ࠾࠭ࡓࠍޔේሶಽሶࡌ࡞ߩࡒࠢࡠߥⷞὐ߆ࠄ⸃߈ ߆ߘ߁ߣߔࠆ⎇ⓥࠍㅴߡ߈ߚ[3,4,5]⻠ᧄޕṶߢߪߩߎޔᚑᨐࠍਛᔃߦޔ᳖⚿᥏ߦขࠅㄟ߹ࠇߚ᳇ಽሶߩേߣߎޔ ߩേߦ࿃ߔࠆ᳖ߩዪᚲ᭴ㅧߩ࠳ࠗ࠽ࡒࠢࠬߦߟߡ⼏⺰ߔࠆޕ [1] Tomoko Ikeda et al., Geophys. Res. Lett. 26 (1999) 91. [2] Tomoko Ikeda-Fukazawa et al., J. Geophys. Res. 106 (2001) 17799. [3] Tomoko Ikeda-Fukazawa et al., J. Chem. Phys. 117 (2002) 3886. [4] Tomoko Ikeda-Fukazawa et al., Chem. Phys. Lett. 385 (2004) 467. [5] Tomoko Ikeda-Fukazawa et al., Molec. Sim. 30 (2004) 973. J-PARC ̤̫ͥͅΫȜθρͼϋ࠺୭͈࡛ે 㜞ࠛࡀᯏ᭴ᄢᒝᐲ㓁ሶടㅦེ⸘↹ផㅴㇱ ጊ ፏ ടㅦེࠍ↪ߚࡄ࡞ࠬਛᕈሶḮߪޔ1960 ᐕઍᧃߦ᧲ർᄢේሶᩭℂቇ⎇ⓥᣉ⸳ࠍೋߣߒߡ㔚ሶടㅦེߢࠬ࠲࠻ߒߡ એ㒠☨ޔ࿖ࠕ࡞ࠧࡦ⎇ⓥᚲ߿ᣣᧄߩ㜞ࠛࡀ࡞ࠡ‛ℂቇ⎇ⓥᚲ㧔 㜞ࠛࡀ࡞ࠡടㅦེ⎇ⓥᯏ᭴㧕⧷ޔ࿖ߩࠩ ࡈࠜ࠼ࠕ࠶ࡊ࡞࠻ࡦ⎇ⓥᚲ╬ߢ㓁ሶടㅦེࠍ↪ߚਛᕈሶḮ߇⊒ዷޔߪᰴઍߩᄢဳᣉ⸳߇☨࿖ߣ⧷࿖ޔᣣᧄߦ ߶߷หᤨᦼߦᑪ⸳ߐࠇࠆߣ߁࡙࠾ࠢߥᤨᦼߦࠆ⻠ޕṶߢߪޔ㜞ࠛࡀ࡞ࠡടㅦེ⎇ⓥᯏ᭴ߣᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ ᭴߇ห㐿⊒ߒߡࠆᄢᒝᐲ㓁ሶടㅦེ㧔J-PARC㧕ߩ‛⾰↢ታ㛎ᣉ⸳ߣߘߎߦ⸳⟎ߐࠇࠆਛᕈሶ࿁᛬ⵝ⟎ߦߟߡ ㅀߴࠆޕ ‛⾰↢ታ㛎ᣉ⸳ߦߪ 23 ᧄߩࡆࡓࡐ࠻ߦⵝ⟎ࠍ⸳⟎ߢ߈ࠆޔߪߢࡓ࠴࠻ࠢࠚࠫࡠࡊޕᣉ⸳ቢᚑߩ 2008 ᐕࠍ ⋡ᜰߒޔ↪⠪߇ᒝߊᏗᦸߔࠆⵝ⟎ߩౝ߆ࠄ 10 บࠍㆬᛯߒ⸘⸳ߩߘޔᬺࠍⴕߞߡ߈ߚ৻ޕᣇޔ࿖ౝᄖ߆ࠄߩⵝ⟎ឭ᩺ ߽ฃߌઃߌߡ߅ࠅޔ߹ߢߦ⨙ၔ⋵ࠍߪߓߣߒߚⶄᢙߩឭ᩺߇ࠆޔߪߢߎߎޕᣧᦼߩᑪ⸳߇ᦼᓙߐࠇࠆ࿁᛬ⵝ⟎ߦ ߟߡ⚫ߔࠆޕ (1) ᳢↪ోᢔੂⵝ⟎ KEK 㕖᥏⾰ޔᶧ⚿ޔ᥏╬ߩ᭴ㅧ⸃ᨆࠍⴕ߁ߚߩⵝ⟎ߢޔᢔੂ᭴ㅧ࿃ሶࠍ⋥ធࡈࠛᄌ឵ߒߡߦ࡞࠺ࡕޔଐࠄߥ᭴ㅧ⸃ ᨆࠍ♖ᐲ⦟ߊⴕ߃ࠆࠃ߁ޔ㕖Ᏹߦᐢ▸ߥᵄᢙⓨ㑆 Q=0.01A-1ޯ100A-1 ߩ᷹ቯࠍ৻ߦⴕ߁ᦨޕ㜞ಽ⸃⢻ߪ d/dޯ0.3㧑⒟ᐲޕ (2) ᧚ᢱ᭴ㅧ⸃ᨆⵝ⟎ ⨙ၔ⋵ ᄙ⚿᥏⹜ᢱߩ⚿᥏᭴ㅧ⸃ᨆࠍਛᔃߦ࠽ࡁ᭴ㅧޔዪᚲ᭴ㅧ⸃ᨆ⸃ߩ╬ࡖ࠴ࠬࠠ࠹ޔᨆࠍⴕ߁ⵝ⟎ᦨޕ㜞ಽ⸃⢻ d/dޯ0.15㧑 ߢࠆޕ0.5cc ߩ⹜ᢱߢߞߡ߽ 5 ಽ㑆ߩౝߦචಽߥ⛔⸘ߩ࠻ࡌ࡞࠻⸃ᨆ߇น⢻ߥ࿁᛬࠺࠲ࠍᓧࠆߎߣ߇น⢻ߢࠆޕ (3) 㜞ಽ⸃⢻☳ᧃ࿁᛬ⵝ⟎ KEK ESRF ߿ SPring-8 ╬ߩ㜞ノᐲశ☳ᧃ࿁᛬⸘ߢታߒߡࠆಽ⸃⢻ d/d = 0.03%ࠍታߔࠆ⇇ᦨ㜞ߩಽ⸃⢻ࠍᜬߟ ☳ᧃ࿁᛬ⵝ⟎ޕᒝᐲಽ⸃⢻ߩὐߢ㜞ノᐲశ X ✢ߣߩ⋧ᕈࠍ⌀ߦታߢ߈ࠆޕ (4) ᱷ⇐ᔕജ᷹ቯⵝ⟎ ਛᕈሶߩㅘㆊᕈࠍ↪ߒߡ᭴ㅧ᧚ᢱߩౝㇱߩᱡߺಽᏓࠍ᷹ቯߔࠆⵝ⟎ߢࠆޕ1mm3 ߩࠥࠫࡏࡘࡓ ᷹ⷰㇱኈ㊂ࠍޔ 10-4ޯ10-5 ߩᱡߺ᷹ቯ♖ᐲߢޔ10 ಽ㑆ߦ᷹ቯ߇น⢻ߢࠆߩ⟎ⵝޕ᭴ㅧߪ㜞ਅ᭴ㅧ⸃ᨆⵝ⟎ߣㅢߔࠆὐ߽ᄙޕ 17 H2O ice ͈೩أഢ֊̷͈͈ાρζϋ༹ͥ͢ͅ۷ख़ 㒐ⴡᄢቇᩞᔕ↪ൻቇ⑼ ศ ᐘᶈ ˍȅ͉̲͛ͅ! ⦟ߊ⍮ࠄࠇߡࠆࠃ߁ߦ H2O ߩ⋧࿑ߪⶄ㔀ߢޔ߹ߢߦḰቯߥ߽ߩࠍߡ 15 ⒳㘃એ߽ߩ⇣ߥࠆ⋧߇ࠆߎ ߣ߇ႎ๔ߐࠇߡࠆ[1-4]ᦨޕㄭߩ࠻ࡇ࠶ࠢࠬߩ৻ߟߣߒߡޔ᳖ V ߣ VI ⋧ߩߘࠇߙࠇߩ⒎ᐨ⋧ߣߒߡ Salzmann ࠄ߇ᣂ ߚߦ᳖ XIII, XIV ⋧ࠍ⊒ߒߚߎߣ߇ߍࠄࠇࠆ[4]ޕḰቯ᳖ߦߟߡߪޔMishima ࠄ[5]ߦࠃࠆᏱ᳖ Ih ߆ࠄ㜞ኒᐲ㕖 ᥏⾰᳖(HDA)߳ߩォ⒖ߩ⊒ߦࠃࠅޔH2O ߩ㕖᥏⾰᳖ߦߪૐኒᐲ㕖᥏⾰᳖(LDA)ߣวࠊߖߡዋߥߊߣ߽ 2 ⒳㘃߇ሽߔ ࠆߎߣߦߥࠆޕട߃ߡᄢᄌ⥝ᷓታߪޔ᷷ᐲ 120-140K ઃㄭߦ߅ߡߪޔLDA ߣ HDA ߩ㑆ߢജᄌൻߦࠃࠅนㅒ ߦ⋧ォ⒖ߔࠆߎߣߢࠆ[6]ߩࠄࠇߎޕታ߆ࠄ ࠆࠁࠊޔㆊ಄ළ᳓ߩૐ᷷⇣Ᏹᕈࠍᶧ㧙ᶧ⋧ォ⒖⺑߆ࠄ⺑ߔ ࠆ⹜ߺ߽ࠆ[ޕ7] ߎߩࠃ߁ߥ⢛᥊ߦ߽ߣߠ߈ޔᚒߪޘૐ᷷᧦ઙਅߢߩḰቯ᳖ࠍߚ᳖ߩ⋧ߩ⚦ߦߟߡ߹ߛ߹ߛ⺞ߴࠆ߇ࠆ ߣ⠨߃⎇ⓥࠍⴕߞߚޔߪߢߎߎޕਥߣߒߡߘߩ႐ࡑࡦಽశᴺࠍ↪ߡᓧࠄࠇߚ⚿ᨐߩߊߟ߆ࠍ⚫ߔࠆޕ ˎȅࡑ༹༷! ߘߩ႐㜞ࡑࡦࠬࡍࠢ࠻࡞ߪޔ㗼ᓸࠩࡑࡦಽశశᐲ⸘ࠍ↪ ࠩࡦࠝࠗࡦࠧ࡞ࠕޔ514.5nm, 350mWࠍ ബశḮߣߒߡᓟᣇᢔੂᴺߢ᷹ቯߒߚޕജ⊒↢ⵝ⟎ߣߒߡࠊࠁࠆ Mao-Bell type ߩ࠳ࠗࡗࡕࡦ࠼ࠕࡦࡆ࡞࡞ࠍ↪ ߒߚޕ ˏȅ͈ࠫضતٚ! 4.2!ࣞգຕ ice VII’ & ice VIII ͈૧̱̞ࢹ௮ഢ֊ȉ! ᳖ VIII ⋧ࠍᶧ⓸⚛᷷ᐲ⒟ᐲߩૐ᷷ਅߢ৻᳇ߦ࿁ߔࠆߣޔ 㧔߅ߘࠄߊ 2-3GPa ߚࠅߢォ⒖߇߅ߎࠅ㧕ࠝࠫ࠽ ࡞ߩ᳖ VIII ߣߪዋߒ᭴ㅧߩ⇣ߥࠆ߽ߩ߇ߢ߈ࠆน⢻ᕈ߇ႎ๔ߐࠇߡࠆ[8]ޕߩߚߦߩߎޔ᳖ߪ VIII’ ⋧ߣ߫ࠇߡ ࠆޕ ᚒޔߪޘ᳖ VIII ⋧߆ࠄࠊࠁࠆኻ⒓᳖ X ⋧ߦォ⒖ߔࠆ߹ߢߩ㑆ߦ߅ߡᧄޔᒰߦቯߥ⋧ߢࠆߩ߆ߦ⥝ࠍ߽ߞ ߡታ㛎ࠍⴕߞߚࡦࡑޕಽశᴺߣశ X ✢ APSࠍ↪ߡޔ80K ߢ⚂ 20GPa ߹ߢടߔࠆߎߣߦࠃࠅߘߩ႐᷹ቯࠍ ⹜ߺߚ⚿ߩߘޕᨐߦ․ޔૐᝄേࡑࡦࠬࡍࠢ࠻࡞ߦ߅ߡ 10GPa ߢ TzA1g+Tx,yEg lattice mode ߇ᶖᄬߒ ⚂ޔ14GPa ઃㄭߢ⓭ὼᣂߚߥࡃࡦ࠼߇ߔࠆࠍߒߚ[ޕ9]߹ߚߎࠇࠄߪ XRD ߩ⚿ᨐߣ߽ᔕߒߡߚޔߦࠄߐޕ᳖ VII’ ⋧ߦ߅ߡ߽ห᭽ߥᄌൻ߇ߎࠆߎߣࠍ⏕ߒߡࠆ[ޕ10] 4.3!ice VII’̥ͣ೩ྟഽͺκσέΑຕ(LDA)͈͒ೄ୪ഢ֊! వߦ Hemley ࠄ[1]ߪૐ᷷ߢ᳖ Ih ߆ࠄォ⒖ߒߚ HDA ࠍߘߩ߹߹ടߒ⛯ߌߡߊߣ᳖ VII’ ⋧ߦォ⒖ߔࠆߎߣࠍ⊒ ߒߚߒ߽ޔߢࠈߎߣޕ᷷ᐲࠍ৻ቯߦߜߥ߇ࠄߎߩ᳖ VII’ ⋧ߩജࠍᛮߡߊߣߤ߁ߥࠆߩ߆ߦߪ⥝߇߽ߚࠇࠆޕ ᳖ VII’ ⋧ߩ߹߹৻᳇ߦ࿁ߢ߈ࠆߩ߆⋧ߪࠆޔォ⒖߇߈ࠆߩߛࠈ߁߆㧫߽ߒ ߣࠆߔߣࠆ߈ޔHDA ⋧ߦォ ⒖ߔࠆߩ߆ޔߩ⋧ߥߩ߆ޕ ᧄ⎇ⓥߢߪޔ᷷ᐲࠍ 135K ߦߜߥ߇ࠄ᳖ VII’ ⋧߆ࠄജࠍᷫߒߡߊㆊ⒟ߩߘߩ႐ࡑࡦࠬࡍࠢ࠻࡞ᄌൻࠍⷰ ኤߒޔ᳖ߩ⋧ᄌൻࠍ⺞ߴߚޕᓧࠄࠇߚ⚿ᨐ߆ࠄォ⒖ߒߚ⋧ߪ LDA ߢࠆߎߣ߇ಽ߆ߞߚ⋧ߩߎޔߦࠄߐޕォ⒖േߪ ォ⒖ߩㆊ⒟ߢߩਛ㑆߇ߢ߈ࠆߩߢߪߥߊޔ᳖ VII’ߣ LDA ߩ mixture ߇ߢ߈ߟ߆ޔਇㅪ⛯ߦߎࠆߎߣ߆ࠄ৻ᰴォ ⒖ like ߢࠆߎߣࠍ␜ߒߡࠆ[ޕ11] 4.4!ഩٜৗକဣסಎ͈ຕ͈ࣞգഢ֊࡛ય! Ᏹਅߢ㔚⸃⾰᳓ṁᶧࠍ಄ළߒߡಓࠄߖߚ႐วޔㅢᏱ࿕ṁߪᒻᚑߖߕޔ᳓⚛⚿วߒ߿ߔㇱಽߩ᳓ߩߺ߇⚿᥏ࠍᒻ ᚑߒޔႮࠍㇱಽߩ᳓ߪ᳖ߣߥࠄߕߦ᳖߆ࠄಽ㔌ߔࠆޕᚒߩߎޔߪޘ㔚⸃⾰᳓ṁᶧਛߩ᳖߽ห᭽ߦޔടߦࠃࠅࠕࡕ ࡞ࡈࠔࠬ⁁ᘒߦߥࠆน⢻ᕈ߇㜞ߣ⠨߃ߚ߽߆ߒޕ㔚⸃⾰ߦࠃߞߡߩࠢ࡞ࡃޔ᳖ߩࡀ࠶࠻ࡢ㧙ࠢ᭴ㅧ⥄߽ࠆ⒟ᐲ⎕ უߣࠆߡࠇߐੂߪࠆޔ⠨߃ࠄࠇࠆߩߢޔ᳖ Ih ߆ࠄ HDA ߦォ⒖ߔࠆ႐วߩജࠃࠅ߽ૐജߢ߈ࠆߩߢߪߥ ߆ߣ੍ᗐߒߚޕ ᧄ⎇ⓥߢߪޔ಄ළߦࠃࠅኈᤃߦࠟࠬᒻᚑߔࠆ㔚⸃⾰᳓ṁᶧߩ㧝ߟߢࠆႮൻ࠴࠙ࡓ᳓ṁᶧߣߪߣࠇߘޔኻᾖ⊛ߦㅢᏱ ߩ಄ළㅦᐲߢߪࠟࠬൻᒻᚑߒߦߊႮൻࠞ࠙ࡓ᳓ṁᶧਛߦᒻᚑߐࠇࠆߘࠇߙࠇߩ᳖ߦߟߡޔᶧ⓸⚛᷷ᐲߢ⚂ 1 GPa ⒟ᐲ߹ߢടߔࠆߎߣߦࠃࠅޔฦ⹜ᢱ᳓ṁᶧਛߩ᳖ߩ⋧ᄌൻࠍ⺞ߴߚޕᓧࠄࠇߚ⚿ᨐߪᄢᄌ⥝ᷓߊޔႮߩ㆑ߦࠃࠅᓧ ࠄࠇࠆ⚿ᨐ߇ోߊ⇣ߥߞߚޕႮൻ࠴࠙ࡓ᳓ṁᶧਛߩ᳖ߩ႐วޔૐ᷷ߢ⚿᥏ൻߐߖߡടߒߚᤨߦṁᶧਛߦ↢ᚑߒߚ᳖ߪޔ ᳖ Ih ߆ࠄ HDA ߳ߩォ⒖ߩ႐วߣห᭽ߦࠕࡕ࡞ࡈࠔࠬൻߔࠆߎߣ߇ಽ߆ߞߚ߇ޔォ⒖ജ߇᳖ Ih ߆ࠄ HDA ߳ォ⒖ߔࠆߣ ߈ߩജߩ⚂ඨಽߢࠆ⚂ 0.5GPa ߢߞߚ[12]ޔ߇ࠈߎߣޕႮൻࠞ࠙ࡓ᳓ṁᶧਛߦᒻᚑߐࠇࠆ᳖ߩ႐วߪޔ0.8GPa ઃㄭߦ߅ߡ᳖ VII’ߦォ⒖ߔࠆߎߣ߇ಽ߆ߞߚ[13]ޕ 18 ४ࣉࡃ! [1] R. J. Hemley, et al., Nature, 338, 638 (1989). [2] C. Lobban, et al., Nature, 391, 268 (1998). [3] T. Kawamoto, et al., J. Chem. Phys., 120, 5867 (2004). [4] C. G. Salzmann, et al., Science, 311, 1758 (2006). [5] O. Mishima, et al., Nature, 310, 393 (1984). [6] O. Mishima, J. Chem. Phys., 100, 5910 (1994). [7] O. Mishima, H. E. Stanley, Nature, 396, 329 (1998). [8] J. M. Besson, et al., Phys. Rev. B, 55, 11191 (1997). [9] Y. Yoshimura, et al., J. Chem. Phys., 124, 024502 (2006). [10] S. T. Stewart, et al., Annual APS March Meeting 2004. [11] Y. Yoshimura, et al., Chem. Phys. Lett., 420, 503 (2006). [12] Y. Yoshimura, H. Kanno, J. Phys. Cond. Matt., 14, 10671 (2002). [13] Y. Yoshimura, et al., Chem. Phys. Lett., 400, 511 (2004). ຕ̤͍͢·ρΑτȜΠΧͼΡτȜΠ͈ޑညഩ! Ƚຕഛఘඤ໐͈ίυΠϋ͈ݷ൲Ƚ ේሶജᯏ᭴ ᷓỈ 㜞ਅߩ᳖⚿᥏ߩࡊࡠ࠻ࡦߪ᷷ᐲࠍਅߍࠆߣ⋥ߜߦ⒎ᐨൻߔࠆޔ ߇ࠈߎߣޕᄢ᳇ਅߦ߅ߌࠆޟㅢᏱߩޠ᳖ߩࡊࡠ࠻ ࡦߪޔ㕖Ᏹߦૐ᷷ᐲߦ߅ߡ߽ޔታ㛎ቶߩᤨ㑆ࠬࠤ࡞ߢߪή⒎ᐨߥ㈩⟎ࠍ⛽ᜬߔࠆޕߥࠄߩࡦ࠻ࡠࡊޔ⒎ᐨൻߪ ᷹ቯਇน⢻ߥ߶ߤ✭ᘟߛ߆ࠄߢࠆޔߢߎߘޕᰴߩ㗴߇⎇ⓥ⠪ࠍ㝯ੌߒ⛯ߌߡ߈ߚޕහߜޔᒝ⺃㔚ᕈߩࡊࡠ࠻ࡦ⒎ᐨ᳖ ߪ᳖ߩૐ᷷⋧ߣߒߡሽߔࠆߩ߆ߢࠆޕర᧪ߩߎޔ㗴ߪ࿕‛ℂቇߩಽ㊁ߢ⼏⺰ߐࠇߡߚ߇ᦨޔㄭޔᄤᢥቇߩಽ㊁ ߢ߽㗴ߣߥߞߚޔߪࠇߘޕ₺ᤊߦᒝ⺃㔚ߩ᳖߇ሽߔࠆ߆ุ߆ߢࠆޕ ᧄ⎇ⓥળߢߪޔᒝ⺃㔚ߩ᳖߇ቯ⋧ߢࠆߎߣࠍ⏕ታߦ␜ߒߚ᭴ㅧ⊛⸽ࠍਛᕈሶ࿁᛬ߩታ㛎߆ࠄ␜ߔޕਛᕈሶߩታ 㛎߆ࠄ߽ᦨޔዋߥࡌ࡞ߩਇ⚐‛ߩ࠼ࡇࡦࠣߦࠃߞߡᦨᄢߩᒝ⺃㔚ߩ᳖߇⊒↢ߔࠆߎߣ߇ࠊ߆ߞߚ⚿ߩߎޕᨐߪޔ ዉߒߚਇ⚐‛߇ࡊࡠ࠻ࡦߩ⒎ᐨൻࠍታ㛎ቶߩᤨ㑆ࠬࠤ࡞߹ߢ⍴❗ߐߖࠆ⸅ᇦߣߒߡ↪ߒߡࠆߎߣࠍᡰᜬߔࠆ߽ߩ ߢࠆޔߚ߹ޕਛᕈሶ࿁᛬ታ㛎ߩᄖᝌߪޔ᥉ㅢߩ᳖߇ᄤᢥቇ⊛ᤨ㑆ࠬࠤ࡞ߢᒝ⺃㔚ߩ᳖ߦᄌൻߔࠆߎߣࠍ␜ߔޕᓥߞ ߡޔቝቮߦߪᒝ⺃㔚ߩ᳖߇ሽߒߡ߅ࠅߪࠇߘޔᖺᤊតᩏߣᄤ᷹ⷰߢ⊒ߢ߈ࠆߣᦼᓙߐࠇࠆޕᄖᖺᤊ߿ⴡᤊߩ৻ㇱޔ ࠞࠗࡄࡌ࡞࠻ޔಽሶ㔕╬ߦᒝ⺃㔚ߩ᳖߇ሽߔࠆߛࠈ߁ޕ ₺ᤊߦߟߡߒߊ⸥ㅀߔࠆߣޔᄤ㕙ߩ᳖ߪ᷷ᐲ߇߆ߦૐߔ߉ࠆ߇ޔᄤౝㇱߩ᳖ߪᒝ⺃㔚߳ߩᄌൻߦㆡߔ ࠆ᧦ઙࠍߒߡࠆޕ₺ᤊߢߪᄤౝㇱߩ᳖߇ᵹേߦࠃࠅ㕙߳⒖േߒߡࠆߎߣ߇ᜰ៰ߐࠇߡ߅ࠅ⋧ޔߟ߆ޔォ⒖ὐ ࠃࠅ᷷ᐲ߇ߔࠆน⢻ᕈ߇߶߷ߥߩߢޔ₺ᤊߩ㕙ߦሽߔࠆ᳖߇ᒝ⺃㔚ߢࠆน⢻ᕈߪ㜞ޕ ຕഛఘ͈ඤ໐ၠ൲ Ꮊᄢℂ ਭ ㄭᐕޔᄥ㓁♽ౝߩߺߥࠄߕ♽ޔᄖᖺᤊߩਛߦ߽᳖ࠍਥᚑಽߣߔࠆޟ᳖ᄤ߇ޠᢙᄙߊሽߔࠆߎߣ߇ࠄ߆ߦߥߞߡ߈ ߚߩߘޕ㝯ജߪੱޔᎿⴡᤊតᩏ߿ฦ⒳᷹ⷰߦࠃߞߡࠄ߆ߦߐࠇߟߟࠆ᳖ᄤߩᄙ᭽ᕈߢࠆޕ᳖ߩᵹേ․ᕈߪᄢ߈ߐ ߿ኒᐲߣਗࠎߢߘߩ᳖ᄤࠍ․ᓽߠߌࠆ㊀ⷐߥ‛ᕈߢࠅޔᄤౝㇱߩᾲャㅍߣ࠳ࠗ࠽ࡒࠢࠬࠍᡰ㈩ߒޔ᳖ᄤߩㅴൻޔ ౝㇱ᭴ㅧޔౝㇱᶏߩήޔ㕙ᒻߩᄙ᭽ᕈޔầ᳤ജ߳ߩജቇ⊛ᔕ╵ߥߤࠍℂ⸃ߔࠆ߁߃ߢᔅⷐਇนᰳߥࡄࡔ࠲ߢ ࠆޔߦ⥸৻ޕᤊߩ᳖ⴡᤊ Iapetus, Rhea ߿ Triton, Pluto ₺ᤊߥߤඨᓘ߇⚂ 700km ࠍ߃ࠆ㧔ૐኒᐲ㧕᳖ᄤߢ ߪߩߘޔౝㇱߦ᳖ߩ㜞⋧߇ሽߢ߈ࠆ᧦ઙ߇ታߒߡ߅ࠅޔGanymede, Calisto, Titan ߥߤඨᓘ߇ 2500km ߦ㆐ߔࠆ ࠃ߁ߥ᳖ᄤߩਛᔃᩭߢߪޔIce VII ߇ሽߔࠆജߦ㆐ߒߡࠆޔߚ߹ޕUranus ᄤ₺ᤊ߿ Neptune ᶏ₺ᤊߥߤᄥ 㓁♽ౝᏂᄢ᳖ᖺᤊߢߪෘᄢ᳇ߩߚߦ࿕ߩ᳖ߪሽߒߥߣ⠨߃ࠄࠇࠆ߇♽ޔᄖᖺᤊߦߪᄤ₺ᤊࠃࠅ߽ዊߐ߇ ߩ㧡߶ߤߩ⾰㊂ࠍᜬߟ sub-Neptune-mass cool planets ߇⊒ߐࠇߡ߅ࠅ [1, 2] ߪߢߎߘޔIce VII ߇ਥⷐߥࡑࡦ࠻࡞ 19 ㋶‛ߣߥߞߡࠆߣ੍ᗐߐࠇࠆޕ᳖ߩ㜞⋧ߩᵹേ․ᕈߪޔPoirier (1982) [3]ߦઍߐࠇࠆࠃ߁ߦߘߩ㊀ⷐᕈ߇એ೨߆ࠄ ᜰ៰ߐࠇߡ߅ࠅߩߘޔᓟࠕࡕࡃࠬࡦࡠޔ࿖┙⎇ߩ Durham ࠄߩࠣ࡞ࡊ߇ਛᔃߣߥߞߡᲧセ⊛㜞ᔕജਅޔਥߦォ ࠢࡊ㗔ၞߢߩ Ice VI ߹ߢߩࠝࡠࠫ߇ࠄ߆ߦߐࠇߚ[4]ޔߒ߆ߒޕኻᵹㆇേߔࠆ᳖ᄤౝㇱߩᵹേᔕജߪᭂ ߡૐ 0.1MPa એਅߣߐࠇߡ߅ࠅߪߢߎߘޔߩᵹേᯏ᭴߇ථߔࠆน⢻ᕈ߇㜞㧔࿑㧝㧕ޕ ᧄ⊒ߢߪᦨޔㄭ Ice I ߅ࠃ߮ Ice II ߢ⋧ᰴߢ⊒ߐࠇߚ ૐᔕജਅߢථߔࠆ᳖ߩᵹേᯏ᭴[5-7]ߣߘߩ᳖ᄤౝㇱ࠳ࠗ ࠽ࡒࠢࠬ߳ߩᗧ⟵[8-10]ߦߟߡ◲ޔනߦࡆࡘߔࠆޕ ߇ࠇ߫ߊోߛᧂޔࠄ߆ߦߐࠇߡߥ Ice VII ߩࠝࡠ ࠫߦ㑐ߒߡޔDeformation DIA (D-DIA)㜞ᄌᒻⵝ⟎ߣ X ✢࿁᛬߽ߒߊߪਛᕈሶ࿁᛬ࠍ⚵ߺวࠊߖߚ႟ᕈᄌᒻታ㛎ߦߟ ߡ◲ޔනߦ⸅ࠇߚޕ [1] Beaulieu et al., Nature 439, 437 (2006) [2] Kerr, Science 311, 453 (2006) [3] Poirier, Nature 299, 683 (1982) [4] Durham et al., in Solar System Ices, 63-78 (1998) [5] Goldsby & Kohlstedt, Scr. Mater. 37, 1399 (1997) [6] Goldsby & Kohlstedt, J. Geophys. Res. 106, 11017 (2001) [7] Kubo et al., Science 311, 1267 (2006) [8] Pappalardo et al., Nature 391, 365 (1998) [9] McKinnon, Geophys. Res. Lett. 26, 951 (1999) [10] Sammonds, Science 311, 250 (2006) ΄ΑΧͼΡτȜΠ͈ࣞգհ͂ࡽैဥ ╳ᵄᄢ ㅴൻ ᐔ ኼሶ৻⌀ ↰↸ޔ ↥✚⎇ ጊᧄ ૫ቁޔᎹ ᄥ㇢ ᧲ᄢ‛ᕈ⎇ ᧁ ஜᒾ ࠟࠬࡂࠗ࠼࠻ߪޔ᳓ಽሶ߇᳓⚛⚿วߢᒻᚑߔࠆࠤࠫ㧔ࡎࠬ࠻ߣ߁㧕ਛߦࠬࠟޔಽሶ߿ේሶ㧔ࠥࠬ࠻ߣ߁㧕߇ ౝ൮ߐࠇߚࠢࠬ࠻ࡂࠗ࠼࠻ߣޔ᳖ߩᄙᒻ᭴ㅧߩ㓗㑆ߦࠥࠬ࠻߇ଚߒߚ filled ice ᭴ㅧဳߩࡂࠗ࠼࠻߇ ࠆޕㄭᐕߩ㜞ታ㛎ߦࠃߞߡߩ࠻࠼ࠗࡂࠬࠟߩ࠻ࠬࠥߥ߹ߑ߹ߐޔ㜞⋧ᄌൻ߇ࠄ߆ߦߐࠇޔജߣࠥࠬ࠻ࠨࠗ࠭ ଐሽߩࠟࠬࡂࠗ࠼࠻⋧ᄌൻߩⷰ߇ႎ๔ߐࠇߡࠆ[1]ߩߎޕਛߢ[࠻࠼ࠗࡂࡦ࠲ࡔޔ2]ߣ᳓⚛ࡂࠗ࠼࠻ߪ㓙 ┙ߞߚ㜞ቯᕈࠍ␜ߒ࠻ࠬࡎޔ㧙ࠥࠬ࠻㑆ߩ⋧↪߇ቯᕈߦነਈߒߡࠆߎߣ߇੍᷹ߐࠇࠆޕᚒ৻ߩޘㅪߩ⎇ⓥߢ ߪߦ࠻࠼ࠗࡂࡦ࠲ࡔޔ㑐ߒߡߪࡦࡑޔಽశߦࠃߞߡࡦ࠲ࡔޔಽሶ߇㜞ਅߢ㈩ะ⒎ᐨൻࠍߎߒ⺃ߦࠇߎޔᒁߐࠇ ߚ⋧↪߇㜞ቯᕈࠍ⸽ߒߡࠆߎߣࠍ␜ߒߚ[3]ޔߚ߹ޕfilled ice ᭴ㅧဳߩ᳓⚛ࡂࠗ࠼࠻ߦ㑐ߒߡߪޔ᳓ಽ ሶߩࠆࡈࡓࡢࠢߣ᳓⚛ಽሶߩ㑆ߦ⋧↪߇↢ߓߡࠆߎߣࠍߒߚ[4]ߩࠄࠇߎޕಽሶ㑆⋧↪ߩ߶߆ޔ ᳓⚛⚿วߩኻ⒓ൻߩࠃ߁ߥޔ᳓ಽሶ߇ࠆࡈࡓࡢࠢ⥄りߩၷ࿕ൻ߽ࠟࠬࡂࠗ࠼࠻ߩ㜞ቯᕈߦነਈߔࠆ㊀ⷐ ߥⷐ⚛ߣ⠨߃ࠄࠇࠆޕ⋧ߩࠄࠇߎޔ↪ߪਥߦಽశቇ⊛ᣇᴺߦࠃߞߡ߃ࠄࠇߡࠆ߇ޔਛᕈሶ࿁᛬ߦࠃࠅ᳓⚛ߩ ⟎߇⋥ធ᳞ࠄࠇࠇ߫ࠅࠃߪ⺰⼏ߩࠄࠇߎޔ⏕ߦߥࠅޔߚ߹ޔᣂߒ‛ᕈ⎇ⓥ߇ዷ㐿ߐࠇࠆߣᦼᓙߐࠇࠆޕ [1] H. Hirai et al., J. Phys. Chem. Solid, .65, 1555-1559 (2004). [2] H. Hirai et al., Phys. Rev. B, 68 [17], 172102-1㧙172102-4 (2003). [3] H. Hirai et al., Amer. Mineral., 91,826-830 (2006). [4] H. Hirai et al., J. Phys. Chem. B (2006) (in press). 20 Theory and computation of hydrous minerals and melt under high pressure ᗲᇫᄢᷓㇱ⎇ ደ ථਭ ㊂ሶജቇߩၮᧄේℂ߆ࠄ⊒ߔࠆ╙৻ේℂ⸘▚ᴺߪ⚻ޔ㛎ࡄࡔ࠲ࠍ৻ಾ↪ߥߦ߽߆߆ࠊࠄߕ᭽߿⾰‛ߥޘൻቇ ⚿วߦ᳢↪⊛ߦㆡ↪น⢻ߥߎߣ߆ࠄߦ․ޔታ㛎߇࿎㔍ߥᭂ┵᧦ઙਅߩ‛ᕈ⎇ⓥߦ߅ߡᭂߡ↪ߥᣇᴺߢࠆޕᚒߩޘ ࠣ࡞ࡊߢߪ৻╙ߩߎޔේℂ㔚ሶ⁁ᘒࠪࡒࡘ࡚ࠪࡦߩᣇᴺࠍ↪ߡᷓㇱ‛⾰ޔ᳓ࠤࠗ㉄Ⴎߩߤߥޔࡑࠣࡑޔ㜞 ᷷㜞‛ᕈߦ㑐ߔࠆ⎇ⓥࠍⴕߞߡࠆ⚿ߩߘޕᨐߦߢ߹ࠇߎޔਥⷐࡑࡦ࠻࡞‛⾰ SiO2, (Mg,Fe)SiO3, (Mg,Fe)O ߩ⋧ᐔⴧ ߿ᾲᒢᕈ․ᕈޔ㜞᳓㋶‛ AlOOH, phase D ߦ߅ߌࠆ㜞᳓⚛⚿ว⁁ᘒߥߤߦ㑐ߒߡᚑᨐ߇ᓧࠄࠇߡࠆޔߢ⊒ᧄޕ ߎࠇࠄߩਛ߆ࠄ․ቯ㗔ၞ⎇ⓥޟ㜞ਛᕈሶ⑼ቇߦޠ㑐ଥߔࠆ߽ߩࠍ⚫ߔࠆޕ କளΧͼΡτȜΠ͈௸̞ঊڐ८! Ƚࡥఘ͈ಎ͈סఘȝ! ฬฎደᄢቇ㜞╬⎇ⓥ㒮 ᅏ ᜏ↢ ᳓⚛ࡂࠗ࠼࠻ߪ H2O ߣ H2 ߩಽሶ㑆ൻว‛ߢࠅ⚵ߩߎޔวߖߦജࠍട߃ࠆߎߣߦࠃࠅวᚑߐࠇࠆߪࠇߘޕᄢ ㊂ߩ᳓⚛ࠍๆน⢻ߢࠅߚ߹ޔൻቇ⊛ߦࠢࡦߢࠆߚߩઁޔߣ߽లಽߦ┹วߒ߁ࠆ᳓⚛ࠛࡀ࡞ࠡߩ⾂⬿‛ ⾰ߣߒߡޔ᧪߇ᦼᓙߐࠇߡࠆߦࠄߐޕᖺᤊ⑼ቇߩ㗴᧚ߣߒߡߪޔᄥ㓁♽ᄖㇱߩᖺᤊⴡᤊࠍߟߊࠆ̌㋶‛̍ߣߒ ߡ㊀ⷐߥ‛⾰ߢࠆߒ߆ߒޕ᳓⚛ࡂࠗ࠼࠻ߪᏱߦ⟎ߊߣㅦ߿߆ߦಽ⸃ߒߡߒ߹߁ߚߒߩߘޔᕈ⾰ߩℂ⸃ߪ ߹ࠅㅴࠎߢߥޕ᳓⚛ߪ H2O ಽሶ߇ߟߊࠆᩰሶߩ㓗㑆ߦࠥࠬ࠻ߣߒߡขࠅㄟ߹ࠇࠆ߇ߩ࠻ࠬࠥߩߎޔャㅍߦ㑐ߔࠆ⎇ ⓥߪ․ߦㆃࠇߡ߅ࠅ߇ࠇߘޔ㜞ߘߩ႐ߢ᷹ቯߐࠇߚߪߎࠇ߹ߢߦሽߒߥ߆ߞߚޕ ᚒߪޘ㜞ኈེౝߢࠟࠬࡂࠗ࠼࠻ࠍวᚑߒߥ߇ࠄߩߘޔ႐ߢหᤨߦ㜞ಽ⸃⢻ NMR ࠍⴕ߁ߎߣ߇น⢻ߥޔᣂߒ ታ㛎ᛛⴚࠍߟߊߞߡ߈ߚ[1-4]ޕ࿁ޔ᭴ㅧ߇⇣ߥࠆਃ⒳ߩ᳓⚛ࡂࠗ࠼࠻ ࠅ߹ߟޔType II ࠢࠬ࠻ޔfilled-ice IIޔ filled-ice Ic ߩฦ⋧ߦߟߡߩߎޔᛛⴚࠍᔕ↪ߒߡᣂߚߥ⚿ᨐࠍᓧࠆߎߣ߇ߢ߈ߚࠅ߹ߟޕ㜞 NMR ߩᚻᴺߦࠃߞߡޔ (1)㕖⎕უߢ(2)⹜ᢱࠍⷰኤߒߥ߇ࠄ(3)ജࠍᄌൻߐߖߟߟ(4)ቯ㊂ޔ᭴ㅧ⸃ᨆޔಽሶㆇേ⸃ᨆࠍหᤨߦⴕ߁ߎߣߦᚑഞߒߚޕ NMR ࠬࡍࠢ࠻࡞ߪޔൻቇࠪࡈ࠻߹ߚߪ✭ᤨ㑆ߦࠃߞߡߢ߈ࠆ 3 ߟߩᚑಽ㧔H2O ਛߩࡊࡠ࠻ࡦޔH2 ᳇ޔH2 ࠥࠬ ࠻㧕߆ࠄ᭴ᚑߐࠇࠆޕH2 ᳇ߣ H2 ࠥࠬ࠻ߪ߶߷หߓൻቇࠪࡈ࠻ࠍᜬߟ߇ޔߦ⇣ߥࠆ✭ᤨ㑆ߦࠃߞߡߔࠆߎߣ ߇ߢ߈ߚޕᚒ ߪޘ1 ᳇߆ࠄ 4GPa ߹ߢߩⶄᢙജߦ߅ߡޔH2 ࠥࠬ࠻ᚑಽߩ✭ᤨ㑆߹ߚߪ⏛႐൨㈩ࠍ↪ߡߩߘޔ ᢔቯᢙࠍ᷹ቯߒߚ⚿ߩࠇߕޕᨐ߽ޔᩰሶਛߢߩ᳓⚛ߩಽሶャㅍߪ 10-8cm2/s ⒟ᐲߢ☼ޔᐲߩ㜞ᶧߥߺߩ୯ߢࠅޔ ࿕ਛߦ߅ߌࠆᢔߣߒߡߪ⇣Ᏹߦㅦ୯ߢࠆߎߣ߇␜ߐࠇߚߥ߁ࠃߩߎޕ᳓⚛ಽሶߩㅦᢔߪߩߘޔวᚑ⾂⬿ ಽ⸃ᛛⴚࠍߟߊࠆߢ㊀ⷐߢࠆߣߣ߽ߦޔ᳖ᖺᤊⴡᤊߩㅴൻࠍ⠨߃ࠆߢ߽ᣂߒ␜ໂࠍਈ߃ࠆޕ ᧄ⎇ⓥߪޔR.J. Hemley, H.K. Mao, J. Shu (Geophysical Laboratory, Carnegie Institution of Washington)ޔἏᎹੳ㨯 ᧁஜᒾ㧔᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ㧕߅ࠃ߮ J.A. Ripmeester, I.L. Moudrakovski (Steacie Institution of Molecular Sciences, National Research Council of Canada)ߣߩห⎇ⓥߢࠆޕ [1] ᅏᜏ↢, 㜞ജߩ⑼ቇߣᛛⴚ: 15, 324 (2005) [2] Okuchi, T., et al., J. Chem. Phys. 122, 244509 (2005) [3] Okuchi, T., et al., Rev. Sci. Instrum., 76, 026111 (2005) [4] Okuchi, T. Phys. Earth Planet. Inter., 143, 611 (2004) ιΕεȜρΑΏςඤͅݟ̱̹କ͈ࢹ௮͂Θͼη·Α! 㜞ࠛࡀᯏ᭴ ᄢ ቄ ේሶജᯏ᭴ 㜞↰ ᘕ৻ ⼾↰ਛ⎇ ἑᚭጊ ᓼᒾޔፉ ༑┨ ේሶജᯏ᭴ Ⓑ ᵏᒄ ᧲ᄢ‛ᕈ⎇ ጊቶ ୃ ጀ⁁ࠪࠤ࠻ߢࠆࠞࡀࡑࠗ࠻߆ࠄวᚑߐࠇߚ FSM16 (Folded Sheets Mesoporous materials)ߪޔ࿑ 1 ߩ౮⌀ߩ᭽ ߦ⋥ᓘ⚂ 3nm ߩ⚦ሹ߇ⷙೣ⊛ߦ㈩ߒߩⱎޔᎽ⁁ߩ᭴ㅧࠍᒻᚑߒߡࠆ․ޕᓽߣߒߡޔḨᐲᄌൻߦࠃࠅߘߩ⚦ሹౝߦ᳓ 21 ಽሶ߇ๆ⌕⣕⌕ߔࠆߎߣ߆ࠄ⺞ޔḨ᧚ޔ᳓ಣℂๆ⌕᧚ޔṁ࿁᧚ߩ↪ㅜ ߦᦼᓙߐࠇߡࠆ᧚ᢱߢࠆޕᲧ㕙Ⓧߪ 1000m2/g ࠍ߃⚦ޔሹኈⓍߪ 1cc/g ߦ߽㆐ߔࠆ⚦ߩߘޕሹ㛽ᩰߪࠪࠞࠟࠬߣห᭽ߦ[SiO4]࡙࠾࠶࠻߇ ࡀ࠶࠻ࡢࠢ⁁ߦ⚿วߒߡ߅ࠅ⚦ޔሹౝ㕙ߦߪࠪࡁ࡞ၮ㧔-Si-OH㧕 ߇ሽߔࠆޕ᳓⫳᳇ࠍᓮߒߡ FSM ߦ᳓ࠍๆ⌕ߐߖࠆߣޔ࿑ 1 ߩታ✢ߩ ᭽ߥๆ⌕ᦛ✢߇ᓧࠄࠇࠆޕP/P0=0.4㧔ࡕࡁࠗࡗጀ㧕ઃㄭ߹ߢߪࠪޔ ࡁ࡞ၮߣߩ᳓⚛⚿วߦࠃࠅๆ⌕ߒޔP/P0=0.5 ઃㄭߦߥࠆߣᲫ▤ಝ㓸ߦࠃ ࠅᕆỗߦ᳓ಽሶ߇ๆ⌕ߒ࡞ࡈޔలႯߐࠇࠆߣ⠨߃ࠄࠇߡࠆߩߎޔߒ߆ߒޕ ᭽ߥ⚦ሹౝ߳ߩ᳓ಽሶๆ⌕ᯏ᭴߮⚦ሹౝๆ⌕᳓ߩ᭴ㅧ߿࠳ࠗ࠽ࡒࠢࠬߩ ⚦ߪᧂߛ⸃ߐࠇߡߥߩ߇⁁ߢࠆ⎇ᧄޕⓥߢߪߕ߹ޔ࿑ 1 ╬᷷ๆ ⌕ᦛ✢ߩ 2ޯ7 ߦᴪߞߡ FSM ߦ᳓ಽሶࠍๆ⌕ߐߖޔਛᕈሶḰᒢᕈᢔੂⵝ⟎ 㧔AGNES㧕ࠍ↪ߡ⚦ሹౝ᳓ಽሶߩᢔଥᢙࠍ᷹ቯߒߚޕ࿑ 2 ߦๆ⌕᳓㊂ ࠍ⠨ᘦߒࡗࠗࡁࡕޔጀߣߘࠇએ㒠ߩ᳓ಽሶߩㆇേࠍ Jump Diffusion model ࠍㆡ↪ߒ⸃ᨆߒߚ⚿ᨐࠍ␜ߒߡࠆޕ3 ߩࡕࡁࠗࡗ⁁ᘒ߹ߢߩ᳓ ߩᢔଥᢙߪ⚦ሹ㕙߆ࠄ᧤❈㧔ࠪࡁ࡞ၮߣߩ᳓⚛⚿ว㧕ࠍฃߌ࡞ࡃޔ ࿑㧝 FSM16 ߩ TEM ౮⌀╬ޔ᷷ๆ⌕ᦛ ࠢ᳓ߦኻߒߡ⚂ 3ޯ4.5 ㆃߊߥߞߡࠆࠇߘޕએ㒠ߩ᳓ߩᢔଥᢙߪᕆỗ ✢߮ๆ⌕ㆊ⒟ߩᮨᑼ࿑ ࡕࡁࠗࡗޔ ߦჇᄢߒ⥝ޔᷓߎߣߦࡈ࡞లႯ㗔ၞ㧔6,7㧕ߢߪࡃ࡞ࠢߩ᳓ߩᢔଥᢙ ࡈ࡞లႯ⁁ᘒ❑ޕゲ:⹜ᢱ 1g ᒰߚࠅߩๆ ߦㄭ୯ߦߥࠆߎߣ߇ࠊ߆ߞߚࡗࠗࡁࡕޕጀߩ᳓ߩ FSM ⚦ሹ㕙ߦ߅ ޕ ⌕㊂ޕᮮゲ;Ყ⫳᳇㧔㘻⫳᳇ P0㧕 ߌࠆ᭴ㅧߦട߃ޔFSM 㛽ᩰߘߩ߽ߩߩ᭴ㅧ⸃ᨆ߽㐿ᆎߒߚޕ㛽ᩰ᭴ㅧߦߟ ߡߪޔߩߩ߽ߥߡࠇߐ⋡⌕ࠅ߹ߢ߹ࠇߎޔ㕒⊛᭴ㅧ࿃ሶ S(Q)ߩ First Sharp Diffraction Peak ߇ޔㅢᏱߩࠪࠞࠟࠬߣᲧセߒߡ㜞 Q 㗔 ၞߦࠪࡈ࠻ߒߡࠆߎߣࠍਛᕈሶోᢔੂⵝ⟎㧔KENS-HIT㧕߅ࠃ߮ਛᕈሶ ☳ᧃ࿁᛬ⵝ⟎㧔JRR3M-HERMES㧕ߩታ㛎ߢߒߚࠍࠬࠟࠞࠪޕ㜞 ኒᐲൻߒߚ႐วߣห᭽ߩะߢࠆޕਛᕈሶዊⷺᐢⷺᢔੂⵝ⟎㧔KENSSWAN㧕ߦࠃࠅ⚦ሹ߇ Hexagonal ㈩ߒߡࠆߎߣߦࠃࠆࡉ࠶ࠣ߇ ᷹ⷰߐࠇࠆ߇⚦ࠅࠃߦࠣࡦ࠴࠶ࡑ࠻ࠬ࠻ࡦࠦޔሹౝߦ H2O-D2O ṁᶧࠍๆ ⌕ߐߖࠆߎߣߢࡉ࠶ࠣ߇ᶖṌߔࠆߎߣࠍ⏕ߒߚޕH2O-D2O ṁᶧߩ ኒᐲ߇ޔ1 g/cc ⒟ᐲߢࠆߥࠄ߫ޔ㛽ᩰ᭴ㅧߩኒᐲߪ 2.4 g/cc ⒟ᐲߣⓍ߽ ࠄࠇޔS(Q)ߩࠪࡈ࠻㊂߆ࠄⓍ߽ࠄࠇࠆኒᐲߣ߶߷৻⥌ߔࠆޕቯ㊂⊛ߥ♖ ࿑㧞 ฦὐ㧔࿑ 1,2`7㧕ߩᢔଥᢙߩ୯ޕ 㕍ታ✢ߪࡃ࡞ࠢ᳓ߩᢔଥᢙߩ୯ޕ ᐲߦߟߡߪᬌ⸛ࠍ㊀ߨࠆᔅⷐ߇ࠅߦߜߛߚޔ㜞ኒᐲൻߒߡࠆߣߪ⸒߃ ߥ߇ࠞࠪޔ㛽ᩰ⥄߽ࠆᗧߢ᜔᧤ਅߦࠆߚߦㅢᏱߩࠪࠞࠟࠬߣߪ⇣ߥࠆ᭴ㅧߢࠆߎߣߪචಽߦ⠨߃ࠄ ࠇࠆޕ J-PARC ߢߪޔ㜞ᒝᐲ᳢↪ోᢔੂⵝ⟎ߦࠃࠅޔዊⷺ㗔ၞ߆ࠄ㜞ⷺ㗔ၞ߹ߢ৻ߦ᷹ⷰน⢻ߢࠅޔ㛽ᩰ᭴ㅧޔ᳓ಽሶ᭴ ㅧ⚦ޔሹ㑆⋧㑐߹ߢ৻ߦ᷹ⷰน⢻ߢࠆᧄߦߊߣޕታ㛎ߩࠃ߁ߥ in-situ ታ㛎ߢߪޔᐢⓨ㑆⋧㑐ߩหᤨ᷹ⷰߪലߢ ࠆߣ⠨߃ߡࠆ⻠ޕṶߢߪޔ㜞ᒝᐲ᳢↪ోᢔੂⵝ⟎ߦߟߡ߽⚫ߔࠆޕ ະܰ௱ࠏକளࠏৗ͈ಎঊࢹ௮ٜଢ଼! ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ ㊂ሶࡆࡓᔕ↪⎇ⓥ㐷 ㋈⼱ ⾫ᄥ㇢ ਛᕈሶᢔੂߩᦨ߽ఝߥὐߩ㧝ߟߦޔシర⚛ߩ㧔Ყ㧕ᐓᷤᕈᢔੂᢿ㕙Ⓧ߇ᄢ߈ߎߣࠇߘޔߦߘߩ⟎ࠍᱜ⏕ߦᝒ ߃ࠆߎߣ߇ߢ߈ࠆὐ߇ߍࠄࠇࠆߦ․ޕᣣߩࠛࡀ࡞ࠡ᧚ᢱࠆߪ↢‛⾰ߦ߅ߌࠆᦨ߽㊀ⷐߥర⚛ߩシ᳓⚛ Hේ ሶࠍⷰኤߢ߈ࠆߪޔX ✢࿁᛬ߢߪ㧔ήℂߢߪߥ߇㧕ේℂ⊛ߦ࿎㔍ߥߢࠅޔਛᕈሶᢔੂߩᦨᄢߩ․㐳ߩ߭ߣߟߣ ߥߞߡࠆޔࠄ߇ߥߒ߆ߒޕታߦߪ㧴ේሶߣਛᕈሶߩᢔੂㆊ⒟ߦߞߡ↢ߓࠆ㕖ᒢᕈᢔੂലᨐߣᄢ߈ߥ㕖ᐓᷤᕈᢔੂ 㧔ࡃ࠶ࠢࠣ࠙ࡦ࠼㧕߇ޔ᭴ㅧ⸃ᨆᄙᄢߥ࿎㔍ࠍᒁ߈ߎߔߚߢ߹ࠇߎޔ㧴ේሶࠍᄙ㊂ߦ⚿᥏ޔṁᶧ߅ࠃ߮㕖 ᥏⾰♽‛⾰ߩਛᕈሶᢔੂߦࠃࠆ᭴ㅧ⸃ᨆߪਛᕈሶᢔੂߩ⎇ⓥ⺖㗴߆ࠄᵈᗧᷓߊㆱߌࠄࠇߡ߈ߚߚ߁ⴕࠍࠇߘޔߡߒ߁ߘޕ ߪޔᄙᄢߥഭജߣ੍▚߇ޔ㊀᳓⚛ D⟎឵ߐࠇߚ⹜ᢱࠍ↪ᗧߔࠆߎߣߦ⾌߿ߐࠇߡ߈ߚߒ߆ߒޕᣣޔH ේሶࠍᄙ㊂ߦ ⚿᥏ޔṁᶧ߅ࠃ߮㕖᥏⾰‛⾰ߩ᭴ㅧ⸃ᨆߦߪ⑼ޔቇ⊛ߦ߽␠ળ⊛ߦ߽ⷐ⺧ߩ㕖Ᏹߦ㜞㊀ⷐߥ⎇ⓥ࠹ࡑ߇ᄙᢙሽ ߔࠆޔߦ․ޕX ✢࿁᛬ߛߌߢߪචಽߥ⸃ᨆ߇࿎㔍ߢࠆ↢⽎ߩ⸃ߦਇนᰳߥߚࠎ߬ߊ⾰߿ᩭ㉄ࠍṁᶧޔᣂߒ ᯏ⢻ࠍߔࠆ㕖᥏⾰㜞ಽሶ߿ᶧ᥏᧚ᢱߡߒߘޔ᳓⚛ࠛࡀ࡞ࠡ↪ߦ㑐ࠊࠆΆᢱ㔚ᳰޔ᳓⚛ๆ⬿‛⾰ߥߤߩ᳓⚛♽‛⾰ߩ ේሶࡌ࡞ߩ᭴ㅧ⸃ᨆߦ㑐ࠊࠆ⎇ⓥ⠪ߩਛᕈሶ࿁᛬߳ߩᦼᓙߪಾታߢࠆޔߪߢ⊒ᧄޕ⸥ߩ᳓⚛ߦ㑐ߔࠆ࿎㔍ࠍస ߔࠆߚߩ J-PARC ਛᕈሶ࿁᛬ⵝ⟎⸳⸘ߦ߅ߌࠆ⹜ߺ㧔᳓⚛♽ోᢔੂⵝ⟎ߩឭ᩺㧕ޔᣂߒ࠺࠲⸃ᨆᴺߩឭ᩺ null-H(D)2O ᴺ߿ޔᶏᄖߩ᳓⚛♽‛⾰ߩ⎇ⓥ⁁ᴫ߿᳓⚛♽ߦ․ൻߒߚోᢔੂⵝ⟎ߩ⁁ᴫߥߤߦߟߡႎ๔ߔࠆޕ 22 ಎঊ౮८၄͙̹́סఘ Se-Te ࠏ͈ࢹ௮! ᘮᄢℂᎿ ੩ᄢ㒮ℂ ජ⪲ ᢥ㊁ ᄢ ⟵ౖޔየ ⺈ ࡦߣ࠹࡞࡞ߪ⚿ޔ᥏⋧ߦ߅ߡߪߦ 2 ㈩㎮⁁ߩ᭴ㅧࠍߣࠆඨዉߢࠆ৻ޕᣇⲢὐ⋥ߢߩᶧࡦߪ 105 ⒟ᐲߩේሶ߆ࠄ᭴ᚑߐࠇࠆ㜞ಽሶߢࠅౖဳ⊛ߥᶧඨዉߢࠆߩߦኻߒޔᶧ࠹࡞࡞ߪᢙේሶ⒟ᐲߩ⍴㎮ಽሶߢ᭴ ᚑߐࠇࠆᶧ㊄ዻߢࠆޕਔ⠪ߢ᭴ᚑߐࠇࠆᶧᷙว♽ߪޔ᷷ᐲߦඨዉ߆ࠄ㊄ዻ߳ォ⒖ߒߩߘޔォ⒖᷷ᐲߪ ࡦỚᐲ߇㜞߶ߤߔࠆ⎇ᧄޕⓥߢߪޔᶧࠞ࡞ࠦࠥࡦ♽ߩඨዉ́㊄ዻォ⒖ߦ࿃ߔࠆ࠳ࠗ࠽ࡒࠢࠬߩᄌൻࠍޔਛ ᕈሶᢔੂ᷹ቯߦࠃߞߡޔ㨪Έߩⓨ㑆ࠬࠤ࡞ޔ㨪ps ߩᤨ㑆ࠬࠤ࡞ߢࠄ߆ߦߔࠆߎߣࠍ⋡ᜰߒߚޕ ታ㛎ߪ⧷ޔ࿖⎇ࡦ࠻࡞ࡊ࠶ࠕ࠼ࠜࡈࠩޔⓥᚲߩⵝ⟎ MARI ࠍ↪ߡਛᕈሶᢔੂ᷹ቯࠍⴕߞߚ⚿ߩߘޕᨐޔᝄേ ㆇേޔᢔㆇേޔන৻☸ሶ⊛ㆇേޔߡߟߦࠇߙࠇߘޔඨዉ́㊄ዻォ⒖ߦ࿃ߔࠆᄌൻࠍ᷹ⷰߒߚޕ ߹ߚޔඨዉ́㊄ዻォ⒖ߦ㑐ଥߔࠆ⚿ᨐߦട߃́ࠡ࡞ࡀࠛޔᵄᢙⓨ㑆ߦ߅ߌࠆᶧߩశቇ⊛ᝄേࡕ࠼ߩᝄ⥰ߦߟ ߡ◲ޔනߥࡕ࠺࡞ߦࠃࠆ⸃㉼ࠍⴕߞߚⶄޔߦ⥸৻ޕ㔀ᶧ߿ࠕࡕ࡞ࡈࠔࠬߩశቇ⊛ᝄേࡕ࠼ߩࠛࡀ࡞ࠡ́ᵄᢙⓨ㑆 ߦ߅ߌࠆᝄ⥰ߦߟߡޔቯᕈ⊛ߥ⸃㉼ߪߎࠇ߹ߢߦⴕࠊࠇߡࠆ߇ޔቯ㊂⊛⸃㉼ߪ࿎㔍ߢࠆߎߣ߇ᄙޔߒ߆ߒޕ ᚒߪ♽ߩޘඨዉ⋧ߢߪቅ┙㎮⊛ߢࠆߎߣ߇⍮ࠄࠇߡ߅ࠅߦ․ޔᶧ Se ߦߟߡߪߘߩ㕒⊛േ⊛᭴ㅧ߇ታ㛎ℂ⺰ ਔ㕙߆ࠄᄙߊ⎇ⓥߐࠇߡߡޔቯ㊂⊛⸃㉼ࠍⴕ߁ߎߣ߇ߢ߈ࠆน⢻ᕈ߇ࠆޕታ㓙ⷰޔ᷹ߐࠇߚ⚿วિ❗ࡕ࠼ߩᒝᐲߩ ᵄᢙଐሽᕈߩ․ᓽࠍޔන⚐ߥࡕ࠺࡞ࠍቯߔࠆߎߣߢౣߢ߈ࠆߎߣ߇ಽ߆ߞߚޕห᭽ߩ⸃ᨆࠍᶧ Te50Se50 ߩඨዉ ⋧ߦ߽ㆡ↪ߢ߈ࠆߎߣࠍ␜ߒߚޕ Palm Cubic Anvil գႁอ౾ͬဥ̞̹ಎٝ୬ࡑ͈দ͙! ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ዊᨋ ᐢ⾆ޔዊᨑ ⌀ੳޔᐥ ⟤ ℄ᄢቇℂቇㇱ ㄝ ᱜੱ ↥ᬺᛛⴚ⎇ⓥᚲ ᳰ↰ િ৻ ㊀ᯏ᪾ ↰ᷰ ᱜผޔ㜞ᧁ స ૐ᷷‛ᕈ᷹ቯ↪ߦᲫᢎ(:ㅍᄢቇ)ߦࠃࠅ㐿⊒ߐࠇߚ Cubic Anvil ജ⊒↢ⵝ⟎[1]ߪޔૐ᷷ߦ߅ߡ߽ࠃࠅ⦟㕒᳓ᕈࠍታߔࠆ ⵝ⟎ߣߒߡቯ⹏߇ࠆ[1]↢⊒ߩ⟎ⵝߩߎޕജߪ⚿࠳ࠗࡗࠍ↪ࠆ ߎߣߦࠃࠅ⚂ 11GPa ߹ߢน⢻ߢࠅޔ᷷ᐲߪ⚂ 1.8K ⒟ᐲ߹ߢ಄ළߢ ߈ࠆޔߚ߹ޕ㜞᷷㜞‛ᕈ⎇ⓥߦ߅ߡ߽ޔ࿁᛬ታ㛎╬ߦ↪ࠄࠇᄙߊ ߩᚑᨐࠍ߽ߚࠄߒߡࠆޕ ᚒᦨޔߪޘㄭޔ㕒᳓ᕈ߅ࠃ߮⊒↢ജࠍ‶†ߦߖߕࠅࠃޔૐ᷷ߦ಄ ළน⢻ߥዊဳߩജ⊒↢ⵝ⟎ߣߒߡ࿑ 1 ߦ␜ߐࠇߡࠆ᭽ߥޔPalm Cubic Anvil ജ⊒↢ⵝ⟎ࠍ㐿⊒ߒߚޕ౮⌀ߪߒߚࠟࠗ࠼ࡉࡠ࠶ࠢ ߣࠬࠗ࠺ࠖࡦࠣࡉࡠ࠶ࠢࠍ⚵ߺวࠊߖޔᚻߩ߭ࠄߦਸ਼ߖߚ౮⌀ߢࠆޕ Fig.1 The palm cubic anvil cell. ᤨߩోߩᄢ߈ߐߪ 108mmǾ ᄖᒻx175mm 㜞ߐߣߥߞߚߕ߹ޕᆎ ߦޔBi ߣ Te ߩജ⺃᭴ㅧ⋧ォ⒖ߦࠃࠅቶ᷷ߦ߅ߌࠆ⩄㊀ߦኻߔࠆ ⊒↢ജࠍ࠴ࠚ࠶ࠢߒߚޕ࿑ 2 ߦ␜ߐࠇߡࠆࠃ߁ߦޔቶ᷷ߦ߅ߡ ⚂ 8GPa ⒟ᐲߩജ⊒↢߇น⢻ߢࠅߩᤨߩߘޔട㊀ߪ⚂ 80ton ߢ ߞߚޔߚ߹ޕૐ᷷ߦ߅ߌࠆ⊒↢ജߪ Pb ߩવዉォ⒖᷷ᐲߦࠃࠅ ࠴ࠚ࠶ࠢߒߚߪߦ⊛⚳ᦨޕ㧟He ಄ಓᯏࠍ↪ߒޔ0.5K ⒟ᐲߢߩ᷹ቯࠍ ⋡ᮡߣߒߡࠆޕ ⻠Ṷߢߪࠍ⟎ⵝߩߎޔਛᕈሶ࿁᛬↪ജ⊒↢ⵝ⟎ߣߒߡߩน⢻ᕈߦߟ ߡ⠨ኤߔࠆޕ [1]N.Mori et al.:High Pressure Research 24,225 (2004) P re s s u re (G p a ) ࠟࠗ࠼ࡉࡠ࠶ࠢߩᄖᓘߪ 80 mmǾޔടᣇᑼߪࠢࡦࡊᑼߣߒߩߘޔ 8 Te I-II Bi I-II 6 Bi IV-V 4 2 0 0 Bi II-III 20 40 60 80 Load(Ton) Fig.2 Load-Pressure curve at room temperature 23 କள̦ࡎͬ՜ͥ߄௺କளا͈գႁညܳࢹ௮Ȇഩঊഢ֊! ! ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴㊂ሶࡆࡓᔕ↪⎇ⓥㇱ㐷శ࡙࠾࠶࠻ 㕍ᧁ ൎᢅ Ꮧ㘃㊄ዻ La, Yߪ᳓⚛ൻᔕߦࠃߞߡ⛘✼ߦォ⒖ߔࠆߎߣ߇⍮ࠄࠇߡࠆޕ᳓⚛ේሶߪ hcp ߽ߒߊߪ fcc ㊄ዻᩰ ሶߩ྾㕙ࠨࠗ࠻ࠍ߹ߕභߒ MH2ޔᰴߦ㕙ࠨࠗ࠻ࠍභߔࠆ MH3ޕ㊄ዻ⛘✼ MIォ⒖ߪ 3 ᳓⚛ൻ‛ᒻᚑ ㆊ⒟ߢߎࠅࡊ࠶ࡖࠡ࠼ࡦࡃޔ㨪2eV ߩนⷞశ㗔ၞߢㅘߥ⛘✼߇↢ᚑߔࠆޕ3 ᳓⚛ൻ‛ߩ㔚ሶࡃࡦ࠼᭴ㅧ⸘▚ߦࠃࠆ MI ォ⒖ߩᯏ᭴⸃⎇ⓥߪォ⒖߇⊒ߐࠇߚ 1996 ᐕએ㒠♖ޔജ⊛ߦⴕߥࠊࠇߡࠆ߇㨪2eV ߩࠡࡖ࠶ࡊᒻᚑߩ↱᧪ߦߟ ߡߪᧂߛߦ⼏⺰߇ࠆࠃ߁ߢࠆޕ 㜞⎇ⓥߩ⋡⊛ߪੑߟߢࠆ✼⛘ޕߢࠆ 3 ᳓⚛ൻ‛ࠍടߒޔ㊄ዻᩰሶߩ❗ࠆߪ᭴ㅧォ⒖ߦ߁శቇ ࠡࡖ࠶ࡊࠍ᷹ቯߒޔ᭴ㅧߣ㔚ሶ⁁ᘒߩ㑐ଥࠍ♽⛔⊛ߦ⺞ߴࠆߎߣࠅࠃޔ㜞ജਅߢ 3 ᳓⚛ൻ‛ߩࡃࡦ࠼ࠡࡖ࠶ࡊࠍ㐽 ߓޔ㊄ዻ⁁ᘒࠍታߔࠆߎߣߢࠆޕs(H)d(Y) ᷙᚑߦࠃߞߡࠡࡖ࠶ࡊ߇㐿ߡ⛘✼ߦߥࠆ⚿ߩ▚⸘࠼ࡦࡃ߁ߣޔᨐ ߆ࠄޔ㜞ਅߢࡃࡦ࠼ࠝࡃ࠶ࡊߦࠃߞߡߔࠆ㊄ዻߪ᳓⚛ߩ 1s ゠߇ࡈࠚ࡞ࡒ㕙ᒻᚑߦ㑐ਈߒߚޟ1s ㊄ዻߣޠ ߒߡ․ᓽઃߌࠄࠇࠆߢࠈ߁ޕ ࠳ࠗࡗࡕࡦ࠼ࠕࡦࡆ࡞࡞ DACࠍ↪ߡޔᵹ᳓⚛ߣ㊄ዻߩ㜞ᔕߦࠃࠆ᳓⚛ൻ‛ߩวᚑߣశ X ✢࿁᛬ߦࠃ ࠆ㜞⚿᥏᭴ㅧ᷹ቯ߅ࠃ߮శๆ᷹ቯߦࠃࠆ᳓⚛㊄ዻ⚿ว⁁ᘒߣ㔚ሶㆫ⒖⁁ᘒߩ᷹ⷰࠍޔScޔYޔLa ࠍኻ⽎ߦቶ᷷ਅޔ 㨪50 GPa ߹ߢߩജ㗔ၞߢⴕߥߞߚߩߘޕਛߢޔYH3 ߪ 10GPa ઃㄭߢ hcp ߆ࠄ fcc ߦะߌߡߩ᭴ㅧ⋧ォ⒖ࠍߦࠄߐޔ 㜞 fcc ⋧ߪ 23GPa ߢࡃࡦ࠼ࠡࡖ࠶ࡊࠢࡠࠫࡖࠍߔߎߣ߇᷹ⷰߐࠇߡࠆޕᗐቯᄖߩ⽎ߣߒߡૐ hcp ⋧ 㧨10GPaߣ㜞 fcc ⋧ 20GPa㧨ߩ㑆ߦജ 10GPa ߦᷰߞߡㆫ⒖⋧߇᷹ⷰߐࠇߡࠆޕォ⒖ߦ߁㊄ዻ㕙ߩⓍጀ ࠪࠢࠛࡦࠬᄌൻ߇᳓⚛ߦࠃߞߡࡇࡦᱛߐࠇ⚿ߩߘޔᨐᲑ㓏⊛ߦォ⒖߇ㅴᣂߒᯏ᭴ߦࠃࠆォ⒖ߢࠆߣផ᷹ߒߡ ࠆޔߚ߹ޕടߦࠃߞߡ 2 ᳓⚛ൻ‛߇ 1 ᳓⚛ൻ‛ߣ 3 ᳓⚛ൻ‛ߦนㅒ⊛ߦಽ⸃ߔࠆᔕ߽᷹ⷰߐࠇߡ߅ࠅޔ㊄ዻᩰሶౝ ߢߩ᳓⚛⒖േ߇ኈᤃߦߎࠆߎߣ߇␜ໂߐࠇߡࠆߩࠄࠇߎޕ㜞ਅߢߔࠆ㔚ሶォ⒖ޔ᭴ㅧ⋧ォ⒖ޔಽ⸃ᔕߪߕ ࠇ߽᳓⚛߇ਥᓎࠍᜂߞߡ߅ࠅޔᯏ᭴⸃ߦߪਛᕈሶ࿁᛬ߦࠃࠆ᳓⚛⟎ߩቯ߇ਇนᰳߢࠆޕ㜞ਛᕈሶ࿁᛬ታ㛎ߩⅣ Ⴚᢛ߇ᒝߊᦸ߹ࠇࠆޕ ४ࣉࡃ! A. Ohmura et. al., Infrared spectroscopic study of the band-gap closure in YH3 at high pressure, Phys. Rev. B, 73, 104105(2006). A. Machida et. al., X-ray diffraction investigation of the hexagonal-fcc structural transition in yttrium trihydride under hydrostatic pressure, Solid State Commun., 138, (2006)436. 24 ࡄݪਫ਼ౣݪࡄܢٛ! ! ! ΄ρΑഢ֊͈ൡ֚ٽැȇ੨ၑა͈ࡽ͂߸۾ࡑഎબ ! ᣣᤨ㧦 ᐕ ᣣ 㨪 ᣣ ᳓㧕 ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᧄ㙚⻠⟵ቶ ឭ᩺ઍ⠪ ዊ↰၂ ቁ㧔Ꮊᄢቇ㧕 หឭ᩺⠪ ጟ ᐙ㓶㧔ᄹ⦟వ┵⑼ቇᛛⴚᄢቇ㒮ᄢቇ㧕 ㊄⼱ ᴦ㧔੩ㇺᄢቇ㧕 Ꮉ శ㧔ᄢ㒋ᄢቇ㧕 ╣ ℂ↢㧔ฬฎደᄢቇ㧕 ㄆ ၨ㧔᧲੩ᄢቇ㧕 ㋈ᧁ ᔀ㧔᧲੩ᶏᵗᄢቇ㧕 㜟ጊ ৻㧔᧲੩ᄢቇ㧕 ᷓየ ᶈᰴ㧔੩ㇺᎿ⧓❫⛽ᄢቇ㧕 ⮮Ꮉ ᷡਃ㧔ർᶏᄢቇ㧕 ᧻ ᷕ㧔Ꮊᄢቇ㧕 ጊቶ ୃ㧔᧲੩ᄢቇ㧕 ࠟࠬォ⒖ߪޔᧂ⸃ߩ⑼ቇߩ㊀ⷐߥ⺖㗴ߩ৻ߟߢࠆޕ1980 ᐕઍᓟඨ߆ࠄ 1990 ᐕઍߦ߆ߌߡታ㛎ߩㅴᱠߣ ࡕ࠼⚿วℂ⺰ MCTߦࠃߞߡ‧ᒁߐࠇߚࠟࠬォ⒖⎇ⓥߪޔ21 ♿ߦߥߞߡ╙ 2 ߩᲑ㓏ߦߞߚߩߎޕ㧡ᐕ㑆ߦ㐿 ߐࠇߚࠟࠬォ⒖㑐ଥߩ࿖㓙ળ⼏ߪ ߫߃ޔ2001 ᐕ ࠢ࠲ፉޔ2005 ᐕ ࡞ߩ International Discussion Meeting on Relaxations in Complex Systems(IDMRCS) ޔ2002 ᐕ ޔ2006 ᐕ ࡇ ࠨ ߩ Workshop on Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials㧔WNEP㧕ޔ2002 ᐕ ࡠࡑޔ2004 ᐕ ࡃࡦࠟ ࡠ࡞ߩ Unifying Concepts in Glass Physics(UCGP) ߥߤࠍߍࠆߎߣ߇ߢ߈ࠆߩࠄࠇߎޕ࿖㓙ળ⼏ߢߪޔMCT ߆ࠄ ࡦ࠼ࠬࠤࡊ߳ߣ߁ᵹࠇ߇↢߹ࠇߡ߈ߚޕ ߎߩࠃ߁ߥ⇇ߩേะߩਛߢޔᚒ߇࿖ߦ߅ߡ߽⒳ޘቇળߩࠪࡦࡐࠫ࠙ࡓߩઁߦޔ᭽ߩޘಽ㊁ߩ⎇ⓥ⠪ࠍߚ⍴ᦼ⎇ ⓥળࠍ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲߩᡰេࠍᓧߡㆊ 2002 ᐕ ‛ࠬࠟޟᕈ߅ࠃ߮ࠟࠬォ⒖⎇ⓥߩᣂዷ㐿 ߮ࠃ߅ޠ2004 ᐕ ޟᭂ┵㕖ᐔⴧ♽ߩ‛ᕈߣࠛࡀ࡞ࠡࡦ࠼ࠬࠤࡊߦޠ㐿ߒߚޕ ᐕᐲߪ ߩࠄࠇߎޔ2 ࿁ߩ⍴ᦼ⎇ⓥળࠍฃߌߡ ߩߎޔ2 ᐕ㑆ߦ߅ߌࠆฦಽ㊁ߦ߅ߌࠆᚑᨐߣ⇇⊛ߥേะࠍߔࠆ ߚߦ⻉ޔℂ⺰ߩ⋧㑐ଥߣታ㛎⊛ᬌ⸽ࠍਥ㗴ߣߒߡޔᰴߩ⿰ᣦߢ⍴ᦼ⎇ⓥળࠍ㐿ߔࠆߎߣߣߒߚޕ ࡄݪ͈ٛਇকȇ! ࠟࠬォ⒖ߦ㑐ߔࠆ⎇ⓥߦ߅ߌࠆℂ⺰ታ㛎ߩᣇߢᱷሽߔࠆ㗴ὐࠍ⏕ߦߔࠆߎߣࠍࠄࠇߘޔෳട⠪ోຬߢߔ ࠆߎߣߦਥ⌒ࠍ߅ߊࡊࠤࠬ࠼ࡦࠡ࡞ࡀࠛޕឬࠍߪߓߣߔࠆࠟࠬォ⒖ߩ⻉ℂ⺰ߩ⋧㑐ଥࠍᢛℂߒᦨޔㄭߩታ 㛎⚿ᨐࠍ߽ߣߦౕޔ⊛ߥᬌ⸽น⢻ᕈࠍᬌ⸛ߔࠆޕ ળ⼏ߦߪోޔ࿖߆ࠄ᭽ߥޘಽ㊁ߩ⎇ⓥ⠪߇ᑧߴ 158 ฬ ೋᣣ 52 ฬޔ2 ᣣ⋡ 67 ฬޔ3 ᣣ⋡ 39 ฬෳടߒޔญ㗡⊒ 31 ઙ ⊒࠲ࠬࡐޔ15 ઙߩ⻠Ṷ߇ⴕࠊࠇߚޕℂ⺰⊛ᨒ⚵ߺߩ᭴▽ޔታ㛎ᚻᴺߩᡷༀޔታ㛎ኻ⽎ߩᄢߥߤࠟࠬォ⒖ߩᧄ ⾰⊛ߥℂ⸃ߦะߌߡޔᚒ߇࿖ߦ߅ߌࠆ⎇ⓥ߇⌕ታߦ⊒ዷߒߡࠆߎߣ߇␜ߐࠇߚޔߚ߹ޕฦ⻠Ṷߦኻߔࠆ⼏⺰߇ᄢᄌᵴ⊒ ߦⴕࠊࠇޔᣂߒ࠹ࡑ߇⸳ቯߐࠇࠆߥߤ⎇ⓥળߣߒߡᄢ߈ߥᚑᨐ߇ߞߚޕ 25 ࡊ ࡠ ࠣ ࡓ 22031)*! 10:00㨪12:10 ᐳ㐳 ᧻ ᷕ㧔Ꮊᄢቇ㧕 ⎇ⓥળߩ⿰ᣦߦߟߡ㧔10 ಽ㧕 ឭ᩺ઍ⠪ ዊ↰၂ ቁ Ꮊᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮 20a-1 ዊ↰၂ ቁ Ꮊᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮 ࠟࠬォ⒖ߩ⥄↱ࠛࡀ࡞ࠡࡦ࠼ࠬࠤࡊឬ 20a-3 ㊁፸ 㦖 ർᶏᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮 ࠟࠬォ⒖ߦߣ߽ߥ߁⺃㔚✭ 㧙ਥ✭ㆊ⒟ߣ✭ㆊ⒟㧙 20-a4 ᧻↰ ╳ᵄᄢቇᢙℂ‛⾰⑼ቇ⎇ⓥ⑼ ᷷ᐲᄌ⺞ဳ DSC ࠍ↪ߚ࠴࠙ࡓࡎ࠙㉄Ⴎࠟࠬ♽ߩᒛᜰᢙဳ✭ߩ⎇ⓥ 20-a5 ₎ጊ 㕏ᄦ ੩ㇺᎿ⧓❫⛽ᄢቇ㜞ಽሶᯏ⢻Ꮏቇኾ ᷷ᐲᄌ⺞ᴺߦࠃࠆ㜞ಽሶࠟࠬߩᾲኈ㊂ߣ⤘ᒛ₸ߩหᤨ᷹ቯ ᤤ ભ ߺ 13:30㨪15:00 ᐳ㐳 ᷓየ ᶈᰴ㧔੩ㇺᎿ⧓❫⛽ᄢቇ㧕 20p-1 ㋈ᧁ ᔀ ᧲੩ᶏᵗᄢቇ㘩ຠ↢↥⑼ቇ⑼ 㘩ຠߩࠟࠬ⁁ᘒォ⒖ߣߘߩ↪ 20p-2 ↰ਛ ᄢ ⁛ㄘᬺ↢‛⾗Ḯ⎇ⓥᚲ ࠟࠬൻߦࠃࠆᬀ‛⨍㗂ߩሽ 20p-3 ⬉ญࠁߺ ർᶏᄢቇᄢቇ㒮ℂቇ⎇ⓥ㒮 ࠟࠬォ⒖ߩಽሶ࠳ࠗ࠽ࡒࠢࠬߦࠆ↢⽎ߩേ⊛⚛ㆊ⒟ 15:20㨪16:50 ᐳ㐳 ㊁፸ 㦖㧔ർᶏᄢቇ㧕 20p-4 ✎⽾ ┥ᄥ ᮮᵿ࿖┙ᄢቇᄢቇ㒮Ꮏቇ⎇ⓥ㒮 ⏛ᕈࠗࠝࡦᶧ bmim[FeCl4]ߩ᭴ㅧࠟࠬਛߦ߅ߌࠆࠬࡇࡦࠣࠬ 20p-5 ↰ਛ ⡸ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ න৻ᚑಽ߆ࠄߥࠆಽሶᕈᶧߩᶧᶧォ⒖ߣߘߩࠠࡀ࠹ࠖࠢࠬ 20p-6 ᧻ᧄ ᱜ ฬฎደᄢቇ‛⾰⑼ቇ࿖㓙⎇ⓥࡦ࠲ ૐኒᐲ᳓ߣߪ߆ 㨪᳓ߩ․⇣ߥ‛ᕈߩḮࠍតࠆ㨪 17:10㨪19:10 ᐳ㐳 ጊቶ ୃ㧔᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ㧕 20p-7 ේ↰ ᘏਭ ⁛┙ⴕᴺੱℂൻቇ⎇ⓥᚲ エ X ✢ಽశߢࠆ᳓ߩ᳓⚛⚿ว 20p-8 ਛᎹ ᵗ ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ 㕖ᐓᷤᕈਛᕈሶ㕖ᒢᕈᢔੂߦࠃࠆ࠲ࡦࡄࠢ⾰࠳ࠗ࠽ࡒࠢࠬߩ᳓ലᨐ 20p-9 ╣ ℂ↢ ฬฎደᄢቇᎿቇ⎇ⓥ⑼ Ⱞ⊕⾰ߩേ⊛ォ⒖ߣశࠪࠣ࠽࡞ฃኈ 20p-10 㜞↰ ┨ ᣩ⎣ሶᩣᑼળ␠ਛᄩ⎇ⓥᚲ ࠪࠞࠟࠬߩዪᚲ᭴ㅧᄌൻߦ㑐ߔࠆಽሶേജቇࠪࡒࡘ࡚ࠪࡦ 26 22032)!*غ 10:00㨪12:00 ᐳ㐳 ╣ ℂ↢㧔ฬฎደᄢቇ㧕 21a-1 ਛ ᱜ ᗲ⍮Ꮏᬺᄢቇၮ␆ᢎ⢒ࡦ࠲ ࡕ࠺࡞ಽሶߩᶧߢߩ㐳ᤨ㑆✭ 21a-2 ㈕ ⺈⯥ ಽሶ⑼ቇ⎇ⓥᚲ Molecular-dynamics simulation study on the nature of glassy reorientational dynamics 21a-3 ችፒ Ꮊᱜ 㜞⍮Ꮏ⑼ᄢቇ✚ว⎇ⓥᚲ࠽ࡁഃࡦ࠲ ㆊ಄ළᶧߦ߅ߌࠆേ⊛⋧㑐ߩᓸⷞ⊛ℂ⺰ 21a-4 ᧲ ৻⌀ ޘᄢ㒮✚วᢥൻ⎇ⓥ⑼ ․⇣៨േᴺߦࠃࠆࠟࠬォ⒖ߩℂ⺰ ᤤ ભ ߺ 13:00㨪15:00 ᐳ㐳 ዊ↰၂ ቁ㧔Ꮊᄢቇ㧕 21p-1 ⢫ ᥙ ‛⾰᧚ᢱ⎇ⓥᯏ᭴ વዉ⏛᧤♽ߩࠣࠬ⁁ᘒ 21p-2 ศ㊁ ర ᄢ㒋ᄢቇᄢቇ㒮ℂቇ⎇ⓥ⑼ ࠟࠬ♽ߩࡔ࠰ࠬࠦࡇ࠶ࠢߥࠬࠤ࡞ߢߩ㕖✢ᒻᔕ╵ 21p-3 Ꮉ శ 㒋ᄢℂ ࠬࡇࡦࠣࠬߣࠞࠗ࠹ࠖ 21p-4 ⢻Ꮉ ⍮ᤘ ർᶏᄢቇᄢቇ㒮Ꮏቇ⎇ⓥ⑼ ࡦ࠳ࡓ⏛႐ XY ࡕ࠺࡞ߦ߅ߌࠆࠣࠬ⊛ߥ㕖ᐔⴧ✭ߩࠨࠗ࠭ࠬࠤࡦࠣ ࡐࠬ࠲⊒ 15:00㨪16:30 ᐳ㐳 ⮮Ꮉ ᷡਃ㧔ർᶏᄢቇ㧕 61:40㨪18:10 ᐳ㐳 Ꮉ శ㧔ᄢ㒋ᄢቇ㧕 21p-5 ዊ ᱜ᥍ ᧲੩Ꮏᬺᄢቇ ࠪࠞࠥ࡞⚦ሹਛߦ㐽ߓㄟߚ᳓ߩࠟࠬォ⒖േ 21p-6 ᷓየ ᶈᰴ ੩ㇺᎿ⧓❫⛽ᄢቇ ࡌ࡞ߒߚࡐࠬ࠴ࡦ⭯⤑ߩࠟࠬォ⒖ߣ࠳ࠗ࠽ࡒࠢࠬ 21p-7 ᧻ ᷕ ᄢ‛ℂ ಽሶേജቇࠪࡒࡘ࡚ࠪࡦߦࠃࠆࠟࠬォ⒖ㄭறߩදหౣ㈩⟎㗔ၞߩ⠨ኤ ᙣ⺣ળ 18㧦30㨪20㧦30 ᣈࠞࡈࠚ࠹ࠕ ࿖㓙ળ⼏㐿ߦะߌߚߒวߣᛂวߖ 22033)କ*! 9㧦30㨪11㧦30 ᐳ㐳 ㊄⼱ ᴦ㧔੩ㇺᄢቇൻቇ⎇ⓥᚲ㧕 20a-2 㜞㊁ శೣ ᣧⒷ↰ᄢቇℂᎿቇㇱ‛ℂቇ⑼ ࠕࠢ࠻ࡒࠝࠪࡦಽሶࡕ࠲ߩࠛࡀ࡞ࠡᒻߣേᯏ᭴ 22a-1 ฎᴛ ᶈ 㜞⍮Ꮏ⑼ᄢቇ ᒝ⋧㑐ࠞ࠙ࡦ࠲ࠗࠝࡦ♽ߩᐔဋ႐ᣇ⒟ᑼ㧦⋧㑐႐ࠕࡊࡠ࠴ 22a-2 ጊቶ ୃ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ࠗࠝࡦᶧߩࠟࠬォ⒖ߣૐᝄേᢙ࠳ࠗ࠽ࡒࠢࠬ 27 22a-3 Ꮠፒ Ảሶ ᧲੩Ꮏᬺᄢቇ ࠗࠝࡦવዉᕈࠟࠬߦ߅ߌࠆࠗࠝࡦ࠳ࠗ࠽ࡒࠢࠬߩേ⊛ਇဋ৻ᕈ 11㧦50㨪12㧦50 ᐳ㐳 ᧻ ᷕ㧔Ꮊᄢቇ㧕 22a-4 ㊄⼱ ᴦ ੩ㇺᄢቇൻቇ⎇ⓥᚲ 㜞ಽሶ⭯⤑ߩࠟࠬォ⒖േ⊛⇣ᣇᕈߣਇဋ৻ᕈ 22a-5 㜟ጊ ৻ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ࠬࡇࡦࠣࠬ⏛႐ਛ⏛ൻߩ․⇣ߥࠬࡠ࠳ࠗ࠽ࡒ࠶ࠢࠬ ================================================= ࡐࠬ࠲⊒ߩࠬ࠻ 15 ઙ PS-1 ᧻ਅ ൎ⟵ NIMS ࡦ࠳ࡓߦ㈩⟎ߐࠇߚࡇࡦᱛ⏛႐ਛߩ⏛ოㆇേ PS-2 ㊄ ㍑ ಽሶ⑼ቇ⎇ⓥᚲ⸘▚ಽሶ⑼ቇ⎇ⓥ ࠦࡠࠗ࠼ಽᢔ♽ߦ߅ߌࠆ 㔚᳇ᵹജቇ⽎ߩࠪࡒࡘ࡚ࠪࡦ PS-3 ⿒⍹ ᥙ 㚂ㇺᄢቇ᧲੩ℂᎿቇ⎇ⓥ⑼‛ℂቇ bouncing ball orbits ߩࠆࡆࡗ࠼♽ߩౣᏫᤨ㑆ಽᏓ PS-4 㡆ᶏ ቁਯ ᧲ർᄢቇᎿቇ⎇ⓥ⑼࠽ࡁࡔࠞ࠾ࠢࠬ ಽሶേജቇࠪࡒࡘ࡚ࠪࡦߦࠃࠆㆊ಄ළᶧ․ᕈ PS-5 ᶎᧄ ੧ Ꮊᄢቇᄢቇ㒮ℂቇᐭಝ❗♽⑼ቇኾ ⥄↱ࠛࡀ࡞ࠡࡦ࠼ࠬࠤࡊឬߦ߅ߌࠆޔㅦ✭ߣㆃ✭ PS-6 ㊁ ༑ ᣣᧄᄢቇℂᎿቇ⎇ⓥ⑼‛ℂቇኾ ৻ᰴరੑ㊀឵ᮨဳߩၮᐩ⁁ᘒߦ߅ߌࠆࠬࡇࡦࠣࠬ PS-7 ਅ ᔀ ↥ᬺᛛⴚ✚ว⎇ⓥᚲ⸘▚⑼ቇ⎇ⓥㇱ㐷 ࠕࡕ࡞ࡈࠔࠬ߮ㆊ಄ළᶧ Si ߩ᭴ㅧᄌൻ㧦╙৻ේℂ MD ߦࠃࠆ Si ߩࡐࠕࡕ࡞ࡈࠖ࠭ࡓߩ⸃ PS-8 ↰Ꮉ ᢥ㓉 Ꮊᄢቇᄢቇ㒮ℂቇᐭಝ❗♽⑼ቇኾ ࠟࠬᒻᚑ‛⾰ߦ߅ߌࠆ㕖✢ᒻࠛࡀ࡞ࠡᔕ╵ߣⶄ⚛Ყᾲ PS-9 Ꮉ ᷡม ⁛┙ⴕᴺੱ㘩ຠ✚ว⎇ⓥᚲ ‐ⴊᷡࠕ࡞ࡉࡒࡦߩࠟࠬォ⒖ߦ߷ߔ᳓ಽ㊂ߩᓇ㗀 PS-10 ਈ㇊Ꭸ ੫ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ࡆࠗࡒ࠳࠱࡞ဳ㊄ዻ㍲ᄙሹ⾰⚿᥏ౝߩ࠙ࠜ࠲࠽ࡁ࠴ࡘࡉߩ࠳ࠗ࠽ࡒࠢࠬ PS-11 ᨴ⼱ ᱞ♿ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ࠗࠝࡦࠥ࡞PMMA/EMITFSIߩࠟࠬォ⒖ߣࠗࠝࡦᢔᯏ᭴ PS-12 ዊ 㓉჻ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ ࠟࠬォ⒖᷷ᐲઃㄭߢߩ⚿᥏ൻേ PS-13 ᣂ⼱ ኡ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ ⚿᥏⊛ਛ〒㔌⒎ᐨߣേ⊛ਇဋ৻ᕈߩ㑐ㅪ PS-14 Ꮉፒ ⁴ผ ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ ࠦࡠࠗ࠼ࠟࠬߦ߅ߌࠆേ⊛ਇဋ৻ᕈ PS-15 ᷰㄝ ᢘม ᧲੩ᄢቇ↢↥ᛛⴚ⎇ⓥᚲ 㚟േਅ 2 ᰴ☳☸♽ߩ⁁ᘒㆫ⒖ ================================================= 28 ΄ρΑഢ֊͈ুဇΥσΆȜρϋΡΑΉȜίຝ௨! ᄢ㒮ℂ ዊ↰၂ ቁ ⥄↱ࠛࡀ࡞ࠡࡦ࠼ࠬࠤࡊឬߪࠬࠟޔォ⒖ߩേ⊛߅ࠃ߮ᾲജቇ⊛․ᓽࠍ⛔৻⊛ߦ⺑ߔࠆ⠨߃ᣇߣߒߡᵈ⋡ߐ ࠇߡࠆߦ⺰⽎ߩߢ߹ࠇߎߕ߹ޕၮߠߊ⚿ᨐࠍⷰߒߢߟޔኒᐲ᳢㑐ᢙℂ⺰ࠍ↪ߚࡦ࠼ࠬࠤࡊߩ᭴▽߅ࠃ߮ߘ ߩ․ᓽߦߟߡ⺑ߔࠆࠬࠟޕォ⒖ߩᧄ⾰⺰⊛ߥℂ⸃ߦะߌߡޔㆃ✭ㅦ✭߇߆ߦℂ⸃ߐࠇࠆ߆߹ߚᓟߩ ᣇะᕈߦߟߡ⠨ኤࠍⴕ߁ޕ ΄ρΑഢ֊̠͂̈́͜ͅညഩ۱გ! Ƚ৽۱გً͂໗۱გًȽ! ർᄢℂ ㊁፸ 㦖 ࠟࠬォ⒖ߣߪ⚿ޔ᥏ൻߣߞߚ⍎ߥ᭴ㅧᄌൻࠍ߁ߎߣߥߊᶧ߇⎬ߊߥࠆ⽎ߢࠆޕᶧ㧙ㆊ಄ළᶧ㧙ࠟ ࠬߣ߁಄ළㆊ⒟ߢ᭴ㅧߦᄢߒߚᄌൻߪߥ߇☼ޔᕈ₸ߩࠃ߁ߥേ⊛ࡄࡔ࠲ߪචᢙᩴએ߽ᄌൻߔࠆޕᭂᕈ‛⾰ߢߪޔ ߎߩࠃ߁ߥേ⊛㕙ߪ⺃㔚✭ㆊ⒟ߣߒߡ⎇ⓥߔࠆߎߣ߇ߢ߈ࠆ⺃ޔ߽ߡߞ⸒ߪߣޕ㔚✭ᵄᢙ߇ᩴ߽ᄌൻߔࠆ࠳ࠗ ࠽ࡒࠢࠬߩో⽩ࠍ⋥ធ᷹ⷰߢ߈ࠆࠃ߁ߦߥߞߚߩߪᦨㄭߩߎߣߢޔએ೨ߩ⎇ⓥߢߪᛛⴚ⊛ߦࠞࡃߒ߈ࠇߥ᷹ቯᵄᢙ ▸࿐ࠍ᷷ᐲᤨ㑆឵▚ߢߞߚࠆޕᵄᢙߦ߅ߌࠆ⺃㔚៊ᄬࠆߪ៊ᄬ₸ߩ᷷ᐲଐሽᕈࠍ᷹ቯߔࠆߣޔ᷷ᐲߩૐਅߣ ߣ߽ߦⶄᢙߩ⺃㔚⇣Ᏹ ⺃㔚✭ㆊ⒟߇᷹ⷰߐࠇࠆ✭ޕㆊ⒟ߦߪࠇࠆ㗅⇟ߦαޔβޔγ㩷 䊶䊶䊶ߣ⸥ภࠍ߰ߞߡߞߚߘޕ ߩᓟޔ᥉ㆉ⊛ߦ߆ߟ⍎ߦ᷹ⷰߐࠇࠆα✭ㆊ⒟ߪ㕖ࠕ࠾࠙ࠬㆊ⒟ߢ☼ޔᕈ₸ߥߤߦኻᔕߒߡࠆࠟࠬォ⒖ߦ⋥ធ߆ ߆ࠊߞߡࠆ߽ߩߣࠊ߆ߞߚࠍࠇߘޕਥ✭ㆊ⒟ߣ߮ࠅࠃࠇߘޔૐ᷷ 㜞ᵄߦࠇࠆࠕ࠾࠙ࠬㆊ⒟ࠍ✭ㆊ ⒟ߣ߱ࠃ߁ߦߥߞߚޕೋᦼߩ⎇ⓥߢߪᔕ↪ߩ㊀ⷐᕈ߆ࠄ㜞ಽሶ‛⾰߇ᄙߊขࠅߍࠄࠇⶄޔᢙߟ߆ߞߚ✭ㆊ⒟ ߪಽሶౝ⥄↱ᐲߣ⚿߮ઃߌࠄࠇࠆߎߣ߇ᄙ߆ߞߚߩߘޕᓟ⎇ޔⓥߐࠇࠆ‛⾰ᢙ߇㘧べ⊛ߦჇᄢߒޔන⚐ߥಽሶߦ߽✭ ߇ࠆߣ߁ะ߿ౝㇱ⥄↱ᐲ߇ߥಽሶߦ߽✭߇᷹ⷰߐࠇࠆߎߣ߽ࠊ߆ߞߚޕߢߪޔ᥉ㆉ⊛ߦሽߔࠆ✭ ㆊ⒟ࠍ JG βㆊ⒟ Johari ߣ Goldstein ߩೋᦼ⎇ⓥ߆ࠄ)ࠇߘޔએᄖࠍ non-JG βㆊ⒟ߣಽߌߔࠆߎߣ߇ᄙߩࠄࠇߎޕಽ ሶ⺰⊛Ḯߢࠆ߇ޔਥ αㆊ⒟ߪಽሶߩදหㆇേߢ non-JG βㆊ⒟ߪಽሶౝ⥄↱ᐲߣ߁⼂߇৻⥸⊛ߢࠆߣᕁࠊࠇ ࠆ৻ޕᣇޔJG βㆊ⒟ߦߟߡߪ㑐ਈߒߡࠆಽሶߩഀวߩ⼏⺰߽ߡߊߟ߆ߩឭ᩺ࠆ߇ޔαㆊ⒟ߣߣ߽ߦࠟࠬォ ⒖ߦᧄ⾰⊛ߢࠆߣ߁ᦨㄭߩਥᒛߪᵈ⋡ߐࠇࠆޕ أഽ་߿ DSC ͬဥ̞̹ςΙ;θγ;ॸ΄ρΑࠏ͈ڐಫঐତ߿۱გ͈ࡄ!ݪ ╳ᵄᄢᢙℂ‛⾰⑼ቇ⎇ⓥ⑼ ᧻↰ ޔᏓᎹ ᵏノޔᳰ ᴦޔዊፉ ⺈ᴦ ᶧ-ࠟࠬォ⒖⽎ߦ߅ߌࠆᧂ⸃ߥ㗴ߩ 1 ߟߣߒߡޔਥ✭ α✭ߩ✭㑐ᢙ߇㕖ᜰᢙ㑐ᢙߣߥࠆߎߣ߇ߍ ࠄࠇࠆ⚻ޕ㛎⊛ߦߪޔᒛဳᜰᢙ㑐ᢙ Stretched exponential ߪߊߒ߽ޔKohlrausch-Williams-Watts(KWW) 㑐ᢙߣ ߫ࠇࠆ㑐ᢙߢߊ߹߁ޔౣߢ߈ࠆߎߣ߇⍮ࠄࠇߡࠆ✭ޔߪࠇߎޕᤨ㑆ߩಽᏓߣ㑐ㅪ߇ࠆߣ⠨߃ࠄࠇࠆ߇ߩߘޔ Ḯߦߟߡߪ߹ߛࠄ߆ߦߪߥߞߡߥ⎇ᧄޕⓥߢߪ㉄࠙ࡎࡓ࠙࠴ޔႮࠟࠬߩㆊ಄ළ⁁ᘒߦ߅ߌࠆࠟࠬォ⒖ὐㄭ றߩᾲ✭ࠍ᷷ᐲᄌ⺞ဳ␜Ꮕᩏᾲ㊂⸘ MDSCߦࠃߞߡ᷹ⷰߒޔKWW 㑐ᢙߩࡄࡔ࠲ߢࠆβ (KWW)ߩ⚵ᚑଐሽ ᕈࠍ⺞ߴߚޕMDSC ߪ 1993 ᐕߦታ↪ൻߐࠇߚᲧセ⊛ᣂߒታ㛎ᚻᴺߢࠆޕㅢᏱߩ DSC ߢ↪ࠄࠇࠆ࠾ࠕ᷷ 㒠᷷ߩߦࠨࠗࡦဳߩ᷷ᐲᵄࠍ㊀⇥ߒߚ᷷㒠᷷ࡊࡠࠣࡓ߇↪ࠄࠇࠆޕ᷷ᐲᄌ⺞ߦኻߔࠆᔕ╵߆ࠄേ⊛ᗵฃ₸ߣߒ ߡ⚛ⶄޔᲧᾲኈ㊂ࠍ᷹ⷰߔࠆߎߣ߇ߢ߈ࠆޕታ㛎ⵝ⟎ߣߒߡޔTA Instruments ␠ߩ DSC2920 ࠍ↪ߚࠆߥߣࠬࡌޕ ࠾ࠕ᷷᷷ᐲ 1͠/min ߦኻߒߡޔᦼ 100 ⑽ᝄr1͠ߩࠨࠗࡦᵄࠍ㊀⇥ߒߚⷰޕ᷹ߐࠇߚⶄ⚛Ყᾲߩታㇱߣ⯯ㇱ ߩ Cole-Cole ࡊࡠ࠶࠻ࠍⴕޔHavriliak-Negami(HN) ᑼߢ⸃ᨆߒߚ ᵈ㧦ߎߎߢߪ♽ߦട߃ࠆ᷷ᐲᵄߩᵄᢙࠍ࿕ቯߒ ߡޔ᷷ᐲ ✭ᤨ㑆ࠍᩏߒߡࠆޕታ㛎⚿ᨐߪ HN ᑼߦࠃࠅߊࠃޔౣߐࠇߚޕHN ᑼߩࡄࡔ࠲߆ࠄޔβ (KWW) ߩ୯ࠍ᳞⚵ߩߘޔᚑଐሽᕈࠍ⺞ߴߚޕLiB-G ߢߪޔᷝടߔࠆࠕ࡞ࠞ㊄ዻߩ㊂ߦᔕߓߡߩ⚛࠙ࡎޔ㈩ᢙ߇ 3 ߆ࠄ 4 ߦᄌൻߒߡߞߦࠇߘޔ᭴ㅧන߇ᄌൻߔࠆߎߣ߇ႎ๔ߐࠇߡࠆޕLiB-G ࠍ᭴ᚑߔࠆࡎ࠙⚛ߩ㈩ᢙᄌൻߣβ (KWW) ߩ㑆ߦ⏕ߥ⋧㑐㑐ଥ߇ࠆߎߣࠍߛߒߚޕ 29 أഽ་༹ͥࣞ͢ͅঊ΄ρΑ͈ယၾ͂ཛྷಫၚ͈൳শ௶! ੩Ꮏ❫ᄢ ₎ጊ 㕏ᄦ┻ޔᎹ ᶈมޔᷓየ ᶈᰴ ࠟࠬォ⒖᷷ᐲߦ߅ߡޔᾲኈ㊂⤘ޔᒛ₸߇㓏Ბ⊛ߦᄌൻߔࠆߎߣߪࠃߊ⍮ࠄࠇߡࠆߩࠄࠇߎޕ㊂ߪࠬࠟޔォ⒖ࠍ ․ᓽߠߌࠆࠬࡠ࠳ࠗ࠽ࡒ࠶ࠢࠬߩࠄࠁࠆࡕ࠼ߦ⋥ធߦ㑐ଥߒߡࠆߣ⠨߃ࠄࠇࠆߩߎޕὐߢ․ޔቯߩᔕജߣᄌᒻࠍ ⚿߮ߟߌࠆᒢᕈ₸ߪࠆޔ㔚᳇ᭂሶߩㆇേࡕ࠼ߦᵈ⋡ߔࠆ⺃㔚₸ߦᲧߴߡࠅࠃޔᐢ▸ߥㆇേࠍᤋߒߡࠆߣ⸒߃ ࠆޕᓥߞߡޔᾲኈ㊂ߣ⤘ᒛ₸ߩᲧセߪ⎇ߩࠬࠢ࠶ࡒ࠽ࠗ࠳ࡠࠬޔⓥߦ↪ߥᖱႎࠍਈ߃ࠆ߽ߩߣᦼᓙߐࠇࠆ߇ࠆߥ⇣ޔ ‛ᕈ㊂ߩᲧセߦߪޔᏱߦ⹜ᢱߩᾲጁᱧߩห৻ᕈ߇㗴ߦߥࠆޕหᤨ᷹ቯߪߩߎޔ㗴ߦኻߔࠆᦨ߽ലᨐ⊛ߥ⸃ᴺߢࠆޕ ᧄ⎇ⓥߢߪޔ᷷ᐲᄌ⺞ᴺࠍ↪ߒߚᾲኈ㊂ߣ⤘ᒛ₸ߩหᤨ᷹ቯⵝ⟎ࠍ㐿⊒ߒࠬࠟߩࡦ࠴ࠬࡐޔォ⒖ߦㆡ↪ߒߚᧄޕ ႎ๔ߢߪࠣࡦࠫࠗࠛޔലᨐߦᵈ⋡ߒߡޔ᷹ቯ⚿ᨐࠍ␜ߔߎߣߦߒߚޕ ΄ρᾼͥ͢اࠔೀ͈༗ం! ⁛ㄘᬺ↢‛⾗Ḯ⎇ⓥᚲ ↰ਛ ᄢ ᬀ‛ㆮવ⾗Ḯߩ㐳ᦼሽᴺߪޔ⒳ሶߦࠃࠆ߽ߩ߇৻⥸⊛ߢࠆޔߪࠇߘޕᏱ᷷ਅߦ߅ߡ⚵❱⚦⢩߇ࠟࠬ⁁ᘒߦࠆ ߚ▤ℂ⁁ᘒߐ߃⦟ߌࠇ߫㐳ᦼሽน⢻ߛ߆ࠄߢࠆޔࠄ߇ߥߒ߆ߒޕ⒳ሶߢሽߢ߈ߥᬀ‛ߪ⇇ਛߦᄙߊሽߔࠆޕ ᾲᏪၞߩᬀ‛ߩᄙߊߪ⒳ሶ߇᷷ᐲᄌൻ߿ੇ῎ߦ⠴߃ࠄࠇߥߚሽ߇㔍ߒߊ̈㔍⾂⬿ᕈ⒳ሶ̉ߣ߫ࠇࠆࠗޔߚ߹ޕ ࡕࠍߪߓߣߒߚᩕ㙃❥ᱺᕈᬀ‛߿ޔᩕ㙃❥ᱺߢߒ߆ㄘᬺ⊛ఝ⦟ᒻ⾰ࠍ⛽ᜬߢ߈ߥᨐ᮸㘃ߩ㐳ᦼሽᴺߪޔታ㓙ߦ᮸ᧁ ߿‛ࠍ߿⇌ߢᩱၭߒߥߌࠇ߫ߥࠄߕሽ߇࿎㔍ߢࠆߩࠄࠇߎޕㆮવ⾗Ḯߦሽ㊀ⷐᕈߩఝవ㗅ࠍߟߌߚ႐วޔ ⇇ߢਥߦ㘩ߴࠄࠇߡࠆߊߟ߆ߩ‛⒳ࠆߪᨐ᮸㘃ߦ⛉ࠄࠇߡߒ߹߁ᧂޕ↪ㆮવ⾗Ḯߦߪޔක⮎ຠߩᚑಽߦߥࠆ ࠃ߁ߥ੍ᗐ߽ߟ߆ߥଔ୯ࠍᜬߟ߽ߩ߽߹ࠇࠆޕᣢሽߩᬀ‛⚦⢩ߩૐ᷷ሽߩ⎇ⓥߢߪޔᶧ⓸⚛ਛߦሽߐࠇࠆᬀ ‛᧚ᢱߩ⁁ᘒ߿⚦⢩ߩ↢ᱫߣ㑐ㅪߒߚᒻᘒ⊛ᄌൻߥߤߦߟߡߪ⸃ߊోޔᨆ߇߅ߎߥࠊࠇߡߎߥ߆ߞߚޕᬀ‛⒳ࠍࠊߕ 㜞↢ሽ₸ࠍ⛽ᜬߢ߈ࠆሽᴺࠍ㐿⊒ߔࠆߚߦߪ⚦ޔ⢩ߩᶧ⓸⚛ሽᤨߩᔕ╵ߦ㑐ߔࠆၮ␆⊛⍮ࠍᓧߚᓟޔല₸⊛ ߦᄙߊߩ⒳ ࠆߪޔຠ⒳♽⛔ࠍሽߢ߈ࠆ᥉ㆉ⊛ߢ◲ଢߥᣇᴺߩ⸳ቯࠍ߅ߎߥ߁ߎߣ߇ᔅ㗇ߢࠆޔߢߎߘޕᶧ ⓸⚛ਛߩ-196͠ߢሽߐࠇࠆᬀ‛⨍㗂ߩ⚦⢩ᓸ⚦᭴ㅧᄌൻࠍ⺞ߴࠆߚࠬࠟޔൻᴺ߅ࠃ߮ࡆ࠭ࠟࠬൻᴺߦࠃࠆૐ ᷷ሽㆊ⒟ߩᲑ㓏᧦ઙࠍᄌ߃ߡޔૐ᷷ಣℂߒߚ⨍㗂ࠍ㔚ሶ㗼ᓸ㏜ߦࠃߞߡޔૐ᷷ਅߦ߅ߌࠆ⚦⢩ߩ↢ሽߣᓸ⚦᭴ㅧ ߥࠄ߮ߦ⚦⢩ౝߩ᳓ߩേߦߟߡ⸃ᨆࠍ߅ߎߥߞߚ⚿ߩߘޕᨐ⚦ޔ⢩ౝ߆ࠄߩ⣕᳓߇ਇචಽߥ႐วߦߪޔ಄ළਛߦ⚦⢩ ౝߦᄢ߈ߥ᳖᥏߇ήᢙߦᒻᚑߐࠇ⚦ޔ⢩ౝߦਇนㅒ⊛ߥ‛ℂ⊛்ኂࠍᒁ߈ߎߒߡࠆߎߣ߇ಽ߆ߞߚ৻ޕᣇࠬࠟޔൻ ṁᶧࠍㆡᒰߥᤨ㑆ಣℂߒ↢ሽ₸ࠍ㜞ߊߟߣޔේᒻ⾰ಽ㔌߇ߎࠅ⚦⢩ౝߦዊ⢩ᒻᚑ߇ࠄࠇࠆ߽ߩߩ⚦⢩ౝߦߪోߊ ᳖᥏ߪⷰኤߐࠇߥߎߣ߆ࠄ⚦ޔ⢩߇ࠟࠬൻߒߡࠆߣ⠨߃ࠄࠇߚޕ ΄ρΑഢ֊͈ঊΘͼη·ᾼࡉͥྵ࡛ય͈൲എளً! ർᄢℂ ⬉ญ ࠁߺޔ㊁፸ 㦖 ↢ߩḮࠆߪߘߩሽߩ㗴ߪ↢ޔߩሽࠍ೨ឭߦ⼏⺰ߔࠆߎߣߪ᧪ߥߩߢ‛ޔℂቇ߿ൻቇߩ㗴ߢࠆޕ ߟ߹ࠅޔනߦ↢‛ࠍជࠅਅߍߡߊߩߢߪߥޔಽሶࡌ࡞ߩ‛ᕈ‛ℂቇ⊛ࠆߪൻቇ⊛ࠕࡊࡠ࠴߇ᔅⷐߢࠆޔ♧ޕ ♧ࠕ࡞ࠦ࡞ޔ࠼ࠪࠝࠢޔ㉄ࡁࡒࠕޔ⢽⾰ߣߞߚ↢⽎ࠍᡰ߃ࠆၮᧄಽሶߩࠄࠇߎߪࠆޔ⊒ൻว‛ߩḮ ߦኻߔࠆൻቇ⊛ࠕࡊࡠ࠴ߪ㐳ᱧผࠍ߽ߟᦨޕㄭߢߪߎࠇࠄߩᄖวᚑࠍ␜ߔ⎇ⓥᚑᨐ߇ᄙ৻ޕᣇ‛ߩߢ߹ࠇߎޔ ℂቇ⊛ࠕࡊࡠ࠴ߪޔ᭴ㅧ ࡦ⢽⾰㧙᳓♽ߩ⥄Ꮖ⚵❱ൻߥߤ߿ᖱႎ ࠥࡁࡓࠍਛᔃߦⴕࠊࠇߡ߈ߚ↢ޔߒ߆ߒޕ⽎ ߪᧄ⾰⊛ߦേ⊛ㆊ⒟ߢࠅ⎇ߩࠬࠢࡒ࠽ࠗ࠳ߩߘޔⓥߪ↢ޔߩḮࠆߪߘߩሽߩ㗴ࠍ⸃ߔࠆߚߦᔅⷐਇน ᰳߢࠆߩߎޕ႐ว↢ޔ⽎ࠍᡰ߃ࠆၮᧄಽሶ߇ࠆන⚐ߥ♽ߩಽሶ࠳ࠗ࠽ࡒࠢࠬࠍ⺞ߴࠆߎߣ߇㊀ⷐߢࠆߥߗߥޕ ࠄޔၮᧄಽሶߩߺ߇㑐ࠊࠆ࠳ࠗ࠽ࡒࠢࠬߪ↢ޔ⽎ߩേ⊛⚛ㆊ⒟ߣ߁ᔨߦ⚿߮ߟߊ߆ࠄߢࠆޕ ♧ࠕ࡞ࠦ࡞ߣ᳓ߩ♽ߪ↢ޔߩၮ⋚ࠄߒߐࠍᄬࠊߥᦨ߽න⚐ߥ♽ߩ৻ߟߢࠆߩߘޕಽሶ࠳ࠗ࠽ࡒࠢࠬࠍޔਥߣߒ ߡᐢᏪၞ⺃㔚ಽశᴺߦࠃࠅᄙⷺ⊛ߦ⎇ⓥߒߚ⚿ᨐ⋧ߩߘ࡞ࠦ࡞ࠕ♧ޔᷙว♽᳓ᷙว♽ߩࠟࠬォ⒖ߦ㑐ࠊࠆಽ ሶ࠳ࠗ࠽ࡒࠢࠬߪޔ᷷ᐲߛߌߢߥߊಽሶ㊂ᐔဋಽሶ㊂᳓㊂ߥߤߩ⇣ߥࠆࡄࡔ࠲ߢᓮߐࠇࠆߎߣ߇ಽ߆ߞ 30 ߚ࡞ࠦ࡞ࠕ♧ޕᷙว♽ߦ߅ߌࠆࡃ࡞ࠢߣ⇇㕙ㄭறߦ߅ߌࠆಽሶ࠳ࠗ࠽ࡒࠢࠬߩ㆑ߪޔ᳓ಽ㊂߿ᐔဋಽሶ㊂ߩ㆑ߣ⛔ ৻⊛ߦℂ⸃ߔࠆߎߣ߇᧪ߩ‛↢ޔߪࠬࠢࡒ࠽ࠗ࠳ߩߘޔ᭽ߥޘ႐㕙ߦขࠅㄟ߹ࠇߡࠆߣ⠨߃ࠆߎߣ߇᧪ࠆޔߪࠇߎޕ ↢߇ㆊ಄ළᶧߩࠟࠬォ⒖ߦ㑐ࠊࠆಽሶ࠳ࠗ࠽ࡒࠢࠬࠍᏁߺߦ↪ߒߡࠆߎߣࠍ␜ໂߔࠆޕ ౙ଼̥֚ͣ̈́ͥঊסఘ͈סఘȆסఘഢ֊̷͈͂΅ΥΞͻ·Α! ᧲ᄢ↢⎇ ↰ਛ ⡸ޔᩙ↰ ᶧߪੂޔ㔀߆ߟ৻᭽ߥ☸ሶ㈩ࠍ߽ߟޔ᳇એᄖߢߪ໑৻ߩ‛⾰ߩᾲജቇቯ⋧ߢࠆߣ⠨߃ࠄࠇߡ߈ߚᦨޕㄭߎߩ Ᏹ⼂ߦߒޔන৻ේሶ߹ߚߪಽሶ⒳߆ࠄߥࠆ‛⾰ߦޔ2 ߟએߩᶧ⁁ᘒ߇ሽߔࠆߎߣࠍ␜ໂߔࠆታ㛎⚿ᨐ߇ႎ๔ߐࠇ ߡࠆߥ߁ࠃߩߎޕᶧ⁁ᘒ㑆ߩ৻ᰴ⋧ォ⒖ߪᶧᶧ⋧ォ⒖ߣ߫ࠇࠆޕᚒᦨޔߪޘㄭῂ㉄࠻ࡈࠚ࠾࡞ TPPޔ n-ࡉ࠲ࡁ࡞ߣߞߚන৻ಽሶ⒳߆ࠄߥࠆᯏᶧߦ߅ߡޔಽሶᕈᶧߣߒߡߪೋߡߩᶧᶧォ⒖ࠍ⊒ߒߚޕ ߐࠄߦޔታ㓙ߦᶧ I ߇ᶧ II ߦᄌൻߔࠆㆊ⒟ࠍ⋥ធⷰኤߔࠆߎߣߦᚑഞߒߩߘޔォ⒖᭽ᑼߦޔᩭᒻᚑᚑ㐳᭽ᑼߣࠬ ࡇࡁ࠳࡞ಽ⸃᭽ᑼ߇ሽߔࠆߎߣࠍߒߚޕ೨⠪ߩ႐วޔᶧ I ߩਛߦᶧ II ߇ዊߐߥᩭߣߒߡߒߘࠇ߇ᚑ㐳 ߔࠆߎߣߢᦨ⚳⊛ߦᶧ I ߇ోߡᶧ II ߦߥࠆߦࠇߎޕኻߒᓟ⠪ߢߪޔᶧ I ో߇ਇቯൻߒޔㅪ⛯⊛ߦᓢߦޘᶧ II ߦᄌൻߔࠆ⥝ߩߎޔߪߢߎߎޕᷓ⽎ߦߟߡߩᦨᣂᖱႎࠍ⚫ߔࠆߣߣ߽ߦࠬࠟޔォ⒖⽎ߥߤᶧߦ߅ߌ ࠆઁߩᧂ⸃⽎ߣߩ㑐ଥߦߟߡ߽⼏⺰ߔࠆ੍ቯߢࠆޕ ೩ྟഽକ͉͂ !̥ةȡକ͈අ։͈࡙̈́ܳͬౝͥȡ! ! ฬฎደᄢቇ‛⾰⑼ቇ࿖㓙⎇ⓥࡦ࠲ ᧻ᧄ ᱜ ᳓ߪᢙᄙߊߩ․⇣ߥ‛ᕈࠍᜬߟߎߣߢ⍮ࠄࠇߡࠆ߇ޔㄭᐕߩ⎇ⓥߦࠃࠅޔ ߘࠇࠄߩᄙߊߪޔ᳓ߩࡀ࠶࠻ࡢࠢᒻᚑᕈߦᏫ⌕ߔࠆߎߣ߇ࠊ߆ߞߡ߈ߚޕ ᚒࠢࡢ࠻࠶ࡀޔߪޘᕈᶧߦ․ߥᶧᶧ⋧ォ⒖ߦ․ޔૐኒᐲᶧ⋧ߦᵈ⋡ߒޔ ߎߩ⋧߇ߤߩࠃ߁ߥ ਛ〒㔌⒎ᐨࠍᜬߟߩ߆ࠍ⚦ߦ⺞ߴߚࡔࠣࡈޔߕ߹ޕ ࡦ࠻᭴ㅧࠍቯ⟵ߒߚ⚿ߩߘޕᨐ⚿ޔ᥏᳖ߩ᭴ㅧ߇ߏߊዋᢙߩࡈࠣࡔࡦ࠻ߦಽ ⸃ߢ߈ࠆߩߣห᭽ߦޔૐኒᐲ᳓ߩ᭴ㅧߪߩ࠻ࡦࡔࠣࡈޔ㓸วߦಽ⸃ߔࠆߎ ߣ߇ߢ߈ࠆߎߣ߇ࠊ߆ߞߚޕૐኒᐲ᳓․ߩ᭽‛ߥޘᕈߪࠆޔᏱ᷷ߩ᳓ߩ ‛ᕈߪߩ࠻ࡦࡔࠣࡈߩߎޔ㓸࿅ߩ᭴ㅧ߿࠻ࡐࡠࠫߣ⚿߮ߟߌࠄࠇࠆߣ⠨߃ ࠄࠇࠆޕ ฝ࿑ߦߪૐኒᐲ᳓ࠍࡈࠣࡔࡦ࠻ߦಽ⸃ߒߚ߽ߩࠍ␜ߔ߇࠻ࡦࡔࠣࡈޕឃ ઁ⊛ߦⓨ㑆ࠍలႯߒߡࠆ᭽ሶ߇ࠊ߆ࠆ!ޕ ! ! ! ˴́ࡉͥକ͈କளࣣࠫ! ℂ⎇ SPring-8Aޔᐢᄢ B᧲ޔᄢ‛ᕈ⎇ C ේ↰ ᘏਭ Aޔᓼፉ 㜞 Aޔ㜞ᯅ ୃ Bޔች᎑ ⦟ᴦ Aޔㄆ ၨ A,C エ X ✢ๆ⊒శಽశߪౝᲖബࠍ↪ߡర⚛ㆬᛯ⊛ߦଔ㔚ሶ⁁ᘒࠍࠆᚻᴺߢࠅޔඨዉ߿વዉߥߤޔਥߦ ࿕⹜ᢱߩ㔚ሶ⁁ᘒࠍర⚛ᑯߒߡࠆߎߣߩߢ߈ࠆᚻᴺߣߒߡޔశ㔚ሶಽశߣ⋧⊛ߦ↪ࠄࠇߡ߈ߚޕᚒ⌀ޔߪޘⓨ ߣ⋧ᕈߩᖡṁᶧ⹜ᢱߩエ㨄✢ๆ⊒శಽశࠍⴕ߃ࠆࠪࠬ࠹ࡓࠍ SPring-8 ℂ⎇ኾ↪ࡆࡓࠗࡦ BL17 ߦ᭴▽ߒޔ᳓ ߮㊀᳓ߩ㔚ሶ⁁ᘒߩ⎇ⓥࠍⴕߞߡࠆޕO1s ౝᲖๆ⊒శಽశࠍ᳓ߦㆡ↪ߔࠆߣޔ᳓⚛⚿วߦᢅᗵߥ O2p 㔚ሶ⁁ᘒ ߩᖱႎ߇ᓧࠄࠇࠆޕO2p ゠ߪ᳓ߣࠅߩಽሶ ᳓ಽሶࠍ㑆ߩ⋧↪ࠍᦨ߽ᒝߊᤋߔࠆ゠ߢࠅޔ᳓ߩ᭴ㅧ ߣኒធߦ㑐ㅪߒߡ᳓⚛⚿วߩᄌൻޔṁ⾰ߩ᳓߿᳓ߣ⇇㕙ߩ⋧↪ߥߤߩᖱႎࠍਈ߃ࠆޕ 2002 ᐕߦ Guo ࠄߦࠃߞߡⴕࠊࠇߚ᳓ߩ᷹ቯ[1] ߪߥࡓ࠳ࡦޔ᳓ߩലᨐߢ᳓ಽሶߩභ゠ߦ߇ߟߚ߽ߩߣߒ ߡ⺑ߐࠇߚ߇ޔᚒߩޘᓧߚ㜞ಽ⸃⢻ࠬࡍࠢ࠻࡞ߢߪޔଔ㔚ሶ࠻࠶ࡊߩߩ⁜㕖⚿วᕈ゠߇⚂ 0.7eV 㑆㓒ߢ 2 ߟߦ 31 ಽⵚߒޔᶧߩ᳓ߩਛߦ⏕ߦ⇣ߥࠆ 2 ߟߩⅣႺ߇ࠆߎߣ߇␜ߐࠇߚޕ᷷ᐲଐሽᕈ߮ബࠛࡀ࡞ࠡଐሽᕈߩ⚿ᨐ ߆ࠄߪࠄࠇߎޔ᳖᭽ߩ 4 ㈩ߩ⁁ᘒߣޔ᳓⚛ଏਈߩ᳓⚛⚿ว߇ಾࠇߚ 2 ߥߒ 3 ㈩ߩ⁁ᘒߢࠆߎߣ߇ࠊ߆ߞߚޕ ߐࠄߦޔ᳓ 1 ಽሶߚࠅߩᐔဋ᳓⚛⚿วᢙ߇Ⓧ߽ࠄࠇޔ3 ࠃࠅ߽ዊߐߣ߁⚿ᨐ߇ᓧࠄࠇߚޕ ߐࠄߦ⚿᥏᳖ࠬࠔࡈ࡞ࡕࠕޔ᳖߳ㆡ↪ߔࠆߚߩࠪࠬ࠹ࡓࠍ᭴▽ਛߢࠆޕ [1] J.-H. Guo, Y. Luo, A. Augustsson, J. -E. Rubensson, C. Sathe, H. Agren, H. Siegbahn, and J. Nordgren, Phys. Rev. Lett. 89, 137402 (2002). ۙખಎঊ౮८၄ͥ͢ͅΗϋΩ·ৗΘͼη·Α͈କგ࢘!ض ේሶജᯏ᭴ A᧲ޔᄢಽ↢⎇ Bޔᄹ⦟వ┵ᄢ C ਛᎹ ᵗ Aޔၔ Bޔർየ ᓆᦶ Bޔᩊ↰ ⮍ Aޔㇹ ାᐢ A ޔጟ ᐙ㓶 A㨮C ࠲ࡦࡄࠢ⾰ߩ࠳ࠗ࠽ࡒࠢࠬߪࠅߩ᳓ⅣႺߦᓇ㗀ࠍฃߌࠆߎߣߪࠃߊ⍮ࠄࠇߡࠆ⎇ᧄޕⓥߢߪ࠽ࠗ࠳⾰ࠢࡄࡦ࠲ޔ ࡒࠢࠬߩ․ᓽߢࠆࡏ࠰ࡦࡇࠢ߿േജቇォ⒖߇᳓ߣߤߩࠃ߁ߦ㑐ࠊߞߡࠆߩ߆ࠍਛᕈሶ㕖ᒢᕈᢔੂߦࠃࠅ⺞ߴߚޕ ᭂૐ᷷ߢߪ 3㨪4meV ߦࡏ࠰ࡦࡇࠢ߇᷹ⷰߐࠇࠢࡇޔ⟎ߪ᳓ߦࠃࠅ㜞ࠛࡀ࡞ࠡ߳ࠪࡈ࠻ߔࠆߎߣ߇ಽ߆ߞߚޕ ࡏ࠰ࡦࡇࠢㄭறߩࠬࡍࠢ࠻࡞߇␜ߔ࠲ࡦࡄࠢ⾰ߩૐᝄേࡕ࠼ߪ⺞ᝄേ⊛ߢࠅߨ߫ߩߘࠄ߆࠻ࡈࠪߩࠢࡇޔቯᢙ ߪ᳓㊂߇ᄙ߶ߤᄢ߈ߊߥࠆߣ⸒߃ࠆߪࠇߎޕ᳓⚛⚿วࠍߒߚ᳓᳓ߣ࠲ࡦࡄࠢ⾰ߩ⋧↪ߦࠃߞߡ࠲ࡦࡄࠢ⾰ߩ ૐᝄേࡕ࠼ߩࠛࡀ࡞ࠡᒻ߇ࠃࠅಲಳߦߥߞߚߎߣߦ࿃ߒߩࠄ߆ࡦ࡚ࠪࡘࡒࠪߪߣߎߩߎޔℂ⺰⊛ߥ੍᷹ (Y.Joti et al., 2005)ߣ৻⥌ߔࠆ৻ޕᣇޔ᳓㊂߇⚂ 0.2(g water/g protein) એߢ 240K ઃㄭߦ߅ߡേജቇォ⒖߇᷹ⷰ ߐࠇߚߗߥޕേജቇォ⒖߇᳓ଐሽ⊛ߦ↢ߓࠆߩ߆ࠍ⺞ߴࠆߚߦޔਛᕈሶᢔੂߩหലᨐࠍ↪ߒߡ᳓᳓ߩ࠳ࠗ࠽ ࡒࠢࠬࠍ⋥ធ᷹ⷰߒߚ⚿ߩߘޕᨐޔォ⒖᷷ᐲએਅߩૐ᷷ߢߪ᳓㊂ߦ㑐ଥߥߊ࠲ࡦࡄࠢ⾰ߣ᳓ಽሶߩំࠄ߉ߩᄢ߈ߐߪ߶ ߷หߓߢߞߚߚ߹ޕォ⒖߇↢ߓߥૐ᳓㊂ߩ႐วߢߪォ⒖᷷ᐲએߢ߽߿ߪࠅ࠲ࡦࡄࠢ⾰ߣ߶߷หߓߢߞߚ৻ޕ ᣇޔേജቇォ⒖߇↢ߓࠆᤨߦߪหᤨߦ᳓᳓ߩំࠄ߉߇ᄢ߈ߊߥߞߡࠆߎߣ߇ࠄ߆ߦߥߞߚޕ㜞᳓㊂ߢ↢ߓࠆ࠲ ࡦࡄࠢ⾰㕙ߩ᳓ಽሶߩ․⇣⊛ߥ࠳ࠗ࠽ࡒࠢࠬ߇ߣ⾰ࠢࡄࡦ࠲ޔ᳓ಽሶߩ⇇㕙ߦሽߔࠆ᳓⚛⚿วࡀ࠶࠻ࡢࠢࠍߒߡ ࠲ࡦࡄࠢ⾰ߩᝄേࡕ࠼ߣ⋧↪ߒ⚿ߩߘޔᨐേജቇォ⒖߇↢ߓࠆߣ⠨߃ߡࠆޕ ౩ฒৗ͈൲എഢ֊͂ΏΈσယ! ฬฎደᄢቇ▚⸘ޔℂᎿቇኾ દ⮮ ৻ੳ╣ޔ ℂ↢ ᄙߊߩⰮ⊕⾰߇ 200K ೨ᓟߢࠟࠬォ⒖ࠍߎߔޔߪࠇߎޕ200K ⒟ᐲߦ᷷ᐲ߇ߔࠆߎߣߢⰮ⊕⾰᭴ㅧࠁࠄ߉ߩૐ ᝄേᢙ㐳ᵄ㐳ࡕ࠼ߦ㕖⺞⊛ലᨐ߇㗼⪺ߦߥࠅޔታല⊛ߥᒢᕈቯᢙ߇ዊߐߊߥࠆ࠰ࡈ࠻ൻ߇↢ߓࠆേ⊛ォ⒖ߢࠆߣ ⠨߃ࠄࠇߡࠆޕห᭽ߥേ⊛ォ⒖߇Ᏹ᷷ߢߩశๆߦࠃߞߡ߽↢ߓࠆน⢻ᕈࠍ⠨߃ߚߦ⾰⊕Ⱞޕઃዻߒߚ⦡⚛߇శሶࠍ ๆߒߡബߐࠇࠆߣ࿐ߩ᭴ㅧߦήℂ߇↢ߓࠆ߇✕ߩߎޔᒛߪૐᝄേᢙ㐳ᵄ㐳ࡕ࠼ߩ࠰ࡈ࠻ൻߦࠃߞߡ✭ߐࠇ⥄ ↱ࠛࡀ࡞ࠡ߇ૐਅߔࠆ࠻ࡈ࠰ޔߦࠄߐޕൻߪ⦡⚛ߣ㔌ࠇߚ႐ᚲߩㇱಽ⊛ࠕࡦࡈࠜ࡞࠺ࠖࡦࠣߦࠃߞߡᗖ߈ߎߐࠇࠆ น⢻ᕈ߇ࠆߡߒ߁ߎޕశࠪࠣ࠽࡞ฃኈ߇Ⱞ⊕⾰ਛߩ㔌ࠇߚ႐ᚲࠍࠕࡦࡈࠜ࡞࠼ߔࠆࠪ࠽ࠝߦߟߡᬌ⸛ߒߚޕ Ώς΄ρΑ͈ޫਫ਼ࢹ௮་̳ͥ۾ͅاঊ൲ႁڠΏηντȜΏοϋ! ᣩ⎣ሶᩣᑼળ␠ਛᄩ⎇ⓥᚲ 㜞↰ ┨ ࠪࠞࠟࠬߩࠃ߁ߥ྾㕙߇ࡀ࠶࠻ࡢࠢࠍ᭴ᚑߔࠆࠟࠬߦߪኒᐲ⇣ᏱޔⓍᒢᕈ₸⇣Ᏹ╬ߩቇⴚ⊛ߦ߽Ꮏᬺ⊛ߦ ߽⥝ᷓ․ᕈ߇ᄙޕኒᐲ⇣Ᏹߪ᷷ᐲߣߣ߽ߦ⤘ᒛଥᢙ߇⽶ߣߥࠆ⽎ߢࠅޔⓍᒢᕈ₸⇣ᏱߪⓍᒢᕈ₸߇᷷ ᐲߣߣ߽ߦჇടߒޔജ⽶⩄ߣߣ߽ߦᷫዋߔࠆ⽎ߢࠅޔㅢᏱߩ᧚ᢱߣߪㅒߩᝄࠆ⥰ࠍ␜ߔߎߣ߇⍮ࠄࠇߡࠆޕ ᦨㄭ㐿⊒ߒߚዪᚲ᭴ㅧᄌൻߩ⸃ᨆᚻᴺ ’Structon Analysis’ߣ߱ࠍ↪ߡ⚿᥏߮㕖᥏ߦਛߢߎߞߡࠆߣផቯߐ ࠇࠆ᭴ㅧᄌൻߩ⎇ⓥࠍⴕߞߚߩߢߎߎߦႎ๔ߔࠆޕ 32 κΟσঊ͈סఘ͈́ಿশۼ۱გ! ᗲ⍮Ꮏᬺᄢቇ ਛ ᱜ stretch, bend, torsion ߩಽሶౝߩౝㇱ᭴ㅧࠍᜬߞߡࠆ(DREIDING)100 ේሶಽሶߩࡕ࠺࡞ಽሶࠍ⠨߃ߩߘޔಽሶࠍ 3,200 ಽሶࠎߛࡕ࠺࡞ࠪࠬ࠹ࡓߩಽሶേജቇࠪࡒࡘ࡚ࠪࡦࠍⴕߞߚޕⓍ৻ቯߩࠪࡒࡘ࡚ࠪࡦߢࠅޔએ೨ߦ ⴕߞߚ 20 ේሶಽሶߩࡕ࠺࡞ಽሶߣหߓኒᐲ 0.9g/mol ߣߒߚߚ৻ޔㄝ߇⚂ 20nm ߩ┙ᣇߣߥࠆޕએ೨ߪ⚂ 10nm ߦ ߡⴕߞߚߚޔ8 ߩࠪࠬ࠹ࡓࠨࠗ࠭ߢⴕߞߡࠆޔߚ߁ⴕࠍࡦ࡚ࠪࡘࡒࠪߩࠢ࡞ࡃޕᦼႺ⇇᧦ઙࠍ⺖ߒߡࠆ ߩߢޔಽሶ߇િ߮߈ߞߚ㓙ߦޔಽሶߩ৻┵߇ਇ⥄ὼߦઁ┵ࠍേ߆ߒߡߒ߹߁ࠍㆱߌࠆߚߦࠪࠬ࠹ࡓࠨࠗ࠭ࠍᄢ߈ߊߒߚޕ ೋᦼ㈩⟎߇᧪߇ߞߡ߆ࠄ৻ޔቯߩ᷷ᐲ 600K ߢ✭ࠍᓙߞߡߺࠆߣޔ1,000 ਁ steps ታᤨ㑆 10ns⒟ᐲߩᤨ㑆ࠍ⚻ ߡޔᐔဋ⊛ߦਣ߹ߞߡߚಽሶ᭴ㅧ߇㐳ߊᑧ߮ߚ᭴ㅧ߳ߣᄌൻߒߚߩߤ߶ࠇߎޕ㐳ᤨ㑆✭ߪ 20 ේሶಽሶ 600K ߢߪ ࠄࠇߥޕ㕖ታ⊛ߢߪࠆ߇ޔኒᐲࠍห৻ߣߒߚߎߣߦࠃࠅࠆߡߞߥߦࡃࡃޔ㧡ᧄߩ 20 ේሶಽሶ߇ޔ1 ᧄߩ 100 ේሶಽሶߦߥߞߚߚޔⓨ㑆⊛ߦߪ㓗㑆߇ᄙߊߥߞߡࠆࡂ࠭ߢࠆ߽ߦޕ㑐ࠊࠄߕ✭߇ㆃߊߥߞߡࠆߩߎޕὐ ߦߟߡᓮ⼏⺰㗂ߌࠇ߫⋥ޔ㎮㜞ಽሶߦࠃࠆࠟࠬߩㆃ✭ߩℂ⸃߇ᷓ߹ࠆߣ⠨߃߹ߔޕ Molecular-dynamics simulation study on the nature of glassy reorientational dynamics ಽሶ⑼ቇ⎇ⓥᚲ ㈕ ⺈⯥ ㆊ಄ළᶧߩ࠳ࠗ࠽ࡒࠢࠬߩ․ᓽߣߒߡޔ2 ߟߩޟdecoupling߇ޠ⍮ࠄࠇߡࠆޕ1 ߟߪ ਗㅴᢔଥᢙߣ☼ᕈ₸ߩ decoupling ߢࠅޔbreakdown of the Stokes-Einstein relation ߣ߽߫ࠇߡࠆ߁߽ޕ㧝ߟߪޟਗㅴޠᢔଥᢙߣޟ࿁ ォޠᢔଥᢙߩ decoupling ߢࠅ߫߃ޔઍ⊛ߥࠟࠬᒻᚑ‛⾰ߢࠆ OTP ߦ߅ߡޔਗㅴᢔଥᢙߦ㑐ߒߡߪ Stokes-Einstein ೣ߇ Tg ࠃࠅ㜞ࠆ᷷ᐲએਅߢߪ⎕ࠇߡࠆߩߦኻߒޔ࿁ォᢔଥᢙߦ㑐ߒߡߪ Tg ㄭㄝ߹ߢኻᔕߔ ࠆ㑐ଥᑼ the Stokes-Einstein-̌Debye̍relation ߣ߫ࠇߡࠆ߇⎕ࠇߡߥߎߣ߇ታ㛎⊛ߦ⍮ࠄࠇߡࠆࠇߎޕ ࠄߪㆊ಄ළᶧߩ࠳ࠗ࠽ࡒࠢࠬߦ߅ߌࠆޟേ⊛ਇဋ৻ᕈߣޠ㑐ㅪߒߡࠆᨩߢࠅޔᵴ⊒ߥ⎇ⓥ߇ⴕࠊࠇߡࠆ ࠹ࡑߢࠆޔߪߡ߅ߦ⊒ᧄޕㆊ಄ළ⁁ᘒߦ߅ߌࠆಽሶᕈᶧߩࠪࡒࡘ࡚ࠪࡦ⚿ᨐߦߟߡ⺰ߓޔ࿁ォㆇേߦ㑐 ߔࠆ Stokes-Einstein-Debye relation ߪᧄᒰߦ⎕ࠇߡߥߩ߆㧫ߣ߁ߦ╵߃ߚߣ⠨߃ߡࠆޔߚ߹ޕ࿁ォㆇ േߩേ⊛ਇဋ৻ᕈߦ⌕⋡ߒߚ⸃ᨆࠍⴕ߁ߎߣߦࠃࠅ(ޔi) േ⊛ਇဋ৻ᕈ ✭ᤨ㑆ߩಽᏓߩᄢ߈ߐߪߤߩ⒟ᐲߢߩߘޔ᷷ ᐲଐሽᕈߪߤ߁߆㧫(iii)ਗㅴߣ࿁ォㆇേߦ߅ߌࠆേ⊛ਇဋ৻ᕈߩ⋧㑐ߪߤࠇߊࠄࠆߩ߆㧫╬ߩߦ߽╵߃ߚߣ⠨ ߃ߡࠆޕ ً႖סݕఘ̤̫ͥͅ൲എ͈۾ণഎၑა! 㜞⍮Ꮏ⑼ᄢቇ ✚ว⎇ⓥᚲ ࠬࡦࡈ ࠢࠨޔAࠕࡆࡦࡠࠦޔᄢቇ ࠕࡔࠞ B ችፒ ᎺᱜޔGiulio BiroliA, Jean-Phillipe BouchaudA, David R. ReichmanB ࠟࠬォ⒖ὐㄭறߦ߅ߌࠆࠬࡠ࠳ࠗ࠽ࡒࠢࠬߩ⢛ᓟߦߪޔേ⊛ਇဋ৻ᕈ߇ࠆ৻ߪࠇߘޕ⒳ߩදห⽎ߢࠅ․ޔᓽ ⊛ߥ⋧㑐㐳߇ሽߔࠆ╫ߢࠆޔߒ߆ߒޕേᓘಽᏓ㑐ᢙߩࠃ߁ߥ㕒⊛᭴ㅧࠍ⌑ߡ߽ޔදห⽎ࠍ␜ໂߔࠆࠃ߁ߥ⇣Ᏹߪޔ ߤߎߦ߽ࠄࠇߥ⋧ߩߎޔࠅ߹ߟޕ㑐㐳ߪേ⊛ߥḮࠍᜬߟ╫ߢࠆޕേ⊛⋧㑐㐳ࠍ᷹ⷰߔࠆߚߦߪޔേ⊛ߥᖱႎࠍ ⓨ㑆ߢᐔဋߒߡߒ߹߁ੑ⋧㑐㑐ᢙߢߪߥߊޔ㜞ᰴߩ⋧㑐㑐ᢙࠍߥߊߡߪߥࠄߥޔࠍࠇߎޕታ㛎߿ࠪࡒࡘ࡚ࠪࡦ ߢࠄ߃ࠆߎߣߢ߈ࠆࠃ߁ߦߥߞߚߩߪޔ90 ᐕ߽ᓟඨߦߥߞߡ߆ࠄߩߎߣߢࠆޔߒ߆ߒޕᣣߦࠆ߹ߢ⋧ߩߎޔ㑐 㐳ࠍ⺑ߔࠆ╙৻ේℂ⊛ߥℂ⺰ߪሽߒߥ߆ߞߚࠬࠟޕォ⒖ߦ߅ߌࠆઍ⊛ߥ╙৻ේℂℂ⺰ߪ⚿࠼ࡕޔวℂ⺰ MCTߢࠆޕMCT ߪォ⒖ὐࠃࠅ㜞᷷ߢߩޔੑ⋧㑐㑐ᢙߦࠇࠆࠬࡠ࠳ࠗ࠽ࡒࠢࠬࠍࠃߊ⺑ߔࠆ߇ޔℂ⺰ߩ ޟᐔဋ႐ߥ⊛ޠᕈ⾰⋧ޔ㑐㐳ࠍ⺑ߔࠆߎߣߪߢ߈ߥߣޔᕁࠊࠇߡ߈ߚߦᧉ⚛ޔߒ߆ߒޕ⠨߃ߡߺߡ߽ࠗ࠳ࡠࠬޔ ࠽ࡒࠢࠬࠍ⸥ㅀߔࠆℂ⺰߇ߩࠬࠢࡒ࠽ࠗ࠳ࡠࠬޔේ࿃ߢࠆදห⽎ࠍ⺑ߢ߈ߥ߽ߦ߆ߪߩ߁ߣޔਇ⥄ὼߢ ࠆޕᚒޔߪޘMCT ࠍᒛߒ⋧ޔ㑐㐳ࠍ⸘▚ߔࠆߎߣߦᚑഞߒߚߡߒߘޕᢙ୯⸃ᨆߦࠃߞߡ⋧ޔ㑐㐳ߩᚑ㐳ೣ߿࠲ࡌޔ 㗔ၞ߆ࠄࠕ࡞ࡈࠔ✭ᤨ㑆 ᭴ㅧ✭ᤨ㑆ߦ߆ߌߡߩᤨߩࠫࡠࠜࡈ࡞ࡕߩ߉ࠄំޔ㑆ᄌൻࠍቯ㊂⊛ߦ੍ᗐߒߚࠄࠇߎޕ ߩ⚿ᨐߪᦨޔㄭߩᢙ୯⸘▚߇␜ໂߒߡࠆ⚿⺰ߣ⍦⋫ߒߥޕ࿁ߩ⻠Ṷߢߪ⎇ޔⓥߩ⢛᥊߽ߡᧄޔℂ⺰ߩᚑᨐߣ 㗴ὐߦߟߡ⼏⺰ߒߚޕ 33 අ։୫൲༹ͥ͢ͅ΄ρΑഢ֊͈ၑა! ᧲ᄢ㒮✚วᢥൻ ޔ৻⌀ ޘጤ↰ ⌀ታ ․⇣៨േᴺߣߪޔജቇ♽ℂ⺰ߢ⍮ࠄࠇߡࠆẋㄭ⸃ᨆᴺߩ߭ߣߟߢࠅࠅߊߞࠁޔᄌൻߔࠆ⥄↱ᐲࠍหቯߒߩߘޔㆇേ ࠍ⸥ㅀߔࠆᣇᴺߣߒߡ⍮ࠄࠇߡࠆࠬࠟޔߪߜߚ⑳ޕォ⒖ὐㄭߊߢߺࠄࠇࠆᤨ㑆⋧㑐㑐ᢙߩಓ⚿߿േ⊛⽎ߩදห⊛ᝄ ࠆ⥰ࠍ․⇣៨േᴺߢ⸃ᨆߒߡ߈ߚౕޕ⊛ߦߪ◲߽ߣߞ߽ޔߕ߹ޔනߥㄭૃߢᓧࠄࠇࠆᤨ㑆⋧㑐㑐ᢙߩ㐽ߓߚᑼࠍജቇ ♽ߛߣ⠨߃ࠆ⋧ޔ㑐߇ߥ⁁ᘒߦኻߔࠆ✢ᒻቯᕈ⸃ᨆࠍⴕޔቯᕈߩ㒢⇇ὐࠍ߽ߣࡠߢࠅࠊ߹ߩߘޔ࿕㑐ᢙߩ ᝄߦኻߔࠆ⊒ዷᣇ⒟ᑼࠍ᳞ࠆޕᓧࠄࠇߚᝄᣇ⒟ᑼߪᤨޔ㑆⋧㑐㑐ᢙߩಓ⚿ߦኻᔕߔࠆࠨ࠼࡞ធ⛯ಽጘࠍ␜ߔߎߣ߇ ࠊ߆ࠆ࡞࠼ࠨޔߢߟޕធ⛯ಽጘߩ߹ࠊࠅߩំࠄ߉ߩലᨐࠍߺࠆߚߦ〝⚻ޔⓍಽ␜ࠍߟߊࠆ⸃ߩߘޕᨆߦ߅ߡ߽ޔ ᗐᤨ㑆ࠍዉߒߡ⇣․ޔ៨േᴺߦ߽ߣߠߊ⸘▚ࠍⴕޔേ⊛⽎ߩදห⽎⊛ᝄࠆ⥰ࠍ․ᓽߠߌࠆᜰᢙࠍౕ⊛ߦ⸘ ▚ߔࠆߊోޕᣂߒࠕࡊࡠ࠴ߢࠆߚ⇣․ޔ៨േᴺߩ⠨߃ᣇߣࠟࠬ♽߳ߩㆡ↪ߩᣇߦ㊀ὐࠍߡߡ⻠Ṷߔࠆޕ ⚦ߪޔcond-mat/0605049, cond-mat/0609238 ࠍෳᾖޕ ΄ρΑࠏ͈ιΕΑάΛ·̈́ΑΉȜσ͈́ࠁ؊൞! ᄢ㒋ᄢቇᄢቇ㒮 ℂቇ⎇ⓥ⑼ ศ㊁ ర ࠟࠬ⁁ᘒߪᐔⴧ⁁ᘒߢߪߥ߇ᤨߪ♽ߥ⊛ࠬࠟޔ㑆ߣߣ߽ߦࠃࠅޟቯ⏛߫߃ߪࠇߎޕߊࠁߡߞߥߦޠ႐߿㔚႐ ߦኻߔࠆ✢ᒻᔕ╵ࠍ᷹ቯߔࠆࠛࠗࠫࡦࠣലᨐߩታ㛎ߢޔ㜞ಽሶࠟࠬߢઁߩߘࠬࠣࡦࡇࠬޔࠄ߆ߦߐࠇߡ߈ߚޕᵄ ᢙࠍ࿕ቯߒߚᵹ✢ᒻᗵฃ₸ߪᤨ㑆ߣߣ߽ߦዊߐߊߥࠅ߇♽ޔ៨േߦኻߒߡޟ࿕ߊࠗࠛޕࠆߡߒ␜ࠍߣߎߊࠁߡߞߥޠ ࠫࡦࠣലᨐ⥄ߪޔㅢᏱߩ࠼ࡔࠗࡦᚑ㐳ߢ߽ࠄࠇࠆߚࠇ߰ࠅߊߏޔ㕖ᐔⴧ✭⽎ߢޔᩰᲑߦࠟࠬ♽ߦ࿕ߩ⽎ ߢߪߥ৻ޕᣇ✢ߪߢ♽ࠬࠟޔᒻᔕ╵ߪޔ㕖Ᏹߦㆃ߇⇣ޟᏱߦᄢ߈ⷰ ޠ᷹ߐࠇ߿ߔߣߐࠇߩߘޔℂ↱ߦ⥝߇ ᜬߚࠇߡࠆߚ߹ޕᄖ႐ߩᒝߐߦᢅᗵߢޔrejuvenation ߣ߫ࠇࠆᄸᅱߥ⽎ࠍ␜ߔ‛ߥࡠࠢࡑޕℂ㊂ߦࠄࠇࠆߎ߁ ߒߚ⇣Ᏹߩ⢛ᓟߦࠆ‛ߩߢ࡞ࠤࠬߥࠢ࠶ࡇࠦࠬ࠰ࡔޔℂߦᒝ㑐ᔃ߇ᜬߚࠇߡࠆ߽ߢࠬࠣࡦࡇࠬߪߦ⊛⺰⽎ޕ ᭴ㅧࠟࠬߢߩࠆ⒳ߩ droplet ឬߦ߽ߣߠߊࠬࠤࡦࠣℂ⺰߇ࡑࠢࡠߥ⽎ࠍ⺑ߔࠆߢ৻ቯߩᚑഞࠍߡ ࠆ ߽ߘ߽ߘޔߒ߆ߒޕdroplet ബߩࠃ߁ߥࡔ࠰ࠬࠤ࡞ߢߩ⇣Ᏹߥബ߇ߤ߁ߒߡሽߔࠆߩ߆߁ߣޔၮᧄ⊛ߥ㗴 ߪ⸃߆ࠇߡߥ⻠ߩߎޕṶߢߪࡔ࠰ࠬࠦࡇ࠶ࠢߥࠬࠤ࡞ߦߺࠄࠇࠆࠟࠬ♽․ߩ㕖✢ᒻᔕ╵ߦߟߡ⼏⺰ߔࠆ߹ޕ ߕᦨㄭᚒޔߚߞⴕ߇ޘ1Ბ㓏ߩࡊࠞኻ⒓ᕈߩ⎕ࠇࠍ␜ߔޔ᭴ㅧࠟࠬߩࠬࠣࡦࡇࠬޔᐔဋ႐ᮨဳ p⋧↪ߩࠬ ࡇࡦᮨဳߩ㒢ࠨࠗ࠭ߦ߅ߌࠆ߅ߌࠆ㕖✢ᒻᔕ╵ߩ⸃ࠍ⼏⺰ߔࠆޕᰴߦታⓨ㑆➅ࠅㄟߺ⟲ߩ⸃ᨆߦၮߠߊ࡞ࠤࠬ࠰ࡔޔ ߢߩ㕖✢ᒻᔕ╵ߩ⸃ᨆࠍⴕߞߚ⚿ᨐࠍ⼏⺰ߔࠆޕ೨⠪ߪή㒢ᄢᰴరޔᓟ⠪ߪ1ᰴర߆ࠄߩࠕࡊࡠ࠴ߢኻᭂ⊛ߢࠆ߇ޔ ߣ߽ߦࡔ࠰ࠬࠤ࡞ߢߩ⇣Ᏹߥ㕖✢ᒻᔕ╵ࠍ੍⸒ߔࠆޕ㑐ㅪߔࠆታ㛎ߣߒߡ࡞ࡊࡦࠨߩࠬࠣࡦࡇࠬߥࠢ࠶ࡇࠦࠬ࠰ࡔޔ ߦ߅ߌࠆ㔚᳇ᛶ᛫ࡁ᷹ࠗ࠭ቯߦߟߡ⼏⺰ߔࠆޕ ᧄ⎇ⓥߪ Tommaso Rizzo ᳁ Inst. Enrico Fermi, Romeߣߩห⎇ⓥߢࠆޕ ΑάϋΈρΑ͂ͼρςΞͻ! 㒋ᄢℂ Ꮉ శ ࠬࡇࡦࠣࠬߪࡦ࠳ࡓࡀࠬߣࡈࠬ࠻࡚ࠪࡦߢ․ᓽઃߌࠄࠇࠆ⏛ᕈߢࠅߩߘޔ⒎ᐨൻߪࠦࡦࡊ࠶ࠢࠬ♽ߩ ౖဳߣߒߡ㐳ߊᵴ⊒ߥ⎇ⓥ߇ዷ㐿ߐࠇߡ߈ߚࠖ࠹ࠗࠞޟߩࠬࠣࡦࡇࠬޕ⺑⏛ࠬࠣࡦࡇࠬޔߪޠᕈߩ⒎ᐨൻ ߦ߅ߡߣࠖ࠹ࠗࠞޔ߫ࠇࠆࠬࡇࡦ᭴ㅧߩฝᏀࠍߔ‛ℂ㊂߇㓝ߐࠇߚ⒎ᐨᄌᢙߣߒߡᧄ⾰⊛ߦ㊀ⷐߥᓎഀࠍᨐ ߚߒߡࠆߣߔࠆឬߢࠆ⻠ޕṶߢߪࠬࠣࡦࡇࠬޔォ⒖ߩࠞࠗ࠹ࠖ⺑߮ࠃ߅ޔ㑐ㅪߔࠆታ㛎࠺࠲ߦߟߡ⺑ ߒߩߘޔᒰุࠍᎼࠆᦨㄭߩ⺰ߦߟߡ߽◲නߦ⚫ߒߚޕ 34 ρϋΘθঽા˴˵κΟσ̤̫ͥͅΈρΑഎ࣑̈́۱გ͈ͼΒΑΉȜςϋΈ! ർᄢ㒮Ꮏޔർᄢ㒮ℂ Aޔ㒋ᄢ㒮ℂ B ⢻Ꮉ ⍮ᤘޔᩮᧄ ᐘఽ Aޔศ㊁ ర B વዉ⏛᧤ᩰሶ߿㔚⩄ኒᐲᵄ♽ߦ߅ߡߪޔਇ⚐‛߿ᩰሶᰳ㒱߇߽ߚࠄߔੂࠇߦࠃߞߡ⚐☴♽ߩᜬߟᦼ⒎ᐨ߇⎕უߐ ࠇࠆߎߣ߇ࠆ߇ࠇੂޕචಽᒙ႐วߦరߩ⒎ᐨࠍ࿁ᓳߔࠆ߆ุ߆ߣ߁㗴ߪ㐳ߊ⼏⺰ߐࠇ⛯ߌߡ߈ߚޕᒢᕈ⺰ߦၮߠ ߊ⸃ᨆ⊛ߥ⎇ⓥߦࠃߞߡޔ3 ᰴర♽ߢߪ Bragg glass ߣ߫ࠇࠆḰ㐳〒㔌⒎ᐨ⋧߇㒢ߩੂࠇߢ߽ሽߔࠆߎߣ߇␜ໂߐ ࠇߡࠆ߇ߡߞࠃߦࠇੂޔ㚟േߐࠇࠆォ⒖ߩᕈ⾰ߪ߶ߣࠎߤℂ⸃ߐࠇߡߥޕ ᚒߩߎߪޘォ⒖ࠍ⺞ߴࠆߚ⏛ࡓ࠳ࡦޔ႐ XY ࡕ࠺࡞ߦၮߠߊᢙ୯ࠪࡒࡘ࡚ࠪࡦߢ㕖ᐔⴧ✭ࠍ⸃ᨆߒߚߩߎޕ ♽ߪߴ߈߿ᜰᢙ㑐ᢙߢߪߖߥޔ㕖Ᏹߦㆃࠣࠬ⊛ߥ✭ࠍ␜ߔߚ✭⇇⥃ߥ⊛߈ߴޔࠍ߽ߣߦߒߚ⋧ォ⒖ߩᤨ㑆 ࠬࠤࡦࠣ⸃ᨆ߇ᚑࠅ┙ߚߥߢߎߘޕᚒߪޘฦᤨೞߩ⋧㑐㑐ᢙ߆ࠄ․ᕈ㐳ߩᤨ㑆⊒ዷࠍ⸘▚ߒᤨޔ㑆ߩ߆ࠊࠅߦ․ᕈ 㐳ࠍࡄࡔ࠲ߣߒߚࠬࠤࡦࠣࠍ⠨᩺ߒ⸃߇⽎⇇⥃ߡߞࠃߦࠇߎޔᨆߢ߈ࠆߎߣࠍታ㓙ߦ␜ߒߚޔߣࠆࠃߦࠇߘޕ ࠪࡒࡘ࡚ࠪࡦࠍⴕߞߚ⏛႐ߩ▸࿐ౝߢ⥃⇇․⇣ᕈߪࠄࠇߕ⏛ࡠࠈߒޔ႐߇⥃⇇ὐߢࠆߎߣࠍ␜ໂߔࠆ⚿ᨐࠍ ᓧߚ⏛ࡓ࠳ࡦߪߣߎߩߎޕ႐ࠍᒙߊߒߚߣ߈ߩࠦࡅࡦࠬ㐳ߩᚑ㐳ߪᓥ᧪⠨߃ࠄࠇߡߚࠃࠅ߽ߕߞߣㆃߎߣࠍᗧ ߒߡࠆޕ ΏςΊσळࢢಎ̲ࣺ̹͛ͅକ͈΄ρΑഢ֊ݷ൲! ᧲Ꮏᄢ㒮ℂᎿ ዊ ᱜ᥍ ࡃ࡞ࠢ᳓ߪኈᤃߦ⚿᥏ൻߒߡ᳖ߦߥࠆߚߦࠬࠟߩߘޔォ⒖ߪߤߎߢߎࠆ߆ߐ߃ᧂቯߢࠅޔᣣ߽ᾲ⼏⺰ࠍ ࠎߢࠆ ߪߦ⊛ဳౖޕ135K ߣ 160K ઃㄭߩ 2 ߟߩน⢻ᕈ߇ᜰ៰ߐࠇߡࠆ⎇ᧄޕⓥߢߪ⚦࡞ࠥࠞࠪޔሹౝߦ㐽ߓㄟ ߚ⚐᳓߅ࠃ߮ࠛ࠴ࡦࠣࠦ࡞᳓ṁᶧߩࠟࠬォ⒖േࠍᢿᾲᴺᾲ᷹ቯߦࠃࠅ⺞ߴߚߪ࡞ࠥࠞࠪޕๆḨᕈ߇㕖Ᏹߦ ᒝߊޔ᳓ಽሶߣࠪࡁ࡞ၮߪ㕖Ᏹߦᒝ⚿วࠍᒻᚑߔࠆ߽ߩߣℂ⸃ߐࠇൎߜߢࠆᧄޔߒ߆ߒޕ᷹ቯߩ⚿ᨐޔ᳓ߪ⚦ሹ ਛᔃㇱߢ᳓ߦ․ᓽ⊛ߥ᳓⚛⚿วࡀ࠶࠻ࡢࠢࠍᒻᚑߒ⇇ޔ㕙ߩ᳓ಽሶߪࡦ࠳ࡓߥ㈩⟎⁁ᘒߦࠆߎߣ߇␜ߐࠇߚ⇇ޕ㕙 ᳓ߪ⚦ሹᓘߦଐሽߒߡ 110㨪130K ߢޔౝㇱ᳓ߪ 160K ઃㄭߢࠟࠬォ⒖ߔࠆߎߣ߇␜ໂߐࠇߚ࡞ࠦࠣࡦ࠴ࠛޕ᳓ ṁᶧߢߪޔ᳓ಽሶߪਛᔃㇱߦ㓸߹ߞߡ᳓⚛⚿วࡀ࠶࠻ࡢࠢࠍᒻᚑߒ⇇ߪ࡞ࠦࠣࡦ࠴ࠛޔ㕙ߦߒ߿ࠄࠇᤃߎߣ ߇ផ⺰ߐࠇࠆޕ ρασ̱̹εςΑΙτϋถ྄͈΄ρΑഢ֊͂Θͼη·Α! ੩Ꮏ❫ᄢޔNorthwestern Univ.A ᷓየ ᶈᰴޔR. D. PriestleyA DR1 ߣ߁⦡⚛ߢࡌ࡞ߒߚࡐࠬ࠴ࡦ PS⭯⤑ߩࠟࠬォ⒖᷷ᐲߣ࠳ࠗ࠽ࠗࡒࠢࠬࠍ⺃㔚✭᷹ቯߦࠃࠅ⺞ߴߚޕ ߎߩ♽ߢߪ DR1 ߩ࿁ォㆇേ߇᷹ⷰߐࠇࠆ߇ࠬࠟޔォ⒖᷷ᐲએߢߪߎߩㆇേ߇㜞ಽሶ㎮ߩࠣࡔࡦ࠻ㆇേ αㆊ⒟ߣ ᒝߊࠞ࠶ࡊ࡞ߒߡࠆߚޔㅢᏱߩࡐࠬ࠴ࡦߩ 65 ⒟ᐲߩ✭ᒝᐲࠍᜬߞߚαㆊ⒟߇᷹ⷰߐࠇࠆ ߩߎޕDR1 ߢࡌ ࡞ߒߚࡐࠬ࠴ࡦ PS-DR1ߦኻߒߡޔߕ߹ޔනጀߩ⭯⤑ࠍߒޔ⒳⤑ߩޘෘߦኻߔࠆࠟࠬォ⒖᷷ᐲ߮ࠃ߅ޔαㆊ ⒟ߩ࠳ࠗ࠽ࡒࠢࠬࠍ⺃㔚✭ࠬࡍࠢ࠻ࡠࠬࠦࡇᴺߦࠃࠅ⺞ߴߚޕᰴߦޔ10nm ⒟ᐲߩ⤑ෘߩ PS-DR1 ߩጀߣ 300nm ⒟ ᐲߩචಽߦෘ⤑ෘߩࡌ࡞ߒߡߥ PS ጀ߆ࠄᚑࠆ 2 ጀ⤑ࠍߒߩߘޔαㆊ⒟ߩ࠳ࠗ࠽ࡒࠢࠬࠍห᭽ߦ᷹ቯߒߚޕ ߎࠇߦࠃࠅߚߒ࡞ࡌޔጀߩߺ߆ࠄߩࠪࠣ࠽࡞ࠍขࠅߔߎߣ߇น⢻ߢࠆߚߒ࡞ࡌޕጀࠍ⥄↱㕙ߪߚ߹ޔၮ᧼ߣ ࡌ࡞ߒߡߥ PS ߩࡃ࡞ࠢߥጀߣߩ⇇㕙ߦᝌߒߚ႐วߣ ߚߒ࡞ࡌޔPS ߩනጀߩ⭯⤑ߢߩ࠳ࠗ࠽ࡒࠢࠬߣࠍᲧセߒ ߚ⚿ߩߘޕᨐ↱⥄ޔ㕙߹ߚߪၮ᧼ߣߩ⇇㕙ߩߕࠇߩ႐ว߽ޔαㆊ⒟ߩ✭ᤨ㑆ߪᐔဋߣߒߡߪࡃ࡞ࠢߩ႐วߣหߓߢ ࠆ߇✭ߩߘޔᤨ㑆ߩಽᏓߪࡉࡠ࠼ߦߥߞߡࠆߎߣ߇ࠊ߆ߞߚߦࠇߎޕኻߒߡ ߚߒ࡞ࡌޔPS ߩනጀߩ⭯⤑ߢߪ αㆊ⒟ߩᐔဋ✭ᤨ㑆ߩૐਅߣߘߩ✭ᤨ㑆ಽᏓߩࡉࡠ࠼࠾ࡦࠣ߇߅ߎߞߡࠆޕᒰᣣߪߎࠇࠄߩ⚿ᨐߦߟߡႎ๔ߔ ࠆ੍ቯߢࠆޕ 35 ঊ൲ႁڠΏηντȜΏοϋͥ͢ͅ΄ρΑഢ֊߃ཌྷ͈ފ൳ठ౾ႀ֖͈ࣉख़! ᄢℂ ᧻ ᷕ ࠟࠬォ⒖ߪ⒎ᐨൻࠍࠊߥߩߢ ”ߥ☴⚐”ޔ࿕ൻߣ߃ࠆޕ࿕ൻߩㆊ⒟ߢޔ᭴ㅧࠛࡦ࠻ࡠࡇ߇᷷ᐲ㒠ਅߣߣ߽ߦ ㅪ⛯⊛ߦᷫዋߒߡࠁߊߩ߇․ᓽߢࠆޕAdam-Gibbs ߦࠃߞߡޔㆊ಄ළᶧਛߩಽሶߩ᭴ㅧ✭ߦ߅ߌࠆද⺞ᕈߣ᭴ㅧࠛ ࡦ࠻ࡠࡇࠍ㑐ㅪߠߌࠆᔨ߇ឭ໒ߐࠇߚޕߨฃߌࠇࠄࠇߡࠆ߽ߩߩޔදหౣ㈩⟎㗔ၞ CRRࠍታ㓙ߦ᷹ⷰߒߚ ႎ๔ߪߥޕ᭴ㅧ✭߇ߎࠆߚߦᔅⷐߥࠨࠗ࠭߇ォ⒖ὐߦㄭߠߊߦߟࠇߡჇᄢߔࠆߩ߆ࠍ ޔ1᜔᧤♽ߩಽሶേജቇ ࠪࡒࡘ࡚ࠪࡦ ޔ2േ⊛᭴ㅧ࿃ሶߩ⸘▚⚿ᨐ ޔ3☸ሶߩࠫࡖࡦࡊᢔߩᓙߜᤨ㑆ಽᏓߩ⚿ᨐ߆ࠄ⠨ኤߒߚޕ ͺ·ΠηΏϋঊκȜΗȜ͈ΥσΆȜ౷ࠁ͂൲ै!ࢹܥ ᣧᄢℂᎿ 㜞㊁ శೣ ࠕࠢ࠻ࡒࠝࠪࡦߪઍ⊛ߥⰮ⊕⾰ಽሶࡕ࠲ߢࠅޔ1 ಽሶ⸘᷹ߦࠃߞߡࡦࠪࠝࡒޔಽሶ߇ᣇะᕈࠍᜬߞߚࡉ࠙ࡦ ㆇേ⊛ߦࠕࠢ࠴ࡦࡈࠖࡔࡦ࠻ࠍ⒖േߔࠆߎߣ߇␜ߐࠇߚޕ⒖േߪࠬ࠹࠶ࡊ⁁ߢࠅࡊ࠶࠹ࠬޔߪࠕࠢ࠴ࡦࡕࡁࡑ ߩࠨࠗ࠭ߦ╬ߒߊޔ1 ࿁ߩ ATP ട᳓ಽ⸃ߢ↢ߓࠆࠬ࠹࠶ࡊᢙ ᦨᄢ 5 ࠬ࠹࠶ࡊߪ⏕₸ಽᏓߔࠆߎߣ߇ಽ߆ߞߚ⎇ᧄޕⓥ ߢߪޔಽሶേജቇ⸘▚ߦࠃߞߡࠕࠢ࠻ࡒࠝࠪࡦߩേࠍⷰኤߒޔ㧝ಽሶ⸘᷹ߢ␜ߐࠇߚಽሶࡕ࠲ߩ․ᓽࠍ⺞ߴߡߺࠆޕ ࡒࠝࠪࡦߣࠕࠢ࠴ࡦࡈࠖࡔࡦ࠻ߣߩ㑆ߩಽሶ㑆⋧↪ࠛࡀ࡞ࠡᒻߦࠕࠢ࠻ࡒࠝࠪࡦಽሶࡕ࠲ߩേᯏ᭴ࠍ⸃ ߊ㎛߇ࠆߎߣࠍ␜ߔ৻ޕᣇࡦࠪࠝࡒޔಽሶߩ⒖േߪ ATP ߩട᳓ಽ⸃߇⚳ੌᓟߒ߫ࠄߊߚߞߡ߆ࠄ ࡒ⑽ࠝ࠳↢ ߓࠆߎߣ߇㧝ಽሶ⸘᷹ߢ␜ߐࠇߡ߅ࠅޔട᳓ಽ⸃ࠛࡀ࡞ࠡ߇৻ᤨ⊛ߦಽሶౝㇱߦ⫾߃ࠄࠇߡࠆน⢻ᕈ߇⼏⺰ߐࠇߡ߈ ߚ⎇ᧄޕⓥߢߪࡦࠪࠝࡒޔಽሶౝߩኒᐲ⋧㑐㑐ᢙߣኒᐲᔕ╵㑐ᢙߩ㑐ଥ ំേᔕ╵㑐ଥࠍ⺞ߴࠄ߆ߎߘޔ᳞߹ࠆޟല᷷ ᐲߪߢ♽࠴ࡦࠛࠢ߇ޠⅣႺߩ᷷ᐲࠃࠅ߽㜞ߊߥࠆߎߣࠍ␜ߔޕಽሶౝߢߩࠛࡀ࡞ࠡ⾂⬿ᯏ᭴߇ࡒࠝࠪࡦߩࠟࠬ⊛ᕈ⾰ ߆ࠄℂ⸃ߐࠇ߁ࠆߎߣࠍ⼏⺰ߔࠆޕ ޑ;۾ϋΗȜͼϋࠏ͈ા༷ȇ۾ાͺίυȜΙ! 㜞⍮Ꮏ⑼ᄢ ฎᴛ ᶈ ࠞ࠙ࡦ࠲ࠗࠝࡦ 㜞ಽሶ㔚⸃⾰߆ࠄ⸃㔌ߒߚኻ╓ภࠗࠝࡦߪޔ㜞ಽሶ㔚⸃⾰ߦ㕒㔚⊛ߦᒁ߈ነߖࠄࠇࠆߚⓨ㑆⊛ ߦਇဋ৻ߥಽᏓࠍߔࠆࡦࠝࠗ࠲ࡦ࠙ࠞߩߎޕಽᏓߦߟߡޟޔPoisson-Boltzmann PBᣇ⒟ᑼߪޔଔᢙ߇ 2 એߢߪ ലߢߥ߇⺰⚿߁ߣޠޕ㐳ࠄߊᡰᜬߐࠇߡ߈ߚޕ ․ߦߩࡦࠝࠗ࠲ࡦ࠙ࠞޔଔᢙ߇ᄢ߈ߊ㜞ಽሶ㔚⸃⾰ߩ㔚⩄ኒᐲ߇㜞ᒝ⋧㑐♽ߢߪޔPB ㄭૃߪ╙ 1 ㄭૃߣߒߡߔࠄ ↪ߢ߈ߥߣ߁⸃߇ឭߐࠇߡޔᢙᐕ߇⚻ㆊߒߚ[1] ߩߎޔ߇ࠈߎߣޕ2ޔ3 ᐕߩ㑆ߦߥߐࠇߚ৻ㅪߩ⸘▚ߪޔㅀ ߩ⼂ߦߒߡޔㄭ〒㔌⋧㑐ࠍㆡಾߦ➅ࠅㄟ߫ޔPB ⊛ߥขࠅᛒߦࠃࠅ⸘▚ᯏታ㛎ߩ⚿ᨐࠍࠃߊౣߢ߈ࠆߎߣ ࠍ␜ߒߡࠆ[2]⻠ᧄߢߎߘޕṶߢߪޔએਅߩߦ╵߃ࠆℂ⺰ࠍឭߒޔWeeks ࠄߩឭ໒ߔࠆᒝ⋧㑐ᣇ⒟ᑼ[2]ࠍᐔဋ႐ ㄭૃߩਅߢዉߔࠆޕ 㧝㧦ߥߗޔᒝ⋧㑐ၞߢᐔဋ႐ㄭૃ߇ᚑ┙ߔࠆߩ߆㧫 㧞㧦ࠍታല⊛ߥ⋧↪ࡐ࠹ࡦࠪࡖ࡞ߣߒߡ↪ߔߴ߈߆㧫 ߎࠇ߹ߢᒝ⋧㑐ߩቯ⟵ߔࠄ⻠ޔṶ⠪߽ߡᱜߒߊⴕߞߡߥ߆ߞߚ[1, 2, 3]ߩߘޔߕ߹ޕὐ߆ࠄୃᱜߔࠆޔߦࠄߐޕ ታലࡐ࠹ࡦࠪࡖ࡞ߩ㗴ߦ╵߃ࠆߚߦޔᣂߚߦ⋧㑐႐ℂ⺰ࠍ᭴▽ߒޔ㧞ߦ╵߃ࠆߎߣߦᚑഞߒߚ․ޔߪߢ⊒ᧄޕ ߦᓟ⠪ߩ㗄ߦᤨ㑆ࠍഀߡ⺑ߔࠆޕ [1] R. R. Netz, EPJE vol. 5, 557 (2001) [2] Y. G. Chen and J. D. Weeks, PNAS vol. 103, 7560 (2006); C. D. Santangelo, PRE vol. 73, 041512 (2006); Y. Burak, D. Andelman, and H. Orland, PRE vol. 70, 016102 (2004). [3] H. Frusawa, JPSJ vol. 73, 507 (2004). 36 ͼϋഥ൵΄ρᾼ̤̫ͥͼϋΘͼη·Α͈൲എະ֚! ᧲Ꮏᄢ AޔNaval Research LabB Ꮠፒ Ảሶ AޔK.L. NgaiB ࠗࠝࡦવዉᕈࠟࠬߦ߅ߡߪޔㅦࠗࠝࡦߣㆃࠗࠝࡦ߇ሽߒߚⶄ㔀ߥ࠳ࠗ࠽ࡒࠢࠬ߇ࠄࠇࠆߩߎޕേ⊛ߦਇဋ ৻ߥേߪಽሶᕈߩࠟࠬᒻᚑ‛⾰ߤߥ♽࠼ࠗࡠࠦޔᄙߊߩ♽ߣㅢὐࠍᜬߟ㉄ࠗࠤࠞ࡞ࠕޕႮ Li2SiO3ߦ߅ߌࠆࠗ ࠝࡦߩㆇേࠍಽሶേജቇࠪࡒࡘ࡚ࠪࡦ MDࠍ↪ߡ․ᓽઃߌߚߩࡦࠝࠗࠆߌ߅ߦࠬࠟޕᢔߦߪᤨޔⓨ⋧㑐㑐ᢙ ߩ⥄Ꮖㇱಽߦࠄࠇࠆ㐳〒㔌ߩ࠹ࠗ࡞ㇱಽ߇ਥߦነਈߒߩࡦࠝࠗߪߦࠇߎޔද⺞ㆇേ߇㑐ࠊߞߡࠆߟߦ〔゠ߩࡦࠝࠗޕ ߡߩࡦ࠳ࡓ࠙ࠜࠢߩࡈࠢ࠲࡞ᰴర⸃ᨆ߆ࠄߪޔᐔဋੑਸ਼ᄌߦߺࠄࠇࠆߴ߈⊛ߥേ߇ߩࡊࡦࡖࠫޔᓟᚯࠅㆇേ ߦࠃࠆߎߣ߇ࠊ߆ࠆޕ ࠗࠝࡦߩ⸰ࠇߚ⟎ࠍⓍ▚ߒߡᓧߚኒᐲಽᏓߦࠄࠇࠆേ⊛ਇဋ৻᭴ㅧߪޔ Ⲣߩࠬࠟޔਔᣇߦ߅ߡ࡞࠲ࠢࡈ࠴࡞ࡑޔᕈࠍ␜ߔޔߪߢޕࠗߩޘ ࠝࡦߪߤߩࠃ߁ߦㆇേߔࠆߩߛࠈ߁߆㧫 ࿑㧝ߦޔ700K ߩࠟࠬਛߩ৻ߩ Li ࠗࠝࡦߩᄌߩ⛘ኻ୯ߩᤨ♽߆ࠄ ᓧߚㆇേߩ⋧࿑ ᄌߩᓸಽߩᄌߦኻߔࠆࡊࡠ࠶࠻ࠍ␜ߔߥ߁ࠃߩߎޕ ࡊࡠ࠶࠻ߢߪߥࡓ࠳ࡦޔㆇേߪⓨ㑆ࠍၒዧߊߒޔᝄേ⊛ߥㆇേߪᬦߦ ߥࠆޕਥᚑಽ⸃ᨆߦࠃࠅᾲࡁࠗ࠭ࠍ㒰ߔࠆߎߣߢࡊࡦࡖࠫޔㆇേޔዪൻ ㆇേߥߤߩቯ⺰⊛ߥ㕙߇⏕ߦߥߞߚޕ ρϋΘθͅ౾̯̹ͦάϋগ͛ঽાಎ͈ঽ༃൲! ‛⾰᧚ᢱ⎇ⓥᯏ᭴ ᧻ਅ ൎ⟵ ࡦ࠳ࡓߥࡇࡦᱛࡐ࠹ࡦࠪࡖ࡞ߩሽߔࠆᇦ⾰ਛߩᒢᕈ ᒢᕈ⤑ߩߤߥࡑࡐޔㆇേߪฎߊ߆ࠄࠃߊ⎇ⓥߐࠇߡ ࠆ⏛ޕოߩㆇേ߽ߘߩࠃ߁ߥㆇേߩ৻⒳ߣ⠨߃ࠄࠇߡࠆ߇ᧄޔᒰߦᒢᕈࡕ࠺࡞ߢ⸥ㅀߐࠇࠆ♽߆ߤ߁߆ Ising ࡕ ࠺࡞ߢߩࡕࡦ࠹ࠞ࡞ࡠࠪࡒࡘ࡚ࠪࡦߦࠃࠅ⺞ߴࠄࠇߚએᄖߪ߶ߣࠎߤ⍮ࠄࠇߡߥ⎇ᧄޕⓥߦ߅ߡᚒߪޘ Heizenberg ࡕ࠺࡞ߦ⇣ᣇᕈߦࠃࠅ⏛ოߩㆇേࠍࡕࡦ࠹ࠞ࡞ࡠࠪࡒࡘ࡚ࠪࡦ߮ಽሶേജቇࠪࡒࡘ࡚ࠪࡦࠍ↪ ߡ⺞ߴߚ⚿ߩߘޕᨐߦߟߡᧄ⻠Ṷߢႎ๔ߔࠆޕ υͼΡ८ࠏ̤̫ͥͅ)ഩ*ܨၠఘႁ࡛ڠય͈ΏηντȜΏοϋ! ಽሶ⎇ޔᄢᎿ Aޔ੩ᄢᎿ B ㊄ ㍑ޔฬཅጊ Aޔጊᧄ ㊂৻ B ࠦࡠࠗ࠼ಽᢔ♽ߩࠝࡠࠫ߿⩄㔚ࠦࡠࠗ࠼☸ሶߩ㔚᳇ᵒേߥߤߩ㔚᳇ᵹജቇ⽎ࠍᵹߩ Navier-Stokes ᣇ⒟ᑼ ߿㕒㔚ജቇߩ Poisson ᣇ⒟ᑼߥߤߩၮᧄᣇ⒟ᑼࠍᭂജㄭૃࠍዉߒߥߢ⸘▚ߔࠆߚߩࠪࡒࡘ࡚ࠪࡦࠍ㐿⊒ߒߚޕ ㆡ↪ߣߒߡࠕࠪޔᵹਅߩ Ộᶧߩᵹേߣ㔚᳇ᵒേ⽎ߩ࠺ࡕࡦࠬ࠻࡚ࠪࡦࠍ⚫ߒߚޕ 37 bouncing ball orbits ͈̜ͥΫςμȜΡࠏ͈ठܦশۼື! 㚂ㇺᄢℂᎿ┙ޔ㙚ᄢℂᎿ A ⿒⍹ ᥙޔᅏፉ ノᤘ Aޔ㚂⮮ ᄙ⥄↱ᐲࡂࡒ࡞࠻ࡦ♽ߦ߅ߌࠆㆃ✭ 㕖ᜰᢙ⊛✭ߩജቇ⊛Ḯࠍ⠨߃ࠆޕㆊ಄ළᶧߥߤߩᄙ☸ሶ♽ߦࠄࠇࠆ 㐳ᤨ㑆ߩ㕖ᜰᢙ⊛✭ߩേജቇ⊛ߥ⸃㉼ࠍᓧࠆߚߦ⎇ᧄޔⓥߢߪജቇ♽ℂ⺰ߩ┙႐߆ࠄޔዋᢙ⥄↱ᐲജቇ♽ߦࠄࠇࠆ ࡌࠠ⊛✭ޔ㐳ᤨ㑆⋧㑐ߩ⎇ⓥࠍޔᄙ⥄↱ᐲ♽߳ᔕ↪ߔࠆߎߣࠍ⋡ᮡߣߔࠆޕ ዋᢙ⥄↱ᐲࡂࡒ࡞࠻ࡦ♽ߦ߅ߡߪޔ⋧ⓨ㑆ౝߩ㓚ოߦࠃߞߡ㐳ᤨ㑆⋧㑐߇↢ߺߐࠇࠆߎߣ߇ࠃߊ⎇ⓥߐࠇߡࠆޕ ゠߇ⷙޔೣ⊛ߥㆇേߦኻᔕߔࠆ KAM ࠻ࠬ߿ਛ┙ቯߥᦼ゠ᣖߥߤߩ⋧ⓨ㑆᭴ㅧߩㄭறߦ㐳ᤨ㑆⇐߹ࠆߎߣ ߦࠃࠅ⋧ޔ㑐㑐ᢙޔౣᏫᤨ㑆ಽᏓߥߤߩ⛔⸘㊂ߪ㐳ᤨ㑆㗔ၞߢࡌࠠ⊛ᝄࠆ⥰ࠍ␜ߔߥ߁ࠃߩߎޔߢߎߘޕ㐳ᤨ㑆⋧㑐ߩ ⥄↱ᐲଐሽᕈࠍ⺞ߴࠆߚߦޔbouncing ball orbits ࡆࡗ࠼♽ߩਛ┙ᦼ゠ᣖ߇ሽߔࠆᄙ☸ሶ♽ߦ߅ߌ ࠆౣᏫᤨ㑆ಽᏓߩ㐳ᤨ㑆㗔ၞߢߩᝄࠆ⥰ߦᵈ⋡ߔࠆޕౣᏫᤨ㑆ಽᏓߪޔ⋧ⓨ㑆ߩࠆ㗔ၞ߆ࠄߚ゠߇ᰴߦߘߩ㗔 ၞߦౣᏫߔࠆ߹ߢߩᤨ㑆ߩಽᏓߢࠅޔജቇ♽ߩേ⊛ᕈ⾰ࠍ⺞ߴࠆߚߩ㊂ߣߒߡࠃߊ⎇ⓥߐࠇߡࠆޕ ᧄⓂߢߪޔ2 ࡆࡗ࠼♽ ▫ߩਛߩ 2 ߟߩ☸ሶߦ߅ߌࠆౣᏫᤨ㑆ಽᏓ߇㐳ᤨ㑆㗔ၞߢࡌࠠಽᏓ P(T)㨪T㧙γߣߥ ࠅߩࠠࡌޔᜰᢙߣ☸ሶᢙߣߩ㑐ଥߪγ =N+2 ߣߥߞߡࠆߎߣࠍ␜ߔޔߦࠄߐޕౣᏫᤨ㑆ಽᏓߪౣᏫ㗔ၞߩขࠅᣇߦଐሽ ߒߡࠆߎߣ߽ႎ๔ߔࠆޕౣᏫ㗔ၞࠍዊߐߊߔࠆߣޔౣᏫᤨ㑆ಽᏓߪࡌࠠಽᏓ߆ࠄᜰᢙಽᏓߦㄭߠߡߊޕ ঊ൲ႁڠΏηντȜΏοϋًͥ͢ͅ႖סݕఘඅ! ᧲ർᄢᎿቇ⎇ⓥ⑼ A᧲ޔർᄢᵹ⎇ B 㡆ᶏ ቁਯ Aޔᓼጊ ᄦޔኹ↰ ᒎ↢ B ⚿᥏ൻࠍㆱߌߡᶧࠍ಄ළߔࠆߣޔㆊ಄ළᶧ⁁ᘒࠍ⚻ߡࠟࠬ߳ߣᄌൻߔࠆޕ ࠟࠬߪ᭽ߥޘ႐ᚲߢᔕ↪ߐࠇߡࠆ㕖Ᏹߦ↪ߥ‛⾰ߢࠆޔߒ߆ߒޕᶧ߆ ࠄࠟࠬ߳ߩㆫ⒖ࡔࠞ࠾࠭ࡓߪℂ⺰⊛ߦቢోߦℂ⸃ߐࠇߡࠆࠊߌߢߪߥ߹ޕ ߚߦ⊛⾰ᧄߪࠬࠟޔ㕖ᐔⴧ⁁ᘒߢࠅޔሽߔࠆࠃ߁ߥᐔⴧ⁁ᘒߦኻߔࠆℂ⺰ ߢᛒ߁ߩߪ࿎㔍߇߁ᦼ߇࡞ࠬࠢࠗࡉߥ⊛⾰ᧄߚߩߘޕᓙߐࠇࠆޕ ᚒߪޘㆊ಄ළᶧ⁁ᘒࠍᷓߊℂ⸃ߔࠆߎߣߦࠃࠅࠟࠬㆫ⒖ࡔࠞ࠾࠭ࡓࠍℂ⸃ ߔࠆߎߣࠍ⋡ᜰߔߦߚߩߘޕಽሶേജቇࠪࡒࡘ࡚ࠪࡦࠍ↪ߡ 2 ᚑಽᵹ ߩㆊ಄ළᶧ⁁ᘒࠍ⸘▚ᯏߢታߐߖߩߘޔ᭽․ߥޘᕈࠍ⺞ߴߚޔߪߢ⊒ᧄޕ 㕒⊛ߥ‛ℂ㊂ߣߒߡജߦߟߡߚ߹ޔേ⊛ߥ‛ℂ㊂ߣߒߡᐔဋੑਸ਼ᄌߣᗵฃ ₸ߦߟߡߢࡦ࡚ࠪࡘࡒࠪߦߢ߹ࠇߎޔᓧࠄࠇߚ⚿ᨐࠍߘࠇߙࠇ⚫ߔࠆޕ ࿑㧦ฦ᷷ᐲߦ߅ߌࠆᐔဋੑਸ਼ᄌ ুဇΥσΆȜρϋΡΑΉȜίຝ௨̤̫ͥͅȂ௸̞۱გ͂ಁ̞۱გ! ᄢℂ ᶎᧄ ੧ޔዊ↰၂ ቁ ᶧ㧙ࠟࠬォ⒖ߢߪࠟࠬォ⒖᷷ᐲ Tgઃㄭߢᾲജቇ⊛ߥ⇣Ᏹᕈ߮ޔ ේሶߩㅦㆇേߣㆃㆇേ߇ಽ㔌ߔࠆേ⊛⇣Ᏹᕈ߇᷹ⷰߐࠇߡࠆޕㄭᐕേ ⊛ޔᾲജቇ⊛⇣Ᏹᕈࠍ⛔৻⊛ߦ⺑ߔࠆឬߣߒߡ⥄↱ࠛࡀ࡞ࠡࡦ࠼ࠬ ࠤࡊ FELឬ߇ᵈ⋡ߐࠇߡࠆޕ FEL ឬߢߪ㜞᷷ߢߪᐔမߛ߇ޔૐ᷷ߢߪᄙ⼱᭴ㅧߣߥࠆߚߊߐࠎߩᭂ ዊࠍ߽ߟ⥄↱ࠛࡀ࡞ࠡࠍ⠨߃ࠆࠬࠟޕォ⒖ὐߪ߆ࡦࠬࠗࡌߩߟ৻߇♽ޔ ࠄ᷹ⷰᤨ㑆ౝߦᛮߌߖߥߊߥࠆὐߣߒߡ⺑ߐࠇࠆޕ Adam and Gibbs ߦ ࠃ ߞ ߡ ዉ ߐ ࠇ ߚ ද ⺞ ✭ 㗔 ၞ Cooperatively Rearranging Region : CRR⒟ᐲߦోߡߩ⥄↱ᐲࠍᓇߒޔFEL ࠃࠅዉ߆ࠇ ࠆᤨ㑆ଐሽᕈࠍᤨ㑆ଐሽߔࠆࠡࡦ࠷ࡉ࡞ࠣࡦ࠳࠙ᣇ⒟ᑼ TDGLဳߣቯ ߔࠆ✭ޔߣࠆߔޕㆊ⒟ߪ CRR ߦࠃࠅᒛࠄࠇࠆⓨ㑆ਛߢߩ⏕₸ㆊ⒟ߣߥࠆޕ ᧄ⎇ⓥߢߪ FEL ߩᒻࠍቯߒ₸⏕ޔㆊ⒟ࠍ TDGL ဳߣߒߚ 1 ᰴర࠻ࠗࡕ ࠺࡞ࠍ⸃ᨆߔࠆ⚿ߩߎޕᨐޔㅦ✭ߣㆃ✭ߪߘࠇߙࠇࡌࠗࠬࡦౝߩᝄ േࡦࠬࠗࡌޔ㑆ߩࠫࡖࡦࡊㆇേߣߒߡ⺑᧪ࠆࠍ␜ߔޕ 38 ֚ষࡓඵਹ۟࿅߿͈ܖೲેఠ̤̫ͥͅΑάϋΈρΑ! ᣣᄢℂᎿ ㊁ ༑ޔጊਛ 㓷ೣ ੑ㊀឵ᮨဳߪฎߊ߆ࠄ⋓ࠎߦ⎇ⓥߐࠇߡ߈ߚߩߎޕᮨဳߩၮᐩ⁁ᘒ߇ ࠬࡇࡦࠣࠬ⊛ߢࠆߣ߁ᜰ៰ߪ de Gennes ߩೋᦼߩ⺰ᢥߦ߅ߡᣢ ߦᜰ៰ߐࠇߡࠆޕㄭᐕᄙߊߩᢥ₂ߢࡕࡦ࠹ࠞ࡞ࡠᴺ╬ߦࠃࠅၮᐩ⁁ᘒ߇ ⺞ߴࠄࠇߡࠆ߇⁁ࠬࠣࡦࡇࠬޔᘒߩ⚦ࠍᛒߞߚ⎇ⓥߪዋߥޕ ᧄ⎇ⓥߢߪ⁁ࠬࠣࡦࡇࠬߩߎޔᘒࠍ⚦ߦ⺞ߴߚߪߢߎߎޕੑ㊀឵ ᮨဳߣߒߡޔዪࠬࡇࡦ㑆ߦ឵⋧↪ࠍขࠅࠇߚ߽ߩࠍᛒ߁ޔߚ߹ޕ ᦨㄭធߩ㘧߮⒖ࠅⓍಽߛߌߩᮨဳߩ႐วޔᄙߊߩࡄࡔ࠲㗔ၞߢࡃࡦ࠼ ᭴ㅧ߇ᐔမࡃࡦ࠼ߣߥࠆߎߣ߇⍮ࠄࠇߡࠆߚ⎇ᧄޔⓥߢߪࡃࡦ࠼᭴ㅧ ߩቯൻߩߚᰴㄭធߩ㘧߮⒖ࠅⓍಽ߽ዉߒߚᮨဳࠍ⠨߃ߚޕၮᐩ⁁ᘒߪዪࠬࡇࡦߩ⋧ኻⷺߩ᳢㑐ᢙߣߒߡਈ߃ࠄࠇ ࠆ߇ޔᓎ൨㈩ᴺࠍ↪ߡߎࠇࠍᦨㆡൻߒၮᐩ⁁ᘒࠍ᳞ߚޕၮᐩ⁁ᘒߦ߅ߡޔવዉ㔚ሶߩㇱಽߪࡄࠗࠛ࡞ࠬਇቯᕈ ߩߚ㘧߮⒖ࠅⓍಽߦ⥄⊒⊛ߦᄌ⺞ࠍߎߔࡦࡇࠬޔߚ߹ޕㇱಽߪߘߩᄌ⺞ࠍᤋߒߚᄌ⺞᭴ㅧࠍ߽ߟ߇⋧ޔኻⷺߩߩߚ ߦᏂⷞ⊛ߦ❗ㅌߒߡࠆࡦࡇࠬޔߚ߹ޕ᭴ㅧߪᄙߊߩḰቯ⁁ᘒࠍ߽ߜޕࠆߡߞߥߣ⊛ࠬࠣࡦࡇࠬޔᓎ൨㈩ᴺߦ ߅ߌࠆᦨㆡൻᄌᢙߩᢙߣ⸘▚ᤨ㑆ߩ㑐ଥ╬߽⠨ኤࠍⴕߞߚޕ ͺκσέΑً͍ݞ႖סݕఘ Si ͈ࢹ௮་اȇల֚ࡔၑ MD ͥ͢ͅ Si ͈εςͺκσέͻΒθ͈ٜྶ! ↥✚⎇⸘▚⑼ቇ ਅ ᔀ ࠪࠦࡦߪ᳓ߣㅢߥᕈ⾰ࠍᄙߊᜬߟ߽ࠄߜߤޕᏱਅߩ⚿᥏ߢߪ྾㕙᭴ㅧ߆ࠄᚑࠆ࠳ࠗࡗࡕࡦ࠼ဳ᭴ㅧࠍߣࠅࠕޔ ࡕ࡞ࡈࠔࠬ߿ᶧ⁁ᘒߢ߽ߘߩ྾㕙᭴ㅧߩࡀ࠶࠻ࡢࠢ߇ᜬߐࠇߡࠆߚ߹ޕജჇടߦⲢὐ߇ᷫዋߔࠆߚޔ ᶧߩᣇ߇⚿᥏ࠃࠅኒᐲ߇㜞ޔࠄ߆ߣߎߚߒ߁ߎޕ᳓ߢ⼏⺰ߐࠇߡࠆࡐࠕࡕ࡞ࡈࠖ࠭ࡓ߇ Si ߦ߽ㆡ↪ߢ߈ࠆߣᕁ ࠊࠇࠆޕᚒ ߪޘSi ߩࡐࠕࡕ࡞ࡈࠖ࠭ࡓࠍ╙৻ේℂಽሶേജቇ⸘▚ߦࠃߞߡ⺞ߴ߈ߡࠆ⻠ᧄޕṶߢߪജᄌൻߦ߁ ࠕࡕ࡞ࡈࠔࠬ Si ߩ LDA-HDA ォ⒖ޔ߮ㆊ಄ළߦ߁ᶧ Si ߩ᭴ㅧᄌൻߦߟߡႎ๔ߔࠆ[1,2]ޕ ㅢᏱߩࠕࡕ࡞ࡈࠔࠬ Si (LDA)ߢߪޔ4 ㈩ߩࡀ࠶࠻ࡢࠢ᭴ㅧ߇ᒻᚑߐࠇߡࠆޕᚒ ߢ▚⸘ߩޘLDA ࠍᏱ᷷ਅߢട ߒߚߣߎࠈޔ12GPa ㄭறߢኒᐲߩᕆỗߥჇട߇ߎࠅޔLDA ߣߪోߊ⇣ߥࠆᕈ⾰ࠍᜬߟ㜞ኒᐲࠕࡕ࡞ࡈࠔࠬ⋧ HDA ߦォ⒖ߒߚ[1]ࠬࠔࡈ࡞ࡕࠕߩߎޕ᭴ㅧߩ㈩ᢙߪ⚂ 5 ߢޔ᳓ߩ HDA ߣ㕖Ᏹߦㄭ᭴ㅧߢࠆߎߣ߇ࠊ߆ߞߚޕ㜞⚿ ᥏⋧ߢࠆβ -tin ᭴ㅧߣ߽ㄭ᭴ㅧߢࠅޔඨዉ߆ࠄ㊄ዻൻߒߚߣᕁࠊࠇࠆޕ Ᏹਅߩᶧ Si ߩㆊ಄ළߦ߁ኒᐲ᭴ㅧᄌൻ߽⺞ߴߚޕታ㛎ߢㆊ಄ළߢ߈ࠆ᷷ᐲ㗔ၞߪ㒢ࠄࠇߡࠆߚ߹ࠇߎޔ ߢߦኒᐲ߿ᶧ᭴ㅧߩ᷷ᐲᄌൻߦߟߡ⛔৻⊛ߥℂ⸃ߪ⏕┙ߐࠇߡߥ߆ߞߚࠄ߇ߥߒ߆ߒޕᚒޔߡߞࠃߦ▚⸘ߩޘኒᐲ ߪ 1200K ߢᭂᄢߣߥࠆߎߣ߇ࠄ߆ߦߥࠅޔዪᚲ⊛ߥ྾㕙᭴ㅧߩ࿁ᓳ߇ 1200K એਅߢᕆㅦߦㅴߎߣ߇ࠊ߆ߞߚ[2]ޕ ߎߩࠃ߁ߥ᭴ㅧᄌൻߪޔ㈩ᢙߩ⇣Ᏹߥ᷷ᐲᄌൻࠍ߽ߚࠄߔߎߣ߽ࠊ߆ߞߚޕ [1] T. Morishita, Phys. Rev. Lett. 93, 055503 (2004). [2] T. Morishita, Phys. Rev. Lett. 97, 165502 (2006). ΄ρΑࠁ଼ৗ̤̫ͥͅࠁΥσΆȜ؊൞͂ໝள! ᄢ㒮ℂ ↰Ꮉ ᢥ㓉ޔዊ↰၂ ቁ ㄭᐕࠬࠟޔォ⒖ὐㄭறߩ♽ߩㆇേࠍ․ᓽઃߌࠆᣇᴺߣߒߡߩࠡ࡞ࡀࠛ↱⥄߇♽ޔᄙߊߩ⼱ ࡌࠗࠬࡦ߆ࠄ᭴ᚑߐࠇ ࠆࡦ࠼ࠬࠤࡊౝࠍㆇേߔࠆߣ߁⥄↱ࠛࡀ࡞ࠡࡦ࠼ࠬࠤࡊឬߦᵈ⋡߇㓸߹ߞߡࠆޕ ᚒޔߪޘㆊ಄ළᶧߢߩ♽ߩㆃㆇേߩ․ᓽࠍขࠅࠇࡊࠤࠬ࠼ࡦࠡ࡞ࡀࠛ↱⥄ޔౝࠍ♽ߩઍὐ߇⏕₸⊛ߦㆇ േߔࠆឬࠍឭ᩺ߒߚߩ♽ޔߪࠇߎޕㆃㆇേࠍࡌࠗࠬࡦ㑆ߩㆫ⒖ߣߒߡ࠲ࠬࡑޔᣇ⒟ᑼߢߒޔㅦㆇേࠍࡌࠗࠬࡦ ߢߩᝄേߣߒߡߒߚ߽ߩߢࠆޕ 39 ᧄ⊒ߢߪߩߎޔឬࠍ↪ޔᝄേߔࠆ᷷ᐲߦኻߔࠆࠛࡀ࡞ࠡᔕ╵ࠍ⸥ㅀߒޔ1 ᰴ2 ᰴߩᔕ╵ࠍ․ᓽઃߌࠆޔ1 ᰴ ⶄ⚛Ყᾲ2 ᤨⶄ⚛Ყᾲࠍឭ᩺ߔࠆࠬࠟޔߦࠄߐޕォ⒖ὐㄭறߢߩㆃ࠳ࠗ࠽ࡒࠢࠬߩ․ᓽࠍขࠅࠇߚࡕ࠺࡞ߢߩએ ਅߩ⚿ᨐࠍ⚫ߔࠆޕ 1㧚1 ᰴ2 ᰴߩⶄ⚛Ყᾲߩᝄേᢙଐሽᕈ߆ࠄࠬࠟޔォ⒖᷷ᐲ TgޔVogel-Fulcher ᷷ᐲ T0 ࠍࠆߎߣ߇ߢ߈ࠆޕ 2㧚ࡌࠗࠬࡦ㑆ߩㆫ⒖ࠍ․ᓽઃߌࠆޔㆫ⒖ⴕߩ࿕୯λߩ⛔⸘㊂䇴λ䇵㨮䇴λ2䇵㨮䇴λ㧙1䇵ࠍ㧝ᰴⶄ⚛Ყᾲߩᝄേᢙଐሽᕈ߆ࠄ ࠆߎߣ߇ߢ߈ࠆޕ ࠬݱୄͺσήηϋ͈΄ρΑഢ֊̳͖ͅݞକ܄ၾ͈!ޣג 㘩✚⎇ޔᶏᵗᄢ A᧲ޔᎿᄢ B Ꮉ ᷡมޔ㋈ᧁ ᔀ Aޔዊ ᱜ᥍ B 䇼ࡄݪࠊ͍ݞ࿒എޤ᳓࠲ࡦࡄࠢ⾰ߪ಄ළ߿ੇ῎ߦࠃߞߡࠟࠬォ⒖ߔࠆ߇ࠬࠟޔォ⒖ߦ߁ᄖㇱᔕ╵ ᾲኈ㊂ᄌൻߥ ߤ߇㕖Ᏹߦዊߐߊߚ߹ޔᐢ᷷ᐲ▸࿐ߢߎࠆޔߚߩߘޕ᳓࠲ࡦࡄࠢ⾰ߩࠟࠬォ⒖ࠍ⏕ߦᝒ߃ࠆߎߣߪ࿎㔍ߣ ߐࠇߡ߈ߚߦߢ߹ࠇߎޕṶ⠪ࠄߪޔᄢኈ㊂ߩ⹜ᢱࠍ↪ߚᢿᾲဳᾲ㊂⸘ߦࠃࠆࠛࡦ࠲࡞ࡇ✭ㅦᐲ dH/dt᷹ቯࠍ⁁ ࠲ࡦࡄࠢ⾰ߢࠆ‐ⴊᷡࠕ࡞ࡉࡒࡦ BSAߦㆡ↪ߔࠆߎߣߢޔBSA ᳓ṁᶧߦ߅ߌࠆⶄᢙߩࠟࠬォ⒖߿ੇ῎ BSA ߦ߅ ߌࠆ 155K ߢߩࠟࠬォ⒖ࠍࠄ߆ߦߒߡ߈ߚߩࠄࠇߎޕ⍮ࠍᷓൻߔࠆߚ⎇ᧄޔⓥߢߪ᭽ߥޘ᳓ಽ㊂ߦ⺞ߒߚ BSA ߩࠟࠬォ⒖ࠍ⺞ߴޔᣢႎߩ⚿ᨐߣᲧセߔࠆߎߣߢޔ᳓࠲ࡦࡄࠢ⾰ߦ߅ߌࠆⶄᢙߩࠟࠬォ⒖ߩⷐ࿃ࠍ⠨ኤߒߚޕ 䇼༹༷ޤ㘻Ⴎߦࠃߞߡ⋧ኻḨᐲࠍ⺞ߒߚ࠺ࠪࠤ࠲ౝߦ BSA ੇ῎☳ᧃࠍߟߎߣߢޔ᭽ߥޘ᳓ಽ㊂ߩ BSA ⹜ᢱ ⚂ 0ޔ4.4ޔ10.9ޔ19.2ޔ30.0㧑 w/wࠍ⺞ߒޔ50㨪300K ߩ᷷ᐲ▸࿐ߢ dH/dt ᷹ቯࠍⴕߞߚޕ 䇼ࠫࣉ͍ݞضख़ޤ᳓ಽ㊂߇⚂ 0㧑ߩ BSA ߦߪࠟࠬォ⒖ߪࠄࠇߥ߆ߞߚ߇ޔ4.4㧑ߩ BSA ߦߪ 139K ઃㄭߦࠟࠬ ォ⒖߇ࠄࠇߚ ߦᦝޕ10.9㧑ߩ BSA ߦߪޔ90㨪270K ߩ᷷ᐲ▸࿐ߦ߅ߡ 2 ߟߩࠟࠬォ⒖߇ޔ19.2㧑ߩ BSA ߦߪ 90K એߩ᷷ᐲ▸࿐ߦ߅ߡ 3 ߟߩࠟࠬォ⒖߇ߐࠇߚޕ᳓ಽ㊂߇ 30.0㧑ߦ㆐ߔࠆߣޔ᳓ߩ᷷⚿᥏ൻ߮Ⲣ⸃ ߇ߎࠅ ߇ࠄࠇߘޔ160K એߩ✭േࠍⷒ㓝ߒߚ⹜ߩߎߢߎߘޕᢱࠍ 200-220K ߢࠕ࠾࡞ߒ⚿ޔ᥏ൻߩ⊒ᾲࠍ 㒰ߊߣޔ190K ઃㄭߦࠟࠬォ⒖ࠍߔߎߣ߇ߢ߈ߚޕએߩ⚿ᨐࠍᣢႎߩ⚿ᨐߣ૬ߖߡ⁁ᘒ࿑ߣߒߡᢛℂߒߚߣߎࠈޔ ᳓࠲ࡦࡄࠢ⾰ߩࠟࠬォ⒖ߪᄢ߈ߊ 3 ߟߩㆊ⒟ߦಽ㘃ߐࠇࠆߎߣ߇␜ໂߐࠇߚࠬࠟߩࠄࠇߎޕォ⒖ㆊ⒟ߪૐ᷷߆ࠄޔ 1.࠲ࡦࡄࠢ⾰ߣ᳓⚛⚿วߒߚ᳓ ᳓᳓ޔ2.᳓᳓ㄭறߦ⟎ߔࠆ࠲ࡦࡄࠢ⾰ߩⷫ᳓ᕈ㎮ޔ3.࠲ࡦࡄࠢ⾰ߩਥ㎮ࠃߦޔ ࠆ߽ߩߣ⠨߃ࠄࠇࠆޕ ΫͼηΘΖȜσ߿߄௺॒ఘఉࢢৗࠫએඤ͈;ȜΗȜΦΙνȜή͈Θͼη·Α! ᧲ᄢ‛ᕈ⎇᧲ޔℂᄢℂ A ਈ㇊Ꭸ ੫ޔጊቶ ୃ⩵ޔ 㦖ᒎޔᄢ⇌ 㓶Ꮧ A↰ޔᚲ ⺈ A ࠽ࡁⓨ㑆ߦ㐽ߓㄟࠄࠇߚ᳓ߩേߪࡃ࡞ࠢߩ᳓ߣ⇣ߥࠆ‛ᕈࠍ␜ߔߎߣ߇⍮ࠄࠇߡࠆޕ㗴‛⾰ߢߪ࠳ࡒࠗࡆޔ 㧙 ࠱࡞ဳ㊄ዻ㍲ߢࠆ[Co.(H2bim)3]3+ߣࠞ࡞ࡏࡦ㉄⺃ዉ[TMA]3 ߣߢ᭴ᚑߐࠇߚᄙሹ⾰⚿᥏ౝߦޔᡆ৻ᰴర᭴ㅧߩ ᳓ࠢࠬ࠲߇ሽߔࠆߩߎޕ᳓ࠍ࠙ࠜ࠲࠽ࡁ࠴ࡘࡉ એਅ WNTߣ߱⎇ᧄޕⓥߢߪ WNT ߩࡒࠢࡠߥ࠳ࠗ࠽ࡒ ࠢࠬࠍࠄ߆ߦߔࠆ⋡⊛ߢ‛ޔᕈ⎇ߩ AGNES ಽశེࠍ↪ߡਛᕈሶᢔੂታ㛎ࠍⴕߥߞߚోޕේሶᢙߩ߁ߜ WNT ߩഀ วߪ 10㧑⒟ᐲߢࠆ߇ޔᚒߪޘ㕖ᒢᕈᢔੂᚑಽࠍᏅߒᒁߡ⸃ᨆߔࠆߎߣߢޔዋ㊂ߩ WNT ߩḰᒢᕈᢔੂᚑಽࠍขࠅ ߔߎߣߦᚑഞߒߚ࠷ࡦࡠࠍࠇߘޕ㑐ᢙߢࡈࠖ࠶࠻ߒޔඨ୯ඨߩㆇേ㊂ㆫ⒖ଐሽᕈࠍࠫࡖࡦࡊᢔࡕ࠺࡞ߦࠃࠅ⸃ᨆ ߒߚޕWNT ߩ 268K ߢߩᢔଥᢙߪ 4.51011Έ2/s ߢࠅࠢ࡞ࡃޔ᳓ એਅ BWߩ 1.01011Έ2/s ߦᲧߴߡࠄ߆ߦᄢ ߈ߊߥߞߡࠆߎߣ߇ಽ߆ߞߚߦࠄߐޕ᳓ಽሶߩᐔဋ⒖േ〒㔌߿ṛᤨ㑆߽ BW ࠃࠅ㐳ߊߥࠆߎߣ߇ಽ߆ߞߚߪࠇߎޕ ᡆ৻ᰴర᭴ㅧࠍߣࠆߎߣߢ᳓⚛⚿วࡀ࠶࠻ࡢࠢ߇ᒙൻߔࠆߎߣߦ࿃ߒߡࠆߣ⠨߃ࠄࠇࠆޕ ͼϋΊσ PMMA/EMITFSI ͈΄ρΑഢ֊͂ͼϋڐ८!ࢹܥ ᧲ᄢ‛ᕈ⎇ޔᮮ࿖ᄢᎿ A ᨴ⼱ ᱞ♿ޔጊቶ ୃ⩵ޔ 㦖ᒎޔᧁ ጪ჻ Aޔᷰㆺ ᱜ⟵ A ࠗࠝࡦࠥ࡞ߪࡐࡑߩ✂⋡᭴ㅧߩਛߦࠗࠝࡦᶧ߇ขࠅㄟ߹ࠇߚࠥ࡞ߢࠆޔߪ࡞ࠥߩߎޕᓥ᧪ߩ㜞ಽሶ࿕㔚⸃⾰ ߦᲧߴߡޔ㕖Ᏹߦ㜞ࠗࠝࡦવዉᕈࠍ␜ߔߎߣ߇ႎ๔ߐࠇߡࠆޕ࿁ᚒ࡞ࠢࠕޔߪޘ᮸⢽ PMMA ߣࠗࠝࡦᶧ 40 EMITFSI ߆ࠄᚑࠆࠗࠝࡦࠥ࡞ߦߟߡ᧲ޔᄢ‛ᕈ⎇ߩ AGNES ಽశེࠍ↪ߡਛᕈሶᢔੂታ㛎ࠍⴕ࡞ࠥޔਛߢߩ EMITFSI ߩ ᢔ ㆇ േ ߦ ․ ޔEMITFSI ߣ PMMA ߩ ㆇ േ ߩ ⋧ 㑐 ߦ ߟ ߡ ⺞ ߴ ߚ ޕታ 㛎 ߢ ߪ ࡦ ࠝ ࠗ ޔᶧ Ớ ᐲ 0.78[mol/kg]ޔ1.5[mol/kg]ߩ 2 ⒳㘃ߩ⚵ᚑߩࠥ࡞ߦߟߡޔㅢᏱߩ⹜ᢱߣޔEMITFSI ߩㆇേࠍ߿ߔߊߔࠆߚߦ PMMA ࠍ㊀᳓⚛⟎឵ߒߚ⹜ᢱ߽᷹ቯߒߚޔߚ߹ޕᲧセߩߚߦࡃ࡞ࠢߩ EMITFSI ߣ PMMA ߽᷹ቯߒߚޕฦ⹜ᢱߦ߅ ߌࠆࡈࠖ࠶࠹ࠖࡦࠣߦࠃࠅ᳞ࠄࠇߚᢔଥᢙ߿〡べ〒㔌߆ࠄޔEMITFSI ߪࡃ࡞ࠢ⁁ᘒߢߪࡉ࠙ࡦㆇേ⊛ߥන⚐ߥ ᢔࠍߒߡࠆ߇߇⋡✂࡞ࠥߪߢ߆ߥߩ⋡✂࡞ࠥޔࠆቯߥࠨࠗ࠻ߩ㑆ࠍࠫࡖࡦࡊᢔߒߡࠆߎߣ߇ಽ߆ߞߚࠬࡐޕ ࠲ߢߪޔEMITFSI ߩᢔㆇേߩ⚵ᚑଐሽᕈ߿ࠟࠬォ⒖ߣߩ㑐ㅪߦߟߡ߽ㅀߴࠆޕ ΄ρΑഢ֊أഽັ߃͈́ࠫએݷا൲! ᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ ዊ 㓉჻↰ޔਛ ⡸ ㅢᏱ⚿ޔ᥏ᚑ㐳ㅦᐲߪ☼ᐲߦ㑐ߔࠆ㗄ߣ⚿᥏ߩ⥄↱ࠛࡀ࡞ࠡߦ㑐ߔࠆ㗄ߩⓍߦࠃࠅ⸥ㅀߐࠇ࡞࠾ࠕޔ᷷ᐲ߇ࠟࠬ ォ⒖᷷ᐲߦㄭߠߊߦߟࠇߡ⚿᥏ൻㅦᐲߪᕆỗߦㆃߊߥࠅޔㅢᏱߪࠟࠬォ⒖᷷ᐲએਅߢߪ߹ߞߚߊ⚿᥏ൻ߇ㅴⴕߒߥߣ ⠨߃ࠄࠇߡࠆᦨߒ߆ߒޕㄭޔዊࠄߩ⎇ⓥࠣ࡞ࡊߪࠬࠟޔォ⒖᷷ᐲ⋥ߢ⚿᥏ൻ߇ଦㅴߐࠇࠆߣ߁㛳ߊߴ߈⽎ ࠍᐞߟ߆ߩ‛⾰ߦߟߡႎ๔ߒߡࠆ[1]ޕ ᧄ⊒ߢߪޔᚒࠬࠟߩߎߢ߹ߪޘォ⒖᷷ᐲ⋥ߢߩ⚿᥏ଦㅴ߇ႎ๔ߐࠇߡࠆࠝ࡞࠻࠲ࡈࠚ࠾࡞ OTP߿ࠨ ࡠ࡞ࠍ↪ߡࠬࠟޔォ⒖᷷ᐲㄭற߮એਅߢߩ⚿᥏ᚑ㐳ㅦᐲࠍ᷹ቯߒޔᶧߩᲧセ⊛ㆃ✭ㆊ⒟ ਥߦαㆊ⒟⒟ᐲ ߩᤨ㑆ࠬࠤ࡞ߣࠍ⚦ߦᲧセߒߡࠆ⚿ߪߡߟߦ࡞ࡠࠨޔߦ․ޕ᥏ᄙᒻߦ⌕⋡ߒޔታ㛎ࠍⴕߞߡࠆޔߚ߹ޕ㜞 ಽሶ‛⾰ࠍ↪ߡߩ߳⽎ߩߎޔ㜞ಽሶᕈ߇ߤߩࠃ߁ߦᓇ㗀ߔࠆߩ߆ߦߟߡ߽⸅ࠇߡߊ੍ቯߢࠆޕ [1] M. Hatase et al., J. Non-Cryst. Solids, 333, 129 (2004) ߣߘߩਛߢߩᒁ↪ᢥ₂ ࠫએഎಎݻၗಉ੬͂൲എະ͈֚۾Ⴒ ᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ ᣂ⼱ ኡ↰ޔਛ ⡸ ㆊ಄ළᶧਛߩേ⊛ਇဋ৻ᕈߩሽߪޔᄙߊߩታ㛎߿ࠪࡒࡘ࡚ࠪࡦߦࠃࠅ⏕ߐࠇߡ߅ࠅࠬࠟߣࠇߘޔォ⒖ㄭற ߢߩᕆỗߥࠬࡠ࠳࠙ࡦߩ㑐ㅪ߽␜ໂߐࠇߡࠆ߇‛ߩߘޔℂ⊛ߥḮߦ㑐ߒߡߪᧂߛߦߪߞ߈ࠅߣߒߚߎߣߪಽ߆ߞߡ ߥޕ ߎࠇࠍࠄ߆ߦߔࠆߚޔᚒ⚿ߪޘ᥏ൻ߆ࠄࠟࠬൻ߹ߢࠍ⛔৻⊛ߦᛒ߃ࠆ㧞ᰴరࡕ࠺࡞ࠍ㐿⊒ߒޔಽሶേജቇࠪࡒࡘ ࡚ࠪࡦࠍⴕߞߚ⚿ߩߘޕᨐޔㆊ಄ළᶧਛߢ⚿᥏⊛ߥ⒎ᐨࠍᜬߞߚㆊᷰ⊛ߥࠢࠬ࠲ ⚿᥏⊛ਛ〒㔌⒎ᐨ߇ૐ᷷ߦ ߥࠆߦߟࠇ⊒㆐ߔࠆߎߣࠍ⊒ߒߚ⚿ߩߎޔߪߢ⊒ᧄޕ᥏⊛ਛ〒㔌⒎ᐨߣേ⊛ਇဋ৻ᕈߣߩ㑐ㅪߦ㑐ߒߡᓧࠄࠇߚ⚿ᨐ ࠍ⚫ߔࠆ੍ቯߢࠆޕ υͼΡ΄ρᾼ̤̫ͥ൲എະ֚ ᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ Ꮉፒ ⁴ผ ᧁ⨹ޔᱞᤘ↰ޔਛ ⡸ ᄙಽᢔࠦࡠࠗ࠼♽(☸ᓘߦಽᢔࠍ߽ߞߚࠦࡠࠗ࠼♽)ߢߪޔⓍಽ₸ߩჇᄢߣߣ߽ߦޔή⒎ᐨ⁁ᘒࠍ⛽ᜬߒߚ߹߹☸ሶߩㆇ േ߇ಓ⚿ߐࠇࠬࠟޔォ⒖⽎߇ᒁ߈ߎߐࠇࠆ⎇ᧄޕⓥߢߪ▚⸘ޔᯏ⊛ᚻᴺ Brownian Dynamics ᴺࠍ↪ߡࠬࠟޔ ォ⒖ὐㄭறߦ߅ߌࠆޔੑᰴరࠦࡠࠗ࠼☸ሶߩ᭴ㅧ࠳ࠗ࠽ࡒࠢࠬࠍ⸃ᨆߒߚޕ᭴ㅧߦ㑐ߒߡߪޔ࿁ኻ⒓ᕈࠍ᷹ࠆ⒎ᐨᄌᢙ (six fold bond-orientational order parameter)ࠍ⸘▚ߒߚࠬࠟޔࠅࠃࠇߎޕォ⒖ὐㄭறߦ߅ߡ⚿ޔ᥏⊛ਛ〒㔌⒎ᐨ߇ᒻ ᚑߐࠇߡࠆߎߣࠍߒߚߦࠬࠢࡒ࠽ࠗ࠳ޔߚ߹ޕ㑐ߒߡߪࠬࠟޔォ⒖⽎ߩḮߣ⠨߃ࠄࠇߡࠆേ⊛ਇဋ৻ᕈࠍ⏕ ߒߚޕ᭴ㅧߣ࠳ࠗ࠽ࡒࠢࠬࠍᲧセߒߚߣߎࠈ⚿ޔ᥏⊛ਛ〒㔌⒎ᐨࠍᒻᚑߒߡࠆ☸ሶߪേ߈ߦߊߊޔ⒎ᐨߩૐ☸ሶߪേ ߈ᤃߣ߁ะࠍߒߚ⚿ޔߚ߹ޕ᥏⊛ਛ〒㔌⒎ᐨߩⓨ㑆ಽᏓߣേ⊛ਇဋ৻ߩⓨ㑆ಽᏓߦ㑐ߒߡ߽ᄢߦ⋧㑐߇ࠄࠇ ߚޕᓥߞߡࠬࠟޔォ⒖ὐઃㄭߦ߅ߌࠆ⚿ޔ᥏⊛ਛ〒㔌⒎ᐨߩሽߪޔേ⊛ਇဋ৻ᕈߩḮߩ৻ߟߢࠆߣ⠨߃ࠄࠇࠆޕ 41 ߐ൲ ئ2 ষࡓၥఘࠏ͈ેఠ֊ ᧲ᄢ↢↥ᛛⴚ⎇ⓥᚲ ᷰㄝ ᢘม↰ޔਛ ⡸ ☳☸♽ߦ߅ߡߪ☸ޔሶࠨࠗ࠭߇ᄢ߈ߚߦᾲំࠄ߉ߩነਈ߇ߥߊ☸ߚ߹ޔሶ㑆ⴣ⓭߇ᢔㅺࠍ߁ߚߦޔᄖㇱ߆ ࠄߩࠛࡀ࡞ࠡᵹߦࠃߞߡ♽ߩ⁁ᘒ߇ᄌൻߔࠆߪ♽ߥ߁ࠃߩߎޕ㕖ᐔⴧ‛ℂߩࡕ࠺࡞♽ߣ߁ⷰὐ߆ࠄㄭᐕᵈ⋡ߐࠇߡ ࠆ߇⋥ޔធⷰኤ߇ኈᤃߢࠆߣ߁․ᓽ߆ࠄ⁁ޔᘒ㑆ߩㆫ⒖ࠍ⺞ߴࠆߣ߁⋡⊛ߦ㑐ߒߡ߽↪ߢࠆߣ⠨߃ࠄࠇࠆޕ ᧄ⎇ⓥߢߪޔᝄേߦࠃߞߡ㚟േߐࠇߚ 2 ᰴర☳☸♽ߦ⌕⋡ߒߚޔߪ♽ߩߎޕᝄേߩടㅦᐲ߿Ⓧಽ₸ߩᄌൻߦࠃߞ ߡ࿕⊛ߥ⁁ᘒߣᶧ⊛ߥ⁁ᘒߣߩ㑆ࠍㆫ⒖ߔࠆߎߣ߇⍮ࠄࠇߡࠆޕ࿁ߪ☸ᓘߩ⇣ߥࠆ☸ሶࠍᷙวߐߖࠆߎߣߦࠃߞ ߡ⚿ޔ᥏ൻߦኻߔࠆࡈࠬ࠻࡚ࠪࡦࠍዉߒߚ⚿ߩߘޕᨐޔ᭴ㅧߪᶧ⊛ߢࠅߥ߇ࠄ࠳ࠗ࠽ࡒࠢࠬ߇ಓ⚿ߒߚࠟ ࠬ⊛ߥ⁁ᘒ߇᷹ⷰߐࠇߚ☸ߥ߁ࠃߩߎޕᓘಽᢔߦ࿃ߔࠆࠟࠬൻߪࠦࡠࠗ࠼ಽᢔ♽ߦߟߡߒߊ⺞ߴࠄࠇߡ߅ࠅߘޔ ߎߢᓧࠄࠇߚ⍮߇☳☸♽ߦኻߒߡ߽ㆡ↪น⢻߆ߤ߁߆ߣ߁ⷰὐ߆ࠄ⎇ⓥࠍⴕߞߚߡߟߦ⚦ߦࠄߐߪߢ⊒ᧄޕ ႎ๔ߔࠆޕ 42 ࡄݪਫ਼ౣݪࡄܢٛ! ! ! ၾঊΑάϋࠏ͈ၑ! ᣣᤨ㧦 ᐕ ᣣ 㨪 ᣣ ᳓ ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᧄ㙚⻠⟵ቶ ឭ᩺ઍ⠪ ဈ ᔀ ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴⎇ⓥਥᐙ ߘߩઁߩឭ᩺⠪ 㜟ጊ ৻ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎ Ꮉ ੳ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎ Ꮉ ᱜᲞ ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎ ↰ਛ ⑲ᢙ ᧲੩Ꮏᬺᄢቇᄢቇ㒮ℂᎿቇ⎇ⓥ⑼ᢎ 㒶ጊ ᵗ ੩ㇺᄢቇᄢቇ㒮ℂቇ⎇ⓥ⑼ഥᢎ ㊂ሶࠬࡇࡦ♽ߩ⎇ⓥߪޔ㐳વ⛔ߦ߽ᡰ߃ࠄࠇߡ߽ߦߢ߹ࠇߎޔᄙߊߩᚑᨐࠍߍߡ߅ࠅޔᣣߢ߽ᣂߒ࠹ࡑߩଏ ⛎Ḯߣߒߡ⎇ߥ߹ߑ߹ߐޔⓥಽ㊁㗔ၞߩ⊒ዷߦ⽸₂ߔࠆᄢ߈ߥࠦࡒࡘ࠾࠹ࠖࠍᒻᚑߒߡࠆޔߒ߆ߒޕ㊂ሶࠬࡇࡦ♽ߩ ⎇ⓥ⠪ߪᣣᧄ‛ℂቇળߢ߽ⶄᢙߩ㗔ၞߦᷙߒߡࠆߚో߆ߥ߆ߥޔຬ߇৻ၴߦળߒߡታ㛎ℂ⺰ਔ㕙߆ࠄ⼏⺰ߔࠆᯏ ળ߇ዋߥᦨޔߚ߹ޕㄭߪᄙߊߩ⎇ⓥ⠪߇┹⊛ᄖㇱ⾗㊄ࡊࡠࠫࠚࠢ࠻ߩࡔࡦࡃߣߒߡᵴべߒࠍࠖ࠹࠾ࡘࡒࠦޔᵴᕈൻ ߔࠆ৻ᣇޔ⍴ᦼ⊛ߦᚑᨐߩ߇ࠆ⎇ⓥ߇㊀ߐࠇߡޔ㐳ᦼ⊛ߥⷞ㊁ߦ┙ߟ⎇ⓥ߇シⷞߐࠇࠆߚޔߩࠕࠢ࠹ࠖࡆ࠹ࠖ ߇᧪ߦࠊߚߞߡᜬ⛯ߢ߈ࠆ߆ߤ߁߆⇼ޔⷞߔࠆჿ߽ࠆޔߢߎߘޕ⍴ᦼ⊛ߥᚑᨐ߿⎇ⓥ⾗㊄ߩ㗴ࠍᐲᄖⷞߒߡޔ㐳 ᦼ⊛ⷞ㊁ߦ┙ߜޔታ㛎ℂ⺰ਔ㕙ߦࠊߚߞߡᣂߒ࠹ࡑࠍ⊒ជߒߚࠅޔ᧪⊛ߥ⎇ⓥߩᣇะᕈࠍត⚝ߔࠆߎߣࠍ⋡⊛ߣ ߒߡ⎇ᧄޔⓥળߪ㐿ߐࠇߚ␠ߩઁߪࠖ࠹࠾ࡘࡒࠦߩߎޔߚ߹ޕળߣห᭽ߦઍઍߩᤨᦼߦߐߒ߆߆ߞߡ߅ࠅߩߎޔ㊀ ⷐߥォᯏࠍਸ਼ࠅಾߞߡᓟ߽⊒ዷߒ⛯ߌࠆߚߦ⧯ߣࡦ࠹ࡌޔᚻߩ㑆ߩઍࠍ߃ߚࠦࡒࡘ࠾ࠤ࡚ࠪࡦߩ႐ࠍࠆߎ ߣ߽⎇ߩߎޔⓥળߩ㊀ⷐߥ⋡⊛ߢߞߚ⿰ߥ߁ࠃߩߎޕᣦࠍᄙߊߩ⎇ⓥ⠪ߦ⾥หߒߡߚߛߚ⚿ᨐ⥸৻ޔડᬺ߆ࠄߩ↳ ㄟߺ߽ 100 ฬㄭෳട⊓㍳߇ࠅ⎇ޔⓥળೋᣣߦߪ 120 ฬࠍ߃ࠆෳട⠪߇ߞߚޕ㊂ሶࠬࡇࡦ♽ߩࠦࡒࡘ࠾࠹ࠖ ߩߩࠕࠢ࠹ࠖࡆ࠹ࠖߩ㜞ߐࠍ❥ᩕߒߡޔ3 ᣣ㑆ߢߩߴ 300 ੱࠍ߃ࠆෳട⠪߇ࠅ‛ޔᕈ⎇⻠⟵ቶ߇ㅪᣣၒ߹ࠆᄢ⋓ ᴫߢߞߚޕ ᧄ⎇ⓥળߪޔ㗴ࠍឭଏߔࠆᓙ⻠Ṷ⚂ 30 ઙ⻠⥸৻ޔṶ⚂ 20 ઙ⧯ޔᚻࠍਛᔃߣߔࠆࡐࠬ࠲࠶࡚ࠪࡦ⚂ 40 ઙ߆ࠄ ߥࠅޔขࠅߍߚ࠹ࡑߪ⏛ࡁ࠽ޔᕈࠞࠗ࡞⏛ᕈࡈࠬ࠻࡚ࠪࡦ♽ࠬࡇࡦᶧࡏ࠭ࠕࠗࡦࠪࡘ࠲ࠗࡦ ಝ❗ࡂ࡞࠺ࡦ♽ߥߤᄙጘߦᷰࠆޕฦ⻠Ṷᓟߩ࠺ࠖࠬࠞ࠶࡚ࠪࡦࠍ㊀ⷞߔࠆࠕ࠽࠙ࡦࠬࠍᔀᐩߒߚߎߣ߆ࠄޔ㕖Ᏹߦᵴ⊒ ߥ⸛⺰߇ዷ㐿ߐࠇ⎇ޔⓥળᓟඨߢߪ⧯ᚻ߽Ⓧᭂ⊛ߦ⼏⺰ߦෳടߔࠆࠃ߁ߦߥࠅ⧯ޔᚻߩࠦࡔࡦ࠹࠲⢒ᚑߦ߽ᓎ┙ߞߚ ߣᕁࠊࠇࠆᦨޔߚ߹ޕㄭߩ⊒ዷ⪺ߒ࠽ࡁ⏛ᕈߩ࠶࡚ࠪࡦߢߪޔታ㛎⎇ⓥ⠪߆ࠄߣߞ߽ޔ⏕ߥ㊂ሶലᨐࠍ੍᷹ߒᬌ⸽ ታ㛎ࠍឭ᩺ߔࠆࠃ߁ޔℂ⺰⎇ⓥ⠪ߦⷐᦸ߇ߐࠇޔ᧪ߩ⺖㗴ߣߒߡឭߐࠇߚࡦࡇࠬߦࠄߐޕᶧ߿ࡏ࠭ࠕࠗࡦ ࠪࡘ࠲ࠗࡦಝ❗ߥߤߩࠛࠠ࠱࠹ࠖ࠶ࠢߥ⽎ࠍ␜ߔᣂ‛⾰ࠍวᚑߔࠆߎߣߩ㔍ߒߐ߆ࠄޔታ㛎ℂ⺰ਔ㕙ߩ࠾࠭ߦߟ ߡ߽ߞߣ㗫❥ߦᖱႎ឵ࠍߔࠆ႐ߣߒߡ⎇ߥ߁ࠃߩߎޔⓥળࠍ㐿ߊߛߌߢߥߊߚߞࠍ࠻࠶ࡀ࠲ࡦࠗޔᖱႎ឵ࡀ࠶࠻ ࡢࠢߩ᭴▽߇ᔅⷐߣߩ⸃߽ߐࠇߚߩߎޕὐߦߟߡߪޔ㊂ሶࠬࡇࡦ♽ߩࠦࡒࡘ࠾࠹ࠖߩࡎࡓࡍࠫᚑࠍᬌ ⸛ਛߢޔᣧᕆߦታߔࠆᔅⷐ߇ࠆߣ⠨߃ࠄࠇࠆޕ ᧄ⎇ⓥળߩ߭ߣߟߩ⋡ᮡߢߞߚ㐳ᦼ⊛ߥⷞ㊁߆ࠄߩ᧪ዷᦸ߇㆐ᚑߐࠇߚ߆ߤ߁߆ߪޔ2ޔ3 ᐕᓟߩ⍴ᦼ⊛ߥᚑᨐ߆ ࠄផߒ㊂ࠆߎߣߪߢ߈ߥ߇ߩߎޔળᦼਛߦߺࠄࠇߚᵴ⊒ߥ࠺ࠖࠬࠞ࠶࡚ࠪࡦ߆ࠄࠍ⺰⼏ߩߢߎߎޔὐߣߒߡޔ㆙ ᧪ߦ㊀ⷐߥࡉࠢࠬ࡞ࠍ߽ߚࠄߔᄢ⊒ߦߟߥ߇ࠆ߽ߩߣᦼᓙߒߚߚߞߢ⊛⋡ߩߟߣ߭߁߽ޔߚ߹ޕઍࠍ߃ ߚࠦࡒࡘ࠾ࠤ࡚ࠪࡦߦߟߡߪޔ70 ฬએ߇ෳടߒߚᙣⷫળ߿ᵴ⊒ߥࡐࠬ࠲࠶࡚ࠪࡦߥߤߦࠃࠅޔචಽߦ㆐ᚑߐ ࠇߚ߽ߩߣାߓࠆ⎇ߩߎޕⓥળߢᚑ㐳ߒߚ⧯ᚻߩਛ߆ࠄޔ2ޔ3 ᐕᓟߦߐࠄߦࠣ࠼ࠕ࠶ࡊߒߚ⎇ⓥળࠍ㐿ߒޔ㊂ሶ ࠬࡇࡦ♽ߩࠦࡒࡘ࠾࠹ࠖࠍᵴᕈൻߔࠆജߥ⎇ⓥ⠪߇ᄙᢙߡߊࠆߎߣࠍ㗿ߞߡࠆޕ 43 ࡊ ࡠ ࠣ ࡓ 22 38 )*! 13:00 㐿ળ ဈ ᔀ㧔ේሶജᯏ᭴㧕 ᐳ㐳㧦㜟ጊ ৻㧔᧲ᄢ‛ᕈ⎇㧕 13:10-13:35 ㊁ዥ ᶈਯ㧔᧲ർᄢ㊄⎇㧕 ࡁ࠽ޟಽሶ⏛ᕈ⎇ⓥߩേะߣน⢻ᕈޠ 13:35-14:00 ችਅ ♖ੑ㧔᧲ᄢℂ㧕 ޟනಽሶ⏛ᕈߩ㊂ሶ࠳ࠗ࠽ࡒ࠶ࠢࠬߣࠛࡀ࡞ࠡࠡࡖ࠶ࡊ᭴ㅧޠ 14:00-14:20 ጯᩮ 㗅৻㇢㧔ᎿᄢᎿ㧕 ⚿ޟ᥏ߣ⏛ᕈߩ chirality㧦ℂ⺰ޠ 14:20-14:40 స㧔ᐢፉᄢℂ㧕 ⚿ޟ᥏ߣ⏛ᕈߩ chirality㧦ಽሶᕈൻว‛ޠ 14:40-15:00 ⑺శ ⚐㧔㕍ቇᄢℂᎿ㧕 ⚿ޟ᥏ߣ⏛ᕈߩ chirality㧦ήᯏൻว‛ޠ ᐳ㐳㧦↰ਛ ⑲ᢙ㧔᧲Ꮏᄢ㒮ℂᎿ㧕 15:20-15:45 ↰ ኡ㧔᧲ᄢ‛ᕈ⎇㧕 ㉄࡞ࡀࡇࠬޟൻ‛ߣ㔚⩄゠ࠬࡇࡦᩰሶ⚿ว⽎ޠ 15:45-16:10 ೨Ꮉ ⷡ㧔੩ᄢੱⅣ㧕 ࡦࡇࠬޟ1/2 ㊂ሶ߆ߏᩰሶ⏛ᕈߩࡈࠬ࠻࠻⏛ᕈޠ 16:10-16:35 ✂ઍ ⧐᳃㧔੩ᄢℂ㧕 ޟᱜᣇᩰሶࡈࠬ࠻࡚ࠪࡦ♽ߩታ㛎ޠ 16:35-17:00 ᩶ ീ㧔ℂ⎇㧕 ޟᒝ⏛ᕈំࠄ߉ߩᒝࡈࠬ࠻࠻⏛ᕈߦ߅ߌࠆ㊂ሶࠬࡇࡦᶧޠ 17:00-17:25 㡆ᶏ ᐽ㓶㧔᧲ᄢ‛ᕈ⎇㧕 ޟᒝ⏛႐ߦࠃࠆ㊂ሶࠬࡇࡦߩ⎇ⓥޠ ࡐࠬ࠲ࡊࡆࡘᐳ㐳㧦ᚭႦ 㧔੩ᄢၮ⎇㧕 17:30-19:00 ࡐࠬ࠲ࡊࡆࡘA㧔ฦ 2 ಽ㧕㧗ࡐࠬ࠲࠶࡚ࠪࡦ 22 39 )غȫ! ᐳ㐳㧦೨Ꮉ ⷡ㧔੩ᄢੱⅣ㧕 9:00-9:15 ጊᧄ ม㧔ർᄢℂ㧕 ޟ1 ᰴరߢⷰ߃ߚࡑࡦᩭࠬࡇࡦ㧙ᩰሶ✭ㆊ⒟ޠ 9:15-9:30 ฎᎹ ᰴ㧔ർᄢℂ㧕 ࡞ࠤࠬࡁ࠽ޟಽሶ⏛ᕈߩ NMRޠ 9:30-9:45 ኹየ ᵘ㧔ାᎺᄢℂ㧕 ޟ㊂ሶࠬࡇࡦࠢࠬ࠲ߦ߅ߌࠆࠬࡇࡦ Jahn-Teller ലᨐޠ 9:45-10:10 ⋉↰ 㓉༹㧔ᮮᵿᏒᄢ㧕 ޟ㊂ሶࠬࡇࡦ࠳ࠗࡑ♽ߩࠬࡇࡦ࠳ࠗ࠽ࡒࠢࠬޠ 10:10-10:25 ⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕 ޟᣂⷙࡈ࠶⚛ൻว‛ߩߣᓟߩ⎇ⓥᣇ㊎ޠ 10:25-10:40 ⍫ࠤፒ స㚍㧔℄ᄢℂ㧕 ޟᣂᄸવዉᯏ᭴ޟᣏߔࠆ 2 ㊂ߩવዉޠޠ 44 ᐳ㐳㧦㜞ᯅ ኪ㧔᧲ᄢ‛ᕈ⎇㧕 11:00-11:25 ችේ ᘕ㧔㕍ቇᄢℂᎿ㧕 ޟ2 ᰴర㊂ሶࠬࡇࡦ♽ SrCu2(BO3)2, Cs2CuBr4 ߩ⏛ൻࡊ࠻ޠ 11:25-11:50 ᳇ 㧔᧲ᄢ‛ᕈ⎇㧕 ޟSrCu2(BO3)2 ߦ߅ߌࠆᣂߒ㜞⋧ޠ 11:50-12:05 ᚭႦ 㧔੩ᄢၮ⎇㧕 ޟContracter-renormalization approach to unconventional phases in frustrated magnetsޠ 12:05-12:20 ടୖ ਭ㧔ේሶജᯏ᭴㧕 ޟⓍጀਃⷺᩰሶ‛⾰ LuFe2O4 ߩ⏛᳇⒎ᐨㆊ⒟ޠ ᐳ㐳㧦✂ઍ ⧐᳃㧔੩ᄢℂ㧕 13:10-13:35 㣮㊁↰ ৻ม㧔᧲ᄢᎿ㧕 ޟਃⷺᩰሶᯏࡕ࠶࠻⛘✼ߦ߅ߌࠆࠬࡇࡦᶧߣવዉޠ 13:35-14:00 ධㇱ 㓶੫㧔੩ᄢℂ㧕 ޟੑᰴరਃⷺᩰሶᒝ⏛ᕈ NiGa2S4 ߦ߅ߌࠆࠬࡇࡦߩή⒎ᐨߥ㊂ሶ⁁ᘒޠ 14:00-14:25 Ᏹᰴ ብ৻㧔᧲ᄢ‛ᕈ⎇㧕 ޟਃⷺᩰሶࠬࡇࡦ♽ߩℂ⺰㧙 ”ࠬࡇࡦᶧ”ߣࠬࡇࡦࡀࡑ࠹ࠖ࠶ࠢ⋧ޠ 14:25-14:40 ᳓ፒ 㜞ᶈ㧔ኾୃᄢ㧕 ޟ2 ᰴరߩࡈࠬ࠻࠻ߒߚࡂࡃ࠼ᮨဳߩ⋧࿑ߦߟߡޠ 14:40-15:05 Ꮉ శ㧔㒋ᄢℂ㧕 ࠍࠖ࠹ࠗࠞޟᅤߦ᷹ⷰߔࠆ߆㧫ޠ ᐳ㐳㧦ဈ ᔀ㧔ේሶജᯏ᭴㧕 15:25-15:50 ↰ਛ ⑲ᢙ㧔᧲Ꮏᄢ㒮ℂᎿ㧕 ߩ♽ࡑࠗ࠳ࡦࡇࠬޟ㊂ሶ⋧ォ⒖ߣ⏛᳇ബߩታ㛎ޠ 15:50-16:15 ᧻ᧄ ᱜ⨃㧔㕒ጟᄢℂ㧕 ߩ♽ࡑࠗ࠳ࡦࡇࠬޟ㊂ሶ⋧ォ⒖ߣ⏛᳇ബߩℂ⺰ޠ 16:15-16:40 ㋈ᧁ 㓉ผ㧔᧲ᄢ‛ᕈ⎇㧕 ޟ3 ᰴరᩰሶ♽ߦ߅ߌࠆᵹേ࿕⁁ᘒߩត⚝ޠ ࡐࠬ࠲ࡊࡆࡘᐳ㐳㧦⮮ 㧔ᄢᎿ㧕 16:40-18:10 ࡐࠬ࠲ࡊࡆࡘB ฦ 2 ಽ㧗ࡐࠬ࠲࠶࡚ࠪࡦ 18:10-20:00 ᙣⷫળ㧔‛ᕈ⎇ 6 㓏࠙ࡦࠫ㧕 22 3: )କȫ! ᐳ㐳㧦ᄥ↰ ੳ㧔ᚭᄢℂ㧕 9:00-9:25 ⩵ᳰ ᒾశ㧔ᄢᎿ㧕 ࠼ࡦࡕࡗࠗ࠳ޟ㎮ൻว‛ࠕ࠭ࠗ࠻ߩ⏛ᕈ㧔ታ㛎㧕ޠ 9:25-9:50 ጟᧄ ᷡ⟤㧔᧲Ꮏᄢ㒮ℂᎿ㧕 ࡦࡇࠬဳ࠼ࡦࡕࡗࠗ࠳ޟ㎮ߩ⏛᳇⊛ᕈ⾰ߩℂ⺰֣ᩰሶߩࡈࠚᕈߣࡈࠬ࠻࡚ࠪࡦޠ 9:50-10:05 㘧↰ ↵㧔ၯ₹ᄢℂ㧕 ߣࡦ࡚ࠪ࠻ࠬࡈޟ㊂ሶᕈ߆ࠄ↢߹ࠇࠆࡈࠚ⏛ᕈޠ 10:05-10:20 ᩮᎹ ቁ㧔Ꮏᄢᯏ᪾㧕 ޟS=2 ࠬࡇࡦߣ S=1 ࠬࡇࡦ߇ᒝ⏛ᕈ⊛ߦઍߒߚ⇣ᣇ⊛ 1 ᰴర㎮ߩ㔖⏛႐ၮᐩ⁁ᘒޠ ᐳ㐳㧦Ꮉፉ ⋥ノ㧔᧲ᄢ‛ᕈ⎇㧕 10:40-10:55 ⢫ ᥙ㧔‛᧚ᯏ᭴㧕 ޟᣂᄸ㌃㉄ൻ‛ߩ゠⒎ᐨߣ⏛ᕈߩℂ⺰⸃ᨆ߅ࠃ߮‛⾰⸳⸘ޠ 45 10:55-11:10 ᩉᴛ ቁ㧔↥✚⎇㧕 ޟ2 ᰴర㊂ሶᒝ⏛ᕈߦ߅ߌࠆࠗࡦࠬ࠲ࡦ࠻ࡦޠ 11:10-11:35 ↰ ජኼ㧔㕍ቇᄢℂᎿ㧕 ޟਇ⚐‛⺃ᒝ⏛ᕈ⒎ᐨ㧦ࡏࡦ࠼Ꮧ㉼♽ߦ߅ߌࠆ┹วߔࠆੑߟߩല⋧↪ޠ 11:35-11:50 ᅏ Ꮑ৻㧔ᣂẟᄢ⥄ὼ㧕 ޟWilson ဳታⓨ㑆ߊࠅߎߺ⟲ߣ㊂ሶࠬࡇࡦ㎮ߩૐࠛࡀ࡞ࠡബࠬࡍࠢ࠻࡞ޠ 11:50-12:15 ဈ ᔀ㧔ේሶജᯏ᭴㧕 ߩࡉࡘ࠴ࡦࡇࠬޟ㊂ሶ⋧ォ⒖ޠ ᐳ㐳㧦ᩮᎹ ቁ㧔Ꮏᄢᯏ᪾㧕 13:00-13:25 ⪤ේ ᐘ㧔㒋ᄢᭂ㒢ࡦ࠲㧕 ‛ߩ♽ࡦ࠺࡞ࡂޟℂߣᱷߐࠇߚ⺖㗴㧔ታ㛎㧕ޠ 13:25-13:50 ㊁ ᷡ⧷㧔Ꮊᄢℂ㧕 ‛ߩ♽ࡦ࠺࡞ࡂޟℂߣᱷߐࠇߚ⺖㗴㧔ℂ⺰㧕ޠ 13:50-14:15 ᧻የ ᥏㧔᧲ᄢ‛ᕈ⎇㧕 ࡁ࠽ޟⓨ㑆ߦ㈩ߒߚ㉄⚛ಽሶ㎮ߩᒝ⏛႐⏛ൻㆊ⒟ޠ 14:15-14:30 㜞㊁ ஜ৻㧔⼾↰Ꮏᄢ㧕 ޟ㎮ߩࠆ㊂ሶࠬࡇࡦ㎮ߩၮᐩ⁁ᘒޠ 14:30-14:45 ↰ਛ ⑺ᐢ㧔‛᧚ᯏ᭴㧕 ޟ㜞ᰴరߩ AKLT ឬߣߘߩ႐ߩℂ⺰ޠ ᐳ㐳㧦Ꮉ ੳ㧔᧲ᄢ‛ᕈ⎇㧕 15:05-15:30 ᄥ↰ ੳ㧔ᚭᄢℂ㧕 ޟ㊂ሶࠬࡇࡦ♽ߩ ESR ߦࠃࠆ⎇ⓥޠ 15:30-15:45 Ꮉ⢆ 㓉ⴕ㧔ℂ⎇㧕 ޟ5 ᧄ⿷ࠬࡇࡦ᪽ሶᩰሶ♽ La8Cu7O19 ߣࡂ࡞࠺ࡦࠡࡖ࠶ࡊ♽ Y2BaNiO5 ߦ߅ߌࠆࠬࡇࡦߦࠃࠆᾲવዉޠ 15:45-16:00 శ⮮ ⺈ᄥ㇢㧔ᄢ㆙⿒ࡦ࠲㧕 ࠳ࡦࡇࠬޟൻว‛(CPA)2CuBr4 ߩ㜞ᵄ ESR ᷹ቯޠ 16:00-16:15 ⮮ 㧔ᄢ㆙⿒ࡦ࠲㧕 ࠳ࡦࡇࠬޟൻว‛(CPA)2CuBr4 ߩᩭ⏛᳇㡆ޠ 16:15-16:30 ᒁේ ବ㧔ർᄢℂ㧕 ޟᒛߐࠇߚ 4 ⋧↪ࠍ߽ߟ 2 ᧄ㎮᪽ሶࠬࡇࡦ♽ߦ߅ߌࠆኻᄌ឵ޠ 16:30-16:45 ᧻↰ 㓷㧔ේሶജᯏ᭴㧕 ޟᭂਛᕈሶࠍ↪ߚ TbMnO3 ߩ⏛᳇᭴ㅧߦ㑐ߔࠆ⎇ⓥޠ 16:45-17:00 ዊ㊁↰ 㓷㊀㧔╳ᵄᄢᢙℂ㧕 ㉄ࡓ࠙ࠫ࠽ࡃޟൻ‛♽ߦ߅ߌࠆ㊂ሶࠬࡇࡦലᨐޠ ࡐࠬ࠲࠶࡚ࠪࡦ ⎇ⓥળᦼ㑆ਛ㧔3 ᣣ㑆㧕ឝ␜ޕฦ 2 ಽ㑆ߩࡊࡆࡘ࠻ࠢࠅޕ ࡐࠬ࠲ࡊࡆࡘ㧭 ˝ˍ㧦ᧁ ዏᰴ㇢㧔㒋ᄢᭂ㒢ࡦ࠲㧕 ޟᡆ৻ᰴరࠦࡃ࡞࠻ൻว‛ BaCo2V2O8 ߩᒝ⏛႐⏛ᕈޠ ˝ˎ㧦ᩊፒ ᓃ㧔᧲ᄢᎿ㧕 ޟᡆ 1 ᰴరᒝ⏛ᕈࡂࠗࡦࡌ࡞ࠣᮨဳߦ߅ߌࠆ㎮㑆ᐔဋ႐ㄭૃߣߘߩᡷ⦟ޠ ˝ˏ㧦ㄞᧄ ศᑝ㧔੩ᄢℂ㧕 ޟੑᰴరᱜᣇᩰሶ⏛ᕈ(CuBr)Sr2Nb3O10 ߩ⏛ᕈޠ ˝ː㧦⮮↰ ᢅਯ㧔ᄢ㆙⿒ࡦ࠲㧕 ޟCuB2O4 ߩ㜞ᵄ ESRޠ 46 ˝ˑ㧦ፉ 㓉ᶈ㧔Ꮊᄢℂ㧕 ޟ㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆᢛว㕖ᢛวㆫ⒖ޠ ˝˒㧦⮮↰ ᷤ㧔ฬฎደᄢℂ㧕 ޟⅣ⁁࠴ࠕࠫ࡞ࠫࠞ࡞⚿᥏ߦ߅ߌࠆࠬࡇࡦࠡࡖ࠶ࡊ⁁ᘒޠ ˝˓㧦⮮ ᱜኡ㧔ේሶജᯏ᭴㧕 ⏛ޟ႐ਛߩࠬࡇࡦ࠴ࡘࡉߦ߅ߌࠆࡌࠢ࠻࡞ࠞࠗ࡞⒎ᐨߣᦺ᳗࠶࠹ࠖࡦࠫࡖᶧߩሽޠ ˝˔㧦ችፒ ኡ㧔ጟጊᄢℂ㧕 ⇣ޟᣇ⊛ S=2 ࠬࡇࡦ㎮ߦ߅ߌࠆ 1/2 ⏛ൻࡊ࠻ޠ ˝˕㧦የฎ ፏ㧔ጟጊᄢℂ㧕 ৻ߣ࠻ࡦࡔ࡞ࠣࡦ࠲ࡦࠛޟᰴర㊂ሶࠬࡇࡦ♽ߩၮᐩ⁁ᘒޠ ˝21㧦ᨰᧁ 㓉ᚑ㧔㒋ᄢᭂ㒢ࡦ࠲㧕 ⏛ࡦ࠺࡞ࡂޟᕈ NDMAP ߩ⏛᳇ബߩⷺᐲଐሽᕈޠ ˝22㧦ᷡ᳓ ஜ๋㧔ฬฎደᄢℂ㧕 ޟᡆ 1 ᰴరࡂࠗࡦࡌ࡞ࠣ⏛ᕈ β-BBDTAGaBr4ޠ ˝23㧦↰ ᵗ㧔ᄢᎿ㧕 ޟCuB2O4 ߩㅙᰴ⋧ォ⒖ߣ⏛᳇⋧࿑ޠ ˝24㧦㜞ᯅ ᱜౖ㧔ᄢ㒋Ꮢᄢ㧕 ޟฎౖ⊛ߥᩰሶߩ⥄↱ᐲࠍ㊂ሶࠬࡇࡦ♽ߩ㊂ሶࡕࡦ࠹ࠞ࡞ࡠࠪࡒࡘ࡚ࠪࡦޠ ˝25㧦ᄢਭ 㧔ᚭᄢℂ㧕 ޟS=1 ࠬࡇࡦ࠳ࠗࡑ♽ Ba3Mn2O8 ߩ㈩ะ⹜ᢱߩᒝ⏛႐ ESRޠ ˝26㧦⮮Ỉ ⌀჻㧔ᚭᄢℂ㧕 ޟS=1/2 ᡆ৻ᰴరᒝ⏛ᕈ Cu2Cl4H8C4SO2 ߩ⏛ᕈ⎇ⓥޠ ˝27㧦␉ㇱ ᱜᒾ㧔᧲ᄢ‛ᕈ⎇㧕 ޟS=1/2 ᡆ 1 ᰴర⏛ᕈ NaTiSi2O6 ߩᣂᄸߥ⋧ォ⒖ޠ ˝28㧦ᄢේ Ả㧔ർᄢℂ㧕 ޟ㌃ 3 ㊂ࡈࠚ⏛ᕈ㎮ߩ⏛᳇ബޠ ˝29㧦ዊự ⧐మ㧔᧲Ꮏᄢᔕ↪ࡒࠢࠬ⎇㧕 ޟK11H[(VO)3(SbW9O33)2]27H2O ߣ K12[(VO)3(BiW9O33)2]29H2O ߩᭂૐ᷷ޔ㜞⏛႐ਅߢߩᾲኈ㊂ޠ ࡐࠬ࠲ࡊࡆࡘB ˞ˍ㧦ጊญ 㧔᧲ᄢ‛ᕈ⎇㧕 ࡞ࠤࠬࡁ࠽ޟනಽሶ⏛⍹ߩૐ᷷⏛᳇᷹ቯޠ ˞ˎ㧦ਛ ৻㧔᧲ᄢ↢↥⎇㧕 ⚛ޟബߩಽᢔ㑐ଥߩ㔖ὐߣ⋧㑐㐳ޠ ˞ˏ㧦⢀ ᢘ๋㧔᧲ᄢℂ㧕 ޟDistribution of non-trivial gapless points in single molecule magnets and dynamical driven systemsޠ ˞ː㧦ᐔ㊁ 㧔᧲ᄢᎿ㧕 ޟ㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆ࠻ࡐࡠࠫࠞ࡞⒎ᐨߣࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ࠛࡦ࠻ࡠࡇޠ ˞ˑ㧦ᰞ ᢘඳ㧔ᚭᄢ⎇ⓥၮ⋚㧕 ޟ1 GPa ߹ߢߩ㜞ਅᒝ⏛႐ ESR ࠪࠬ࠹ࡓߩ㐿⊒ߣࠬࡇࡦࠡࡖ࠶ࡊ♽߳ߩᔕ↪ޠ ˞˒㧦ᄢਠ ⎇㧔᧲ᄢ‛ᕈ⎇㧕 ⎫ဳࡦࡆࠝޟൻ‛ Mn2AS4(A = Si, Ge) ߦ߅ߌࠆᄙ㊀⥃⇇⽎ޠ ˞˓㧦᧻ਅ ℉㧔ฬฎደᄢℂ㧕 ޟS=1 ࠞࠧࡔ Heisenberg ᒝ⏛ᕈ m-MPYNNBF4 ߩ⏛ൻࡊ࠻ޠ ˞˔㧦㤥ᳯ ᥍ᒾ㧔ᥓᄢℂᎿ㧕 ࡦࡑޟᢔੂߢ᷹ⷰߒߚ TlCoCl3 ߩ⏛᳇ബޠ ˞˕㧦ᣣਅㇱ ᤩᐔ㧔ᥓᄢℂᎿ㧕 ޟACuCl3 ߩࡑࡦᢔੂޠ ˞21㧦㊁ ᤩᓼ㧔᧲ᄢ↢↥⎇㧕 ޟนⓍಽࠞࠗ࡞ࡐ࠶࠷ᮨဳߩࠗࠫࡦࠣ⊛ࠬࡍࠢ࠻࡞ߣઃ㓐ߔࠆ XXZ ဳࠬࡇࡦ㎮ߩ L(sl2)ኻ⒓ᕈޠ 47 ˞22㧦ựፒ ᥓᓆ㧔ᥓᄢℂᎿ㧕 ৻ޟᰴర┹ว♽ Rb2Cu2Mo3O12 ߩ㜞ਅ⏛ൻ᷹ቯ߅ࠃ߮⏛᳇Ყᾲߩ⏛႐ᄌൻޠ ˞23㧦ዊ㊁ ବ㓶㧔᧲Ꮏᄢ㒮ℂᎿ㧕 ޟS=1/2 ࠬࡇࡦ࠳ࠗࡑ♽ ND4CuCl3 ߩ⏛᳇ᒢᕈᢔੂޠ ˞24㧦ፒ ᪸ᕺሶ㧔᧲Ꮏᄢ㒮ℂᎿ㧕 ޟS 㧩 1/2 1 ᰴరᒝ⏛ᕈ KCuGaF6 ߦ߅ߌࠆ⏛႐⺃ࠡࡖ࠶ࡊߣ⏛᳇ബޠ ˞25㧦 㐳ᝄ㧔᧲ᄢ‛ᕈ⎇㧕 ৻ޟᰴరࠬࡇࡦ♽ SrCo2V2O8 ߩ⏛᳇േޠ ˞26㧦የᒻ ⺈ਯ㧔᧲ᄢ‛ᕈ⎇㧕 ޟੑᰴర⏛ᕈ(CuX)LaNb2O7㧔X=Cl, Br㧕ߩ NMR ᷹ቯޠ ˞27㧦᧻ේ ା৻㧔᧲ᄢ‛ᕈ⎇㧕 ޟSrCu2(BO3)2 ߦ߅ߌࠆᣂߒ㜞⏛႐⋧ޠ ˞28㧦⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕 ⶄޟวࡂ࡞࠺ࡦ㎮ IPA-CuCl3 ߩ g ୯ߩ 3 ᰴరนⷞൻ᷹ቯޠ ˞29㧦⩲ ⺈৻㇢㧔㒋ᄢᎿ㧕 ޟ1 ᰴర㊂ሶࠬࡇࡦ♽ߩ⏛႐ਛ NMR ✭₸ޠ Oral 11/27/P01 Φঊঽࡄ͈ݪ൲࢜͂خෝ! ㊁ዥ ᶈਯ㧔᧲ർᄢ㊄⎇㧕 ࠽ࡁಽሶ⏛ᕈ⎇ⓥߪޔೋᦼߩ㜞ࠬࡇࡦ⏛⍹ߩวᚑߣߘߩ‛ᕈត᳞ߪ৻Ბ⪭ߒᐞߟ߆ߩᣂߒᣇะᕈߦᴪߞߡ⎇ⓥߩዷ 㐿߇ߥߐࠇߡࠆᧄޕṶߢߪᦨㄭߩ࠽ࡁಽሶ⏛ᕈ⎇ⓥߩᵹࠇߣน⢻ᕈࠍⷰߔࠆ⎇ޕⓥߩേะߣߒߡߪ ޔ1ᄙ᭽ߥ࠻ ࡐࡠࠫߦ߅ߌࠆၮᐩ⁁ᘒߩ㊂ሶᕈߥࠄ߮ߦฎౖᕈ ޔ2ࠦࡅࡦ࠻ߥࠬࡇࡦᠲ ޔ3⏛᳇ࠢࠬ࠲ࠍㅪ⚿ߒߡ ࠄࠇࠆ㜞ᰴ᭴ㅧߩ↢ᚑߣ‛ᕈ ޔ4㜞ᰴ᭴ㅧߦ߅ߌࠆౝㇱ⥄↱ᐲ ޔ5ℂᗐ⊛ߥૐᰴర᭴ㅧ↢ᚑ ޔ6ࠨࠗ࠭ലᨐޔ 7ⶄวᯏ⢻ࠍ߽ߞߚ⏛ᕈ ޔ8ࠬࡇࡦォ⒖ߩᓮ ޔ9વዉᕈߩᓮ ޔ10᭴ㅧᚑߥߤ߇ߍࠄࠇࠆ‛ޔߦ․ޕℂ ⊛ߦᧂ㐿ᜏߩಽ㊁ߣߒߡ⥝ᷓߩߪޔታᤨ㑆ߩ‛ℂ⽎ߦ㑐ㅪߒߚࠦࡅࡦ࠻ߥࠬࡇࡦᠲߣ3ᰴర⚿᥏ߢߪታਇ น⢻ߥ㜞ᰴߥ᭴ㅧࠍᜬߞߚ⏛ᕈߩታߢࠅߦࠄࠇߘޔ㑐ߒߡᐞߟ߆ߩ⹜ߺ߽ႎ๔ߔࠆޕ Oral 11/27/P02 ౙঊঽఘ͈ၾঊΘͼηΛ·Α͂ΥσΆȜΆλΛίࢹ௮! ችਅ ♖ੑ㧔᧲ᄢℂ㧕 නಽሶ⏛ᕈߢߪ⏛႐ߩᒁߦ㑐ߒߡࠡ࡞ࡀࠛޔḰߩ᭴ㅧࠍᤋߒߡ᭽ߥޘേ⊛⏛ൻㆊ⒟ࠍ␜ߔߩߘޕᯏ᭴ߩ․ᓽ ߿ᢔㅺലᨐߥߤߦߟߡ⺞ߴࠆޔߚ߹ޕ㊂ሶ࠳ࠗ࠽ࡒ࠶ࠢࠬߢ㊀ⷐߥᓎഀࠍߔࠆࠛࡀ࡞ࠡࠡࡖ࠶ࡊߩ⋧↪ଐሽᕈࠍ ⺞ߴߩࡊ࠶ࡖࠡޔḮ߿ߘߩࠦࡦ࠻ࡠ࡞ߩᣇᴺߦߟߡ߽⠨ኤߔࠆߦࠄߐޕಽሶౝߩ⏛᳇⋧↪ߦࠃࠆࡈࠬ࠻ ࡚ࠪࡦߩߚߩᣂߒ࠲ࠗࡊߩၮᐩ⁁ᘒߦߟߡ߽⼏⺰ߔࠆޕ Oral 11/27/P03 ࠫએ͂ঽ͈ chirality㧦ၑა ጯᩮ 㗅৻㇢㧔ᎿᄢᎿ㧕 ࠞࠗ࠹ࠖࠍᎼࠆ⎇ⓥߪޔ18 ♿೨ඨߩࠕࠧߦᆎ߹ߞߡࡄࠬ࠷࡞߳ߣฃߌ⛮߇ࠇ⚿ޔ᥏ಽሶߩࠞࠗ࠹ࠖ ߦߟߡߩൻቇ⊛⎇ⓥߣߒߡㅴዷߒߡ߈ߚߩߘޕᓟߩಝ❗♽‛ℂ‛⾰⑼ቇߩㅴዷߦࠃࠅ↱⥄ࠖ࠹ࠗࠞޔᐲ߇ᶧ᥏ߦ ߅ߌࠆಽሶ㈩ะ߿ᒝ⋧㑐㔚ሶ♽⋧ࡦࡇࠬࠆߌ߅ߦࠬࠣࡦࡇࠬޔ㑐ߣߞߚ᭽ߥޘዪ㕙ߢ㊀ⷐߥᓎഀࠍᨐߚߔߎߣ߇ࠄ 48 ߆ߦߥߞߡ߈ߎߣߪ⍮ߩታߢࠆ⎇ࠖ࠹ࠗࠞޕⓥࠍൻቇߣ‛ℂߩႺ⇇✢ߦ⟎ߠߌࠆߣޟޔ᭴ㅧ⊛ࠞࠗ ࠹ࠖߣ⏛᳇⊛ࠞࠗ࠹ࠖޟޔޠಽሶࠬࠤ࡞ߢߩࠞࠗ࠹ࠖߣ⚿᥏ࠬࠤ࡞ߢߩࠞࠗ࠹ࠖ߁ߣޠኻᲧ߇ᶋ߈ᓂ ࠅߦߥࠆ߇ߩࠄࠇߎޔ㑐ଥߦߪᧂ⸃ߩㇱಽ߇ᄙߢߎߎޕขࠅߍࠆࠞࠗ࡞⏛ᕈߣߪ࡞ࠗࠞߢ࡞ࠤࠬࡠࠢࡑޔ ߥࠬࡇࡦ࠷ࠗࠬ࠻ࡄ࠲ࡦ߇ᒻᚑߐࠇࠆߎߣߢ⚿᥏ోߦࠊߚߞߡࠬࡇࡦࠞࠗ࠹ࠖ߇⊒ߔࠆฎౖ⒎ᐨ⁁ᘒ ࠦࠬ ࠹࠶ࠢᶧ᥏ߩࠬࡇࡦ ߢࠆޕࠄߦࠃߞߡวᚑߐࠇߚಽሶᕈࠞࠗ࡞⏛ᕈߢߪ࡞ࠗࠞޔಽሶࠍ㈩ሶߣߔࠆ ߎߣߢ⚿᥏ߩ᭴ㅧ⊛ࠞࠗ࠹ࠖ߇⺃ዉߐࠇ߇ࠇߎޔᒁ߈㊄ߣߥߞߡ৻ᣇะߦᢛߒߚ DM ⋧↪ ࡈࠚࡠࠗ࠶ࠢߥ DM ⋧↪߇⺃ߐࠇࠆᦨޕㄭߩ‛ᕈ᷹ቯ ⏛ൻ᷹ቯޔਛᕈሶ࿁᛬ޔX ✢⏛᳇ᢔੂޔ㕖✢ᒻᵹ⏛ൻߦࠃߞߡ৻ޔㅪ ߩಽሶᕈࠞࠗ࡞⏛ᕈߦ߅ߌࠆࠞࠗ࡞⏛᳇᭴ㅧߩሽߪ߶߷⏕ታߣߥߞߡࠆ[1]ᦨޔߚ߹ޕㄭ⑺శࠄߦࠃߞߡวᚑ ߐࠇߚήᯏ♽ࠞࠗ࡞⏛ᕈߦ߅ߡ߽ߩࡦ࠲ࡄ࠻ࠬࠗ࠷ࡦࡇࠬߥ࡞ࠗࠞޔน⢻ᕈ߇ႎ๔ߐࠇߡࠆ[2]࡞ࠗࠞޕ ⏛ᕈ߇ߔࠆ㗼⪺ߥᕈ⾰ߣߒߡޔ㔚᳇⊛ࠞࠗ࠹ࠖߣ⏛᳇⊛ࠞࠗ࠹ࠖߩදᄼലᨐࠍ↪ߒߡࠬࡇࡦ࠷ࠗࠬ࠻ࡄ ࠲ࡦ ࠬࡇࡦ⋧ࠍ㔚႐⏛႐ߦࠃߞߡᓮߢ߈ࠆὐ߇ߍࠄࠇࠆޔ߫߃ߣߚޕၮᐩ⁁ᘒߢߩࠞࠗ࡞⏛᳇᭴ㅧߦኻᔕ ߔࠆ࠷ࠗࠬ࠻ࡄ࠲ࡦߦ⋧ᄌ⺞ࠍട߃ߚ႐วࠍࠇߎޕࠆࠇߐ⺃߇࠻ࡦࠞࡦࡇࠬޔ㕖✢ᒻᵹ⏛ൻߦࠃߞߡᬌߢ߈ ࠆ⺃࠻ࡦࠞࡦࡇࠬޕዉߪℂ⺰ߩࠥࠫ᭴ㅧߣᷓߊ㑐ㅪߒߡࠆ⎇ߩࠄࠇߎޕⓥߦࠃߞߡ⏛࡞ࠗࠞޔᕈ߇ၮ␆⊛ߥ‛ ᕈ⎇ⓥߣߒߡߩᷓߺߛߌߢߥߊߩߡߒߣࠬࠗࡃ࠺ࡦࡇࠬޔน⢻ᕈࠍ⒁ߚ‛⾰⟲ߢࠆߎߣ߇ߪߞ߈ࠅߒߡ߈ߚ⻠ᧄޕṶ ߢߪએਅߩὐߦ⊛ࠍ⛉ࠅ⏛࡞ࠗࠞޔᕈ⎇ⓥߩ⁁ࠍℂ⺰ߩ┙႐߆ࠄႎ๔ߔࠆޕA㧚⚿᥏ኻ⒓ᕈߣࠞࠗ࡞⏛᳇᭴ㅧ B㧚Ḱฎౖࡕ࠺࡞ߣࠞࠗ࡞࠰࠻ࡦᩰሶ C㧚ࠥࠫ႐ߣࠬࡇࡦࠞࡦ࠻ᧄ⎇ⓥߪ࠙ ࡈࠦ࠾࠴ࡉࠝ࠳ࡦࠨࠠࠕޔ ࡞Ꮊ┙ᄢ⟤⮮ᱜ᮸ Ꮏᄢస ᐢፉᄢ⩵ᳰ⠹৻ 㚂ㇺᄢ㜞㒋ാテ 㕍ቇᄢ⑺శ⚐ 㕍ቇᄢฦ᳁ࠍਛ ᔃߣߔࠆᄙᢙߩᣇ⺰⼏ߩߣޘห⎇ⓥߦၮߠߊ߽ߩߢࠆ⾌⎇⑼ޔߚ߹ޕၮ⋚⎇ⓥ 㧭⚿ޡ᥏ߣ⏛ᕈߩ chirality߅ޢ ࠃ߮⧯ᚻ⎇ⓥ 㧮ޡᣂᄸᯏ⏛ᕈߩࠞࠗ࡞⏛᳇⒎ᐨߣ⏛᳇శቇലᨐߦޢၮߠߊ߽ߩߢࠆޕ [1] J. Kishine, K. Inoue, and Y. Yoshida, PTP, Supplement No.159, p.82 (2005). [2] Y. Kousaka, S. Yano, J. Kishine, Y. Yoshida, K. Inoue, and J. Akimitsu, J. Magn. Magn. Mater ශਛ. Oral 11/27/P04 ࠫએ͂ঽ͈ chiralityȇঊࣣا! స㧔ᐢፉᄢℂ㧕 ಽሶᕈࠠ࡞⏛ᕈߦߟߡޔวᚑᚢ⇛ޔ᭴ㅧޔၮᧄ⊛‛ᕈߦߟߡ⚫ߔࠆޕಽሶᕈ⏛ᕈߢߪᲧセ⊛ኈᤃߦ࿕ߩ ᭴ㅧ⸳⸘߇น⢻ߢࠅޔㅘߢߒ߆߽శቇ․ᕈߦߟߡ߽ࠆޔ⒟ᐲ⸳⸘น⢻ߢࠆ⏛ޔߜࠊߥߔޕᕈߩ⦡ޔశቇᵴᕈ ߩᄢ߈ߐޔዮ᛬₸╬߇ᓮน⢻ߢࠆߩࠄࠇߎޕశቇ‛ᕈߪ⏛࡞ࠠޔᕈߩᜬߟ․ᱶߥ⏛᳇శቇലᨐߦᄢ߈ߊᓇ㗀ࠍਈ ߃ࠆߚ߹ޕశቇᵴᕈߩᄢ߈ߐߪ⏛ߩߘޔ᳇᭴ㅧߦ߽ᓇ㗀ߔࠆߣ⠨߃ࠄࠇࠆޕ࿁ߪࠠ࡞᭴ㅧࠍᜬߟಽሶᕈ⏛ᕈߦߟ ߡὶὐࠍߒ߷ࠅ․ߩߘޔᓽޔน⢻ᕈߦߟߡ⠨ኤߒߚޕ Oral 11/27/P05 ࠫએ͂ঽ͈ chiralityȇྫࣣاܥ! ⑺శ ⚐㧔㕍ቇᄢℂᎿ㧕 ৻⥸⊛ߦⲷᣓ⏛ᕈߩฝᏎ߈ߣᏀᏎ߈ߪ❗ㅌߒߡ߅ࠅޔฝᏎ߈ ᏀᏎ߈ߩߺߩ⏛ࠍ↢ᚑߔࠆߎߣߪ࿎㔍ߢࠆޔߒ߆ߒޕ ࠞࠗ࡞ߥ⚿᥏᭴ㅧࠍᜬߟ⏛ᕈߢߪ Dzyaloshinskii-Moriya ⋧↪ߦࠃࠅޔฝᏎ߈ ᏀᏎ߈ߩߺߩ⏛ࠍ↢ᚑߔࠆ ߎߣ߇น⢻ߣߥࠅⲷ࡞ࠗࠞޔᣓ⏛᳇᭴ㅧ߇ታߔࠆޕήᯏൻว‛ߪಽሶᕈൻว‛ߣᲧセߒߡ⚿᥏᭴ㅧߩᓮ߇࿎㔍ߢ ࠆ߇ޔᄢဳන⚿᥏⹜ᢱߩ⢒ᚑ߇Ყセ⊛ኈᤃߢࠆߚ᭽‛ߥޘᕈ᷹ቯ߇ⴕ߃ࠆߎߣ߇㐳ᚲߢࠈ߁ߟߊޔߪߢ⊒ᧄޕ ߆ߩήᯏൻว‛ࠍߦߍⲷ࡞ࠗࠞޔᣓ⏛ᕈߩน⢻ᕈࠍℂ⺰ߣታ㛎ߩਔ㕙߆ࠄ⼏⺰ߔࠆⲷ࡞ࠗࠞޔߚ߹ޕᣓ⏛ᕈࠍᬌ ߔࠆߚߩᣂߚߥ‛ᕈ᷹ቯᚻᴺߦߟߡ߽ឭ᩺ߒߚޕ 49 Oral 11/27/P06 ΑάΥσॸا͂ഩكȆܴൽȆΑάϋȆڒঊࣣ࡛ࠫય! ↰ ኡ㧔᧲ᄢ‛ᕈ⎇㧕 ࠬࡇࡀ࡞㉄ൻ‛ AB2O4 ߦ߅ߡ B ࠨࠗ࠻ߪᱜ྾㕙߇㗂ὐࠍߒߚࡄࠗࡠࠢࡠࠕᩰሶߣ߫ࠇࠆ 3 ᰴరࡀ࠶࠻ࡢ ࠢࠍᒻᚑߒߡߡޔB ࠨࠗ࠻⏛ᕈࠗࠝࡦ㑆ߦᒝ⏛ᕈ⋧↪߇ߊ႐วߩ⏛᳇⒎ᐨ߿㔚⩄⒎ᐨߦኻߒޔᒝᐞቇ⊛ࡈ ࠬ࠻࡚ࠪࡦߩ⥰บߣߥࠆޔߚ߹ޕ㜞ኻ⒓ᩰሶ♽ߢߩ゠❗ㅌ߿ᩰሶਇቯᕈߥߤߦ࿃ߔࠆ᭽⋧ߥޘォ⒖߇ᦼᓙߢ ߈ࠆ৻ޕᣇߊࠃߪߡߒߣ♽⾰‛ޔ⍮ࠄࠇߚ㋶‛‛⾰ߢޔB ࠨࠗ࠻ࠗࠝࡦੑߟߚࠅ d 㔚ሶ߇ 0 ߆ࠄ 10 ߹ߢߩ‛⾰߇ ߘࠈߞߡߡޔd 㔚ሶᢙ ࠬࡇࡦᢙߩ㆑ߦࠃࠆ♽⛔⊛ߥ⎇ⓥ߇ߢ߈ࠆ႐ࠍឭଏߒߡࠆ‛ޕᕈ⊛ߦ߽વዉ߆ࠄ㊂ሶࠬ ࡇࡦ♽߹ߢ✂⟜ߒߡࠆޔߦ⥸৻ޕૐ᷷߹ߢ⥄↱ᐲ߇❗ㅌߒߚ⁁ᘒ߇ᜬߐࠇࠆ႐วߪዋߥߊޔ㔚⩄゠ࠬࡇࡦᩰ ሶ⥄↱ᐲߩ⚿วߦࠃࠆ⋧ォ⒖߇᷹ⷰߐࠇࠆ႐ว߇ᄙߩࠄࠇߘޕォ⒖ߪࠄ⥄ޔᄌりߒߡࡈࠬ࠻࡚ࠪࡦ߿❗ㅌࠍ✭ ߔࠆ⥄Ꮖ⚵❱ൻߣ߱ߦ⋧ᔕߒޕ Oral 11/27/P07 Αάϋ 1/2 ၾঊ̥̮͛ڒঊঽఘ͈έρΑΠτȜΠঽ! ೨Ꮉ ⷡ㧔੩ᄢੱⅣ㧕 s=1/2 ߩ Cu2+ࠗࠝࡦ߇߆ߏᩰሶࠍᒻᚑߒߡࠆ㊄ዻ㍲ൻว‛[Cu3[titmb]2(CH3CO2)6]H20㧔⇛⒓ Cutitmbߪ㊂ ሶࠬࡇࡦ߆ߏᩰሶ⏛ᕈߩࡕ࠺࡞‛⾰ߣ⠨߃ࠄࠇ⏛ޔൻ₸ޔNMRޔESRޔᲧᾲࠬ࡞ࡄޔ㜞⏛႐⏛ൻ╬ߩታ㛎߇ߥߐࠇ ߡࠆޕ឵⋧↪ߩᄢ߈ߐߥߤ⋧ߔࠆ⚿ᨐ߇ᓧࠄࠇߡ߅ࠅߥ⇣․ޔߚ߹ޔബ⁁ᘒ߿Ḱቯߥ⁁ᘒߩሽ߇␜ໂߐ ࠇߡࠆޕℂ⺰⊛ߦߪ J1J2 ࡕ࠺࡞߇ឭ᩺ߐࠇߡࠆޔߒࡘࡆߡߟߦࠄࠇߎޕ⠨ኤߔࠆޕ Oral 11/27/P08 ୃ༷ڒঊέρΑΠτȜΏοϋࠏ͈ࡑ! ✂ઍ ⧐᳃㧔੩ᄢℂ㧕 ੑᰴరᱜᣇᩰሶ Heisenberg ᒝ⏛ᕈߩ⎇ⓥߪ⋧ォ⒖ߩሽุߦ㑐ߒߡᄙᄢߥࠆ㑐ᔃ߇ฎߊ߆ࠄነߖࠄࠇߡ᧪ߚ߇ޔ 㜞᷷વዉߩ⊒ᯏ᭴ߣߩ㑐ㅪߢ 80 ᐕઍએ㒠 ߦ․ޔS=1/2 ㊂ሶࠬࡇࡦ♽ߩ⎇ⓥ߇ᵴ⊒ߦⴕࠊࠇߡࠆޕૐᰴర㊂ሶࠬࡇ ࡦ♽ߪᰴరᕈߩૐਅߣૐࠬࡇࡦ୯ࠍᤋߒߡᒝ㊂ሶំࠄ߉ࠍ␜ߔ߇⋧ޔ↪ߩࡈࠬ࠻࡚ࠪࡦലᨐࠍടߔࠆߎ ߣߦࠃߞߡᦝߦ㊂ሶំࠄ߉ࠍჇᒝߐߖࠆߎߣ߇᧪ࠆޕ㊂ሶലᨐߣࡈࠬ࠻࡚ࠪࡦലᨐߣߩ⋧ਸ਼ലᨐߦࠃߞߡ߽ߚࠄ ߐࠇࠆᣂᄸߥ⏛᳇⋧ߩ⎇ⓥߪਃⷺᩰሶ♽߿ࠞࠧࡔᩰሶ♽ߢᵴ⊒ߦⴕࠊࠇߡࠆ߇⻠ᧄޔṶߢߪᱜᣇᩰሶߩኻⷺᣇะߦᰴㄭ ធ⋧↪߇ሽߔࠆࠊࠁࠆ J1J2 ࡕ࠺࡞ߦ㑐ߔࠆᦨㄭߩታ㛎⎇ⓥߦߟߡߦ․ޔ੩ᄢࠣ࡞ࡊߦࠃߞߡࠗࠝࡦ឵ᴺ ࠍ㚟ߒߡഃߐࠇߡࠆ৻ㅪߩࡕ࠺࡞‛⾰⟲ߩታ㛎⚿ᨐࠍ⚫ߔࠆޕ Oral 11/27/P09 ޑঽဝ̨͈̞ͣޑέρΑΠτȜΠঽఘ̤̫ͥͅၾঊΑάϋסఘ! ᩶ ീ㧔ℂ⎇㧕 ㄭᐕޔ࿕ He3 ⭯⤑߅ࠃ߮(CuCl)LaNb2O7 ╬ߩᒝ⏛ᕈំࠄ߉ߩᒝࡈࠬ࠻࠻ᒝ⏛ᕈߦ߅ߡ㊂ሶࠬࡇࡦᶧ ⁁ᘒ߇⊒ߐࠇߚߩߢ߹ࠇߎޔߒ߆ߒޕℂ⺰⎇ⓥߪޔᒝ⏛ᕈ⋧↪ߩ┹วࠍᜬߟࡈࠬ࠻࠻♽߇ਛᔃߢ ޔᄙ ߊߩ႐วޔᒝ⏛ᕈ⋧↪ߩᕈ⾰߆ࠄ࠳ࠗࡑࠪࡦࠣ࠶࠻⁁ᘒ߇ࠇࠆ㨫ᒝ⏛ᕈំࠄ߉ߩᒝࡈࠬ࠻࠻♽ߪߎ ࠇ߹ߢ߹ࠅ⺞ߴࠄࠇߡߥޕ ࿁ࠍࡦ࡚ࠪ࠻ࠬࡈޔᜬߟᒝ⏛ᕈߦ߅ߌࠆ㊂ሶ⊛ή⒎ᐨ⋧ߩߩน⢻ᕈࠍࠄ߆ߦߔࠆߚߦޔ2 ߩᒝ⏛ 50 ᕈ⋧↪߇ᡰ㈩⊛ߥᒝ⏛ᕈ J1J2 ᮨဳ߿ࡦࠣ឵ᮨဳࠍᱜᣇᩰሶߢℂ⺰⊛ߦ⺞ߴߚ⚿ߩߘޕᨐޔᒝ⏛ᕈ⋧ߩ㓞ߦࠬ ࡇࡦ㐳〒㔌⒎ᐨߩߥ㊂ሶࠬࡇࡦᶧ⋧߇ࠇࠆࠍߟߌߚ⁁ߩߎޔߦࠄߐޕᘒߪࠬࡇࡦߩ 4 ㊀ᭂ⒎ᐨࠍᜬߟࠬࡇࡦ ࡀࡑ࠹ࠖ࠶ࠢ⁁ᘒߣ߁ᣂᄸߥ㊂ሶ⋧ߢࠆߎߣࠍߒߚޕ Oral 11/27/P10 ޑঽાͥ͢ͅၾঊΑάϋ͈ࡄ!ݪ 㡆ᶏ ᐽ㓶㧔᧲ᄢ‛ᕈ⎇㧕 ㊂ሶࠬࡇࡦ⎇ⓥߩߪߒࠅߣߥߞߚࡂ࡞࠺ࡦࠡࡖ࠶ࡊߦ㑐ߔࠆ⎇ⓥߪޔㄭᐕߢߪ NDMAP ߥߤߩ⏛႐⺃⏛᳇⋧ォ⒖߳ ߣ⥝߇⒖ࠅߥ߇ࠄޔߢ߽ߘߩ⎇ⓥߩ⵿㊁ࠍᐢߍߡࠆޕᱧผ⊛ߥᵹࠇࠍᝄࠅࠆߣߥ☴⚐ߩ᧪ᧄޔᗧߢߩࡂ࡞࠺ ࡦ‛⾰ߩ⎇ⓥߦ㑐ߒߡߪ⏛ోߩߘޔൻㆊ⒟ࠍ᷹ⷰߔࠆߎߣ߇ߢ߈ࠆ໑৻ߩ‛⾰ߣߒߡ TMNIN ߇ᵈ⋡ߐࠇޔߢ߽⇣ ᣇᕈߩ߈ࠊߡዊߐߥℂᗐ⊛ߥࡂ࡞࠺ࡦ‛⾰ߢࠆߣ⼂ߐࠇߡࠆޔߒ߆ߒޕන⚿᥏⹜ᢱߩวᚑ߇࿎㔍ߢߞߚ TMNIN ߢߪ☳ᧃ⹜ᢱߦࠃࠆ⎇ⓥ߇߶ߣࠎߤߢߞߚߎߣޔߚ߹ޔ឵⋧↪ߩᄢ߈ߐߦኻߒߡචಽߥૐ᷷ߢߩታ㛎߇ ࿎㔍ߢߞߚߎߣߥߤޔචಽߥ⼏⺰ߦ⠴߃߁ࠆߛߌߩታ㛎߇ⴕࠊࠇߡ߈ߚߣߪ⸒߃ߥߣ⠨߃ࠄࠇࠆᦨޕㄭޔᚒߪޘන⚿ ᥏⹜ᢱࠍ↪ߚᭂૐ᷷ਅߢߩᒝ⏛႐⏛ൻ᷹ቯࠍⴕޔන⚐ߥࡂ࡞࠺ࡦ㎮ߢߪ⺑ߢ߈ߥᄸᅱߥᝄࠆ⥰ࠍ᷹ⷰߒߚߩߢޔ ߘߩታ㛎⚿ᨐߦߟߡႎ๔ߔࠆޕ Oral 11/28/A01 ˍষࡓ́۷಼̢̹ρζϋړΑάϋȽڒঊ۱გً! ጊᧄ ม㧔ർᄢℂ㧕 ᦧࠬࡇࡦ㎮ޔ㌃ 3 ㊂ 2 ㊀㎮╬ޔᡆ㧝ᰴరࡈࠚ⏛ᕈൻว‛ߦ߅ߌࠆޔᩭࠬࡇࡦ㧙ᩰሶ✭ߩᣂߒℂ⺰ޔਗ߮ߦ ߘߩታ㛎ᬌ⸽ߦߟߡ⚫ߔࠆޕㅢᏱᡰ㈩⊛ߥ㧞ࡑࠣࡁࡦࠊࠁࠆࡑࡦㆊ⒟ࠍࠅࠃޔ㜞ᰴߩᄙ㊀ࡑࠣࡁࡦᢔੂㆊ⒟߇ಒ 㚧ߒߡ✭ߥࠢ࠾࡙ޔ₸᷷ᐲ⏛႐ଐሽᕈ߇ࠊࠇࠆ᭽ࠍޔℂ⺰ታ㛎ਔ㕙߆ࠄ┙⸽ߒߡࠁߊޕ Oral 11/28/A02 ΦΑΉȜσঊঽఘ͈˪˩ˮ! ฎᎹ ᰴ㧔ർᄢℂ㧕 8 ߟߩ Cr3+ࠗࠝࡦ S = 3 / 2߇ࡦࠣࠍᒻᚑߔࠆ Cr8 ࠢࠬ࠲ߪޔCr ࠬࡇࡦ㑆ߦᒝ⏛ᕈ⋧↪߇ሽߔࠆߚၮ ᐩ⁁ᘒ߇ S=0 ߩࠪࡦࠣ࠶࠻⁁ᘒࠍߣࠆ⻠ᧄޕṶߢߪ ߩߘޔS=0 ߩၮᐩ⁁ᘒࠍᜬߟᒝ⏛ᕈࡦࠣࠢࠬ࠲Cr8 ਛ ߩ߭ߣߟߩ Cr3+ࠗࠝࡦࠍ s = 0 ߩ Cd ߦ⟎឵ߒߚ Cr7Cd ࠢࠬ࠲ࠍኻ⽎ߦ⟎ߩߘޔ឵ߦ߁⏛᳇⁁ᘒߩᄌൻࠍ NMR ߦ ࠃࠅ⺞ߴߚߩߢ⚿ߩߘޔᨐࠍႎ๔ߔࠆޕ Oral 11/28/A03 ၾঊΑάϋȆ·ρΑΗȜ̤̫ͥͅΑάϋ Jahn-Teller!࢘!ض ኹየ ᵘ㧔ାᎺᄢℂ㧕 ࠬࡇࡦ 1/2 ߆ࠄ 5/2 ߹ߢߩޔᱜਃⷺᒻ߮ᱜ྾㕙ߩࠢࠬ࠲ߦߟߡޔHeisenberg ࡂࡒ࡞࠻࠾ࠕࡦߩၮᐩ⁁ᘒࠍ ⸘▚ߒߚ ߇ࡦࡇࠬޕ3/2 ࠃࠅᄢ߈ߣ߈ߪ Mathematica ߩⴕ⸘▚ࠍ↪ߒߚࡦࡇࠬޔߦࠇߎޕᄌ⚿วߩ៨േ߇ട ࠊߞߚߣ߈ޔၮᐩ⁁ᘒߩ❗ㅌ߇㒰߆ࠇࠆ߆ߤ߁߆ࠍ⺞ߴߚޕᄌࠍ㕒⊛ߦᛒ߁ᢿᾲㄭૃߣޔ㊂ሶࡈࠜࡁࡦߢേ⊛ߦᛒߞߚ ႐วߢߪ❗ㅌߩಽⵚߦߟߡߩ⚿ᨐ߇⪺ߒߊ⇣ߥࠆ ࡦࡇࠬޕ1/2 ߩ႐วߪޔHFM2006ޔICM2006 ߢᣢߦႎ๔ߒߚޕ ࿁ߪߩࡦࡇࠬޔᄢ߈႐วߦߟߡߩ⚿ᨐࠍㅊടߔࠆޕ 51 Oral 11/28/A04 ၾঊΑάϋΘͼζȜࠏ͈ΑάϋȆΘͼη·Α! ⋉↰ 㓉༹㧔ᮮᵿᏒᄢ㧕 S=1/2 ߩ㊂ሶ࠳ࠗࡑߪޔᄙߊߩࠬࡇࡦࠡࡖ࠶ࡊ♽ߩၮᧄ᭴ᚑⷐ⚛ߣߒߡ㊀ⷐߢࠆࡑࠗ࠳ޕනߪࠪࡦࡊ࡞ߢ ࠆ߇⋧ޔ↪ߔࠆ࠳ࠗࡑߪߘߩᐞቇ⊛㈩⟎ߦࠃߞߡࡦࡇࠬޔ᪽ሶޔᦧ㎮ޔShastry-Sutherland ᩰሶߥߤ᭽ߥޘ ࠬࡇࡦࠡࡖ࠶ࡊ♽ߦಽ㘃ߐࠇࠆޕዋߒᄌࠊߞߚߣߎࠈߢߪޔᒝ⏛ᕈ࠳ࠗࡑ߇ 1 ᰴర㎮ࠍᒻᚑߔࠆⶄวࡂ࡞࠺ࡦ♽߽ ࠳ࠗࡑ♽ߩ৻⒳ߣ߃ࠆᦨޕㄭߪ߇ࠡ࡞ࡀࠛߩࡊ࠶ࡖࠡࡦࡇࠬޔታน⢻ߥ⏛႐ࠬࠤ࡞ߣࡑ࠶࠴ߒߚ‛⾰߇ᢙᄙ ߊႎ๔ߐࠇߡ߅ࠅ⏛ޔൻࡊ࠻ޔtriplon ߩࡏ࠭ಝ❗࠭ࡏࠆࠃߦࡦ࡚ࠪ࠻ࠬࡈޔಝ❗ߩᰴరૐਅߥߤ⥝ޔ ᷓ⽎߇᷹ⷰߐࠇߡࠆ⻠ᧄޕṶߢߪᦨޔߦߣ߁ⴕࠍࡘࡆߩࠄࠇߎޔㄭᚒ⎇ߢࡊ࡞ࠣߩޘⓥߒߡࠆⶄวࡂ࡞ ࠺ࡦ㎮ IPA-CuCl3 ߩࠬࡇࡦ࠳ࠗ࠽ࡒࠢࠬ߿ޔᦧ⏛႐ਅߦ߅ߌࠆ㊂ሶ࠳ࠗࡑ‛⾰ Cu2Fe2Ge4O13 ߥߤߩ⚫ࠍⴕ߁ޕ Oral 11/28/A05 ૧ܰέΛளࣣا͈ैୋ͂ࣽࢃ͈ࡄ!ૻ༷ݪ ⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕 ߎࠇ߹ߢࡈ࠶⚛ൻว‛ߪౖဳ⊛ߥ⏛ᕈߣߒߡᢙᄙߊߩ⎇ⓥ߇ⴕࠊࠇߡ߈ߚࠄ߇ߥߒ߆ߒޕߩ࿎㔍ߐ߆ࠄᦨㄭߢߪ ߘߩㅴዷߪ߶ߣࠎߤή࠻ࠗࠞࠬࡉࡠࡍߢߎߘޕ᭴ㅧߦ┙ߜᚯߞߡޔ2 ㊀ጀ⁁ࡍࡠࡉࠬࠞࠗ࠻᭴ㅧࠍᜬߟ K3M2F7(M=Co,Ni,Cu) ߦᵈ⋡ߒߡ⾰‛ޔวᚑࠍߎߩᢙᐕ㑆ⴕߞߡ߈ߚᦨޕㄭ‛ߣߞ߿ޔᕈ᷹ቯ߇ⴕ߃ࠆ⒟ᐲߩ☳ᧃ⹜ᢱ ߩߦᚑഞߒߚ⻠ᧄޕṶߢߪߎࠇ߹ߢߩᱧผ⊛ߥ⢛᥊߽߰߹߃ߟߟޔฦ⹜ᢱߩ․ᓽ╬ࠍ⚫ߔࠆ੍ቯߢࠆޕ Oral 11/28/A06 ૧ܗഥ൵ࢹܥȶၫ̳ͥˎၾఘ͈ഥ൵ȷ! ! ⍫ࠤፒ స㚍㧔℄ᄢℂ㧕 ࠬࡇࡀ࡞ൻว‛ CuIr2S4 ߪ㊄ዻ⛘✼ォ⒖ࠍߒޔㅢᏱߩඨዉߢߪߥ࠲ࠗࡊߩવዉߦ⥝߇ᜬߚࠇߡ߈ߚᦨޕㄭޔ ߎߩൻว‛ߩ⛘✼⋧ߢߪޔ2 ㊂߇ᒻᚑߐࠇ⚿ޔ᥏᭴ㅧߪਃᢳ᥏ᒻࠍขࠆߎߣ߇್ߒޔߟ߆ޔᒝᒝᐲ X ✢ߢᾖߔࠆ ߣޔૐ᷷ߢᱜᣇ᥏ߦᄌᒻߒ߆ߟޔવዉᐲ߇ᢙᩴߔࠆߎߣ߇⊒ߐࠇߚޕᚒߩߎޔߪޘᄸᅱߥવዉᯏ᭴ߩ⸃ࠍ⋡ᜰߒ ߡ⧯ᐓߩ⎇ⓥࠍⴕߞߚ ޕ1㔚ሶ⁁ᘒࠍ್ߔࠆߚߦޔS ⎫㤛ߩ৻ㇱࠍ㧻 ㉄⚛ߢ⟎឵ߒߚ⹜ᢱߩォ⒖ὐߣવዉ࠲ࠗ ࡊࠍ⟎ޔ឵ߒߥ⹜ᢱߣᲧセߒߚ ޕ2࠳ࠗࡑߩ⚿วࠛࡀ࡞ࠡߩᄢ߈ߐࠍ⹏ଔߔࠆߚߦޔᏪ⏛₸ࠍ⸘▚ߒޔታ㛎ߢ ᓧࠄࠇߡࠆ⏛ᕈᏪ⏛₸ߣᲧセߒߚޕએߩ⚿ᨐޔd γsp ゠ߪ⚿᥏ࠍߟࡏࡦ࠼ࠍᒻᚑߒޔォ⒖ߣߪ⋥ធ㑐ଥߥޕ dε 㔚ሶ߇࠳ࠗࡑࠍᒻᚑߒޔォ⒖߅ࠃ߮વዉߦ㑐ਈߔࠆߩߘޕᒻᚑߔࠆࠛࡀ࡞ࠡࠡࡖ࠶ࡊߪ㕖Ᏹߦᄢ߈ߊࡑࠗ࠳ޔ ߪᾲബߐࠇߥޕ㊄ዻ⛘✼ォߪޟޔ2 ㊂ᒻᚑߣදജߒว߁ࡗࡦ࠹ലᨐޔࠅߢޠવዉᯏ᭴ߪޔᣂᄸߥޟᣏ ߔࠆ 2 ㊂ߩવዉ(ޠtraveling dimerconduction)ߢࠆߎߣࠍ⸃ߒߚޕ Oral 11/28/A07 2 ষࡓၾঊΑάϋࠏ SrCu2(BO3)2, Cs2CuBr4 ͈ঽاίρΠȜ ችේ ᘕ㧔㕍ቇᄢℂᎿ㧕 SrCu2(BO3)2 ߿ Cs2CuBr4 ߣߞߚ‛⾰ߪ 2 ᰴరᒝ⏛ᕈ‛⾰ߢࠅ⏛ޔൻᦛ✢ߦ߅ߡࡊ࠻߇᷹ⷰߐࠇߡࠆޕ ߎ߁ߒߚ‛⾰ߩ⏛᳇⊛ᕈ⾰ߪ⋥ޔ࠳ࠗࡑᩰሶޔᱡࠎߛਃⷺᩰሶߩࠬࡇࡦ1/2 ࡂࠗࡦࡌ࡞ࠢᮨဳߢߘࠇߙࠇ⺑ ߢ߈ࠆߣ⠨߃ࠄࠇߡࠆߩࠄࠇߎޕᮨဳߩ⏛႐ਛߢߩၮᐩ⁁ᘒࠍ෩ኒኻⷺൻߥߤߩᚻᴺࠍ↪ߡ⸘▚ߒޔฦࡊ࠻ߦ߅ ߌࠆၮᐩ⁁ᘒߩᕈ⾰ߦߟߡ⠨ኤߒߚ⚿ᨐࠍ␜ߔޕ 52 Oral 11/28/A08 SrCu2(BO3)2 ̤̫ͥͅ૧̱̞ࣞգ ᳇ 㧔᧲ᄢ‛ᕈ⎇㧕 SrCu2(BO3)2 ߪ Cu2+(S=1/2)ੑ㊂ࠍၮ⺞ߣߒߚࠬࡇࡦࠡࡖ࠶ࡊ‛⾰ߢ⏛ޔൻࡊ࠻╬ߩ⥝ᷓ⏛ᕈࠍ␜ߔࡊޕ ࠻㗔ၞߢߪੑ㊂㑆ߩࡈࠬ࠻࡚ࠪࡦߩലᨐߦࠃࠅബ࠻ࡊ࠶࠻߇ዪൻߒ߇ࠄࠇߘޔ᭴ㅧࠍᒻᚑߒߡࠆޕ ᧄ♽ߩ⏛ᕈߪੑ㊂ߩᐞቇ⊛㈩߅ࠃ߮ߘߩ⋧↪ߩᲧ߇㊀ⷐߢޔജࠍട߃ੑ㊂㑆ޔౝߩ⋧↪ࠍᄌൻߐߖࠆ ߎߣߢᣂᄸߥ⋧ߩ߇ᦼᓙߐࠇࠆޕᚒߪޘ㜞ਅߢߩ⏛ᕈࠍࠄ߆ߦߔࠆߚⷺᐲ࿁ォဳ㜞࡞ࠍ↪ⷺᐲಽ⸃ 11B-NMR ࠍⴕߥߞߚޕc ゲߣᐔⴕߦ⏛႐ࠍශടߒߚ႐วޔᏱߢߪᩭ྾㊀ᭂ⋧↪ߦࠃࠅಽⵚߒߚ 1 ⚵ߩାภ߇᷹ⷰ ߐࠇࠆ߇ޔ㜞ૐ᷷᧦ઙਅߢࠪࡈ࠻ߩ⇣ߥࠆ 2 ⚵ߩାภࠍ᷹ⷰߒߚ ߚ߹ޕT=4K એਅߢߪ ߦᦝ߇ࠇߙࠇߘޔ2 ⚵ߠߟߦ ಽⵚߒ৻ߩࠇߙࠇߘޔᣇߪࠡࡖ࠶ࡊ⊛ߥᝄࠆ⥰ߢ৻߁߽ޔᣇߪࠡࡖ࠶ࡊࠬߥᝄࠆ⥰ߢߞߚ ߪࠇߎޕCuCu ੑ㊂ ߦߟߡᦨૐ᷷ߢࠪࡦࠣ࠶࠻ߩࡍࠕߣࠡࡖ࠶ࡊࠬߩࡍࠕ߇ⓨ㑆⊛ߦᢛߒߚ⏛᳇⒎ᐨࠍߎߒߡࠆߎߣࠍᗧߒ ߡࠆߪࡦࡇࠬߚ߹ޕ㒢ߩ⥄⊒⏛ൻࠍᜬߞߡߥߎߣ߆ࠄߡ߅ߦ♽ᧄޔടਅߢᣂᄸߥ⋧߇⊒ߒߡࠆߣ⠨߃ࠄ ࠇࠆޕ Oral 11/28/A09 Contractor-renormalization approach to unconventional phases in frustrated magnets ᚭႦ 㧔੩ᄢၮ⎇㧕 ᦨㄭޔᰴㄭធ⋧↪ޔ4 ឵⋧↪ߥߤࠍ⏛ᕈߢᣂߒ࠲ࠗࡊߩ⋧߇ߔࠆߎߣ߇ᢙ୯⊛ߦ੍⸒ߐࠇߡ ࠆߥ߁ࠃߩߎߢࡓ࠭࠾ࠞࡔߥ߁ࠃߩߤޔߒ߆ߒޕᣂᄸߥ⋧߇ߔࠆߩ߆ޔᓥ᧪߆ࠄ⍮ࠄࠇߡࠆࡀ࡞⒎ᐨ⋧ߥߤߩ ⋧ߣߤߩࠃ߁ߥ㑐ଥߦࠆߩ߆ࠅ߹ߪߡߟߦߤߥޔℂ⸃߇ㅴࠎߢࠆߣߪ⸒߃ߥߩߢ♽ߥ߁ࠃߩߎޕᣂᄸ⋧ߩ ࡔࠞ࠾࠭ࡓߦኻߒߡ◲ߟ߆⊛৻⛔ޔනߥឬࠍਈ߃ࠆߚޔcontracter renormalization ᴺߣ߫ࠇࠆᣇᴺࠍ↪ߡరߩ ♽ࠍ⋧↪ߔࠆࡏ࠱ࡦ♽ߦࡑ࠶ࡊߒޔലࡕ࠺࡞ࠍ᭴ᚑߒߚߥ߹ߑ߹ߐޔߣࠆࠃߦࠇߎޕᣂᄸ⋧ߪ⇣ߩࡦ࠱ࡏޔᣇ⊛ߥ ಝ❗⁁ᘒߣߒߡℂ⸃ߐࠇߩ࠲ࡔࡄ࠳ࠝࠆߥ⇣ߊో৻ޔ㑆ߦ߽ߐ߹ߑ߹ߥ㑐ଥ߇ࠆߎߣ߇ࠊ߆ࠆޕ Oral 11/28/A10 ୟ२ڒڙঊৗ LuFe2O4 ͈ঽܨಉ੬ً ടୖ ਭ㧔ේሶജᯏ᭴㧕 We report in this paper an anomalous magnetic ordering process inthe charge ordered LuFe2O4. The neutron scattering experiments wereperformed on TAS-1 and TAS-2 instruments installed at JAEA-JRR-3. Thefollowing results are obtained: 1) Despite the triangular configuration a strong 2-D antiferromagneticcorrelation with ferrimagnetic component in the double layer in thehexagonal plane develops to a 3-D order along the c-axis at TN=242K. 2) At around 177K there is another characteristic temperature Tf, where newtype of broad magnetic peaks start to grow and at the same time the magneticpeaks already developed below TN also acquire finite line width, includingthe peaks due to the ferrimagnetic component. A strong hysteresis isobserved at Tf. 3) Field dependence of Tf was investigated. Upon applying the fieldperpendicular to the layer plane, Tf decreases and vanishes above 3T.The existence of the anomalous magnetic ground state will be demonstratedand the possible relation to the orbital degree of freedom will bediscussed. 53 Oral 11/28/P01 २ڒڙঊခܥκΛΠ୲ఘ̤̫ͥͅΑάϋסఘ಼͂ഥ൵ 㣮㊁↰ ৻ม㧔᧲ᄢᎿ㧕 k-(ET)2Cu2(CN)3 ߪޔጀ⁁᭴ㅧࠍᜬߟᡆ 2 ᰴరવዉߢࠆޕવዉጀߢߪޔET ಽሶ 2 ㊂(ET)2 ߇⇣ᣇ⊛ਃⷺᩰሶࠍ ᒻᚑߒߡࠆ߇ޔ2 ㊂㑆ߩ⒖േⓍಽߢࠆ㒢ࠅޔᱜਃⷺᩰሶߦᭂߡㄭޔߪ⾰‛ߩߎޕᏱਅߢߪࡕ࠶࠻⛘✼ߢ ࠆ߇ޔዋߥߊߣ߽ 30mK ߹ߢߪ⏛᳇⒎ᐨࠍ␜ߐߥ⏛ޕൻ₸ߩ᷷ᐲଐሽᕈ߆ࠄⓍ߽ࠄࠇߚᒝ⏛ᕈ឵⋧↪߇ 250K ⒟ᐲߢࠆߎߣࠍ⠨߃ࠆߣޔ㊂ሶࠬࡇࡦᶧ⁁ᘒߣ߱ߴ߈⁁ᘒߦࠆߣ⠨߃ࠄࠇࠆ⎇ޕⓥળߢߪ⁁ߩߎޔᘒߦߟ ߡ߹ߢߦᓧࠄࠇߡࠆታ㛎⚿ᨐࠍⷰߔࠆߣߣ߽ߦޔടߦࠃߞߡࠬࡇࡦᶧ߆ࠄ↢ߓࠆવዉߦ㑐ߔࠆ⎇ⓥߦߟ ߡ߽ႎ๔ߔࠆޕ Oral 11/28/P02 ඵষࡓ२ڒڙঊޑঽఘ NiGa2S4 ̤̫ͥͅΑάϋ͈ྫಉ੬̈́ၾঊેఠ ධㇱ 㓶੫㧔੩ᄢℂ㧕 ⏛᳇⒎ᐨࠍᛥ߃ࠆߎߣߦࠃߞߡૐ᷷ߢࠇࠆᣂᄸߥ㊂ሶ⁁ᘒߩน⢻ᕈ߆ࠄޔᐞቇ⊛ࡈࠬ࠻࡚ࠪࡦࠍᜬߟ⏛ᕈ ߇ᵈ⋡ߐࠇߡࠆߩߘޕਛߢޔ᭴ㅧߢᦨ߽ၮ␆⊛ߥ߽ߩߩ߭ߣߟߣߒߡਃⷺᩰሶᒝ⏛ᕈ߇ࠆᦨޕㄭޔᚒߪޘጀ⁁ࠞ ࡞ࠦࠥ࠽ࠗ࠼ൻว‛ NiGa2S4 ߇ᭂߡੑᰴరᕈߩ㜞ᒝ⏛ᕈ⋧㑐ࠍᜬߟ S=1 ߩਃⷺᩰሶࠬࡇࡦ♽ߢࠆߎߣࠍ⊒ߒ ߚ ߪߢ⾰‛ߩߎޕ80K ⒟ᐲߩᒝ⏛ᕈ⊛⋧↪ߦ߽㑐ࠊࠄߕᦨޔૐ᷹ቯ᷷ᐲߩ 0.35K ߹ߢ⏛᳇⊛㐳〒㔌⒎ᐨ߇ሽߖ ߕޔૐ᷷߹ߢࠬࡇࡦ߇ή⒎ᐨߥ⁁ᘒߦࠆߎߣ߇⏛ൻ₸ޔᲧᾲޔਛᕈሶ࿁᛬ߩ⚿ᨐ߆ࠄಽ߆ߞߡࠆޔߚ߹ޕ⍴〒㔌⋧㑐 ߇⊒㆐ߔࠆ 10 K એਅߦ߅ߡޔᲧᾲ߇᷷ᐲߩੑਸ਼ߦᲧߒߚᝄࠆ⥰ࠍ␜ߒ⏛ޔൻ₸߇ૐ᷷ߢ߽㒢ߦ⇐߹ࠆߎߣ߆ࠄޔ ੑᰴరߩ S=1 ߩࠬࡇࡦ♽ߦ߅ߡࠄ߆ߩࠦࡅࡦࠬ߇ሽߔࠆߎߣ߇ࠄ߆ߦߥߞߡ߈ߚߩߎߪߢ⊒ᧄޕ NiGa2S4 ߣߘߩਇ⚐‛ലᨐߩታ㛎⚿ᨐߦߟߡ⚫ߔࠆޕ Oral 11/28/P03 २ڒڙঊΑάϋࠏ͈ၑაȽ”Αάϋסఘ”͂ΑάϋΥζΞͻΛ· Ᏹᰴ ብ৻㧔᧲ᄢ‛ᕈ⎇㧕 Wannier ߩᒝ⏛ᕈࠗࠫࡦࠣࠬࡇࡦ♽ߩ⋧ォ⒖ߩਇߩ⸽߿ Anderson ߩࡂࠗࡦࡌ࡞ࠣࠬࡇࡦ♽ߦ߅ߌࠆ RVB ⁁ᘒߩឭ໒એ᧪ޔਃⷺᩰሶߪࡈࠬ࠻࡚ࠪࡦ♽ߩਛᔃ⊛ߥ⎇ⓥኻ⽎ߢߞߡ߈ߚᦨޕㄭߩ 3He ⭯⤑ޔᯏ⏛ᕈޔ Ni ൻว‛ߩታ㛎࠺࠲ߪࠬࡇࡦᶧ⊛ߥᝄࠆ⥰ࠍ␜ߒߡࠆ⻠ᧄޕṶߢߪਃⷺᩰሶࠬࡇࡦ♽ߩℂ⺰ߩ◲නߥࡆࡘ ߦ⛯ߡޔ㕖⏛᳇⊛⒎ᐨߩ㧝ߟߩน⢻ᕈߣߒߡࠬࡇࡦࡀࡑ࠹ࠖ࠶ࠢ⋧ߦߟߡ⼏⺰ߔࠆޕ Oral 11/28/P04 ˎষࡓ͈έρΑΠτȜΠ̱̹ΧΨȜΡ࿅߿͈̞̾̀ͅ ᳓ፒ 㜞ᶈޔ1 ↰ ᱜବ㧔ኾୃᄢޔ1 ᧲ᄢ㒮Ꮏ㧕 ⚻〝Ⓧಽ➅ࠅㄟߺ⟲ᴺࠍ↪ߡޔ2 ᰴరᱜᣇᩰሶߢᰴㄭធࡎ࠶ࡇࡦࠣࠍᜬߟࡈࠬ࠻࠻ߒߚࡂࡃ࠼ᮨဳߩࡂ ࡈࡈࠖࡦࠣߢߩ⋧࿑ࠍ⋧ޔ↪ߩᒝߐ Uߩࡦ࡚ࠪ࠻ࠬࡈޔᄢ߈ߐ ᰴㄭធࡎ࠶ࡇࡦࠣߩᄢ߈ߐt’ࠍࡄࡔ࠲ ߣߔࠆᐔ㕙ߢࠄ߆ߦߒߚޕ㐳ᦼ᭴ㅧࠍ 3 ⒳㘃ߩᒝ⏛ᕈޔ㊄ዻ⋧ޔ㊂ሶࠬࡇࡦᶧ⋧߇ሽߒߩ⋧ߩࠄࠇߘޔ 㑆ߩႺ⇇ࠍ⏕ቯߒߚ ߦ․ޕU ߇ᄢ߈ߣ߈ߦ࠳ࠗࡑ⒎ᐨߥߤ߇ឭ᩺ߐࠇߡߚ㗔ၞߪޔታ㓙ߦߪ㐳ᦼߩᒝ⏛ᕈ⋧ ߢࠅ৻ޔᣇ࠻࠶ࡕޔォ⒖ㄭறߩࡕ࠶࠻⛘✼⋧ߦ㊂ሶࠬࡇࡦᶧ⋧߇ሽߔࠆߎߣࠍ⎇ߩࠇࠊࠇࠊޔⓥ⚿ᨐߪೋߡ␜ߒ ߚ〝⚻ޔߚ߹ޕⓍಽ➅ࠅㄟߺ⟲ᴺߦ㊂ሶᢙᓇߩᣇᴺࠍ⚵ߺวࠊߖࠆߎߣߢޔ㊂ሶࠬࡇࡦᶧ⋧߇ㆇേ㊂ߦ㑐ߒߡ❗ㅌߒ ߚ⋧ߢࠅࡦࡇࠬޔബ߽ࠡࡖ࠶ࡊࠬߢࠆߎߣࠍ␜ߒߚޕߚߒ⊒ߡߟߦࠄࠇߎޕ 54 Oral 11/28/P05 ͼρςΞͻͬශͅة۷௶̳̥ͥȉ Ꮉ శ㧔㒋ᄢℂ㧕 ࠞࠗ࠹ࠖߪߩࡦࡇࠬޔዪᚲ⊛ߥ᭴ㅧߩฝᏀࠍߔ㊂ߢࠆᦨޕㄭޔ᭽⏛ߥޘᕈ߿વዉࠍ⥰บߦࠞࠗ ࠹ࠖ߇ᒁ߈ߎߔᣂᄸߥ‛ℂ⽎ߦ⥝߇ᜬߚࠇߡࠆ⻠ޕṶߢߪޔᄙࠬࡇࡦ㊂ߢࠆࠞࠗ࠹ࠖࠍᅤߦߒߡታ㛎⊛ ߦ᷹ⷰߔࠆ߆ߦߟߡᦨޔㄭߩታ㛎⚿ᨐߩ⚫߽߃ߡޕߚߒ߅ޔ Oral 11/28/P06 ΑάϋΘͼζȜࠏ͈ၾঊഢ֊͂ঽܨ႗͈ܳࡑ ↰ਛ ⑲ᢙ㧔᧲Ꮏᄢ㒮ℂᎿ㧕 ᒝ⏛ᕈ⊛឵⋧↪ߢᒝߊ⚿วߒߚࠬࡇࡦኻ ࠳ࠗࡑ߇࠳ࠗࡑ㑆ߩ឵⋧↪ߢߦ⚿วߒߚ♽ߪࠬࡇࡦ ࠳ࠗࡑ♽ߣࠃ߫ࠇߡࠆߩ♽ߩߎޕၮᐩ⁁ᘒߪ৻⥸ߦ㒢ߩബࠡࡖ࠶ࡊࠍ߽ߟ singlet ⁁ᘒߢࠆ߇ޔᄖㇱ⏛႐ߩශ ട߿ജߦࠃߞߡ឵⋧↪ࠍᄌൻߐߖࠆߎߣߦࠃߞߡ߇ࡊ࠶ࡖࠡޔ㐽ߓޔ⒎ᐨ⁁ᘒ߳ߩ⋧ォ⒖߇ߎࠆߥ߁ࠃߩߎޕ ၮᐩ⁁ᘒ㑆ߩ㊂ሶ⋧ォ⒖ߪࠬࡇࡦߩ triplet ⁁ᘒߩ࠰ࡈ࠻ൻޔᚗߪࡏࠬಝ❗ߣߒߡᝒ߃ࠆߎߣ߇ߢ߈ࠆߩߎޕ㊂ሶ⋧ォ ⒖ࠍ TlCuCl3 ߣ KCuCl3 ߦ߅ߡ⚦ߦ⺞ߴߚߩߢ⚿ߩߘޔᨐࠍႎ๔ߔࠆޕ࿁ߪ․ߦജਅߢߎࠆ㊂ሶ⋧ォ⒖ࠍਛ ᔃߦߔ੍ቯߢࠆߦ♽ࡑࠗ࠳ࡦࡇࠬߩࠄࠇߎޔߚ߹ޕዋ㊂ߩ㕖⏛ᕈਇ⚐‛ࠍ࠼ࡊߔࠆߣਇኻࠬࡇࡦ㑆ߩല឵⋧ ↪ߦࠃߞߡ⏛᳇⒎ᐨ߇ߎࠆߩߎޕല឵⋧↪ߪࡎࠬ࠻ߩ♽ߩࠡࡖ࠶ࡊߦᒝߊଐሽߔࠆߴ⺞߽ߡߟߦࠇߎޕ ߚߩߢ⚿ߩߘޔᨐ߽วࠊߖߡႎ๔ߔࠆޕ Oral 11/28/P07 ΑάϋΘͼζȜࠏ͈ၾঊഢ֊͂ঽܨ႗͈ܳၑა ᧻ᧄ ᱜ⨃㧔㕒ጟᄢℂ㧕 ㄭᐕߩታ㛎ᛛⴚߩㅴᱠߦࠃࠅⷰߢ߹ޔ᷹ਇน⢻ߢߞߚ㗔ၞߦ߅ߌࠆ‛ℂ߇ࠄ߆ߦߐࠇࠃ߁ߣߒߡࠆဳౖߩߘޕ ⊛ߥ߽ߩ߇ᒝ⏛႐ߢࠅޔᒝ⏛႐ᛛⴚߢߪᣣᧄ߇⇇ࠍ࠼ߒߡࠆߥ߁ࠃߩߎޕਛޔTlCuCl3 ࠍਛᔃߣߒߡޔᒝ⏛႐ ߢ⺃ߐࠇࠆ⏛᳇⒎ᐨߩ⎇ⓥ߇⋓ࠎߦⴕࠊࠇߡࠆ ߪߢ⾰‛ߩߎޕ2 ߟߩࠬࡇࡦ߇ᒝߊ⚿วߒߡ࠳ࠗࡑ 1 ㊀㗄㧙3 ㊀ 㗄ࠍዪᚲ⊛ߦᒻᚑߔࠆޕ3 ㊀㗄ബߪ࠳ࠗࡑ㑆⋧↪ 3 ᰴర⊛ߦࠃߞߡ⚿᥏ਛࠍ⒖േߔࠆߎߣ߇ߢ߈ޔಽᢔ㑐ଥ ࠍᜬߟࠬࡇࡦᵄߣߒߡ᷹ⷰߐࠇߡࠆޕᒙ⏛႐ߢߪബߦࠡࡖ࠶ࡊࠍߔࠆ߇⏛ޔ႐ࠍᒝߊߔࠆߣࠡࡖ࠶ࡊߪᶖᄬߒ⏛ޔ ႐⺃⏛᳇⒎ᐨࠍߎߔࡦࠗ࠲ࡘࠪࡦࠗࠕ࠭ࡏߩࡦࡁࠣࡑޕಝ❗ߩ⠨߃߆ࠄߎߩ⋧ォ⒖߇⼏⺰ߐࠇ⎇ޔⓥ߇⋓ࠎߦⴕ ࠊࠇߡࠆ⻠ᧄޕṶߢߪߥ߁ࠃߩߎޔ㊂ሶ⋧ォ⒖ߣ⏛᳇ബߦߟߡߩℂ⺰ࠍ⺑ߒ♽ࡑࠗ࠳ޔએᄖߩ㑐ㅪߔࠆ‛⾰ߦ ߟߡ߽⼏⺰ࠍⴕ߁ޕ Oral 11/28/P08 ˏষࡓڒঊࠏ಼̤̫ͥͅၠ൲ࡥఘેఠ͈ౝ॑ ㋈ᧁ 㓉ผ㧔᧲ᄢ‛ᕈ⎇㧕 ㄭᐕޔ࿕ࡋ࠙ࡓ 4 ߦኻߒߡⴕࠊࠇߚߨߓࠇᝄࠅሶߩታ㛎⚿ᨐࠍฃߌߡޔᵹേ࿕⁁ᘒߦኻߔࠆ⎇ⓥߦᵈ⋡߇㓸 ߹ߞߡࠆߩߎޕᵹേ࿕⁁ᘒߦኻߔࠆℂ⺰⊛ࠕࡊࡠ࠴ߩ৻ߟߣߒߡࡦࡇࠬࠍ࡞࠺ࡕ࠼ࡃࡂ࠭ࡏࠕࠦ࠼ࡂޔ S=1/2 ߩ XXZ ࡕ࠺࡞ߦࡑ࠶ࡊߔࠆᣇᴺ߇ࠆ⻠ᧄޕṶߢߪޔS=1/2XXZ ࡕ࠺࡞ࠍ↪ߡ⺞ߴࠄࠇߚᵹേ࿕ߦኻߔࠆ ⎇ⓥ⚿ᨐࠍ⚫ߔࠆᦨߦࠄߐޕㄭޔᚒߚߴ⺞߇ޘ㕙ᔃ┙ᣇᩰሶߢࠇࠆᵹേ࿕⁁ᘒߦߟߡ⚫ߔࠆޕ 55 Oral 11/29/A01 ΘͼμκϋΡङࣣاͺΒρͼΠ͈ঽȪࡑȫ ⩵ᳰ ᒾశ㧔ᄢᎿ㧕 ࠳ࠗࡗࡕࡦ࠼㎮ࡕ࠺࡞ߩታ‛⾰ߢࠆࠕ࠭ࠗ࠻(Cu3(CO3)2(OH)2)ߦ㑐ߔࠆታ㛎⎇ⓥ ߦ․ޔ1/3 ⏛ൻࡊ࠻ߩ ᷹ⷰ⏛ޔൻ₸ޔᲧᾲޔᩭ⏛᳇㡆╬ߩ᷹ቯ߆ࠄᓧࠄࠇߚ⚿ᨐࠍ⻠Ṷߔࠆޕ Oral 11/29/A02 ΘͼμκϋΡ߿Αάϋङ͈ঽܨഎৗ͈ၑაȽڒঊ͈έͿς͂! έρΑΠτȜΏοϋ! ጟᧄ ᷡ⟤ޔᩮᎹ ቁ 1㧔᧲Ꮏᄢ㒮ℂᎿޔ1 Ꮏᄢᯏ᪾㧕 ࠳ࠗࡗࡕࡦ࠼ဳࠬࡇࡦ㎮ߢߪᩰሶߩࡈࠚᕈߣࡈࠬ࠻࡚ࠪࡦߩ┹วߢ⏛᳇⊛ᕈ⾰ߦࠈࠈߣ⥝ᷓ⽎߇ ࠄࠇࠆߩߎޕ㗴ߦ㑐ߒߡࠈࠈߥᚻᴺࠍ↪ߚ⚿ᨐࠍ⸃⺑ߒߚޕ Oral 11/29/A03 έρΑΠτȜΏοῧၾঊ̥ͣͦͥ͘έͿςঽ 㘧↰ ↵㧔ၯ₹ᄢℂ㧕 ૐᰴర㊂ሶࡈࠚ⏛ᕈߪߎࠇ߹ߢޔᷙวࠬࡇࡦ♽ࠍਛᔃߦ⋧ޔ↪ߦࡈࠬ࠻࡚ࠪࡦ߇ߥߊ Lieb-Mattis ߩቯℂ ߆ࠄᦼᓙߐࠇࠆၮᐩ⁁ᘒ⏛ൻࠍᜬߟ♽ࠍਛᔃߦ⺞ߴࠄࠇߡ߈ߚޔߒ߆ߒޕㄭᐕ߇ࡦ࡚ࠪ࠻ࠬࡈޔᒝ 1 ᰴర㊂ሶ ࠬࡇࡦ♽ߢࡈࠚ⏛ᕈࠍ␜ߔ♽ߩ߇ߊߟ߆ߟ߆ߞߡ߈ߚޔߪߢ♽ߥ߁ࠃߩߎޕLieb-Mattis ဳߩࡈࠚ⏛ᕈߣ⇣ߥ ࠅ⥄⊒⏛ൻߩ୯ߪᔅߕߒ߽㘻⏛ൻߩ◲නߥℂᢙߦߥࠄߕߦߣ࠲ࡔࡄߩ♽ޔㅪ⛯⊛ߦᄌൻߔࠆߎߣ߇ࠆ⻠ޕ Ṷߢߪ߆ߟߊࠍߥ߁ࠃߩߎޔขࠅߍߦࠄࠇߘޔㅢߦࠄࠇࠆ․ᓽࠍࠄ߆ߦߒߚޕ Oral 11/29/A04 S=2 Αάῧ S=1 Αάϋ̦ޑঽഎͅయ̱̹։༷എˍষࡓङ͈! ႟ঽાܖೲેఠ! ᩮᎹ ቁ㧔Ꮏᄢᯏ᪾㧕 ᦨㄭ㍲ൻቇߩಽ㊁ߢන 1 ᰴర㎮⏛⍹♽ߣߒߡᵈ⋡ߐࠇߡࠆ Mn3+Ni2+ ♽ࡋ࠹ࡠ㊄ዻ㍲ൻว‛:[Mn(Cl4sal tmen)Ni(pao)2(bpy)](PF6)ࠍᔨ㗡ߦ߅ߡޟޔS=2 ࠬࡇࡦߣ S´=1 ࠬࡇࡦ߇ᒝ⏛ᕈ⊛ߦઍߒߚ⇣ᣇ⊛ 1 ᰴర㎮ߩ㔖⏛ ႐ၮᐩ⁁ᘒޔࠍޠਥߣߒߡᢙ୯⊛ᣇᴺࠍ↪ߡ⼏⺰ߔࠆޕMn3+ࠗࠝࡦ S=2ޔ߮ࠃ߅ޔNi2+ࠗࠝࡦ S´=1ߦ 1 ゲᕈࠪࡦ ࠣ࡞ࠗࠝࡦ⇣ᣇᕈࠛࡀ࡞ࠡߩሽࠍቯߒޔ឵⋧↪ቯᢙߦኻߔࠆਔ⇣ᣇᕈࠛࡀ࡞ࠡቯᢙߩᲧࠍޔࠇߙࠇߘޔDޔ D´ߣߔࠆޕD ኻ D´ ᐔ㕙ߩၮᐩ⁁ᘒ⋧࿑ߦߪޔD=D´= 0 ߩߣ߈ߩࡈࠚࠅ⋧એᄖߦޔ6 ⒳㘃ߩ㕖⏛ᕈ⋧߇ߔࠆࠇߎޕ ࠄߩၮᐩ⁁ᘒ⋧㑆ߩ⋧Ⴚ⇇✢ࠍޔฦ⒳ߩࡌ࡞ࠬࡍࠢ࠻ࡠࠬࠦࡇᴺࠅ➅⺰⽎ޔㄟߺᴺޔၮᐩ⁁ᘒߩࠛࡀ࡞ࠡߩᲧセ ߥߤߦࠃߞߡ⸘▚ߔࠆޕ 56 Oral 11/29/A05 ૧ܗൾॸا͈ܴൽಉ੬͂ঽ͈ၑაٜଢ଼̤͍͢ৗ୭ࠗ ⢫ ᥙ㧔‛᧚ᯏ᭴㧕 ᦨㄭวᚑߐࠇߚᣂⷙࡍࡠࡉࠬࠞࠗ࠻㌃㉄ൻ‛ Sr8CaRe3Cu4O24 ߪ✼⛘࠻࠶ࡕޔߢࠅޔ㜞⏛᳇ォ⒖᷷ᐲ Tc=440K ࠍ␜ߔߦߢ߹ߪࠇߎޕ⍮ࠄࠇߡߚ㌃㉄ൻ‛ᒝ⏛ᕈߦᲧߴߡචએߦ㜞ޔߪߜߚ⑳ޕኒᐲ᳢㑐ᢙ LSDA+U⸘ ▚ࠍⴕ゠ޔ⒎ᐨߣࡈࠚ⏛ᕈ᭴ㅧࠍࠄ߆ߦߒߚޕኒᐲ᳢㑐ᢙᴺ⸘▚ߩ⚿ᨐߦၮߠ߈ߩ♽ޔૐࠛࡀ࡞ࠡߢߩᝄࠆ⥰ ࠍ⸥ㅀߔࠆ⏛ᕈലࡕ࠺࡞ߣߒߡ 3 ᰴరߩࠬࡇࡦᦧߒߚ㊂ሶࠬࡇࡦ♽ࠍឭ໒ߒޔ㊂ሶࡕࡦ࠹ࠞ࡞ࡠᴺߦࠃࠅታ㛎ߢ ᷹ⷰߐࠇߚ⏛᳇ォ⒖᷷ᐲࡠޔ᷷ᐲ⏛ൻ╬ࠍ♽ߩ⏛᳇⊛ᝄࠆ⥰ࠍቯ㊂⊛ߦ⺑ߔࠆߎߣ߇ߢ߈ߚޕᰴߩࠬ࠹࠶ࡊߣ ߒߡޔర⚛⟎឵ߦࠃࠆᣂⷙ⏛ᕈ‛⾰ߩℂ⺰⸳⸘ࠍ⹜ߺߚޕW ߿ Mo ߢ Re ࠍ⟎឵ߔࠇ߫߇࡞ࡀࡦࡖ࠴ࡊ࠶ࠕࡦࡇࠬޔ㊄ዻ ⊛ߢࠬࡇࡦ࠳࠙ࡦ࠴ࡖࡦࡀ࡞߇⛘✼⊛ߢࠆࡂࡈࡔ࠲࡞ᒝ⏛ᕈߦߥࠆߎߣ߇ࠄ߆ߦߥߞߚᦨޕㄭ⟎ޔ឵ర⚛߿࠼ ࡊ㊂ߦࠃߞߡ⏛ߥࡠࠢࡑޔᕈࠍᜬߚߥࡂࡈࡔ࠲࡞࡞࠲ࡔࡈࡂࠆࠁࠊޔᒝ⏛ᕈ߽ታน⢻ߢࠆ߇ಽ߆ߞߚޕ ४ࣉࡃ! [1] E. Takayama-Muromachi et al. J. Solid State Chem. 175, 366 (2003). [2] X.-G. Wan, M. Kohno and X. Hu, Phys. Rev. Lett. 94, 087205 (2005). [3] M. Kohno, X.-G. Wan and X. Hu J. Phys. Soc. Jpn. Suppl. 74, 98 (2005). [4] X.-G. Wan, M. Kohno and X. Hu, Phys. Rev. Lett. 95, 146602 (2005). Oral 11/29/A06 2 ষࡓၾঊޑঽఘ̤̫ͥͅͼϋΑΗϋΠϋ ᩉᴛ ቁ㧔↥✚⎇㧕 2 ᰴరᒝ⏛ᕈߪㅪ⛯ᭂ㒢ࠍߣࠆߣ 2+1ᰴర㕖✢ဳࠪࠣࡑࡕ࠺࡞ߦࡑ࠶ࡊߐࠇࠆޕ2 ᰴరߩ㕖✢ဳࠪࠣࡑࡕ࠺࡞߅ ߌࠆࠗࡦࠬ࠲ࡦ࠻ࡦ⸃ߪ Fateev ࠄߦࠃߞߡ⺞ߴࠄࠇࡦ࠻ࡦ࠲ࠬࡦࠗޔ㑆ߦኻᢙ⊛ߥ⋧↪߇ߊߎߣ߇␜ߐࠇߡࠆޕ ߎࠇߪᱜ⽶ߩ㔚⩄ߩ☸ሶ㑆ߦኻᢙ⊛ߥ⋧↪߇ߊࠢࡠࡦࠟࠬࡕ࠺࡞ߣ╬ଔߢࠆߩ⸃ࡦ࠻ࡦ࠲ࠬࡦࠗޔߪߢߎߎޕ ᤨ㑆ଐሽᕈࠍ⠨ኤߔࠆߩࡦ࠻ࡦ࠲ࠬࡦࠗ࠴ࡦࠕߣࡦ࠻ࡦ࠲ࠬࡦࠗޕ⟎ࠍࠊߔᄌᢙ߇ᤨ㑆ߦଐሽߔࠆᤨߩㆇേᣇ⒟ᑼࠍ ⠨ኤߔࠆߣࡦ࠻ࡦ࠲ࠬࡦࠗޔኻߩ㑆ߩ〒㔌߇ᤨ㑆ߦଐሽߒߡᝄേߔࠆߎߣ߇ࠊ߆ࠆޕ Oral 11/29/A07 ະညܳޑঽಉ੬ȇδϋΡܛ৷ࠏ̤̫̳ࣣͥͥͅއ ඵ͈̾ခ࢘ࡽैဥ ↰ ජኼ㧔㕍ቇᄢℂᎿ㧕 ㊂ሶំࠄ߉ߩߚࠬࡇࡦࠡࡖ࠶ࡊࠍ߁㕖⏛ᕈߥၮᐩ⁁ᘒࠍߔࠆᡆૐᰴరᒝ⏛ᕈࠬ࡞ࠛࠗࡄࡦࡇࠬޔ߫߃ޔ ‛⾰߿ࡂ࡞࠺ࡦ‛⾰ߦਇ⚐‛ࠍ࠼ࡊߔࠆߣޔᒝ⏛ᕈ㐳〒㔌⒎ᐨ AFLRO߇⺃ߐࠇࠆޔߪࠇߎޕ㕖⏛ᕈ⁁ᘒࠍᜂ߁ ࠬࡇࡦ৻㊀㗄ኻࠍਇ⚐‛߇უߔߎߣߦࠃࠅਇ⚐‛ߩ߹ࠊࠅߦ⏛᳇ࡕࡔࡦ࠻ ലࠬࡇࡦ߇⺃ߒ৻ߩࠅࠊ߹߇ࠄࠇߘޔ ㊀㗄ኻࠍᇦߦߒߡ⋧㑐ߔࠆߎߣߦࠃࠅ↢ߓࠆ⒎ᐨߣℂ⸃ߐࠇࠆ⻠ᧄޕṶߢߪ࠼ࡦࡏޔᦧ㎮߇ੑᰴర⊛ߦ⚿วߒߚᒝ ⏛ᕈࡂࠗࡦࡌ࡞ࠢᮨဳߩ㕖⏛ᕈ⁁ᘒߦ߅ߌࠆ࠻ࠗࠨޟᏗ㉼࠼ࡦࡏޟߣޠᏗ㉼ߩޠലᨐߩ㆑ߦ⌕⋡ߔࠆࠗࠨޔ߫߃ޕ ࠻Ꮧ㉼ߔࠆߣή㒢ዊߩᏗ㉼Ớᐲߢ AFLRO ߇⺃ߔࠆߩߦኻߒ࠼ࡦࡏޔᏗ㉼♽ߢߪࠆޔ㒢ߩỚᐲ߹ߢ⺃ߐࠇߥޕ ᧄ⻠Ṷߢߪߩߘޔ㆑߇ലࠬࡇࡦ㑆ߦߊੑߟߩല⋧↪ߩ┹วߩࡔࠞ࠾࠭ࡓߦࠃࠅℂ⸃ߢ߈ࠆߎߣࠍ␜ߒ߽ޔ ታ㛎ℂ⺰ਔ㕙ߢ⎇ⓥ߇⛯ߊޟਇ⚐‛⺃ᒝ⏛ᕈ⒎ᐨߩޠ㝯ജߩ৻┵ࠍ⚫ߒߚޕ 57 Oral 11/29/A08 Wilson ߿ߗ߲͙̭̩͂ͤۼၾঊΑάϋङ͈ ೩ΥσΆȜ႗ܳΑβ·Πσ ᅏ Ꮑ৻㧔ᣂẟᄢ⥄ὼ㧕 1 ᰴర㊂ሶ♽ߢኒᐲⴕߊࠅߎߺ⟲ DMRG߇ᚑഞࠍ⚊ߡࠆߩߢޔታⓨ㑆ߊࠅߎߺ⟲ߪା㗬ᕈߩࠆᚻᴺߣ߁ ࠗࡔࠫ߇ቯ⌕ߒߡࠆ߇ޔDMRG એ೨ߪోߊߘ߁ߢߪߥ߆ߞߚࡦࡇࠬࠢ࠶ࡠࡉޕᄌ឵ߥߤߩᚻᴺߪޔ1 ᰴర㊂ሶ♽ߢ ߪቯᕈ⊛߽⺋ߞߚ⚿ᨐࠍߛߔߎߣ߽ᄙ߆ߞߚ৻ޕᣇޔㄭ⮮㗴ߦ↪ࠄࠇߚ Wilson ߩߊࠅߎߺ⟲ߪޔ᭽ߥޘਇ⚐ಽ‛ 㗴ߢ♖ᐲࠃߊૐࠛࡀ࡞ࠡബࠍ⸘▚ߔࠆᚻᴺߣߒߡᆭജࠍ⊒ើߒߡࠆޔߚ߹ޕDMRG ߣ⇣ߥࠅࠡࡖ࠶ࡊࠬߩ♽ߢ ലߢࠆޔߢߎߘޕDMRG ߪ߭ߣ߹ߕ㔌ࠇߡޔਇ⚐‛㗴ߩ Wilson ߊࠅߎߺ⟲ࠍᡷ⦟ߔࠇ߫ ࠈߒޔ1 ᰴర㊂ሶ♽ ߢ߽ା㗬ߢ߈ࠆᱜ⛔ᵷታⓨ㑆ߊࠅߎߺ⟲߇ࠇࠆߩߢߪߥ߆ߣ⠨߃ޔߪߢߎߎޔਇ⚐‛㗴 Wilson ߊࠅߎߺ⟲ࠍౣ⠨ ᒛߒࠬࡊ࠶ࡖࠡޔ㗔ၞߩ XXZ ㎮߳ㆡᔕߒߚ႐วߩ⚿ᨐߣޕࠆߔ⊒ߡߟߦ㉼⸃ߩߘޔ Oral 11/29/A09 ΑάϋΙνȜή͈ၾঊഢ֊ ဈ ᔀ㧔ේሶജᯏ᭴㧕 3 ᧄ㎮ࠬࡇࡦ࠳ߪࠬࡇࡦࠡࡖ࠶ࡊ߇ሽߒߥߎߣ߇⍮ࠄࠇߡࠆ߇ࠍࠇߎޔ㎮㑆ᣇะߦ߽ᦼ⊛ߦߟߥߛ 3 ᧄ ㎮ࠬࡇࡦ࠴ࡘࡉߢߪࠬࡇࡦࠡࡖ࠶ࡊ߇ሽߔࠆߩߎޕਔ⠪ࠍߟߥߋ㊂ሶ⋧ォ⒖ߦߟߡޔᢙ୯⊛ߦ⸃ᨆߒߚ⚿ᨐࠍႎ๔ ߒޔᓟߩㅴዷࠍ⼏⺰ߔࠆޕ Oral 11/29/P01 ΧσΟϋࠏ͈ၑ͂ॼ̯̹ͦهఴȪࡑȫ ⪤ේ ᐘ㧔㒋ᄢᭂ㒢ࡦ࠲㧕 1983 ᐕߩࡂ࡞࠺ࡦ੍ᗐએ᧪ޔታ㛎ℂ⺰ਔ㕙ߢ㕖Ᏹߦ♖ജ⊛ߥ⎇ⓥ߇ߥߐࠇߡ߈ߡ৻ޔᰴరᒝ⏛ᕈߩ‛ℂߦ㑐ߒߡ ߪᄢᣇߩℂ⸃߇ㅴࠎߢࠆ⏛ࠍࡊ࠶ࡖࠡࡦ࠺࡞ࡂޔࠄ߇ߥߒ߆ߒޕ႐߿ജߢߟ߱ߒߚᓟߩ⏛႐⺃⋧ߦ㑐ߒߡߪ߽ ⎇ⓥ߇ㅴࠄࠇߡࠆ⁁ߥ߁ࠃߩߎޕᴫߩਛ࠼ࡦࡏ ♽ࡦ࠺࡞ࡂޔᦧ♽߽ߦ߅ߡߎࠇ߹ߢߩ⎇ⓥࠍⷰߒߚᓟޔ ⻠Ṷ⠪߇ㅴߡࠆ⎇ⓥࠍ⚫ߒᱷߐࠇߚ⺖㗴ߦ㑐ߒߡෳട⠪ߣߦ⼏⺰ߒߚޕ Oral 11/29/P02 ΧσΟϋࠏ͈ၑ͂ॼ̯̹ͦهఴȪၑაȫ ㊁ ᷡ⧷㧔Ꮊᄢℂ㧕 ࡂ࡞࠺ࡦ♽ߩℂ⺰⊛㕙ߦߟߡࡆࡘߔࠆ ߦߊߣޕS=1 bilinear-biquadratic (BLBQ)ࠬࡇࡦ㎮ߦߪޔAKLT, Takhtajan-Babujan, Uimin-Lai-Sutherland ߥߤ෩ኒ⸃߇ࠆޕ෩ኒ⸃ߩㄝߢߩ‛ℂ⽎ߦߟߡ➅ࠅㄟߺ⟲ࡌޔ ࡞ࠬࡍࠢ࠻ࡠࠬࠦࡇޔᢛว㧙㕖ᢛวㆫ⒖ߥߤߦࠃࠅℂ⸃߇ㅴࠎߢ߈ߚߩߢ⚫ߔࠆޕ 58 Oral 11/29/P03 ΦߗͅۼႥ̱̹ॸளঊङ͈ޑঽાঽًا ᧻የ ᥏㧔᧲ᄢ‛ᕈ⎇㧕 ࠽ࡁࠨࠗ࠭ߩ࠴ࡖࡦࡀ࡞ࠍᜬߟᄙሹᕈ㈩㜞ಽሶߦ╬ޔᩭੑේሶಽሶߦ㒢ࠇ߫໑৻⏛ᕈࠍ␜ߔ㉄⚛ಽሶ ࠬࡇࡦ 1ࠍ ‛ℂๆ⌕ߐߖࠆߎߣߢ㉄⚛ಽሶ㎮ࠍࠅߩߘޔૐᰴర‛⾰ߩ⏛ᕈࠍ⺞ߴߡࠆޕᄙሹᕈ㈩㜞ಽሶߪޔ㊄ዻ㍲ߩ 2 ᰴ రࠪ࠻ߣࠍࠇߘޔㅪ⚿ߔࠆ᨞ᯅಽሶ߆ࠄᚑߞߡࠆ߫߃ߣߚޕ᨞ᯅಽሶࠍᦧ߃ࠆߎߣߢ࠴ࡖࡦࡀ࡞ߩ㑆ญߩᄢ߈ߐࠍᄌ ߃ࠆߎߣ߇ߢ߈ࠆߥ⊛ဳౖޕᄙሹᕈ㈩㜞ಽሶߪㅢ⒓ CPL1 ߣ߫ࠇ⚦ߩߘޔሹߩࠨࠗ࠭ߪ 4Έ6Έߢࠅ⚛㉄ޔಽሶ ߪ⚂ 160K એਅߢๆ⌕ߒ࡞ࡀࡦࡖ࠴ߩߟ৻ޔౝߦ 2 ߢਗ߱⚛㉄ࠅ߹ߟޕಽሶߩ࠳᭴ㅧ߇ᒻᚑߐࠇߡࠆߎߣߦߥ ࠆ࠳ޕ᭴ㅧࠍࠆ㉄⚛ಽሶ㎮ߪ⋡⊛ߤ߅ࠅૐᰴర⏛ᕈߩࠃ߁ߥᝄࠆ⥰ࠍ␜ߒߚ߽ߦઁޕᐞߟ߆ߩᄙሹᕈ㈩㜞ಽ ሶߦ㉄⚛ಽሶࠍๆ⌕ߐߖߘߩ⏛ᕈࠍ⺞ߴߡࠆޕ Oral 11/29/P04 ௰ङ͈̜ͥၾঊΑάϋङ͈ܖೲેఠ 㜞㊁ ஜ৻㧔⼾↰Ꮏᄢ㧕 ㎮ߩࠆ㊂ሶࠬࡇࡦ㎮ߦߪࠈࠈߥࡃ࡚ࠛࠪࡦ߇ࠅߥࠈࠈޔၮᐩ⁁ᘒ߇ᦼᓙߢ߈ࠆޕታ㓙ߩ‛⾰ߢ⊒ ߐࠇࠆᦼᓙ߽ࠆߛ߹ޔߒ߆ߒޕචಽߥ⎇ⓥߪᚑߐࠇߡ߅ࠄߕ◲ޔනߥ႐ว߆ࠄ⎇ⓥࠍᆎࠆᗧ⟵߇ࠆࠬޔߪߢߎߎޕ ࡇࡦ㎮ߩ 1 ߟ߅߈ߩࠨࠗ࠻ߦޔ㎮ߣߒߡ 1 ߟߩࠬࡇࡦ߇ઃዻߒߡ߅ࠅ⏛ࠚࡈޔᕈߦߥࠄߥ႐วࠍ⺞ߴࠆޔߕ߹ޕ1 ᰴరᷙว㊂ሶࠬࡇࡦ♽ߦኻߔࠆ㕖✢ᒻࠪࠣࡑᮨဳߩᣇᴺࠍ㎮߇ࠆ႐วߦᒛߔࠆޔߡߞࠃߦࠇߎޕၮᐩ⁁ᘒߩ⋧࿑ߩ ⇛ࠍ᳞ࠆޕᢙ୯⊛ኻⷺൻߩᣇᴺߦࠃߞߡ߽⋧࿑ࠍ᳞ߡᲧセߔࠆ⚿ޕᨐߪޔ㎮ߣߩ឵⋧↪ߩᒝߐߥߤߦᔕߓ ߡ ࠆߩࡊ࠶ࡖࠡޔ2 ߟߩ⋧߇ߛߐࠇߚޕฦ⋧ߩ․ᓽࠍᬌ⸛ߔࠆޕ Oral 11/29/P05 ࣞষࡓ͈ AKLT ຝ௨̷͈͂ા͈ၑა ↰ਛ ⑺ᐢ㧔‛᧚ᯏ᭴㧕 VBS ឬ AKLT ឬߪ৻ᰴర㊂ሶࠬࡇࡦ㎮ߩ‛ℂࠍℂ⸃ߔࠆߢᰳ߆ߖߥߪࠇߎߚ߹ޕ㕖✢ᒻσ ᮨဳ߿ᒻ႐ߦ ࠃࠆ႐ߩℂ⺰⊛⸥ㅀߣ߽⦟ߊኻᔕ߇ขࠇߡ߅ࠅޔਔ⠪ߪ 80 ᐕઍ߆ࠄ 90 ᐕઍߦ߆ߌߡߩࡂ࡞࠺ࠗࡦࠡࡖ࠶ࡊㄝߩ‛ℂ ߩㅴዷߦਛᔃ⊛ߥᓎഀࠍᜂߞߚޕㄭᐕޔੑᰴరޔਃᰴరߦ߅ߌࠆ㊂ሶࠬࡇࡦᶧ߿ࠬࡇࡦ♽ߩ㊂ሶ⥃⇇⽎ߦ㑐ㅪߒߡౣ ߮ߎߩੑߟߩࠕࡊࡠ࠴߇㗫ߔࠆࠃ߁ߦߥߞߚޕᣂߒ࠲ࠗࡊߩ㊂ሶ⋧ォ⒖ߣߐࠇࠆ Senthil ╬ߦࠃࠆ deconfined criticality ߪߎߩࠃ߁ߥേ߈ߩ৻ߢࠆ⻠ᧄޕṶߢߪߥ߁ࠃߩߎޔ㜞ᰴర㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆ AKLT ឬࠍ⸥ㅀߔ ࠆߩߦㆡߒߚ႐ߩℂ⺰⊛ߥᨒ⚵ߺࠍޔᚒᦨߩޘㄭߩ⎇ⓥ PRL95 (2005) 036402, PRB 2006 inpressߦߣ߽ࠍ╬ޔឭߒޔ ྾ⷺᩰሶ♽ࡓࠞ࠾ࡂޔᩰሶ♽ߦߤߥ♽࠳ߚߒ࠻࠻ࠬࡈޔㆡ↪ߔࠆߦࠄߐޕㄭᐕᵈ⋡ߐࠇߡࠆ࠻ࡐࡠࠫࠞ࡞⒎ ᐨߦߟߡߩߎޔᨒ⚵߆ࠄ⼏⺰ࠍ⹜ߺࠆޕ Oral 11/29/P06 ၾঊΑάϋࠏ͈ ESR ͥ͢ͅࡄݪ ᄥ↰ ੳ㧔ᚭᄢℂ㧕 ࡑࠣࡁࡦߩ BEC⏛ޔൻࡊ࠻ߤߥ♽ࡦ࠺࡞ࡂޔ♽ࡦ࡚ࠪ࠻ࠬࡈޔ㊂ሶࠬࡇࡦ♽ߩ⎇ⓥߦ߅ߡᒝ⏛႐ ESR ߪ ᄢ߈ߥᓎഀࠍᨐߚߒߡ߈ߚߩ♽ߥ߁ࠃߩߎߢߎߘޕᒝ⏛႐ ESR ᷹ቯࠍⷰߒޔᱷߐࠇߚ㗴ߦߟߡ⼏⺰ߒߚޕ 59 Oral 11/29/P07 5 ུ௷Αάϋঊڒঊࠏ La8Cu7O19 ͂ΧσΟϋΆλΛίࠏ Y2BaNiO5 ̤̫ͥͅΑάϋͥ͢ͅഥ൵ Ꮉ⢆ 㓉ⴕ 1ޔዊᳰ ᵗੑ 2ޔችፉ ৻ 2ޔ㊁ ዏ 2ޔᎿ⮮ ৻⾆ 3ޔዊᨋ ౖ↵ 3 1 ℂ⎇ޔ2 ᧲ർᄢᎿޔ3 ᧲ർᄢ㊄⎇ ᭽ߥޘૐᰴర㊂ሶࠬࡇࡦ♽ߩ‛⾰ߦ߅ߡࠆࠃߦࡦࡇࠬޔᄢ߈ߥᾲવዉ߇᷹ⷰߐࠇޔᵈ⋡ߐࠇߡࠆࡇࠬޔ߫߃ߣߚޕ ࡦ㊂ሶᢙ S=1/2 ߩ 1 ᰴరࠬࡇࡦ㎮ࠍᜬߟ Sr2CuO3 ߿ 2 ᧄ⿷ࠬࡇࡦ᪽ሶᩰሶࠍ߽ߟ Sr14Cu24O41 ߢߪޔᄢ߈ߥࠬࡇࡦߦࠃ ࠆᾲવዉ߇ႎ๔ߐࠇߡࠆޔߒ߆ߒޕ᪽ሶߩ⿷ᢙ߇ᄙ႐ว߿ S ߇ᢛᢙߢࠆࡂ࡞࠺ࡦࠡࡖ࠶ࡊ♽ߦ߅ߌࠆႎ๔ߪ߶ߣࠎ ߤߥޔߚߩߘޕ5 ᧄ⿷ࠬࡇࡦ᪽ሶᩰሶ♽ La8Cu7O19 ߣࡂ࡞࠺ࡦࠡࡖ࠶ࡊ♽ Y2BaNiO5 ߦ߅ߡޔᾲવዉࠍ᷹ቯߒߚޕ ߘߩ⚿ᨐޔLa8Cu7O19 ߦ߅ߡߪࠆࠃߦࡦࡇࠬޔᾲવዉߪ᷹ⷰߐࠇߥ߆ߞߚߩߘޕℂ↱ߪޔ᪽ሶߩ⿷ᢙߩലᨐࠃࠅ߽᪽ ሶᩰሶ㑆ߦᄢ߈ߥ⋧↪߇ሽߔࠆߚߣ⠨߃ࠄࠇࠆ৻ޕᣇޔY2BaNiO5 ߦ߅ߡߪޔᄢ߈ߥࠬࡇࡦߦࠃࠆᾲવዉ߇ⷰ ᷹ߐࠇߚޕS=1/2 ߩ♽ߣห᭽ߦࡦࡇࠬޔ㎮ౝߩ឵⋧↪ߦᲧߒߡᾲવዉ߇Ⴧᄢߒߡࠆน⢻ᕈ߇ࠆޕ Oral 11/29/P08 ΑάϋρΘȜࣣا(CPA)2CuBr4 ͈ࣞਔ෨ ESR ௶ శ⮮ ⺈ᄥ㇢㧔ᄢ㆙⿒㧕 (CPA)2CuBr4 ߪ ladder ᣇะߩ⋧↪ߩᣇ߇ rung ᣇะࠃࠅ߽ᒝೋߡߩ S=1/2 ᒝ⏛ᕈࠬࡇࡦ࠳ࡕ࠺࡞ൻว ‛ߣߐࠇߡࠆޔߚ߹ޕNMR ᷹ቯ߆ࠄᦺ᳗Luttinger ᶧ TLLߢ⸥ㅀߐࠇࠆࡊࡠ࠻ࡦߩ✭₸ߩߴ߈⊛ᝄࠆ⥰߿⏛ ൻ᷹ቯ߆ࠄૐ᷷ߢࠡࡖ࠶ࡊࠍᜬߟߎߣ߇ႎ๔ߐࠇߡࠆޕ⸥ߩࠃ߁ߦޔੑ⿷࠳♽ߩ․ᓽࠍ␜ߔ৻ᣇޔᚒߩޘ㜞ᵄ ESR ᷹ቯ߆ࠄߪ Cu-benzoate ߩ Breather ࡕ࠼ߦ㘃ૃߒߚᝄࠆ⥰߽᷹ⷰߐࠇߚ⻠ޕṶߢߪ⎇ߩߢ߹ࠇߎޔⓥ⚿ᨐߣ ߣ߽ߦ৻ޔᰴర♽ߩ⏛႐⺃ࠡࡖ࠶ࡊߣ(CPA)2CuBr4 ߢ᷹ⷰߐࠇߚ․⇣ߥ ESR ࠬࡍࠢ࠻࡞ߩᝄࠆ⥰ߦߟߡᲧセߒߥ ߇ࠄႎ๔ࠍⴕ߁ޕ Oral 11/29/P09 ΑάϋρΘȜࣣا (CPA)2CuBr4 ͈ړঽྺވܨ ⮮ 㧔ᄢ㆙⿒㧕 (CPA)2CuBr4 ߪ ladder ᣇะߩ⋧↪ߩᣇ߇ rung ᣇะࠃࠅ߽ᒝೋߡߩ S=1/2 ᒝ⏛ᕈࠬࡇࡦ࠳ࡕ࠺࡞ൻว‛ ߣߐࠇߡࠆޕladder ᣇะߩ⋧↪߇ᒝߚߦ⋧↪ߩᄢ߈ߐߦᲧߴߡࠬࡇࡦࠡࡖ࠶ࡊߩᄢ߈ߐ ⚂ 2 K߇ዊߐ ߊߥࠅ⏛ޔ႐ශടߦࠃߞߡ⏛႐⺃⥃⇇⁁ᘒߩᝄࠆ⥰ࠍ⺞ߴࠆߩߦㆡߒߡࠆޕᚒ ߢ߹ࠇߎߪޘ0.4 K ߹ߢߩ᷷ᐲၞߢޔ ⚂ 8 T ߹ߢߩ⥃⇇⏛႐㗔ၞߦ߅ߡᦺޔ᳗Luttinger ᶧ TLLߢ⸥ㅀߐࠇࠆࡊࡠ࠻ࡦߩ✭₸ߩߴ߈⊛ᝄࠆ⥰ࠍⷰ ᷹ߒߚᦨޔߚ߹ޕㄭߩ ESR ᷹ቯ߆ࠄ Cubenzoate ߩ Breather ࡕ࠼ߦ㘃ૃߒߚᝄࠆ⥰߽᷹ⷰߐࠇޔᵈ⋡ߐࠇߡࠆޕ ⻠Ṷߢߪ⎇ߩߢ߹ࠇߎޔⓥ⚿ᨐߣߣ߽ߦޔTLL 㗔ၞࠃࠅ߽ૐ᷷ߢ✭₸߇ᕆỗߦᷫዋߔࠆᝄࠆ⥰ߦߟߡߩ߆߶ޔ ࠡࡖ࠶ࡊ♽ߢߩ᷹ⷰ⚿ᨐߣᲧセߒߡㅀߴࠆ੍ቯߢࠆޕ Oral 11/29/P10 ڐಫ̯̹ͦ 4 ఘࡽैဥͬ̾͜ 2 ུङঊΑάϋࠏ̤̫ͥͅచ་۟ ᒁේ ବ㧔ർᄢℂ㧕 ᒛߐࠇߚ 4 ⋧↪ࠍ߽ߟ 2 ᧄ㎮᪽ሶࠬࡇࡦ♽ߦߟߡ⼏⺰ߔࠆޕᚒࡦࡇࠬޔߡ߅ߦ♽ߩߎޔߦߢ߹ࠇߎߪޘ ⥄↱ᐲߣࠞࠗ࠹ࠖ⥄↱ᐲࠍࠇᦧ߃ࠆኻᄌ឵߇ᚑࠅ┙ߟߎߣࠍ␜ߒߡࠆ[T. Hikihara, T. Momoi, and X. Hu, Phys. Rev. Lett. 90, 087204 (2003)]ޕ࿁ᚒߩߟ৻߁߽ޔߡ߅ߦ♽ߩߎޔߪޘᣂߒኻᄌ឵߇ᚑࠅ┙ߟߎߣࠍ⊒ 60 ߒߚߩߢߡߟߦࠇߘޔႎ๔ߔࠆࠄࠇߘޔߚ߹ޕੑߟߩኻᄌ឵߆ࠄዉ߆ࠇࠆޔ᭽ߥޘ⒎ᐨࡄࡔ࠲㑆ߩኻᕈࠃ߅ޔ ߮࠲ࡔࡄ࡞࠺ࡕޔⓨ㑆ߦ߅ߌࠆኻᄌ឵ߩ᭴ㅧߦߟߡㅀߴࠆ⚿ߩߘޔߦࠄߐޕᨐߩㆡ↪ߣߒߡޔ4 ࠬࡇࡦᓴⅣ ⋧↪ࠍ߽ߟ 2 ᧄ㎮᪽ሶ♽ߩၮᐩ⁁ᘒ⏛႐⋧࿑ߦߟߡ⼏⺰ߔࠆޕ Oral 11/29/P11 ༊ޭಎঊͬဥ̞̹ TbMnO3 ͈ঽࢹܨ௮ͅݪࡄ̳ͥ۾ ᧻↰ 㓷ޔ᫃ᧄ ੫৻ޔᱞ↰ ోᐽޔടୖ ਭޔਃ ↱૫ 1ޔศỈ ⧷᮸ 1 ᧁޔ 2ޔචୖ ᅢ♿ 3 㧔ේሶജᯏ᭴ޔ1 ᧲ᄢ‛ᕈ⎇ޔ2Bell ⎇ޔ3 ᧲ᄢᎿ㧕 TbMnO3 ߪૐ᷷ߢᒝ⺃㔚ᕈߣᒝ⏛ᕈ߇ሽߔࠆࡑ࡞࠴ࡈࠚࡠࠗ࠶ࠢ‛⾰ߩ৻⒳ߢࠆ⎇ߩߢ߹ࠇߎޕⓥߦࠃࠆߣޔ TN=42K ߢ SDW ⒎ᐨ ࠦ࠾ࠕ᭴ㅧࠍ␜ߒޔTc=28K એਅߢᬦࠬࡄࠗ࡞ࠬࡇࡦ᭴ㅧࠍ␜ߔߎߣ߇␜ߐࠇߡࠆޕ ߹ߚޔᒝ⺃㔚ᕈߪ Tc એਅߢ⊒㆐ߔࠆޕ ᭂਛᕈሶߪ⏛ᕈਛߩ⏛᳇ࡕࡔࡦ࠻ߩᣇะࠍ⚦ߦ⺞ߴࠆߩߦ↪ߢࠆᦨޔߦ․ޕㄭ㐿⊒߇ㅴࠎߢࠆਃᰴర ᭂਛᕈሶ⸃ᨆᴺࠍ↪ࠆߎߣߦࠃࠅࡦࡇࠬ࡞ࠗࡄࠬޔ᭴ㅧߦ㑐ߔࠆ⚦ߥᖱႎࠍᓧࠆߎߣ߇᧪ࠆޕᚒޔߪޘਃᰴర ᭂਛᕈሶ⸃ᨆᴺࠍ↪ߡ TbMnO3 ߩ⏛᳇᭴ㅧࠍ⚦ߦ⺞ߴߚ⚿ߩߘޕᨐ⏛ޔ᳇᭴ㅧ߇ Tc એਅߢᓢ ߦޘSDW ᭴ㅧ ኈᤃ ゲߪ b ゲ࡞ࠗࡄࠬࠄ߆⊛ࠣࡦࠫࠗޔ᭴ㅧ ኈᤃ㕙ߪ bc ゲޔXY ⊛ߦォ⒖ߔࠆߎߣ c ᚑಽ߇᷷ᐲᷫዋߣߣ߽ߦᓢߦޘ Ⴧടߔࠆޔᬦࠬࡄࠗ࡞᭴ㅧߩਥゲ߇᷷ᐲᷫዋߣߣ߽ߦ b ゲ߆ࠄ࿁ォߔࠆߎߣ╬ࠍ␜ߒߚޕ Oral 11/29/P12 Ψΐ;θॸاࠏ̤̫ͥͅၾঊΑάϋ࢘ض ዊ㊁↰ 㓷㊀㧔╳ᵄᄢᢙℂ㧕 ࡃ࠽ࠫ࠙ࡓ㉄ൻ‛♽ߪ㊂ሶലᨐߩᒝߊࠇࠆ‛⾰ࠍᢙᄙߊߔࠆ⚿ޕ᥏᭴ㅧߩ♖ኒቯ߅ࠃ߮⒳‛ߩޘᕈ᷹ቯࠍㅢߒߡ ᓧࠄࠇߚᦨㄭߩᚑᨐࠍ◲ẖߦ߹ߣޔᓟ⸃ߐࠇࠆߴ߈ታ㛎⊛ޔℂ⺰⊛㗴ࠍࠃࠅᄙߊ♽ࠍ⚫ߔࠆ㧦1ࠬࡇࡀ ࡞ᩰሶ MV2O4 ߩᡆ 4 ㊂ࡕ࠺࡞ߣห᭽ߦޔਃⷺᩰሶ MVO2 ߩᏱ⏛ᕈ⋧ߦኻߒߡᡆ 3 ㊂ࡕ࠺࡞ࠍឭ᩺ߒ゠ޔ⒎ᐨ㗴 ࠍߥ߇ࠄૐ᷷⒎ᐨ⋧߳ߩォ⒖ᯏ᭴ࠍᬌ⸛ߔࠆޕ2࠳ᩰሶ㑆ߦࠫࠣࠩࠣဳ⋧↪߇߈߁ࠆ࠻ࠬᩰሶ MxV2O5 ߦ߅ߌࠆࡦࠣ 2 ㊂߅ࠃ߮ 1 ᰴరᦧ㎮ဳ 2 ㊂ޔਗ߮ߦ㑐ㅪᩰሶ MVnO2n+1 ߦ߅ߌࠆᒝ⏛ᕈ n = 1ޔ ᒝ⏛ᕈ⋧ n = 3╬ߩ⒎ᐨ⋧ߦߟߡ⠨ኤߔࠆޕ3㊂ሶࠬࡇࡦലᨐࠍ␜ߔ‛⾰ߩਛߦߪ⚿ޔ᥏᭴ㅧ߿㔚ሶ㑆⋧↪ߦᔕ ߓߡ 2 ᰴ㔚ᳰ߿ᾲ㔚ᄌ឵╬ߩᯏ⢻ࠍߔࠆ߽ߩ߇ࠆߩࠄࠇߘޕਛ߆ࠄ M1+xV3O8 ߅ࠃ߮ⶄว⚿᥏ဳ CuxV4O11 ߩᕈ⾰ߦ ߟߡ⚫ߔࠆޕ A1 ֚݀ষࡓΨσΠࣣا BaCo2V2O8 ͈ޑঽાঽ ᧁ ዏᰴ㇢㧔㒋ᄢᭂ㒢ࡦ࠲㧕 BaCo2V2O8 ߪ CO2+ ߇⏛ᕈࠍᜂ߁ᡆ৻ᰴరᒝ⏛ᕈߢޔ㔖⏛႐ߢߪ 5.4K ߢ㐳〒㔌⒎ᐨߔࠆߎߣ߇⍮ࠄࠇߡࠆ߇ޔ ⏛႐ࠍട߃ࠆߣ⏛႐⺃ߦࠃࠆ⒎ᐨ-ή⒎ᐨォ⒖ࠍ␜ߔ⏛ߜࠊߥߔޕൻኈᤃゲߢࠆ c ゲᣇะߦ⏛႐ࠍട߃ࠆߣ 4T ઃㄭ ߢ⏛᳇ォ⒖߇↢ߓࠆ߇ߩߎޔォ⒖⏛႐એߢ⏛᳇⒎ᐨ߇ᶖᄬߔࠆߎߣ߇ᦨㄭߩ 1.8K ߹ߢߩᲧᾲ᷹ቯߢ␜ߐࠇߚޕᚒߪޘ ߎߩォ⒖ߩᯏ᭴ߦ㑐ߒߡ⍮ࠍᓧࠆߚޔ55 T ߩࡄ࡞ࠬ⏛႐ࠍ↪ߚᒝ⏛႐⏛ൻߣ ESR ᷹ቯࠍⴕߞߚߩߢߘߩ⚿ᨐߦߟ ߡ⊒ߔࠆޕ᷹ቯ⚿ᨐߪ⒎ᐨή⒎ᐨォ⒖߇ S=1/2XXZ ᒝ⏛ᕈ㎮ߩ㊂ሶ⋧ォ⒖ߣ㑐ଥߒߡࠆߎߣࠍ␜ໂߒߚޕ 61 A2 ݀ 1 ষࡓޑঽΧͼΔϋασΈ࿅߿̤̫ͥͅङۼા߃য̷͈͂٨ၻ ᩊፒ ᓃ㧔᧲ᄢᎿ㧕 ᡆ 1 ᰴరᒝ⏛ᕈߪ ޔᒙ㎮㑆⋧↪ߩലᨐߦࠃࠅޔૐ᷷ߢ㐳〒㔌⒎ᐨࠍ␜ߔߎߣ߇⍮ࠄࠇߡࠆޕ↰ࠄߦࠃ ࠅ⇇⥃ޔ᷷ᐲߩ㎮㑆⋧↪ଐሽᕈ߇ߩࡦࡇࠬޔᄢ߈ߐߦࠃࠄߥ➅ࠅㄟ߹ࠇߚ㈩ᢙࠍ↪ߚ㎮㑆ᐔဋ႐ㄭૃߢޔቯ㊂ ⊛ߦ߽ࠃߊ⸥ㅀߐࠇࠆߎߣ߇ᢙ୯⸘▚ߦࠃߞߡ⊒ߐࠇߚޕ ߘߎߢޔᚒ⇇⥃ߪޘ᷷ᐲߣ⇣ߥࠆ᷷ᐲ㗔ၞߢࠆ⛘ኻ㔖ᐲߦ߅ߡޔloopcluster ㊂ሶࡕࡦ࠹ࠞ࡞ࡠᴺࠍ↪ߚ⸃ᨆࠍ ⴕߞߚ⚿ߩߘޕᨐޔၮᐩ⁁ᘒߦ߅ߌࠆ⥄⊒⏛ൻߩᄢ߈ߐߩ㎮㑆⋧↪ଐሽᕈߦߟߡ߽➅ࠅㄟ߹ࠇߚ㈩ᢙࠍ↪ߚ㎮ ᐔဋ႐ㄭૃߦࠃࠅቯ㊂⊛ߦ⸥ㅀߐࠇࠆߎߣ߇⊒ߐࠇߚޔߦࠄߐޕᐔဋ႐ㄭૃ⥄ߩᡷ⦟ߣߒߡࡌ࠹ဳߩᐔဋ႐ㄭૃ ㎮㑆ࡌ࠹ㄭૃࠍߎߩ♽ߦኻߒߡ⹜ߺߩဳࠬࠗࡢޔᐔဋ႐ㄭૃߣห᭽ߩ⚿ᨐࠍᓧߚ ⺋Ꮕߪ 75㧑ᡷༀޕ ⻠Ṷߢߪߎߩᣂߒࡌ࠹ဳߩㄭૃࠍࡦ࠳ࡓࡀࠬߩࠆࠬࡇࡦ♽ߦㆡ↪ߒߚ⚿ᨐߦߟߡ߽⚫ߒߚޕ A3 ඵষࡓୃ༷ڒঊঽఘ(CuBr)Sr2Nb3O10 ͈ঽ ㄞᧄ ศᑝ㧔੩ᄢℂ㧕 ૐ᷷วᚑᴺߩ৻ߟߢࠆࠗࠝࡦ឵ᔕߪޔㅢᏱߩ࿕⋧ᔕߢߪᒻᚑߒᓧߥ᭴ㅧࠍᜬߞߚᣂߒ⏛ᕈࠍวℂ⊛ߦഃ ࠅߔߎߣ߇ߢ߈ࠆޕ࿁ޔᲣߢࠆਃጀߩ Dion-Jacobson ဳጀ⁁ࡍࡠࡈࠬࠞࠗ࠻ RbSr2Nb3O10CuBr2 ࠍࠗࠝࡦ ឵ߔࠆߎߣߦࠃߞߡޔੑᰴరᱜᣇᩰሶࠍᜬߟ(CuBr)Sr2Nb3O10 ࠍᣂߚߦวᚑߒߩߘޔᏪ⏛₸⏛ޔൻޔᲧᾲޔμSRޔਛᕈሶ ࿁᛬ߩ᷹ቯࠍⴕߞߚ⏛ࡠޕ႐ਅߩᲧᾲ᷹ቯߢߪޔ9.1K ߣ 7.3K ߦㅙᰴ⋧ォ⒖ࠍ␜ߔ⇣Ᏹ߇ࠄࠇޔૐ᷷ߩ⋧ォ⒖ߪ ⏛᳇⋧ォ⒖ߢࠆߎߣ߇⏛ൻ₸ޔμSR ߩ⚿ᨐࠃࠅ␜ໂߐࠇࠆ⥝ߦࠄߐޕᷓߎߣߦޔᒝ⏛႐⏛ൻ᷹ቯߢ 1/3 ࡊ࠻ ߢ᷹ⷰߐࠇߚߪࠇߎޕੑᰴరᱜᣇᩰሶᒝ⏛ᕈߦߣߞߡ੍ᦼߒᓧߥ․⇣ߥ⽎ߢࠆޕ A4 CuB2O4 ͈ࣞਔ෨ ESR ⮮↰ ᢅਯ㧔ᄢ㆙⿒ࡦ࠲㧕 CuB2O4 ߪޔૐ᷷ߢㅙᰴ⋧ォ⒖ࠍ␜ߔ‛⾰ߢࠅޔኻ⒓ᕈ឵⋧↪߇ߘߩ⏛ᕈߦ㊀ⷐߥᓎഀࠍᨐߚߒߡࠆޕ TN = 21K ߢᒙᒝ⏛ᕈォ⒖ ߦࠄߐޔT*=10K ߢਇᢛวࠞࠗ࡞ⲷᣓ⏛ᕈ߳ߣォ⒖ߔࠆ ߚ߹ޕT*ㄭறߢߪ B//a ߩ⏛ൻ₸ߦ ⇣Ᏹ߇ࠇࡦ࠻࠰࡞ࠗࠞޔᩰሶࡕ࠺࡞ߦࠃࠆ⺑߇ߥߐࠇߡࠆޕᚒࠆߌ߅ߦ⾰‛ߩߎߪޘㅙᰴ⋧ォ⒖⽎ߩℂ⸃ߣ ࠞࠗ࡞⏛ᕈߦ․ߥ⽎ߩ⊒ࠍ⋡ᜰߒ ESR ᷹ቯࠍⴕߞߡࠆޕ᷷ᐲ 2K ߩⲷᣓ⏛ᕈ⋧ߦ߅ߡޔᣢߦႎ๔ߐࠇߡ ࠆᏱ⏛ᕈ㡆ߣᣂߚߦ⚂ 180GHz ߩࡠ⏛႐ࠡࡖ࠶ࡊࠍߔࠆ 2 ߟߩ ESR ࡕ࠼ࠍ᷹ⷰߒߚ ࠄࠇߎޕ2 ߟߩ ESR ࡕ࠼ߪ⚿ޔ᥏ቇ⊛ߦ⇣ߥࠆ 2 ߟߩ㕖╬ଔߥ㌃ࠨࠗ࠻ߦ߅ߌࠆᏱ⏛ᕈ㡆ߣⲷᣓ⏛ᕈ㡆ߢࠆߣ⠨߃ߡࠆ⻠ޕṶߪޔ ⸃ᨆߩ⚿ᨐᓧࠄࠇࠆ឵⋧↪ߩᄢ߈ߐࠍ⚿᥏᭴ㅧߣ⏛᳇⋧࿑ߣᲧセߒߥ߇ࠄ⼏⺰ࠍㅴࠆ੍ቯߢࠆޕ A5 ၾঊΑάϋࠏ̤̫ͥͅାࣣ-ାࣣ֊ ፉ 㓉ᶈ㧔Ꮊᄢℂ㧕 ㊂ሶࠬࡇࡦ♽ߦ߅ߡߒ߫ߒ߫ࡈࠬ࠻࡚ࠪࡦߩലᨐߦࠃࠅޔ㕖ᢛวߥή⒎ᐨ⁁ᘒߣ߁․ᱶߥ⁁ᘒ߇ࠇࠆߎޕ ࠇߪㅢᏱߩ⋧㑐㑐ᢙࠍ⺞ߴࠆߣޔᜰᢙ㑐ᢙ⊛ߦᷫߒ߆ߟᄌ⺞ᵄᢙߩᝄേ߇߆߆ߞߚᒻߣߒߡߣࠄ߃ࠄࠇࠆޕ႐ߩℂ⺰⊛ ߥ⠨ኤ߆ࠄ⋧㑐㑐ᢙߣേ⊛ߥ⋧㑐㑐ᢙߣߩ㑐ଥ߇ߐࠇࠆ߇ߦࠄߐޔૐബߩࠛࡀ࡞ࠡࠬࡍࠢ࠻࡞ߣߩ㑐ଥ߽ߖ ࠆߩ࡞࠻ࠢࡍࠬࠡ࡞ࡀࠛߡߞ߇ߚߒޕᝄ⥰ࠍ⺞ߴࠆߎߣߦࠃࠅ⋧ޔ㑐㑐ᢙߩᝄ⥰ߩ੍᷹߇ࠆ⒟ᐲน⢻ߢࠆ⑳ޕ ߣ㊁᳁ ᄢߦࠃࠆ⎇ⓥ[13]ߦ߅ߡ⁁ࠫ࠶ࠛޔᘒࠍ↪ߚ◲ଢߥᣇᴺߦࠃࠅᢛว㕖ᢛวㆫ⒖ࠍ⺞ߴޔᄌ⺞ᵄᢙ߮ 62 ⋧㑐㐳ߩᝄ⥰ߦߟߡ⋥ޔធ⋧㑐㑐ᢙࠍ⸘▚ߒߚ߽ߩ[4]ߣ consistent ߥ⚿ᨐࠍᓧߚ৻ߩߘޕㅪߩ⎇ⓥᚑᨐߦߟߡ⻠ Ṷߔࠆޕ [1] Nomura and Murashima, J. Phys. Soc. Jpn. Suppl., Vol. 74, p. 42, 2005. [2] Murashima and Nomura, Phys. Rev. B, Vol. 73, p. 214431, 2006. [3] Murashima and Nomura, J. Phys. Cond. Matt., to be appeared. [4] Schollwock et al, Phys. Rev. B, Vol. 53, p. 3304, 1996. A6 ۪ેΙͺΐσρΐσࠫએ̤̫ͥͅΑάϋΆλΛίેఠ ⮮↰ ᷤ㧔ฬฎደᄢℂ㧕 Ⅳ⁁࠴ࠕࠫ࡞ࠫࠞ࡞⺃ዉߪ⥝ᷓ⏛᳇ߥࠄ߮ߦવዉേޔ᭴ㅧ⋧ォ⒖╬ࠍ␜ߔߎߣ߆ࠄਥߦൻቇߩಽ㊁ߢᦨㄭᵈ ⋡ࠍ㓸ߡࠆޕᚒⷺࡦࡇࠬߪޘㆇേ㊂㊂ሶᢙ S = 1/2 ࠍߔࠆ⏛ᕈಽሶࠞ࠴ࠝࡦ BBDTA+߇ޔኻࠕ࠾ࠝࡦߩ⒳㘃߿⚿ ᥏ൻ᧦ઙߦࠃߞߡޔੑ㊂ޔ2 ⿷ਗ߮ߦ 3 ⿷ࠬࡇࡦ࠳ޔ㎮⁁ޔੑᰴᱜᣇᩰሶߣߞߚ⏛᳇ࡀ࠶࠻ࡢࠢ᭴ㅧࠍᒻᚑߒޔ ᒝ⏛ᕈォ⒖ޔᒝ⏛ᕈ⋧ォ⒖ޔspin-Peierls ォ⒖ߥߤᄙᓀߥ⏛᳇േࠍ␜ߔߎߣࠍߒߡࠆߪ⟲⾰‛ߩߎޕᄙᰴర⏛ ᳇ࡀ࠶࠻ࡢࠢࠍߔࠆ㊂ሶࠬࡇࡦ♽ࠍឭଏߔࠆ߽ߩߣᦼᓙߒߡࠆޕ ᧄ⊒ߢߪ 3 ᰴరࡀ࠶࠻ࡢࠢ᭴ㅧࠍᒻᚑߒߡߥ߇ࠄޔ⏛ᕈၮᐩ⁁ᘒࠍߔࠆ BBDTA+Ⴎ⚿᥏ߩ᭴ㅧߣ⏛᳇⊛ᕈ ⾰ߦߟߡ⚫ߔࠆ੍ቯߢࠆޕ A7 ঽાಎ͈ΑάϋΙνȜῄ̤̫ͥα·Πσͼρσಉ੬͂ಱזρΛΞͻϋΐλȜסఘ͈ވం ⮮ ᱜኡ㧔ේሶജᯏ᭴㧕 㒢ᧄߩᒝ⏛ᕈ㎮߇⚿วߒߚࠬࡇࡦ࠳ᮨဳߢ⸥ㅀߐࠇࠆ⏛ᕈߪᢙᄙߊሽߒᄙߊߩታ㛎ℂ⺰⎇ⓥ߇ᚑߐࠇߡ߈ ߚޕᣣߢߪࠬࡇࡦ࠳ߩၮᧄ⊛ᕈ⾰ߪ㕖Ᏹߦ⦟ߊℂ⸃ߐࠇߡࠆ ࡦࡇࠬޕz ゲࠅߩ U(1)ኻ⒓ᕈߣਗㅴኻ⒓ᕈࠍ߽ ߟࠡࡖ࠶ࡊߩࠆࠬࡇࡦ࠳ߩ৻⥸⊛․ᓽߩ 1 ߟߣߒߡޟz ゲᣇะߦ⏛႐ࠍශടߒߡࠡࡖ࠶ࡊࠍߟ߱ߔߣኻ⒓ᕈߩ⎕ࠇ ߇ߥᦺ᳗࠶࠹ࠖࡦࠫࡖᶧ⋧߇ࠇࠆ߇ߣߎ߁ߣޠ⍮ࠄࠇߡࠆޕᚒޔߪޘ3 ᧄ㎮ࠬࡇࡦ࠳ߩ⥄ὼߥᒛߢ ࠆࠬࡇࡦ࠴ࡘࡉ ┵ߩ 2 ᧄ㎮ߩ㑆ߦ߽ᒝ⏛ᕈ⚿วࠍട߃ߡᦼႺ⇇᧦ઙࠍ⺖ߒߚ࠳ࠍૐࠛࡀ࡞ࠡലℂ⺰ ߩᣇᴺߦၮߠߡ⸃ᨆߒߚ⚿ߩߘޕᨐߪߣ♽࠳ࡦࡇࠬ ߪߡ߅ߦࡉࡘ࠴ࡦࡇࠬޔኻᾖ⊛ߦ⏛႐⺃ᦺ᳗࠶࠹ࠖ ࡦࠫࡖᶧ⋧ߩਛߦࡌࠢ࠻࡞ࠞࠗ࡞⒎ᐨ߇㓝ࠇߡࠆߎߣ߇ಽ߆ߞߚ࡞ࠗࠞߩߎޕ⒎ᐨߪ㎮㑆ᣇะߩࡄ࠹ࠖኻ⒓ ᕈߩ⎕ࠇࠍ߁ޕ [1] M. S and T. Sakai, cond-mat/0611549 (accepted to PRB). [2] M. S, cond-mat/0612165. A8 ։༷എ S=2 Αάϋङ̤̫ͥͅ 1/2 ঽاίρΠȜ ችፒ ኡ㧔ጟጊᄢℂ㧕 ৻ᰴర㊂ሶᒝ⏛ᕈߢߪᒝ㊂ሶࠁࠄ߉ߩߚߦ㊂ሶ♽․ߩ⽎߇ߒ߫ߒ߫⊒ߔࠆޕᒝ⏛႐ਛߢ࠶ࡖࠡࡦࡇࠬޔ ࡊ߇⺃ߐࠇ⏛ޔൻᦛ✢ߦᐔမߥ㗔ၞ߇ࠇࠆ⏛ൻࡊ࠻ߩ㗴ߪૐᰴర㊂ሶࠬࡇࡦ♽ߦ߅ߌࠆౖဳ⊛ߥ㊂ሶࠁࠄ߉ߩ 㗴ߩ৻ߟߢޔታ㛎ޔℂ⺰ߩਔ㕙߆ࠄ♖ജ⊛ߦ⎇ⓥ߇ߥߐࠇߡࠆޕ ⑳ߚߜߪ⏛ޔ႐ਛߦ߅ߌࠆ single-ion ဳ⇣ᣇᕈࠍ߽ߟ S=2XXZ ㊂ሶࠬࡇࡦ㎮ߩၮᐩ⁁ᘒࠍࡌ࡞ࠬࡍࠢ࠻ࡠࠬࠦࡇ 63 ߩᣇᴺࠍ↪ߡ⺞ߴ⋧ޔ࿑ࠍቯߒߚޕ㘻⏛ൻߩඨಽߩ୯ࠍᜬߟ႐วߩ⋧࿑ߪޔgap ࠍᜬߟ 2 ߟߩ⋧ޔLarge-D ⋧ޔ magnetizedVBS ⋧ ߣޔgapless ߩ no-plateau ⋧߆ࠄᚑࠅ┙ߟߎߣ߇ಽ߆ߞߚ⚿ߩߎޕᨐߪޔS=2 ࠬࡇࡦ㎮ߢ 1/2 ⏛ൻࡊ ࠻߇ߔࠆߣ߁ޔOshikawa-Yamanaka-Affleck ߩࡊ࠻᧦ઙߣᢛวߔࠆޕ A9 ϋΗϋΈσιϋΠ֚͂ষࡓၾঊΑάϋࠏ͈ܖೲેఠ የฎ ፏ㧔ጟጊᄢℂ㧕 ㊂ሶࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ߪ㊂ሶᖱႎߥߤߩಽ㊁ߢᵈ⋡ߐࠇߡࠆ㊂ሶജቇ․ߩᕈ⾰ߢࠆᦨޕㄭߩߎޔᕈ⾰ࠍ‛ᕈಽ ㊁ߦ․ޔ㊂ሶࠬࡇࡦ♽ߩ⎇ⓥߦ↢߆ߔ⹜ߺ߇ⴕࠊࠇߟߟࠆޕ ᧄ⎇ⓥߢߪޔ㊂ሶᖱႎಽ㊁ߥߤߢ↪ࠄࠇߡࠆࠍޠࡇࡠ࠻ࡦࠛࡦࡑࠗࡁࡦࠜࡈޟዉߒߩߘޔᝄࠆ⥰߆ࠄૐᰴ ర㊂ሶࠬࡇࡦ♽ߩၮᐩ⁁ᘒߦߟߡߩᖱႎࠍᒁ߈ߒߚޕ࿁ߪ৻ᰴర XXZ ࠬࡇࡦ㎮ߦߟߡߎߩ㊂ࠍ෩ኒኻⷺൻߦ ࠃߞߡ⸘▚ߒޔᰴㄭធ⋧↪߿⇣ᣇᕈࠛࡀ࡞ࠡߦߤߩ᭽ߦଐሽߔࠆ߆ࠍ⺞ߴߚ⻠ޕṶߢߪߘࠇࠄߩ⚿ᨐ߆ࠄᓧࠄࠇࠆ ᖱႎߦߟߡ⼏⺰ߔࠆޕ A10 ΧσΟϋঽఘ NDMAP ͈ঽܨ႗͈ܳڙഽջం ᨰᧁ 㓉ᚑ㧔㒋ᄢᭂ㒢ࡦ࠲㧕 S =1 ᡆ৻ᰴరࡂࠗࡦࡌ࡞ࠣᒝ⏛ᕈߩ NDMAP ൻቇᑼ㧦Ni(C5H14N2)2N3PF6ߢߪ(ࡦࠝࠗ࡞ࠤ࠶࠾ޔNi2+, S =1߇ ࠕࠫ࠼ၮࠍߒߡ c ゲᣇะߦ㎮ࠍᒻᚑߔࠆ ߚ߹ޕNi ࠗࠝࡦߪ⓸⚛ߦ࿐߹ࠇߚ㕙ࠍࠅߩߎޔ㕙ߩਥゲ߇ c ゲ ߦኻߒߡ⚂ 16qߚ 2 ⒳㘃ߩ㎮߇⚿᥏ਛߦሽߔࠆߩߎޔߚߩߘޕੑ⒳㘃ߩ㎮ߦኻߒߡหᤨߦ⚿᥏႐ߩਥゲߣᄖㇱ ⏛႐ࠍᐔⴕߦߔࠆߎߣߪ᧪ߥ⚿ߩߎޕ᥏᭴ㅧࠍᤋߒߚ⥝ᷓታ㛎⚿ᨐߣߒߡޔc ゲ߆ࠄ⚂ 16qߌߡ⏛႐ࠍ߆ ߌߚਛᕈሶᢔੂߩታ㛎߇ࠆߩࠇߙࠇߘޔߣࠆࠃߦࠇߘޕ㎮ߏߣߦ⇣ߥࠆ⏛႐ߢ⏛᳇⒎ᐨൻߔࠆߎߣ߇ႎ๔ߐࠇߡࠆޕ ᧄ⎇ⓥߢߪ⚿ޔ᥏ゲߣᄖㇱ⏛႐ߩ㑐ଥ߇⏛᳇ബߦߤߩࠃ߁ߦᤋߐࠇࠆ߆ࠍ⺞ߴࠆߚߦ⏛ޔ᳇ബߩⷺᐲଐሽᕈߦߟ ߡવዉࡑࠣࡀ࠶࠻ࠍ↪ߚ ESR ߢ᷹ቯߒߚߩߢߘߩ⚿ᨐߦߟߡႎ๔ߔࠆޕ A11 ݀ 1 ষࡓΧͼΔϋασΈঽఘ β -BBDTAȆGaBr4 ᷡ᳓ ஜ๋㧔ฬฎደᄢℂ㧕 β-BBDTAGaBr4 ߪታ‛⾰ߩਛߢ߽╬ᣇ⊛ߥ S=1/2 ࠬࡇࡦࠍᜬߟᯏ⏛ᕈߢࠅޔab 㕙ౝߦ 2 ⒳㘃ߩ 1 ᰴర㎮ Chain I, Chain II߇ߦ㈩⟎ߔࠆ⚿᥏᭴ㅧࠍ߽ߟޕᚒ⏛ߩߎߪޘᕈߩ⏛᳇⊛ߥᕈ⾰ࠍ⺞ߴࠆߚ⏛ޔൻ₸⏛ޔൻ߅ ࠃ߮⏛႐ਛߩᲧᾲߩ᷹ቯࠍⴕߞߚޕ2K એߩ⏛ൻ₸ߪ㎮ౝߦ⋧↪ 2J1=197K Chain I߇ߊ 1 ᰴరᒝ⏛ᕈࡂࠗ ࡦࡌ࡞ࠣ㎮ߣ 2J2=8.7K ChainII߇ߊ 1 ᰴరᒝ⏛ᕈࡂࠗࡦࡌ࡞ࠣ㎮ߩන⚐ߥߣߒߡ⺑ߢ߈ࠆޕJ1 ߪ 100K ߩ ࠝ࠳ࠍᜬߟߩߢޔ᷷ᐲ 10K એਅߩૐ᷷ߢߪᒝ⏛ᕈ㎮ߩ⏛ᕈ߳ߩነਈߪᒝ⏛ᕈ㎮ߦᲧߴήⷞߢ߈ࠆ߶ߤዊߐ߹ޕ ߚᒝ⏛ᕈ㎮ Chain II㑆ߦߊ⋧↪ 2zJ’=0.29K ߦࠃࠆᒝ⏛ᕈォ⒖߇᷷ᐲ 0.4K ߦ߅ߡ᷹ⷰߐࠇߚޕᲧᾲߪᡆ 1 ᰴ ర Heisenberg ᒝ⏛ᕈߩℂ⺰⸘▚ߣቯ㊂⊛ߥ৻⥌ࠍ␜ߔߎߣ߇ࠊ߆ߞߚޕᓥߞߡߎߩ⏛ᕈߪࡂࠗࡦࡌ࡞ࠣࡕ࠺࡞ ߩℂᗐ⊛ߥࡕ࠺࡞‛⾰ߢࠆߣ߃ࠆߩ⋧ߩߎޕਇ⚐‛ലᨐߦߟߡ߽ႎ๔ߔࠆޕ 64 A12 CuB2O4 ͈ಈষഢ֊͂ঽܨ ↰ ᵗ㧔ᄢᎿ㧕 CuB2O4 ߪㅙᰴ⋧ォ⒖ࠍߎߔ⏛ᕈߢࠆ⏛ࡠޕ႐ਛߢ᷷ᐲࠍਅߍߡߊߣޔTN =21K ߢᏱ⏛ᕈ⋧߆ࠄᢛว⋧ߢ ࠆᒙᒝ⏛ᕈ⋧ߦ⋧ォ⒖ࠍߎߔޔߦࠄߐޕT* 9.5K ߢࠬࡇࡦ߇ c ゲᣇะߦⲷᣓࠍ߹ߚਇᢛวߥࡋࠞ࡞⋧ࡋߣੑᐲ⋡ ߩ⋧ォ⒖߇ߎࠆߩࠄࠇߎޕォ⒖ὐߪ⏛႐ࠍ߆ߌࠆ⚿᥏ゲߩᣇะߣߘߩᒝߐߦࠃߞߡᄌൻߔࠆޔߚ߹ޕT* ㄭறߦ߅ߡޔ ࠰࠻ࡦᩰሶߩሽ߽⏕ߐࠇߡࠆޔߡߒߘޕㄭᐕޔᣂߚߥၮᐩ⁁ᘒߩሽ߇ႎ๔ߐࠇߩߘޔ⢛ᓟߩ‛ℂߦߟߡ㑐ᔃ ߇ᜬߚࠇߡࠆߥ߁ࠃߩߎޕ᭽⋧ߥޘォ⒖߇᷹ⷰߐࠇߡࠆ CuB2O4 ߩࠬࡇࡦ࠳ࠗ࠽ࡒࠢࠬߩᖱႎࠍᓧࠆߚߦޔᚒߪޘ CuB2O4 ߩන⚿᥏⹜ᢱࠍ↪ߡ 11B-NMR ታ㛎ࠍⴕߞߡࠆޕᣂߚߥᖱႎߣߒߡޔESR ታ㛎ߦ߅ߡ⏛႐ࠍ⚂ 4T ⒟ c ゲᣇะߦࠍශടߒߚߣ߈ ߘࠃ߅ޔ5 6K ߢᒝ⺃㔚ォ⒖ࠄߒ߈ᝄ⥰ࠍߒߡࠆߣ߁ႎ๔߇ߥߐࠇߚ⋧ߩߎޕォ⒖ࠍ NMR ታ㛎߆ࠄ᷹ⷰߒ⚿ߩߘޔᨐߦߟߡႎ๔ߔࠆޕ A13 ࡣങഎ̈́ڒঊ͈ুဇഽ͚ͬ܄ၾঊΑάϋࠏ͈ၾঊκϋΞσυΏηντȜΏοϋ 㜞ᯅ ᱜౖ㧔ᄢ㒋Ꮢᄢ㧕 ࠬࡇࡦࡄࠗࠛ࡞ࠬォ⒖ߦߪ㐳⎇ⓥߩᱧผ߇ࠆ߇⎇ࠍ⽎⇇⥃ߩߘޔⓥߒߚߪዋߥޔߪߜߚ⑳ޕSSE ࡕࡦ࠹ࠞ ࡞ࡠᴺߦᡷ⦟ࠍട߃ࠆߎߣߦࠃࠅޔ㊂ሶࠬࡇࡦ߇ฎౖ⊛ᩰሶߣ⚿วߒߚ♽ࠍ㊂ሶࡕࡦ࠹ࠞ࡞ࡠߢขࠅᛒ߁ᣇᴺࠍ㐿⊒ߒߚޕ ߎߩᣇᴺࠍᡆ৻ᰴరࠬࡇࡦᩰሶ♽ߦㆡ↪ߒߡޔ㒢᷷ᐲ⋧࿑ࠍᚑߔࠆߣߣ߽ߦޔᩰሶ⋧㑐㑐ᢙߩ㒢ࠨࠗ࠭ࠬࠤ ࡦࠣ⸃ᨆࠍⴕ ߇♽ߩߎޔBlume-Capel ࡕ࠺࡞ Blume-Emery-Griffiths ࡕ࠺࡞ߩ․ߥᒻ ߣหߓ࡙࠾ࡃࠨ࠹ࠖ ࠢࠬߦዻߔࠆߎߣ߇ࠊ߆ߞߚᦨޕㄭߪേ⊛⥃⇇ᜰᢙߩ⸃ᨆࠍㅴߡࠆߩߢ߇▚⸘ޔ㑆ߦว߃߫ႎ๔ߒߚ⎇ߩߎޕⓥ ߪ⨹㊄ⷡ ᄢ㒋Ꮢ┙ᄢቇතᬺޔฎ㊁㔚᳇ޔኹ┨ ᄢ㒋Ꮢ┙ᄢቇޔട⮮ጪ↢ ᧲ᄢ‛ᕈ⎇ߣߩห⎇ⓥߢࠆޕ A14 S=1 ΑάϋΘͼζȜࠏ Ba3Mn2O8 ͈࢜দၳ͈ޑঽા ESR ᄢਭ 㧔ᚭᄢಽሶࡈࠜ࠻ࠨࠗࠛࡦࠬࡦ࠲㧕 TlCuCl3 ߦઍߐࠇࠆ⏛႐ਛ⏛᳇⒎ᐨൻߦᄢᄌᵈ⋡߇㓸߹ߞߡࠆ ߪߢ♽ߩࠄࠇߎޕS=1/2 ߇࠳ࠗࡑࠍᒻᚑߒߡ ࠆޕᚒ ߪޘS=1 ߩ࠳ࠗࡑ♽ߦ߅ߌࠆ⏛႐ਛ⏛᳇⒎ᐨߩ᷹ⷰࠍ⁓ߞߡ Mn ࠳ࠗࡑ‛⾰ࠍ⺞ߴߚޕBa3Mn2O8 ߪ⏛ᕈࠍ ᜂ߁ Mn5+ࠗࠝࡦ S=1㑆ߩᒝ⏛ᕈ⊛ߥ⋧↪ߦࠃࠅ S=1 ߩ࠳ࠗࡑࠍᒻᚑߔࠆ࠳ࠗࡑ♽ߢࠆ⚿ޕ᥏᭴ㅧ߆ࠄ Mn5+ࠗࠝࡦ߇ c 㕙ౝߦਃⷺᩰሶࠍᒻᚑߒߚ᭴ㅧࠍ߽ߟޕၮᐩ⁁ᘒߣബ⁁ᘒ㑆ߦߪࠛࡀ࡞ࠡࠡࡖ࠶ࡊ߇ሽߒ⏛ޔൻ ᷹ቯ߆ࠄ Egap=12.2K ߣⓍ߽ࠄࠇߡࠆޕᚒ⹜ᧃ☳ߦߢ߹ࠇߎߪޘᢱߩᒝ⏛႐ ESR ࠍⴕߥ✢ޔߩ⏛႐ଐሽᕈ߇ ࠡࡖ࠶ࡊ߇ẩࠇࠆ⏛႐ࠃࠅᒝ⏛႐ߢ߶߷৻ቯߦߥࠆߎߣࠍߒߡࠆ⹜ᧃ☳ޔߒ߆ߒޕᢱࠍ↪ߡࠆߩߢ g ୯ߩ ಽᏓߣๆ✢ࠍ⍎ߦಽ㔌ߔࠆߎߣ߇ߢ߈ߥޕ࿁⏛ޔ႐ਛ㈩ะ⹜ᢱࠍᚑߒๆ✢ߩ⏛႐ਛଐሽᕈߩ᷹ቯࠍ⹜ߺ ߚ⚿ᨐࠍႎ๔ߔࠆ੍ቯߢࠆޕ A15 S=1/2 ֚݀ষࡓޑঽఘ Cu2Cl4ȆH8C4SO2 ͈ঽࡄݪ ⮮Ỉ ⌀჻㧔ᚭᄢℂ㧕 ᡆ৻ᰴరᒝ⏛ᕈ Cu2Cl4H8C4SO2 ߪࠬࡇࡦࠡࡖ࠶ࡊࠍᜬߜ⏛ޔ႐ࠍශടߔࠆߎߣߦࠃߞߡ⏛႐⺃⋧ォ⒖ࠍ␜ߔޕ Ꮧ㉼಄ಓᯏࠍ↪ߚ⏛ൻ᷹ቯ߿ޔᒝ⏛႐ ESR ᷹ቯߥߤߦࠃࠅߩ⾰‛ᧄޔૐᰴరᕈ߿ࠠࠬࡦࠪࡠࡖࠫޔ⼱ߩ⋧↪ ߩነਈ߇ࠄ߆ߦߥߞߡ߈ߚߩߢ⚿ߩߘޔᨐࠍႎ๔ߔࠆޕ 65 A16 S=1/2 ݀ 1 ষࡓঽఘ NaTiSi2O6 ͈૧̈́ܗഢ֊ ␉ㇱ ᱜᒾ㧔᧲ᄢ‛ᕈ⎇㧕 S=1/2 1 ᰴర⏛ᕈߦ߅ߡߦߢ߹ࠇߎޔᄙߊߩ⎇ⓥႎ๔߇ࠆޕㄭᐕޔCuGeO3 ߦઍߐࠇࠆࠬࡇࡦࡄࠗࠛ࡞ࠬォ ⒖ߪޔታ㛎ޔℂ⺰ߣ߽ߦ♖ജ⊛ߦ⎇ⓥߐࠇߚޕᚒޔߪޘS=1/2 ᡆ 1 ᰴర⏛ᕈ NaTiSi2O6 ߦ߅ߡ ߘࠃ߅ޔ210K ߢޔ ᩰሶᄌᒻߣߣ߽ߦ⋧ࠆߥߦ࠻࠶ࠣࡦࠪࡦࡇࠬޔォ⒖ࠍ⊒ߒߚޕᒰೋ⋧ߩߎޔォ⒖߽ࠬࡇࡦࡄࠗࠛ࡞ࠬォ⒖ߢߪߥ ߆ߣ⠨߃ࠄࠇߚ߇⎇ޔⓥ߇ㅴߦߟࠇࠬ࡞ࠛࠗࡄࡦࡇࠬޔ৻ޔォ⒖ߦૃߡࠆ߇゠ޔߩ⥄↱ᐲ߇㊀ⷐߥᓎഀࠍᨐߚ ߒߡࠆߣ߁ߎߣ߇ࠊ߆ߞߡ߈ߚ⋧ߩߎޕォ⒖ߪޔS=1/2 ᡆ 1 ᰴర⏛ᕈߦ߅ߡ゠ޔߩ⥄↱ᐲ߇ሽߔࠆ႐วߩᣂ ᄸߥ⋧ォ⒖ߢߪߥ߆ߣ⠨߃ߡࠆޕ A17 ൾˏၾఘέͿςঽङ͈ঽܨ႗ܳ ᄢේ Ả㧔ർᄢℂ㧕 A3Cu3(PO4)4 (A = Ca, Sr ) ߦઍߐࠇࠆᮡ㗴‛⾰ߪޔᐞቇ᭴ㅧ࿃ߩૐᰴరࡈࠚ⏛ᕈߣߒߡᵈ⋡ߐࠇߡ߅ࠅޔ ℂ⺰ࠨࠗ࠼ޔታ㛎ࠨࠗ࠼ᣇ߆ࠄ⋓ࠎߦ⎇ⓥߐࠇߡࠆޕၮᐩ⁁ᘒߦ㑐ߒߡߪ(ޔS,s)=(1,1/2)ࡈࠚ⏛ᕈ㎮ߣߩ㘃ૃ߇ߔ ߢߦᜰ៰ߐࠇߡ߅ࠅ[1]ޔബ⁁ᘒ߹ߢߚਔ‛⾰ߩᲧセߪ㕖Ᏹߦ⥝ᷓߦ․ޕബᯏ᭴ߦ㑐ߒߡߪޔᐞቇ⊛᭴ㅧ ߩᏅ⇣߇㗻ࠍߒߡߊࠆߎߣ߇੍ᗐߐࠇࠆޕᚒࡦࡇࠬޔߪޘᵄℂ⺰ޔ㊂ሶࡕࡦ࠹ࠞ࡞ࡠᴺࠍ↪ߡޔၮᐩ⁁ᘒߦ߅ߌࠆࠬ ࡇࡦ㈩ޔਇ⚐‛ലᨐ⏛ߪߦࠄߐޔ᳇⊛ߥബ᭴ㅧߥߤߩ⚦ࠍ⸃ᨆߔࠆ⻠ᧄޕṶߢߪޔ1㧙1/2 ࡈࠚ⏛ᕈ㎮ߣߩᲧセ ࠍㅢߒߡᮡ㗴‛⾰․ߩᕈ⾰ࠍࠄ߆ߦߒߡࠁߊޕ [1] K. Takano, K. Kubo, H. Sakamoto, J. Phys.: Condens. Matter 8(1996) 6405 A18 K11H[(VO)3(SbW9O33)2]¦27H2O ͂ K12[(VO)3(BiW9O33)2]¦29H2O ͈ޭ೩أȂ ࣞঽા͈́ئယၾ ዊự ⧐మ㧔᧲Ꮏᄢᔕ↪ࡒ࠶ࠢࠬ⎇㧕 ᚒᦨߪߢࡊ࡞ࠣߩޘㄭޔV4+ S=1/2߇ਃⷺᒻࠍ᭴ᚑߒߡࠆൻว‛ K11H[(VO)3(SbW9O33)2]27H2O ൻว‛ 1߅ࠃ ߮ K12[(VO)3(BiW9O33)2]29H2O ൻว‛ 2ࠍวᚑߒޔMagnetization Step Method (MST) ᷹ቯߦࠃࠅޔൻว‛ 1 ߩၮ ᐩ⁁ᘒߪੑߟߩੑ㊀㗄ߢࠅޔൻว‛ 2 ߩၮᐩ⁁ᘒߪ৻ߟߩੑ㊀㗄ߢ᭴ᚑߐࠇߡࠆߣ⠨߃ߡߚߒ߆ߒޕ࿁ߩᾲኈ ㊂᷹ቯߦࠃࠅߩࠇߕޔൻว‛߽ၮᐩ⁁ᘒߪ৻ߟߩੑ㊀㗄ߢ᭴ᚑߐࠇߡࠆߎߣࠍᡰᜬߔࠆ⚿ᨐࠍᓧߚࡦࡇࠬޔߚ߹ޕ㑆 ߦ Dzyaloshinskii- Moriya(DM) ⋧↪߇ߡࠆߎߣ߽ᧄޔ᷹ቯ߆ࠄ⏕߆ߚ⚿ߩࠄࠇߎޕᨐߦߟߡߒߊႎ๔ ߔࠆޕ B1 ΦΑΉȜσౙঊঽ͈೩أঽ௶ܨ ጊญ 㧔᧲ᄢ‛ᕈ⎇㧕 ૐ᷷ߢ㜞ࠬࡇࡦߩၮᐩ⁁ᘒࠍߣࠆ Mn, Fe, Ni ߥߤߩᄙᩭㆫ⒖㊄ዻ㍲ߢߪޔಽሶ 1 ߩᕈ⾰ߦ࿃ߒߡ⏛ൻᦛ✢ߦࡅ ࠬ࠹ࠪࠬࠍ␜ߔ߽ߩ߇ࠅޔන৻ಽሶ⏛⍹ Single Molecule Magnetߣ߫ࠇߡࠆޕᚒޔߪߢࡊ࡞ࠣߩޘMn4 ᩭޔ Mn18 ᩭޔNi4 ᩭߥߤߩᄙጘߦᷰࠆ‛⾰⟲ߦኻߒߡޔᭂૐ᷷᷷ᐲ㗔ၞߩ⏛ൻ᷹ቯ ᵹᏪ⏛₸ޔ㕒⏛ൻ᷹ቯࠍⴕߘߩᕈ ⾰ࠍࠄ߆ߦߒߡ߈ߚ⚿ޕ᥏ౝߢಽሶ㑆ߩ⋧↪߇ᒙߊℂᗐ⊛ߥ SMM ߣߒߡሽߔࠆ Mn4 ᩭ㍲ޔㅒߦනಽሶ⏛⍹ 㑆ߩ⋧↪ߦࠃࠅૐ᷷ߢᒝ⏛ᕈߦࠝ࠳ߔࠆ Mn4 ᩭ㍲ߥߤߩૐ᷷ߦ߅ߌࠆ⏛᳇േߦߟߡႎ๔ߔࠆޕ 66 B2 ள႗͈ܳ८͈߸۾႟ത͂۾ಿ ਛ ৻㧔᧲ᄢ↢↥⎇㧕 ⚛ബߩಽᢔ㑐ଥߩ㔖ὐߩ⯯ㇱߣ⋧㑐㐳ㅒᢙ߇╬ߒߎߣࠍޔ෩ኒߦ⸃ߌࠆᮨဳ ࡂࡃ࠼ᮨဳ[1]ޔS=1/2XYZ ᮨဳ [2]ߦߟߡ⏕ߒߚޕ෩ኒߦ⸃ߌߥᮨဳߦ߅ߡ⚛ⶄޔㆇേ㊂ⓨ㑆ߩಽᢔ㑐ଥߩ㔖ὐࠍല₸⦟ߊតߔߚߩᚻᴺߣߒ ߡޔㆇേ㊂Ṷ▚ሶߦቯ⯯ᢙࡌࠢ࠻࡞ࡐ࠹ࡦࠪࡖ࡞(ig)ࠍઃടߒޔ㊂ሶ♽ࠍ㕖ࠛ࡞ࡒ࠻ൻߔࠆᚻᴺ[3]ࠍ⚫ߔࠆޕg ࠍჇ ߿ߔߎߣߦࠃࠅޔၮᐩ⁁ᘒߣബ⁁ᘒ㑆ߩࠛࡀ࡞ࠡࠡࡖ࠶ࡊ߇ẩࠇޔၮᐩࠛࡀ࡞ࠡ߇ⶄ⚛ൻߔࠆὐ gc ࠍ᳞ࠆߎޕ ߩὐ gc ߪⶄ⚛ㆇേ㊂ⓨ㑆ౝߩ㔖ὐߩ⯯ㇱࠍਈ߃ࠆޕ㒢♽ߦ߅ߡ gc ࠍ᳞ޔή㒢♽ߦᄖᝌߔࠆߎߣߦࠃࠅ⋧㑐㐳ㅒᢙ ࠍᲧセ⊛♖ᐲࠃߊᓧࠄࠇࠆߎߣࠍޔᰴㄭធ⋧↪ߩࠆࡂࠗࡦࡌ࡞ࠣ㎮ߦߟߡ␜ߔޕ [1] Y. Nakamura and N. Hatano, in preparation. [2] K. Okunishi, Y. Akutsu, N. Akutsu and T. Yamamoto, Phys. Rev. B 64(2001) 104432. [3] Y. Nakamura and N. Hatano, Physica B 378-380 (2006) 292, J. Phys. Soc.Jpn. 75 (2006) 114001. B3 Distribution of non-trivial gapless points in single molecule magnets and dynamical driven systems ⢀ ᢘ๋㧔᧲ᄢℂ㧕 ㄭᐕޔታ㛎ᛛⴚߩㅴᱠߦ৻ߟߩಽሶߩ⏛ᕈࠍ᷹ቯߢ߈ࠆࠃ߁ߦߥߞߡࠆޕFe8(S=10)ߦ߅ߡ tunnelsplitting ߇ᮮ⏛႐ߩਅߢᝄേߔࠆߎߣ߇᷹ⷰߐࠇߚޔߪࠇߎޕKramers ߩ❗ㅌߦࠃࠆ߽ߩߢߪߥ㕖⥄ߥ❗ㅌߦࠃࠆ߽ߩߢ ࠆޔߪ⽎ߩߎޕ㊂ሶ⋧ Berry phaseߩᐓᷤലᨐߢࠆߣℂ⸃ߐࠇߡࠆߦࠇߎޕኻߒޔᚒߪޘኻ⒓ᕈߦၮߠߊ⠨ኤ ߆ࠄ߇⽎ߩߎޔੑᰴߩ⇣ᣇᕈࠍᜬߟනಽሶ⏛⍹ߩ႐วߦߪ৻⥸⊛ߦߎࠆߎߣࠍ␜ߒߚߩߢႎ๔ߔࠆᤨޔߚ߹ޕ㑆ߦଐ ሽߔࠆᵹ⏛႐ࠍශടߒߚ႐วޔFloquet Ṷ▚ሶߩ࿕୯ Floquet energy߇❗ㅌߒ߇ࠬࠢࡒ࠽ࠗ࠳ޔᛥߐࠇࠆ⽎߇ ߎࠆߎߣ߇⍮ࠄࠇߡࠆߩߎޕ㗴ߦߟߡ߽ޔ࿕୯ߩ㕖⥄ߥ❗ㅌߣ߁ⷰὐ߆ࠄߩ⠨ኤࠍⴕߥ߁ޕ B4 ၾঊΑάϋࠏ̤̫ͥͅΠευΐσಉ੬͂ϋΗϋΈσιϋΠϋΠυάȜ ᐔ㊁ 㧔᧲ᄢᎿ㧕 ㄭᐕޔฎౖ⊛⒎ᐨᄌᢙߢ߁߹ߊ․ᓽઃߌࠄࠇߕޔ㊂ሶᕈ߇㊀ⷐߢࠆ㊂ሶᶧࠍ࠻ࡐࡠࠫࠞ࡞ߥ⒎ᐨ⋧ߣߒߡߔࠆ ⹜ߺ߇ⴕࠊࠇߡࠆ৻ޕᣇߢㄭᐕ㊂ሶᖱႎ‛ℂߩಽ㊁ߢቯ⟵ߐࠇߚࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ࠛࡦ࠻ࡠࡇ߇㊂ሶᶧߩᄢዪ⊛ ߥ․ᓽઃߌߦ↪ߢࠆߎߣ߇ࠊ߆ߞߡ߈ߚߩߎޕ㊂ߪࡃ࡞ࠢߥ♽ߢߩ㊂ߢࠆߦ߽߆߆ࠊࠄߕޔႺ⇇߇ሽߔࠆߣ߈ߩ ࠛ࠶ࠫ⁁ᘒߩήߣ⋥ធ㑐ଥߒߡ߅ࠅ⁁ࠫ࠶ࠛޔᘒߩήߦኻᔕߒߡ㕖⥄ߥ୯ࠍߣࠆ⎇ᧄޕⓥߢߪ S=1/2 ੑ㊂ࠬࡇ ࡦ㎮߮ Haldane ࠬࡇࡦ♽ߢࠆ S=1 XXZ ࠬࡇࡦ㎮ߩࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ࠛࡦ࠻ࡠࡇࠍᢙ୯⊛ߦ⸘▚ߒ᭽ࠍ⋧ߥޘ ⺞ߴߚ ߚ߹ޕAKLT ࡕ࠺࡞ߩၮᐩ⁁ᘒߢࠆ VBS ⁁ᘒߦኻߒߡᒛߒߚォㅍⴕߩᣇᴺࠍ↪ߡࠛࡦ࠲ࡦࠣ࡞ࡔࡦ࠻ ࠛࡦ࠻ࡠࡇߦߟߡ⼏⺰ߒߚޕ 67 B5 1 GPa ͈́ࣞ͘գޑئঽાˡ˯ˮΏΑΞθ͈ٳอ͂ΑάϋΆλΛίࠏ͈͒؊ဥ ᰞ ᢘඳ㧔ᚭᄢ⎇ⓥၮ⋚㧕 ⏛႐ਛߢ Bose-Einstein ಝ❗ࠍ↢ߕࠆࠬࡇࡦࠡࡖ࠶ࡊ♽ TlCuCl3ޔKCuCl3 ߦ߅ߡߪߘߩജലᨐߦ߽ᄢᄌᵈ⋡߇ 㓸߹ߞߡࠆޕᚒ ߦߢ߹ࠇߎߪޘ1GPa ⒟ᐲ߹ߢߩജਅߢᒝ⏛႐ ESR ᷹ቯ߇น⢻ߥࠪࠬ࠹ࡓࠍ㐿⊒ߒ ߚ߹ޔ0.75 GPa ⒟ᐲ߹ߢߩജ▸࿐ߦ㑐ߒߡߪ 0.01 GPa ⒟ᐲߩ♖ᐲߢセᱜน⢻ߥ ESR ⁛⥄ߩജセᱜᣇᴺࠍ⏕┙ߒߚޕหࠪࠬ࠹ ࡓࠍ↪ߡ KCuCl3 ߩജਅᒝ⏛႐ ESR ࠍ 0.73GPa ߹ߢߩജ▸࿐ޔ16 T ߹ߢߩ⏛႐▸࿐ߢⴕߞߚ⚿ߩߘޕᨐޔၮᐩ ৻㊀㗄߆ࠄബਃ㊀㗄߳ߩ⋥ធㆫ⒖ࠍ᷹ⷰߒޔജߦߞߡࠬࡇࡦࠡࡖ࠶ࡊ߇ᷫዋߔࠆߎߣࠍ⋥ធ⊛ߦ᷹ⷰߔࠆߎߣߦᚑ ഞߒߚ ߦ․ޕ0.73 GPa ߦ߅ߡߪޔᏱਅߢ 630 GHz ⒟ᐲߢߞߚࠡࡖ࠶ࡊ߇ 220 GHz ⒟ᐲߦ߹ߢᷫዋߒߚ߹ޔബ ਃ㊀㗄ߩ Sz = 1 ࡉࡦ࠴߇ၮᐩ⁁ᘒߣࠊࠆ⏛႐ 㧙8Tએߢ BEC ࠍ↢ߓߡࠆߎߣࠍ␜ໂߔࠆ⚿ᨐ߇ᓧࠄࠇߚ⻠ޕ Ṷߢߪߎࠇࠄߩ⚦ߦߟߡႎ๔ߔࠆޕ B6 ςΫϋ߿ၤا Mn2AS4(A = Si, Ge)̤̫ͥͅఉਹႉ࡛ٮય ᄢਠ ⎇㧔᧲ᄢ‛ᕈ⎇㧕 ᣂᄸ⏛ᕈ‛⾰ Mn2AS4 A = Si, Geߩࠬࡇࡦࡈࡠ࠶ࡊ⏛႐ߪ┹⋧ޔว ࡈࠬ࠻࡚ࠪࡦߩᏫ⚿ߣߒߡ⇣Ᏹߥ᷷ᐲᄌ ൻࠍ␜ߔ⚿ߩߘޕᨐޔᓥ᧪‛⾰ߢߪࠄࠇߥᄙ㊀⥃⇇ὐ߇⏛႐᷷ᐲ⋧࿑ߦࠇࠆ⋧ߩߎޕ࿑ߣ⏛᳇ኻ⒓ᕈࠍ↪ߚ⼏ ⺰ߦࠃࠅߩ♽ޔᣂᄸߥ⏛ᕈ㧙2K ⒟ᐲߩ⁜᷷ᐲ㗔ၞߢ᷹ⷰߐࠇࠆᒙᒝ⏛ᕈ㧙߇ℂ⸃ߢ߈ࠆޕ K. Ohgushi, and Y. Ueda, Phys. Rev. Lett. 95, 217202 (2005). B7 S=1 Όι Heisenberg ޑঽఘ m-MPYNNȆBF4 ͈ঽاίρΠȜ ᧻ਅ ℉㧔ฬฎደᄢℂ㧕 ᯏ⏛ᕈ m-MPYNNBF4 ߦ߅ߡߪ 2 ߟߩ S=1/2 ࠫࠞ࡞ࠬࡇࡦ߇ 20K એਅߢᒝ⏛ᕈ⊛ߦ⚿วߒޔS=1 ࠳ࠗࡑ ߦࠃࠆ 2 ᰴరࠞࠧࡔᩰሶ߇ᒻᚑߐࠇࠆࡑࠗ࠳ޕ㑆⋧↪ߪ⚂ 3K ߢᒝ⏛ᕈ⊛ߥߚࡈࠬ࠻࠻ߒߡ߅ࠅޔ㔖 ⏛႐ߢߪ⚂ 0.2K ߩࠬࡇࡦࠡࡖ࠶ࡊࠍᜬߟ㕖⏛ᕈၮᐩ⁁ᘒ߇᷹ⷰߐࠇࠆߩߎޕ㊂ሶ⊛ߥၮᐩ⁁ᘒߦߟߡߒࠄߴࠆߚޔ ᚒ ߪޘFaraday ᴺߦࠃࠆ⏛ൻ᷹ቯߣ⏛ޔൻߩᓸಽ୯ߦߚࠆᵹᏪ⏛₸ߩ⏛႐ਛ᷹ቯࠍ߅ߎߥ⏛ߩߎޔᕈ߇ 0.1K ㄭறߢߪ㘻⏛ൻߩ 1/2ޔ3/4 ߦߚࠆ⏛ൻߢࡊ࠻ࠍᜬߟߎߣࠍࠄ߆ߦߒߚ⏛ߪ࠻ࡊߩߎޕ႐ਛߩၮᐩ⁁ᘒࠍ ᤋߒߚ߽ߩߣ⠨߃ࠄࠇࠆ߇ࡔࠧࠞޔᩰሶߩනᩰሶࠍ⠨߃ߚ႐วߢߪ⺑ߢ߈ߕࠅࠃޔᄢ߈ߥࠨࠗ࠭ߩၮᧄᩰሶࠍᜬߟ ၮᐩ⁁ᘒߩሽߣᰴㄭធ⋧↪ߥߤߩ㐳〒㔌ߩ⋧↪ߩነਈࠍ␜ໂߒߡࠆޕ B8 ρζϋ८၄́۷௶̱̹ TlCoCl3 ͈ঽܨ႗ܳ 㤥ᳯ ᥍ᒾ㧔ᥓᄢℂᎿ㧕 ᢳᣇ᥏ᱡࠍᜬߟᡆ৻ᰴర Ising ᒝ⏛ᕈ TlCoCl3 ߩૐ᷷⏛ޔ႐ਅߢߩࡑࡦᢔੂ᷹ቯࠍⴕߞߚޕᒝ⏛ᕈ⋧ߢߪ 2J = 118.5 cm1ઃㄭߦ⏛႐ଐሽᕈࠍᜬߟⶄᢙߩࡑࡦࡇࠢ߇᷹ⷰߐࠇߚߪࠢࡇߩࠄࠇߎޕਛᕈሶᢔੂߢ߽᷹ⷰߐ ࠇߡࠆޔᡆ৻ᰴర Ising ㎮․ߩ⏛᳇ബ domain wall pair excitations, DWPEsࠍ᷹ⷰߒߚ߽ߩߢࠅޔᒝ⏛ᕈ ⋧ߢ↢ߓߚౝㇱ⏛႐ߦࠃߞߡ㊂ሶൻߐࠇߚ DWPEs ࠍ᷹ⷰߒߡࠆ߽ߩߢࠆ⸃ߩ࡞࠻ࠢࡍࠬࡦࡑޕᨆࠃࠅߩߎޔ ‛⾰ߩౣ㓞ធ╙ޔੑ㓞ធ឵⋧↪ࠍ᳞ߚޕࠆߔ⺰⼏ߊߒߦᤨ⊒ߪ⚦ޕዏ⎇ߩߎޔⓥߪቝౝసᚑޔᄢᴛޔ 㑐ᩮᥓᐘ㧔ᥓᄢℂᎿ㧕⣁ᵗ৻㧔᧲੩ᅚሶකᄢ‛ℂ㧕ޔട⮮ᔀ㧔ජ⪲ᄢᢎ⢒㧕ߣߩห⎇ⓥߢࠆޕ 68 B9 ACuCl3 ͈ρζϋ८၄ ᣣਅㇱ ᤩᐔ㧔ᥓᄢℂᎿ㧕 ㊂ሶࠬࡇࡦ࠳ࠗࡑ♽‛⾰ ACuCl3 A = Tl, Kߢߪᒝ⏛ᕈ࠳ࠗࡑ߇ਃᰴర⊛ߦ⚿วߒߡࠆࡑࠗ࠳ޕ㑆ߩ⋧ ↪ߦࠃߞߡ࠻࠶ࠣࡦࠪޔၮᐩ⁁ᘒߣޔബ࠻ࡊ࠶࠻⁁ᘒߣߩ㑆ߦࠬࡇࡦࠡࡖ࠶ࡊ = 5.5cm1 for A = Tl, 22 cm1 for A=Kࠍᜬߟޕᚒߪޘ㕖⏛ᕈਇ⚐‛ Mg ࠍ࠼ࡊߒࠍࡑࠗ࠳ޔუߒߚᤨߣࠍࡑࠗ࠳ޔუߐߕߦ A ࠗࠝࡦ⟎឵ߒߚ ᤨߩޔੑᰴߩ⏛᳇ࡑࡦᢔੂߩ♽⛔⊛ߥᄌൻࠍ᷹ⷰߒߚ⏛ޕ᳇ࡑࡦᢔੂࠬࡍࠢ࠻࡞ߩ┙ߜ߇ࠆࠛࡀ࡞ࠡ߇ࠬࡇࡦ ࠡࡖ࠶ࡊࠛࡀ࡞ࠡߩੑߦ⋧ᒰߔࠆ⻠ޕṶߢߪ⏛᳇ࡑࡦᢔੂߦࠃࠅ᳞ߚ TlCu1-xMgxCl3ޔTl1-yKyCuCl3 ߩ࡞ࡀࠛޔ ࠡࠡࡖ࠶ࡊߩ࠼ࡊ㊂ଐሽᕈߣ⏛ޔ᳇ࡑࡦᢔੂࠬࡍࠢ࠻࡞ߩ᷷ᐲ⏛ޔ႐ଐሽᕈߩ⚦ࠍႎ๔ߔࠆޕ B10 ಼خୟͼρσεΛΜ࿅߿͈ͼΐϋΈഎΑβ·Πσ͂ັଟ̳ͥ XXZ ߿Αάϋङ͈ L(sl2)చઠ ㊁ᤩᓼ㧔᧲ᄢ↢↥⎇㧕 นⓍಽࠞࠗ࡞ࡐ࠶࠷ SCPᮨဳߦࠇࠆࠗࠫࡦࠣ⊛ࠬࡍࠢ࠻࡞[1]ߣߣࠇߘޔน឵ߥォㅍⴕࠍᜬߟ XXZ ဳࠬࡇࡦ ㎮ ౹㔖 Bazhanov-Stroganov NBSᮨဳ[2]ߩࠛࡀ࡞ࠡ❗ㅌⓨ㑆ߩኻᔕߦߟߡႎ๔ߔࠆ[3] ߕ߹ޕNBS ᮨဳ߇ࠆ ㇱಽⓨ㑆ߢ࡞ࡊઍᢙ L(sl2)ߩኻ⒓ᕈࠍᜬߟߎߣࠍ␜ߔޕᰴߦߎߩኻ⒓ᕈߦࠃࠆ❗ㅌⓨ㑆ࠍ․ᓽઃߌࠆ Drinfeld ᄙ㗄ᑼ ࠍ⸘▚ߒ ߇ࠇߎޔSCP ᄙ㗄ᑼ[1]ߣ╬ߒߎߣࠍࠆߩߎޕታߪ NBS ᮨဳߩ❗ㅌⓨ㑆ߣ SCP ᮨဳߩࠗࠫࡦࠣ⊛ࠬࡍࠢ ࠻࡞ࠍਈ߃ࠆㇱಽⓨ㑆ߣߩኻᔕࠍ␜ໂߒߡࠆ ޕญື↢᳁ߣߩห⎇ⓥ [1] Baxter, J. Stat. Phys. 57 (1989) 1. [2] Bazhanov and Stroganov, J. Stat. Phys. 59 (1990) 799. [3] Nishino and Deguchi, Phys. Lett. A356 (2006) 366. B11 ֚ষࡓ ࠏࣣއRb2Cu2Mo3O12 ͈ࣞգئঽ௶ا̤͍͢ঽܨ͈ঽા་ا ựፒ ᥓᓆ㧔ᥓᄢℂᎿ㧕 ᒝ ⏛ ᕈ ߩ ╙ ৻ ㄭ ធ ឵ ⋧ ↪ (J1) ߣ ᒝ ⏛ ᕈ ߩ ╙ ੑ ㄭ ធ ឵ ⋧ ↪ (J2) ߇ ┹ ว ߒ ߚ ৻ ᰴ ర ㊂ ሶ ࠬ ࡇ ࡦ ♽ Rb2Cu2Mo3O12 ߦߟߡߦߢ߹ࠇߎޔᄙ⚿᥏⹜ᢱߩ㜞ਅߢߩᏪ⏛₸⏛ൻ᷹ቯߣޔDMRG ߣ෩ኒኻⷺൻߩ⸘▚⚿ᨐߣ Ყセ߆ࠄޔടߦࠃࠅၮᐩ⁁ᘒ߇ォ⒖ߔࠆ⥃⇇୯ α=0.258ߦㄭߠߊߎߣࠍࠄ߆ߦߒߚޕ࿁ߩ⊒ߢߪޔዊဳജ ࡞ࠍ↪ߚ㜞ਅߢߩ 18T ߹ߢߩ⏛ൻ᷹ቯࠍⴕޔ㘻⏛႐ߩ⏛႐ᄌൻߦߟߡ⏛ൻ⸘▚ߩ⚿ᨐߣᲧセߔࠆߎߣߦࠃ ࠅޔၮᐩ⁁ᘒ߇⥃⇇୯ߦㄭߠߊะߦࠆߎߣ⏛ޔߚ߹ޕ႐ਅߢߩᲧᾲ᷹ቯ߆ࠄ⏛᳇Ყᾲߩ⏛႐ᄌൻࠍⓍ߽ࠅޔ DMRG ⸘▚ߣᲧセߒߚ⚿ᨐߦߟߡ⊒ߔࠆ੍ቯߢࠆ⏛ޔߦ․ޕ᳇Ყᾲߩ⏛႐ᄌൻߩᲧセߦߟߡߪޔߩ᷹ቯ᷷ ᐲ▸࿐ߢߪ FAF ㎮ߣ AFF ㎮ߩਔᣇߢታ㛎⚿ᨐࠍ⺑ߢ߈ࠆߎߣ߆ࠄࠅࠃޔૐ᷷╬ߢߩ᷹ቯ߿න⚿᥏ࠍ↪ߚ߇⎇ⓥ ߇ᔅⷐߣߐࠇߡࠆ⎇ߩߎޕⓥߪޔᥓᄢℂᎿߩ⿒ᧁᥰޔ㤥ᳯ᥍ᒾޔ᪀ේ⧷᮸ޔ㑐ᩮᥓᐘ᧚‛ޔᯏ᭴ߩ㐳⼱ᱜมޔಽሶ⎇ ߩ೨ፉዷޔၯ₹ᄢℂߩᚽ⾐ᄥ᧲ޔᄢ‛ᕈ⎇ߩᐥ⟤ߣߩห⎇ⓥߢࠆޕ 69 B12 S=1/2 ΑάϋΘͼζȜࠏ ND4CuCl3 ͈ঽܨ౮८၄ ዊ㊁ ବ㓶㧔᧲Ꮏᄢ㒮ℂᎿ㧕 S=1/2 ࠬࡇࡦ࠳ࠗࡑ♽ NH4CuCl3 ߪ⏛ൻㆊ⒟ߦ߅ߡ㘻⏛ൻߩ 1/4 ߣ 3/4 ߦ⏛ൻࡊ࠻ࠍᜬߟ‛⾰ߢࠆߎޕ ߩ⏛ൻࡊ࠻ߪޔbゲᣇะߦ࡙࠾࠶࠻࡞߇ 2 ߦߥࠆ᭴ㅧ⋧ォ⒖ߦࠃߞߡ ߇ࡑࠗ࠳ޔ4 ⒳㘃ߩ㕖╬ଔߥࠨࠗ࠻ߣ ߥࠆߎߣߦ࿃ߔࠆ৻ޕᣇߢޔฦ⏛႐ਛߦ߅ߌࠆ⏛᳇᭴ㅧߪ߹ߛ⸃ߐࠇߡߥ⺖㗴ߢࠆޕ࿁ߪޔේሶജᯏ᭴ߢ ⴕߞߚ ND4CuCl3 ߩ⏛᳇ᒢᕈᢔੂߩ⚿ᨐࠍႎ๔ߔࠆ⏛ޕ᳇ࡉ࠶ࠣὐߪ⥃⇇⏛႐એߩ⏛႐ਛߩ TlCuCl3 ߣห᭽ߦ ቶ᷷ ᭴ㅧࠍ࡙࠾࠶࠻ߣߒߚߣ߈ߩh ߇ᢛᢙޔl ߇ᄸᢙߩὐߢ᷹ⷰߐࠇߚ߇ࠄࠇߘޔએᄖߩ․ᓽ⊛ߥ⏛᳇ࡉ࠶ࠣὐߪ⊒ߢ߈ ߥ߆ߞߚ⻠ޕṶߢߪ࠺࠲߆ࠄ੍᷹ߐࠇࠆ⏛᳇᭴ㅧߦߟߡ⼏⺰ߔࠆޕ B13 SɁ1/2 1 ষࡓޑঽఘ KCuGaF6 ̤̫ͥͅঽાညܳΆλΛί͂ঽܨ႗ܳ ፒ ᪸ᕺሶ㧔᧲Ꮏᄢ㒮ℂᎿ㧕 KCuGaF6 ߪනᢳ᥏ߢ Cu2+ߣ Ga3+߇ࡄࠗࡠࠢࡠࠕဳᩰሶࠍᒻᚑߒߡࠆޕGa3+߇㕖⏛ᕈߢࠆߚޔ㓞ធߔࠆ Cu2+㑆 ߩ឵⋧↪ߪ৻ᰴర⊛ߥᕈ⾰ࠍߒߡࠆޕKCuGaF6 ߪߘߩ⚿᥏᭴ㅧ߆ࠄޔᦧ g ࠹ࡦ࠰࡞߿ DzyaloshinskyMoriya ⋧↪ߩሽ߇⸵ߐࠇࠆޔߚߩߎޕᄖㇱ⏛႐ࠍട߃ࠆߣߎࠇߦု⋥ߥᦧ⏛႐߇ല⊛ߦ↢ߓࠆߩߎޕᦧ ⏛႐ߪᏪ⏛₸ߩ᷹ቯߦࠃࠅታ㛎⊛ߦ᷹ⷰߐࠇࠆޔߚ߹ޕᦧ⏛႐ߩሽߦࠃࠅ⏛႐ߩߴ߈ߢ⊒㆐ߔࠆ⏛႐⺃ࠡࡖ࠶ࡊ߇ Ყᾲ᷹ቯߦ߅ߡ᷹ⷰߐࠇࠆߩߎޕ᭽ߥ⽎ߪޔS=1/2 ࡂࠗࡦࡌ࡞ࠣဳᒝ⏛ᕈ Cu benzoate ߿Ꮧ㘃ൻว‛ Yb4As3 ߦ߅ߡએ೨߆ࠄ⍮ࠄࠇߡࠆߦࠄߐޕᚒ ߩߎޔߪޘKCuGaF6 ߦߟߡᒝ⏛႐ ESR ᷹ቯࠍⴕޔESR ࠬࡍࠢ ࠻࡞ߩ᷷ᐲᄌൻ߿ᵄᢙߩ㡆⏛႐ଐሽᕈࠍ⺞ߴߚޔߡߒߘޕKCuGaF6 ߇㕖✢ᒻബߩઍ⊛ߥᮨဳߢࠆ㊂ሶ SineGordon(SG) ᮨဳߢឬߊߎߣ߇ߢ߈⏛ ޔ႐⺃ࠡࡖ࠶ࡊ߇ SG ᮨဳߦ߅ߌࠆࡉࠩബߦኻᔕߔࠆߎߣࠍߛߒ ߚⷰߦઁߩߘޔߚ߹ޕ᷹ߐࠇߚ㜞ᰴߩࡉࠩബ߿ࠬࡇࡁࡦബߦߟߡߩ⸃ᨆ⚿ᨐߦߟߡ߽ㅀߴࠆޕ B14 ֚ষࡓΑάϋࠏ SrCo2V2O8 ͈ঽݷܨ൲ 㐳ᝄ㧔᧲ᄢ‛ᕈ⎇㧕 ㄭᐕ৻ޔᰴర㊂ሶࠬࡇࡦ⏛ᕈߩត⚝߇ᵈ⋡ࠍᶎ߮ߡ߅ࠅ⥝ޔᷓ⏛ᕈ⽎߇ᡆ 1 ᰴరࠬࡇࡦ㎮ߩൻว‛ߦࠄࠇ ߡࠆᦨޕㄭޔᚒ৻ߪޘᰴరࠬࡇࡦ㎮ߩ⚿᥏᭴ㅧࠍᜬߟ SrCo2V2O8 ࠍߟߌߚߪ࡞ࡊࡦࠨᧃ☳ޕ࿕⋧ᔕߢޔන⚿᥏ߪ ࡈ࠶ࠢࠬࠍ↪ߡᓢ಄ᴺߢ₪ᓧߒߚ⏛ޕൻ₸⏛ޔൻ߅ࠃ߮Ყᾲ᷹ቯ߆ࠄ⏛᳇േࠍ⺞ߴߚ⏛ޕൻ₸࠺࠲߆ࠄ SrCo2V2O8 ߪ Ising ࠠࡖࡦ࠻ᒝ⏛ᕈߩᝄࠆ⥰ࠍ␜ߐࠇޔ3K ߣ 5K ߩઃㄭߦ 2 ߟߩ⋧ォ⒖ࠍ␜ໂߐࠇߡࠆޕ⏛ޔ ൻ࠺࠲߆ࠄ⥃⇇⏛႐ 4T ߣ 7T ߪߘࠇߙࠇ cゲߦᐔⴕߣု⋥ߦ߆ߌࠆ႐ว⏛ޔ႐⺃⋧ォ⒖߇ࠄࠇࠆޕૐ᷷⏛ൻ₸ߣ Ყᾲ࠺࠲ߦၮߠߚ⏛᳇⋧࿑߆ࠄ⏛႐⺃⋧ォ⒖ߪࠬࡇࡦࡈࡠ࠶ࡊߢߪߥߊޔਔ⠪ߦᒝ⏛ᕈ㧙Ᏹ⏛ᕈ⋧ォ⒖ߢࠆ ߎߣ߇ಽ߆ߞߚ⻠ޕṶߢߪ SrCo2V2O8 ߩၮᐩ⁁ᘒߣ⏛႐⺃⋧ォ⒖ߦߟߡ⚦ߦႎ๔ߔࠆޕ B15 ඵষࡓঽఘ(CuX)LaNb2O7ȪX=Cl, Brȫ͈ NMR ௶ የᒻ ⺈ਯ㧔᧲ᄢ‛ᕈ⎇㧕 ࠗࠝࡦ឵ᴺߦࠃࠅวᚑߐࠇߚ(CuX)LaNb2O7 X=Cl, Brߪ Cu ߩ㈩⟎߇ᱜᣇᩰሶߦㄭ᭴ㅧࠍߣࠆੑᰴర⏛ᕈߢ ࠆޕၮᐩ⁁ᘒߪ X=Cl ߩߣ߈ߪࠬࡇࡦ৻㊀㗄⁁ᘒޔBr ߩߣ߈ߪ collinear order ߣߥࠆ(ߦ․ޕCuCl)LaNb2O7 ߢࠄࠇࠆ 70 ࠬࡇࡦࠡࡖ࠶ࡊߪ⏛ޔൻᦛ✢߆ࠄ߹ࠆ⥃⇇⏛႐ 10 TߣਛᕈሶޔᲧᾲޔᏪ⏛₸ޔNQR ╬߆ࠄⓍ߽ࠄࠇߚࠡࡖ࠶ࡊߩ ᄢ߈ߐ 23-27Kߦᄢ߈ߥ㘩㆑߇ࠅ⏛ߩߘޔ᳇ബߦ㑐ߒߡ⥝߇ᜬߚࠇߡࠆߦ⾰‛ߩߎࠄ߇ߥߒ߆ߒޕ㑐ߒߡ ߪޔᱜ⏕ߥ⚿᥏᭴ㅧ߇ᧂߛቯ߆ߢߪߥߊޔCu ߩ d 㔚ሶ゠⁁ᘒ߿ exchange path ╬ࠍቯߔࠆߎߣ߇వߢࠆޕᚒޘ ߪ⏛႐㈩ะ⹜ᢱࠍ↪ߚ NMR ᷹ቯࠍⴕޔฦේሶᩭࠨࠗ࠻ߩ㔚႐൨㈩ޔౝㇱ⏛႐╬ࠍⓍ߽ߞߚ⚿ߩࠄࠇߎޕᨐ߆ࠄޔ ᭴ㅧߩᱜᣇᩰሶ߆ࠄߩࠁ߇ߺޔd 㔚ሶߩ゠⁁ᘒޔน⢻ߥ exchange path ╬ߦ㑐ߒߡ⼏⺰ߔࠆޕ B16 SrCu2(BO3)2 ̤̫ͥͅ૧̱̞ࣞঽા ᧻ේ ା৻㧔᧲ᄢ‛ᕈ⎇㧕 ࡈࠬ࠻࠻ߒߚ Shastry-Sutherland ᩰሶ ⋥ 2 ᰴర࠳ࠗࡑࠬࡇࡦ♽ SrCu2(BO3)2 ߪޔ㘻⏛ൻߩ 1/8ޔ1/4ޔ 1/3 ߦ߅ߡ࠻ࡊ࠶࠻ߩዪൻ ⚿᥏ൻࠍ߁⏛ൻࡊ࠻ࠍ␜ߔߎߣߢ⍮ࠄࠇߡࠆޕ1/8 ࡊ࠻⋧ߩ㜞⏛႐┵ ⚂ 28 ࠹ࠬߣ 1/4 ࡊ࠻ߩૐ⏛႐┵ ⚂ 34 ࠹ࠬߩ㑆ߢߪ⏛ൻ߇ㅪ⛯⊛ߦᄌൻߒߡ߅ࠅߩߎޔ㗔ၞߢߩࠬࡇࡦ᭴ ㅧ߇⏛႐ߣߣ߽ߦߤߩࠃ߁ߦᄌൻߔࠆ߆ߪᄢᄌ⥝ࠆ㗴ߢࠆᦨޕㄭᚒ ߪޘ1/8 ࡊ࠻⋧ࠃࠅ㜞⏛႐ߩ 31 ࠹ࠬ ߹ߢߩ⏛႐ߦ߅ߡࡎ࠙⚛ᩭߩ NMR ታ㛎ࠍⴕߩ࠻࠶ࡊ࠻ޔ᭴ㅧ߇ߎߩਛ㑆⏛႐㗔ၞߢ߽ᱷߞߡࠆߎߣࠍ ߒߚޔߪߢ⊒ᧄޕNMR ࠬࡍࠢ࠻࡞ߩ⸃ᨆ⚿ᨐߦၮߠ߈ޔSrCu2(BO3)2 ߩ᷷ᐲ⏛႐⋧࿑߿ࡦࡇࠬޔ᭴ㅧߦߟߡ⼏⺰ ߔࠆޕ B17 ໝࣣΧσΟϋङ IPA-CuCl3 ͈ g ͈ 3 ষࡓخণ௶ا ⌀ਛ ᶈ⾆㧔㣮ఽፉᄢℂᎿ㧕 ᦨㄭߪᣢຠߦࠃࠆ᷹ቯⵝ⟎ߩ⊒㆐ߦࠃࠅޔᭂ㒢ⅣႺࠍ㒰ߌ߫⧯ޔታ㛎ኅߪⵝ⟎㐿⊒ࠍߔࠆᯏળ߽ޔേᯏ߽⒘⭯ߦ ߥߞߡࠆߣᗵߓߡ߹ߔ⎇ߥ߁ࠃߩࠢࡢࡦࠖ࠹࡞߽ߢ߹ߟߪߢࠇߘޕⓥߒ߆↢߹ࠇ߹ߖࠎޕ᧪ࠬࠢࡉޔ ࡞⊛ߥ⎇ⓥࠍ߽ߚࠄߔࠍᦼᓙߒ⺧↳ᧄޔ⠪ߪᦨޔㄭޔESR ⵝ⟎ߦ↪ߢ߈ࠆ 2 ゲࠧ࠾ࠝࡔ࠲ߩ㐿⊒ߦขࠅ߆߆ߞ ߡ߹ߔߛ߹ޕඨ߫ߢߔ߇ޔቶ᷷ߢߩ IPA-CuCl3 ߩ g ୯ⓨ㑆ಽᏓߩ᷹ቯ⚿ᨐࠍ⚫ߒߩߘޔᗧ⟵ࠍ⺑ߒߚߣᕁߞ ߡ߹ߔߩઁߡߒߘޕታ㛎ኅ߳ߩⵝ⟎㐿⊒ߩ㊀ⷐᕈ߽વ߃ߚߣᕁߞߡ߹ߔߩߘޕਛ߆ࠄࠇߕޔᭂ㒢ⅣႺߩࠃ߁ߦޔ ߐࠄߦㅴൻߒߚ‛ℂߩࠬ࠹ࠫ߇↢߹ࠇޔᣂߒ⎇ⓥ߇↢߹ࠇࠆߣᧄ↳⺧⠪ߪᦼᓙߒߡ߹ߔޕ B18 ˍষࡓၾঊΑάϋࠏ͈ঽાಎ NMR ۱გၚ ⩲ ⺈৻㇢㧔㒋ᄢᎿ㧕 ࠡࡖ࠶ࡊࠍᜬߟ 1 ᰴర㊂ሶࠬࡇࡦ♽ߩ․ᓽߪ⏛ޔ႐ਛߢࠡࡖ࠶ࡊ߇㐽ߓߚ႐วߩ NMR ✭₸ 1/T1 ߩ᷷ᐲૐਅߦ߁ ⊒ᢔߩ౹ߦࠇࠆߎߣ߇ᜰ៰ߐࠇߡએ᧪ޔ᭽ߢ♽ߥޘ౹ߩ⏛႐ଐሽᕈࠍ⺞ߴࠆߚߩ⎇ⓥ߇ⴕࠊࠇߡ߈ߚޔߒ߆ߒޕ1/T1 ߩ᷷ᐲଐሽᕈߪ᷷ᐲߩ౹એᄖߩ࿃ሶߦ߽ࠇࠆߚޔታ㛎⚿ᨐࠍ⸃ᨆߔࠆߚߦߪ 1/T1 ߩ⏛႐᷷ᐲଐሽᕈߦ㑐ߔࠆ ߒ⸘▚⚿ᨐ߇ᔅⷐߣߥࠆ⎇ᧄޕⓥߢߪ 1 ᚑಽᦺ᳗࠶࠹ࠖࡦࠫࡖᵹߦ߅ߌࠆ 1/T1 ߩ⏛႐᷷ᐲଐሽᕈߩ࡙࠾ ࡃࠨ࡞ߥᝄࠆ⥰ࠍ᳞ޔ᷷ᐲଐሽᕈ߇౹⊒ᢔߩ࿃ሶߦߩߺࠇࠆ᧦ઙߥߤࠍᓧߚ⚿ޕᨐࠍࡂ࡞࠺ࡦ♽ޔS=1/2 ࠬ ࡇࡦ࠳♽ߥߤߦㆡ↪ߒޔታ㛎ߣߩኻᔕࠍ⼏⺰ߔࠆޕ 71 ࡄݪਫ਼ౣݪࡄܢٛ! ! ! ૧̹̈́ࡄݪఘଷ͈ࢹಃ! ᣣᤨ㧦 ᐕ 㧣ᣣ ᧁ㨪 㧤ᣣ ㊄ ળ႐㧦᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᧄ㙚⻠⟵ቶ ឭ᩺ઍ⠪ ⮮ ᱜବ㧔ฬᄢℂ㧕 2006 ᐕ 6 ߦᒰᤨߩ‛ᕈᆔຬ㐳ߣߒߡ‛ޔᕈ⎇ⓥಽ㊁߇ᛴ߃ࠆ⻉㗴ࠍ⎇ⓥ⠪ࠦࡒࡘ࠾࠹ࠖ߇₸⋥ߦ⸛⺰ߔࠆ႐ࠍ ࠆߚߦᮡ⸥⎇ⓥળࠍឭ᩺ߒޔ12 7㧙8 ᣣߦ㐿ߐߖߡߚߛߚޔߪߢߎߘޕᄢቇߩᴺੱൻ߿ቇⴚળ⼏ߩᡷ✬ߦࠃߞ ߡ⎇ⓥⅣႺ߇ᄢ߈ߊᄌൻߔࠆਛޔ႐ߩ‛ᕈ⎇ⓥ⠪߇Ṽὼߣᛴߡߚ ᩺㗄ࠍᢛℂߒޔᣂߚߥ⎇ⓥࠍ᭴▽ߔࠆߚ ߩᗧ឵߇ߥߐࠇߚޕ ࡊࡠࠣࡓߪ ޔ1ห↪⎇ⓥᚲߩᓎഀ᧪ߦ㑐ߔࠆౝㇱޔᄖㇱᣇߩᗧ឵ޔ㧔2㧕‛ᕈ⎇ⓥߩߚߩㆡᱜߥ ⾗㊄㈩ಽޔ㧔3㧕ᣂ↢ቇⴚળ⼏ߩᣇะᯏ⢻ߣߘࠇߣߩᑼߥߟߥ߇ࠅ߇ߥߊߥߞߚ‛ᕈᆔຬળߩᓎഀ ޔ4㧕ߘߩઁߩ⺖ 㗴ߦޔᄢߐࠇࠆ⺰⸛ߩߡߟߦࠄࠇߘޕౝኈࠍⷰߒߡ⎇ⓥળႎ๔ߣߒߪߊߒޔฦ㗴ឭଏ⠪ߩⷐᣦࠍߏࠄࠎߚߛ ߊࠃ߁߅㗿ߔࠆޕ ߹ߕ᧲ޔᄢ‛ᕈ⎇ⓥᚲߩᚲ㐳߆ࠄ‛ߩߢ߹ࠇߎޔᕈ⎇ߩᱠߺߣߩⅣႺ᧦ઙߦߟߡߩ߇ࠅߩߘޔ᧪ߦߟ ߡߪޔታ㛎ℂ⺰ߩᓧᗧಽ㊁ߩࠣ࡞ࡊߩ⢒ᚑߪߦࠄߐޔ࿖㓙⊛ห↪⎇߳ߩᡷ㕟߇⻭ࠊࠇߚޕᩑፒᚲຬߪߎߎޔ㧡ᐕ ߢߪห↪ੱᢙߪჇടะߦࠅޔᨰ⒖ォ߿ᴺੱൻߦࠃߞߡᄌࠊߞߚߎߣ߽ߥߎߣࠍႎ๔ߒߚ⁁ߥ߁ࠃߩߎޕᴫߪޔ ห↪⎇߇৻ᄢቇߩઃ⟎⎇ⓥᚲߣߒߡㆊߏߐࠇߡߪߥࠄߥߎߣࠍ␜ߒߡࠆޕਛᕈሶᣉ⸳ߩห↪ߩ⁁ࠍ⺑ ߒߚᑝ↰᳁ߪޔේሶജᯏ᭴ߩᣉ⸳ߢࠆ J-PARC ߳⽸₂ߔࠆߣߣ߽ߦቯᏱἹߦ㊀߈ࠍ߅߈ޔਛᕈሶಽ㊁ߩ⧯ᚻ⢒ᚑᣇ╷ ߩᎿᄦࠍⴕ߁ߎߣࠍㅀߴߚ৻ޕᣇޔ੩ᄢၮ⎇ߩᴪ㕟߿᧪ߦߟߡㅀߴߚᣧᎹ᳁ߪޔṛဳߩ࿖㓙⎇ⓥળ᭴ᗐࠍਛᔃߦㅀ ߴߥ߇ࠄߦߚߩߘޔసߔߴ߈㗴ὐࠍᢛℂߒߚޕ ⩲᳁ߪޔశߩ↪ࠍⴕ߁┙႐߆ࠄޔၮ␆⎇ⓥಽ㊁߆ࠄߩᣉ⸳↪ߩ㗴ὐࠍᜰ៰ߒߚ↪ޕᢱ㊄߇৻⥸⺖㗴↪⠪ ߦߪ㜞ߔ߉ࠆߎߣ߽ᄢ߈ߥ㗴ߢࠆޕ㜞⇗᳁ޔᓟ⮮᳁ߪ‛ᕈ⎇߳ߩᦼᓙࠍߎߡᓟߩ⊒ᅗࠍଦߒ✚ޔ࿖ಽኹߣߒߡߩ ᓎഀߩ⛽ᜬߦࠄߐޔ↪ߒ߿ߔห↪ࠍ߃ࠆߎߣࠍⷐᦸߒߚޕ ‛ᕈ⎇ⓥߩߚߩ⾗㊄ߩㆡᱜ㈩ಽߩⷰὐ߆ࠄޔኅ᳁ߪၮ⋚⊛ᩞ⾌ߣ┹⊛⾗㊄ߩᣇߩ㊀ⷐᕈ߇ࠕࡇ࡞ߐࠇߥ߇ࠄ߽ޔ ㊄ߦ߹ߟࠊࠆਇ╬ߩᓇ㗀ߢ⎇ⓥ⾌⛽ᜬߩߚߩ㒐ᚢߦ࿁ࠄߑࠆࠍᓧߥ߆ߞߚߎߣࠍㅀߴߡࠆޕ᳁߇⸒߁ࠃ߁ߦ‛ᕈ ಽ㊁ߢߪ⦟⧘ࠍ⢒ߡࠆ᳓᠋߈㧔߫ࠄ᠋߈ߦߪߚࠄߥ㧕߇ᔅⷐߥߩߦ᜔߽ࠊࠄߕߢࠆ‛ޔߦࠄߐޕᕈ⎇ⓥὐᢛ ⸘↹ߪޔ 㧔ߣߊߦ⍫ࠤፒ᳁߇ᒝ⺞ߒߡࠆࠃ߁ߦ㧕ዊⷙᮨ⎇ⓥࠣ࡞ࡊߩ߃߇㗴ߥޔᣂߚߥ㊀ⷐⷞὐߦߥࠅߟߟ ࠆߎߣࠍᜰ៰ߒߚޕ⍫ࠤፒ᳁ߪ⎇ߦࠄߐޔⓥ⾗㊄ߩ㈩ಽᴺߩ㗴ὐ߇ᢎ⢒ోߦᷓೞߥᖡᓇ㗀ࠍ߽ߚࠄߔߎߣߦ߽ ᔨࠍ ␜ߒߚޕᐔፉ᳁ߪޔPD ࠍขࠅᏎߊⅣႺߦ㑐ߔࠆࠕࡦࠤ࠻⚿ᨐࠍ߽ߣߦߩߘޔ㗴ὐߩ⼂ࠍㅢߩ߽ߩߦߒߚޕ ᣂ↢ቇⴚળ⼏߇ᡷ✬ߐࠇ‛ޔᕈᆔຬળߣߩ㑐ଥ߽ߥߊߥߞߚߎߣߪ⸥ߩߣ߅ࠅߢࠆ߇ߩߘޔቇⴚળ⼏ߩᓎഀߣᯏ⢻ ߦߟߡචୖ᳁߇ߐࠇߚ‛ޕᕈ⎇ⓥὐᢛ⸘↹ߦߟߡޔ⒳ߩޘ߆ߌ߇ߞߚࠃ߁ߦᓟ߽㕖ᑼ࿅ߣߒߡߩ ‛ᕈᆔຬળߦኻߒߡޔ႐ߩჿࠍ⡞ߡߚߛ߈ߩߎޕߚߺᦸ߁ࠃࠆߚߦߣߎޔὐߢߪ‛ޔᕈᆔຬળߣߒߡ߽ᄙߊߩ ࠦࡒࡘ࠾࠹ࠖࡔࡦࡃߩᗧࠍᤋߒߚቴⷰ⊛ߥᗧࠍឭߢ߈ࠆࠍᏱᤨᢛ߃ߡ߅ߊߎߣ߇㊀ⷐߢࠆ⑺ޕశ᳁߽ޔ ቇⴚળ⼏ߩᓎഀ߅ࠃ߮‛ᕈᆔຬળߣߩߟߥ߇ࠅߦߟߡ㊀ⷐᕈࠍᒝ⺞ߒߚޕ⮮ߪ‛ߥ߁ࠃߩߎޔᕈᆔຬળࠍߣࠅ߹ߊⅣ Ⴚߩᄌൻࠍ⠨ᘦߒߡ‛ޔᕈᆔຬળߦⷙ⚂ࠍቯߒᣂߚߥ⚵❱ߣߒߚߎߣߪߦࠄߐޔᨐߚߔߴ߈ᓎഀߦߟߡߩ⠨߃ࠍࠄ ߆ߦߒߚ‛ޕᕈᆔຬ㐳ߢࠆୖᧄ᳁ߪߐࠄߦޔᴺੱൻߦߞߡࠇߚᄢቇ㑆ߩ⋉⋧ޔᩰᏅᄢ╬ߩ㗴ߦߤ߁┙ߜ ะ߆߁߆߇ࠊࠇߡࠆߎߣࠍㅀߴߚޕ ᰴᦼ‛ℂቇળળ㐳ߢ߽ࠆ㣮ఽፉ᳁ߪޔᤐߣ⑺ߩ‛ℂቇળߩᡷ㕟ߦߟߡࠕࡦࠤ࠻⚿ᨐࠍ߽ߣߦ⼏⺰ߒߚޔߒ߆ߒޕ ᤨὐߢߘߩ㐿ᣇᴺߦᄢ߈ߥᄌൻ߇ߤ߁ߒߡ߽ᔅⷐߢࠆߣߩᗵ⸅ߪᒝߊߥ߆ߞߚࠃ߁ߦᗵߓࠆޕ JPSJ ߩ⁁ߣ㗴ὐߦߟߡߪޔᣁᵄ✬㓸ᆔຬ㐳߆ࠄߩႎ๔߇ߞߚޕ⒳ߩޘദജߦࠃࠅᄢ߈ߥᡷༀ߇ߞߚߎߣߪ ⊝߇ࠆߣߎࠈߢࠆ߇ޔᛩⓂᢙ߇િ߮ᖠ⁁ߦߟߡߪޔᓟ߽৻Ბߩᗧ⼂ᡷ㕟߇ᦸ߹ࠇࠆޕ ᦨᓟߦ⧐⾐᳁ߣ྾┑᳁ࠃࠅᄢᵞࡦ࠲ߩ⁁ߦߟߡߩႎ๔߇ࠅߩࠄ߆ࠖ࠹࠾ࡘࡒࠦޔᡰេ߇㊀ⷐߢࠆߎߣ߇ᒝ ⺞ߐࠇߚޕ એߩࠃ߁ߦ߽ࠇߕޔහߩ࿎㔍ߥ⺖㗴߇ߒߊႎ๔ߐࠇ⌀ޔߦ⸛⺰ߐࠇߚ⺖ߩࠄࠇߘޔߦ৻╙ޕ㗴߇㓸߹ߞߚᄙ ߊߩࠠࡄࠬࡦߩㅢ⼂ߦߥߞߚߎߣࠍᄢ߈ߥᚑᨐߣ⠨߃ߡࠆޔߚ߹ޕ᧪ࠇ߫ߎࠇࠄߩ⼏⺰ࠍ߹ߣߍޔᓟ ߩᣇ╷ࠍዉߊบߣߒߡߩᓎഀࠍᨐߚߐߖߚߣ⠨߃ߡࠆޕ 72 ࡊ ࡠ ࠣ ࡓ 23 ˓)࿐*! 㧝㧚 ห↪⎇ⓥᚲߦߟߡ ‛ᕈ⎇ߩ⁁ߣ᧪㧦 ↰ ᄦ㧔‛ᕈ⎇ᚲ㐳㧕 10:00-10:30 ၮ␆‛ℂቇ⎇ⓥᚲߩ⁁ߣ㗴ὐ㧦 ᣧᎹ ዏ↵㧔੩ᄢၮ⎇㧕 10:30-10:50 ‛ᕈ⎇ห↪㧔⒖ォߣᴺੱൻᓟ㧕 㧦 ᩑፒ ੱ㧔‛ᕈ⎇㧕 10:50-11:05 ᄢဳ⸳ߩห↪㧔ਛᕈሶታ㛎㧕 ᑝ↰ 㚍㧔‛ᕈ⎇㧕 11:05-11:20 ⸛ ⺰ 11:20-12:20 ᄖㇱ߆ࠄ Spring-8㧦 ⩲ ṑᱜ㧔㒋ᄢၮ␆Ꮏ㧕 ᄖ߆ࠄߩᗧⷐᦸ㧦 㜞⇗ ᢅ㇢㧔ᐢᄢ㧕 13:45-14:00 ᓟ⮮ ノቁ㧔ᣂẟᄢ㧕 14:00-14:15 ⸛ ⺰ 13:30-13:45 14:15-15:15 㧞㧚㧔‛ᕈ⎇ⓥߩߚߩ⾗㊄ઁߩߘޔ㧕 COE ߘߩઁߩᄢဳ⾗㊄ᤨઍߣ‛ᕈ⎇ⓥ⾗㊄㧦 ኅ ᵏᒄ㧔‛ᕈ⎇㧕 ዊⷙᮨ⎇ⓥቶߦ߅ߌࠆ⎇ⓥߣᄙ᭽ᕈߩ⏕㧦 ⍫ࠤፒ స㚍㧔℄ᄢ㧕 16:05-16:25 PD 㗴ߩ⁁㧦ࠕࡦࠤ࠻⚿ᨐߩႎ๔㧦 ᐔፉ 16:25-16:45 ᄢ㧔ฬᄢ㧕 ⸛ ⺰ 15:45-16:05 16:45-17:45 㧔ᙣ ⷫ ળ㧕 23 9 )߄*! 㧟㧚㧔ᣂ↢ቇⴚળ⼏㧕 ᯏ⢻ߣᓎഀ‛ޔᕈࠦࡒࡘ࠾࠹ࠖߦᦸߎߣ㧦 චୖ ᅢ♿㧔᧲ᄢ㧕 9:00-9:30 ർේ ᄦ㧔ICU㧕 9:30-9:50 ᰳᏨ ቇⴚળ⼏ߣ‛ᕈࠦࡒࡘ࠾࠹ࠖᣇ߆ࠄ㧦 ⑺శ ⚐㧔㕍ቇᄢ㧕 9:50-10:10 ⸛ ⺰ 10:10-11:20 㧠㧚‛ᕈࠦࡒࡘ࠾࠹ࠖߣߒߡߩ‛ᕈᆔຬળߩᓎഀ㧦 ⮮ ᱜବ㧔ฬᄢ㧕 12:50-13:05 ୖᧄ ⟵ᄦ㧔᧲ർᄢ㧕 ⸛ ⺰ 13:05-13:20 13:20-13:50 㧡㧚ᤐ‛⑺ޔℂቇળ㧙‛ᕈ㗔ၞ⊒ߦ㑐ߔࠆᡷ㕟㧦 㣮ఽፉ ⺈৻㧔᧲ᄢ 14:10-14:35 ⸛ ⺰ 14:35-15:05 JPSJ ߦߟߡ㧦 ᣁᵄ ᒄⴕ㧔JPSJ ✬㓸ᆔຬ㐳㧕 ⸛ ⺰ 15:05-15:25 15:25-15:55 㧢㧚ᄢᵞᣉ⸳ߣ࠙ࡦൻว‛⎇ⓥ! ! 㧣㧚ߘߩઁ! ⧐⾐ ⧐▸㧔ේሶജᯏ᭴㧕 16:10-16:25 ྾┑ ᮸↵㧔㊄⎇㧕 16:25-16:40 16:40-17:00 73 ࡄ͈࡛ે͂ြ௨! ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ㐳 ↰ ᄦ ‛ᕈ⎇ߪ᧪ᐕഃ┙ 50 ᐕࠍㄫ߃ࠆޕඨ♿ߩᱠߺࠍᝄࠅࠅߩߘޔ᧪ࠍ⠨߃ࠆࠃߔ߇ߣߒߚޕ ‛ᕈ⎇ⓥᚲߪ‛ޟޔᕈ‛ℂቇߩ✚ว⊛߆ߟ♽⛔⊛ߥ⎇ⓥࠍⴕ߇ࠊߡߞࠃߦࠇߘޔ࿖ߩቇߩ᳓Ḱࠍ㜞Ꮏᬺᛛⴚߩ⊒ ዷߦ⽸₂ߔࠆోࠆߔߣ⊛⋡ࠍߣߎޠ࿖ห↪⎇ߣߒߡޔ1957 ᐕ 3 31 ᣣ᧲੩ᄢቇߦ⸳⟎ߐࠇߚ ߪ┙⸳ߩߘޕ1956 ᐕ 4 ߦߐࠇߚᣣᧄቇⴚળ⼏ߩ൘๔ߦ߽ߣߠߡࠆޕ൘๔ߦࠃࠇ߫‛ޔᕈ⎇ⓥᚲߪ‛ޟᕈ‛ℂቇߩ߁ߜޔ࿕‛ℂቇࠍ ਛᔃߣߔࠆಽ㊁ߦ߅ߡߘߩၮ␆⊛⎇ⓥࠍ㜞ᐲߩ✚วᕈࠍ߽ߞߡⴕ߁ߦ⿷ࠆචಽߥㄭઍ⊛⸳ࠍᢛ߃ߚਛᄩ⊛⎇ⓥᯏ㑐ߢ ࠆߎߣ߇ᦸ߹ࠇࠆ‛ߡ߅ߦߎߎޕᕈߩ⎇ⓥࠍᒝജߦផㅴߔࠆߣߣ߽ߦోޔ࿖ߩ⎇ⓥ⠪߇ߘߩ⸳ࠍ↪ߒߡߘߩ⎇ⓥ ࠍᔀᐩ⊛ߦㆀⴕߔࠆߎߣࠍⓍᭂ⊛ߦេഥ ࠄ߆┙⸳ޕࠆߡߞ⻭ࠍߣߎࠆߢ߈ߴߔޠ6 ᐕࠍ߆ߌߡቴຬ 1 ㇱ㐷ࠍ 22 ㇱ㐷߇ᢛߐࠇ゠ޔ‛ᕈ⎇ⓥᣉ⸳߇㒝⟎ߐࠇߚߩߎޕᑪ⸳ᦼ߆ࠄߘࠇࠍ↪ߚ⎇ⓥ߇ㆀⴕߐࠇߚᦼ㑆ࠍ‛ᕈ⎇ߩ╙ ৻ઍߣࠎߢࠆޕ 1980 ᐕߦߪ⎇ⓥᚲߩో㕙⊛ߥᡷ⚵߇ⴕࠊࠇߩߢ߹ࠇߘޔዊㇱ㐷ࠍᡷᄢㇱ㐷ࠍߣߞߡ⎇ⓥࠍㅴࠆ߇ᢛߐ ࠇߚ ߩࠄ߆ࠇߘޕ15 ᐕ㑆ߪ‛ᕈ⎇ߩ╙ੑઍߣ߫ࠇࠆ߇ޔߪߢߎߘޔᒝ⏛႐ޔᭂ㒢ࠩޔ㕙‛ᕈޔૐ᷷ޔ 㜞ߥߤ⎇ⓥࠍᡰ߃ࠆᛛⴚ㐿⊒ߩ㊀ⷐᕈ߇ᒝ⺞ߐࠇߚޕ1995 ᐕߦߪᄖㇱ⹏ଔ߇ታᣉߐࠇޔᨰ⒖ォࠍⷞ㊁ߦࠇߚᡷ⚵ ߇ታᣉߐࠇߚޕᣂ‛⾰⑼ቇ‛ޔᕈℂ⺰ޔవ┵㗔ၞޔᭂ㒢ⅣႺ‛ᕈޔవ┵ಽశ߆ࠄߥࠆ 5 ᄢ⎇ⓥㇱ㐷ߣ゠ޔਛᕈሶ ᢔੂߦട߃ޔᣂߚߦዉߐࠇߚࠬࡄࠦࡦࡇࡘ࠲ࠍᠩߔࠆ‛⾰⸳⸘⹏ଔᣉ⸳߇ടࠊࠅޔ3 ᣉ⸳߆ࠄߥࠆ߇ᢛߐ ࠇߚޕᨰࠠࡖࡦࡄࠬߩᑪ⸳߇ᆎ߹ߞߚ 1996 ᐕ߆ࠄ߹ߢࠍ╙ਃઍߣࠎߢࠆޕ 2000 ᐕߦቢੌߒߚᨰ⒖ォએ㒠 2004 ᐕߦߪ࿖┙ᄢቇߩᴺੱൻ߇ታᣉߐࠇߚޕᴺੱൻߩ߽ߣߢߪ✚㐳ߩࠗ࠾ࠪࠕ࠴ࡉ߇ ᒝൻߐࠇࠆ৻ᣇޔᄢቇ㒝⟎⎇ߦ߅ߌࠆో࿖ห↪ߩ⟎ઃߌ߇⍎ߢߥߊߥࠅ❗▚੍ߚ߹ޔᷫߩജߩ߽ߣߢ‛ᕈ⎇ߪ ᧪ࠍᮨ⚝ߒߡࠆޕ ‛ᕈ⎇ߩ⚵❱ේℂߣߒߡ ޔ1‛ᕈ‛ℂቇߩၮ␆ࠍᚑߔታ㛎ℂ⺰ߢ⇇࠻࠶ࡊࡌ࡞ߩࠣ࡞ࡊࠍ⛽ᜬߔࠆ ޕ2ᓧ ᗧಽ㊁߿㊀ὐ⊛ߦዷ㐿ߔࠆಽ㊁ࠍ⢒ᚑߔࠆ ޕ3ᄢⷙᮨ‛ᕈ⑼ቇߪᣉ⸳ߣߒߡ⎇ⓥࠍផㅴߔࠆ(ޕ4)‛⾰⑼ቇߩዷ㐿ߦᔅ㗇 ߩൻቇࠣ࡞ࡊߩ㊀ⷐᕈࠍޔߍࠆߎߣ߇ߢ߈ࠆߦࠇߎޕኻᔕߒߡޔ᧪⸘↹ߩ⠨߃ᣇߣߒߡߪ‛ޔᕈ⑼ቇ⎇ⓥߩၮ␆⊛ ജߣ߽⸒߁ߴ߈ታ㛎ℂ⺰ߩਔベࠍᢛߒߟߟᓧᗧಽ㊁ߩࠣ࡞ࡊ⸳ޔࠍ⢒ᚑᒝൻߒోࠍࠇߘޔ࿖ห↪ߦଏߔࠆ ߎߣߦߥࠆߚߒ߁ߎޕᵴേࠍ┹⊛⾗㊄ࠍᵴ↪ߒߥ߇ࠄዷ㐿ߒోޔ࿖ห↪⎇߆ࠄ࿖㓙ห↪⎇ߦ⣕⊹ߔࠆߎߣࠍ⋡ ᜰߔߎߣ߇⋡ᮡߢࠆޕ ᤓᐕᐲታᣉߒߚ࿖㓙⊛ᄖㇱ⹏ଔߩ╵↳ࠍၮ␆ߦ ╙ޔ2 ᦼߩਛᦼ⋡ᮡਛᦼ⸘↹ߩ⼏⺰ࠍߦࠄࠎߢ ࠄ߆ࠇߎޔ1ޔ2 ᐕ߆ ߌߡ᧪⸘↹ࠍ╷ቯߔࠆߎߣߦߥࠆ⊝ߩࠖ࠹࠾ࡘࡒࠦޕ᭽ߩߏ㖊ᠤߏޔදജࠍಾߦ߅㗿ߔࠆޕ ܖயၑݪࡄڠਫ਼͈࡛ે͂࿚ఴത! ੩ㇺᄢቇၮ␆‛ℂቇ⎇ⓥᚲ ᣧᎹ ዏ↵ ၮ␆‛ℂቇ⎇ⓥᚲߪ 1953 ᐕߦో࿖ೋߩห↪⎇ⓥᚲߣߒߡ⊒⿷ߒోޔ࿖ߦవ㚟ߌߡᚲຬߩછᦼࠍዉߒޔવ⛔⊛ ߥಽ㊁ߩℂ⺰‛ℂߩ⎇ⓥߪ߽ߣࠃࠅᄤᩭ‛ℂ߿↢‛‛ℂ╬ߩᣂߒಽ㊁ߩഃᚑ╬ߦ߽ᄢ߈ߥᓎഀࠍᨐߚߒߡ߈ߚޕ 1990 ᐕߦߪᐢፉᄢቇℂ⺰‛ℂቇ⎇ⓥᚲߣว૬ߒߚߩࠍᦼߦ⧷⺆ฬ⒓ࠍ Yukawa Institute for Theoretical Physics ߣߒޔ ⇇ਛ߆ࠄ‛ℂቇోಽ㊁ࠍ✂⟜ߔࠆℂ⺰⎇ⓥߩὐߢࠆߣหᤨߦᄙߊߩౝᄖߩ⎇ⓥ㓸ળࠍ㐿ߊ႐ߣߒߡ⍮ߐࠇߡࠆޕ ߘߩ৻ᣇߢ 2002 ᐕߦߪዊⷙᮨ⎇ⓥᚲߣߒߡઁ⎇ⓥᯏ㑐ߣߩว૬ࠍଦߐࠇߚࠅޔCOE ࡊࡠࠣࡓ߇ฦᄢቇߢࠆਛߢᄙ ߊߩ࿖㓙ળ⼏߇ੂ┙ߒ‛ߦᦝޔᕈ⎇߿㜞ࠛࡀ࡞ࠡ⎇ޔቝቮ⎇╬ߩᄙߊߩኾ㐷ኅࠍ㓸ߚᄢⷙᮨ⎇ⓥᚲ߇ሽߔࠆਛߢߘ ߩሽᗧ⟵߇ࠊࠇࠆࠃ߁ߦߥߞߡ߈ߚޕ ߘ߁ߒߚേ߈ࠍฃߌߡ 5 ᐕ⒟ᐲ߅߈ߦ⥄Ꮖ⹏ଔޔᄖㇱ⹏ଔࠍฃߌߡߘߩ൘๔ߦᓥᓢߦޘၮ␆‛ℂቇ⎇ⓥᚲ߽ߘߩ․ ᓽࠍᄌ߃ߟߟࠆޕ࿁ߩ⻠Ṷߢߪ 2005 ᐕ 11 ߦⴕࠊࠇߚᄖㇱ⹏ଔߩⷐߣឭ⸒ߦࠇߘޔኻߔࠆၮ⎇ߩኻ╷ࠍ⚫ߔ ࠆޕᄖㇱ⹏ଔᦠߩឭ⸒ߢ߽ᒝߊ൘ࠄࠇߚߎߣߪߘߩ႐ߢห⎇ⓥ߽น⢻ߦߥࠆṛဳ࿖㓙⎇ⓥ㓸ળࠍⴕߩᐕ㧝࿁߆ࠄ ᐕ 3 ࿁ߦߔࠆߎߣߢࠆߩࡈ࠶࠲ࠬ࠻ࡐࠨߣ▚੍ߩߡߟߦࠇߎޕ₪ᓧߩߚߦ⑼ࡦࡠ࠼ࡂࠢࠜࠢޟቇߩℂ⺰⎇ ⓥߩᣂߚߥዷ㐿ࠍ⋡ᜰߔ࿖㓙ห⎇ⓥࡊࡠࠣࡓࠍޠឭߒߡ߅ࠅޔ⽷ോ⋭ߢክ⼏ਛߢࠆ⎇ߩߎޕⓥ⸘↹߇ណᛯߐ ࠇߚᥙߦߪᐕ 3 ࿁ߩṛဳ⎇ⓥળߩታᣉ߇น⢻ߦߥࠆߛߌߢߥߊ‛ࡦࡠ࠼ࡂߡߒߣࡈ࠶࠲ࠬ࠻ࡐࠨޔℂߩᢎ╬߇Ⴧ ຬߢ߈ࠆน⢻ᕈ߇ࠆ⸘⛔ޔઁߩߘޕേജቇಽ㊁ߩᕡਭൻ߿ࡊࡠࠫࠚࠢ࠻ࡑࡀࠫࡖ߿⎇ⓥഥᚻߩ㗴ࠍ⚫ߔࠆޕ 74 ߘߩ৻ᣇߢ౨㗡ߦㅀߴߚ᭽ߦᄙߊߩ㗴߇ၮ␆‛ℂቇ⎇ⓥᚲࠍขࠅᏎߡࠆ⻠ᧄޕṶߢߪ․ߦ㧔ᄖㇱ⹏ଔߢ߽㗴ߦ ߥߞߚ㧕‛ᕈಽ㊁ߩㆇ༡ߩ㗴ὐ߿ޔᣂಽ㊁ࠍߤߩࠃ߁ߦ⋓ࠅ┙ߡߡߊߴ߈ߥߩ߆ߦߟߡ㗴ឭࠍⴕ߁ߚ߹ޕ છᦼߦ߁㗴߿ᑪ‛ߩᡷୃ㗴߽ߘ߽ߘޔ㐳ᦼṛဳ⎇ⓥળߦ⺕߇ෳടߒ߁ߣ߆ߩࠆߔࠍ࠻ࡐࠨ߇⺕ޔ㗴ߦߟ ߡ߽⼏⺰ߔࠆޔߚ߹ޕၮ␆‛ℂቇ⎇ⓥᚲ߇⎇ⓥߩ႐ࠍឭଏߔࠆߛߌߢߥߊޔᅤߦᚲຬ߇⎇ⓥᚑᨐࠍߍߡߊߩ߆ߦ ߟߡ߽⸅ࠇߡߊޕ ࡄݪਫ਼͈ވ൳၌ဥ! Ƚ!֊ഢ༹͂૽!ࢃاȽ ! ‛ᕈ⎇ⓥᚲ ᩑፒ ੱ ‛ᕈ⎇ⓥᚲߪ⑼⾰‛ޔቇ⎇ⓥߩߚߩᄢဳ⎇ⓥ⸳߿․ᓽࠆታ㛎ⵝ⟎ࠍ⸳⟎ߒߡవ┵⊛‛ᕈ⎇ⓥࠍⴕ߁ߣߦ⎇ޔⓥ ⸳ࠍో࿖ߩ‛ᕈ⎇ⓥ⠪ߩห↪ߦଏߒߡ‛ޔᕈ⎇ⓥߩὐߣߒߡߩᓎഀࠍߪߚߒߡ߈ߡࠆ‛ޕᕈ⎇ߩห↪ߦߪޔ ታ㛎⸳ߩ↪ࠍਛᔃߣߔࠆᣉ⸳↪ߣᚲᄖ⎇ⓥ⠪ߣߩห⎇ⓥ߿⎇ⓥળ㐿ߦࠃࠆᖱႎ឵ࠍផㅴߐߖࠆߣ߁ 2 ߟ ߩ㕙߇ࠅߩߎޔේೣߪ 50 ᐕ೨ߩ⎇ⓥᚲߩ⸳┙ᒰೋ߆ࠄᄌࠊߞߡߥޕ ᨰ⒖ォࠍᯏߦ‛ޔᕈ⎇ߪ⎇ⓥ⚵❱ࠍᡷ⚵ߔࠆߣߦޔᓥ᧪ߩฃߌり⊛ߥᣉ⸳↪ߩᡷༀޔ⢻േ⊛ߥห⎇ⓥߩផㅴࠍ⋡ᜰ ߒߡ߈ߚޕ‛ޔᕈ⎇ߪ 5 ㇱ㐷ޔ4 ᣉ⸳߆ࠄᚑࠅޔห↪⠪ᢙߪޔࡦࠦࡄࠬޔਛᕈሶߩᣉ⸳↪ࠍ㒰ߡ߽ᐕ㑆⚂㧝 500 ฬߢࠆᦨޕㄭߩ 5 ᐕ㑆ࠍߺࠆߣޔห↪ߩઙᢙੱޔᢙߣ߽Ⴧടะߦࠅޔᐔᚑ 1011 ᐕߩᨰ⒖ォ߿ᐔᚑ 16 ᐕ ᐲߩᄢቇᴺੱൻߦࠃߞߡ߽ߘࠇߪᄌࠊߞߡߥޔࠈߒޕห↪⚻⾌ߩలታࠃߞߡࡢ࡚ࠢࠪ࠶ࡊ߿ࡒ࠾ࠪࡦࡐࠫ࠙ ࡓߩ㐿ޔབྷ⸤⎇ⓥຬ߇Ⴧടߒߡࠆޕ⒖ォᤨߦセߴߡห↪ోߦභࠆབྷ⸤⎇ⓥຬߩഀว߇ᷫߞߡࠆߩߪޔห ⎇ⓥߩᲧ㊀߇Ⴧ߃ߚߎߣߦࠃࠆߣ⠨߃ࠄࠇࠆޕ ߎߎᢙᐕ‛ޔᕈ⎇ߢߪ⎇߿ࡠࠚࡈ࠴ࠨޔⓥᯏ㑐⎇ⓥຬߥߤޔ࿖ౝᄖߩ⧯ᚻ⎇ⓥ⠪ߩ⍴ᦼណ↪ᨒࠍ⸳ߌߚࠅޔᄖ࿖ ੱቴຬᚲຬࠍ⡜ߔࠆᐲࠍᄢߐߖ⑼⾰‛ޔቇ⎇ⓥ⠪ߩ⢒ᚑߣ࿖㓙⊛⎇ⓥὐߦߌߚⅣႺᢛ߽ⴕߞߡࠆ৻ޕᣇޔ ‛ᕈ⎇ߩห↪ߦ㑐ߒߡᓥ᧪߆ࠄᜰ៰ߐࠇߡࠆ⎇ⓥᚑᨐႎ๔ߩᒻ㜈ൻ߿㐳ᦼ⇐ቇ⎇ⓥຬᐲߩലᨐ⊛ㆇ↪ߩଦㅴߥߤޔ ⸃ߔߴ߈㗴ὐ߽ࠆ‛ޕᕈ⎇߇వዉ⊛⎇ⓥὐߣߒߡห↪ࠍஜోߦ⊒ዷߐߖߡߊߚߦߪోޔ࿖ߩ‛ᕈ⎇ⓥࠦ ࡒࡘ࠾࠹ࠖߣߩㅪ៤߇ਇนᰳߢࠆޕ ⍴᳇⎇ⓥળ╬ߩ㐿ઙᢙ བྷ⸤⎇ⓥຬߩᢙ ఱ߿୭͈ވ൳၌ဥȪಎঊ८၄ࡑȫ! ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲ ᑝ↰ 㚍 ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲߢߪ 1960 ᐕࠃࠅᣣᧄේሶജ⎇ⓥᚲߩ⎇ⓥ↪ේሶἹߢਛᕈሶᢔੂߩో࿖ห↪ࠍ㐿ᆎߒߚޕ1969 ᐕߦߪ㧟ᚲຬߦࠃࠆਛᕈሶ࿁᛬ㇱ㐷߇Ⴧ⸳ߐࠇޔ1980 ᐕߩਛᕈሶ࿁᛬‛ᕈㇱ㐷߳ߩౣ✬ޔ1993 ᐕߩਛᕈሶᢔੂ⎇ⓥᣉ⸳ ߩᣂ⸳ޔ2003 ᐕߩਛᕈሶ⑼ቇ⎇ⓥᣉ⸳߳ߩᡷ⚵ࠍ⚻ߡᣣߦ⥋ߞߡࠆޕ㧡ᚲຬߦࠃࠅ⏛ޔᕈᒝ⋧㑐⚿᥏᭴ㅧߥߤ ߩવ⛔⊛ߥ࿕‛ℂቇߦട߃ߡޔḰ⚿᥏ࠟࠬ࠰ࡈ࠻ࡑ࠲ࠍᐢ⎇ⓥಽ㊁ࠍࠞࡃߒߡࠆޕ ᧄᣉ⸳ߪ᧲ᄢᨰࠠࡖࡦࡄࠬ߆ࠄ 100km ߶ߤർߦࠆ⨙ၔ⋵᧲ᶏࠍᧄߣߒ⎇ޔⓥ⠪ 10 ฬޔᛛⴚ⡯ຬ 3 ฬޔോ⡯ ຬ 9 ฬߢ᭴ᚑߐࠇߡࠆޕᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ߩ JRR-3 ⎇ⓥἹߩ 9 บߩታ㛎ⵝ⟎ࠍ⛽ᜬ▤ℂߒోޔ࿖ห↪⎇ⓥ ߦߚࠆߣߣ߽ߦޔᣉ⸳⁛⥄ߩ⎇ⓥ߅ࠃ߮ᄢቇ㒮↢ߩᢎ⢒ࠍዷ㐿ߒߡࠆޕ9 บߩⵝ⟎ߦട߃ߡ᧲ޔർᄢቇℂቇㇱ 1 บޔ 75 ᧲ർᄢቇ㊄ዻ᧚ᢱ⎇ⓥᚲ 2 บޔ੩ㇺᄢቇේሶἹታ㛎ᚲ 2 บ߇ᄢቇߩⵝ⟎ߣߒߡ⸳⟎ߐࠇߡࠆ߇ޔห↪ߣ߁㕙 ߢߪ৻ߣߥߞߡㆇ༡ߦߚߞߡࠆޕห↪ߩฃઃክᩏߥߤߪᣉ⸳߇⁛⥄ߢⴕߞߡ߅ࠅޔᐕ㧝࿁ߩߦኻߒ 300 ⺖㗴߶ߤߩ↳⺧߇ࠆޕክᩏߪ 14 ฬߩታ㛎ክᩏᆔຬߣฦ⺖㗴 2 ฬߩᩏ⺒⠪ߦࠃߞߡⴕࠊࠇޔฦⵝ⟎⽿છ⠪ߩᛛⴚክᩏࠍ ട߃ߡណᛯ߇್ᢿߐࠇࠆޕណᛯ⚿ᨐߪᚲᄖᆔຬ 9 ฬᚲౝᆔຬ 7 ฬ߆ࠄߥࠆᣉ⸳ㆇ༡ຬળߢᛚߐࠇࠆߜ߁ߩߎޕណᛯߪ 70%⺖ޔ㗴ណᛯ㧔ೋᦼࡑࠪࡦ࠲ࠗࡓ㈩ಽ 0㧕ߪ 20%ޔਇណᛯߪ 10%ߣߥߞߡࠆޕᐕ㑆 175 ᣣߩࡆࡓ࠲ࠗࡓ߇ࠆ߇ޔ ߅ࠃߘᐕ㑆 5000 ੱᣣߩ↪߇ࠆ⺖⺧↳ޕ㗴ߩ㧟ಽߩ㧞ߪ⏛ᕈᒝ⋧㑐⚿᥏᭴ㅧߥߤߩࡂ࠼ࡑ࠲ಽ㊁ߢޔᱷࠅߩ ߶ߣࠎߤ߇ࠟࠬ࠰ࡈ࠻ࡑ࠲ߣߥߞߡߡޔห↪⎇ⓥ߇ᐢಽ㊁ߢⴕࠊࠇߡࠆߎߣ߇ಽ߆ࠆ⺖⺧↳ޕ㗴ᢙߪޔ 1991 ᐕߦ JRR-3 ߇Ⓙߒߡઍ⊛ߥਛᕈሶታ㛎⸳߇ᢛߞߚߎߣߦࠃࠅ 10 ⒟ᐲߦᕆჇߒߚ߇ ߎߎޔ5 ᐕߢߪ߶߷ห ᢙߢផ⒖ߒߡࠆޕᣏ⾌ߪޔᣣᧄේሶജ⎇ⓥᚲߢߩᄢቇ߳ߩ⓹ญࠍ᧲ᄢේሶജ✚วࡦ࠲߇ᜂߞߡ᧪ߚߎߣࠍᤋߒޔ ᧲ᄢේሶജኾߣ‛ᕈ⎇ห↪ߩਔᣇࠍ↪ߡࠆ߇ޔߪฦታ㛎⺖㗴ߦߟߡ 1㨪2 ฬߩᣏ⾌ᡰ⛎ࠍߔࠆߩ߇㒢⇇ ߣߥߞߡࠆޕ ‛ᕈ⎇ߢߪޔ1980 ᐕߦ✦⚿ߐࠇߪ 2014 ᐕ߹ߢᑧ㐳ߐࠇߡࠆᣣ☨⑼ቇᛛⴚ൮දቯߦၮߠ߈☨ޔ࿖ࠛࡀ࡞ࠡ ⋭ߣᢥㇱ⑼ቇ⋭ߩ㑆ߢ 1982 ᐕ߆ࠄⴕࠊࠇߡࠆᣣ☨⑼ቇᛛⴚදജޟਛᕈሶᢔੂߦޠේሶജᯏ᭴ߣߣ߽ߦᣣᧄߩၮᐙ⎇ ⓥᣉ⸳ߣߒߡෳടߒߡࠆ‛ޕᕈ⎇ߪࡉ࡞࠶ࠢࡋࡉࡦ࿖┙⎇ⓥᚲߦ㧟ゲಽశེࠍ⸳⟎ߔࠆߣߣ߽ߦᄙߊߩ⎇ⓥ⠪ࠍ☨࿖ߦ ᵷ㆜ߒ ߦߢ߹ࠇߎޔ355 ✬ߩ⺰ᢥ߇ ߐࠇߡࠆࠫ࠶ࠢࠝޕ࿖┙⎇ⓥᚲߣߩᣣ☨දജߩᚑᨐߪ 92 ✬ߩ⺰ᢥߣߥߞ ߡࠆޕ࿖㓙ห⎇ⓥߪ╙㧟ઍ‛ᕈ⎇ߩਥⷐߥ⋡ᮡߩ৻ߟߢࠅޔਛᕈሶᣉ⸳ߢ߽ᣣ☨දജࠍਛᔃߦޔᣂߚߥ࿖㓙ห ⎇ⓥ⻉ࠕ࠾ࠕࠝࠕࠫࠕߦߊߣޔ࿖ߣߩㅪ៤ࠍᷓࠆߚߦޔቯᦼ⊛ߥ࿖㓙ࡒ࠽߿⡜⎇ⓥࠍⴕߞߡࠆޕ ޔᄢဳ㓁ሶടㅦེ J-PARC ࠍ↪ߚᣂߒࡄ࡞ࠬਛᕈሶḮ߇ JRR-3 ߩߔߋㄭߊߦᑪ⸳ਛߢࠆޕ2008 ᐕߦߪਛ ᕈሶࡆࡓߩଏ⛎߇㐿ᆎߐࠇࠆ੍ቯߣߥߞߡࠆޕടㅦེ߅ࠃ߮ਛᕈሶᢔੂታ㛎ⵝ⟎߇ቢోߦⒿߔࠆߦߪߩߘޔᓟ߽ ࠆ⒟ᐲߩᦼ㑆߇ᔅⷐߣߐࠇࠆߣᕁࠊࠇࠆ߇ޔㄭ᧪ᤨޔ㑆ᐔဋᒝᐲߢ⢋ࠍਗߴࠆቯᏱਛᕈሶḮߣࡄࠬ࡞ਛᕈሶḮߩ㧞ߟ ࠍ↪ߢ߈ࠆ߇ߢ߈߇ࠆޕਛᕈሶߩ․ᕈᤨߟ߽ߩࠬ࡞ࡄޔ㑆᭴ㅧࠍ↪ߒߚ᷹ቯߦࠃߞߡቯᏱἹߢߪ࿎㔍ߢߞ ߚಽ㊁ߢߩ⎇ⓥ߇น⢻ߦߥࠆߎߣ߇ᦼᓙߐࠇࠆ‛ޕᕈ⎇ߣߒߡߪޔJRR-3 ߦ⎇ⓥߣห↪ߩゲ⿷ࠍ߅߈ߥ߇ࠄ߽ޔน ⢻ߥ▸࿐ߢ J-PARC ߩᑪㅧߦ⽸₂ߒߡࠆ‛ޔߚ߹ޕᕈ⎇⁛⥄ߩಽశེࠍ߽ߟߎߣ߽⸘↹ߒߡ߅ࠅޔၮᧄߣߥࠆᑪ⸳ࡊ ࡦߩᚑ߽ߔߢߦቢੌߒߡࠆޕ ‛ᕈ⎇ਛᕈሶ⑼ቇ⎇ⓥᣉ⸳ߪޔਛᕈሶḮࠍ߽ߟ⎇ⓥᯏ㑐ߣߪߩޔ࿖ౝᄖߩਛᕈሶࠍ↪ߚၮ␆⎇ⓥࠍਛᔃߣߒߚห ↪⎇ⓥᣉ⸳ᢎ⢒ᯏ㑐ߣߒߡߩᓎഀࠍᨐߚߒߡ߈ߚޕ ވ൳၌ဥࡄݪਫ਼̞̾̀ͅ! ఱ߿ࡄݪ୭ͬ၌ဥ̳ͥࡄٸݪ໐̥ͣȇSPring-8!༶ৣ͈၌ဥͅ!̱̀۾ ᄢ㒋ᄢቇᄢቇ㒮ၮ␆Ꮏቇ⎇ⓥ⑼ ⩲ ṑᱜ ߹ߕᚒ߇࿖ߦ߅ߌࠆశ⎇ⓥޔਛߢ߽ SPring-8 ⸘↹ᑪ⸳↪⎇ⓥߩ⚻✲ࠍᝄࠅࠅᓟ᧲ޔ੩ᄢቇ‛ᕈ⎇ⓥᚲ ࠍ⎇ⓥᯏ㑐߇ߤߩࠃ߁ߥ⎇ⓥᚢ⇛ߢ⊒ዷࠍ࿑ࠆߴ߈߆ࠍ⠨߃ߚ ޕశಽ㊁ߢߪᣣᧄశቇળ߇ 1988 ᐕߦޔ ᒰᤨ 40 ઍ߆ࠄ 50 ઍ೨ඨߩ⎇ⓥ⠪ߩᚻߢ⊒⿷ߒߩߘޔᓟޔᄢဳ X ✢శḮᑪ⸳ࠍ⋡ᜰߒߡޔᄙߊߩ⎇ⓥ⠪߇⸘↹ផㅴߦദ ജߒޔ1993 ᐕߦߪ SPring-8 ↪⠪ᙣ⺣ળ߇⊒⿷ߒޔේ⎇ℂ⎇㜞ノᐲశ⑼ቇ⎇ⓥࡦ࠲߆ࠄߥࠆห࠴ࡓߣㅪ ៤ߒߡ SPring-8 ⸘↹ߩౕൻߣ⸘᷹♽ߩᑪ⸳ߦ৻ߣߥߞߡදജߒߡ߈ߚޕᒰೋ 4 ᧄߩࡆࡓࠗࡦߩᑪ⸳߆ࠄᆎ߹ࠅ ߢߪ 54 ᧄߩࡆࡓࠗࡦߢߩታ㛎߇ⴕࠊࠇߡࠆޕ ᒰೋ⑼ቇᛛⴚᐡ〝✢ߦᴪߞߚ⸘↹ߢߞߚߚߦޔᒰᤨߩᢥㇱ⋭ߩో࿖ᄢቇห↪ߩᔨߣߪᄢ߈ߊ⇣ߥࠆᒻߢߩޔ ⚵❱੍▚↪ᒻᘒ߇ណ↪ߐࠇߩߘޔᓟᐞ߫ߊ߆ߩᄌㆫࠍ⚻ߥ߇ࠄޔߩ⚵❱↪ᒻᘒ߳ߣ⊒ዷߒߡࠆޕ ߎߩ㑆⻉ޔᄖ࿖ߩᄢဳశᣉ⸳ߣᲧߴߡ⌀ޔⓨౝߦኽᱛߒߚᝌశḮߩ㐿⊒߿ߡࠊ߈ޔቯߥశࡆࡓߩଏ⛎ޔ ߐࠄߦߪ᰷☨ߩశᣉ⸳ߢߪ᭴ᗐߔࠄߐࠇߥ߆ߞߚエ X ✢ၞߢߩ↪ߥߤޔSPring-8 ߢߩ⎇ⓥߪ⇇ࠍ࠼ߔࠆಽ ㊁߇ዋߥߊߥޕ ৻ᣇߢ▚੍ߩߘޔᒻᘒ߿⚵❱ߩ㗴ὐ߆ࠄ⻉ޔᄖ࿖ߩᣉ⸳߇߶߷ࡆࡓࠗࡦࠍᦨᄢ㒢ᑪ⸳ߒߡ↪ߒߡࠆߩߦኻ ߒߡޔSPring-8 ߢߪ߹ߛචᢙᧄߩᑪ⸳ᧂቢੌࡆࡓࠗࡦࠍᱷߒߡ߅ࠅߩߘޔᑪ⸳੍▚ߩᚻᒰ߇࿎㔍ߢࠆߣߩᱷᔨߥ ⁁ᴫ߇⛯ߡࠆޕᔕ⺖㗴ߪჇടߩ৻ᣇߢޔណᛯࡆࡓ࠲ࠗࡓߪᐔဋߢ߽ 60-70% ߪߡߞࠃߦࡦࠗࡓࡆޔ25%ࠍਅ ࿁ࠆࠤ߽ࠬߡࠆޕ ․ߦᚢ⇛ᵴ↪ࡊࡠࠣࡓߦኻߔࠆ⺖㗴ណᛯ₸߇ 70%એ↥ޔᬺ↪ߩ⺖㗴ណᛯ₸߇ 60㧑⒟ᐲߢࠆߩߦኻߒߡޔၮ␆ ⎇ⓥߩ⺖㗴ណᛯ₸ߪߊߟ߽ߩಽ㊁ߢ 50%ࠍਅ࿁ࠆ⁁ᴫߦߥߞߡ߅ࠅޔ 76 ↪ᚢ⇛ߩ⋥ߒ߇ⷐ⺧ߐࠇࠆࠃ߁ߦߥߞߡ߈ߡࠆޕ ߎߩࠃ߁ߥ⁁ᴫߢߐࠄߦ৻⥸⺖㗴ߩ↪⠪ߪޔᣏ⾌ṛ⾌ߩ⥄Ꮖ⽶ᜂߦട߃ߡޔᶖ⠻ຠߩ↪㊂ࠍ⽶ᜂߒߥߌࠇ߫ߥࠄ ߕࡓࡆߚ߹ޔណᛯ₸ߩૐߐߦᄢቇ㒮↢ߩ⎇ⓥ࠹ࡑߣߒߡ SPring-8 శ↪⎇ⓥࠍⴕ߁ߎߣ߇࿎㔍ߦߥߞߡࠆ ⎇ⓥࠣ࡞ࡊ߇ዋߥߊߥޕ ߎߩࠃ߁ߥߎࠇ߹ߢ⇇ࠍ࠼ߒߡ߈ߚశၮ␆⎇ⓥߩ࿎㔍ߐࠍ SPring-8 ߦ߅ߡᅤߦసߔࠆ߆ߩ⼏⺰߇ᔅ ⷐߣ⠨߃ࠄࠇࠆߚ߹߇ࠇߘޕᚒ߇࿖ߩห↪ߩࠆߴ߈ᆫߦᤋߐࠇࠆߎߣࠍᦸߺߚޕ ࡄ͈͒౷༷̥͈ͣါབ! ᐢፉᄢቇ ᄢቇ㒮వ┵‛⾰⑼ቇ⎇ⓥ⑼ޔవㅴᯏ⢻‛⾰⎇ⓥࡦ࠲ 㜞⇗ ᢅ㇢ ͉̲͛ͅ! ‛ᕈࠦࡒࡘ࠾࠹ࠖߣ‛ᕈ⎇ⓥᚲ߇ᣇ⊛ߦ⦟ೝỗࠍਈ߃วߞߡޔਔ⠪߇⊒ዷߔࠆߚߦ‛ޟޔᕈ⎇߳ߩᣇ߆ࠄߩ ⷐᦸࠍޠㅀߴ߹ߔ⥄⑳ޕりߪ 1984 ᐕ 4 ߆ࠄ 4 ᐕ㑆‛ޔᕈ⎇ߩ⍹Ꮉᓕ㕏ᚲຬߩ߽ߣߢഥᚻߣߒߡᏗ㘃ൻว‛߿વ ዉ㌃㉄ൻ‛ࠍ⎇ⓥߒߩߘޔᓟᐢፉᄢቇߦ⡯ࠍᓧߡ߆ࠄ߽‛ᕈ⎇ߦᄢᄌ߅ߦߥߞߡ߹ߔ⹏⸘⸳⾰‛ޔߦ․ޕଔᣉ⸳ޔ ᣂ‛⾰⑼ቇㇱ㐷ޔᭂ㒢ⅣႺ‛ᕈㇱ㐷ޔਛᕈሶ⑼ቇ⎇ⓥᣉ⸳゠ޔ‛ᕈ⎇ⓥᣉ⸳ߩᣇߩߣޘห⎇ⓥߦࠃࠅޔᏗ㘃 ߿࠙ࡦࠍᲣߣߔࠆ㊄ዻ㑆ൻว‛⁁ࠧࠞޔൻว‛ߦߟߡᄙߊߩᚑᨐࠍߍࠆߎߣ߇᧪߹ߒߚ‛ޔߦࠄߐޕᕈ⎇ߢ ඳ჻ࠍขᓧߒߚ 3 ฬࠍࡐࠬ࠼ࠢߣߒߡฃߌࠇߚߩߦ⛯ߡޔഥᚻ߽߅ㄫ߃ߒ߹ߒߚߩߎޕ᭽ߥੱ⊛ߥห↪ ห⎇ⓥߣᵹߩ⚻㛎߆ࠄᰴߩࠃ߁ߥ㗴ࠍឭߒ߹ߔޕ ါབ͂࿚ఴܳ!˥! ๊֚ა! ٤‛ᕈ⎇ߩᚲຬߣോㇱ⡯ຬߪ‛ᕈࠦࡒࡘ࠾࠹ࠖߩਛᩭߢࠆߣߩ⥄ⷡࠍᜬߞߡࠆ߆㧫 ᣂߒầᵹࠍࠈ߁ߣߒߡࠆ߆ ޔPhys. Rev. Lett. ࠍߖ߫⦟ߒߣߒߡߥ߆ ٤‛ᕈ⎇ⓥࡀ࠶࠻ࡢࠢߩޟ࿖ಽኹޟ߿ޠਛዊⷙᮨߩὐ‛ߣޠᕈ⎇ߩㅪ៤ߪㅴࠎߢࠆ߆㧫 ᣇߦ⿷ࠍㆇࠎߢޔትવߒߚࠅ⼏⺰ߒߡࠆ߆㧫 ᣇᄢቇߩቴຬᢎຬߣߥߞߡోޔ࿖ߩቇ↢ߦೝỗࠍਈ߃ߡࠆ߆㧫 KEK ߩ⚵❱⊛ᵴേߣߩᲧセ㧕 ٤⇇ߩࠕࠫࠕߦ․ޔὐߣߩㅪ៤ߪㅴࠎߢࠆ߆㧫 ٤ੱᵹߢߪർᶏ߆ࠄᴒ✽߹ߢߦ⋡߇ዯߡࠆ߆㧫 ‛ᕈ⎇ߩඳ჻ขᓧ⠪ޔഥᚻޔᚲຬࠍߤࠎߤࠎᣇ߳ ٤ࠦࡒࡘ࠾࠹ࠖࠍઍߒߡᄢဳ੍▚㧔․ቯ㗔ၞ⎇ⓥߥߤ㧕ࠍ↳⺧ߒߡࠆ߆㧫 ါབ͂࿚ఴܳ!Ԇ! ވ൳၌ဥ۾Ⴒ! ٤ᰴᦼਛᦼ⸘↹ߩ╷ቯߢห↪ߦ㑐ߔࠆㇱಽߪห↪ᣉ⸳ኾ㐷ᆔຬળߢክ⼏ߒߡ᰼ߒޕ ห↪ߩᐲ߿੍▚㈩ಽࠍ⋥ߔߦߪ⦟ᯏળ 㧔ോㇱߣߩห߇ᄢಾ㧕 ٤ോㇱ‛ᕈ⎇ᜂᒰߪห↪ࠍࠃߊℂ⸃ߒߡࠆ߆㧫 㧦ኋ⥢↪⾌ᡰᛄߢޟ㊒㌛ߩήࠃ߁ߦߪޠฎޕ ٤ห⎇ⓥ⠪߿ฦ⒳ᆔຬ߇ᚲຬߩり⎇ⓥቶㄝߦߞߡߥ߆㧫 ٤㐿⊒ߐࠇߚᣂᚻᴺ߿ⵝ⟎߇ᣇߦ᥉ߐࠇߡࠆ߆㧫 ٤ᆔຬળ߿⎇ⓥળ㐿ᣣ⒟ߪᣣ߿ભᣣ߽ߡ᰼ߒޕᐔᣣߩᬺࠍભ⻠ߔࠆߣޔᢎ⢒ߦᡰ㓚߇ࠆߛߌߢߥߊޔቇ ↢߆ࠄߩ⹏ଔ߽ਅ߇ࠆޕ ٤‛ޟᕈ⎇ߛࠃࠅߩ↢ߪߦޠჿ߇ዋߥޕᄙߊߩ㗁ࠍභࠆࠪࡦࡐࠫ࠙ࡓߩ⊒ⷐᣦߪࡎࡓࡍࠫߦឝタߔࠇ߫ࠃޕ ઍࠊࠅߦޔ߫߃ޔᣂછᢎຬ߿ᐕࠍㄫ߃ߚᢎ⡯ຬߩᜦޔඳ჻⺰ᢥ㗴⋡ߥߤߪߤ߁߆ޕ ٤ࠠࡖࡦࡄࠬౝㇱߦࠦࡦࡆ࠾ࠛࡦࠬࠬ࠻ࠕߣᦺ㘩ࠍขࠇࠆᣉ⸳߇᰼ߒޕ ٤㧢㓏ߩ⻠⟵ቶ೨ߦߪޔḡ⨥ߩ↪ᗧ߇ߢ߈ࠆᏱ⸳࠹ࡉ࡞߇ࠇ߫ଢޕ ᑈਅߩ㔚᳇ࠦࡦࡦ࠻ߩߦࠆ┙ᵷߥ⛗ߪߩ႐ᚲߦ⒖ߒߡࠍ࡞ࡉ࠹ߦߎߘޔᏱ⸳ޕ 77 ވ൳ࡄݪਫ਼̞̾̀ͅ!–!ٸ໐̥͈ͣփࡉါབ̞̾̀ͅ! ᣂẟᄢቇ ᄢቇ㒮⥄ὼ⑼ቇ⎇ⓥ⑼ ᓟ⮮ ノቁ ͉̲͛ͅ! ᣣᧄߩ⚻ᷣߪ⇇ߩ࠽ࡦࡃࡢࡦߣ⸒ࠊࠇࠆ߹ߢߦᚑ㐳ߒ⚻ޔᷣᄢ࿖ߣߒߡߩ⛘㗂ᦼࠍ⚻㛎ߒޔ1992 ᐕߩࡃࡉ࡞⚻ᷣ ߩ፣უߦ⥋ߞߚࠇߎޕએᓟޔᣣᧄߪ↥ᬺᛛⴚߛߌߢߪߥߊၮ␆⎇ⓥߩಽ㊁ߢ᰷߽☨ߦ⢋ࠍਗߴࠆࠃ߁ߦߥࠅ⁛ޔഃᕈߦၮ ߠߊ࿖㓙⎇ⓥ┹ߦෳߢ߈ࠆࠃ߁ߦߥߞߚޕ1996 ᐕߦߥࠅ⑼ቇᛛⴚၮᧄᴺ߇ቯߐࠇ┹ޔ⊛⎇ⓥ⾗㊄ߩ㘧べ⊛Ⴧട ߦࠃߞߡၮ␆⎇ⓥࠍߋࠆⅣႺ߽㘧べ⊛ߦᡷༀߐࠇߡ߈ߚߣ⸒߃ࠆޕታ㛎ⵝ⟎ࠍᚻߢ߈ߥ⽺࿎ߩ⁁ᴫߪᰴ╙ߦᡷༀߐ ࠇߡ߈ߚޕᣣᧄߩ⎇ⓥⅣႺ߇ోߣߒߡ⽺࿎ߢߞߚᤨઍ߆ࠄޔ2005 ᐕᐲ߆ࠄߪ࿖┙ᄢቇᴺੱ߇⊒⿷ߒޔᄢቇ⁛⥄ߩข ࠅ⚵ߺߦࠃࠆ⎇ⓥⅣႺߩᡷༀ߇ㅴⴕߒߡࠆߣߢߪ✚ޔ࿖ಽኹߣߒߡߩ‛ᕈ⎇ⓥᚲߩᓎഀ߽ᄌൻߒߡ߈ߡࠆߣ⠨߃ ࠄࠇࠆޕ ૧ګఱڠৗၾঊݪࡄڠشΓϋΗȜ! ᰴߦޔᣇᄢቇߩ৻ߟߢࠆߢࠆᣂẟᄢቇߩ‛ᕈ⎇ⓥߩ⁁ᴫߦ߽⸅ࠇߚޕ2000 ᐕߦᣣᧄቇⴚળ⼏ᣣᧄቇⴚળ⼏‛ ℂቇ⎇ⓥㅪ⛊ຬળ߆ࠄߐࠇߚኻᄖႎ๔‛ޟᕈ⎇ⓥὐᢛ⸘↹ߩౕൻߦะߌߡ‛ޔߡ߅ߦޠᕈ⎇ⓥᚲߪ✚ޟ࿖ಽ ኹߡߒߣޠ⟎ߠߌࠄࠇߚޕᣂẟᄢቇ߽ో࿖ 18 ‛ᕈ⎇ⓥὐߔߥࠊߜޟ࿖ಽኹߡߒߣޠ⟎ߠߌࠄࠇߚߎߣߪޔᣂẟᄢ ቇ߅ߌࠆߘߩᓟߩὐᢛߩ㊀ⷐߥᜰ㊎ߣߥߞߚޕ2002 ᐕᐲᱜ੍▚ߦࠃߞߡ ᩺ߩࡋ࠙ࡓᶧൻᯏߩ⸳⟎߇ࠄࠇޔ 2004 ᐕߦߪᴺੱൻߒߚᣂẟᄢቇ⁛⥄ߩ್ᢿߦၮߠ߈ቇౝ⸳⟎ߒߚ‛⾰㊂ሶ⑼ቇ⎇ⓥࡦ࠲ߦ߅ߡޔᶧࡋ࠙ࡓߩ ቯଏ⛎ࠍ⏕┙ߒߚߡߞࠃߦࠇߎޕᣂẟᄢቇߢߩ‛ᕈ⎇ⓥ߇ᄢ߈ߊടㅦߐࠇߚߣታᗵߒߡࠆޔ߫߃ߣߚޕૐ᷷㖸 ᵄ⸘᷹ߦࠃࠆࠪࠦࡦ⚿᥏ਛߩේሶⓨሹߩ᷹ⷰޔ᳓⚛ๆ⬿ว㊄ࠍ↪ߚ᳓⚛ࡦࠨߩ㐿⊒ߥߤ‛ᕈ⎇ⓥ߇ၮ␆ߣߥߞߚ ⾆㊀ߥᚑᨐ߇↢߹ࠇߡ᧪ߡࠆࠎࠈߜ߽ޕචಽߣߪ⸒߃ߥ߹ߢ߽ޔၞߩᄢቇߢߩ‛ᕈ⎇ⓥὐߩᢛߪㅴࠎߢࠆߣ ⸒߃ࠆޕ ࡄݪਫ਼͈͒ါབ! ‛ᕈ⎇ⓥᚲߪ‛ᕈ⎇ⓥࠦࡒࡘੑ࠹ࠖߩ✚ޟ࿖ಽኹߩߡߒߣޠᓎഀ߇ᦼᓙߐࠇߡࠆ‛ޕᕈታ㛎ߩ┙႐߆ࠄߪޔථߒ ߚ‛ᕈታ㛎ࠍផㅴߔࠆὐߣߒߡߩ‛ᕈ⎇ⓥᚲࠍᦸߺߚ‛ޕᕈ⎇ⓥߪర᧪ዊߐࠣ࡞ࡊߢߩᕈ⊛ߥ⎇ⓥ߇ၮᧄߣ ߥߞߡࠆߩߎޕᗧߢోޔ࿖ߩᄢቇၞߢߩ⎇ⓥὐߩᢛ߇㊀ⷐߢࠅ⁛ߚࠇ߹↢ߢߎߘޔഃ⊛ߥ⎇ⓥᚑᨐ߿ᣂߒ ࠕࠗ࠺ࠕࠍ‛ᕈ⎇ⓥᚲߩථߒߚ⎇ⓥ⸳ߩห↪ߦ❬ߍࠆߎߣ߇ᤚ㕖ߣ߽ᔅⷐߢࠆౕޕ⊛ߦߪᒝ⏛႐ޔ㜞ޔ ૐ᷷ߥߤߩᄙ㊀ᭂ㒢ߩታ㛎߿ේሶἹࠍ↪ߚਛᕈሶᢔੂߥߤߩታ㛎߇⠨߃ࠄࠇࠆ‛ޕᕈ⎇ⓥᚲߩታ㛎⸳ߪᤨޔὐߢ ߽⇇ߩ╙৻⚖ߩ᳓Ḱߢࠆ߇ޔᓟߣ߽⇇࠻࠶ࡊ᳓Ḱߩታ㛎ࠍㆀⴕߔࠆߦߪޔ࿎㔍ߥߢߪࠆ߇㐿⊒⎇ⓥࠍㅴࠆ ᔅⷐ߇ࠈ߁‛ߒ⟤ޕℂࠍ⺆ࠆࠛࠟࡦ࠻ߥ⺰ᢥ߽ᭂߡ㊀ⷐߥᚑᨐߢࠆ߇⁛ޔഃ⊛ߥታ㛎ᚻᴺߩ㐿⊒⎇ⓥߩ⺰ᢥ߽ ᱜᒰߦ⹏ଔߔࠆᔅⷐ߇ࠆߟ৻߁߽ޕ㊀ⷐߢࠆߩߪ‛ޔᕈ⎇ⓥᚲ߇ో࿖‛ᕈ⎇ⓥࠦࡒࡘੑ࠹ࠖߩ✚࿖ಽኹߣߒߡਛᔃ ⊛ߥ⟎ߦࠅ⛯ߌࠆߎߣࠍᦸߺߚޕᕈ⊛⁛ഃ⊛ߥ⎇ⓥࠍផㅴߔࠆߩߪੱ⊛ᵹ߇ਇนᰳߢࠅߢ߹ࠇߎޔࠅߍ ߡ߈ߚห↪ޔቴຬ⎇ⓥຬޔ⍴ᦼ⎇ⓥળޔṛဳߥߤో࿖ห↪ࠍߐࠄߦ⊒ዷߐߖࠆߎߣ߇ᦸ߹ࠇࠆޕ COE ̷͈ఈ͈ఱ߿߄শయ͂ࡄݪ߄ ‛ᕈ⎇ ኅ ᵏᒄ ⸥ߩ࠲ࠗ࠻࡞ߪੱ߆ࠄਈ߃ࠄࠇߚ߽ߩߢࠆߏޕଐ㗬ߩᗧ࿑ߦᴪߞߚ߇ߢ߈ࠆ߆ߤ߁߆⥄ାߪߥ߇┹ޔ⊛ ⾗㊄⑼ߦ․ޔቇ⎇ⓥ⾌ഥ㊄ࠍߋࠆᦨㄭߩേ߈ߦߟߡႎ๔ߔࠆ⑼ޕቇᛛⴚၮᧄ⸘↹ߦၮߠ߈ޔ1 ᦼ㧔5 ᐕ㧕ߏߣߦ 20㨪25 ళߣ߁⑼ቇᛛⴚ㑐ㅪ੍▚ߩ㊀ὐᛩ⾗߇ߥߐࠇߡࠆ┹߽ߢ߆ߥޕ⊛⾗㊄ߣ߁ࠞ࠹ࠧߩ߽ߩߪㆊ 10 ᐕ㑆ߦᄢߦჇ㗵ߐࠇ⚂ 4,700 ం(H18)ߦ㆐ߒߡࠆߩߘߪ⾌⎇⑼ޕౝߩ⚂ 40㧑ࠍභ 1,900 ంߢࠆ╙ޕ㧝ᦼၮᧄ⸘ ↹ߩࠬ࠲࠻ᤨὐ(H8)ߩ⚂ 1,000 ం߆ࠄ߶߷Ⴧߒߡࠆ৻ޕᣇߩߎޔ㑆ߦ⋭ᐡౣ✬ޔfunding agency ߩ⁛┙ᴺੱൻޔ ࿖┙ᄢቇߩᴺੱൻߥߤ⎇ⓥⅣႺ߿੍▚ភ⟎ߦᄢ߈ߥᓇ㗀ࠍ߷ߔߐ߹ߑ߹ߥേ߈߇ߞߚޕ ߎࠇ߹ߢ㗅㘑ߦਸ਼ߞߡિ߮ࠍ␜ߒߡ߈ߚ┹⊛⾗㊄ߢࠆ߇ᦨޔㄭߢߪ⽷ᡰᡷༀࠍఝవߔࠆᐭߩᣇ㊎߿⎇ޔⓥ⾌ ࠍߋࠆਇ߿⎇ⓥ⾌ߩㆊᐲߩ㓸ਛߦኻߔࠆᛕ್ߥߤ߇ㅒ㘑ߣߥߞߡߩ▚੍ޔિ߮ߪṛะߦࠆޕ ⑼ቇᛛⴚቇⴚክ⼏ળቇⴚಽ⑼ળ⎇ⓥ⾌ㇱળߢߪޔቇⴚ⎇ⓥᵴേࠍᡰ߃ࠆ⎇ⓥ⾌ߦ㑐ߒߡޔၮ⋚⊛⚻⾌ߣ┹⊛⾗㊄ߦ ࠃࠆ࠺ࡘࠕ࡞ࠨࡐ࠻ߩᔅⷐᕈ⎇ޔⓥ⠪ߩ⥄↱ߥ⊒ᗐߩၮߠߊቇⴚ⎇ⓥࠍᡰ߃ࠆ⑼ቇ⎇ⓥ⾌ഥ㊄ߩ㊀ⷐᕈ࡞ࡇࠕࠍޔ ߒߡࠆᧄߦ․ޔࠄ߇ߥߒ߆ߒޕᐕߪ৻ㅪߩਇ╬ߩᓇ㗀ߢ㒐ᚢߦ࿁ࠄߑࠆࠍᓧߥ߆ߞߚߩ߇ታᖱߢࠆߦ⾌⎇⑼ޕ㑐 78 ߔࠆᐔᚑ 19 ᐕᐲ▚ⷐ᳞ߢߪޔቇⴚᝄ⥝ળ߳ߩᦝߥࠆ⒖▤ޔ㑆ធ⚻⾌ࠍភ⟎ߔࠆ⎇ⓥ⒳⋡ߩల⧯ޔᚻᡰេ╷ޔ㔚ሶࠪ ࠬ࠹ࡓൻߩផㅴޔክᩏ⹏ଔߩలታࠅ⋓߇╬ޔㄟ߹ࠇߡࠆޕᣂⷙᔕߩណᛯ₸ߪ 25㧑ࠍਅ࿁ࠆ⒟ᐲߢࠆ߇ޔ ߎࠇࠍ 30㧑บߦਸ਼ߖࠆߎߣ߇ᧄ╭ߢࠆޕ╷ቯ⠪߇ᛴߊ߁ߣޠ߈߹ࠄ߫ޟශ⽎ࠍ߆ߦᛂ⎕ߔࠆ߆߇⺖㗴ߢࠆޕ 㧔⑳ߪޟޔߊߥߪߢޠ߈߹ࠄ߫ޟ᳓᠋߈⸒߁ߣࠆߢޠᣇࠍߒߡࠆ߇⧘⦟ࠅ߹ߟޕ⢒ߞߡߊࠆფߦ᳓㆜ࠅࠍ⛘ ߿ߐߥߎߣ߇㊀ⷐߛߣ߁ᗧߢࠆ߇ޕ㧕 ‛ޟᕈ⎇ⓥὐᢛ⸘↹╙ߪޠ㧝㧣ᦼߩቇⴚળ⼏‛ℂቇ⎇ⓥㅪ⛊ᆔຬળߩኻᄖႎ๔ߣߒߡߐࠇߩߘޕᓟޔ1819 ᦼ ߦ‛ޟᕈ⎇ⓥὐᢛ⸘↹ߩౕൻߦߌߡ߁ߣޠႎ๔߇‛ᕈኾ㐷ᆔຬળߢขࠅ߹ߣࠄࠇߚߩ߆ߟߊޕᄢቇߢߩ ▚ⷐ᳞ߦᄙዋߩេ⼔ߣߥߞߚ߆ߣᕁ߁߇ޔ࿖ಽኹ᭴ᗐߩᧄ᧪ߩࠬࡇ࠶࠻ߢࠆὐᢛߣߘࠇࠍ↪ߒߚห⎇ⓥࠍᜂ ߔࠆ੍▚ភ⟎ߩ₪ᓧߦ߹ߢߪ⥋ߞߡߥߩߘޕ㑆ߦޔ࿖┙ᄢቇᴺੱൻ߿ COE21 ߥߤߩേ߈߇ߞߡޔὐᢛ⸘↹ ߩ⼏⺰ߪ⣁ߦ⟎߆ࠇߚᗵ߇ࠆޔࠄ߇ߥߒ߆ߒޕᴺੱൻ╬ߦࠃߞߡዊⷙᮨ⎇ⓥࠣ࡞ࡊߩ⎇ⓥⅣႺߩഠൻ߇ࠅߟߟࠆ ޔὐᢛ⸘↹ߦߪᣂߚߥᗧ߇ࠆ߽ߩߣ⠨߃ࠆޕᣂ↢ቇⴚળ⼏ߩ‛৻ಽ⑼ળߣ‛ᕈࠣ࡞ࡊ߇ㅪ៤ߒߡ⼏⺰ࠍㅴ ࠆߩ߇ㆡᒰߣᕁࠊࠇࠆޕ ܰ࿅ࡄݪ̤̫ͥͅࡄ͂ݪఉအ͈ږ༗ ℄ᄢቇ ℂ ⍫ࡩፒ స㚍 )ˍȫ͉̲͛ͅ ࿖┙ᄢቇߩᴺੱൻߣᯏࠍ৻ߦߒߡᕆㅦߦㅴⴕߒᆎߚᘒߩ৻ߟߦޔዊⷙᮨ⎇ⓥቶߩ⎇ⓥ⾗㊄⏕߇ 㔍ߒߊߥࠅ⎇ޔⓥߩ⛽ᜬ߇ ᔨߐࠇࠆߎߣ߇ߍࠄࠇࠆޔߢ߹ޕၮ⋚ᩞ⾌ߣߒߡ㓚ߐࠇߡߚᦨૐ㒢ߩᢎ⢒⎇ⓥ⾌ ߇ޔᔅⷐ⚻⾌߆ࠄߪߕߐࠇ⾗ޔ㊄㈩ಽߩේℂ߇┹ޟߣ⹏ଔߦޠಾࠅᦧ߃ࠄࠇߚߎߣߦࠃࠆ⛽ߢ߹ޕᜬߐࠇߡ߈ߚዊ ⷙᮨ⎇ⓥቶߩᢎ⢒⎇ⓥ⾗㊄ߩ⏕߇ޔᣂᐲߢ࿎㔍ߦߥࠆᘒߪ⎇ޟߚ߈ߡࠇߐ⏕ߢ߹ޔⓥᄙ᭽ᕈ߇ޠ⎕უߐࠇࠆ ෂᯏߣ⚿߮ߟߡࠆޕዊⷙᮨ⎇ቶߩෂᯏߪߘߩ߹߹⎇ⓥᄙ᭽ᕈߩෂᯏߥߩߢࠆޕዊⷙᮨ⎇ⓥቶߩ⁁ࠍႎ๔ߔࠆߣ ߣ߽ߦߗߥޔᄙ᭽ᕈࠍ⏕ߒߥߌࠇ߫ߥࠄߥ߆ߣ߁㗴ࠍޔၮᧄߦ┙ߜߞߡᢎ⢒ߣ⎇ⓥߩਔ㕙߆ࠄ⺰ߓߡߺࠆޕ )ˎȫܰ࿅ࡄݪ͈࡛ે ℄ᄢቇℂቇㇱࠍߦߣߞߡ⁁ࠍ⚫ߔࠆޕᴺੱൻએ೨ߪ‛ℂߩታ㛎♽ߩᢎຬߪޔ1 ੱᒰߚࠅߩนಣಽ੍▚ߪޔᢎ⢒⎇ⓥ⾌⚂ 50㨪70 ਁ㧗ᣏ⾌ 17 ਁߣ߁੍▚⁁ᴫߢߞߚ߇ޔH15 ᐕᐲߦߪޔᢎ⢒ ⎇ⓥ⾌ߣᣏ⾌ࠍวࠊߖߡ 33 ਁߣ߁⁁ᘒߦ߹ߢỗᷫߒߡࠆޕᢥ⑼⋭ߩ⑼ቇᛛⴚ⊕ᦠߦࠃࠇ߫ޔ࿖⑳┙ᄢቇߩℂ ቇㇱߩ 1 ੱᒰߚࠅᐔဋ⎇ⓥ⾌㧔ㆇ༡⾌ઃ㊄㧗ᄖㇱ⾗㊄㧗ੱઙ⾌㧕ߪ ⚂ޔ3,200 ਁߦࠇߘޔኻߒߡ℄ᄢቇℂቇㇱ ߪ⚂㧝500 ਁޕታߦඨ㗵ߦ߽߫ߥ⎇ޕⓥ᧦ઙߩᩰᏅߪᱧὼߣߒߡࠆోޕ࿖ߩᣇᄢቇߪᄢหዊ⇣⁁▚੍ޔᘒߦ ᄢᏅߪήޕ )ˏȫఉအ͈ږ༗̶͉̈́ຈါ̥ Ԙ㧔ࠕࠞ࠺ࡒ࠶ࠢߥᯏ㑐ߣߒߡߩ⎇ⓥ㧕ቴⷰ⊛ᄖ⇇߇ᄙ᭽ߢࠆ⎇ޕⓥߪᔅὼ⊛ߦᄙ᭽ߢࠆᔅⷐ߇ࠆޕ⍮ߐࠇߚ 㗔ၞߛߌ߇⥝ࠅଔ୯ߩࠆኻ⽎ߢߪήޕ ԙ㧔ࠍ⎕უߒដߌߡࠆੱ㘃⊛┙႐㧕ߣሽߒߡᜬ⛯ߢ߈ࠆੱ㘃␠ળߩߚߦߪޔߩ․ᕈࠍㆬᛯ⊛ߦขᝥ ߒߡߩߢߪ⎕✋ߪ⚻㛎ᷣߺޕ᧪߇ᚑࠅ┙ߚߥޕ Ԛ㧔ᣣᧄߩ⑼ቇᛛⴚ╷⊛⺖㗴㧕᧪ߩ᳓Ḱࠍ⛽ᜬߒߚߩߥࠄޔᄙ᭽ᕈߪᔅ㗇ޕ ԛ㧔ࠕࠞ࠺ࡒ࠶ࠢߥᢎ⢒㧕ࠍዅ㊀ߒੱᩰࠍࠆߥࠄ߫ޔ᳃ᣖߩ⥄ᮭࠍዅ㊀ߒᐔࠍᦸߥࠄ߫ޔᄙ᭽ᕈߩዅ㊀ߪ ᄢ೨ឭ⌀ޕℂߪోੱ㘃ਁ࿖ߩㅢၮ⋚⌀ޕℂߩቴⷰ⊛ᛠីࠍޕ Ԝ㧔ో㕙⊛ੱᩰߣ⁛┙ߒߚ⎇ⓥ⠪ߩ⢒ᚑ㧕⍮ߩ༡ߺࠍⴕޔᔃべࠆቇ⠌ࠍታᣉߔࠆߩ߇⁛┙ߒߚ᳃ਥੱࠍ⢒ᚑߔࠆၮᧄޕ 㧔ၮᧄ⊛ੱᮭߩਛり㧕⑼ቇ⊛ߢᱜ⏕ߥ⍮⼂ࠍᜬߜޔቴⷰ⊛ߦ‛ࠍ⍮ߔࠆߎߣ߇ߢ߈⥄ޔಽߢ್ᢿߢ߈⥄ޔಽߢ⚿ ⺰ࠍߔߎߣߩߢ߈ࠆੱ㑆ޕ㧔⁛┙ߒߚ⎇ⓥ⠪ߩⷐ⚛㧕⥄↱ߥ⊒ᗐ⎇ޔⓥኻ⽎ߩㆬቯ⎇ޔⓥᚻᲑߩቯ࠲࠺ޔ㓸 ߣ⸃ᨆ⢻ജ✚ޔว⊛⠨ኤߩߢ߈ࠆ⎇ⓥ⠪ޔߪࠄࠇߎޕߞߚଔ୯ⷰߩ߽ߣߢߪߒߡ⢒ᚑߢ߈ߥޕ )ːȫͺΟηΛ·̈́ၛા́Ȃఉအͬఄਹ̧́ͥບ͈ث࿒ͬ ⑼ቇᛛⴚ╷⊛ߦᄙ᭽ᕈࠍ㊀ⷞߔࠆ⹏ଔၮḰࠍޕ 㧔ㆊᐲߩ⾗㊄㓸ਛߪ⹏ଔߩ⋡ߩࠅࠍ␜ߔ߽ߩ㧕 )ˑȫಎܰ࿅ࡄݪ৪͉ুࡨ৽ಫͬ㧦⁛⥄ᕈߩ⏕⎇ޔⓥߩᗧ⟵ߩౣ⏕ޔᄙ᭽ᕈࠍᡰ߃ࠆ᳇ࠍޕᖱႎ✂ࠍ⏕ߒߡޔ ⎇ⓥදജࠍޕᨵエ⚵❱ߩ㓸࿅⊛ห⎇ⓥࡀ࠶࠻ࡢࠢࠍޕ )˒ȫࡄݪ߄Ȉఉ̨̳͂ࠧཋ͈ଵୃ㧔ผⓨ೨ߩᄢડᬺߩᄢ߽߁ߌߣࡢࠠࡦࠣࡊࠕ㧕 ߩࡀࠞޟ㓸ਛߢࡁࡌ࡞⾨߇↢ ߹ࠇࠆ߆ޟޠᄙ᭽ᕈ⎕უߒߡੱ㘃߇↢߈ᑧ߮ࠄࠇࠆ߆ޠ Ԙࠦࡒࡘ࠾࠹ࠖߪ⥄ਥ⊛ߥ⎇ⓥ✂ࠍ್ߦࠢ࠶ࡒ࠺ࠞࠕߪࠢ࠶ࡒ࠺ࠞࠕޕᢿߢ߈ࠆ┙႐ߩ⏕ࠍޕԙㆡಾߥၮ⋚⚻⾌ߩ ၮḰ⊛㈩ᏓࠍޕԚㆡಾߥ┹⊛⾗㊄ߩࠍޕ 79 PD ࿚ఴ̞͈̾̀ͅͺϋΉȜΠऔ͈ࠫض༭࣬! ฬᄢℂ ᐔፉ ᄢ ⍴ᦼ⎇ⓥળߦవ┙ߞߡ⎇ޔⓥળߦ߅ߌࠆ⼏⺰ߩ᧚ᢱߣߔࠆߚߦᣂᣥߩ‛ᕈࠣ࡞ࡊോዪߦࠃߞߡ PD 㗴ߦ㑐ߔࠆ ࠕࡦࠤ࠻⺞ᩏ߇ⴕࠊࠇߚ‛ޕᕈࠣ࡞ࡊߦዻߔࠆ⚂ 190 ࠣ࡞ࡊߦࠕࡦࠤ࠻ࠍ߅㗿ߒޔ49 ࠣ࡞ࡊ߆ࠄ࿁╵ࠍ ߚߛߚޕ ࠕࡦࠤ࠻ߢߪޔ 㧜㧚ㆊ 5 ᐕ㑆ߩඳ჻ቇขᓧੱᢙ 㧝㧚ㆊ 5 ᐕ㑆ߩ PD 㓹↪ߩή PD 㓹↪ߩ⚻㛎߇ࠆ႐ว⾗ ޔ㊄ޔ㓹↪ᦼ㑆ޔPD ߣߒߡߩ㓹↪࿁ᢙ 㓹↪⚳ੌᓟߩㅴ〝 㧞㧚PD ᔕ⠪ࠆߪ⠪ߩੱᢙߥߤ 㧟㧚PD 㗴ߦߟߡߩ⥄↱࿁╵ 㧠㧚㧔⑼ቇᛛⴚᝄ⥝⺞ᩏ⾌ߦࠃࠆ㧕࠹࠾ࡘࠕ࠻࠶ࠢᐲߦߟߡߩᗧࠍ⺞ᩏߒߚޕ ࿁╵ߒߡߚߛߚ 49 ࠣ࡞ࡊߢߪޔ㧡ᐕ㑆ߦ 134 ฬ߇ቇࠍขᓧߒޔ106 ฬߩ PD ࠍ㓹↪ߒߡࠆޕ1 ฬએߩ PD ࠍ㓹↪ߒߚߎߣ߇ࠆࠣ࡞ࡊߪ㧠㧥ࠣ࡞ࡊਛޔ36 ࠣ࡞ࡊߢߞߚޕ 㓹↪⾗㊄ߦߟߡߪޔቇᝄߦࠃࠆ PD㧔․⎇ⓥຬ㧕ߩᢙ߇ㄭᐕᷫዋߒߡ߅ࠅࠍࠇߘޔలߔࠆࠃ߁ߦ⑼⎇⾌ߦࠃࠆ㓹 ↪߇Ⴧടߒߡࠆޔߚ߹ޕฦᄢቇᯏ㑐ߩ⚻⾌㧔ㆇ༡ઃ㊄ߥߤ㧕ߦࠃࠆ㓹↪߽߆ߥࠅߩഀวࠍභߡࠆޕPD ߩ✚ᢙ ߪߎߎ㧡ᐕ㑆ߢߪ㗼⪺ߥᄌൻߪߥ㧔න⺞ߦჇടߒߡࠆߎߣߪߥ㧕ޕ 㓹↪⚳ੌᓟߩㅴ〝߿ߩ㓙ߩᔕ⠪ᢙߥߤ߆ࠄߪ‛ޔᕈࠣ࡞ࡊߦ߅ߡ PD ߇߈ࠊߡㆊߣߥࠅෂᯏ⊛ߥ⁁ᴫߦ ࠆߎߣࠍ␜ߔ⚿ᨐߪᓧࠄࠇߡߥߩઁޔߪߊࠄߘ߅ޕಽ㊁ߦᲧߴࠇ߫߹ߛ㗴ߪෂᯏ⊛ߢߪߥน⢻ᕈ߇㜞߆ߒޕ ߒߥ߇ࠄ࠲࠺ߩ࠻ࠤࡦࠕߩߎޔᢙ߇ዋߥߊోߩ⁁ᴫࠍᱜ⏕ߦᤋߒߚ߽ߩߣߥߞߡߥน⢻ᕈ߽ࠆޕታ⥄ޔ ↱࿁╵ᰣߦነߖࠄࠇߚᗧߦߪᷓೞߥ PD 㗴ߩሽࠍᜰ៰ߔࠆ߽ߩ߇ᄙ߆ߞߚޕቇขᓧ⠪ࠆߪ PD ߦኻߒߡࠕࠞ ࠺ࡒ࠶ࠢࡐࠬ࠻એᄖߩዞ⡯ࠍଦߔߚߩⅣႺࠅ㧔ࡀ࠶࠻ࡢࠢࠅ㧕ࠍㅴࠆߴ߈ߢࠆߣ߁ᗧ߇ᄙ߆ߞߚޕ ࿁ߩ⺞ᩏߢߪޔ㓹↪ߐࠇߚ PD ߦߟߡߩߺߩ⺞ᩏࠍⴕߞߚ߇ޔᓟฦࠣ࡞ࡊߦ߅ߌࠆቇขᓧ⠪ߩㅴ〝⺞ᩏߥߤ ߽ⴕࠅࠃޔᐢ▸࿐ߩ PD 㗴ߩታᘒߩᛠីߦദࠆᔅⷐ߽ࠆ߆߽ߒࠇߥ⺞࠻ࠤࡦࠕޔ߅ߥޕᩏ⚿ᨐߩ⚦ߪ‛ޔ ᕈࠣ࡞ࡊ࠙ࠚࡉࡍࠫߦឝタߔࠆ੍ቯߢࠆޕ ڠ݈͈ٛܥෝ͂ڬ ᧲ᄢᎿ චୖ ᅢ♿ ᣂቇⴚળ⼏㧔SCJ㧕ߩᯏ⢻ߣᓎഀߦߟߡㅀߴ‛ޔᕈࠦࡒࡘ࠾࠹ࠖߣߩㅪ៤ߩࠅᣇࠍ⼏⺰ߚߛߚޕ 2005 ᐕ㧔╙ 19 ᦼ㧕ߦ SCJ ߪჿޟᣣᧄߩ⑼ቇᛛⴚ╷ߩⷐ⺼ޔߒ⊒ࠍޠ2050 ᐕ߹ߢߩޔ࿖ኅ⊛⋡ᮡߦኻߔࠆ⑼ቇ ᛛⴚ╷ߩ⽸₂ߣࠅᣇߦߟߡߩ⠨߃ࠍߒߚ ޕ20 ᦼ SCJ ߩࡒ࠶࡚ࠪࡦߪߎࠇࠍౕൻߔࠆߎߣ߆ࠄᆎ߹ࠆޕ SCJ ߪ╙ 20 ᦼߦߚࠆߣ߈ߦޔળຬᐲᡷ㕟ࠍⴕޔSCJ ⥄ࠄળຬ㧔⚂ 210 ฬ㧕ࠍㆬ⠨ߒ ߩߎޔߚ߹ޔ1 ᐕࠍ߆ߌߡޔ ળຬߣ╬ߩ┙႐ߢᵴേࠍⴕ߁ㅪ៤ળຬ㧔⚂ 1900 ฬ㧕ࠍ co-optation ߩ⠨߃ߢㆬߒߚޔߚ߹ޕㇱ߽ 7 ㇱ߆ࠄ 3 ㇱ ߳ᄌᦝޔળ㐳ࠍ 3 ฬߣߒߡޔᐙળ߽⸳⟎ߒߡޔክ⼏ᗧᕁቯߩㄦㅦൻࠍ࿑ߞߡࠆޕ ‛ℂቇᆔຬળ㧔╙ 3 ㇱߦ⸳⟎㧕ߩ㑐ଥߔࠆᏱ⸳ಽ⑼ળߣߒߡ‛ޟޔᕈ㨯৻⥸ޠ ޔ㨇⚛☸ሶ㨯ේሶᩭ㨉ޔ ޟᄤᢥቝቮ‛ޠℂቇ ฦಽ⑼ળ߮ࠃ߅ޔ࿖㓙ኻᔕߣߒߡ IUPAPޔIAU ಽ⑼ળ߇ࠆ‛ޕᕈࠦࡒࡘ࠾࠹ࠖߣߩ㑐ㅪ߇ᷓߩߪޠ৻‛ޟޔಽ⑼ ળ㧔દ⮮ᣧ⧣ᆔຬ㐳ޔኅᐙޔᐙޔචୖᆔຬ㐳㧕ߢࠅޔ30 ฬߩㅪ៤ળຬߩหಽ⑼ળ߳ߩෳടࠍᓧߡߩᦼޔ ਥߚࠆክ⼏⺖㗴ߣߒߡޟޔၮ⋚⊛⎇ⓥᵴേߦ⾗ߔࠆ‛৻⎇ⓥὐߩᢛ᭴ᗐߦߟߡࠍޠᬌ⸛ߒᆎߡࠆޕ SCJ ߩᗧᕁߩߣߒߡ ╙ޔ19 ᦼߦ߅ߌࠆჿޟᣂಽ㊁ഃᚑߦ⾗ߔࠆశ⑼ቇ⎇ⓥߩᒝൻߣߘߩᣇ╷ߦߟߡ߿ޠ ⷐᦸޟ࿖┙ᄢቇߩᄢቇᴺੱൻߦߣ߽ߥ߁ᄢቇ㒝⟎ో࿖ห↪⎇ⓥᚲᣉ⸳ߩ⺖㗴ࠍޠขࠅߍޔSCJ ߆ࠄߩᗧᕁ ߩ㊀ⷐᕈߣᓟലᨐㅊ〔ߩᔅⷐᕈࠍㅀߴߚޕ ߎߩὐߦ㑐ߒߡޔᓥ᧪ߩ‛⎇ㅪ߆ࠄߩႎ๔‛ޟᕈ⎇ⓥὐᢛ⸘↹ޠ㧔1996㧕ߣ‛ޟᕈ⎇ⓥὐᢛ⸘↹ߩౕൻߦะ ߌߡޠ 㧔2000㧕ߩᓟലᨐ߮ࠃ߅ޔฦ⒳ߩᢎ⢒⎇ⓥὐᒻᚑࡊࡠࠣࡓ߇ㅴⴕߔࠆߥ߆ߢߩߎߩ⸘↹ߩߩᗧ⟵ߣᔅⷐ 80 ᕈߦߟߡޔળ႐߆ࠄߩᗧࠍુߞߚޕ ߹ߚޔฦ⒳ߩⷐᦸࠍᗧᔒߩ೨ឭߣߒߡޔᓥ᧪ߩ‛ᕈ⑼ቇၮ␆⎇ⓥߩࠗࡁࡌ࡚ࠪࡦߦኻߔࠆୟ⊛ነਈߩታ❣ ࠍᒝ⺞ߒޔ10 ᐕߩవ㧔╙ 3㨮4 ᦼ⑼ቇᛛⴚၮᧄ⸘↹㧕߹ߢࠍዷᦸߒߚ‛ޔᕈ৻⥸‛ℂቇߩၮ⋚⊛⎇ⓥߦࠃࠆ promise ࠍޔ ᢛℂߒߡಽࠅ߿ߔߊឭ␜ߔࠆߎߣ߇ᔅⷐߣߩࠍ⑳ޔㅀߴߚޕ ڠ݈ٛ͂ηνΣΞͻȜ༷̥ͣ! ȝ!ڠ݈͈ٛႤঃ͓࡛ͬ̀ેͬࣉ̢ͥ!ȝ! 㕍ጊቇ㒮ᄢቇℂᎿቇㇱ ⑺శ ⚐ ᦨㄭޔቇⴚળ⼏߇ᄢ߈ߊ᭽ᄌࠊࠅߒޔ20 ᦼ߆ࠄߪቇⴚળ⼏ળຬߩㆬ⠨ᣇᴺߦ㑐ߒߡ co-optation ߣ߁ᣇᴺ߇ขࠄࠇޔᒻ ᑼ⊛ߦߪਅㇱ⚵❱㧔ᚒ‛ߪߢࡊ࡞ࠣߩޘℂቇ⎇ⓥㅪ⛊ળ㧕ߣߩ㑐ଥ߇ߥߊߥࠆߎߣߦቯߒߚߦࠇߘޕᔕߓߡ࿁ޔ ᚒߩ❱⚵ߪޘᑪߡ⋥ߒࠍߥߊߐࠇߡࠆޕ ߎߎߢቇⴚળ⼏ߩᱧผࠍᝄࠅߞߡޔቇⴚળ⼏ߩᨐߚߒߡ߈ߚᓎഀ߅ࠃ߮ᓟߩዷᦸߦߟߡㅀߴߚޕ ུڠ݈͈ٛႤঃ! ⦟ߊ⍮ࠄࠇߡࠆࠃ߁ߦޔᣣᧄቇⴚળ⼏ߪ 1949 ᐕ 1 ߦ⊒⿷ߒߚޕળຬߪᬺ❣ߦࠃߞߡቯߐࠇ⋥ޔធㆬߦࠃࠅㆬ ߫ࠇ✚ޔℂᄢ⤿߇છߔࠆߣ߁ᒻߦߥߞߡߚ ߒ߆ߒޕ1950 ᐕ 11 ࠆࠊ⚳߇ᦼ৻╙ޔ㗃߆ࠄᐭߩቇⴚળ⼏ߦኻߔ ࠆᘒᐲ߇ᓸᅱߦᄌൻߒߡ߈ߚ⇟৻ߩߘޕᄢ߈ߥේ࿃ߪޔᚢᓟߩỗേᦼߩᓟߦ↢ߓߚ⺰ߩಽⵚߢࠆߩߘޔߒ߆ߒޕ㑆ޔ ቇⴚળ⼏߇ᨐߚߒߚᓎഀ߽ᄢ߈ߊޔᄙߊߩ⎇ⓥᚲ߇⸳┙ߐࠇߚ㧔 1 ෳᾖ㧕ޕ ߎߩࠃ߁ߥ⺰ߩಽⵚࠍฃߌߡቇⴚળ⼏ߦᴦ⊛ߥേ߈߇ᒝ߹ࠅޔᩭེᑄ⛘ࠕࡇ࡞ޔᄢቇ▤ℂᴺߦኻߔࠆჿޔ ේሶജ⎇ⓥ 3 ේೣ╬߇ᛂߜߐࠇߚߦࠇߎޕኻߒߡᐭߪޔ1967 ᐕቇⴚክ⼏ળࠍ⊒⿷ߐߖޔቇⴚળ⼏ߩ੍▚ߪᄢߦᷫ ዋߔࠆߦ⥋ߞߚޔߦࠄߐޕ1983 ᐕቇⴚળ⼏ᴺ߇ᡷᱜߐࠇޔቇⴚળ⼏ߩળຬߪቇදળ߇ផ⮈ߒޔቇⴚળ⼏߇ㆬ߱ߣ߁ࠃ ߁ߦᡷࠄࠇߚ ߦࠄߐޕ2004 ᐕ 4 ߦ⥋ߞߡޔቇⴚળ⼏ᴺࠍᡷᱜߔࠆᴺᓞ߇ᚑ┙ߒޔ2005 ᐕ 10 ߆ࠄޔቇⴚળ⼏ߩ╙ 20 ᦼ߇⊒⿷ߒߚߣࠆࠃߦࠇߘޕળຬߪޔቢోߦ co-optation ߦࠃࠅㆬߐࠇޔ1. ቇⴚળ⼏ߪ㒸ᖱ࿅ߢߪߥߊࡆࡠޔ ࠗࡦࠣߪߒߥޕ2. ․ቯߩ⎇ⓥಽ㊁ߦ᳓ࠍᒁ߆ߥޕ3. ಽ㊁ᆔຬળߪߥߊߔ╬ߩቯ߇ߥߐࠇߚޕ એ߇◲නߥቇⴚળ⼏ߩᱧผߢࠆߪߢߎߎޕ㗴ឭߣߒߡޔ 1㧚‛ᕈᆔຬળߣߒߡቇⴚળ⼏ߦࠍᦼᓙߔࠆ߆ 2㧚ߤߩࠃ߁ߦቇⴚળ⼏ߣ‛ᕈᆔຬળࠍ❬ߍࠆ߆ ߣ߁ᄢ߈ߥ㗴߇ࠆߩࠄࠇߎޕ㗴ߦߟߡߪޔᄙߊߩ⼏⺰߇ߥߐࠇߚ߇৻ᦺ৻ޔᄕߦ⸃ߢ߈ࠆ㗴ߢ߽ߥߩߢޔ ߎࠇࠄߩ㗴ࠍᜬ⛯⊛ߦ⸛⺰ߒޔᓟߩᚒߩޘᵴേߦᦼᓙߒߚޕ 㪈㩷 ⎇ⓥᚲ⸳┙䈱䇮൘๔䈫ታ䈱ᐕ㩷 ൘๔ ታ ൘๔ ታ ේሶᩭ⎇ⓥᚲ ࡊ࠭ࡑ‛ℂ⎇ ✢ၮ␆කቇ⎇ ቝቮ⑼ቇ⎇ⓥᚲ ቝቮ⥶ⓨ⎇ ‛ᕈ⎇ⓥᚲ ቝቮ⑼ቇ⎇ ᄤ‛ℂߩᝄ⥝ ጟጊᄤ‛ℂ᷹ⷰᚲ ⚛☸ሶ⎇ⓥᚲ 㜞ࠛࡀ࡞ࠡ⎇ ᶏᵗ✚ว⎇ⓥᚲ ಽሶ⑼ቇ⎇ⓥᚲ ᢙℂ⸃ᨆ⎇ⓥᚲ శ✚ว⎇ⓥᚲ ηνΣΞͻ̱͈͂̀տ֥͈ٛ!ڬ ฬᄢℂ ⮮ ᱜବ ᣂ↢ቇⴚળ⼏ߩ⺀↢ߦߞߡ‛ᕈᆔຬળߣቇⴚળ⼏ߣߩߟߥ߇ࠅ߇ᶖ߃‛ޔᕈᆔຬળߪ㕖ᑼߩ࿅ߣߥߞߚࠃߩߎޕ ߁ߥ⁁ᴫਅߢᓟ‛߇ࠇߎޔᕈ⎇ⓥ⠪ࠦࡒࡘ࠾࠹ࠖߩᗧᕁࠍ⑼ቇⴕߦᤋߐߖߡߊߚߦߪߩߘޔᗧᕁࠍᱜߒߊ㓸⚂ 81 ߒޔቭ⚵❱ߣߪ⇣ߥߞߚ┙႐߆ࠄߩᑪ⸳⊛ᗧࠍ࠲ࠗࡓߦឭߢ߈ࠆᘒࠍᏱᤨᢛ߃ߡ߅ߊߎߣ߇㊀ⷐߢࠆߘޕ ߩߚߦޔᓥ᧪ߩ‛ᕈ⊖ੱᆔຬળࠍ‛ᕈᆔຬળߦᡷ⚵ߒߡⷙ⚂ࠍቯߒ‛ޔᕈಽ㊁ߩ⊒ዷߩߚߩᗧ⺞ᢛ߿ߘࠇߦၮߠ ߚឭ⸒ࠍⴕ߁ળߣߒߚౕޕ⊛ߦߪ‛ޔᕈಽ㊁ߩ⎇ⓥ⠪㑆ߩㅪ⛊ޔᗧ឵ޔ㓸⚂ޔឭ⸒ޔฦ⒳⚵❱㧔߃߫ޔᣣᧄቇ ⴚળ⼏㧕ߣߩㅪ⛊ోޔ࿖ห↪ᯏ㑐ߩฦ⒳ᆔຬߩផ⮈㧔‛ᕈ⎇ห↪ᣉ⸳ኾ㐷ᆔຬળᆔຬੱޔද⼏ળᆔຬޔ੩ᄢၮ ⎇ㆇ༡ᆔຬޔห↪ᆔຬઁޔ㧕‛ޔઁߩߘޔᕈಽ㊁ߩ⊒ዷߦነਈߔࠆᵴേࠍⴕ߅߁ߣߔࠆ߽ߩߢࠆޕ ‛ᕈᆔຬળߦߪ‛ᕈᆔຬ㐳ޔോዪ㧔㐳㧕 ޔᐙ 20 ฬ⋙ޔᩏੱ 2 ฬࠍ߅߈ޔᐙߪ‛ᕈᆔຬߩㆬߢㆬߐࠇ‛ᕈᆔ ຬ㐳߅ࠃ߮ോዪߣදജߒߡㆇ༡ߦߚࠆ⋙ޕᩏੱߪോዪᦧ㧔3 ᐕߏߣ㧕ߩᰴߩቇળᤨߦ㐿߆ࠇࠆᄢ‛ᕈᆔຬળߢ ⋙ᩏႎ๔ࠍⴕ߁ޕ ᐔᚑ 18 ᐕ 10 ߆ࠄߩߘࠇࠄߩࡔࡦࡃߪᆔຬ㐳㧦ୖᧄ⟵ᄦޔോዪ㐳㧦 ᵗ৻ޔᐙ㧦⮮ᱜବޔ㜞⇗ᢅ㇢ޔർ ጟ⦟㓶ޔᄢ⽾ᖳ⌬ޔᓟ⮮ノቁޔᏂᶏ₵ޔਃቛᱜ⑺ޔశ⚐ޔ೨Ꮉㅢޔ↰ᄦޔጊ⑲ᢅޔ೨㊁ᖝノޔ⍫ࠤፒస㚍ޔ ဝ↰⺈ޔ㋈㗅ਃޔችਅ♖ੑޔዊ↰၂ቁޔ㜞ᯅ㓉ޔጊቁޔᎹೣ㓶ߣߥߞߡࠆޕ ‛ᕈᆔຬળߩ⺖㗴ߪߩࠖ࠹࠾ࡘࡒࠦޔᗧᕁߩ㓸⚂ߣߦࠇߘޔၮߠߚⴕേឭ⸒ࠍᔅⷐߦᔕߓߡⴕ߁ߎߣߢౕޔ⊛ߦ ߪ߃߫એਅߩࠃ߁ߥⷰὐߦኻߔࠆᗧᕁ㓸⚂߿ᘒᢛ߇᳞ࠄࠇࠃ߁ޕ٤┹⊛⾗㊄ߩㆡᱜ㈩ಽߦ㑐ߔࠆ‛ᕈ⎇ⓥ⠪ߩ ⠨߃ᣇޔ٤ᄢቇ㒝⟎ߩో࿖ห↪⎇ⓥᚲߦኻߔࠆᡰេ߿ⷐᦸޔ٤‛ᕈಽ㊁એᄖߩࠦࡒࡘ࠾࠹ࠖߣߩㅪ⛊ᯏ⢻ߩᒻᚑޔ٤ ⨲ߩᩮ⚵❱ޔዊⷙᮨࠣ࡞ࡊߦኻߔࠆ⠨ᘦޔ٤ᓥ᧪߆ࠄߩឭ⸒ߦߞߚ‛ᕈ⎇ⓥὐ⸘↹ߦኻߔࠆᓟߩኻᔕ٤JPSJ ߩ ᵴᕈൻࠍ⋡ᜰߒߚ‛ᕈࠦࡒࡘ࠾࠹ࠖߣߒߡߩദജޔ٤ᤐߣ⑺ߩ‛ℂቇળߦ߅ߌࠆ⊒ᒻᑼߩᡷༀ߫߃ߣߚޔቇળࡊࡠࠣ ࡓ✬ᚑࠅߩࡓ࠙ࠫࡐࡦࠪޔᣇ٤ PD 㗴߳ߩⓍᭂ⊛ኻᔕޔឭ⸒╬ޕ ᓟ‛ޔᕈᆔຬળ߇࿐߆ࠄା㗬ߐࠇߘߩᯏ⢻ࠍᨐߚߒߡߊߚߦߪޔ٤‛ᕈ⎇ⓥ⠪ߩᄙߊߦടࠍ߮߆ߌࠦޔ ࡒࡘ࠾࠹ࠖోߩᗧ߇㓸⚂ߢ߈ࠆ⚵❱ߣߥࠆߎߣޔ٤‛ᕈ⎇ࠍߪߓߣߒߚห↪⎇ߩᵴേߦኻߔࠆᡰេ߅ࠃ߮ቇ ⴚળ⼏ߦኻߔࠆᗧⷐᦸ╬ࠍല߆ߟᢅㅦߦⴕ߃ࠆᘒࠅࠍᕃࠄߧߎߣ⎇ޔⓥ⾗㊄ߩ㈩ಽ╬ߦ㑐ߒߡቯࠍⴕ߁ᯏ㑐 ߿ᆔຬળߦ႐ߩჿࠍᱜ⏕ߦવ߃ࠆ╭ࠍ᭴▽ߔࠆߎߣ߇╬ޔᔅⷐߢߩߚߩߘޔቯᦼ⊛ળว߇ᦨ߽㊀ⷐߥ߽ߩߣ⠨߃ࠆޕ ߘߩ߁߃ߢቇⴚળ⼏╬ߦߪࠦࡒࡘ࠾࠹ࠖߩᗧᕁߩዅ㊀ࠍⷐᦸߔࠆޕ ߎߩ߶߆ޔᄢቇ㒝⟎ߩో࿖ห↪⎇ⓥᚲߦኻߒߡߩౕ⊛ᡰេ╷߿ⷐᦸ⎇ޔⓥ⾗㊄ߩㆡᱜߥ㈩ಽޔዊⷙᮨ⑼ቇߦ㑐ߔ ࠆ㈩ᘦޕߚߒ⺰⼏ߡߟߦ╬ޔ տ֥͈ٛخෝ! ᧲ർᄢℂ ୖᧄ ⟵ᄦ ‛ᕈᆔຬળᆔຬ㐳 ቇⴚળ⼏ߩౣ✬ߦࠃࠅ‛ޔℂቇ⎇ⓥㅪ⛊ળ⼏㧔‛⎇ㅪ㧕ߪ 2005 ᐕ⑺ߦᑄᱛߐࠇߚ⎇‛ޔߡߞߦࠇߎޕㅪߩਅㇱ⚵❱ ߣߒߡߩ‛ᕈ⊖ੱᆔຬળ߽ߘߩᕈᩰࠍᄌൻߐߖߚޕ2006 ᐕ 3 ߩ‛ℂቇળᐕᰴᄢળߦ߅ߌࠆᄢ‛ᕈᆔຬળߢߩߎޔᄌ ൻ߳ߩኻᔕࠍ⼏⺰ߒ‛ޔᕈࠦࡒࡘ࠾࠹ࠖߣߒߡߪ⎇ޔⓥ⠪ߩ⨲ߩᩮ⚵❱ࠍ‛ޟᕈᆔຬળ߁ߣޠฬ⒓ߢၮᧄ⊛ߦሽ⛯ߐߖ ࠆߎߣߦߚߩߎޕቯࠍฃߌߡޔ2006 ᐕ 10 ߆ࠄ᧲ർᄢቇ߇ฬฎደᄢቇ߆ࠄോዪࠍᒁ߈⛮ߢࠆࡃࡦࡔޕ ߪୖᧄ⟵ᄦ ᆔຬ㐳ޔᵗ৻ ോዪ㐳ޔ⍹ේ⚐ᄦޔጤᤩ ോዪᐙߢࠆޕ ‛ᕈࠣ࡞ࡊ߇㑐ਈߒߚਥߥឭ⸒ࠍᝄࠅߞߡߺࠆߣએਅߩࠃ߁ߥ߽ߩ߇ࠆޕ 㧖 ‛ᕈ⎇ⓥὐᢛ⸘↹ 1996ޔ2000㧦ቇⴚળ⼏ኻᄖႎ๔⎇‛ޔㅪႎ๔ޕ 㧖 ⎇ⓥಽ㊁ࠍᮮᢿߔࠆṛဳห⎇ⓥផㅴ 2005㧦‛⎇ㅪႎ๔ޔ2007㧦ၮ␆‛ℂቇ⎇ⓥᚲߩ▚ⷐ᳞ޕ 㧖 JPSJ ߩ⊒ዷߦะߌߡ 2005.1㧦‛ᕈࠣ࡞ࡊᔒߩჿޕ ߎࠇࠄߩឭ⸒ߪ৻ቯߩᚑᨐࠍߍߡࠆߩߢޔᒁ߈⛯߈ᔅⷐߥ⁁ᴫߦኻߒߡࠦࡒࡘ࠾࠹ࠖߣߒߡߩឭ⸒ࠍߒߡⴕ߈ߚޕ ᦨㄭߩ࿖ౝᄖᖱߩㅢߔࠆ㊀ⷐߥᄌൻߣߒߡ⎇ޔⓥ߆ࠄᢎ⢒߳ߩ੍▚ᛩࠪࡈ࠻߇ߍࠄࠇࠆ☨߫߃ޕ࿖ߪࠕࠫࠕ ߩบ㗡ߣ⥄࿖ߩᢎ⢒᳓Ḱૐਅߦኻߒߡෂᯏᗵࠍᒝߡࠆ߇☨ޔ࿖⑼ቇࠕࠞ࠺ࡒߩ 2006 ᐕ 2 ߩឭ⸒ᦠߩߥ߆ߢߪޔ ┹⋧ᚻߣߒߡਛ࿖ߣࠗࡦ࠼߇➅ࠅߒ⸒ߐࠇߡࠆߩߦኻߒߡޔᣣᧄ߳ߩ⸒ߪ߶ߣࠎߤߥޕᣣᧄߪᦨᣧᒝജߥ┹ ⋧ᚻߣߪࠄࠇߡߥߎߣࠍ⥄ⷡߒ⌀ޔߦౣ⥝ࠍ࿑ࠆߴ߈ߢࠆ৻ޕᣇޔ࿖┙ᄢቇᴺੱൻߦࠃࠆᄌൻߣߒߡ‛ᕈࠦ ࡒࡘ࠾࠹ࠖߦߣߞߡ㊀ⷐߥߎߣߪోߕ߹ޔ࿖ห↪⎇ⓥᯏ㑐ߩᐲᄌᦝ߇ࠆޕᄢቇߩห↪⎇ⓥᚲߩᄌൻߪޔ COE ↳⺧ߥߤߢห৻ᄢቇߩઁㇱዪߣㅪ៤ߔࠆᔅⷐߦࠃࠅޔᚲዻᄢቇ߳ߩᏫዻᕈᒝൻߣߒߡ߽ࠇߡࠆޕᴺੱൻߪߘߩ ઁߦ߽┹ޔ⊛ⅣႺߩᩰᲑߩᒝ߹ࠅࠍ߽ߚࠄߒߡࠆߦࠇߎޕᴺੱ㑆ߩ⋉⋧ޔታ㛎ᣉ⸳ᢛ⁁ᴫߩᩰᏅᄢޔ ᣇᄢቇߩ෩ߒ⁁ᴫߥߤ߇↢ߺߐࠇߡࠆࠍࠄࠇߎޕ൮ߔࠆᩮḮ⊛ߥ㗴ߣߒߡ㜞╬ᢎ⢒ߩో⊛ะࠍߤ߁࿑ࠆ߆ ߇ࠆ‛ޕᕈᆔຬળߩછോߣߒߡߪߩߎޔታᖱࠍⷞ㊁ߦࠇߚߢߩࠦࡒࡘ࠾࠹ࠖߩᗧ㓸⚂ߣⴕേ߇ᦨ߽ၮᧄ⊛ߢࠆޕ ߘߩߚߦߪ‛ޔᕈ⎇ⓥߩ᧪ߦ㑐ߔࠆࠆ⒟ᐲߩൻ߇ᔅⷐߢࠈ߁ޕห↪⎇ⓥᚲ߳ࠦࡒ࠶࠻ߔࠆ⋥ធߩ 82 ࡄࠗࡊߪޔᆔຬߩផ⮈ߢࠆ⎇‛ߤࠎߣ߶ޔߪߡߟߦࡦ࡚ࠪࠫࡐߩߎޕㅪߦផ⮈ࠍଐ㗬ߐࠇߚㇱಽࠍᒁ߈⛮ߢ߅ࠅޔ 190 ⒟ᐲࠆࠣ࡞ࡊߩᛩߦࠃߞߡⵍផ⮈⠪ࠍߡࠆߩ⨲ޕᩮߩᗧࠍᤋߔࠆᢙዋߥᯏળߢࠆ߇ߪ⁁ޔ ᛩ✚ᢙ߇ዋߥߔ߉ࠆޔߚ߹ޕᄢဳᣉ⸳ߩ↪ᡷༀߦࠦࡒ࠶࠻ߔࠆߎߣޔฦ⒳ⷙᮨߩࡃࡦࠬࠍ↢߆ߒߚ⎇ⓥᢎ⢒᭴ ▽ߦነਈߔࠆߎߣ‛ޔℂቇળߩᐕળಽ⑼ળߩᡷ㕟߳ߩදജޔJPSJ ߩᒝൻ⊒ዷ߳ߩදജ⧯ޔᚻ⎇ⓥ⠪ߩ⢒ᚑߦࠦࡒ࠶ ࠻ߔࠆߎߣߥߤޔኻಣߔߴ߈⺖㗴ߪጊⓍߒߡࠆޕ ‛ᕈᆔຬળߪ‛ᕈ‛ℂቇో⥸ࠍࠞࡃߔࠆߎߣࠍ⋡ᮡߦߒߡࠆ߇ޔߪߢ⁁ޔಽ㊁ߦࠅ߇ߥߣߪ߃ߥޔߚ߹ޕ ࠃࠅኾ㐷⊛ߥࠦࡒࡘ࠾࠹ࠖߣߩㅪ៤߽࿑ߞߡߊߴ߈ߢࠆߥ߁ࠃߩߎޕᕡᏱ⊛ᵴേߩዷ㐿ߪޔᐕળߣಽ⑼ળߦ߅ߌࠆ ᄢ‛ᕈᆔຬળߛߌߢߪਇ⿷ߢࠆޕ࿁ߩࠃ߁ߥ⎇ⓥળߩ㐿߽ޔോዪߣᐙ 20 ੱߦࠃࠆ࠳ࠪ࠶ࡊࠍࠆ ⒟ᐲ⊒ើߒߡⴕേߒߡ߈ߚޔ߃ߪߣޕಽߦ߽㕖ജߥࠁ߃ߩࠖ࠹࠾ࡘࡒࠦޔᒝജߥࠨࡐ࠻ࠍ߅㗿ߔࠆߒߛߢ ࠆޕ ၑڠٛఱ͈ٛႀ֖อນ̳ͥͅ۾٨!ڟ ᧲ᄢ✚ว 㣮ఽፉ ⺈৻ 2006 ᐕ 9 23 ᣣ26 ᣣߦජ⪲ᄢቇߢ㐿߆ࠇߚᣣᧄ‛ℂቇળ 2006 ᐕ⑺ቄᄢળߢታᣉߒߚࠕࡦࠤ࠻⚿ᨐߩ⇛ࠍႎ๔ ߔࠆ⺞࠻ࠤࡦࠕޕᩏߩ⋡⊛ߪޔ㗔ၞ߇⊒⿷એ᧪㧣ᐕߩ㑆‛ޔߢߩߥߡࠇߐߥߪߒ⋥ߥ⊛⾰ᧄޔᕈ㑐ଥߩ㗔ၞ ࠍਛᔃߣߒߡᄢળ㐿ᴺߦ㑐ߔࠆળຬߩᗧࠍ⡞ߊߎߣߢࠆޕ ࿁╵ᢙߪ 953 ߢࠆ߇ 71%ߪᐕ㦂 40 ᱦઍ߹ߢߩੱߩ࿁╵ߢࠆ⚿࠻ࠤࡦࠕޕᨐࠍ৻⸒ߢ⸒߃߫ߕ߹ߕ߹ޔḩ⿷ᐲ߇ 㜞ޔߪࠇߎޕᲧセ⊛⧯ᚻߩ࿁╵߇ᄙᢙࠍභߚ߆ࠄ߆߽ߒࠇߥޕᵈ⋡ߔߴ߈ߪ 50 ᱦઍߩ࿁╵ߢࠅߩઁޔᐕ㦂ጀߦ Ყߴߡḩ⿷ᐲ߇ૐޕ࿖㓙ળ⼏ߩᏨ࿁ᢙ߿ᓙ⻠Ṷߩ⚻㛎߇⼾ንߛ߆ࠄߢࠈ߁ޕએਅߦ㊀ⷐߣᕁࠊࠇࠆ㗄ߦߟߡޔ ⚿ᨐߩ⇛ࠍㅀߴࠆޕ 㧔⚦ߪ‛ℂቇળߦឝタ੍ቯ㧕ޕ 1ࠪࡦࡐࠫ࠙ࡓߦߟߡ㧦ࠪࡦࡐࠫ࠙ࡓߪ⢐ቯ⊛ߦᝒ߃ࠄࠇߡࠆ߇ޔᗧߣߒߡߪࡑ࠹ޔቯ߇ᤃߢࠆߎ ߣߦኻߔࠆᛕ್߽ࠆޕ 2㗔ၞߦߟߡ㧦50 ᱦઍߩᔕߪ⋡┙ߞߡ߅ࠅ⇟ߩ⁁ޔภߢߪߥߊㆡᒰߥฬ⒓ࠍߟߌࠆߎߣࠍᏗᦸߔࠆᗧ߇ᄙ ޕᢙߣߒߡߪᄙߊߪߥ߇⸳࠼ࡢࠠޔቯޔ㊀ⶄߥߤߦ㑐ߔࠆਇḩߪߍࠄࠇߡࠆޕ 3㗔ၞวหㆇ༡ߦߟߡ㧦ߨวหㆇ༡ߦ⢐ቯ⊛ߢࠆߚ߹ޕวหࠪࡦࡐࠫ࠙ࡓ╬ࠍㅢߒߡታ㓙ߦวหㆇ༡߇ߢ߈ߡ ࠆߣ߁࿁╵߽ᄙޔߒ߆ߒޕታ㓙ߦㆇ༡ߩ㔍ߒߐࠍ⼂ߒߡࠆੱ߽ዋߥ߆ࠄߕࠆޕ50 ᱦઍߪߎߎߢ߽ᔕ߇ ㆑߁ޕ⢐ቯ⊛ᗧ߇ዋߥߊߥࠅޔ㗔ၞߩ⿰ᣦߦߔࠆߣ߁ᗧ߇Ⴧടߒߡࠆޕ 4㗔ၞࡆࡘ࠶࡚ࠪࡦߦߟߡ㧦ߨᅢᗧ⊛ߦฃߌขࠄࠇߡࠆޕหᤨߦળ႐ߩ㗴ࠍߍߡࠆੱ߇ዋߥ߆ࠄߕ ࠆ⸳ߩߎޕߢߪ 20 ᱦઍߩᦼᓙᗵߩ㜞ߐ߇⋡┙ߟޕ 5ࠝࠟ࠽ࠗ࠭࠼࠶࡚ࠪࡦߦߟߡ㧦ߎࠇ߇ߢࠆ߆߇ℂ⸃ߐࠇߥ߆ߞߚࠃ߁ߢࠆޕ⢐ቯ⊛ᗧߪࠆ߇ޔหᤨ ߦࠪࡦࡐࠫ࠙ࡓ߇ߘࠇߦኻᔕߒߡࠆ߆ࠄ⁁ߢࠃ⻠⥸৻ޔṶߩ⾰߇ਅ߇ࠆߣ߁ ᔨߩᜰ៰߽ࠆޕ ࿁ߩࠕࡦࠤ࠻ߩ⚿ᨐޔߨ⁁ߩቇળߦḩ⿷ߒߡࠆ⊛ߥෳട⠪߇ᶋ߆߮߇ߞߡߊࠆޔߒ߆ߒޕ50 ᱦઍ ߩᔕߪ․⇣⊛ߢࠅޔቇળෳട⠪ߩᐔဋ⊛ᗧߣ⇣ߥߞߡࠆޕታߩᄙᢙᵷෳട⠪ߩᏗᦸࠍḩߚߔߎߣߣޔవዉᕈޔ ᜰዉᕈࠍ⊒ើߔࠆߎߣߣߩࡃࡦࠬᗵⷡ߇᳞ࠄࠇࠆޕ KQTK ͈࡛ેུ͈͂ࡄ!ݪ ᣣᧄ‛ℂቇળ ᣁᵄ ᒄⴕ ߎߩ⻠Ṷߢߪ JPSJ ߩᦨㄭߩᢙᐕ㑆ߩ⁁ᴫࠍࡆࡘߔࠆޕ JPSJ ߪቇⴚߩ ޔ㑛⺒ߥߤߩᒻᘒ߇㔚ሶ⊛ᚻᲑߦ⒖ⴕߒߡࠆ⁁ᴫࠍ〯߹߃ޔᕆࡇ࠶࠴ߢᡷ㕟ࠍㅴߚޕ 1ഃೀภ߆ࠄߩో⺰ᢥߩ㔚ሶ ߩቢᚑ㧔2005 ᐕ 7 㧕 2㑛⺒ࠍ㔚ሶࡔ࡞ߣ࠙ࠚࡉਛᔃߦߒߚޕ 3㑛⺒ㆊ⒟ߦᏱߦᵈᗧߒ⺰ࠃޔᢥࠍᣧߊ 4✬㓸ᆔຬળડ↹ߩޟᓙ⺰ᢥ․ޟޠ㓸ࠍޠ 83 5ޟᵈ⋡⺰ᢥޟ߿ࠕࠖ࠺ࡔࠍޠળߦޠ㈩ା ߥߤߩദജࠍߒߡࠆ⚿ߩߘޕᨐޔ㔚ሶ ⺰ᢥߩ࠳࠙ࡦࡠ࠼ᢙߪ㗅⺞ߦિ߮ߡࠆޕJPSJ ߦߪࠃࠅ߽ߕߞߣ෩ߒ ⅣႺߢఝࠇߚ⎇ⓥࠍߒߡ߈ߚవヘߚߜߩᚑᨐ߇߹ߞߡࠆߩߢࠆޕ ߒ߆ߒ⺰ޔᢥߩᛩⓂᢙߪિ߮ߡߥߪࠇߎޕࠍᗧߔࠆߩߢࠈ߁߆㧫JPSJ ߩᡷ㕟߇⿷ࠅߥߎߣࠍ␜ߒߡࠆ ߩ߆㧫ߘࠇߣ߽ޔઍߩᣣᧄߩ⎇ⓥ⠪ߩᆫߦ㗴߇ࠆߩ߆㧫 ಼;ρϋࣣاࡄض଼͂ે࡛͈ݪȪ3114.ȫ! ࡔঊႁࢹܥȆཤఱ߄ࡄఱ͈ވ൳ࡄ!ݪ ᣣᧄේሶജ⎇ⓥ㐿⊒ᯏ᭴ వ┵ၮ␆⎇ⓥࡦ࠲ ⧐⾐ ⧐▸ Th, Pa, U, ߣ⛯ߊࠕࠢ࠴ࡁࠗ࠼ర⚛ߪޔ5f Ზ߇ḩߚߐࠇߡⴕߊ♽ߢࠆ߇ߩߘޔേߪ 4f ᲖࠍᜬߟᏗ㘃ߣߪᄢ߈ ߊ⇣ߥߞߡࠆޕਅ࿑ߪޔᏗ㘃߮ࠕࠢ࠴ࡁࠗ࠼න㊄ዻߩᐔဋේሶඨᓘߢࠆޕᏗ㘃ߢߪߊߟ߆ߩᄖࠍ㒰ߡ 㧟ଔ߇ቯߢࠅޔේሶ⇟ภߣߣ߽ߦඨᓘߪࠁߞߊࠅᷫዋߔࠆޕTh ߆ࠄ Np ߹ߢߩシࠕࠢ࠴ࡁࠗ࠼ߢߪ㔚ሶᢙࠍჇ߿ߔ ߣߣ߽ߦᕆỗߦඨᓘ߇ᷫዋߒ৻ޔᣇ Am એ㒠ߩ㊀ࠕࠢ࠴ࡁࠗ࠼ߢߪᏗ㘃ߣห᭽ߩᄢ߈ߐߦᚯࠆߪߣߎߩߎޕシࠕࠢ࠴ ࡁࠗ࠼ߩ 5f 㔚ሶߪㆉᱧ⁁ᘒߦࠅޔPu ࠍ⚻ߡ Am ߦ⥋ߞߡዪߦᚯࠆߤ߁ࠂߜޕࠆߡࠇߐ㉼⸃ߣޔਛ㑆ߦࠆ Pu න ㊄ዻߪ᷷ᐲജߣߣ߽ߦᄢ߈ߥᾲ⤘ᒛࠍ߁ᄙᢙߩ᭴ㅧ⋧ォ⒖ࠍ➅ࠅߔ⇣Ᏹߥ㊄ዻߣߒߡ⍮ࠄࠇߡࠆᦨߚ߹ޕㄭ ߢߪ PuCoGa5 ߩޟ㜞᷷ޠવዉ߇⊒ߐࠇࡦ࠙ޔൻว‛߳ߩ㑐ᔃ߇㜞߹ߞߡࠆޕ ৻ᣇ࠼ࠗࡁ࠴ࠢࠕޔర⚛ߪේሶജߣኒធߦ㑐ଥߒޔᩭΆᢱ RI ߣߒߡߩⷙࠍฃߌߡࠆߚޔNp એ㒠ߩ࠙ࡦర⚛ ߪ㒢ࠄࠇߚᣉ⸳ߩߺߢߒ߆ขࠅᛒ߁ߎߣߪߢ߈ߥޕේሶജᯏ ᭴ߣ᧲ർᄢ㊄⎇ߪࡑࠢࡠ㊂ߩ࠙ࡦర⚛ࠍขࠅᛒ߃ࠆᣉ⸳ߢ ࠅޔਔ⠪ߩදജߦࠃࠅޔ࿖ౝߢߪೋߡߩࠕࠢ࠴ࡁࠗ࠼ૐ᷷ ‛ᕈ⎇ⓥ߇ 2003 ᐕߦࠬ࠲࠻ߒߚ ߦߢ߹ࠇߎޕPuRhGa5 ߩ ⇣ᣇ⊛વዉ߿ NpO2 ߩᄙᭂሶ⒎ᐨߩ⎇ⓥߥߤᄙߊߩᚑᨐ߇ ߇ࠅ⎇ⓥߪ㗅⺞ߦㅴዷߒߡࠆޔߚ߹ޕᄢ㒋ᄢቇޔSPring8 ߿ේሶജᯏ᭴ JRR-3 ߢ߽ࠍࡦ࠙ޔᛒ߁߇ᕆㅦߦᢛޔ ᄢᵞߩᄖߢ߽ዋ㊂ߩ Np ࠍߞߚታ㛎߇น⢻ߦߥߞߡ߈ߡ ࠆޕේሶജࠍขࠅᏎߊ␠ળᖱ߇෩ߒߊߥࠆਛߢ߁ࠃߩߎޔ ߥၮ␆⎇ⓥߪ߽ߪ߿න⁛ߩᣉ⸳ߢߩታߪ㔍ߒޕේሶജᯏ ࿑㩷 Ꮧ㘃䈶䉝䉪䉼䊉䉟䊄න㊄ዻ䈱ේሶඨᓘ䇯 Los Alamos ᭴㊄⎇ߩኒធߥㅪ៤ߪ߽ߜࠈࠎޔౝᄖߩℂ⸃ߣදജ߇ᓟߩ Science 26 (2000) ⎇ⓥ⛮⛯ߦਇนᰳߢࠆޕ ఱঔ୭಼͂;ρϋࣣاࡄ!ݪ ࣭ވ൳၌ဥঔ୭̱͈͂̀ཤఱऺ௺߄ڠၳࡄݪਫ਼ၾঊΥσΆȜऺၳ!ڠش ࣭षࡄݪΓϋΗ)ఱΓϋΗȜ*͈࡛ે̞̾̀ͅ! ! ᧲ർᄢቇ㊄ዻ᧚ᢱ⎇ⓥᚲ ྾┑ ᮸↵ ᧲ർᄢቇ㊄ዻ᧚ᢱ⎇ⓥᚲ㒝ዻ㊂ሶࠛࡀ࡞ࠡ᧚ᢱ࿖㓙⎇ⓥࡦ࠲ ᄢᵞࡦ࠲ߪ JAEA ᄢᵞߦ⸳⟎ߐࠇߚ᧚ᢱ ⹜㛎Ἱ JMTRߩᄢቇ㑐ㅪߩో࿖ห↪ࠍ߅ߔࠆߎߣࠍ⋡⊛ߣߒߡᤘ 44 ᐕߦ JAEA ᄢᵞᢝౝߦ⸳⟎ߐࠇߚޕ ᄢቇ⎇ߩ┙ޔⓥᯏ㑐ߩᢎ⡯ຬ(৻ㇱ⎇ⓥදജ⠪ߣߒߡ᳃㑆߆ࠄߩᔕߦࠃࠆห⎇ⓥຬߣฃ⸤⎇ⓥຬ)߅ࠃ߮ᄢቇ㒮ቇ↢ ߇ޔේሶജ᧚ᢱ߿ࠕࠢ࠴ࡁࠗ࠼ర⚛ߦ㑐ߔࠆ⁛ഃ⊛వ┵⊛ߥቇⴚ⎇ⓥࠍㆀⴕߔࠆߚߩ࿖ౝ໑৻ߩห↪ࡦ࠲ߢ ࠆޕ㊄⎇ේሶജ㑐ㅪㇱ㐷ߣߩኒធߥㅪ៤ߩਅߦ⎇ޔⓥㆀⴕߦᔅⷐߥࡂ࠼ߣ࠰ࡈ࠻ࠍ㐿⊒ᢛߒឭଏߒߡࠆ߃ޕ ߫ޔේሶἹߩᾖ᷷ᐲਛᕈሶࡈ࡞ࠛࡦࠬࠍ㜞♖ᐲߦᓮน⢻ߥᄙᲑᄙಽഀࠠࡖࡊ࡞ࠍ↪ߚ᧚ᢱᾖᛛⴚޔἹౝߘߩ ႐⸘ⵝᛛⴚޔㅘㆊ㔚ሶ㗼ᓸ㏜ߢ߽ⷰኤ࿎㔍ߥᭂᓸዊᰳ㒱ࠍ⹏ଔߔࠆߚߩ࠽ࡁಽᨆ⹏ଔᛛⴚ࠼ࠗࡁ࠴ࠢࠕߥ⦟⚐ޔන⚿᥏ 84 ߩ⢒ᚑߣ‛ᕈ⹏ଔᛛⴚߥߤߪ⇇ᦨవ┵ߩᛛⴚߣߒߡ࿖ߩౝᄖߢ㜞ߊ⹏ଔߐࠇߡࠆߩ࠻ࡈ࠰ߣ࠼ࡂߥ߁ࠃߩߎޕᢛ 㜞ᐲൻߦࠃࠆ↪Ꮧᦸ⠪ᢙߩჇട߮ࠃ߅ޔᔕ⾗ᩰ⠪ߩㄭ㓞ߩේሶജᯏ᭴߿‛᧚ᯏ᭴߳ߩల╬ߦࠃࠅޔห↪⠪ ᢙߪᐔᚑ 12 ᐕᐲ߹ߢߩ⚂ 2000 ੱᣣ߆ࠄߐࠄߦჇടߒ ߦߊߣޔ16ޔ17 ᐕᐲߪ 3200 ੱᣣߣㆊᦨ㜞ߩᢙሼࠍ⸥㍳ߒ ߚߥ߁ࠃߩߎޕห↪ߢᓧࠄࠇߚ⁛ഃ⊛వ┵⊛ߥ⎇ⓥᚑᨐߩႎ๔ߩߚߦᲤᐕ 2 ᧃ߹ߢߦ⎇ⓥ⚻ㆊႎ๔ᦠࠍឭ ߒߡ߽ࠄߩߘߚ߹ޔᚑᨐࠍ〯߹߃ߡߩᰴᐕᐲ⎇ⓥឭ᩺ࠍⴕ߁႐ߣߒߡᲤᐕ 8 ਅᣨߦ⎇ⓥળࠍ㐿ߒߡࠆޕห ↪ߪ߶߷Ფᐕ 11-12 ߦ߆ߌߡⴕࠊࠇࠆޕ ᧄࡦ࠲߇ᜂ߁ో࿖ห↪ߩಽ㊁ߪޔේሶἹޔᕈหర⚛ࠍ↪ߒߚ․ᓽ⊛ߥ⎇ⓥಽ㊁ߢࠅޔ↪⠪ߩᄙߊ ߪ․ቯߩⶄᢙ⎇ⓥಽ㊁ߦಽ㘃ߔࠆߎߣ߇ߢ߈ࠆߩࠇߙࠇߘޕಽ㊁ߦ߅ߡߪ࠲ࡦᧄޔ࿖ౝߦ߅ߌࠆ⚿▵ὐ⊛ߥᯏ⢻ࠍ ᨐߚߒߡ߅ࠅޔฦಽ㊁ߢవዉ⊛ߥᓎഀࠍᨐߚߒߡ߈ߡࠆ․ޕቯߩ⎇ⓥಽ㊁ߦߟߡߩ࠲ࡦᧄޔห↪⠪ߪ࿖ౝߩ ᄢቇ㑐ㅪޔ࿖┙⎇ⓥᯏ㑐㑐ㅪߩ⎇ⓥ⚵❱ࠍ߶߷✂⟜ߔࠆᒻߣߥߞߡࠆޕ⎇ߩޘⓥ⠪ޔᄢቇⷙᮨߩዊဳߩ⎇ⓥ⚵❱߆ࠄ ߪోࠍᛠីߒߦߊᄢဳ⸳⟲ⶄߩࠄࠇߘ߮ࠃ߅ޔ㔀ߥ▤ℂᯏ᭴ߣޔᐢಽᢔࠍᜬߟᄢቇߩ⎇ߩޘⓥ⥝ߣࠍ ᯏ⊛ߦ⚿߮ߟߌޔᄢቇߦ߅ߌࠆ․ᓽ⊛ߥ⎇ⓥࠍផㅴߔࠆߩ߇ᧄࡦ࠲ߩਥⷐᬺോߢࠆࡁ࠽ޔࡏ࠻࠶ࡎޕ᭴ㅧ⸃ᨆ⸳ ⟲ߥߤߩ࿕ߩ․ᓽ⊛ߥ⸳⟲ ࡂ࠼࠙ࠛࠕߣޔ㐳ᐕߦࠊߚࠅၭࠊࠇߚ JAEA ߣߩੱ㑆㑐ଥޔା㗬㑐ଥ ࠰ࡈ࠻࠙ࠛ ࠕ߇ߎߩ࿎㔍ߥਥⷐᬺോㆀⴕߩⷐߢࠅᧄࡦ࠲ߩࠆ․ᓽߢࠆޕ ઍ⊛ߥ⎇ⓥಽ㊁ߣߒߡߪ a. シ᳓Ἱ᭴ㅧ᧚ᢱߦ߅ߌࠆ៊்⹏ଔ b. ᩭⲢวἹ᧚ᢱࠍᰴઍේሶജࠪࠬ࠹ࡓ᧚ᢱߦ߅ߌࠆᾖലᨐ c. ࠕࠢ࠴࠽ࠗ࠼‛ᕈቇ d. ࠕࠢ࠴࠽ࠗ࠼ࡃ࠶ࠢࠛࡦ࠼ൻቇ e. หర⚛ߦࠃࠆᐕઍ᷹ቯ ߥߤ߇ߍࠄࠇࠆޕ 85 ࡄݪਫ਼დٛ শȇijııķ ා IJı ijĶ ĩକĪġ ࡿࢃ ĵ শȡĶ শġ ાਫ਼ȇࡄݪਫ਼ུ ܁ķ ٴġ ఱ࣒݅ĩłķĴijĪġ ࣒ȇુষġ ࢤ֚ġ ġ ġ ġ ĩނఱڠġ ࡄݪਫ਼ȫġ ఴ࿒ȇ२ڒڙঊࠏ͈ΑάϋΥζΞͻΛ·ġ ါকȇġ ਛㄞߚߜߦࠃߞߡ⊒ߐࠇߚ NiGa2S4 ߪޔWeiss ᷷ᐲ߇-80K ߢࠆ߇ޔ1.8K ߩૐ᷷߹ߢ⏛᳇㐳〒㔌⒎ᐨࠍ␜ߐߥޕ ߣߎࠈ߇ޔᲧᾲ߿Ꮺ⏛₸ߩታ㛎࠺࠲ߪᒝ⏛ᕈ⒎ᐨ⁁ᘒߦ㘃ૃߒߚᝄࠆ⥰ࠍ␜ߔޕ ߎࠇࠄߩታ㛎⚿ᨐߩᄙߊ߇⁁ࠢ࠶ࠖ࠹ࡑࡀࡦࡇࠬޔᘒߦࠃߞߡ⺑ߢ߈ࠆߎߣࠍឭ໒ߒߚ߇ޔℂ⺰ߩ⚦ࠍ⚫ߔࠆޕ ߐࠄߦᦨޔㄭ⸘▚ߒߡࠆࠬࡇࡦࡀࡑ࠹ࠖ࠶ࠢ⁁ᘒߩ⏛႐ലᨐ߿ࠬࡇࡦ࠳ࠗ࠽ࡒ࠶ࠢࠬߦ㑐ߔࠆ⚿ᨐߦߟߡ߽ㅀߴࠆޕ ġ ġ শȇijııķ ා IJı Ĵı ĩĪġ ࡿࢃ Ĵ শȡĵ শġ ાਫ਼ȇࡄݪਫ਼ུ ܁ķ ٴġ ఱ࣒݅ĩłķĴijĪġ ࣒ȇőųŰŧįġőįġʼnįġŎįġŷŢůġōŰŰŴťųŦŤũŵġ ġ ġ ġ ĩŖůŪŷŦųŴŪŵźġŰŧġňųŰůŪůŨŦůĭġŕũŦġŏŦŵũŦųŭŢůťŴȫġ ఴ࿒ȇōŰŸġťŪŮŦůŴŪŰůŢŭŪŵźġŪůġŵųŢůŴŪŵŪŰůġŮŦŵŢŭġŰŹŪťŦŴįġ ါকȇġ ġ The transition metal oxides display an impressive variety in their physical properties, originating from the interplay between crystal field and hund's rule couplings in combination with the interactions with and between the charge, lattice, spin, and orbital degrees of freedom. Famous examples are the cuprate high temperature superconductors and mixed valence compounds like magnetite and many vanadates. Charge ordering phenomena, low dimensional quantum magnetism, and superconductivity are but a few of the intriguing phenomena observed in the transition metal oxides. This presentation will highlight some specific examples, focusing on the charge ordering and non-linear charge transport in beta-sodiumvanadate, and the unusual spin-Peierls route in the titaniumoxyhalides. শȇijııķ ා IJIJ ij ĩ࿐Īġ ࡿࢃ ĵ শȡĶ শġ ાਫ਼ȇࡄݪਫ਼ུ ܁ķ ٴġ ఱ࣒݅ĩłķĴijĪġ ࣒ȇőųŰŧįġŎŢųŵŪůġŘŰŭŧġ ġ ġ ġ ĩŇųŦŪŦġŖůŪŷŦųŴŪŵäŵġŃŦųŭŪůġŊůŴŵŪŵŶŵġŧüųġņŹűŦųŪŮŦůŵŢŭġűũźŴŪŬȫġ ఴ࿒ȇŇŦŮŵŰŴŦŤŰůťġŵŪŮŦĮųŦŴŰŭŷŦťġűũŰŵŰŦŮŪŴŴŪŰůġŴŵŶťŪŦŴġŰŧġŦŭŦŤŵųŰůġťźůŢŮŪŤŴġŢůťġŤŰũŦųŦůŵġűũŰůŰůŴġŪůġŴŰŭŪťŴġ ါকȇġ ġ Many properties of solids (e. g. the electrical conductivity) are governed by elementary excitations and relaxation due to electron-electron or electron-phonon scattering. The dynamics of these processes occur on a femtosecond (fs) time scale and can be probed directly by time-resolved photoemission spectroscopy. In our experiments the time evolution of the electron distribution function following optical excitation (50 fs, 1.5 eV) is monitored by 6 eV fs laser pulses. This provides access to both occupied and unoccupied states around the Fermi level [1]. 86 This talk addresses recent studies of electron and coherent phonon dynamics in several materials exhibiting different aspects of electronic correlation. For the ferromagnetic Gd(0001) surface the ultrafast drop of the spin polarization observed by magneto-optics is attributed electron-magnon scattering [2]. In the Mott insulator TaS2 electronic excitation induces an ultrafast insulator to metal transition and subsequently pronounced oscillations of the spectral function due to a coherent phonon mode [3]. Finally, first results of electron cooling in a high Tc superconductor (BiSCO) will be discussed. শȇijııķ ා IJij ijı ĩକĪġ ࡿࢃ ij শȡĴ শġ ાਫ਼ȇࡄݪਫ਼ུ ܁ķ ٴġ ఱ࣒݅ĩłķĴijĪġ ࣒ȇőųŰŧįġŇŦťŦųŪŤŰġœŰŴŦŪġ ġ ġ ġ ĩŊŏœŔĮņŎŕĭġŖůŪŷįġťŶġŒŶŦţŦŤĭġŊŔŔőȫġ ఴ࿒ȇňŦİŔŪ ΰΞυ΅Η΅ΏλσΦࢹ௮͈ڠاழ଼ζΛάϋΈ͂հġ ါকȇ In heteroepitaxy, the strain energy caused by the lattice mismatch competes with kinetic processes to form nanostructured films [1,2]. Ge on Si is a model system with 4.2% lattice mismatch that follows the Stranski-Krastanov growth mode:after wetting the surface up to a critical thickness of 3-5 monolayers, it is not favorable to grow layer by layer and a roughening transition to 3D islands is observed. In this system Ge/Si intermixing has been shown to be significant, as it alters the composition and overall properties of the as grown Quantum Dots (QDs) [3]. Here I describe Ge-Si intermixing from individual islands measured in situ using X-Ray Photoemission Electron Microscopy [4,5]. Using Ge/Si as a test system, we have developed a technique which allows to map the chemical concentration of individual Ge(Si) nanostructures with a lateral resolution of 25 nm [6]. Finally, I will describe Scanning Tunnelling Microscopy and Low Energy Electron Microscopy results related to the positioning and stability of Ge/Si nanostructures [7,8]. References [1 ]F. Rosei,R. Rosei, Surf. Sci. 500, 395 (2002). [2] F. Rosei, J. Phys. Cond. Matt. 16, S1373 (2004). [3] F. Boscherini, G. Capellini, L. Di Gaspare, F. Rosei et al., Appl. Phys. Lett. 76, 682 (2000). [4] F. Ratto, F. Rosei et al., Appl. Phys. Lett. 84, 4526 (2004). [5] F. Ratto, F. Rosei et al., J. Appl. Phys. 97, 043516 (2005). [6] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. K. Kulkarni, S. Heun and F. Rosei, Small 2, 401 (2006). [7] A. Sgarlata, P. D. Szkutnik, A. Balzarotti, N. Motta, F. Rosei, Appl. Phys. Lett. 83, 4002 (2003). [8] F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. K. Kulkarni, S. Heun and F. Rosei, Phys. Rev. Lett. 96, 096193 (2006). 87 ૽! ম! ։! ൲ ‒ ‒ ⅨᄂᆮᢿᧉሁⅩ ⅎ‒ ‣ ࠰≜உ ‥• ଐ˄ↀ ≋ᠴ‒ Ꮀ≌‒ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ Ꮀ‒ ‒ Ӹ‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ ‒ٻᢊ‒ ᒍ‒ ʚ‒ ಊᨂؾཋࣱᄂᆮᢿᧉ‒ я‒ ‒ ‒ ᅕৎܖྸܖٻᢿя↧‒ ᡀ‒ ‒םദ‒ ʴ‒ ಊᨂؾཋࣱᄂᆮᢿᧉ‒ я‒ ‒ ‒ ྺྶܖྸܖٻᢿя↧‒ ⅎ‒ ‣ ࠰ ‣‣ உ≔ଐ˄ↀ ≋‒ ဇ≌‒ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ Ꮀ‒ ‒ Ӹ‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ ᭗‒ ‒ ɟ‒ ࣓‒ ૼཋឋᅹܖᄂᆮᢿᧉ‒ я‒ ‒ ‒ ᐯᅹܖᄂᆮೞನЎ܇ᅹܖᄂᆮяⅺ↸‒ ᢒ‒ ᕲ‒ ‒ ‒ ʶ‒ ᧽ޓɶࣱ܇ᅹܖᄂᆮᚨ‒ я‒ ‒ ‒ ଐஜܖᘐਰᐻ˟ཎКᄂᆮՃⅺ↸‒ ‒ޢஜ‒ ̀ൔӞ‒ ᧽ޓཋឋᚨᚘᚸ̖ᚨ‒ я‒ ‒ ‒ ྸ҄ܖᄂᆮؕᄽᅹܖཎКᄂᆮՃⅺ↸‒ ⅎ‒ ‣ ࠰ ‣‣ உ ‥• ଐ˄ↀ‒ ≋ᠴ‒ Ꮀ≌ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ ʟ‒ ຓ‒ π‒ ɟ‒ ૼཋឋᅹܖᄂᆮᢿᧉ‒ Ꮀ‒ ‒ Ӹ‒ я‒ ‒ ‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ ிʮಅܖٻܖٻᨈྸܖᄂᆮᅹя↧‒ ⅎ‒ ‣ ࠰ ‣․ உ≔ଐ˄ↀ‒ ≋ᣐፗ੭≌‒ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ ‒ ဋ‒ ‒ ‒ ߰‒ ᧽ޓᢊ્ݧཋࣱᄂᆮᚨ‒ Ꮀ‒ ‒ Ӹ‒ я‒ ‒ ‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ ிʮܖٻܖٻᨈྸܖኒᄂᆮᅹяⅺ↸‒ Ⅸʙ‒ Ѧ‒ ᢿⅩ‒ ⅎ‒ ‣ ࠰ ‣․ உ ․‥ ଐ˄ↀ‒ ≋˓ʕ≌‒ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ ‒ ‒ ⅺⅹ↺‒ ཋࣱᄂਃ࢘ᛢ‒ Ꮀ‒ ‒ Ӹ‒ ዮ‒ Ѧ‒ ̞‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ Ꮛδ˞ಅˊՃ≋‣࠰≕உ․•ଐ⊡≌‒ ⅎ‒ ‣ ࠰ ‣․ உ ․… ଐ˄ↀ‒ ≋ᎰѦࣄ࠙≌‒ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ ສ‒ ဋ‒ Ⴧܱ ‒܇ཋࣱᄂਃ࢘ᛢ‒ Ꮀ‒ ‒ Ӹ‒ ዮѦ̞ɼ˓‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ Ꮛδ˞ಅ≋‣࠰≕உ‣ଐ⊡≌‒ ⅎ‒ ‣≔࠰ உ≔ଐ˄ↀ‒ ≋ʙѦᢿϋီѣ≌ ൞‒ ‒ ‒ Ӹ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ޓ ɤ‒ ි‒ Ѩ‒ ദ‒ ʴʙ∝іѦ⇖∑∞⇽‒ 88 Ꮀ‒ ‒ Ӹ‒ ʴʙ⇧∞∆‒ ီ‒ ‒ ѣ‒ ‒ ϋ‒ ‒ ܾ‒ ཋࣱᄂਃ࢘ᛢዮѦ̞ⅺ↸‒ ̤! ! ͣ! ̵!! 㩷 ࡄȆࡓޗ֥ڠࡓ͍ݞ͈༷ș͒ȂͺΑαΑΠͅࢫ࠲̳ͥ۾̞̾̀ͅ! 㩷 㩷 ᧲੩ᄢቇߢߪޔᐔᚑ 18 ᐕ 11 17 ᣣߦᣉ⸳♽ᛛⴚ⡯ຬ߇ਛ⊹⣲ࠍ⊒∝ߒߚߎߣߦߟߡ⸥ޔ⠪ ⊒ࠍⴕޔ૬ߖߡᧄቇߦ߅ߌࠆࠕࠬࡌࠬ࠻ኻ╷ߩታᣉ⁁ᴫࠍႎ๔ߒޔㅌ⡯ߒߚᢎ⡯ຬߦߟߡ߽ ․ᱶஜᐽ⸻ᢿ߿ஜᜰዉࠍታᣉߔࠆߎߣߣߒߡ߅⍮ࠄߖߒߡࠆߣߎࠈߢߔޕ㩷 (http://www.u-tokyo.ac.jp/public/public01_181117_j.html) ‛ᕈ⎇ⓥᚲߦ߅ߡߪޔᨰ⒖ォ೨ߩᧄᧁᤨઍ㧔ᤘ 35 ᐕ㨪ᐔᚑ 11 ᐕ㧕ߦᣣᏱ⊛ߦࠕࠬࡌࠬ ࠻ࠍ↪ߒߡታ㛎ࠍⴕߞߚࠅޔᣉ⸳ౝߩᑪ▽⾗᧚߿ታ㛎ᯏེߩਛߦ߽ࠕࠬࡌࠬ࠻߇߆ߥࠅ↪ߐࠇ ߡߚᤨᦼ߇ࠅ߹ߔޕਛ⊹⣲ߩẜફᦼ㑆ߪ 40 ᐕߣ߽ 50 ᐕߣ߽⸒ࠊࠇߡ߅ࠅ߹ߔߩߢޔరᢎ⡯ ຬ߮రቇ↢ߩᣇߢޔஜᐽߦᔃ㈩ߥᣇߪਅ⸥ߩஜᐽ⋧⺣⓹ญߦߏ৻ႎߊߛߐࠆࠃ߁߅㗿ߒ߹ߔޕ ߥ߅‛ޔᕈ⎇ⓥᚲోⴡ↢▤ℂቶߡߏޔㅪ⛊ߚߛߡ߽ኻᔕߚߒ߹ߔߩߢ․ޔᱶஜᐽ⸻ᢿ ߿ஜᜰዉࠍᏗᦸߔࠆᣇޔ㆙ᘦߥߊ߅วࠊߖߊߛߐࠆࠃ߁߅㗿ߒ߹ߔޕ ⋧⺣⓹ญ㧦᧲੩ᄢቇⅣႺోᧄㇱ ᜂᒰ ᴡේޔጊᧄ 㔚㧦㧜㧟㧔㧡㧤㧠㧝㧕㧝㧜㧡㧞 F a x㧦㧜㧟㧔㧡㧤㧠㧝㧕㧝㧜㧡㧟 ᧲੩ᄢቇ‛ᕈ⎇ⓥᚲోⴡ↢▤ℂቶ ᜂᒰ ᄢỈ 㔚㧦㧜㧠㧔㧣㧝㧟㧢㧕㧟㧡㧤㧢㩷 F a x㧦㧜㧠㧔㧣㧝㧟㧢㧕㧟㧞㧝㧢㩷 㩷 89 ࡄ̺ͤ͢ల 57 ے࿒Ȫలˍȡలːȫ! ల 57 లˍ! ! 3117 ාː! ࡔ࠱ࠬࠦࡇ࠶ࠢ♽‛ℂቇߩℂ⺰⎇ⓥ㧦ఝ⑲ߥታ㛎ኅߣߣ߽ߦ xxxxxxxxxxxxxx ᳯ⮮ ᐙ㓶 xxxxxxxxxxxxxxxxxxxxx ᄖ࿖ੱቴຬᚲຬࠍ⚻㛎ߒߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Yong-Shi WU xxxxxxxxxxxxxxxxxx ࡢࡦࡈ࠭ࡈࠖࠫ࠶ࠢࠬ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 㑐Ꮉ ᄥ㇢ xxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⍴ᦼ⎇ⓥળႎ๔ ٤ᰴઍ࠽ࡁࠛࠢ࠻ࡠ࠾ࠢࠬߩߚߩ㔚ሶ⁁ᘒ⸘▚ߩၮ␆ℂ⺰ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘࠬ ٤ੱ⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎຬߩㅢ⍮ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼ⍴ᦼ⎇ⓥળ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼᄖ᧪⎇ⓥຬ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼࠬࡄࠦࡦࡇࡘ࠲ห↪ណᛯ⺖㗴৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲਛᕈሶ࿁ᨆⵝ⟎ห↪ណᛯ⺖㗴৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼห↪ߩߦߟߡ㧔ㅢ⍮㧕 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᄖㇱ⾗㊄ߩฃࠇߦߟߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤╙ ࿁‛ᕈ⧯ᚻᄐߩቇᩞ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ✬㓸ᓟ⸥ ల 57 ےలˎ! ! 3117 ා˓! ㊂ሶ࠼࠶࠻ࠍ♽ߩࠦࡅࡦ࠻વዉ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ൎᧄ ା๋ xxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ߢߩ⎇ⓥߦߟߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ᷰㄝ ⌀ੳ xxxxxxxxxxxxxxxxxxxxx ᄖ࿖ੱቴຬᚲຬࠍ⚻㛎ߒߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Ara SEDRAKYAN Christoph JANOWITZ ‛ᕈ⎇ⓥᚲ⍴ᦼ⎇ⓥળႎ๔ ٤ᯏ‛⾰ߩ࠽ࡁ㔚ሶ‛ᕈ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤․⇣‛ᕈ⊒ࠍᜂ߁ࡈࠜࡁࡦߩ⎇ⓥߦ߅ߌࠆᣂዷ㐿 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘࠬ ٤ੱ⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎຬߩㅢ⍮ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ల 57 ےలˏ! ! 3117 ා 21 ! ޟ࿖㓙‛ᕈ⎇ⓥὐ㧦ᒝ⏛႐ࠦࡏ࠻ߩᒻᚑ ߡߟߦޠxxxxxxxxxxxx ㊄ ᶈ৻ xxxxxxxxxxxxxxxxxxxxx 90 ‛ᕈ⎇ⓥᚲ࿖㓙ࡢ࡚ࠢࠪ࠶ࡊࠪࡦࡐࠫ࠙ࡓႎ๔ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤Computational Approaches to Quantum Critical Phenomenaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘࠬ ٤ੱ⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲᢎຬߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤᧲੩ᄢቇ‛ᕈ⎇ⓥᚲቴຬᢎ ഥᢎߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ ᐕᐲᣣ☨දജ㨬ਛᕈሶᢔੂ㨭⎇ⓥ⸘↹ߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼ⍴ᦼ⎇ⓥળ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼᄖ᧪⎇ⓥຬ৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᓟᦼࠬࡄࠦࡦࡇࡘ࠲ห↪ណᛯ⺖㗴৻ⷩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲ೨ᦼห↪ߩߏ᩺ౝ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᐔᚑ ᐕᐲᄖㇱ⾗㊄ߩฃࠇߦߟߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ශਇ㞲ߦߟߡߩ߅߮ߣ⸓ᱜ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ✬㓸ᓟ⸥ ల 57 ےలː! ! 3118 ාˍ! ⎇ⓥቶߛࠃࠅ ٤LIPPMAA ⎇ⓥቶ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Mikk LIPPMAA xxxxxxxxxxxxxxx ᄖ࿖ੱቴຬᚲຬࠍ⚻㛎ߒߡ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Cun-Zheng NING Yuriy BUNKOV Carlos WEXLER ‛ᕈ⎇ⓥᚲ⍴ᦼ⎇ⓥળႎ๔ ٤᳓ޔ᳖ޔ᳓⚛ࠍၮ⺞ߣߒߚ㜞ਅߢߩᖺᤊ⑼ቇߣ‛ᕈ⑼ቇ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ࠟࠬォ⒖ߩ⛔৻ᔨ㧦⻉ℂ⺰ߩ⋧㑐ଥߣታ㛎⊛ᬌ⸽ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤㊂ሶࠬࡇࡦ♽ߩ‛ℂ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤ᣂߚߥ‛ᕈ⎇ⓥߩ᭴▽ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇ⓥᚲ⺣ળ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ‛ᕈ⎇࠾ࡘࠬ ٤ੱ⇣േ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤߅⍮ࠄߖ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ٤‛ᕈ⎇ߛࠃࠅ╙ Ꮞ⋡㍳㧔╙㧝ภ㨪╙㧠ภ㧕 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ✬㓸ᓟ⸥ 91 ༎ġ ਬġ ࢃġ ܱ 2007 ᐕߦߥࠅ߹ߒߚޕᐕߪᥦ౻ߣ⸒ࠊࠇߡ߅ࠅ߹ߔ߇ޔ㑐りߩ⑳ߦߣࠅ ߹ߒߡߪޔᐕߩᨰߩ౻߽㓐ಽኙߊᗵߓߡ߅߹ߔޕ11 ᧃߦߣ߸ࠄࠄޔᨰߩ⪲߇ ࠝࡊࡦߒޔᨰࠠࡖࡦࡄࠬㄝ߽ޔᄢಽ⪇߿߆ߦߥࠅ߹ߒߚޕㅳᧃߪㅢᷦṛࠍᒁ ߈ߎߔߎߣ߽ࠅޔዋޘාߥ㕙߽ࠅ߹ߔ߇ޔᬺᣉ⸳߇ㄭߊߦߢ߈ࠆߎߣ ߪߩߎޔၞߩ᭽ࠍߩ߽ߥޘᵴᕈൻߐߖߡߊࠇࠆߣᕁ߹ߔޕ ߐߡᧄޔภߢߪޔLippmaa ᚲຬߦ⎇ޔⓥቶߛࠃࠅߩၫ╩ࠍ߅㗿ߒ߹ߒߚ㉄ޕൻ ‛ߩ⭯⤑ൻߦࠃࠅޔᚑ㐳᧦ઙࠍᄌ߃ࠆߎߣߢ᭽‛ߥޘᕈࠍᓮߢ߈ࠆ߇ޔታ㓙ߩ ታ㛎⚿ᨐߣวࠊߖߡᢙᄙߊ⸥ߐࠇߡࠅઁޔಽ㊁ߩᣇߢ߽ಽࠅ߿ߔߺ⺒ޔᔕ߃ߩ ࠆ⸥ߦߥߞߡ߹ߔޔߚ߹ޕ㧟ฬߩᄖ࿖ੱቴຬᚲຬߩవ↢ᣇߦߪ‛ޔᕈ⎇ߢߩ ṛ⸥ࠍၫ╩ߒߡ㗂߈߹ߒߚޕWexler వ↢߆ࠄߏᜰ៰㗂ߚࠦࡔࡦ࠻ߪޔᓟߩ ߚߦ↪߆ߣᕁࠊࠇ߹ߔޔߚ߹ޕᴛጊߩ⍴ᦼ⎇ⓥળߩႎ๔ᦠ߽ឝタߐߖߡ㗂ߡ ߹ߔ⎇ߩߤޕⓥળ߽ᵴ⊒ߥ⼏⺰߇ᚑߐࠇߡߚߎߣ߇ᗵߓขࠇࠆߣᕁ߹ߔߩ ߢ⺒৻ߏޔ߭ߗޔ㗂ߌࠇ߫ߣᕁ߹ߔޕ ภߢޔೋߡ‛ᕈ⎇ߛࠃࠅߩ✬㓸ࠍᜂᒰߐߖߡ㗂߈߹ߒߚ߇ޔห↪ଥߩ㑐 ߐࠎߦߪޔᄢᄌ߅ߦߥࠅ߹ߒߚ߅ޕ㒶᭽ߢήߦ⊒ೀߔࠆߎߣ߇ߢ߈߹ߒߚޕ ߎߩ႐ࠍ୫ࠅߡ߅␞↳ߒߍ߹ߔᦨޕᓟߦᧄޔᐕ߽⊝᭽ߦߣߞߡᐘߖᄙ߈ᐕߣߥࠆ ߎߣࠍᔃࠃࠅ㗿ߞߡ߅ࠅ߹ߔޕ ᧁ ፏ