Comments
Transcript
熊本大学学術リポジトリ Kumamoto University Repository System
熊本大学学術リポジトリ Kumamoto University Repository System Title ホメオボックス型転写因子 Dlx による Steroidogenic acute regulatory protein (StAR) 遺伝子発現調節 : 先 天性疾患発症の分子機構解明に向けた解析 Author(s) 西田, 尚代 Citation Issue date 2008-03-25 Type Thesis or Dissertation URL http://hdl.handle.net/2298/9385 Right ↻ᮇኬᏕᏕనㄵᩝ ࣒࢛࣌࣍ࢴࢠࢪᆵ㌹ᅄᏄ Dlx ࡞ࡻࡾ Steroidogenic acute regulatory protein (StAR)㐿ఎᏄⓆ⌟ㄢ⟿ ̾ኮᛮ⑄ᝀⓆࡡฦᏄᶭᵋよ᪺࡞ྡྷࡄࡒよᯊ̾ 2007 ↻ᮇኬᏕኬᏕ㝌ⷾᏕᩅ⫩㒂 ฦᏄᶭ⬗ⷾᏕᑍᨯ ฦᏄᶭ⬗ⷾᏕㅦᗑ ឺ㐿ఎᏄよᯊᏕฦ㔕 こ⏛ ᑠ Regulation of steroidogenic acute regulatory protein (StAR) gene expression through the interaction between Dlx5 and GATA-4 for testicular steroidogenesis - An approach toward the elucidation of molecular pathogenesis of congenital anomalies- Hisayo Nishida 1 Regulation of steroidogenic acute regulatory protein (StAR) gene expression through the interaction between Dlx5 and GATA-4 for testicular steroidogenesis - An approach toward the elucidation of molecular pathogenesis of congenital anomalies- Hisayo Nishida Androgen is essential for the control of the male organ development through binding to the androgen receptor, resulting in masculinization of the external genitalia, Wolffian duct derivatives and prostate. In human and mouse, any defects along the pathway of androgen production cause the congenital disorders such as micropenis, hypospadias and cryptorchidism. Dlx homeobox genes are the mammalian homologs of Drosophila Distal-less (Dll). Genetic lesions in the Dlx5 and Dlx6 (Dlx5/6) locus are associated with the human genetic disorder Split Hand/Foot Malformations Type 1 (SHFM1) characterized by a profound median cleft of the hands and/or feet. Intriguingly, several clinical reports described that SHFM patients are occasionally associated with urogenital dysplasia such as micropenis, hypospadias and small testis. Although Dlx5 is expressed in the mouse adult testis, their possible function during testis differentiation has not been studied. In this study I showed that Dlx5/6 are expressed in the mouse fetal Leydig cells during testis development. During embryogenesis, Steroidogenic acute regulatory protein (StAR) which is essential for testicular steroidogenesis is expressed in the fetal Leydig cells. Overexpression of Dlx5 in the Leydig cell line (mLTC-1) induces the activation of the StAR gene promoter. I also demonstrated that this activation depends on the interaction between Dlx5 and GATA-4 that is another transcription factor essential for testicular steroidogenesis by a combination of immunoprecipitation and transactivation domain analyses. Furthermore, I showed that the double inactivation of Dlx5 and Dlx6 in the mouse embryos leads to decreased testosterone level and abnormal masculinization phenotype. These results suggested that Dlx5 and Dlx6 participate in the control of steroidogenesis during testis development. 2 To clarify the pathogenesis of human congenital anomalies, the elucidation of androgen signaling must be required. External genitalia are typical androgen responsive organs during embryogenesis. To identify candidate genes of androgen target during the development of genital tubercle (GT), external genitalia anlage, we previously performed DNA microarray analysis. To examine the expression pattern of potential candidate genes from the DNA microarray analysis, I performed gene expression analyses with real-time quantitative PCR and section in situ hybridization. These analyses suggested that Cyp1b1, Fkbp51 and MafB might be candidates for androgen target genes during GT masculinization. In summary, Dlx5 can interact with GATA-4 and enhance the GATA-4-mediated StAR promoter activity in mLTC-1. Furthermore, the embryonic mutant for Dlx5/6 genes showed defects in testosterone production and male sexual differentiation. Altogether, these results indicated that Dlx5/6 genes are involved in the proper testicular steroidogenesis and fetal masculinization. Additionally, I identified the androgen target genes such as Cyp1b1, Fkbp51 and MafB during GT masculinization. These studies may open the way to analyze human congenital birth defects. 3 ␆ㄊ⾪ ࣬ᮇㄵᩝ࡚ࡢ௧ୖࡡ␆ㄊࢅ⏕ࡌࡾࠊ aa : amino acid AR : androgen receptor BCIP : 5-bromo,4-chrolo,3-indolyphosphate bp : base pair C/EBP : CCAAT/Enhancer-binding protein cDNA : complementary deoxyribonucleic acid DAB : 3,3’-diaminobenzidine tetra-hydrochloride DEPC : diethyl pyrocarbonate Dhh : Desert hedgehog DIG : dioxigenin DMEM : Dulbecco’s modified Eagle Medium DNA : deoxyribonucleic acid ECL : enhanced chemiluminescence ER : endoplasmic reticulum FBS : fetal bovine serum GAPDH :glyceraldehydes-3-phosphate dehydrogenase HD : homeodomain HE : hematoxylin and eosin staining Hox : homeobox transcriptional factor HRP : horseradish peroxidase HSD : hydroxysteroid dehydrogenase IgG : immunoglobulin G lipoid CAH : lipoid congenital adrenal hypoplasia Insl3 : insulin-like factor 3 MIS : Mullerian inhibiting substance (anti-Mullerian hormone, AMH) mRNA : messenger ribonucleic acid NBT : nitroblue tetrazolium PAGE : polyacrylamide gel electrophoresis 4 PBS : phosphate buffered saline PBST : phosphate buffered saline with 1% Tween20 Pbx : Pre-B cell luekaemia transcription factor PCR : polymerase chain reaction PDEFRα : platelet-derived growth factor receptor α PFA : paraformaldehyde Ptc1 : patched 1 P450scc : cytochrom p450 side chain cleavage enzyme RNA : ribonucleoic acid RPMI : Roswell Park Memorial Institute RT-PCR : reverse transcriptase-polymerase chain reaction SDS : sodium dodecyl sulfate SHFM : split hand/foot malformation Tris : Tris (hydroxymethly) aminomethane WT : wild type 5 ᮇㄵᩝࡢࠉᏕ⾙㞟ヽ࡞᥎㍍ࡈࡿࡒḗࡡㄵᩝࢅᇱ♇࡛ࡌࡾࡵࡡ࡚࠵ࡾࠊ (1) Gene expression analyses on the embryonic external genitalia: identification of regulatory genes passively involved in masculinization processes. Congenital Anomalies, in press. Hisayo Nishida*, Shinichi Miyagawa*, Daisuke Matsumaru, Yoshihiro Wada, Yoshihiko Satoh, Yukiko Ogino, Shinji Fukuda, Taisen Iguchi, Gen Yamada. * These two authors contributed equally to this work. (2) Positive regulation of steroidogenic acute regulatory protein (StAR) gene expression through the interaction between Dlx and GATA-4 for testicular steroidogenesis. Submitted. Hisayo Nishida, Shinichi Miyagawa, Maxence Vieux-Rochas, Monica Morini, Yukiko Ogino, Kentra Suzuki, Naomi Nakagata, Hueng-Sik Choi, Giovanni Levi and Gen Yamada. (3) External Genitalia Development: A Model System to Study Organogenesis. Genetically Engineered Mice Handbook, 263-278, 2005 CRC Press, LLC, Boca Raton, FL. Edited by John P. Sundberg and Tsutomu Ichiki Kentaro Suzuki, Hisayo Nishida, Sho Ohta, Yoshihiko Satoh, Y. Xu, Y. Zhang, Yoshihiro Wada, Yukiko Ogino, Naomi Nakagata, T. Ohba and Gen Yamada. (4)ࠔဳິ∸አ⏍ṢჹࡡⓆ⏍࡛ฦโᚒࠕᏕ࡛⏍∸ Vol.42, No.10, 2004 P666-672. こ⏛ᑠࠉ㕝ᮄᇻኯ㑳ࠉⲮ㔕⏜⣎Ꮔࠉᑹᮄ⚵├ࠉ⏛ᾀᚠࠉᒜ⏛″ 6 ┘ḗ ➠ୌ❮ ⥬ゕ 9 ➠❮ ⤎ᯕ 13 ➠ୌ⟿ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡ࣏ࢪ⫶ඡ⢥ᕛ࡞࠽ࡄࡾⓆ⌟よᯊ ➠⟿ Dlx5 ࡞ࡻࡾ StAR 㐿ఎᏄⓆ⌟โᚒ ➠⟿ Dlx5 ࡛ GATA-4 ࡡࢰࣤࣂࢠ㈻㛣┞பష⏕ 18 ➠ᄿ⟿ Dlx5 ࢰࣤࣂࢠ㈻ࡡ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮࢺ࣒ࣤࡡྜྷᏽ 21 ➠⟿ Dlx5 and Dlx6 double knockout (Dlx5/6 DKO)࣏ࢪࡡ⾪⌟ᆵよᯊ 22 ➠ඵ⟿ ࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄࡡⓆ⌟よᯊ 26 ➠❮ ⩻ᐳ 29 13 16 ➠ୌ⟿ Dlx5 ࡛ GATA-4 ࡞ࡻࡾࢰࣤࣂࢠ㈻㛣┞பష⏕ࡡᙲ 29 ➠⟿ Dlx5 ࡞ࡻࡾ StAR 㐿ఎᏄ㌹Ὡᛮᶭᵋ 30 ➠⟿ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡ⫶ඡ⢥ᕛ࡞࠽ࡄࡾᶭ⬗ 31 ➠ᄿ⟿ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ࡛ࢼ࣭ࣖࣞࢪࢷࣞࢺ࡛ࡡ㛭㏻ᛮ 31 ➠⟿ ࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄࡡአ⏍Ṣჹᙟᠺ㐛⛤࡞࠽ࡄࡾᶭ⬗ 32 ➠ᄿ❮ ⥪ᣋ 35 ➠❮ ᐁ㥺᪁Ἢ 36 ➠ୌ⟿ ᐁ㥺ິ∸࠽ࡻࡦᇰ㣬⣵⬂ 36 ➠⟿ Plasmid DNA ࡡష 36 ➠⟿ Luciferase assay 37 ➠ᄿ⟿ Western blotting Ἢ 37 ➠⟿ ඞỷ㜾Ἢ 38 ➠ඵ⟿ Mammalian two-hybrid assay 38 ➠⟿ 㐿ఎᏄⓆ⌟よᯊ 38 ➠ୌ㡧 Section in situ hybridization ➠㡧 RNA ฝ࠽ࡻࡦ Real-time quantitative PCR ➠ඳ⟿ 38 ⤄⧂ᏕⓏよᯊ 39 40 7 ➠ୌ㡧 ࣉ࣏ࢹ࢞ࢨ࢙࢛ࣝࣤ࣬ࢩࣤⰅ 40 ➠㡧 ඞ⤄⧂Ⰵ 40 ㅨ㎙ 41 ཤ⩻ᩝ⊡ 42 8 ➠ୌ❮ ⥬ㄵ ࣤࢺࣞࢣࣤ(Androgen)ࡢဳ㢦࡞࠽࠷࡙⏠ᛮࡡḗᛮᚡࡡⓆ⌟࠽ࡻࡦ⥌ᣚ࡞ᚪ㡪 ࡡᅄᏄ࡚࠵ࡾࠊࣤࢺࣞࢣࣤࡡୌࡗ࡚࠵ࡾࢷࢪࢹࢪࢷࣞࣤ(testosterone)ࡢ⢥ᕛ㛣㈻㡷 ᇡ࡞Ꮛᅹࡌࡾࣚࢸࢴࣃ⣵⬂(Leydig cells)࡚ྙᠺ࣬ฦἢࡈࡿࡾࠊ⾉ᾦ୯ฦἢࡈࡿ ࡒ ࢷ ࢪ ࢹ ࢪ ࢷ ࣞ ࣤࡢ አ ⏍Ṣ ჹ ࡷ๑ ❟ ⭚ ࡡ ࣤࢺ ࣞ ࢣ ࣤᵾ Ⓩ ჹᏻ ࡞ ࠽࠷ ࡙ 5α-reductase ࡡష⏕ࢅུࡄࠉࢩࣃࢺࣞࢷࢪࢹࢪࢷࣞࣤ(dihydrotestosterone, DHT)࡛ን ᥦࡈࡿࡾࠊDHT ࡢࢷࢪࢹࢪࢷࣞࣤࡻࡽࡵࣤࢺࣞࢣࣤὩᛮ 2ࠤ3 ಶᙁ࠷ࡒࡴࠉᵾⓏ ჹᏻ࡚ᙁࡂష⏕ࡌࡾࡆ࡛ฝᮮࡾ(Fig. 1)ࠊ Figure 1.ࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺ⤊㊪ 9 ⫶⏍ᚃ࡚ࡢࠉࡆࡿࡼࡡࣤࢺࣞࢣࣤࡢ⏠ᛮ⏍ṢჹࡡⓆ⏍࡞㛭ࡊࠉአ⏍Ṣჹ(external genitalia)ࠉ୯⭀⟮(Wolffian duct)ࠉ๑❟⭚(prostate)ࡡ㞕ᛮ(masculinization)ࢅㄇᑙࡌࡾࠊ ࣃࢹ࠽ࡻࡦ࣏ࢪ࡞࠽࠷࡙ࠉࣤࢺࣞࢣࣤᶭ⬗ࡡୖࡢࠉᑺ㐠ୖ(hypospadias) ࠉೳ ⏻⢥ᕛ(cryptorchism)ࡡἢᑺ⏍Ṣჹᙟᠺ␏ᖏࢅᘤࡀ㉫ࡆࡌ 1-3ࠊ ᑺ㐠ୖࡢᑺ㐠‹ࡡ㛚㙈Ᏸධࡒࡴࠉᑺ㐠ஞ㢄❻࡞ᙟᠺࡈࡿ࠷ឺࢅᣞ ࡌ(Fig. 2)ࠊ❟నᤴᑺ㝸ᐐࡷහᑏ⢥㝸ᐐ࡞ຊ࠻ࠉᖺᑛࡡඡ❲ࡡᚨ⌦Ⓩᙫ㡢ࡢኬࡀ ࡂࠉྙె࡛ࡊ࡙ೳ⏻⢥ᕛࡷ๑❟⭚ᑚᐄࡡ㞕ᛮධぜࡼࡿࡾࠊᑺ㐠ୖࡡ≁ ᚡ࡛ࡊ࡙ࠉฝ⏍⏠Ꮔ 250 ெ࡞ᑊࡊ 1 ౚ⛤ᗐ࡛㟸ᖏ࡞Ⓠ㢎ᗐ㧏࠷ᣪࡅࡼࡿࠉࡱ ࡒࠉᐓ᪐ᛮ࡞Ⓠࡌࡾࡵሒ࿈ࡈࡿ࡙࠷ࡾ 4ࠊ㎾ᖳࠉ࣒ࣛ࢜ࠉ࢟ࣛࢪࠉࢸ࣏࣭ࣤ ࢠࠉࢪ࣭࢘ࢸࣤࠉᮇࡡ㐅ㅎᅗ࡞࠽࠷࡙ᑺ㐠ୖࡡⓆ㢎ᗐࡡ୕᪴ሒ࿈ࡈ ࡿ࡙࠽ࡽࠉ⎌ሾỗ∸㈻࡞ࡻࡾᙫ㡢ࡵ♟ြࡈࡿ࡙࠷ࡾ 5,6ࠊ Figure 2. ᑺ㐠ୖ A ▦༰㸯ḿᖏ㒂న࡞న⨠ࡌࡾᑺ 㐠㛜ཾ㒂ࠊB, F ▦༰㸯␏ᖏ㒂 న࡞న⨠ࡌࡾᑺ㐠㛜ཾ㒂ࠊᑺ㐠 㛜ཾ㒂㝔ᄙ࡞㎾࠷አ⏍Ṣ ჹࡢ༖㝔㝟ࡡᙟឺࢅ࡛ࡾࠊ Enviro Health Prespect 109:1175-1183 (2001) ೳ⏻⢥ᕛࡢ㝔ᄙහ࡞⢥ᕛりࡿ࠷≟ឺࢅᣞࡊࠉ⏠ඡࡡ⏍Ṣჹࡡ␏ᖏ࡛ࡊ࡙᭩ࡵኣ ࠷⑄ᝀࡡୌࡗ࡚࠵ࡾࠊࣃࢹࡡሔྙࠉ⢥ᕛࡢ⫶⏍ 3 ࣧ᭮ࢅ㐛ࡁࡾ࡛⭙⭅හ࠾ࡼ㜾ୖࡊጙ ࡴࠉ30-32 㐄ࡱ࡚࡞㝔ᄙහ࡞㜾ࡽ࡙ࡂࡾࠊೳ⏻⢥ᕛࡢࠉࡆࡡ⢥ᕛࡡ㜾ୖ㐛⛤ḿᖏ࡞ ⾔ࢂࡿࡍ࡞⭙⭅හ࡞⏻ࡱࡖࡒ≟ឺ࡚࠵ࡽࠉ᩺⏍ඡධమࡡ 3-5㸚࡞ヾࡴࡼࡿࠉฝ⏍మ 㔔ඡࡷ᪡⏐ඡ࡚ࡢࠉ30㸚࡛Ⓠ㢎ᗐ㧏ࡂࡾࠊࡱࡒࠉୌ⯙Ⓩ࡞ᡥ⾙⒢Ἢ࡞ࡻࡽ⒢ ࢅ⾔࠹ࠉ⾔ࢂ࠷ሔྙࡢዲࢅᘤࡀ㉫ࡆࡊࠉࡈࡼ࡞⢥ᕛ⭐⑾ࡡⓆ⋙㣍㌅Ⓩ࡞୕ ᪴ࡌࡾ࡛ሒ࿈ࡈࡿ࡙࠷ࡾ 2,7ࠊ ࡆࡡᵕ⫴ᬊ࠾ࡼࠉ⫶⏍ᚃ࡞࠽ࡄࡾࣤࢺࣞࢣࣤᶭ⬗ࡡฦᏄᶭᵋࡡよᯊࡢᏕ⾙Ⓩ 㔔さᛮ࡞ຊ࠻ࠉᚺ⏕༈Ꮥฦ㔕࡞࠽࠷࡙ࡵኬࡀណ⩇ࢅࡵࡗ࡛࠷࠻ࡾࠊ 10 Dlx 㐿ఎᏄࡢ Drosophila Distal-less (Dll)ࡡဳ㢦࣓࣌ࣞࢡ࡚࠵ࡽࠉᒌ⫝ࡡ㐪న㒂ᙟ ᠺ࡞㔔さᙲࢅࡵࡗ࣒࢛࣌ࢺ࣒ࣤᆵ㌹ᅄᏄ࡚࠵ࡾ 8ࠊࣃࢹ࠽ࡻࡦ࣏ࢪ࡚ࡢࠉ Dlx1 ࠾ࡼ Dlx6 ࡱ࡚ࡡ 6 ⛸㢦Ꮛᅹࡊࠉ3 ࢠࣚࢪࢰ࣭(Dlx1/2, Dlx3/4, Dlx5/6)ࢅᙟᠺࡊ࡙ ࠷ࡾࠊDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ(Dlx5/6)ࡢࠉ๑⬳(forebrain)ࠉ㪨ᘢ(branchial arches)ࠉ ᄿ⫝(limb)ࡡჹᏻᙟᠺ࡞㛭ࡊ࡙࠷ࡾ▩ࡼࡿ࡙࠷ࡾ 8-11ࠊ Split hand/foot malformation (SHFM)ࡢ୯ኳᡥ㊂ࢅఔ࠹ುᛮᄿ⫝ᙟᠺධࢅ ≟࡛ࡌࡾࣃࢹኮᛮ⑄ᝀ࡚࠵ࡽࠉ⌟ᅹࡱ࡚࡞ࠉࣃࢹ SHFM ࡞࠽࠷࡙ 5 ࡗࡡ㐿ఎᏄᗑࡡ ን␏ሒ࿈ࡈࡿ࡙࠷ࡾ 12ࠊSHFM type 1 (SHFM1)ࡢࠉᖏⰅమ 7q21.3-q22 ࡞న⨠ࡘࡄ ࡼࡿ࡙࠽ࡽࠉࡆࡡ㡷ᇡࡢ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࢅྱࢆ࡚࠷ࡾ 13ࠊDlx5 㐿ఎᏄ ࠽ࡻࡦ Dlx6 㐿ఎᏄ㐿ఎᏄḖ࣏ࢪ(Dlx5 and Dlx6 double knockout mouse, Dlx5/6 DKO)ࡢᄿ⫝ᙟᠺ␏ᖏࢅ♟ࡊ 14,15 ࠉࡐࡡ⾪⌟ᆵࡢ SHFM ࡞㢦జࡊ࡙࠷ࡾ 13 ࠊࡆࡿࡼࡡ ▩ぜ࠾ࡼࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ SHFM1 ࡡཋᅄ㐿ఎᏄࡡୌࡗ࡚࠵ࡾ࡛⩻ ࠻ࡼࡿ࡙࠷ࡾ 13ࠊ⮾࠷࡞ࠉୌ㒂ࡡ SHFM ᝀ⩽࡚ࡢᄿ⫝ᙟᠺ␏ᖏ࡞ຊ࠻࡙ࠉᑚ㝔 ⱴࠉᑺ㐠ୖࠉ⢥ᕛⴆ⦨ࡡἢᑺ⏍Ṣჹᙟᠺ␏ᖏࢅెⓆࡌࡾ࡛࠷࠹ሒ࿈࠵ࡾ 16-18 (Fig. 3)ࠊࡆࡿࡼࡡᙟឺᙟᠺ␏ᖏࡢ⫶ඡ⢥ᕛ࡞࠽ࡄࡾࣤࢺࣞࢣࣤྙᠺୖ࡞ࡻ ࡽᘤࡀ㉫ࡆࡈࡿࡒ࡛᥆ᐳࡈࡿࡾࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡ⢥ᕛ࡞࠽ࡄࡾᶭ ⬗ࡢධࡂฦ࠾ࡖ࡙࠷࠾ࡖࡒࠊ Figure 3. Split hand/foot malformation ࡞࠽ࡄࡾᄿ⫝ᙟᠺ␏ᖏ࠽ࡻࡦἢᑺ⏍ Ṣჹᙟᠺධ Am J Med Genet A 135, 21-27 (2005). Am J Med Genet A 140, 1366-1374 (2006) 11 Steroidogenic acute regulatory protein (StAR)ࡢࢤࣝࢪࢷ࣭ࣞࣜࡡ࣐ࢹࢤࣤࢺࣛአ⭯ ࠾ࡼහ⭯ࡡ㍲㏞ࢅㄢ⟿ࡌࡾᅄᏄ࡚࠵ࡽ(Fig. 1)ࠉࡆࡡ㐛⛤ࡢࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺ ࡡᚂ㏷ṹ㝭࡚࠵ࡾ 19,20ࠊ࣐ࢹࢤࣤࢺࣛහ⭯࡞㍲㏞ࡈࡿࡒࢤࣝࢪࢷ࣭ࣞࣜࡢ cytochrom p450 side chain cleavage enzyme (P450scc)࡞ࡻࡽࣈࣝࢡࢾࢿࣞࣤ(pregnenolone)ንᥦࡈ ࡿࠉࡐࡡᚃࠉࡈࡱࡉࡱ㓕⣪ష⏕ࢅུࡄ࡙ࢷࢪࢹࢪࢷ࡛ࣞࣤንᥦࡈࡿࡾࠊࣃࢹ࡞࠽ ࠷࡙ࠉStAR 㐿ఎᏄࡡን␏ࡢኮᛮ⑄ᝀ࡚࠵ࡾࣛ࣎ࢺ㐛ᙟᠺ(lipoid congenital adrenal hypoplasia, lipoid CAH)ࡡཋᅄ࡛ࡾࠊLipoid CAH ࡢ⭀࠽ࡻࡦ⏍Ṣ⭚࡚ࡡࢪ ࢷ ࣞ ࢺ ࣌ ࣜ ࣓ ࣤ ྙ ᠺ ୖ ࢅ ♟ ࡊ ࠉ ኣ ࡂ ࡢ ⏠ ᛮ ௫ ᛮ ༖ 㝔 㝟 (male pseudohermaphoroditism, MPH)ࢅྙెࡌࡾ 21 ࠊࡈࡼ࡞ࠉStAR 㐿ఎᏄḖ࣏ࢪ(StAR knockout mouse, StAR KO)ࡢࣃࢹࡡ lipoid CAH ࡛㢦జࡊࡒ⾪⌟ᆵࢅ࡛ࡾ 22,23ࠊࡆࡿࡼࡡ ▩ぜࡢࠉStAR ࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺ࡞ᚪ㡪ࡡᅄᏄ࡚࠵ࡾࢅ♟ࡊ࡙࠷ࡾࠊ StAR 㐿ఎᏄⓆ⌟ࡢᛮ⭚ๆ⃥࣓࣌ࣜࣤᨲฝ࣓࣌ࣜࣤ(gonadotropin releasing hormone, GnRH) ࠉ 㯜 మ ᙟ ᠺ ࣌ ࣜ ࣓ ࣤ (luteinizing hormone, LH) ࠉ༵ ⬂ ๆ ⃥ ࣌ ࣓ࣜ ࣤ (follicle stimulating hormone, FSH)ࠉ⏝≟⭚࣓࣌ࣜࣤ(thyroid hormone)ࠉቌṢᅄᏄ(growth factor)ࠉ ࣈࣞࢪࢰࢡࣚࣤࢩࣤ(prostaglandins)࠽ࡻࡦࢪࢷࣞࢺ➴࡞ࡻࡽᙫ㡢ࢅུࡄࡾ▩ࡼ ࡿ࡙࠷ࡾ 19,20 ࠊࡱࡒࠉStAR 㐿ఎᏄࡡ㌹โᚒࡢࠉStAR 㐿ఎᏄࡡ୕Ὦ㒼าࢅヾㆉࡌࡾ steroidogenic factor 1(SF-1/Ad4BP)24-27, C/EBP25,28,29ࠉSp124,30ࠉCREB/CREM31,32ࠉyin yang (YY1)33,34 ➴ࡡᵕࠍ㌹ᅄᏄ⩄࡞ࡻࡖ࡙โᚒࡈࡿ࡙࠷ࡾሒ࿈ࡈࡿ࡙࠷ࡾࠊ Zinc-finger ᆵ㌹ᅄᏄ࡚࠵ࡾ GATA-4 ࡵ StAR 㐿ఎᏄࡡ㌹ὩᛮᅄᏄ࡚࠵ࡽ 28-30ࠉ᭩ ㎾ࡡሒ࿈࡚ࡢ GATA-4 ⫶ඡࣚࢸࢴࣃ⣵⬂(fetal Leydig cells)ࡡ㐲วฦ࡞⣵⬂ ⮤ᚂⓏ࡞ᚪさ࡚࠵ࡾ♟ࡈࡿ࡙࠷ࡾ 35ࠊ ᮇ◂✪࡚ࡢࠉ⫶ඡ⢥ᕛ࡞࠽࠷࡙ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࣤࢺࣞࢣࣤྙ ᠺ⣵⬂࡚࠵ࡾ⫶ඡࣚࢸࢴࣃ⣵⬂࡚Ⓠ⌟ࡌࡾࢅ᪺ࡼ࠾࡞ࡊࡒࠊࡱࡒࠉDlx5 ࡢ GATA-4 ࡛ࢰࣤࣂࢠ㈻㛣┞பష⏕ࡊࠉStAR 㐿ఎᏄࡡ㌹Ὡᛮࢅ୕᪴ࡈࡎࡾࡆ࡛ࢅぜฝ ࡊࡒࠊࡱࡒࠉࣤࢺࣞࢣࣤ౪ᏋⓏᙟឺᙟᠺࢅ⾔࠹አ⏍Ṣჹ࡞Ἰ┘ࡊࠉDNA ࣏ࢠ ࣞࣝよᯊ࡞ࡻࡽྜྷᏽࡈࡿࡒࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄࡡአ⏍Ṣჹᙟᠺ㐛⛤࡞ ࠽ࡄࡾⓆ⌟よᯊࢅ⾔ࡖࡒࠊ ௧ୖࠉ❮࡚ᚋࡼࡿࡒ▩ぜࢅレ㏑ࡌࡾࠊ 12 ➠❮ ⤎ᯕ ➠ୌ⟿ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡ࣏ࢪ⫶ඡ⢥ᕛ࡞࠽ࡄࡾⓆ⌟よᯊ ࡆࡿࡱ࡚࡞ SHFM1 ࡡཋᅄ㐿ఎᏄࡡୌࡗ࡚࠵ࡾ Dlx5 㐿ఎᏄࡢ࣏ࢪᠺమ⢥ᕛࢅྱࡴ ᵕࠍჹᏻ࡚Ⓠ⌟ࡊ࡙࠷ࡾሒ࿈ࡈࡿ࡙࠷ࡾ 36,37ࠊࡊ࠾ࡊࠉ⢥ᕛࡡⓆ⏍ṹ㝭࡚ࡡⓆ ⌟ࣂࢰ࣭ࣤࡢ᪺࡚࠵ࡖࡒࠊ⫶ඡ⢥ᕛࡡḿᖏⓆ⏍࡛ࠉࡐࡆ࡚⾔ࢂࡿࡾࣤࢺࣞࢣࣤ ⏐⏍ࡢࠉ⫶ඡࡡ㞕ᛮ࡞ᚪさ࣊ࣤࢹ࡚࠵ࡾࠊࡐࡆ࡚ࠉ࣏ࢪ⫶ඡ⢥ᕛ࡞࠽ࡄࡾ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄⓆ⌟ࡡ᭯↋ࢅㄢࡾࡒࡴ࡞ࠉsemiquantitative RT-PCR Ἢ࠽ࡻࡦ real-time quantitative PCR Ἢࢅ⏕࠷ࡒⓆ⌟よᯊࢅ⾔ࡖࡒࠊ⏍Ṣ⭚ࡡ⢥ᕛࡡฦ ᪺ࡼ࠾࡛ࡾ⫶⏍ 12.5 ࠾ࡼࠉฝ⏍├๑ࡡ⫶⏍ 18.5 ࡱ࡚ࡡ࣏ࢪ⫶ඡ⢥ᕛ࠾ ࡼฝࡊࡒ total RNA ࢅ⏕࠷࡙ semiquantitative RT-PCR ࢅ⾔ࡖࡒ࡛ࡆࢀࠉDlx5 㐿ఎᏄ ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ⫶⏍ 12.5 ࠾ࡼ⫶⏍ 18.5 ࡞࠾ࡄ࡙࣏ࢪ⫶ඡ⢥ᕛ࡚Ⓠ⌟ࡊ࡙ ࠷ࡾࡆ࡛᪺ࡼ࠾࡞ࡖࡒ(Fig. 4A)ࠊࡈࡼ࡞ࠉreal-time quantitative PCR ࡞ࡻࡽࠉ୦㐿 ఎᏄࡢⓆ⏍㐅ࡳ࡞ࡗࡿⓆ⌟㔖ቌຊࡊ࡙࠷ࡾࡆ࡛ࢂ࠾ࡖࡒ(Fig. 4B)ࠊ࣏ࢪ⫶ඡ ⢥ᕛ࡞࠽ࡄࡾࣤࢺࣞࢣࣤྙᠺࡢ⫶⏍ 13.5 ࠾ࡼ⾔ࢂࡿ࡙࠽ࡽࠉ⫶⏍ 14.5 ࠾ࡼࡐ ࡡྙᠺ㔖ቌຊࡌࡾ▩ࡼࡿ࡙࠷ࡾ 38 ࠊ࣏ࢪ⫶ඡ⢥ᕛ࡞࠽ࡄࡾ Dlx5 㐿ఎᏄ࠽ࡻ ࡦ Dlx6 㐿ఎᏄࡡⓆ⌟୕᪴ࡢࠉࣤࢺࣞࢣࣤྙᠺቌຊ࡛㛣Ⓩୌ⮬ヾࡴࡼࡿࡒࠊ Figure 4. Dlx5 and Dlx6 are expressed in fetal testis. Quantification of Dlx5/6 mRNA expression in testis from 12.5 to 18.5 day postcoitum (dpc), using semiquantitative RT-PCR (A) and Real-time quantitative PCR (B) analyses. The expression of Dlx5/6 mRNA in 12.5 dpc testis was designated as the basal level (1.0). 13 ḗ࡞ࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄⓆ⌟⣵⬂ࢅྜྷᏽࡌࡾࡒࡴ࡞ section in situ hybridization Ἢࢅ⏕࠷ࡒⓆ⌟よᯊࢅ⾔ࡖࡒࠊࡐࡡ⤎ᯕࠉ୦㐿ఎᏄࡢ⢥ᕛ㛣㈻࡞Ⓠ⌟ࡌ ࡾࡆ࡛ࢂ࠾ࡖࡒ(Fig. 5A)ࠊ⢥ᕛ㛣㈻࡞ࡢ⫶ඡࣚࢸࢴࣃ⣵⬂(fetal Leydig cells)ࠉ ➵ᵕ⣵⬂(peritubular myoid cells)ࠉ⥲⥌ⰾ⣵⬂ᵕ⣵⬂(fibroblast like cells)Ꮛᅹࡌࡾࠊ ⢥ᕛᙟᠺ㐛⛤࡞࠽࠷࡙ࠉP450scc ࡢ⫶ඡࣚࢸࢴࣃ⣵⬂࣏࣭࣭࡛࢜ࡊ࡙⏕࠷ࡼࡿ࡙ ࠷ࡾࠊSection in situ hybridization (Dlx5, Dlx6)࡛ඞ⤄⧂Ⰵ(P450scc)ࡡ㔔Ⰵࢅ⾔ ࡖࡒ࡛ࡆࢀࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ P450scc ࡛ྜྷୌ⣵⬂࡚භⓆ⌟ࡊ࡙࠷ࡾ ࢂ࠾ࡖࡒ(Fig. 5B)ࠊࡆࡡ⤎ᯕࡢࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ⫶ඡࣚࢸ ࢴࣃ⣵⬂࡚Ⓠ⌟ࡊ࡙࠷ࡾࢅ♟ࡌࡵࡡ࡚࠵ࡾࠊ௧୕ࡡࡆ࡛࠾ࡼࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ⫶ඡࣚࢸࢴࣃ⣵⬂࡞࠽࠷࡙Ⓠ⌟ࡊ࡙࠽ࡽࠉ⫶ඡ࡚ࡡࢪࢷࣞࢺ࣌ ࣓ࣜࣤྙᠺ࡞㛭㏻ࡌࡾᶭ⬗ࢅ᭯ࡌࡾྊ⬗ᛮ⩻࠻ࡼࡿࡒࠊ 14 Figure 5. Dlx5 and Dlx6 are expressed in the fetal Leydig cells. (A) The expression of Dlx5 and Dlx6 in mouse testis at 16.5 dpc was detected by section in situ hybridization analysis. The morphological feature of fetal Leydig cell with a round nucleus was observed in the Dlx5/6 expressing cells. (B) Double-staining for Dlx5, Dlx6 (purple) and P450scc (red) in fetal testis. Note that the expression of Dlx5/6 was overlapped with that of P450scc. 15 ➠⟿ Dlx5 ࡞ࡻࡾ StAR 㐿ఎᏄⓆ⌟โᚒ Dlx ࡡ࣒࢛࣌ࢺ࣒ࣤࢰࣤࣂࢠ㈻ DNA ࡛⤎ྙࡌࡾࡒࡴ࡞ࡢࠉDNA ୕࡞࣒࣌ ࢛ࢺ࣒ࣤ⤎ྙࢦࢹ࡚࠵ࡾ TAAT 㒼าᚪさ࡚࠵ࡾ 39,40 ࠊFeledy ࡼࡢࠉDlx3 ࡢ (A/C/G)TAATT(G/A)(C/G)㒼าࢅヾㆉࡊ࡙ DNA ࡛⤎ྙࡌࡾ࡛ሒ࿈ࡊ࡙࠷ࡾ 41 ࠊࡱࡒࠉ chromatin immunoprecipitation assay ࠽ࡻࡦ luciferase assay ࡞ࡻࡾよᯊ࠾ࡼࠉDlx5 ࡢ TAAT 㒼าࢅྱࡳ DNA 㡷ᇡ࡞⤎ྙࡊࠉୖὮ㐿ఎᏄࡡ㌹ㄢ⟿ࢅ⾔࠹▩ࡼࡿ࡙࠷ ࡾ 42-44ࠊࡐࡆ࡚࣏ࢪ⫶ඡࣚࢸࢴࣃ⣵⬂࡞࠽ࡄࡾ Dlx5 㐿ఎᏄࡡᵾⓏ㐿ఎᏄࢅྜྷᏽ ࡌࡾࡒࡴ࡞ࠉEnsembl Genome Browser ࢅ⏕࠷࡙ࣤࢺࣞࢣࣤྙᠺ㛭㏻㐿ఎᏄ(Fig. 1) ࡡ㌹㛜ጙⅤࡻࡽ୕Ὦ 4.5kbp 㡷ᇡ࡚ TAAT 㒼าࢅ᳠⣬ࡊࡒࠊࡐࡡ⤎ᯕࠉStAR 㐿ఎᏄ ࡡࣈ࣓࣭ࣞࢰ࣭㡷ᇡ(Gene Bank Accession Number, AC122752)27 ࡞々ᩐࡡ TAAT 㒼า Ꮛᅹࡌࡾ᪺ࡼ࠾࡛ࡖࡒ(Fig. 6A)ࠊ ḗ࡞ࠉDlx5 ࡆࡿࡼࡡ࣒࢛࣌ࢺ࣒ࣤ⤎ྙࢦࢹࢅྱࡳ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ ࡡ㌹Ὡᛮ࡞㛭ࡌࡾ࠾ྫྷ࠾ࢅࠉ࣏ࢪࣚࢸࢴࣃ⭐⑾⣵⬂(mouse Leydig tumor cells, mLTC-1)45 ࢅ⏕࠷࡙ luciferase assay ࡞ࡻࡽ᳠ッࡊࡒࠊStAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ࡡ TAAT 㒼าࢅྱࡳ(-1514/+25)㡷ᇡࡢࠉDlx5 ࢅ㐛Ⓠ⌟ࡈࡎ࡙ࡵࠉࡐࡡࣈ࣓࣭ࣞࢰ࣭Ὡ ᛮ࡞ንࡢヾࡴࡼࡿ࠾ࡖࡒࠊྜྷᵕ࡞ TAAT 㒼าࢅྱࡱ࠷(-966/+25)㡷ᇡ࡞࠽࠷࡙ ࡵ Dlx5 㐛Ⓠ⌟ୖ࡚᭯ណንࡢヾࡴࡼࡿ࠾ࡖࡒ(Fig. 6A)ࠊࡊࡒࡖ࡙ࠉDlx5 ࡢ ༟≺࡚ࡢ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮ࡞ᙫ㡢ࡊ࠷ࢂ࠾ࡖࡒࠊ ୌ⯙࡞ࠉ࣒࢛࣌ࢺ࣒ࣤࢰࣤࣂࢠ㈻ࡢ DNA ⤎ྙ࡞ᑊࡌࡾ≁␏ᛮࡂࠉࡡ㌹ ᅄᏄ࠽ࡻࡦ㌹භᙲᅄᏄ࡛々ྙమࢅᙟᠺࡊࠉࡐࡡ≁␏ᛮࢅ୕ࡅ࡙࠷ࡾࡆ࡛▩ࡼࡿ࡙ ࠷ࡾ 46,47ࠊࡐࡆ࡚ࠉ࣒࢛࣌ࢺ࣒ࣤࢰࣤࣂࢠ㈻࡛┞பష⏕ࡊ 48ࠉࡈࡼ࡞ StAR 㐿ఎᏄࡡ ㌹ࢅㄢ⟿ࡊ࡙࠷ࡾ 28-30GATA-4 ࡞Ἰ┘ࡊࡒࠊࡆࡿࡱ࡚ࡡሒ࿈࡞࠵ࡾࡻ࠹࡞ࠉGATA-4 ࡡࡲࢅ㐛Ⓠ⌟ࡈࡎࡾ࡛ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮ୕᪴ࡊࡒ (Fig. 6A) 28-30 ࠊࡆ ࡡ GATA-4 ࡞ࡻࡾ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮ࡞ᑊࡌࡾ Dlx5 ࡡᙫ㡢ࢅㄢࡾࡒࡴ ࡞ࠉGATA-4 ࡛ Dlx5 ࢅභⓆ⌟ࡈࡎࠉluciferase assay ࢅ⾔ࡖࡒࠊࡐࡡ⤎ᯕࠉGATA-4 ࡡ ࡲࢅ㐛Ⓠ⌟ࡈࡎࡒሔྙ࡞Ẓࠉ୦⩽ࢅභⓆ⌟ࡈࡎࡾࡆ࡛࡚ StAR 㐿ఎᏄࡡࣈ࣓࣭ࣞ ࢰ࣭Ὡᛮࡈࡼ࡞ቌኬࡌࡾࡆ࡛ࢂ࠾ࡖࡒ(Fig. 6A)ࠊ Dlx5 ࡛ GATA-4 ࡡභⓆ⌟࡞ࡻࡾ㌹Ὡᛮ GATA-4 ⤎ྙࢦࢹ࡞౪Ꮛࡌࡾ࠾ ࠹࠾ࢅㄢࡾࡒࡴ࡞ࠉStAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭(-66/-61)㡷ᇡ࡞Ꮛᅹࡌࡾ GATA-4 ⤎ྙ ࢦࢹ࡞ን␏ࢅᑙථࡊ(TTATCTЍTTAagT)29ࠉྜྷᵕࡡᐁ㥺ࢅ⾔ࡖࡒࠊGATA-4 ⤎ྙࢦ 16 ࢹࡡን␏࡞ࡻࡽࠉDlx5 ࠽ࡻࡦ GATA-4 භⓆ⌟ୖ࡚ࡡ㌹Ὡᛮ΅ᘽࡊࡒ࠾ࡼ (Fig. 6B)ࠉࡆࡡ㌹Ὡᛮࡢ GATA-4 ⤎ྙࢦࢹࢅࡊ࡙࠷ࡾࡵࡡ࡚࠵ࡾ࡛⩻࠻ࡼࡿ ࡒࠊ௧୕ࡡ⤎ᯕ࠾ࡼࠉDlx5 ࡢ GATA-4 Ꮛᅹୖ࡞࠽࠷࡙ GATA-4 ⤎ྙࢦࢹࢅࡊ࡙ StAR 㐿ఎᏄࡡ㌹ㄢ⟿ࢅ⾔ࡖ࡙࠷ࡾྊ⬗ᛮ⩻࠻ࡼࡿࡒࠊ Figure 6. Dlx5 enhances the GATA-4-mediated StAR promoter activity. (A) Mouse StAR promoter (-1514/+25 bp and -966/+25 bp)/ luciferase constructs are schematically illustrated in the upper panel. Homeodomain binding sites are indicated by arrowheads. mLTC-1 cells were transfected with the above reporter constructs and pRL-SV40, together with empty vector, Dlx5 and GATA-4 expression vector as indicated. The activity of firefly luciferase was normalized with Renilla luciferase. (B) Nucleotide substitutions were introduced at the GATA-4 binding site (TTATCT to TTAagT). mLCT-1 cells were transfected with wildtype (WT) or mutant StAR promoter/luciferase reporter constructs together with a empty vector, Dlx5 and GATA-4 expression vector as indicated. The asterisks indicate statistical significance by Student’s t-test; *, P<0.001. 17 ➠⟿ Dlx5 ࡛ GATA-4 ࡡࢰࣤࣂࢠ㈻㛣┞பష⏕ Dlx5 ࡛ GATA-4 ࡞ࡻࡾ༝ㄢⓏ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭โᚒࢅࡻࡽレ⣵࡞ㄢࡾ ࡒࡴ࡞ࠉDlx5 ࡛ GATA-4 ࡡࢰࣤࣂࢠ㈻㛣┞பష⏕ࢅඞỷ㜾Ἢ࡞ࡻࡽ᳠ゞࡊࡒࠊDlx5 ࠽ࡻࡦ GATA-4 ࢅ㐛Ⓠ⌟ࡈࡎࡒᚃ࡞ COS-7 ⣵⬂ࡡࢰࣤࣂࢠ㈻ฝᾦࢅ⏕࠷࡙ඞ ỷ㜾ࢅ⾔ࡖࡒࠊࡐࡡ⤎ᯕࠉDlx5 ࡱࡒࡢ GATA-4 ࡞ᑊࡌࡾᢘమࢅ⏕࠷ࡒ࠷ࡍࡿ࡞࠽࠷ ࡙ࡵࠉ୦⩽ࡢࢰࣤࣂࢠ㈻々ྙమࢅᙟᠺࡌࡾ᪺ࡼ࠾࡞ࡖࡒ(Fig. 7A)ࠊࡈࡼ࡞ࡆࡡ ┞பష⏕ࢅࡻࡽレ⣵࡞ㄢࡾࡒࡴ࡞ mLTC-1 ⣵⬂࡞࠽࠷࡙ Dlx5 ࢅ࣊ࢹ࡛ࡊࡒ mammalian two-hybrid assay ࢅ⾔ࡖࡒࠊDlx5-GAL4DBD ⼝ྙࢰࣤࣂࢠ㈻(Dlx5/pBIND) ࠽ࡻࡦ GATA-4-VP16 ⼝ྙࢰࣤࣂࢠ㈻(GATA4/pACT)ࢅ mLTC-1 ⣵⬂࡞࠽࠷࡙㐛Ⓠ ⌟ࡈࡎࠉ୦⩽ࡡ┞பష⏕ࢅࣜࢨࣆ࣭࢘ࣚࢭὩᛮࢅᣞᵾ࡞᳠ゞࡊࡒࠊࡐࡡ⤎ᯕࠉ Dlx5/pBIND ࡱࡒࡢ GATA-4/pACT ༟≺Ⓠ⌟࡞Ẓࠉ୦Ⓠ⌟࣊ࢠࢰ࣭ࡡභⓆ⌟ୖ࡞ ࠽࠷࡙᭯ណ࣭ࣝ࣎ࢰ࣭Ὡᛮࡡ୕᪴ヾࡴࡼࡿࡒ(Fig. 7B)ࠊࡆࡡ⤎ᯕ࠾ࡼࠉCOS-7 ⣵ ⬂࡚ࡡඞỷ㜾࡚ᚋࡼࡿࡒ⤎ᯕ࡛ྜྷᵕ࡞ࠉmLTC-1 ⣵⬂࡞࠽࠷࡙ࡵ Dlx5 ࡢ GATA-4 ࡛々ྙమࢅᙟᠺࡌࡾࢂ࠾ࡖࡒࠊ ࡈࡼ࡞ࠉGATA-4 ࡞ᑊࡌࡾ Dlx5 ࡡ⤎ྙ㡷ᇡࢅ᪺ࡼ࠾࡞ࡌࡾࡒࡴ࡞ࠉMyc ࢰࢡࢅ ຊࡊࡒᵕࠍ Dlx5 ࣆࣚࢡ࣒ࣤࢹ࡛ GATA-4 ࡛ࡡ┞பష⏕ࢅඞỷ㜾࡞ࡻࡽよᯊࡊࡒ (Fig. 8A)ࠊࡐࡡ⤎ᯕࠉDlx5ΔN (134-289 amino acid, aa)ࠉDlx5ΔC (1-195 aa)࠽ࡻࡦ Dlx5N (1-134 aa) GATA-4 ࡛々ྙమࢅᙟᠺࡌࡾୌ᪁࡚ࠉDlx5C (196-289 aa)ࡢ GATA-4 ࡛┞ பష⏕ࡊ࠾ࡖࡒ (Fig. 8B)ࠊࡡ᩷∞ࢰࣤࣂࢠ㈻࡛Ẓ࡙ࠉDlx5HD (135-195 aa) ࡡⓆ⌟㔖ࡢ࠾ࡖࡒࠉࡆࡡ㡷ᇡࡵ GATA-4 ࡛ࡡ┞பష⏕᳠ฝࡈࡿࡒ(Fig. 8B ྎࣂ ࢾࣜ▦㢄)ࠊࡆࡿࡼࡡ⤎ᯕ࠾ࡼࠉDlx5 ࡢ N ᮆ❻㡷ᇡ(1-135 aa)ࡱࡒࡢ࣒࢛࣌ࢺ࣒ࣤ㡷 ᇡ(135-195 aa)ࢅࡊ࡙ GATA-4 ࡛┞பష⏕ࡌࡾࡆ࡛♟ြࡈࡿࡒࠊ 18 Figure 7. Protein-protein interaction between Dlx5 and GATA-4. (A) COS-7 cells were transfected with Dlx5, GATA-4 expression vectors and empty vector as indicated. After 24 h incubation, cell lysates were subjected to immunoprecipitation assay. Immunocomplexes were analyzed by standerd SDS-PAGE and Western blotting methods, using respective antibodies. (B) Mammalian two-hybrid assay was performed using the expression vectors encoding Dlx5-GAL4-DBD (Dlx5/pBIND) and/or GATA-4-VP16 (GATA-4/pACT). mLTC-1 cells were transfected with the indicated constructs and assayed for luciferase activity at 24 h post-transfection. 19 Figure 8. Identification of interaction domains of Dlx5 for GATA-4. (A) Schematic representation of various Dlx5 deletion mutants used to identify the interaction domains. The results from B are presented schematically. The binding of the various Dlx5 recombinants to GATA-4 are presented as follows: +, binding; -, no binding (left palnel). (B) Series of plasmids that express Myc-tagged Dlx5 deletion mutants and GATA-4 expression vector were transfected into COS-7cells and analyzed as previously described. Two different exposure conditions were shown (left panel, short exposure; right panel, long exposure; arrowheads indicate the Dlx5HD protein. 20 ➠ᄿ⟿ Dlx5 ࢰࣤࣂࢠ㈻ࡡ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮࢺ࣒ࣤࡡྜྷᏽ Dlx5 ࡛ GATA-4 ࡞ࡻࡾ༝ㄢⓏ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭㌹Ὡᛮ࡞ᚪさ Dlx5 ࢰࣤࣂࢠ㈻ࢺ࣒ࣤࢅ᪺ࡼ࠾࡞ࡌࡾࡒࡴ࡞ࠉmLTC-1 ⣵⬂࡞࠽࠷࡙ Dlx5 ࣆࣚࢡ࣒ࣤࢹ ࢅ⏕࠷ࡒ luciferase assay ࢅ⾔ࡖࡒࠊDlx5ΔN ࠽ࡻࡦ Dlx5ΔC ࢅ㐛Ⓠ⌟ࡈࡎࡾ࡛ࠉධ㛏 Dlx5 ࡡሔྙ࡛ྜྷᵕ࡞ GATA-4 Ꮛᅹୖ࡚ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮ᭯ណ࡞୕᪴ࡊ ࡒࠊୌ᪁ࠉDlx5N ࠽ࡻࡦ Dlx5C ࡚ࡢࠉStAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮ࡞ᙫ㡢ࢅཀྵࡈ ࠾ࡖࡒࠊࡱࡒࠉDlx5HD ࡡ㐛Ⓠ⌟࡚ࡢࠉഷ࠾࡞ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭Ὡᛮ୕ ᪴ࡊࡒ(Fig.9)ࠊࡆࡡ⤎ᯕ࠾ࡼࠉGATA-4 Ꮛᅹୖ࡞࠽ࡄࡾ Dlx5 ࡞ࡻࡾ StAR 㐿ఎᏄࣈࣞ ࣓࣭ࢰ࣭Ὡᛮࡡ୕᪴࡞ࡢ Dlx5 ࡡ࣒࢛࣌ࢺ࣒ࣤ㡷ᇡᚪさྊḖ࡚࠵ࡾࡆ࡛ฦ࠾ ࡖࡒࠊࡱࡒࠉDlx5 ࡡ N ᮆ❻࠽ࡻࡦ C ᮆ❻㡷ᇡࡢ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ࡡ㌹ຝ⋙ ࢅโᚒࡌࡾྊ⬗ᛮ♟ြࡈࡿࡒࠊ Figure 9. Differential ability of Dlx5 mutant proteins for GATA-4-mediated StAR promoter activation. mLTC-1 cells were transiently transfected with StAR promoter/luciferase construct (-966/+25 bp) and pRL-SV40, together with an empty vector, various Dlx5 deletion mutants and GATA-4 expression vectors as indicated. The asterisks mean statistical siginificance by Student’s t-test; *, P<0.01; **, P<0.001. 21 ➠⟿ Dlx5 and Dlx6 double knockout (Dlx5/6 DKO)࣏ࢪࡡ⾪⌟ᆵよᯊ ୕㏑ࡊࡒ in vitro よᯊ࠾ࡼࠉDlx5 ࡢ GATA-4 ࡛ࡡࢰࣤࣂࢠ㈻㛣┞பష⏕࡞ࡻࡽ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ࡡὩᛮࢅ⾔࠹ྊ⬗ᛮ♟ြࡈࡿࡒࡆ࡛࠾ࡼࠉDlx5/6 DKO ࣏ ࢪ⢥ᕛࡡ⾪⌟ᆵよᯊࢅ⾔ࡖࡒࠊDlx5/6 DKO ࣏ࢪࡢ㢄㦭ᙟᠺධ࠽ࡻࡦ㢙ᙟᠺ ධ࡞ࡻࡽฝ⏍├ᚃ࡞Ṓஷࡌࡾࡒࡴ 13 ࠉよᯊ࡞ࡢ⫶ඡ࣏ࢪࢅ⏕࠷ࡒࠊDlx5/6 DKO ࣏ ࢪ࠽ࡻࡦࢤࣤࢹ࣭ࣞࣜࡡ⫶ඡ⢥ᕛࢅ HE ࡚Ⰵࡊ࡙⤄⧂ᏕⓏよᯊࢅ⾔ࡖࡒ࡛ࡆࢀࠉ ⾉⟮࠽ࡻࡦ⢥⣵⟮ᙟᠺࡢḿᖏ࡞⾔ࢂࡿ࡙࠷ࡾࡆ࡛ฦ࠾ࡖࡒ(Fig. 10a,b)ࠊḗ࡞ࠉ⏍Ṣ ⣵ ⬂ ࡡ ࣏ ࣭࢜ ࣭࡚࠵ࡾ TRA9849 ࠽ࡻࡦ ࢬ ࣜࢹࣛ⣵⬂ ࣏ ࣭࣭࡚࢜࠵ ࡾ Mullerian inhibiting substrate (MIS)50 ࡡⓆ⌟ࢅඞ⤄⧂Ⰵ࡞ࡻࡽよᯊࡊࠉྜྷࡋࡂࢬࣜࢹࣛ⣵⬂࡚ Ⓠ⌟ࡌࡾ Desert hedgehog (Dhh)51ࠉ⫶ඡࣚࢸࢴࣃ⣵⬂ࢅྱࡳ㛣㈻㡷ᇡ࡞Ⓠ⌟ࡌࡾ Patched1 㐿ఎᏄ(Ptc1)51ࠉplatelet-derived growth factor receptorα㐿ఎᏄ(PDGFRα)52ࠉ⫶ ඡࣚࢸࢴࣃ⣵⬂ࢅ㝎ࡂ㛣㈻㡷ᇡ࡚Ⓠ⌟ࡌࡾ Arx 㐿ఎᏄ 53 ࡡⓆ⌟ࢅ section in situ hybridization ࡞ࡻࡽよᯊࡊࡒࠊࡐࡡ⤎ᯕࠉDlx5/6 DKO ࣏ࢪ⫶ඡ⢥ᕛࡢࢤࣤࢹ࣭ࣞࣜ ⩄࡛ྜྷᵕ࡞ࡆࡿࡼࡡ࣏࣭࣭࢜ᅄᏄࢅⓆ⌟ࡊ࡙࠷ࡾฦ࠾ࡖࡒ(Fig. 10c-n)ࠊࡊࡒࡖ ࡙ࠉDlx5/6 DKO ࣏ࢪ⫶ඡ⢥ᕛ࡞࠽࠷࡙ࠉ⏍Ṣ⣵⬂ࠉࢬࣜࢹࣛ⣵⬂ࠉ⫶ඡࣚࢸ ࢴࣃ⣵⬂ࡡⓆ⏍ࡢḿᖏ࡞⾔ࢂࡿ࡙࠷ࡾ࡛⩻࠻ࡼࡿࡒࠊInsulin-like factor 3 (Insl3)ࡢᠺ⇅ ࡊࡒ⫶ඡࣚࢸࢴࣃ⣵⬂ࡡ࣏࣭࣭࢜㐿ఎᏄ࡚࠵ࡾ 54,55ࠊInsl3 㐿ఎᏄࡵ Dlx5/6 DKO ࣏ࢪ⫶ඡ⢥ᕛ࡚ḿᖏ࡞Ⓠ⌟ࡊ࡙࠷ࡒࡆ࡛࠾ࡼ(Fig. 11)ࠉ⫶ඡࣚࢸࢴࣃ⣵⬂ࡡฦ 㐛⛤ࡵḿᖏ࡞⾔ࢂࡿ࡙࠷ࡾ࡛♟ြࡈࡿࡒࠊୌ᪁࡚ࠉsection in situ hybridization ࡞ࡻ ࡾⓆ⌟よᯊ࠾ࡼࠉDlx5/6 DKO ࣏ࢪ⫶ඡ⢥ᕛ࡞࠽࠷࡙ୌ㒂ࡡమ(⣑ 40%)࡞࠽࠷࡙ StAR 㐿ఎᏄࡡⓆ⌟ୖヾࡴࡼࡿࡒ(Fig.11)ࠊࡆࡿࡼࡡ⤎ᯕ࠾ࡼࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ StAR 㐿ఎᏄⓆ⌟࡞ᙫ㡢ࢅ࠻ࡾୌ᪁ࠉ⫶ඡࣚࢸࢴࣃ⣵⬂ࡡⓆ⏍࣬ ฦ࡞ࡢ├㛭ࡊ࠷ࡆ࡛ࢅ♟ြࡊࡒࠊ 22 Figure 10. Histogical and marker analyses of Dlx5/6 DKO embryonic testes. Control testes (a, c, e, g, i, k, m), Dlx5/6 DKO testes (b, d, f, h, j, l,n) at E16.5. HE staining (a, b). Sertoli cell markers, Dhh (c, d) and AMH (e, f). Germ cell marker, TRA98 (G,h). Fetal Leydig cell markers, Ptc1 (i, j), PDGFRα (k, l). Arx is expressed in interstitial region except for fetal Leydig cells (m, n). Section in situ hybridization analyses (c, d, g-n). immunohistochemical analysis (e-h). Basically both control and DKO testis display similar histogenesis and marker expressions. 23 Figure 11. Comparison of insulin-like factor 3 (Insl3) and StAR expression in testis of Control (A, C) and Dlx5/6 DKO (B, D) mice at E18.5 by section in situ hybridization. Approximately, 40% of Dlx5/6 DKO embryos displayed lower degree of StAR expression in their testes. 24 Dlx5/6 DKO ࣏ࢪ⫶ඡࡡ⢥ᕛྱ᭯୯ࢷࢪࢹࢪࢷࣞࣤࢅῼᏽࡊࡒ࡛ࡆࢀࠉDlx5/6 DKO ࣏ࢪ⫶ඡ࡚ࡢࢤࣤࢹ࣭ࣞࣜ࡞Ẓ᭯ណ࡞ୖࡊ࡙࠷ࡒ(Fig. 12A)ࠊࡱࡒࠉ⾉ΰ ୯ࢷࢪࢹࢪࢷ⃨ࣞࣤᗐ࡞࠽࠷࡙ࡵ Dlx5/6 DKO ࣏ࢪ⫶ඡ࡚ࡢࢤࣤࢹ࣭ࣞࣜ࡞Ẓ ୖലྡྷふᐳࡈࡿࡒ(Fig. 12B)ࠊࡈࡼ࡞ࠉ㞕ᛮࡡୌࡗࡡᣞᵾ࡛ࡊ࡙⏕࠷ࡼࡿ࡙࠷ࡾ anogenital distance (AGD)ࡵ Dlx5/6 DKO ࣏ࢪ⫶ඡ࡞࠽࠷࡙᭯ណ࡞ୖࡊ࡙࠷ࡒ(Fig. 12C)ࠊࡆࡿࡼࡡ⤎ᯕ࠾ࡼࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ⫶ඡ⢥ᕛ࡞࠽ࡄࡾࢷࢪ ࢹࢪࢷࣞࣤྙᠺ࡞ᚪさ࡚࠵ࡽࠉ⫶ඡࡡ㞕ᛮ࡞ᐞࡌࡾྊ⬗ᛮ⩻࠻ࡼࡿࡒࠊ Figure 12. Abnormal masculinization in Dlx5/6 DKO embryos. (A) Measurement of intratesticular testosterone by CLIA method. An asterisk means statistical significance by Student’s t-test (*, P<0.01) (B) Measurement of serum testosterone by LC-MS/MS method. (C) The distance between the anus and genitals of mice (i.e., the anogenital distance; AGD). The AGD is one of the frequently utilized androgen dependent markers in teratology and a reliable parameter of external masculinization in mice. 25 ➠ඵ⟿ ࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄࡡⓆ⌟よᯊ ᮇ◂✪࠾ࡼ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ࡞ࡻࡾ⫶ඡ⢥ᕛ࡞࠽ࡄࡾࣤࢺࣞࢣࣤྙ ᠺㄢ⟿ᶭᵋࡡୌ❻᪺ࡼ࠾࡞ࡖࡒࠊࡊ࠾ࡊࠉࣤࢺࣞࢣࣤᶭ⬗ධ࡞ࡻࡾἢᑺ⏍Ṣ ჹᙟᠺ␏ᖏࡡ⌦よ࡞ࡢࠉ㞕ᛮ⏍Ṣჹᏻ࡞࠽ࡄࡾࣤࢺࣞࢣࣤࢨࢡࢻࣜࡡฦᏄᶭᵋよ᪺ ᚪさྊḖ࡚࠵ࡾࠊࡐࡆ࡚ࠉ⫶ඡ࡞࠽ࡄࡾ㞕ᛮࡡฦᏄᶭᵋࢅ᪺ࡼ࠾࡞ࡌࡾࡒࡴ ࡞ࠉࣤࢺࣞࢣࣤᵾⓏ㐿ఎᏄࡡⓆ⌟よᯊࢅ⾔ࡖࡒࠊ አ⏍Ṣჹࡢࣤࢺࣞࢣࣤࡡష⏕ࢅུࡄ࡙㞕ᛮࡌࡾჹᏻࡡୌࡗ࡚࠵ࡾࠊ⫶⏍ 14.5 ࠾ࡼ⢥ᕛ࡚ࡡࣤࢺࣞࢣࣤྙᠺ୕᪴ࡌࡾࠉአ⏍Ṣჹ࡚ࡢ⫶⏍ 16.5 ࠾ࡼᙟឺⓏ 㞜㞕ᕣヾࡴࡼࡿࡾ 56ࠊ㞜ࡡአ⏍Ṣჹ࡛Ẓࠉ㞕࡚ࡢⓆ㐡ࡊࡒໜ⓮ࠉᑺ㐠ࣃࢱࡡ⼝ ྙࠉⓉ⭯࡞しࢂࡿࡒஞ㢄㞕≁᭯ࡡᙟឺふᐳࡈࡿࡾ(Fig.13)ࠊ Figure13. Histology of external genitalia Transverse sections of male (B) and female (C) genital tubercle (GT), external genital anlage, at 18.5 dpc. In male, the fusion of the urethral folds in ventral midline of GT is prominent and the glands lamellae completely encircles the shaft (glans penis). L: glans lamellae, PP: prepuce, U: urethra, UF: urethral fold. 26 አ⏍Ṣჹᙟᠺ㐛⛤࡞࠽ࡄࡾࣤࢺࣞࢣࣤᵾⓏ㐿ఎᏄࢅྜྷᏽࡌࡾࡒࡴ࡞ࠉᙔ◂✪ᐄ࡚ DNA ࣏ࢠࣞࣝよᯊ⾔ࢂࡿࠉ々ᩐࡡು㐿ఎᏄᚋࡼࡿ࡙࠷ࡒ(unpublished data)ࠊᮇ◂✪࡚ࡢࠉࡐࡿࡼು㐿ఎᏄࡡ୯࠾ࡼࠉࢲࢹࢠ࣭࣑ࣞ P450 ฦᏄ⛸ࡡୌࡗ࡚ ࠵ࡾ Cyp1b1 㐿ఎᏄࠉࣤࢺࣞࢣུࣤᐖమ㸝androgen receptor, AR㸞ࡡࢨ࡛ࣔ࣋ࣞࣤࡊ ࡙ᶭ⬗ࡌࡾ Fkbp51 㐿ఎᏄࠉbasic leucine zipper ᆵ㌹ᅄᏄ࡚࠵ࡾ MafB 㐿ఎᏄࡡⓆ⌟ ࣂࢰ࣭ࣤࢅ real-time quantitative PCR Ἢ࠽ࡻࡦ section in situ hybridization Ἢࢅ⏕࠷࡙よ ᯊࡊࡒࠊ 㞜㞕ࡡᙟឺንふᐳࡈࡿࡾ௧๑ࡡ⫶⏍ 15.5 ࡡአ⏍Ṣჹ࠾ࡼᚋࡼࡿࡒ cDNA ࢅ ⏕࠷࡙ real-time quantitative PCR ࡞ࡻࡽ Cyp1b1 㐿ఎᏄࠉFkbp51 㐿ఎᏄࠉMafB 㐿ఎᏄ ࡡⓆ⌟ࢅ㞜㞕࡚Ẓ㍉ࡊࡒ࡛ࡆࢀࠉࡆࡿࡼࡡ㐿ఎᏄࡢ DNA ࣏ࢠ࡚ࣞࣝᚋࡼࡿࡒ ⤎ᯕ࡛ྜྷᵕ࡞ࠉ㞜࡞Ẓ㞕࡚ᙁࡂⓆ⌟ࡊ࡙࠷ࡾࡆ࡛ࢂ࠾ࡖࡒ(Fig. 14A)ࠊḗ࡞ࠉࡆࡿ ࡼࡡ㐿ఎᏄࡡⓆ⌟㡷ᇡࢅ᪺ࡼ࠾࡞ࡌࡾࡒࡴ࡞ࠉsection in situ hybridization ࢅ⏕࠷ࡒⓆ ⌟よᯊࢅ⾔ࡖࡒࠊCyp1b1 㐿ఎᏄ࠽ࡻࡦ Fkbp51 㐿ఎᏄࡢአ⏍Ṣჹ㎾న㒂ࡡ㛣ⴝ㡷ᇡ࡚ Ⓠ⌟ࡊ࡙࠽ࡽࠉ㞜࡞Ẓ㞕࡚Ⓠ⌟ᙁ࠷ലྡྷヾࡴࡼࡿࡒ(Fig. 14B-E)ࠊࣤࢺࣞࢣࣤ ࡡ AR ࡡ⤎ྙࢅ㜴ᐐࡌࡾࣆࣜࢰ࣐ࢺࢅዲፈ࣏ࢪ࡞ᢖࡌࡾ࡛ࠉ㞕⫶ඡ࣏ࢪࡡአ ⏍Ṣჹ㎾న㒂࡚ᑺ㐠ୖㄇᑙࡈࡿࡾ 56ࠊࡆࡡࡆ࡛࠾ࡼࠉአ⏍Ṣჹ㎾న㒂ࡢࣤࢺࣞ ࢣࣤᙁࡂష⏕ࡊ࡙࠷ࡾ㡷ᇡ࡚࠵ࡽࠉCyp1b1 㐿ఎᏄࡷ Fkbp51 㐿ఎᏄࣤࢺࣞࢣࣤ ࡞ᚺ➽ࡊ࡙Ⓠ⌟ࡊ࡙࠷ࡾྊ⬗ᛮ♟ြࡈࡿࡒࠊ MafB 㐿ఎᏄࡢᑺ㐠୦ഁ㛣ⴝ࡚Ⓠ⌟ࡊ࡙࠽ࡽࠉ㞜࡞Ẓ㞕࡚㟸ᖏ࡞ᙁࡂⓆ⌟ࡊ࡙࠷ ࡒ(Fig. 14F,G)ࠊᑺ㐠୦ഁ㛣ⴝ࡚ࡢ㞕≁᭯ࡡᙟឺᙟᠺ࡚࠵ࡾᑺ㐠ࣃࢱࡡ⼝ྙふᐳࡈࡿ ࡾࡆ࡛࠾ࡼࠉࡆࡡ㡷ᇡࡢࣤࢺࣞࢣࣤష⏕ࢅᙁࡂུࡄࡾྊ⬗ᛮ⩻࠻ࡼࡿࡾࠊࡱࡒࠉ ࣏ࢪአ⏍Ṣჹᙟᠺ㐛⛤࡞࠽࠷࡙ AR ࡢࡆࡡ㡷ᇡ࡚ᙁࡂⓆ⌟ࡊ࡙࠷ࡾ(data not shown)ࠊ ࡆࡿࡼࡡࡆ࡛࠾ࡼࠉࣤࢺࣞࢣࣤᚺ➽㐿ఎᏄ࡚࠵ࡾ MafB 㐿ఎᏄᑺ㐠୦ഁ㛣ⴝ࡞࠽ ࠷࡙ᑺ㐠ࣃࢱࡡ⼝ྙ࡞㛭ࡌࡾྊ⬗ᛮ♟ြࡈࡿࡒࠊ 27 Figure 14. The comparison of Cyp1b1, Fkbp5 and MafB expression between male and female GT. (A) The amounts of Cyp1b1, Fkbp51 and MafB mRNA in male and female GT at 15.5 dpc were quantified by real-time quantitative PCR analyses. Relative RNA expression levels for each sample were standardized by comparing the L8 mRNA levels. The error bars represent the standard deviation. The expression patterns of Cyp1b1 (B, C), Fkbp51 (D, E) and MafB (F, G) in male (B, D, F) and female (C, E, G) GT at 15.5 dpc. 28 ➠❮ ⩻ᐳ ࢪࢷࣞࢺ࣓࣌ࣜࣤࡢ⫶ඡⓆ⏍㐛⛤࡚ࡡ⤄⧂ࡡฦࡓࡄ࡚ࡂࠉᠺమ࡞࠽ࡄࡾ⏍Ṣ ᶭ⬗ࡡⓆ㐡࠽ࡻࡦᜇᖏᛮࡡ⥌ᣚ࡞㔔さᙲࢅᯕࡒࡌࠊࡐࡡ୯࡚ࡵࣤࢺࣞࢣࣤࡢࠉ 㞕ࡡ⏍Ṣᶭ⬗ࡡⓆ⌟࣬⥌ᣚ࡞ᚪ㡪ࡡᅄᏄ࡚࠵ࡾࠊࡊࡒࡖ࡙ࠉࢪࢷࣞࢺྙᠺᶭᵋࡡ よ᪺ࡢࠉࣃࢹኮᛮ⑄ᝀࡡⓆᶭᵋࡡ⌦よࡓࡄ࡚ࡂࠉᠺమ࡞࠽ࡄࡾᵕࠍහฦἢ␏ ᖏࡡよᯊ࡞ࡵኬࡀࡂ㈁⊡ࡌࡾࠊ ᮇ◂✪࠾ࡼࠉ࣒࢛࣌࣍ࢴࢠࢪᆵ㌹ᅄᏄ Dlx5 Zinc finger ᆵ㌹ᅄᏄ GATA-4 ࡛ 々ྙమࢅᙟᠺࡊࠉࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺࡡᚂ㏷ṹ㝭ࢅㄢ⟿ࡌࡾ Steroidogenic acute regulatory protein (StAR)㐿ఎᏄࡡࣈ࣓࣭ࣞࢰ࣭Ὡᛮࢅಀ㐅ࡈࡎࡾࡆ࡛ࢅ᪺ࡼ࠾࡞ࡖ ࡒࠊࡈࡼ࡞ࠉDlx5 and Dlx6 double knockout mouse (Dlx5/6 DKO)ࢅ⏕࠷ࡒよᯊ࡞ࡻࡽࠉ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ⫶ඡ⢥ᕛ࡞࠽࠷࡙ StAR 㐿ఎᏄⓆ⌟࠽ࡻࡦࢷࢪࢹࢪ ࢷࣞࣤྙᠺࢅಀ㐅ࡌࡾྊ⬗ᛮࢅ᪺ࡼ࠾࡞ࡊࡒࠊࡱࡒࠉࡆࡿࡼࡡ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ᭯ࡌࡾᶭ⬗ࡢࠉ⫶ඡࡡ㞕ᛮ࡞ᐞࡌࡾྊ⬗ᛮ♟ြࡈࡿࡒࠊ ➠ୌ⟿ Dlx5 ࡛ GATA-4 ࡞ࡻࡾࢰࣤࣂࢠ㈻㛣┞பష⏕ࡡᙲ ࣒࢛࣌ࢺ࣒ࣤࢰࣤࣂࢠ㈻ࡡ DNA ⤎ྙ㡷ᇡࡡ≁ᏽࠉ㌹Ὡᛮࠉ⣵⬂හᑻᅹࡢࠉ ୌ⯙࡞ࢰࣤࣂࢠ㈻㛣┞பష⏕࡞ࡻࡖ࡙โᚒࡈࡿ࡙࠷ࡾ 46,47 ࠊHox 㐿ఎᏄ⩄࡞ࡢ Pbxࠉ MeisࠉPrep 々ᩐࡡ㌹භᙲᅄᏄᏋᅹࡌࡾࠊPBX1 ࡢ HoxA9 ࡛ࢰࣤࣂࢠ㈻㛣┞ப ష⏕ࡊࠉHox ࡡ DNA ⤎ྙ㐽ᢝᛮ(DNA-binding specificity)ࢅንࡈࡎ 57ࠉࡐࡡ㌹Ὡᛮ ࢅㄢ⟿ࡌࡾ 58ࠊࢨࣘࢩࣘࣁ࢙࡚ࡢ࣒࢛࣌ࢺ࣒ࣤࢰࣤࣂࢠ㈻࡚࠵ࡾ Extradentricle (EXD)ࡡᰶහ⛛ິ࡞ࠉྜྷࡋࡂ࣒࢛࣌ࢺ࣒ࣤࢰࣤࣂࢠ㈻࡚࠵ࡾ homothorax (HTH)࡛ࡡ ࢰࣤࣂࢠ㈻㛣┞பష⏕ᚪさ࡚࠵ࡾ 59ࠊ Dlx5 ࡞࠽࠷࡙ࡵ々ᩐࡡභᙲᅄᏄሒ࿈ࡈࡿ࡙࠷ࡾࠊYeast two-hybrid assay ࡞ࡻࡽྜྷ ᏽࡈࡿࡒ Dlxin-1 ࡛ GRIP1b ࡢ Dlx5 ࡡ㌹භᙲᅄᏄ࡛ࡊ࡙ᶭ⬗ࡌࡾ 60,61 ࠊDlxin-1 ࡢ necdin/melanoma-associated antigen (MAGE) family ࡞ᒌࡊ࡙࠽ࡽࠉ⬳ࠉ㦭࠽ࡻࡦ⢥ᕛ ࡡ Dlx5 Ⓠ⌟ࡊࠉᶭ⬗ࡌࡾჹᏻ࡚Ⓠ⌟ࡊ࡙࠷ࡾ 60ࠊࡱࡒࠉGRIP1b ࡢ GRIP1(glutamate receptor interacting protein 1)ࡡ alternative splicing form ࡚࠵ࡾ 61ࠊGRIP1b ࡢ 5 ࡗࡡ PDZ ࢺ࣒ࣤ㸝PSD-95ࠉDlgࠉZO-1 ࡞භ㏳ࡡࢺ࣒࡚ࣤ࠵ࡽࠉࡆࡿࡼࡡ㢄ᩝᏊࢅ࡛ࡖ࡙ྞ ࡄࡼࡿࡒ㸞ࢅᣚࡔࠉࡆࡡ PDZ ࢺ࣒ࣤࢅࡊ࡙ Dlx5 ࡛⤎ྙࡌࡾ 61ࠊDlxin-1 ࡛ GRIP1b ࡢ࠷ࡍࡿࡵ Dlx5 ࡡ N ᮆ❻㡷ᇡ࡛⤎ྙࡊࠉDlx5 ࡡ㌹Ὡᛮࢅቌᖕࡌࡾ 60,61ࠊࡈࡼ࡞ࠉ 29 Dlx5 ࡢ Drosophila muscle segment homeobox (msh)㐿ఎᏄࡡဳ㢦࣓࣌ࣞࢡ࡚࠵ࡾ Msx1 ࠽ࡻࡦ Msx2 ࡛ப࠷ࡡ࣒࢛࣌ࢺ࣒ࣤ㡷ᇡࢅࡊ࡙ࢰࣤࣂࢠ㈻㛣┞பష⏕ࡌࡾ 62 ࠊ Dlx5 ࡢ Msx1 ࡱࡒࡢ Msx2 ࡛々ྙమࢅᙟᠺࡌࡾࡆ࡛࡞ࡻࡖ࡙ DNA ⤎ྙ㜴ᐐࡈࡿࠉ ୖὮ㐿ఎᏄ࡞ᑊࡌࡾ㌹Ὡᛮୖࡌࡾ 62ࠊࡆࡡࡻ࠹࡞ࠉDlx5 ࡢᵕࠍࢰࣤࣂࢠ㈻࡛ ┞பష⏕ࡌࡾࡆ࡛࡞ࡻࡽ⮤㌗ᣚࡗᶭ⬗࠽ࡻࡦࡡࢰࣤࣂࢠ㈻ࡡᶭ⬗ࢅโᚒࡌࡾࠊ ᮇ◂✪࡚ࡢࠉDlx5 ࡢ N ᮆ❻㡷ᇡࡱࡒࡢ࣒࢛࣌ࢺ࣒ࣤ㡷ᇡࢅࡊ࡙ GATA-4 ࡛ࢰ ࣤࣂࢠ㈻㛣┞பష⏕ࡌࡾࡆ࡛᩺ࡒ࡞ฦ࠾ࡖࡒࠊࡈࡼ࡞ Dlx5 ࡢ GATA-4 ࡛ࡡභⓆ⌟ ୖ࡞࠽࠷࡙ StAR 㐿ఎᏄࡡࣈ࣓࣭ࣞࢰ࣭Ὡᛮࢅ୕᪴ࡈࡎࡾ᪺ࡼ࠾࡞ࡖࡒࠊDlx DNA ࡛⤎ྙࡌࡾࡒࡴ࡞ࡢ࣒࢛࣌ࢺ࣒ࣤ⤎ྙࢦࢹᚪさ࡚࠵ࡾࡆ࡛▩ࡼࡿ࡙ ࠽ࡽ 39,40ࠉ☔࠾࡞ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭୕࡞ࡢᆵⓏ࣒࢛࣌ࢺ࣒ࣤ⤎ྙ㒼า Ꮛᅹࡊ࡙࠷ࡒࠊࡊ࠾ࡊࠉDlx5 ༟≺ࡡ㐛Ⓠ⌟࡚ࡢࠉStAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ࡢὩᛮ ࡊ࠾ࡖࡒࠊ⮾࠷࡞ࠉDlx5 ࡛ GATA-4 ࡡ༝ㄢⓏ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ ࡡὩᛮࡢ࣒࢛࣌ࢺ࣒ࣤ⤎ྙࢦࢹ࡚ࡢࡂࠉGATA-4 ⤎ྙࢦࢹࢅࡊ࡙࠷ࡾ ฦ࠾ࡖࡒࠊ௧୕ࡡࡆ࡛࠾ࡼࠉᮇ◂✪࡚ᚋࡼࡿࡒ⤎ᯕࡢ StAR 㐿ఎᏄ㌹โᚒ࡞࠽࠷ ࡙ Dlx5 GATA-4 ࡡ㌹භᙲᅄᏄ࡛ࡊ࡙ᶭ⬗ࡌࡾྊ⬗ᛮࢅ♟ࡌࡵࡡ࡚࠵ࡾࠊ ➠⟿ Dlx5 ࡞ࡻࡾ StAR 㐿ఎᏄ㌹Ὡᛮᶭᵋ Dlx5 ࡢࡡࡻ࠹࡞ࡊ࡙ StAR 㐿ఎᏄࡡ㌹Ὡᛮࢅಀ㐅ࡌࡾࡡࡓࢀ࠹࠾ࠊDlx5 ࢰࣤ ࣂࢠ㈻ࡢ࣒࢛࣌ࢺ࣒ࣤ㡷ᇡࡡ୦ഁ࡞㸧ࡗࡡࣈࣞࣛࣤࣛࢴࢲ㡷ᇡࢅᣚࡖ࡙࠷ࡾࠊୌ⯙ Ⓩ࡞ࠉࣈࣞࣛࣤࣛࢴࢲ㡷ᇡࡢ㌹Ὡᛮ࡞ᑊࡊ࡙ಀ㐅Ⓩ࡞഼ࡂ▩ࡼࡿ࡙࠷ࡾ 63ࠊᐁ 㝷ࠉDlx5 ࡡ N ᮆ❻㡷ᇡࡢ㌹Ὡᛮࢺ࣒࡛ࣤࡊ࡙ᶭ⬗ࡌࡾ 60 ࠊᮇ◂✪࡞࠽࠷࡙ࠉ Dlx5 ࣆࣚࢡ࣒ࣤࢹࢅ⏕࠷ࡒ luciferase assay ࠾ࡼࠉDlx5 ࡡ N ᮆ❻㡷ᇡ࠽ࡻࡦ C ᮆ❻㡷 ᇡࡢ GATA-4 භⓆ⌟ୖ࡞࠽࠷࡙ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭ࡡ㌹Ὡᛮࢺ࣒࡛ࣤࡊ ࡙ᶭ⬗ࡊᚋࡾࡆ࡛᪺ࡼ࠾࡛ࡖࡒࠊࣃࢪࢹࣤࢬࢲࣜ㓕⣪࡚࠵ࡾ p300 ࡢ GATA-4 ࡡ㌹භᙲὩᛮᅄᏄ࡛ࡊ࡙ᶭ⬗ࡊ 64 ࠉGATA-4 ࡡ StAR 㐿ఎᏄ࡞ᑊࡌࡾ㌹Ὡᛮࢅ ቌᖕࡌࡾ 30ࠊࡈࡼ࡞ࠉࣈࣞࣛࣤࣛࢴࢲ㡷ᇡࡢ p300 ࡷᇱᮇ㌹ᅄᏄࡡୌࡗ࡚࠵ࡾ TFIID ࡛┞பష⏕ࡌࡾ▩ࡼࡿ࡙࠷ࡾ 65,66 ࠊࡆࡿࡼࡡ▩ぜ࠾ࡼࠉDlx5 ࡡ N ᮆ❻࠽ࡻࡦ C ᮆ❻㡷ᇡ࡞Ꮛᅹࡌࡾࣈࣞࣛࣤࣛࢴࢲ㡷ᇡ p300ࠉTFIID ࢅࣛࢠ࣭ࣜࢹࡌࡾࡆ࡛࡞ ࡻࡽ㌹Ὡᛮࢺ࣒࡛ࣤࡊ࡙ᶭ⬗ࡊᚋࡾྊ⬗ᛮ⩻࠻ࡼࡿࡾࠊ 30 ➠⟿ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡ⫶ඡ⢥ᕛ࡞࠽ࡄࡾᶭ⬗ ࡆࡡࡻ࠹࡞ Dlx5 ࡢ GATA-4 ࡛࡛ࡵ࡞ StAR 㐿ఎᏄࡡⓆ⌟ㄢ⟿࡞㛭ࡌࡾࡆ࡛♟ြ ࡈࡿࡒࠊ๑㏑ࡡࡻ࠹࡞ StAR ࡢࢪࢷࣞࢺྙᠺ࡞ᚪ㡪࡚࠵ࡽࠉStAR 㐿ఎᏄን␏࡞ࡻࡽ Ⓠࡌࡾ lipoid CAH ࡞࠽࠷࡙⏠ᛮ௫ᛮ༖㝔㝟ࡡ≟ヾࡴࡼࡿࡾ 21ࠊᐁ㝷࡞ Dlx5 ࢪࢷࣞࢺྙᠺ࡞㛭ࡊ࡙࠷ࡾ࠾ㄢࡾࡒࡴ࡞ࠉDlx5/6 DKO ࣏ࢪ⫶ඡ⢥ᕛࡡ⾪⌟ ᆵࢅよᯊࡊࡒࠊࡐࡡ⤎ᯕࠉ≟࡞మᕣ࠵ࡾࡵࡡࡡ Dlx5/6 DKO ࣏ࢪ⫶ඡ⢥ᕛ࡞ ࠽࠷࡙☔࠾࡞ StAR 㐿ఎᏄࡡⓆ⌟ୖࡌࡾലྡྷ☔ヾࡈࡿࡒࠊࡱࡒࠉDlx5/6 DKO ࣏ ࢪ⫶ඡ࡚ࡢࠉ⢥ᕛྱ᭯ࢷࢪࢹࢪࢷ⃨ࣞࣤᗐࡡୖ࡛࡛ࡵ࡞ࠉAGD ୖ࡛࠷ࡖࡒ㞕 ᛮ␏ᖏふᐳࡈࡿࡒࠊ௧୕ࡡࡆ࡛࠾ࡼࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ⫶ඡ⢥ᕛ Ⓠ⏍㐛⛤࡞࠽࠷࡙ࢷࢪࢹࢪࢷࣞࣤྙᠺ࡞㛭ࡌࡾࡆ࡛᪺ࡼ࠾࡛ࡖࡒࠊ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ⫶ඡ⢥ᕛࡓࡄ࡚ࡂࠉᠺమ⢥ᕛ࡞࠽࠷࡙ࡵⓆ⌟ࡊ ࡙࠷ࡾ 36,37ࠊࡱࡒᮇ◂✪࡞࠽࠷࡙ࠉ୦㐿ఎᏄࡢᠺమ༵ᕛ࡚ࡵⓆ⌟ࡊ࡙࠷ࡒࠉ⫶ඡ༵ ᕛ࡚ࡢࡐࡿࡼࡡⓆ⌟ࡢヾࡴࡼࡿ࠾ࡖࡒ(data not shown)ࠊ࣏ࢪ࡚ࡢ⫶ඡ༵ᕛࡢࢪࢷ ࣞࢺ࣓࣌ࣜࣤྙᠺࢅ⾔ࢂ࠷ࡆ࡛▩ࡼࡿ࡙࠷ࡾࠊࡆࡿࡼࡡ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡⓆ⌟ࣂࢰ࣭ࣤࡢࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺ࡛㛣✭㛣Ⓩୌ⮬ヾࡴࡼࡿࡾ ࠾ࡼࠉ୦㐿ఎᏄࡢᠺమ⢥ᕛ࠽ࡻࡦᠺమ༵ᕛ࡞࠽࠷࡙ࡵࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺ࡞㛭 ࡌࡾྊ⬗ᛮ⩻࠻ࡼࡿࡾࠊ ➠ᄿ⟿ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ࡛ࢼ࣭ࣖࣞࢪࢷࣞࢺ࡛ࡡ㛭㏻ᛮ ⬳♼⤊⣌ࡢᮆᲀහฦἢ⭚ྙᠺࡌࡾࢪࢷࣞࢺ࣓࣌ࣜࣤࡡᵾⓏჹᏻ࡛ࡊ࡙ᤂ࠻ࡼ ࡿ࡙ࡀࡒࠊࡊ࠾ࡊࠉ㎾ᖳࠉ⬳♼⤊≺⮤࡞ࢤࣝࢪࢷ࣭ࣞࣜࢅࡵ࡛࡞ࢪࢷࣞࢺ࣓࣌ࣜ ࣤࢅྙᠺࡊ࡙࠷ࡾࡆ࡛᪺ࡼ࠾࡛ࡖ࡙ࡀࡒ 67,68ࠊ⬳♼⤊⣌ྙᠺࡌࡾࡆࡡ᩺ࡊ࠷ᴣ ᛍࡡ⬳ฦᏄࡢࠉᢧᾐහฦἢ⭚ࡗࡂࡾᚉᮮࡡཿⓏࢪࢷࣞࢺ(classical steroid)࡛༇ื ࡊ࡙ࠉࢼ࣭ࣖࣞࢪࢷࣞࢺ㸝neurosteroid㸞࡛ྞࡄࡼࡿࡒࠊࢼ࣭ࣖࣞࢪࢷࣞࢺࡢ♼ ⤊ࡡⓆ⏍ࡷᶭ⬗࡞ኬࡀᙫ㡢ࢅ࠻ࡾࡆ࡛▩ࡼࡿ࡙࠷ࡾ 67,68ࠊ᭩㎾ࡡሒ࿈࠾ࡼࠉStAR 㐿ఎᏄ୯ᯙ♼⤊࠽ࡻࡦᮆᲀ♼⤊࡞࠽࠷࡙Ⓠ⌟ࡊ࡙࠷ࡾࡆ࡛᪺ࡼ࠾࡞ࡖࡒࠊDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢ๑⬳ᙟᠺ࡞ᚪさᅄᏄ࡚࠵ࡽ ⓮㈻ࡡ StAR 㐿ఎᏄⓆ⌟㡷ᇡ࡞࠽࠷࡙Ⓠ⌟ࡊ࡙࠷ࡾ 69 ࠉっᗃୖ㒂ࠉႡ⌣ࠉኬ⬳ 70-73 ࠊࡆࡿࡼࡡᐁࡢࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ⬳ࡡࢪࢷࣞࢺྙᠺ⣵⬂࡚Ⓠ⌟ࡊ࡙࠷ࡾྊ⬗ᛮࢅ♟ြࡌ 31 ࡾࡵࡡ࡚࠵ࡾࠊࡊࡒࡖ࡙ࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄ⬳♼⤊⣌࡞࠽࠷࡙ࡵࢪ ࢷࣞࢺྙᠺ࡞㛭ࡌࡾྊ⬗ᛮ⩻࠻ࡼࡿࡾࠊ ➠⟿ ࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄࡡአ⏍Ṣჹᙟᠺ㐛⛤࡞࠽ࡄࡾᶭ⬗ ࣤࢺࣞࢣࣤࡢ㞕ᛮ⏍Ṣჹᙟᠺ࡞ᚪ㡪ࡡᅄᏄ࡚࠵ࡽࠉᠺమ࡞࠽࠷࡙ࡵ⏠ᛮ⏍⌦ᶭ⬗ ࡡ⥌ᣚࢅᢰ࠹㟸ᖏ࡞ኣᵕᙲࢅᣚࡗࢪࢷࣞࢺ࣓࡚࣌ࣜࣤ࠵ࡾࠊ᭩㎾ࡡሒ࿈࡚ࡢࠉ ࣤࢺࣞࢣࣤ ES ⣵⬂࠾ࡼᚨ➵ࡡฦㄇᑙࢅ⾔࠹ྊ⬗ᛮ♟ြࡈࡿ࡙࠷ࡾ 74 ࠊࡱ ࡒࠉchromatin immunoprecipitation together with microarray (Chip-chip)Ἢ࡞ࡻࡾよᯊ࠾ࡼ ᰶහ㌹ᅄᏄ࡚࠵ࡾ AR ࡡᵾⓏ㐿ఎᏄࡢኣ⛸ኣᵕ࡚࠵ࡽࠉ々㞟ࢨࢡࢻࣜ࢜ࢪࢢ࣭ࢺ ࢅᣚࡗࡆ࡛᪺ࡼ࠾࡞ࡖ࡙࠷ࡾ 75ࠉࣤࢺࣞࢣࣤࢨࢡࢻࣜධㇲよ᪺࡞ࡢ⮫ࡖ࡙࠷ ࠷ࠊ AR 㐿ఎᏄን␏࣏ࢪ(testicular feminization, Tfm)ࡷ AR 㐿ఎᏄḖ࣏ࢪ(AR KO)࡞ ࡻࡾよᯊ࠾ࡼࠉአ⏍Ṣჹᙟᠺ࡞࠽࠷࡙ࡵࣤࢺࣞࢣࣤ㞕ᛮᅄᏄ࡛ࡊ࡙ᶭ⬗ࡌࡾࡆ ࡛ࡢ᪺ࡼ࠾࡚࠵ࡾ 76ࠊᮇ◂✪࡚ࡢ⫶ඡ㞕ᛮᶭᗆࢅ᪺ࡼ࠾࡞ࡌࡾࡆ࡛ࢅᛍ㢄࡞ࠉࡐ ࡡ㞕ᛮ㐛⛤ࡡ◂✪ࡵࡖ࡛ࡵ㐅ࢆ࡚࠷ࡾአ⏍Ṣჹࢅ࣓ࢸ࡛ࣜࡊ࡙ࠉࣤࢺࣞࢣࣤᵾ Ⓩ㐿ఎᏄࡡⓆ⌟よᯊࢅ࠽ࡆࡖࡒࠊࡐࡡ⤎ᯕࠉ3 ࡗࡡࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄ (Cyp1b1 㐿ఎᏄࠉFkbp51 㐿ఎᏄ࠽ࡻࡦ MafB 㐿ఎᏄ) ᪺ࡼ࠾࡛ࡽࠉአ⏍Ṣჹᙟᠺ 㐛⛤࡞࠽ࡄࡾࡐࡿࡼࡡᶭ⬗ࢅ௧ୖ࡞⩻ᐳࡊࡒࠊ ⷾ∸ㅨ㓕⣪ࡡୌࡗ࡚࠵ࡾ Cyp1b1 㐿ఎᏄࡢࠉ⒬ࠉ༵ᕛ⒬ኣࡂࡡ⭐⑾⤄⧂࡚ ࡐࡡⓆ⌟ㄇᑙࡈࡿ࡙࠽ࡽࠉ≁࡞๑❟⭚⒬࡚ࡢࡐࡡ㐿ఎᏄኣᆵ㸝single nucleotide polymorphisms, SNP㸞࡞ࡻࡽ≟ኬࡀࡂ␏ࡾࡆ࡛ሒ࿈ࡈࡿ࡙࠷ࡾ 77,78 ࠊࡱࡒࠉ ⷾࡓࡄ࡚ࡢࡂࠉ࢙ࢪࢹࣞࢣࣤࡷࢷࢪࢹࢪࢷࣞࣤࡡㅨ࡞ࡵ㛭ࡊ࡙࠷ࡾ 78ࠊ࣏ ࢪአ⏍Ṣჹᙟᠺ㐛⛤࡞࠽࠷࡙ࠉCyp1b1 㐿ఎᏄࡢ㞕አ⏍Ṣჹ㎾న㒂ࡡ㛣ⴝ㡷ᇡ࡚Ⓠ⌟ ᙁࡂヾࡴࡼࡿࡒࠊࣤࢺࣞࢣࣤᚺ➽㐿ఎᏄ࡚࠵ࡾ Cyp1b1 㐿ఎᏄࡢࢷࢪࢹࢪࢷࣞࣤ ࡡㅨࢅ⾔࠹ࡆ࡛࠾ࡼࠉࣤࢺࣞࢣࣤࠉCYP1B1 ࡡ୦⩽࡞ࡢㇿࡡࣆ࣭ࢺࣁࢴࢠᏋ ᅹࡌࡾྊ⬗ᛮ⩻࠻ࡼࡿࡾࠊ ࡱࡒࠉCyp1b1 㐿ఎᏄࡢࣛࣜࣀࢺུ࣭ࣞ࢜࣍ࣤᐖమ(aryl hydrocarbon receptor, AhR)ࡡᵾⓏ㐿ఎᏄ࡚ࡵ࠵ࡾ 79 ࠊࢱ࢛࢞ࢨࣤࡢ AhR ࢅࡊ࡙⏍మẐᛮࢅⓆ⌟ࡌࡾࠊ አ⏍Ṣჹᙟᠺ㐛⛤࡞࠽࠷࡙ࠉAhR 㐿ఎᏄⓆ⌟ࡢአ⏍Ṣჹ㛣ⴝ㡷ᇡ࡚Ⓠ⌟ࡊ࡙࠽ࡽࠉዲ 32 ፈ࣏ࢪࢅ⏕࠷ࡒ TCDD ᢖᐁ㥺࡞ࡻࡽᑺ㐠ୖᵕࡡ≟ㄇᑙࡈࡿࡾ 80,81ࠊᮇ◂✪ ࡚ Cyp1b1 㐿ఎᏄࡢࣤࢺࣞࢣࣤ࡞ᚺ➽ࡊㄇᑙࡈࡿࡾྊ⬗ᛮ♟ြࡈࡿࡒࡆ࡛࠾ࡼࠉ Cyp1b1 㐿ఎᏄⓆ⌟ㄢ⟿࡞ࡢ AR ࡛ AhR ࡡࢠࣞࢪࢹ࣭ࢠᏋᅹࡌࡾ௫ㄕ⩻࠻ࡼࡿࡾࠊ ࡵࡊࠉࡆࡡ௫ㄕḿࡊ࠷ࡵࡡ࡚࠵ࡿࡣࠉࢱ࢛࢞ࢨࣤ࡞ࡻࡽㄇᑙࡈࡿࡾᑺ㐠ୖࡢ Cyp1b1 㐿ఎᏄⓆ⌟ㄇᑙ㐛࡞ࡽࠉࡐࡿࢅུࡄ࡙ࠉష⏕ࡌࡾࡀࣤࢺࣞࢣࣤ ㅨࡈࡿࠉࡐࡡ⤎ᯕࣆࣜࢰ࣐ࢺᢖ࡛ྜྷᵕ࡞ࣤࢺࣞࢣࣤᶭ⬗ୖࡌࡾࡆ࡛࡞ࡻࡽ ᑺ㐠ᙟᠺ␏ᖏࢅᘤࡀ㉫ࡆࡌྊ⬗ᛮ᥆ᐳࡈࡿࡾࠊ ๑❟⭚⒬⣵⬂ᰬࢅ⏕࠷ࡒよᯊ࠾ࡼࠉAR ࡢ├Ⓩ࡞ Fkbp51 㐿ఎᏄࡡⓆ⌟ㄢ⟿ࢅ⾔࠹ ࡆ࡛᪺ࡼ࠾࡚࠵ࡾࠊࡈࡼ࡞ࠉFebbo ࡼࡢࠉAR ࡛ FKBP51 ࡢࢰࣤࣂࢠ㈻㛣┞பష⏕ ࢅᣚࡔࠉFkbp51 㐿ఎᏄࡡ㐛Ⓠ⌟ୖ࡚ࡢࠉAR ࡡ㌹Ὡᛮ୕᪴ࡌࡾ࡛ሒ࿈ࡊ࡙࠷ࡾ 82 ࠊࡆࡿࡼࡡ▩ぜ࠾ࡼࠉFKBP51 ࡢࣤࢺࣞࢣࣤࢨࢡࢻࣜ࡞ᙫ㡢ࢅ࠻ᚋࡾᅄᏄ࡚࠵ ࡾ࡛ࡈࡿࡾࠉFkbp51 㐿ఎᏄḖ࣏ࢪ(Fkbp51 KO)࡚ࡢἢᑺ⏍Ṣჹᙟᠺ࡞㢟ⴥ ␏ᖏࡢヾࡴࡼࡿࡍࠉዲᏈᛮࡵḿᖏ࡚࠵ࡖࡒ 83ࠊFKBP51 ࡛ྜྷࡋࣆ࣐࣭࡚ࣛ࠵ࡽࠉ AR ࡡࢨ࡛ࣔ࣋ࣞࣤࡊ࡙ᶭ⬗ࡌࡾ Fkbp52 ࡡ㐿ఎᏄḖ࣏ࢪࡢࠉᑺ㐠ୖᵕࡡᙟឺ␏ ᖏ࠽ࡻࡦ๑❟⭚ᙟᠺධࢅ♟ࡌ 83ࠊࡈࡼ࡞ FKBP52 Ḗୖ࡚ࡢࠉAR ࡡ㌹Ὡᛮⴥ ࡊࡂୖࡌࡾࡆ࡛࠾ࡼࠉFKBP52 ࡢ AR ࡡ㌹Ὡᛮ࡞ᙫ㡢ࢅ࠻ࡾࡆ࡛᪺ࡼ࠾࡞ ࡖ࡙࠷ࡾ 83ࠊ௧୕ࡡࡆ࡛࠾ࡼࠉFkbp51 㐿ఎᏄࡢࣤࢺࣞࢣࣤᚺ➽㐿ఎᏄ࡚࠵ࡾࠉ㞕 አ⏍Ṣჹᙟᠺ࡞ࡢ├Ⓩ࡞ࡢ㛭ࡊ࠷ࡆ࡛⩻࠻ࡼࡿࡾࠊࡊ࠾ࡊࠉFkbp51 㐿ఎᏄ ࡢࣤࢺࣞࢣࣤ࡞౪ᏋࡊࡒⓆ⌟ㄇᑙࢅུࡄࡾࡆ࡛࠾ࡼࠉࣤࢺࣞࢣࣤᶭ⬗ࡡ࣭ࣝ࣎ࢰ ࣭㐿ఎᏄ࡛ࡊ࡙᭯ຝ࡚࠵ࡾ⩻࠻ࡼࡿࡾࠊࡆࡡᐁࡢࠉFkbp51 㐿ఎᏄᚃࡡࣤࢺ ࣞࢣࣤ࡞ࡻࡾ㞕አ⏍ṢჹᙟᠺࡡฦᏄ࣒࢜ࢼࢫ࣑ࢅよᯊࡌࡾ୕࡚㔔さᅄᏄ࡛ࡽᚋ ࡾࡆ࡛ࢅ♟ࡊ࡙࠷ࡾࠊ MafB 㐿ఎᏄࡢᚃ⬳ࡷහ⪝ࡡᙟᠺ࡞㔔さᅄᏄ࡚࠵ࡾ 84ࠊ⮾࠷ࡆ࡛࡞ࠉMafB ࡢ Fos ࡛ࣉࢷࣞࢱ࣏࣭ࢅᙟᠺࡌࡾ 85ࠊFos ࡢ activator protein (AP-1)ࡡᵋᠺᅄᏄࡡୌ ࡗ࡚࠵ࡽࠉAP-1 々ྙమࡢ FGF ࡷ Wnt ࡡቌṢᅄᏄࡡ㔔さୖὮᅄᏄ࡚࠵ࡾࠊFgf10 㐿ఎᏄࡢᑺ㐠୦ഁ㛣ⴝ࡚Ⓠ⌟ࡊ࡙࠽ࡽࠉࡐࡡ㐿ఎᏄḖ࣏ࢪࢅ⏕࠷ࡒᶭ⬗よᯊ࠾ࡼ Fgf10 㐿ఎᏄࡢᑺ㐠ᙟᠺ࡞㛭ࡊ࡙࠷ࡾࡆ࡛ࢂ࠾ࡖ࡙࠷ࡾ 86ࠊࡈࡼ࡞ࠉFGF10 ࡡུ ᐖ మ ࡚ ࠵ ࡾ Fgf receptor IIIb (FgfrIIIb) 㐿ఎᏄࡵᑺ㐠୦ഁ㛣ⴝ࡞Ⓠ⌟ࡊ࡙࠽ࡽ ࠉ FGF-FGFRIIIb ࡡ┞பష⏕ࡢᑺ㐠ᙟᠺ࡞ᚪ㡪࡚࠵ࡾ 87,88ࠊWnt5a 㐿ఎᏄࡢአ⏍Ṣჹ㛣ⴝ 33 㡷ᇡ࡞Ⓠ⌟ࡊ࡙࠽ࡽࠉWnt5a 㐿ఎᏄḖ࣏ࢪࡢአ⏍Ṣჹᙟᠺධࢅ࿆ࡌࡾ 89ࠊࡆࡡ ࡻ࠹࡞ࠉFGFࠉWnt ࡡቌṢᅄᏄ⩄አ⏍Ṣჹᙟᠺ㐛⛤࡞ᚪさ࡚࠵ࡾࡢ᪺ࡼ࠾࡚ ࠵ࡾࠉࡆࡿࡼࣤࢺࣞࢣࣤ౪ᏋⓏአ⏍Ṣჹᙟᠺ࡞࠽࠷࡙ࡡࡻ࠹ᙲࢅᣚࡗ ࡡ࠾ࡢᮅࡓ᪺࡚࠵ࡾࠊ ᮇ◂✪࡞ࡻࡽࠉMafB 㐿ఎᏄ㞕አ⏍Ṣჹᑺ㐠୦ഁ㛣ⴝ࡚ᙁࡂⓆ⌟ࡌࡾࡆ࡛᪺ࡼ ࠾࡞ࡖࡒࠊFgf 㐿ఎᏄࠉWnt 㐿ఎᏄࡵྜྷ㡷ᇡ࡚Ⓠ⌟ࡌࡾࡆ࡛࠾ࡼࠉMafB ࡢࡆࡿࡼࡡ ቌṢᅄᏄ⩄ࡡୖὮᅄᏄ࡚࠵ࡾ AP-1 ࡡ㌹Ὡᛮࢅಞ㣥ࡊࠉࡐࡿ࡞ࡻࡖ࡙㞕አ⏍Ṣჹ≁ ᭯ࡡᙟឺᙟᠺࢅㄇᑙࡌࡾྊ⬗ᛮ⩻࠻ࡼࡿࡾࠊ 34 ➠ᄿ❮ ⥪ᣋ ࣃࢹ⏠ඡ࡞࠽ࡄࡾᛮฦ␏ᖏࡢࠉ⏍Ṣ⭚ᙟᠺධࠉᛮ࣓࣌ࣜࣤྙᠺධࠉࣤࢺ ࣞࢣࣤᚺኣᒪ࡞ࢂࡒࡾࠊࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺ␏ᖏ࡞ࡻࡾᛮฦ␏ᖏࡡ ୌࡗ࡞ࣛ࣎ࢺ㐛ᙟᠺ࠵ࡽࠉࣤࢺࣞࢣࣤࢅࡢࡋࡴ࡛ࡌࡾᛮ࣓࣌ࣜࣤࡡྙᠺධ ࡛࡛ࡵ࡞ࠉ⏠ඡ࡚ࡢ⏠ᛮ௫ᛮ༖㝔㝟ࢅ࿆ࡌࡾࠊᮇࡢᮇெ࡞Ẓ㍉ⓏኣࡂⓆࡊࠉࡐ ࡡ࡛ࢆ StAR 㐿ఎᏄን␏࡞ࡻࡾࡵࡡ࡚࠵ࡾࠉStAR 㐿ఎᏄࡡን␏ྜྷᏽࡈࡿ ࠷ౚࡵヾࡴࡼࡿ࡙࠷ࡾࠊ ᮇ◂✪࡞࠽ࡄࡾࣃࢹኮᛮ⑄ᝀ SHFM1 ࡡཋᅄ㐿ఎᏄ࡚࠵ࡾ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡᶭ⬗よᯊ࡞ࡻࡽࠉDlx5 GATA-4 ࡛々ྙమࢅᙟᠺࡊࠉStAR 㐿ఎᏄࣈ࣓࣭ࣞ ࢰ࣭Ὡᛮࢅ୕᪴ࡈࡎࡾࡆ࡛♟ြࡈࡿࡒࠊࡈࡼ࡞ Dlx5/6 DKO ࣏ࢪࡡ⾪⌟ᆵよᯊ࡞ ࡻࡽࠉ⫶ඡࣚࢸࢴࣃ⣵⬂࡚Ⓠ⌟ࡌࡾ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡢࣤࢺࣞࢣ ࣤྙᠺࢅಀ㐅ࡊࠉࡐࡿ࡞ࡻࡽ⫶ඡࡡ㞕ᛮࢅಀࡌྊ⬗ᛮ♟ြࡈࡿࡒࠊࡱࡒࠉDlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡⓆ⌟ࡢ⫶ඡ⢥ᕛࡓࡄ࡚ࡂࠉᠺమ⢥ᕛࠉᠺమ༵ᕛࠉ⬳ ࡡࡡࢪࢷࣞࢺ࣓࣌ࣜࣤྙᠺჹᏻ࡚ࡵヾࡴࡼࡿࡾࡆ࡛࠾ࡼࠉᚃࡆࡿࡼࡡჹᏻ࡞ ࠽ࡄࡾ୦㐿ఎᏄࡡᙲ࡞ࡗ࠷࡙ࡵἸ┘ࡊ࡙࠷ࡾࠊ ࣤࢺࣞࢣࣤ⏠ᛮ⏍Ṣჹᙟᠺ࡞㟸ᖏ࡞㔔さᙲࢅⁿࡋ࡙࠷ࡾࡆ࡛ࡢ Tfm ࡷ AR KO ࡡよᯊ࠾ࡼ᪺ࡼ࠾࡚࠵ࡾࠊ⫶ඡ⢥ᕛ࡞࠽ࡄࡾ Dlx5 㐿ఎᏄ࠽ࡻࡦ Dlx6 㐿ఎᏄࡡᶭ ⬗よᯊ࠾ࡼࠉ୦㐿ఎᏄࣤࢺࣞࢣࣤྙᠺ࡞ᐞࡌࡾྊ⬗ᛮ♟ြࡈࡿࡒࠉࣃࢹ ኮᛮ⑄ᝀ࡚࠵ࡾᑺ㐠ୖࡷೳ⏻⢥ᕛࡡฦᏄឺࢅ⌦よࡌࡾࡒࡴ࡞ࡢࠉ㞕ᛮ⏍Ṣჹᏻ࡞ ࠽ࡄࡾࣤࢺࣞࢣࣤࢨࢡࢻࣜࡡฦᏄᶭᵋࡡよ᪺ᚪ㡪࡚࠵ࡾࠊࡆࡿࢅུࡄ࡙ࠉᮇ◂✪ ࡚ࡢ Cyp1b1 㐿ఎᏄࠉFkbp51 㐿ఎᏄࠉMafB 㐿ఎᏄࡡࣤࢺࣞࢣࣤᵾⓏು㐿ఎ Ꮔ⩄ࡡⓆ⌟よᯊࢅ⾔࠷ࠉࡐࡿࡼࡡአ⏍Ṣჹᙟᠺ࡞࠽ࡄࡾࡈࡿࡾᶭ⬗ࢅ㏑ࡒࠊ ᚃࠉࡆࡿࡼࡡࣤࢺࣞࢣࣤᵾⓏು㐿ఎᏄአ⏍Ṣჹᙟᠺ࡚ࡡࡻ࠹ᙲࢅࡌࡾ ࡡ࠾ࢅよᯊࡌࡾࡆ࡛࡚ࠉࣤࢺࣞࢣࣤࢨࢡࢻࣜࡡฦᏄᶭᵋࡡ⌦よࢅࡴࡾࡆ࡛࡚ࡀ ࡾ࡛⩻࠻࡙࠷ࡾࠊ 1990 ᖳ࡞ᛮỬᏽ㐿ఎᏄ SRY ྜྷᏽࡈࡿ࡙௧㜾ࠉฦᏄ⏍∸Ꮥࡡ㐅ᒈ࡞ࡻࡽᵕࠍᛮ ฦ㐿ఎᏄḗࠍ࡞ྜྷᏽࡈࡿࠉᛮࡡฦᶭᵋࡡ⌦よ᛬㏷࡞ࡱࡖ࡙࠷ࡾࠊࡊ࠾ࡊࠉ ࡱࡓࡱࡓᮅよỬࡡၡ㢗ኣࡂṟࡖ࡙࠷ࡾࡆ࡛ࡵᐁ࡚࠵ࡾࠊᮇ◂✪ࡡⓆᒈᚃࡡᛮ ฦ␏ᖏࡡฦᏄឺࡡࡻࡽⰃ࠷⌦よ࡞⦽ࡾࡆ࡛ࢅᙽࡊ࡙࠷ࡾࠊ 35 ➠❮ ᐁ㥺᪁Ἢ ➠ୌ⟿ ᐁ㥺ິ∸࠽ࡻࡦᇰ㣬⣵⬂ ᮇ◂✪࡚⾔ࢂࡿࡒິ∸ᐁ㥺ࡢࠉ↻ᮇኬᏕິ∸ᐁ㥺ᣞ㔢࡞ᇱࡘࡀ⾔ࡖࡒࠊᮇ◂✪࡚⏕ ࠷ࡒ Dlx5 and Dlx6 double knockout (Dlx5/6 DKO)࣏ࢪࡢࠉMerlo ࡼ 13 ࡞ࡻࡽሒ࿈ࡈࡿ ࡙࠷ࡾࡵࡡ࡚࠵ࡾࠊ࣏ࢪࣚࢸࢴࣃ⭐⑾⣵⬂(mouse Leydig tumor cells, mLTC-145) ࡢࠉ10% FBS (Invitrogen Life Technologies, Carlsbad, CA)࠽ࡻࡦ penicillin-streptomycin (Invitrogen)ࢅྱࡳ RPMI1640 ᇰᆀ(Invitrogen)୯࡚ᇰ㣬ࡊࡒࠊCOS-7 ⣵⬂ࡢࠉ10% FBS ࠽ࡻࡦ penicillin-streptomycin ࢅྱࡳ DMEM ᇰᆀ(Invitrogen)୯࡚ᇰ㣬ࡊࡒࠊ ➠⟿ Plasmid DNA ࡡష C57BL/6J ࣏ࢪࡡࢣࢿ࣑ DNA ࢅ⏕࠷࡙ PCR ࡞ࡻࡽ StAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭㡷ᇡ (-1514/+25 bp ࠽ࡻࡦ-966/+25 bp)ࢅቌᖕࡊࠉpGL3 Basic vector (Promega, Madison, WI) ࡞⤄ࡲ㎲ࢆࡓࠊStAR 㐿ఎᏄࣈ࣓࣭ࣞࢰ࣭࡞࠵ࡾ GATA-4 ⤎ྙࢦࢹࡡን␏ᑙථࡢࠉ 㐛ཡ࡞ሒ࿈ࡈࡿ࡙࠷ࡾሒ 29 ࡞ᇱࡘ࠷࡙⾔ࡖࡒࠊRT-PCR ࡞ࡻࡽᚋࡼࡿࡒ GATA-4 ࡡ cDNA ࡢࠉpCAGGS vector ࠽ࡻࡦ pCMV-TnT vector (Promega)࡞⤄ࡲ㎲ࢆࡓࠊDlx5 deletion mutants ࡢ PCR ࡞ࡻࡽషࡊࠉpCMV-Myc vector (Clontech Laboratories, Palo Alto, CA)ࡱࡒࡢ pCMV-TnT vector ࡞⤄ࡲ㎲ࢆࡓࠊ⏕ࡊࡒ primer ࡢ௧ୖࡡ㏳ࡽ࡚࠵ࡾࠊ -1514/+25 bp fragment F, 5’-AGT CAT CTC TCC AGC CCA ACA CGT-3̓ -966/+25 bp fragment F, 5’-ACC ACA GGG ATC ACA TAC CTG CA-3̓ -1514/+25 bp and -966/+25 bp fragments R, 5’-TCA AGG TCC TGA GTC CTG CAG CT-3̓ GATA-4 F, 5’-TCA GAG CTT GGG GCG ATG TAC CAA-3̓ GATA-4 R, 5’- TAC GCG GTG ATT ATG TCC CCA TGA CT-3̓ Dlx5ΔΝ and Dlx5HD F, 5’-TGA ATT CGG ATG AAA CCA AAG AAA GTT CGT AAA CCC-3̓ Dlx5ΔC and Dlx5N F, 5’-TGA ATT CGG ATG ACA GGA GTG TTT GAC AGA-3̓ Dlx5C F, 5’-TGA ATT CGG ATG AAA AAC GGG GAG ATG-3̓ Dlx5ΔN and Dlx5C R, 5’-TAA CTC GAG CAA GAG AAA GTA GCC-3̓ 36 Dlx5ΔC and Dlx5HD R, 5’-ATG GTA CCG ATCT TCT TGA TCT TGG ATC TTT TG-3̓ Dlx5N R, 5’-ATG GTA CCT GGT TTA CCA TTC ACC ATC CT-3̓. ➠⟿ Luciferase assay ࢹࣚࣤࢪࣆ࢘ࢠࢨࣘࣤࡡ๑࡞ࠉmLTC-1 ⣵⬂ࢅ 105 cells/well ࡡ⣵⬂ᐠᗐ࡚ 24 ࢘ ࣜࣈ࣭ࣝࢹ࡞᧓࠷ࡒࠊ⤽࠾ࡼ 24 㛣ᚃࠉFuGENE HD (Roche, Basel, Switzerland)ࢅ ⏕࠷࡙ࠉ┘Ⓩ㐿ఎᏄࢅᑙථࡊࡒࠊࠍࡡ㐿ఎᏄⓆ⌟࣊ࢠࢰ࣭(400 ng)ࠉLuciferase reporter plasmids(200 ng)ࠉpRL-SV40 plasmid (80 ng)ࡡ᮪௲࡚ࠉtriplicate ࡚ᐁ㥺ࢅ⾔ࡖࡒࠊRenilla luciferase ࢅࢤ࣭ࢺࡌࡾ pRL-SV40 plasmid ࡢහ㒂ᵾ‵࡛ࡊ࡙⏕࠷ࡒࠊ㐿ఎᏄᑙථᚃࠉ 24 㛣ᇰ㣬ࡊࡒ⣵⬂ࢅᅂࡊࠉ⣵⬂ฝᾦࢅ⏕࠷࡙ Dual-Luciferase Reporter Assay System (Promega)࡞ࡻࡽࠉluciferase Ὡᛮࢅῼᏽࡊࡒࠊ ➠ᄿ⟿ Western blotting Ἢ ᇰ㣬⣵⬂ࢅSampling buffer (50 mM Tris-HCl pH6.8, 2% SDS, 10% glycerol, 10% β-mercaptoethanol)࡞ࡻࡽ⁈よࡊࠉ㉰㡚ἴ◒◃ᶭ࡞ࡻࡽ◒◃ࡊࡒᚃ95Υ࡚5ฦ㛣ຊ⇍ࡊ ࡒࡵࡡࢅモᩩ࡛ࡊࡒࠊ12% SDS-PAGE࡞ࡻࡽฦ㞫ࡊࡒࢰࣤࣂࢠ㈻ࢅࠉPVDF⭯࡞㌹ (40mA, 2㛣)ࡊࡒࠊ㌹ᚃࡡPVDF⭯ࢅ5% ࢪ࣑࣐࢞ࣜࢠ/TBST (140 mM NaCl, 2.7 mM KCl, 0.1% Tween20, 25 mM Tris-HCl pH7.5)⁈ᾦ࡚ࣇࢴࣞ࢞ࣤࢡฌ⌦(ᐄῺࠉ2㛣) ࡊࠉTBST࡚ὑὯᚃࠉୌḗᢘమཬᚺࢅ4Υ࡚ୌᬄ⾔ࡖࡒࠊTBST࡚ὑὯᚃࠉḗᢘమཬ ᚺ ࢅ ᐄ Ὼ ࡚1㛣⾔ࡖ ࡒ ᚃࠉ PVDF ⭯ࢅTBST ࡚ὑὯࡊࠉ ECL kit (GE Healthcare, Buckinghamshire, England)࡞ࡻࡽᢘమཬᚺࢅ᳠ฝࡊࡒࠊ⏕ࡊࡒᢘమࢅ௧ୖ࡞♟ࡌࠊ Anti-Myc Tag mouse monoclonal antibody (Upstate Biotechnology, Lake Placid, NY) GATA-4(G-4) mouse monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) Dlx5 (Y-20) goat polyclonal antibody (Santa Cruz) HRP-Goat anti-Mouse IgG+A+M (H+L) (Zymed, South San Francisco, CA) HRP-Rabbit anti-Goat IgG (H+L) (Zymed) Mouse TrueBlot: HRP anti-mouse IgG (eBioscience, San Diego, CA) 37 ➠⟿ ඞỷ㜾Ἢ ๑࡞ COS-7 ⣵⬂ࢅ 4.5x105/60mm ࢸࢴࢨࣖࡡᐠᗐ࡚᧓࠷ࡒࠊࠍࡡ㐿ఎᏄⓆ⌟ ࣊ࢠࢰ࣭ࢅ TransFast (Promega)ࢅ⏕࠷࡙ COS-7 ⣵⬂࡞ᑙථࡊࡒࠊ24 㛣ᇰ㣬ᚃࠉ Complete mini protease inhibitor cocktail (Roche)ࢅྱࡳ Lysis buffer (150 mM NaCl, 0.5% NP40, 10 mM Tris pH7.5)࡚⣵⬂ࢅ⁈よࡊࠉ㉰㡚ἴ◒◃ᶭ࡞ࡻࡽ◒◃ࡊࡒᚃࠉ㐪ᚨ᧧ష ࡞ࡻࡽ⣵⬂ምࢅཱིࡽ㝎࠷ࡒࡵࡡࢅ⣵⬂⁈ฝᾦ࡛ࡊࡒࠊࡆࡡ⣵⬂⁈ฝᾦ࡞ୌḗᢘమࢅຊ ࠻ࠉ4Υ࡚ 1 㛣㟀┖ࡊࡒᚃࠉprotein G sepharose (GE Healthcare)ࢅຊ࠻ࠉ4Υ࡚ 1 㛣 㟀┖ࡊࡒࠊLysis Buffer ࡚ὑὯᚃࠉඞ々ྙమࢅ sampling buffer ࡞⁈よࡈࡎࡒࠊᚋࡼ ࡿࡒモᩩࢅ⏕࠷࡙ SDS-PAGE ࠽ࡻࡦ Western Blotting ࢅ⾔࠷ࠉ┘Ⓩࢰࣤࣂࢠ㈻ࢅ᳠ฝ ࡊࡒࠊඞỷ㜾࡞⏕ࡊࡒᢘమࡢ௧ୖ࡞♟ࡌࠊ GATA-4 (G-4) mouse monoclonal antibody (Santa Cruz) Dlx5 (C-20) goat polyclonal antibody (Santa Cruz) ➠ඵ⟿ mammalian two-hybrid assay Dlx5 ࠽ࡻࡦ GATA-4 ࡡ cDNA ࢅ pACT vector, pBIND vector (Promega)⤄ࡲ㎲ࢆࡓ ࡵࡡࢅⓆ⌟࣊ࢠࢰ࣭࡛ࡊࡒࠊmLTC-1 ⣵⬂ࢅ 105cells/well ࡡᐠᗐ࡚ 24 ࢘ࣜࣈ࣭ࣝࢹ ࡞᧓ࡀ 24 㛣ᇰ㣬ࡊࡒᚃࠉࠍࡡⓆ⌟࣊ࢠࢰ࣭ࢅ FuGENE HD (Roche)ࢅ⏕࠷࡙㐿ఎ Ꮔᑙථࡊࡒࠊ24 㛣ᇰ㣬ᚃࠉ⣵⬂ࢅᅂࡊࠉDual-Luciferase Reporter Assay System (Promega)࡞ࡻࡽࠉluciferase Ὡᛮࢅῼᏽࡊࡒࠊ ➠⟿ 㐿ఎᏄⓆ⌟よᯊ ➠ୌ㡧 section in situ hybridization ዲፈ࣏ࢪࡻࡽᦤฝࡊࡒ⫶ඡࢅ4% PFA/PBS୯࡚ୌᬄ4Υ࡞࡙ᅖᏽࡊࡒᚃࠉ࣒ࢰࢿ࣭ ࣜ/PBSTᾦ࡞࡙ṹ㝭Ⓩ࡞⬲Ềࢅ⾔ࡖࡒࡵࡡࢅモᩩ࡛ࡊࡒࠊᚋࡼࡿࡒモᩩࢅ࢞ࢨࣝࣤ࡞ ⨠ᥦᚃࠉࣂࣚࣆࣤ࡞ໜᇔࡊࠉ8µmࡡว∞ࢅషࡊࡒࠊࢪࣚࢺ࢝ࣚࢪ࡞ᏽ╌ࡈࡎࡒ モᩩࢅ࢞ࢨࣝࣤ࡞ࡻࡽ⬲ࣂࣚࣆࣤฌ⌦ࢅࡊࠉ࣒ࢰࢿ࣭ࣜ/H2Oᾦ࡞࡙ṹ㝭Ⓩ࡞්Ề 38 ࡊࡒࠊ1µg/ml Proteinase Kฌ⌦ᚃࠉ4% PFA/PBSࢅ⏕࠷࡙ว∞ࢅ්ᅖᏽࡊࡒࠊPBST࡚ὑ ὯᚃࠉDIGᵾㆉࡈࡿࡒ┘Ⓩ㐿ఎᏄRNA probe࡞ࡻࡽhybridizationཬᚺࢅ65Υ࡚ୌᬄ⾔ࡖ ࡒࠊ5x SSC࠽ࡻࡦTBSTὑὯᚃࠉblocking solution (10% Blocking Reagent (Roche) in 100 mM maleate buffer pH 7.5, 25% heated FBS in TBST)ࢅ⏕࠷࡙ࣇࣞࢴ࢞ࣤࢡฌ⌦ࢅ⾔࠷ࠉ anti-DIG antibody (Roche)ࢅ⏕࠷࡙4Υ࡞࡙ୌᬄᢘమཬᚺࢅ⾔ࡖࡒࠊTBSTࠉNTMT (100 mM NaCl, 50 mM MgCl2, 0.1% Tween20, 100 mM Tris-HCl pH 9.5)࡚ὑὯᚃࠉᇱ㈻ᾦࢅຊ ࠻㐵ක≟ឺ࡚㓕⣪ཬᚺࢅ⾔ࡖࡒࠊ4% PFA /PBS࡚㓕⣪ཬᚺࢅೳḾࡈࡎࠉPBSTὑὯᚃ࡞ ࢡࣛࢬ࣭ࣞࣜࢅ⏕࠷࡙⤄⧂ว∞ࢅᑌථࡊࠉ㢟᚜㙶ふᐳࢅ⾔ࡖࡒࠊ ➠㡧 RNA ฝ࠽ࡻࡦ Real-time quantitative PCR ࣏ࢪ⫶ඡࡻࡽ⢥ᕛࢅᦤฝࡊࠉISOGEN (Nippongene, Toyama, Japan)ࢅ⏕࠷࡙ total RNA ࢅฝࡊࡒࠊᚋࡼࡿࡒ total RNA ࠾ࡼࠉࣚࣤࢱ࣑ࣈ࣏࣭ࣚࠉSuperScript III ㏣ ㌹㓕⣪(Invitrogen)ࢅ⏕࠷࡙ cDNA ࢅషࡊࡒࠊReal-time PCR ࡢ SYBR Green Master Mix ࢅ⏕࠷࡙ 7500 real-time PCR System (Applied Biosystems, Foster City, CA)࡞ࡻࡽ⾔ ࡖࡒࠊPCR ཬᚺࡡ᮪௲ࡢᖏἪ࡞ࡊࡒࡖࡒࠊ⏕࠷ࡒࣈ࣏࣭ࣚࡢ௧ୖࡡ㏳ࡽ࡚࠵ࡾࠊ Dlx5 F, 5’-AGC TAC CTG GAG AAC TCG GCT T-3̓ Dlx5 R, 5’-GAT TGA GCT GGC TGC GCT-3̓ Dlx6 F, 5’-GTA TGC CTC CCA ACA GCT ACA TG-3̓ Dlx6 R, 5’-GTG TCC TGG TGT GGT GAG GAA TA-3̓ StAR F, 5’-GGA GAT GCC GGA GCA GAG T-3̓ StAR R, 5’-GCC AGT GGA TGA AGC ACC AT-3̓ Cyp1b1 F, 5’-TTG ACC CCA TAG GAA ACT GC-3̓ Cyp1b1 R, 5’-GCT GTC TCT TGG TAG GAG GA-3̓ Fkbp51 F, 5’-GCT GGC AAA CAA CAC GAG AG-3' Fkbp51 R, 5’-GAG GAG GGC CGA GTT CAT T-3' MafB F, 5’-AGG CCG CGA GGC TTA TTC-3' MafB R, 5’-CTC ACA AAG TTC TCA GAG CCA GAA-3' GAPDH F, 5’-AAC GAC CCC TTC ATT GAC CTC-3̓ GAPDH R, 5’-CCT TGA CTG TGC CGT TGA ATT-3̓. 39 L8 F: 5’-ACA GAG CCG TTG TTG GTG TTG-3' L8 R: 5’-CAG CAG TTC CTC TTT GCC TTG T-3' ➠ඳ⟿ ⤄⧂ᏕⓏよᯊ ➠ୌ㡧 ࣉ࣏ࢹ࢞ࢨ࢙࢛ࣝࣤ࣬ࢩࣤⰅ(Hematoxylin and Eosin staining) ࣏ࢪ⫶ඡࢅ 4%ࣂࣚࣆ࢚࣑ࣜࣜࢸࣃࢺ/PBS ᾦ୯࡚ୌᬄ 4Υ࡞࡙ᅖᏽࡊࡒᚃࠉ࣒ ࢰࢿ࣭ࣜ/PBST ᾦ࡞࡙ṹ㝭Ⓩ࡞⬲Ềࢅ⾔ࡖࡒࡵࡡࢅモᩩ࡛ࡊࡒࠊᚋࡼࡿࡒモᩩࢅ࢞ࢨ ࣝࣤ࡞⨠ᥦᚃࠉࣂࣚࣆࣤ࡞ໜᇔࡊࠉ8µm ࡡว∞ࢅషࡊࡒࠊ࢞ࢨࣝࣤࢅ⏕࠷࡙⬲ࣂ ࣚࣆࣤࡊࠉ࣒ࢰࢿ࣭ࣜ/H2O ᾦ࡞࡙ṹ㝭Ⓩ࡞්Ềࡊࡒᚃࠉࣉ࣏ࢹ࢞ࢨ࡚ࣝࣤ 10 ฦ Ⰵࡊࠉ්ᗐ࣒ࢰࢿ࣭ࣜ/H2O ᾦ࡞࡙ṹ㝭Ⓩ࡞⬲Ềࡊࠉ࢙࢛ࢩࣤⰅࢅ⾔ࡖࡒࠊ࢛ ࢞ࢴࢹࢅ⏕࠷࡙ᑌථࡊࠉ㢟᚜㙶ふᐳࢅ⾔ࡖࡒࠊ ➠㡧 ඞ⤄⧂Ⰵ 8µm ࡡࣂࣚࣆࣤว∞ࢅషࡊࡒࠊ࢞ࢨࣝࣤࢅ⏕࠷࡙⬲ࣂࣚࣆࣤࡊࠉ࣒ࢰࢿ࣭ࣜ /H2O ᾦ࡞࡙ṹ㝭Ⓩ࡞්Ềࡊࡒᚃࠉᢘཋ㈹Ὡ㸝10mM ࡡࢠ࢙ࣤ㓗⁈ᾦ୯࡞࡙࣏ࢠ ࣭ࣞ࢘ࣇฌ⌦㸞ࡊࠉ2% FBS ࡞࡙ࣇࣞࢴ࢞ࣤࢡฌ⌦ࢅ⾔ࡖࡒࠊࡐࡡᚃࠉanti-MIS ᢘ మ(Santa Cruz Biochemistory)ࢅ⏕࠷࡙ୌḗᢘమཬᚺࢅ⾔ࡖࡒࠊPBS ὑὯᚃࠉHRP-Rabbit anti-Goat IgG (H+L)(Zymed)࠽ࡻࡦ࡞ࡻࡾḗᢘమཬᚺࢅ⾔࠷ࠉDAB ࢅᇱ㈻ᾦ࡛ࡊࠉ㓕 ⣪ཬᚺࢅ⾔ࡖࡒࠊanti-Rat cytochrom p450 side chain cleavage enzyme ᢘమ(American Research products, Belmont, MA)ࢅ⏕࠷࡙ୌḗᢘమཬᚺࢅ⾔ࡖࡒࡢࠉAlexa Fluor 546 goat anti-rabbit IgG (H+L)(Invitrogen)࡞ࡻࡽḗᢘమཬᚺࢅ⾔࠷ࠉࡐࡡᚃࠉ⺧ක㢟᚜㙶 ୖ࡚ふᐳࡊࡒࠊ 40 ㅨ㎙ ᮇ◂✪ࡢ↻ᮇኬᏕ⏍㈠″◂✪࣬ᨥᥴࢬࣤࢰ࣭ᢇ⾙㛜Ⓠฦ㔕࡞࠽࠷࡙ᒜ⏛″ᩅࡡ ᚒᣞᑙࡡࡵ࡛⾔ࢂࡿࡒࡵࡡ࡚ࡌࠊᒜ⏛″ᩅࡻࡽ⤂ጙᚒᣞᑙࠉᚒ㠬᧙ࢅ㈱ࡽࡱࡊࡒ ࢅࡂវㅨ⏞ࡊ୕ࡅࡱࡌࠊ ↻ᮇኬᏕ⏍㈠″◂✪ᨥᥴࢬࣤࢰ࣭ᢇ⾙㛜Ⓠฦ㔕ࠉⲮ㔕⏜⣎Ꮔ༡ኃࠉᐋᕖಘୌ༡ኃ࡞ ࡢࠍࡡᐁ㥺ᡥἪࡼࡦ࡞ㄵᩝషᠺ࡞㛭ࡊ࡙⤂ጙ᭯─ᚒຐゕ࡛ᚒᣞᑙࢅ㡤ࡀࡱࡊ ࡒࠊࡂវㅨࡡណࢅ⾪ࡊࡱࡌࠊ ↻ᮇኬᏕ⏍㈠″◂✪ᨥᥴࢬࣤࢰ࣭ᢇ⾙㛜Ⓠฦ㔕ࡡຊ⸠Ὂᩅ༡ኃࠉኯ⏛ᑑ༡ኃࠉ୕ᮟ ⨶༡ኃࠉ㕝ᮄᇻኯ㑳༡ኃࠉཋཾ❫༡ኃࠉఫ⸠⩇ᙢ༡ኃࠉᑹᮄ⚵├༡ኃࠉ♼ᕖ┷⨶ ಞኃࠉᕖᚷಕẮࠉ⸠ᕖఫᏄẮ࡞ࡢኣࡂࡡᚒ༝ງ࡛ᚒᣞᑙࢅ㡤ࡀࡱࡊࡒࠊᚨ࠾ࡼវ ㅨ⮬ࡊࡱࡌࠊ ↻ᮇኬᏕኬᏕ㝌ឺ㐿ఎᏄよᯊᏕㅦᗑࡡ Ms. Mylah villacorteࠉᮟᔪல⣎Ꮥኃࠉኬᬏ ᏄᏕኃࠉ୕ዄ᭮Ꮥኃࠉཋୌ㑳Ꮥኃࠉᮿ୷ኬ㍔Ꮥኃࠉఫ⸠ួ♰Ꮥኃࠉ୕ᬓᜠᏕ ኃࠉ୯⏛⩟ᏄẮࠉ⏛୯ୌᶖẮ࡞ࡢእኣኬࡾᚒ༝ງࢅ㡤ࡀࡱࡊࡒࠊᚨ࠾ࡼវㅨ⮬ࡊ ࡱࡌࠊ ࡱࡒࠉ௧ୖࡡ⏍᪁࡞ࡢᮇ◂✪ࢅ㐑⾔ࡊ࡙࠷ࡂ୕࡚ࠉᐁ㥺࡞ᚪさᮞᩩࡡฦࠉᚒຐ ゕࠉᚒ༝ງࢅ㡤ࡀࡱࡊࡒࠊវㅨ⏞ࡊ୕ࡅࡱࡌࠊ CNRS UMR5166-VMNHN Evolution des Regulations Endocriniennes Giovanni Levi ༡ኃ Hormone Research Center, Chonnam National University Hueng-Sik Choi ༡ኃ ↻ᮇኬᏕⓆ⏍༈Ꮥ◂✪ࢬࣤࢰ࣭㌹โᚒฦ㔕 ⏛㈙ူஒ ༡ኃ ⚗⏛ಘ ༡ኃ ᭩ᚃ࡞ࠉ⌟ᅹࡱ࡚ᖏ࡞ᝨࡊࡲ࠷ᨥᥴ࡛ᐰኬ⢥♼࡚⚶ࢅぜᏬࡽ⤾ࡄ࡙ୖࡈࡖࡒ∏࡛ ẍࠉࡱࡒ⢥♼㟻࠾ࡼᙁࡂᨥ࠻࡙ࡂࡿࡒ࡞ᚨ࠾ࡼវㅨ⮬ࡊࡱࡌࠊ 41 ཤ⩻ᩝ⊡ 1. Yamada, G., et al. Molecular genetic cascades for external genitalia formation: an emerging organogenesis program. Dev Dyn 235, 1738-1752 (2006). 2. Adham, I.M. & Agoulnik, A.I. Insulin-like 3 signalling in testicular descent. Int J Androl 27, 257-265 (2004). 3. Yamada, G., Satoh, Y., Baskin, L.S. & Cunha, G.R. Cellular and molecular mechanisms of development of the external genitalia. Differentiation 71, 445-460 (2003). 4. Avellan, L. The incidence of hypospadias in Sweden. Scand J Plast Reconstr Surg 9, 129-139 (1975). 5. Paulozzi, L.J. International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect 107, 297-302 (1999). 6. Paulozzi, L.J., Erickson, J.D. & Jackson, R.J. Hypospadias trends in two US surveillance systems. Pediatrics 100, 831-834 (1997). 7. Baskin, L.S. Hypospadias and genital development. AEMB545. New York: Kluwer Academic/Plenum publishers. (2004). 8. Panganiban, G. & Rubenstein, J.L. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371-4386 (2002). 9. Zerucha, T. & Ekker, M. Distal-less-related homeobox genes of vertebrates: evolution, function, and regulation. Biochem Cell Biol 78, 593-601 (2000). 10. Merlo, G.R., et al. Multiple functions of Dlx genes. Int J Dev Biol 44, 619-626 (2000). 11. Park, B.K., et al. Intergenic enhancers with distinct activities regulate Dlx gene expression in the mesenchyme of the branchial arches. Dev Biol 268, 532-545 (2004). 12. Basel, D., Kilpatrick, M.W. & Tsipouras, P. The expanding panorama of split hand foot malformation. Am J Med Genet A 140, 1359-1365 (2006). 13. Merlo, G.R., et al. Mouse model of split hand/foot malformation type I. Genesis 33, 97-101 (2002). 14. Kraus, P. & Lufkin, T. Dlx homeobox gene control of mammalian limb and craniofacial development. Am J Med Genet A 140, 1366-1374 (2006). 15. Robledo, R.F., Rajan, L., Li, X. & Lufkin, T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16, 42 1089-1101 (2002). 16. Giltay, J.C., Wittebol-Post, D., van Bokhoven, H., Kastrop, P.M. & Lock, M.T. Split hand/split foot, iris/choroid coloboma, hypospadias and subfertility: a new developmental malformation syndrome? Clin Dysmorphol 11, 231-235 (2002). 17. Garcia-Ortiz, J.E., et al. Split hand malformation, hypospadias, microphthalmia, distinctive face and short stature in two brothers suggest a new syndrome. Am J Med Genet A 135, 21-27 (2005). 18. Suzuki, K., et al. Abnormal urethra formation in mouse models of Split-hand/split-foot malformation type 1 and type 4. Eur J Hum Genet 16, 36-44 (2008). 19. Stocco, D.M., Wang, X., Jo, Y. & Manna, P.R. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19, 2647-2659 (2005). 20. Manna, P.R., Wang, X.J. & Stocco, D.M. Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68, 1125-1134 (2003). 21. Bose, H.S., Sugawara, T., Strauss, J.F., 3rd & Miller, W.L. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. International Congenital Lipoid Adrenal Hyperplasia Consortium. N Engl J Med 335, 1870-1878 (1996). 22. Hasegawa, T., et al. Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrinol 14, 1462-1471 (2000). 23. Caron, K.M., et al. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S A 94, 11540-11545 (1997). 24. Sugawara, T., Saito, M. & Fujimoto, S. Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression. Endocrinology 141, 2895-2903 (2000). 25. Reinhart, A.J., Williams, S.C., Clark, B.J. & Stocco, D.M. SF-1 (steroidogenic factor-1) and C/EBP beta (CCAAT/enhancer binding protein-beta) cooperate to regulate the murine StAR (steroidogenic acute regulatory) promoter. Mol Endocrinol 13, 729-741 (1999). 43 26. Sugawara, T., et al. Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor 1. Steroids 62, 5-9 (1997). 27. Caron, K.M., et al. Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol Endocrinol 11, 138-147 (1997). 28. LaVoie, H.A., Singh, D. & Hui, Y.Y. Concerted regulation of the porcine steroidogenic acute regulatory protein gene promoter activity by follicle-stimulating hormone and insulin-like growth factor I in granulosa cells involves GATA-4 and CCAAT/enhancer binding protein beta. Endocrinology 145, 3122-3134 (2004). 29. Silverman, E., Eimerl, S. & Orly, J. CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J Biol Chem 274, 17987-17996 (1999). 30. Silverman, E., et al. Transcriptional activation of the steroidogenic acute regulatory protein (StAR) gene: GATA-4 and CCAAT/enhancer-binding protein beta confer synergistic responsiveness in hormone-treated rat granulosa and HEK293 cell models. Mol Cell Endocrinol 252, 92-101 (2006). 31. Manna, P.R., et al. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 16, 184-199 (2002). 32. Manna, P.R., Eubank, D.W., Lalli, E., Sassone-Corsi, P. & Stocco, D.M. Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol 30, 381-397 (2003). 33. Liu, Q., Merkler, K.A., Zhang, X. & McLean, M.P. Prostaglandin F2alpha suppresses rat steroidogenic acute regulatory protein expression via induction of Yin Yang 1 protein and recruitment of histone deacetylase 1 protein. Endocrinology 148, 5209-5219 (2007). 34. Nackley, A.C., Shea-Eaton, W., Lopez, D. & McLean, M.P. Repression of the steroidogenic acute regulatory gene by the multifunctional transcription factor Yin Yang 1. Endocrinology 143, 1085-1096 (2002). 44 35. Bielinska, M., Seehra, A., Toppari, J., Heikinheimo, M. & Wilson, D.B. GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn 236, 203-213 (2007). 36. Kimura, M.I., et al. Dlx5, the mouse homologue of the human-imprinted DLX5 gene, is biallelically expressed in the mouse brain. J Hum Genet 49, 273-277 (2004). 37. Miyama, K., et al. A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 208, 123-133 (1999). 38. O'Shaughnessy, P.J., Baker, P.J. & Johnston, H. The foetal Leydig cell-differentiation, function and regulation. Int J Androl 29, 90-95; discussion 105-108 (2006). 39. Gehring, W.J., et al. Homeodomain-DNA recognition. Cell 78, 211-223 (1994). 40. Catron, K.M., Iler, N. & Abate, C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol 13, 2354-2365 (1993). 41. Feledy, J.A., Morasso, M.I., Jang, S.I. & Sargent, T.D. Transcriptional activation by the homeodomain protein distal-less 3. Nucleic Acids Res 27, 764-770 (1999). 42. Benson, M.D., et al. Identification of a homeodomain binding element in the bone sialoprotein gene promoter that is required for its osteoblast-selective expression. J Biol Chem 275, 13907-13917 (2000). 43. Lee, M.H., et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 280, 35579-35587 (2005). 44. Roca, H., Phimphilai, M., Gopalakrishnan, R., Xiao, G. & Franceschi, R.T. Cooperative interactions between RUNX2 and homeodomain protein-binding sites are critical for the osteoblast-specific expression of the bone sialoprotein gene. J Biol Chem 280, 30845-30855 (2005). 45. Rebois, R.V. Establishment of gonadotropin-responsive murine leydig tumor cell line. J Cell Biol 94, 70-76 (1982). 46. Moens, C.B. & Selleri, L. Hox cofactors in vertebrate development. Dev Biol 291, 193-206 (2006). 47. Mann, R.S. & Affolter, M. Hox proteins meet more partners. Curr Opin Genet Dev 8, 45 423-429 (1998). 48. Sepulveda, J.L., et al. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 18, 3405-3415 (1998). 49. Ohmura, M., et al. Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Arch Histol Cytol 67, 285-296 (2004). 50. Donahoe, P.K., Ito, Y., Price, J.M. & Hendren, W.H., 3rd. Mullerian inhibiting substance activity in bovine fetal, newborn and prepubertal testes. Biol Reprod 16, 238-243 (1977). 51. Yao, H.H., Whoriskey, W. & Capel, B. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16, 1433-1440 (2002). 52. Brennan, J., Tilmann, C. & Capel, B. Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17, 800-810 (2003). 53. Kitamura, K., et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32, 359-369 (2002). 54. Ivell, R. & Bathgate, R.A. Reproductive biology of the relaxin-like factor (RLF/INSL3). Biol Reprod 67, 699-705 (2002). 55. Fombonne, J., Charrier, C., Goddard, I., Moyse, E. & Krantic, S. Leptin-mediated decrease of cyclin A2 and increase of cyclin D1 expression: relevance for the control of prepubertal rat Leydig cell division and differentiation. Endocrinology 148, 2126-2137 (2007). 56. Suzuki, K., et al. Embryonic development of mouse external genitalia: insights into a unique mode of organogenesis. Evol Dev 4, 133-141 (2002). 57. LaRonde-LeBlanc, N.A. & Wolberger, C. Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. Genes Dev 17, 2060-2072 (2003). 58. Bei, L., Lu, Y. & Eklund, E.A. HOXA9 activates transcription of the gene encoding gp91Phox during myeloid differentiation. J Biol Chem 280, 12359-12370 (2005). 59. Rieckhof, G.E., Casares, F., Ryoo, H.D., Abu-Shaar, M. & Mann, R.S. Nuclear translocation of extradenticle requires 46 homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91, 171-183 (1997). 60. Masuda, Y., et al. Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. J Biol Chem 276, 5331-5338 (2001). 61. Yu, G., Zerucha, T., Ekker, M. & Rubenstein, J.L. Evidence that GRIP, a PDZ-domain protein which is expressed in the embryonic forebrain, co-activates transcription with DLX homeodomain proteins. Brain Res Dev Brain Res 130, 217-230 (2001). 62. Zhang, H., et al. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 17, 2920-2932 (1997). 63. Mermod, N., O'Neill, E.A., Kelly, T.J. & Tjian, R. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58, 741-753 (1989). 64. Dai, Y.S. & Markham, B.E. p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem 276, 37178-37185 (2001). 65. Tanese, N., Pugh, B.F. & Tjian, R. Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev 5, 2212-2224 (1991). 66. de Caestecker, M.P., et al. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem 275, 2115-2122 (2000). 67. Compagnone, N.A. & Mellon, S.H. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21, 1-56 (2000). 68. Baulieu, E.E. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23, 963-987 (1998). 69. Perera, M., et al. Defective neuronogenesis in the absence of Dlx5. Mol Cell Neurosci 25, 153-161 (2004). 70. Lavaque, E., Sierra, A., Azcoitia, I. & Garcia-Segura, L.M. Steroidogenic acute regulatory protein in the brain. Neuroscience 138, 741-747 (2006). 71. Furukawa, A., Miyatake, A., Ohnishi, T. & Ichikawa, Y. Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization of StAR, cytochrome P-450SCC (CYP XIA1), and 3beta-hydroxysteroid dehydrogenase in the rat brain. J Neurochem 71, 2231-2238 47 (1998). 72. Kohwi, M., et al. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci 27, 6878-6891 (2007). 73. Eisenstat, D.D., et al. DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414, 217-237 (1999). 74. Goldman-Johnson, D.R., de Kretser, D.M. & Morrison, J.R. Evidence that Androgens Regulate Early Developmental Events, Prior to Sexual Differentiation. Endocrinology 149, 5-14 (2008). 75. Bolton, E.C., et al. Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21, 2005-2017 (2007). 76. Yeh, S., et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 99, 13498-13503 (2002). 77. Cussenot, O., et al. Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J Clin Oncol 25, 3596-3602 (2007). 78. Cicek, M.S., Liu, X., Casey, G. & Witte, J.S. Role of androgen metabolism genes CYP1B1, PSA/KLK3, and CYP11alpha in prostate cancer risk and aggressiveness. Cancer Epidemiol Biomarkers Prev 14, 2173-2177 (2005). 79. Sissung, T.M., Price, D.K., Sparreboom, A. & Figg, W.D. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 4, 135-150 (2006). 80. Gray, L.E., et al. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update 7, 248-264 (2001). 81. Gupta, A., et al. Serum dioxin, testosterone, and subsequent risk of benign prostatic hyperplasia: a prospective cohort study of Air Force veterans. Environ Health Perspect 114, 1649-1654 (2006). 82. Febbo, P.G., et al. Androgen mediated regulation and functional implications of fkbp51 expression in prostate cancer. J Urol 173, 1772-1777 (2005). 48 83. Yong, W., et al. Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282, 5026-5036 (2007). 84. Choo, D., et al. Molecular mechanisms underlying inner ear patterning defects in kreisler mutants. Dev Biol 289, 308-317 (2006). 85. Kataoka, K., Fujiwara, K.T., Noda, M. & Nishizawa, M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14, 7581-7591 (1994). 86. Haraguchi, R., et al. Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development 127, 2471-2479 (2000). 87. Petiot, A., Perriton, C.L., Dickson, C. & Cohn, M.J. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development 132, 2441-2450 (2005). 88. Satoh, Y., et al. Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anat Embryol (Berl) 208, 479-486 (2004). 89. Suzuki, K., et al. Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia development by concerted actions of BMP signaling [corrected]. Development 130, 6209-6220 (2003). 49