Comments
Description
Transcript
差し替え用PDFファイル
604 ု⚝ߩᏅಽࡕ࠺࡞ᓮೣߦၮߠߊᵄേᓮ Wave Control of Suspended Rope Based on Finite Difference Model ٤ ㈕ ዊ⯗㧔᧲ᵗᄢ㒮㧕 ᱜ ㇹ ቬ₵㧔᧲ᵗᄢ㧕 Xiao Lan ZHENG, Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama Muneharu SAIGO, Toyo University, 2100 Kujirai, Kawagoe, Saitama This paper describes the wave control of suspended rope by using the control law based on a finite difference (FD) model. The non-existing term in the boundary node equation due to the boundary condition is restored by control, which is computed with the wave propagating solution of the interior node equation as if no boundary existed. The wave propagating solution of the finite difference suspended rope system is newly derived in this paper by introducing the new variable of the difference between adjacent displacements. A similar process to the multiple pendulums system study (2) is applied to the finite difference rope system and the displacement transfer function between adjacent node displacement in frequency domain and the convolution integral kernel function in time domain have been obtained. The frequency analysis and numerical time simulation have confirmed the wave control characteristics of the control law. The simulation of the suspended rope system with load at the bottom has also been conducted and shown the controllability superior to wave control of the non-homogeneous multiple simple pendulum system. Key Words: ု⚝㧘ᵄേᓮ㧘ᝄࠇᱛᓮ㧘ࠢࡦࡠࡊ 㧝㧚ߪߓߦ ㄭᐕ㧘ࡠࡊ߿ߪࠅߥߤߩ৻ᰴర᭴ㅧߩᵄേᓮ⎇ⓥ ߇⌕⋡ߐࠇߡࠆ㧚㐳ᄢ᭴ㅧߩᝄേࠛࡀ࡞ࠡࠍ᭴ㅧ ߩㄝߢലᨐ⊛ߦๆߔࠆߦߪ㧘ᝄേࠍቯᵄߣߒߡᛒ߁ ߩߢߪߥߊᵄേવ․ᕈࠍ↪ߒߡࠛࡀ࡞ࠡๆߔࠆߎ ߣ߇ലߢࠆ㧚ㇹࠄߪᵄേᓮߩታ↪ᯏེ߳ߩㆡ↪ࠍ ⋡ᮡߣߒߡ㧘 ᰴర᭴ㅧߩᝄߦᗐ♽ߩࠝࡦࠗࡦࠪ ࡒࡘ࡚ࠪࡦᛛᴺࠍ↪ࠆᵄേવ․ᕈࠍ↪ߒߚᓮ ᴺߩ⎇ⓥߦขࠅ⚵ࠎߢ߈ߚ㧚ߘߩㆡ↪ߦᄙ㊀නᝄሶ ု ♽ߩᡰᜬὐടㅦᐲᓮᴺ߇ࠆ 㧚ߐࠄߦ㧘ᄙ㊀නᝄሶ♽ ߢࠝࡦࠗࡦࠪࡒࡘ࡚ࠪࡦࠍᔅⷐߣߒߥᵄേવ⸃ ࠍ⠨᩺ߒߡᝄᕈࠍะߐߖ㧘ᄙ㊀නᝄሶ♽ࠍߒߚࠢ ࡦࡠࡊ♽ߩᣂߒᝄ᭴ㅧߩឭ᩺ࠍⴕߞߡࠆ 㧚ߒ ߆ߒߥ߇ࠄ㧘ᄙ㊀නᝄሶࠍߒߚษ⩄ࡠࡊ ု♽ߪ㕖ဋ ⾰♽ߢࠆߚࡠࡊ㐳߇㐳ߊߥࠆߣᝄߦᤨ㑆߇߆߆ࠆ ߎߣ߽ࠄ߆ߦߒߡࠆ㧚 ߘߎߢ㧘ᧄ⎇ⓥߪ㧘ᄙ㊀නᝄሶ♽ߩᵄേવߦၮ␆ࠍ⟎ ߊߩߢߪߥߊ㧘 ုࡠࡊࠍ⋥ߦᵄേๆᓮࠍⴕ߁႐ว ߩ ုࡠࡊ♽ߩᓮലᨐࠍ㧘නᝄሶ♽ࠍߒߚࡠࡊ♽ ߩᝄലᨐߣᲧセߔࠆߎߣߦࠃߞߡࠄ߆ߦߔࠆߎߣࠍ⋡ ⊛ߣߒߡࠆ㧚 ုࡠࡊߩ࿕ቯ┵ㄭறߢᵄേᓮࠍⴕ ߁ߚ㧘 ုࡠࡊߩᏅಽㄭૃㆇേᣇ⒟ᑼࠍዉ߈㧘Ⴚ⇇ㄭ ற㧔Ⴚ⇇▵ὐ㧕ߢࠗࡦࡇ࠳ࡦࠬᢛวᓮߦࠃࠆᵄേๆ ᓮࠍⴕߞߡࠆ㧚 㧞㧚ㆇേᣇ⒟ᑼߣᓮೣ ࿑ 1(a)ߦ␜ߔ ု⚝ߩㆇേᣇ⒟ᑼߪᰴᑼߢਈ߃ࠄࠇࠆ ߔߥࠊߜ㧘ᑼ(4)ฝㄝ߇ᓮ㗄ߢࠆ㧚Ꮕಽࡕ࠺࡞⸘▚ߢߪ ᄌࠍᓮ㊂ߣߒߡᛒ߃߫ࠃ㧚ಽᏓਸ਼ᢙ♽⸘▚ߢߪᑼ(4) ߩᏀㄝࠍ㧘න㐳ߐߚࠅ⾰㊂ࠍ P ߣߒߡ㧘 ( P'z ) yn ߣߥ ࠆࠃ߁ߦᢛℂߒߚߣ߈ߩ 'z 㑆ߦ↪ߔࠆᓮജߣߒߡ ᛒ߃߫ࠃ㧚 ᰴߦᗐ⊛ᄌ yn 1 ߩ⸘▚ᣇᴺࠍ␜ߔ㧚ᑼ(4)ߪౝㇱ▵ὐ ᣇ⒟ᑼߣหߓߢࠆߩߢౝㇱ▵ὐᣇ⒟ᑼߩᵄേવ⸃ࠍ↪ ࠆ㧚ᵄേવ⸃ߪએਅߩࠃ߁ߦ᳞ࠄࠇࠆ㧚 ╙ m ▵ὐㆇേᣇ⒟ᑼߣ╙ m 1 ▵ὐㆇേᣇ⒟ᑼߩᏅࠍߣ ࠅ ym ym 1 bm ߣ⟎ߡࡊࠬᄌ឵ L >bm @ Bm ߔࠆߣ㧘 2 mBm 1 ª 2 s Z0 º m 1 Bm m 2 Bm 1 ¬ ¼ Z02 g 2m 1 2'z ᑼ(5)ߩ৻⥸⸃ࠍ Bm s Z0 1 m 2m 1 J s Z0 J s Z0 ª s 2 4Z02 s º L1 ¬ªJ s Z0 ¼º 2 J 2 2Z0t t " (8) ߎߎߢ J 2 ߪᢙ 2 ߩ╙৻⒳ࡌ࠶࡞㑐ᢙ㧚 O 0 ࠃࠅ㧘Ⴚ⇇▵ὐᣇ⒟ᑼߪ, 0 " (3) g y ym1 ym ym1 'z Gravity y wy wx Tension y2 y1 P g l x dx x (a) (b) Fig. 1 Suspended rope system (a): Distributed system (b): Finite difference system 茨城講演会講演論文集 (共催 日本機械学会関東支部 ・ 精密工学会 ・ 茨城大学, 2013-9-6, 日立) - 41 - 0 yn yn1 P g l x dx z yn1 y x l ᑼ(3)ߢႺ⇇᧦ઙࠍ⠨ᘦߒߥᑼ(4)߇ታߔࠇ߫Ⴚ⇇߇㒰 ߐࠇή㒢᭴ㅧ߇ታߔࠆ㧚 2'z g yn [2 2n yn 2n 1 yn 1 ] 2n 1 yn 1 " (4) 2 4 Z02 " (7) ¬ ¼ ࠍᓧࠆ㧚ᑼ(7)ࠍㅒࡊࠬᄌ឵ߔࠆߣ㧘 g ª¬ z w 2 y wz 2 wy wz º¼ 0 "" (1) ᑼ(1)ࠍ࿑ 1(b)ߦ␜ߔᏅಽߦࠃߞߡᏅಽㄭૃᑼߢߔߣ, 2'z g ym [ 2m 1 ym 1 2 2m ym 2m 1 ym 1 ] 0 m z n " (2) 2'z g yn [2 2n yn 2n 1 yn 1 ] " (6) ߣቯߔࠆߣ㧘․ᕈᩮ w 2 y wt 2 Ⴚ⇇᧦ઙ yn 1 0 䇭" (5) g