...

ヒト骨格筋に対するストレッチングが筋硬度に及ぼす影響 超

by user

on
Category: Documents
5

views

Report

Comments

Transcript

ヒト骨格筋に対するストレッチングが筋硬度に及ぼす影響 超
ultrasound elastography
P1
P2
P4
P7
P9
P11
P11
ultrasound elastography
1,
2,
SS
2,
1
ROM
ultrasound elastography: UE
SS
UE Real-time Tissue Elastography
SS
20
SS
30
ROM
22.6kPa
SS
15
SS
UE
SR
20%
13-16%
SR
30
SS
ROM
5
strain ratio(SR)
(muscle / coupler ratio)
ROM
19-25
SR
ROM
1.School of Exercise and Health Sciences, Edith Cowan University (Australia)
2.
1
1
2
3
muscle hardness
“
”
stiffness
muscle hardness
4,5
stiffness
6
−
5
7
8
Wang
Ultrasound Elastography
9
UE
B
UE
UE
UE Real-time Tissue Elastography (RTE)
10
B
2
Range Of Interest: ROI
2
UE
2
ROI
RTE
strain ratio (SR)
7,11,12
UE
13
(SS)
shear wave
3
2
SS
15%
Akagi
SS
Nordez
Akagi
14
8-12%
15
transient
2.5
SS
SS
3
SS
SS
SS
muscle tendon unit: MTU
5
16,17
SS
stiffness
stiffness
MTU stiffness
SS
SS
RTE
RTE
SS
20
±
20.3±1.8
SS
176.9±6.0cm
72.6±4.3kg
1.
48
RTE
SS
2
SS
30
15
0°
30
15
30
1
ROM
30
EMG
2
4
2.
SS
18
Biodex system 3, NY, USA
90%
30°
1°/s
5
18
19
5Nm
constant torque design
17
3. ROM
ROM
RTE
SR strain ratio
SS
Morse
°
16
1°/s
ROM
5
1.5kHz
(TEAC
SR
LX-10
30%
)
20
Hi-vision Ascendus
EZU-TECPL1
EUP-L65, 6-14MHz
22.6kPa
SR
muscle / coupler
strain graph
compression-relaxation cycle” -0.7
ROI
0.7
21
4mm
22
18mm
”the rhythmical
SR
30mm
30mm
EVA form
70mm
130mm
30mm
35mm
70mm
30mm
4.
ROM
SR
bipolar 13mm
S&ME; Biolog
5
2000Hz
EMG
1.5kHz
EMG
(Root Mean Squeare: RMS)
5.
SR
ROM
SS
30
SR
30
15
ROM
6
SS
SR
SS
pre
ROM
Bonferroni
SPSS 12.0 J for windows
5%
1. EMG
7.6
3.2
V
5.8
2.6
V
8.7
2.9
2.8
V
9.1
V
2. ROM
3
SS
28% 15
ROM
17% 30
13%
3 SS
pre
SS
P<0.01
ROM
7
3. SR (strain ratio)
4
RTE
SR
SR
5
SS
P<0.01
11
16%
15
4 RTE
5 SS
15
SS
SR
SR
8
SR
SS
ROM
ROM
SS
SR
Akagi
SR
ROM
23
ROM
ROM
stretch tolerance
SS
ROM
23
MTU
stretch
tolerance
SS
24
5
ROM
SS
25
SS
Akagi
13,14
SR
Akagi
13,14
11
16%
13,14
SS
90
26
45
ROM
16,17,28
Murayama
SS
SS
3
stretch tolerance
MTU stiffness
27
ROM
SS
MTU stiffness
16,17
MTU stiffness
stiffness
5,6
ROM
stiffness
muscle hardness
29
Purslow30
SR
ROM
SR
47%
2%
31
ROM
41%
10%
ROM
9
5
SS
15
SR
SS
15
SS
SS
peak torque
Trajano
15
SS
18
SR
SS
muscle strength – length relationship
MTU
force deficit”
SS
MTU stiffness
32-34
stiffness
10
”stretching-induced
5
SS
MTU stiffness
MTU stiffness
20
MTU stiffness
30%
16
SS
35
SS
19SS
90%
SR
SS
stiffness
MTU
stiffness
limitation
0
0
0
30
36
UE
13,14
shear wave
UE
37
10
UE
22
SS
UE
SS
SS
38
11
HITACHI
1.
,
.: Ultrasound Elastography
.
39
, 2013
9
.
2. Inami T, Ozawa M, Mushika Y, Mizuno T, Shimizu T, Lau WY, Nosaka K.: Effects of
static stretching on flexibility and muscle hardness assessed by ultrasound
11
elastography. 19th Annual Congress of the European College of Sport Science
(Amsterdam The Netherlands), 2nd – 5th 2014.
1.
,
,
.:
.
, in press, 2014.
1.
Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanahisa H, Fukunaga T. Effect of
plyometric and weight training on muscle-tendon complex and jump performance. Med Sci
Sports Exerc 2007; 39: 1801-1810.
2.
Marusiak J, Jaskolska A, Koszewicz M, Budrewicz S, Jaskolski A. Myometry revealed
medication-induced decrease in resting skeletal muscle stiffness in Parkinson’s disease
parients. Clin Biomech 2012; 27: 632-635.
3.
Witvrouw E, Danneels L, Asselman P, D’Have T, Cambier D. Muscle flexibility as a risk
factor for developing muscle injuries in male professional soccer players. A prospective
study. Am J Sports Med 2003; 31: 41-46.
4.
Horikawa M, Ebihara S, Sakai F, Akiyama M. Non-invasive measurement method for
hardness in muscular tissues. Med Biol Eng Comput 1993; 31: 623-627.
5.
Murayama M, Watanabe K, Kato R, Uchiyama T, Yoneda T. Association of muscle
12
hardness with muscle tension dynamics: a physiological property. Eur J Appl Physiol
2012; 112: 105-112.
6.
Murayama M, Nosaka K, Yoneda T, Minamitani K. Changes in hardness of the human
elbow flexor muscles after eccentric exercise. Eur J Appl Physiol 2000; 82: 361-367.
7.
Yanagisawa O, Niitsu M, Kurihara T, Fukubayashi T. Evaluation of human muscle
stiffness
after dynamic exercise with ultrasound real-time tissue elastography: A
feasibility study. Clin Radiol 2011; 66: 815-819.
8.
Arokoski JP, Surakka J, Ojala T, Kolari P, Jurvelin JS. Feasibility of the use of a novel
soft tissue stiffness meter. Physiol Meas 2005; 26: 215-228.
9.
Wang HK, Wu YK, Lin KH, Shiang TY. Noninvasive analysis of fascicle curvature and
mechanical hardness in calf muscle during contraction and relaxation. Man Ther 2008; 14:
264-269.
10. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal
applications. Br J Radiol 2012; 85: 1435-1445.
11. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement
by using ultrasound elastography: a feasibility study. Acta Radiol 2011; 52: 99-105.
12. Chino K, Akagi R, Dohi M, Fukashiro S, Takahashi H. Reliability and validity of
quantifying absolute muscle hardness using ultrasound elastography. PLoS ONE 2012; 7:
e45764.
13
13. Akagi R, Takahashi H. Acute effect of static stretching on hardness of the gastrocnemius
muscle. Med Sci Sports Exerc 2013; 45: 1348-1354.
14. Akagi R, Takahashi H. Effect of a 5-week static stretching program on hardness of the
gastrocnemius muscle. Scand J Med Sci Sports 2013; Epub a head of print.
15. Nordez A, Gennisson JL, Casari P, Catheline S, Cornu C. Characterization of muscle belly
elastic properties during passive stretching using transient elastography. J Biomech 2008;
41: 2305-2311.
16. Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching
on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol 2008;
586: 97-106.
17. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Acute and prolonged effect of static
stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo.
J Orthop Res 2011; 29: 1759-1763.
18. Trajano GS, Seitz L, Nosaka K, Blazevich AJ. Contribution of central vs. peripheral
factors to the force loss induced by passive stretch of the human plantar flexors. J Appl
Physiol 2013; 115: 212-218.
19. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A
review. Scand J Med Sci Sports 1998; 8: 65-77.
20. Kawakami Y, Muraoka T, Ito S, Kanehisa H, Fukunaga T. In vivo muscle fibre behavior
14
during cournter-movement exercise in humans reveals a significant role for tendon
elasticity. J Physiol 2002; 540: 635-646.
21. Akagi R, Chino K, Dohi M, Takahashi H. Relationships between muscle size and stiffness
of the medial gastrocnemius at different ankle joint angles in young men. Acta Radiol
2012; 53: 307-311.
22.
,
,
.:
.
2014; in press.
23. Weppler CH, Manuson SP. Increasing muscle extensibility: a matter of increasing length
or modifying sensation?. Phys Ther 2010; 90: 438-449.
24. Magnusson SP, Simonsen EB, Aagard P, Sorensen H, Kjaer M. A mechanism for altered
flexibility in human skeletal muscle. J Physiol 1996; 497: 291-298.
25. Mizuno T, Matsumoto M, Umemura Y. Viscoelasticity of the muscle-tendon unit is
returned more rapidly than range of motion after stretching. Scand J Med Sci Sports 2013;
23: 23-30.
26. Magnusson SP, Aagard P, Simonesen E, Bojsen-Moller F. A biomechanical evaluation of
cyclic and static stretch in human skeletal muscle. Int J Sports med 1998; 19: 310-316.
27. Magnusson SP, Aagard P, Simonesen E, Bojsen-Moller F. Passive tensile stress and
energy of the human hamstring muscles in vivo. Scand J Med Sci Sports 2000; 10:
351-359.
15
28. Kay AD, Blazevich AJ. Moderate-duration static stretch reduces active and passive
plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl
Physiol 2009; 106: 1249-1256.
29. Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical
implications. Clin Biomech 2001; 16: 87-101.
30. Purslow PP. Strain-induced reorientation of an intramuscular connective tissue network:
implications for passive muscle elasticity. J Biomech 1989; 22: 21-31.
31. Johs RJ, Wright V. The relative importance of various tissues in joint stiffness. J Appl
Physiol 1962; 17: 824-828.
32. Cramer JT, Beck TW, Housh TJ, Massey LL, marek SM, Danglemeier S, Purkayastha S,
Vulbertson JY, Fitz KA, Egan AD. Acute effects of static stretching on characteristics of
the
isokinetic
agle-torque
relathionship,
surface
electromyography,
and
mechanomyography. J Sports Sci 2007; 25: 687-698.
33. Fowles JR, Sale DG, MacDougall JD. Reduced strength after passive stretch of the human
plantarflexors. J Appl Physiol 2000; 89: 1179-1188.
34. Herda TJ, Cramer JT, Ryan ED, McHugh MP, Stout JR. Acute effects of static versus
dynamic stretching on isokinetic peak torque, electromyography, and mechanomyography
of the biceps femoris muscle. J Strength Cond Res 2008; 22: 809-817.
35. Mizuno T, Matsumoto M, Umemura Y. Decrements in stiffness are restored within 10 min.
16
Int J Sports Med 2013; 34: 484-490.
36. Kawakami Y, Ichinose Y, Fukunaga T. Architectural and functional features of human
triceps surae muscles during contraction. J Appl Physiol 1998; 85: 398-404.
37. Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tranter M. Viscoelastic and
anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear
imaging. Ultrasound Med Biol 2010; 36: 789-801.
38. Kubo K, Kanehisa H, Fukunaga T. Effect of stretching training on the viscoelastic
properties of human tendon structures in vivo. J Appl Physiol 2002; 92: 595-601.
17
Fly UP