On the Topological Types of Singularities of Brieskorn
by user
Comments
Transcript
On the Topological Types of Singularities of Brieskorn
On the Topological Types of Singularities of Brieskorn-Pham Type By Etsuo YOSHINAGA" and Masahiko SUZUKI*" (Received May 30, 1978) gO. Introduction The object of this paper is to prove the fo11owing THEoREM. Let f,g be two polynomials of Brieskorn-Pham type of the forms f:zfi+・・・+z:n, 2SaiS.・・・Sa., aieN, g=z9i+・・・+z9", 25biS.・・・Sb., biGIV. If two hypersurfaces defined by f, g have the same topological type at O, then we have ai == bi (i == 1,..., n). Let f, g:C".C be analytic functions having an isolated singularity at O with f(O)==g(O) :O. Then we say that two hypersurfaces Hi, H2 defined by f, g have the same topological type at O if there exist two neighborhoods Ui, U2 of O and a homeomorphism W from Ui to U2 such that U(HinUi)=H2nU2, ut(O)==O. gl. ProofofTheorem l Let f:C"-÷C be an analytic function having an isolated singularity at O withf(O)=O, LetO<6<3(1, Wedefine si = {t E C; ltl = 1}, SE = {z e C"; [zil2 + ・・・ + lz.l2 = e}, K=={zeCn;f(z)=O}nS,. According to [2], the mapping ut(z): =f(z)11f(z)1: S,-K.Si is a locally trivial smooth fibre bundle, Each fibre Fe=ut'i(eie)cS,-K has the homotopy type of a bouquet of (n-1)-spheres. The generator of ni(Si) induces the monodromy automorphism * Department of Mathematics, Faculty of Education, Yokohama National University. *" Department of Mathematics, University of Tsukuba, 38 E. YosHiNAGA and M. SuzuKi h*: Hn-i(Fo; Z)' Hn-i(Fo; Z)' We define the characteristic polynomial of the monodromy by A(t): = det (tl. - h.). Our proof bases on the following two theorems. THEoREM 1 (D. T. Le [2]). Iftwo hypersurfaces with an isolated singularity at O have the same topological type at O, then their monodromies are coajugate. It follows from this theorem that if two hypersurfaces with an isolated singularity at O have the same topological type at O then their characteristic polynomials coincide. For simplification, we need the fo11owing definitions. To each monic polynomial (t-- cti)・・・(t- ctk) with cti,..., ctk E C", assign the divisor div((t-cti)・・・(t---ctk))=<cti>+・・・+<ctk> ' thought of as an element of the integral group ring ZC". Introduce the notatlon A.=div(tM-1)=<1>+<4>+・・・+<4m-i> where 4=:exp (2nilm), and introduce the element Em==M-IAm , which belongs to the rational group ring QC*. Ai =Ei=<1> will be written briefiy as 1. The fo11owing theorem is the immediate result from J. Milnor and P. Orlik [3]. THEoREM2, Let f==zft+・・・+z#n, 2SaiS・・・Ea., aiEN・ Let A(t) be the characteristic polynomial ofthe hypersurface dcfined by f. Then div A = 2(- 1)n-Sai,'''ai.E[aii,...,ai.] = 2(-1)"-s [.",l'iiiia.'ii.] A[ai,,...,ai.] to be summed over all the 2" subsets {ii,..., i,} of {1,..., n}, where denote by [ai,..・, ak] their least common multiple. THEoREM. Let f,g be two polynomials of Brieskorn-Pham type of the forms f==zfi+・・・+zSn, 2Sai5・・・5a., aiEN, g=z?i+・・・+zB", 2;:Sbi;.S・・・:l;b., bi6IV・ If two hypersurfaces defined by f, g have the same topological type at O, then we have ai= bi (i --- 1,..., n), t On the Topological Types of Singularities of Brieskorn-Pham Type 39 PRooF. Considerthecasethatniseven. Letusput: Air・・i.: =[ait,.・., ai.]p Bii'''is: =[bii,'':, bis], Ci""is: = Elli;.iil.'III.';.'iE and Dii"'is: == bk'i19,?L" The equation div Af= div A, and theorem 2 imply the following equation: R (tAil'''is-1)Cil'''is H (tBit'''is-1)Dil'''is s:even s:odd stO = n (tBir・・i.-1)Dil・・・i. n (tAil・・・i.ml)Cil・・・i. s:even s:odd s=si=o We denote by P(t) the lefthand side of this equation and by 9(t) the righthand side. Now we show that the hypothesis ai<bi implies a contradiction. Since 9(t) has the factor t"i-1, P(t) has the factor tai-L fl (tBii・-・is-1)Dii・・・is s:odd does not have such a factor, so,,llJ.,.(tAii'''is-1)Dti''''s must have such factors. sso Namely, there exists Til.lr2 such that ai=a2==・・・=aT,<aT,+i・・・・ CoMParing the exponents of t"i-1 in bothhand sides, we have, 2) Cii-is= 2 Cii-is' s:even s=Si=O il,-.,s:odd i. =< Tl il,- " is 5 Tl Since Ci,...i, == ZS', , this implies O= ,¥.,(- 1)S(sTi)ai = -1+(1 -a,)Ti. So ai =2 and Ti is even. LetP,(t):=P(t)1 n (tAii-・・is-1)Cii-・・isand g¥eoven il,-"is5Tl e,(t):=e(t)1 n (tAi,・・・i.-1)ci,...,.. s:odd il"・"is5Tl (1.1) In the case ofaT,<bi<aT,+i. Comparing the exponents of tbi-1 in the bothhand sides of the equation Pi(t) =9i(t), we have bi==2 as same as above. This is a contradiction for ai< bi・ (1.2) The case of aT+i<bi is impossible as same as (1.1). (1.3) Inthecaseofbi=aT,+i・ Let aTl+1=''' =aTt+T2<aTl+T2+1, 40 E. YosHiNAGA and M. SuzuKi and bi = ''' = bs < bs+i・ Comparing the exponents of tbi-1 in Pi(t)=9i(t), we have: in the case of a lla Tl + 1, 2 C,,+2D,= s+t:eyen 15I5 Ti s:odd ISISS TI+15I5Tl+T2 Au=aTl+t 2D,+ ]E) CiJ s:even ISI5S s+t:odd 15I5Ti Ti+15JSTI+T2 Au=aTl+l where I: ={ii,.・・,i,}, J:=={ji,・・・,J't} namely t (1--ai)Ti(-1+(1-aT,+i)T2)=-1+(1-bi)S soS=T2. Inthecaseofal*aT,+1, 2 C,+2D,= t,e+ViegO=fOT,+T, Si:sOdids-s 2D,+ 2 C,, s:even t:odd,=O ISISS Ti+15JETI+T2 namely -1+(1 -aT,+ i)T2 = -1+(1 --- bi)S so S=T2. Now we may assume: a1='''=aTl<aTl+1=''・=aTl+T2<'''<aTl+・・・+Tk+1==''' =aTl+・・・+Tk+1<aTl+-・+Tk+1+1=='''=aTl+・・・+Tk+2<aTl+・・・+Tk+2+1l!S''・, b1=・・・=bT,<・・・<bT,+..・+T.+1=・・・=bT,+・・・+Tk.1<bT2+・・・+Tk.,+1 =・・.=bT2+・・・+Tk+1+s<bT2+・・・+Tk.1+s+1''' and aTi+1=b1,・・.,aT1+・・・+Tk+1==bT2+・・・+Tk+1・ Let us put: ?k+i(t):=Pi(t)1 n (tAi-1)Ci n (tBi-1)Di. t,e+Vle-2r7IIOT,+...+T,., Sl:sOdld-tT,+・・・+T,., ek+i(t):--・-ei(t)1 n (tBi-1)Di n (tAi--1)cr s:even,40Tl+ISI5Tl+・・・+Tk+1 s:odd 15IST2+-・+Tk+1 and a:==aTl+."+Tk.1+1, b:=bT2+・-Tk.1+1・ (k+1. 1) In the case of a>b, comparing the exponents of tb-1 in Pk+i(t) 9k+i(t), we have: r On the Topological Types of Singularities of Brieskorn-Pham Type s+t:even 2 CIJ s+t:odd 15I5T2+・-+Tk+1 T2+・・・+Tk+1+15J5T2+-・+Tk+1+s sl1 1SI5 Ti 41 Dv = BIJ=b Tl+ISJ5Tl+-・+Tk+1 AIJ=b Dv + 2 s+t:eyen IEI5T2+-・+Tk+1 CIJ >£ s+t:odd sl1 T2+・・・+Tk+1+15J5T2+・・・+Tk+1+S 1.<,ISTi Bu=b Tl+15JSTI+-・+Tk+1 ArJ=b namely 2 (- 1)s sl1 ( Zi )ai( - 1)taj,・・・aj, = 2 (- 1)sb slO ( )bt. ・・・b is 2(m 1)t s il t Since ,¥.,(-1)S(I`)ai=-1+(1-ai)'i==O, this implies b=2. This is a contra- diction. (k+1. 2) In the case of a<b, comparing the exponents of ta-1 in Pk + i(t) = 2k+i(t), we have: 2 s+t:even CIJ CIJ s+t:eyen Tl+15I5Tl+-・+Tk+1 Tl+・-+Tk+1+ISJ5Tl+・・・+Tk+2 sl1 15IETi Tl+15J5Tl+-・+Tk+2 AxJ=a 2 s+t:odd Aw=a CIJ CIJ s+t:odd Tl+ISI5Tl+・・・+Tk+1 Tl+・-+Tk+1+5J5Tl+・・・+Tk+2 s51 15IS Ti Aw=a Tl+15J5Tl+-・+Tk+2 AiJ=a namely - 1)s (I')ai2(- 1)taj,・・・aj, + 2(- 1)Sai, 2( sl1 ai.t;t1(-1)t( Tk+2 )at =O. ''' t Since the first term is zero, we have: (1ma,,)R"・.(1-a,.)Rm{-1+(1-a)Tk+2}==O where {a,,,...,a,.}:={ai;aila} and Rj:=#{i;ai=a,j}. Hence a = 2, a contradiction. (k+1. 3) In the case of a== b, comparing the exponents of ta-1 in Pk+i(t) = 9k+i(t), we have: s+t:even s:O 15I5 Ti 2 CIJ + s+t:eyen Tl+IEJ5Tt+-・+Tk+1 AiJ=a s+t:eyen t40 2 IEIST2+・-+Tk+1 T2+・-+Tk+15JET2+ +Tk+1+s BIJ=b ・・・ namely Du + 2 s+t:odd tto ISI5Tl+・-+Tk+1 Tl+・・・+Tk+1+15J5Tl+ Z stO IEIS Ti Tl+IEJ5Tl+-・+Tk+1 AiJ=a DIJ = tto ISI5T2+・-+Tk+1 T2+・・・+Tk+t+15J5T2+ ・・・ +Tk+1+S BrJ=a ・- +Tk+2 AiJ=a s+t:odd 2 CIJ + CIJ + s+t:odd 2 tto IEI5Tl+・・・+Tk+1 Tt+・・・+Tk+1+15J5Tl+ +Tk+2 AiJ=a -- CIJ E. YosHiNAGA and M. SuzuKi 42 ,1{.l)i ( - 1)S( [1i)aSi( - 1)'aj,''・aj, + 2( - 1)sai,・・・ai. ,].l)i ( - 1)t(tTk+2)at = 2(- i)sbi,・・・b,. ,;, (- i)t(`9)bl. Since the first term of the lefthand side is zero, so we have: (1-art)Ri・・・(1-a,.)Rm{-1+(1-a)Tk+2}= (1--bp,)P`'''(1-bp,)Ph{-1+(1mb)S} where {a,....,a,.}:={ai;aila}, {bp,,・・・,bp,}:=={bi;bilb} and Rj:=#{i;ai=a,,}, Pj:==#{i;bi=b,,}. By the hypothesis of induction, {a,,,..・, a,.}=={b,,,・・・, bp,} or =={ai} U {bp,,・・・, bp,} and if a,,=bpp then Ri=Pj. Hence we have (1-a,,)Ri・・・(1-a,m)R,n== (1 - bp,)P`'''(1 - bp,)Ph = O, ) so S=Tk+2・ Thus, in the case (1. 3), we have Ti+・・・+T.= T2+・・・+ T.=n for some m. This contradicts Til2. Therefore ai = bi. We prove Theorem by induction. We assume ai---bi fori=1,..., k. Let us put: Pt(t):=P(t)1 n (tAi-1)Cr n (tBi-1)Di, s:even ISISk s:odd ISISk e'(t):=e(t)1 n (tBi-1)Di fi (tAi-1)CJ. s:even s:odd ISISk ISI-<k Let ak;.:fak+i=・・・==ak+T<ak+T+i. If ak+i<bk+i, comparing the exponents of tak+i-1 in bothhand sides of P'(t) = 9'(t), we have: s+t:eleln CiJ+s+t:oliidl CiJ ISISk ISISk k+ISJSk+T k+ISJSk+T namely Aw=ak+i Au=ak+i 2(-1)sai,・・・ai.,¥.,(-1)'(ll")aft.,==o. Hence (1-a,,)Ri・・・(1-a,.)Rm{-1+(1--ak+i)T}=O, so ak+i=2 and T is even. Where {a,,,..., a,.}: ={ai; ailak+i} and Rj: =#{i; ai=a,j}. But ak+i=2<bk+i implies a contradiction as (1.3). Therefore we have ak+i=bk+i. This completes the proof of Theorem in the case that n is even. The proof of Theorem in the case that n is odd is exactly same one in the case thatnis even. Q. E. D. References [1] D.T.Lfi: Topologie des singularites des hypersurfaces complexes. (1972), 171-182. Asterisque 7 et 8 s On the Topological Types of Singularities of Brieskorn-Pham Type [2] [3] 43 J. MiLNoR: Singular points ofcomplex hypersurfaces. Prinston University Press (1968). J. MiLNoR and P. ORLiK: Isolated singularities defined by weighted homogeneous poly- nomials. TopologyVol.9(1970),385-393. Etsuo Yoshinaga Department of Mathematics, Faculty of Education, Yokohama National University. Masahiko Suzuki Department of Mathematics, ; University of Tsukuba.