Comments
Description
Transcript
pdf file
Nuclear Nuclear Physics Physics from on Lattice the lattice QCD particle physics nuclear physics astrophysics 1 fm 10 fm 10 km Tetsuo Hatsuda (Univ. Tokyo) RIKEN Lattice WS, Sep.26, 2010 計算科学と密接に関係する挑戦的課題 --- 我々はどこから来てどこへ行くのか? --⇔ LHC ・ 物質の究極構造 -- 超弦理論、真空の構造、精密QCD ・ 宇宙初期の極限物質 ⇔ RHIC, LHC -- 超高温状態(1012 K)とビッグバン ・ 重元素の起源 ⇔ RIBF -- 鉄より重い元素はどのように生まれたのか? ・ 星の終焉での極限物質 ⇔ J-PARC -- 超高密度状態(1012 kg/cm3)と 中性子星、クォーク星、ブラックホール LATTICE QCD inputs are crucial 京速シンポ (2006年4月) T. Hatsuda, Keisoku-symp. (April 5, 2006) T. Hatsuda, Keisoku-symp. (April 5, 2006) T. Hatsuda, Keisoku-symp. (April 5, 2006) 1 fm 10 fm Outline [1] nuclear force – nuclei and neutron stars [2] nuclear force from lattice QCD [3] hyperon force – hyperonic matter and neutron star core [4] Hyperon force from lattice QCD [5] origin of repulsive core and the Pauli principle [6] Summary and Future 10 km 2D (N-Z) Nuclear Chart (Segrè) ~300 ~3000 > 7000 ab initio nuclear A-body calculations (2001-) A≦ 5 H, |ψ〉 A ≦ 12 H, |ψ〉 A ≦ 56 Heff, |ψeff〉 UMOA, UCOM, SRG, … ・Faddeev H, |ψ〉 ・ diaginalization ・Green’s function Monte Carlo ・diagonalization after reduction (coupled cluster, NCSM, NC-MCSM, …) Benchmark Calculations of 4He by 7 methods agreement within 0.5% Phys. Rev. C64, 044001 (2001) [arXiv:nucl-th/0104057]. Example: Green’s Function Monte Carlo for light nuclei NN scattering Phenomenological data inputs n = (a few) x 100 4He S.C.Pieper, ``Quantum Monte Carlo Calculations of Light Nuclei,'' Riv. Nuovo Cim. 031, 709 (2008) [arXiv:0711.1500 [nucl-th]]. 8Be NN +NNN S.C.Pieper, Riv. Nuovo Cim. 031, 709 (2008) [arXiv:0711.1500 [nucl-th]]. NN interactions critical inputs in nuclear physics virtual state mid-range attraction short-range repulsion 2S+1 LJ deuteron mid-range attraction short-range repulsion Nijmegen partial-wave analysis, Stoks et al., Phys.Rev. C48 (1993) 792 Key features of the Nuclear force One-pion exchange Yukawa (1935) Multi-pions Taketani et al. (1951) Repulsive core Jastrow (1951) repulsive core 2π, 3π, ... π EFT for NN int. Weinberg (1990) Modern high precision NN forces (90’s-) phenomenological NN interactions -- how many parameters ? -R. Machleidt, arXiv:0704.0807 [nucl-th] ~ 4500 np and pp scattering data (Tlab < 300 MeV) NNN, YN, YY: data very limited phenomenological NN interactions -- how many parameters ? -R. Machleidt, arXiv:0704.0807 [nucl-th] high precision NN interactions CD Bonn (p space) AV18 (r space) EFT in N3LO (nπ+contact) # of parameters 38 40 24 χ2/dof ~1 ~1 ~ (1-2) ~ 4500 np and pp scattering data (Tlab < 300 MeV) NNN, YN, YY: data very limited Nuclear Force and Neutron Star (ρmax ~ 6ρ0) PSR1913+16 Neutron star binary Pressure balance Fermi pressure Repulsive core gravity Nuclear Force and Neutron Star (ρmax ~ 6ρ0) PSR1913+16 Neutron star binary Oppenheimer-Volkov(1939) Pressure balance Fermi pressure Repulsive core gravity Nuclear Force and Neutron Star (ρmax NNN ~ 6ρ0) PSR1913+16 NN Neutron star binary Pressure balance Fermi pressure Repulsive core gravity 1 fm 10 fm Outline [1] nuclear force – nuclei and neutron stars [2] nuclear force from lattice QCD [3] hyperon force – hyperonic matter and neutron star core [4] Hyperon force from lattice QCD [5] origin of repulsive core and the Pauli principle [6] Summary and Future 10 km Nuclear Physics from QCD 1. Lattice scattering length Kuramashi et al. (1995) Ishizuka with CP-PACS Coll. (2005) NPLQCD Coll. (2006-) 2. Lattice potential Aoki, Hatsuda, Ishii (2006) + Nemura (2007) HAL QCD Coll. (2009-) 3. Lattice nuclei Yamazaki, Kuramashi, Ukawa (2009) 4. Strong coupling nuclei Ohnishi et al.(2007-) de Forcrand et al. (2009) 5. Holographic nuclei Hashimoto et al. (2009-) Nuclear Physics from QCD Ask HAL ! 1. Lattice scattering length Kuramashi et al. (1995) Ishizuka with CP-PACS Coll. (2005) NPLQCD Coll. (2006-) 2. Lattice potential Aoki, Hatsuda, Ishii (2006) + Nemura (2007) HAL QCD Coll. (2009-) 3. Lattice nuclei Yamazaki, Kuramashi, Ukawa (2009) 4. Strong coupling nuclei Ohnishi et al.(2007-) de Forcrand et T. al.Hatsuda (2009) (Tokyo) N. Ishii, 5. Holographic nuclei Hashimoto et al. (2009-) T. Doi, K. Sasaki, S. Aoki (Tsukuba) K. Murano (KEK), T. Inoue (Nihon) Y. Ikeda (RIKEN), H. Nemura (Tohoku) N. Ishii, T. Hatsuda (Tokyo) T. Doi, K. Sasaki, S. Aoki (Tsukuba) K. Murano (KEK), T. Inoue (Nihon) Y. Ikeda (RIKEN), H. Nemura (Tohoku) Imaginary time x J y space y Lüscher’s Method : HAL QCD Method : J + all possible combinations y φ(r > R) phase shifts : φ(r < R) non-local potentials observables, many-body systems : Lattice NN potential Lüscher’s Method : φ(r > R) phase shifts HAL QCD Method : φ(r < R) non-local potentials observables, many-body systems Quenched QCD (mπ=530MeV, L=4.4 fm) (2+1)-flavor QCD (mπ=570MeV, L=2.9 fm) r [fm] Ishii, Aoki, Hatsuda, PRL 99 (2007) 022001 Ishii, Aoki, Hatsuda, arXive 0903.5497 [hep-lat] HAL QCD procedure : 5 steps to go Aoki, Hatsuda & Ishii, PTP 123 (2010) 89-128 [0909.5585 [hep-lat]], (i) Choose a composite operator: e.g. (ii) Measure the BS amplitude: (iii) Calculate off-shell T-matrix: (iv) Derive non-local potential: (v) Make derivative expansion: LO LO NLO NNLO Key channels in NN scattering (2s+1LJ) LO 1S 0 Central force LO NLO NNLO nuclear BCS pairing Bohr, Mottelson & Pines, Phys. Rev. 110 (1958) 3S -3D 1 1 Tensor force deuteron binding Pandharipande et al., Phys. Rev. C54 (1996) 3 P - 3F 2 2 LS force neutron superfluidity in neutron stars Tamagaki, Prog. Theor. Phys. 44 (1970) Density profile of the deuteron with Sz=±1 LO potentials : VC(r) & VT(r) mixing between 3S1 and 3D1 through the tensor force LO potentials : VC(r) & VT(r) quenched QCD E ~ 0 MeV Aoki, Hatsuda & Ishii, 0909.5585 [hep-lat] PTP 123 (2010) 89-128 Aoki, Hatsuda & Ishii, 0909.5585 [hep-lat] PTP 123 (2010) 89-128 LO potentials : VC(r) & VT(r) VT(r) VC(r) quenched QCD quenched E ~QCD 0 MeV E ~ 0 MeV Vc(r0) ~ (log r)β/r2, VT(r0) 0 from OPE Aoki, Balog & Weisz, JHEP 1005, 008 (2010) Aoki, Hatsuda & Ishii, 0909.5585 [hep-lat] PTP 123 (2010) 89-128 LO potentials : VC(r) & VT(r) VT(r) VC(r) quenched QCD quenched E ~QCD 0 MeV E ~ 0 MeV quenched QCD E ~ 0 MeV fit function ・Rapid dependence of VT(r) ・Rapid quark-mass dependence of quark-mass VT~(r) Vc(r0) (log r)β/r2, VT(r0) 0 from OPE ・Evidence of the one-pion-exchange ・Evidence of the one-pion-exchange Aoki, Balog & Weisz, JHEP 1005, 008 (2010) NNLO potential of O(∇2): how large ? ● PBC (TLab~0 MeV) ● APBC (TLab~100 MeV) Murano [Parallel 38, Thur.] NNLO potential of O(∇2): how large ? ● PBC (TLab~0 MeV) ● APBC (TLab~100 MeV) Murano [Parallel 38, Thur.] NNLO potential of O(∇2): how large ? ● PBC (TLab~0 MeV) ● APBC (TLab~100 MeV) 1S 0 Murano [Parallel 38, Thur.] NN phase shifts in (2+1)-flavor QCD 3S 1 VCeff(r) 3S phase 1 shift from VCeff(r) 3S phase 1 deuteron not bound for mπ ≧410 MeV Ishii et al. (HAL QCD Coll.), arXiv:1004.0405 [hep-lat] 3S 1 shift (exp.) “Feshbach resonances” in hadrons and ultracold atoms Kuramashi [hep-lat/9510025] a0 [fm] N-N 40K-40K 3S 1 1S 0 1S 0 Regal & Jin, PRL 90, 230404 (2003) 3S 1 [MeV] Discovery of BEC-BCS crossover “Feshbach resonances” in hadrons and ultracold atoms Kuramashi [hep-lat/9510025] a0 [fm] N-N 40K-40K unitary regime 3S 1 1S 0 1S 0 Regal & Jin, PRL 90, 230404 (2003) 3S 1 [MeV] NN interaction ・net attraction at low energy ・still far from “unitary regime” ・ V(r) : mild func. of mq a0 : highly sensitive to mq Discovery of BEC-BCS crossover UMOA (Fujii, Okamoto, Suzuki), PRL103, 182501 (2009) 基底状態エネルギー(2体核力: CD Bonn) 56Ni(97.8%), 40Ca(99.5%), 16O(93.6%) カッコ内は、計算結果/実験値 • 良く実験値を再現するが、2体核力の違いによって計算結果にばらつきがある。 (Nijm Iの場合、40Ca(88.3%)) • 2体力と理論的に整合性のとれた3体力などの多体力の必要性。 (現象論的パラメータを多く含む現象論的核力ではその構築は困難) 現在・・・カイラル摂動理論に基づく2体力と整合性のとれた3体力(および4体力) の構築が世界各地で進行中。 今後・・・格子QCD計算に基づく2体力、3体力などの統一的な構築の重要性大。 adapted from S. Fujii 1 fm 10 fm Outline [1] nuclear force – nuclei and neutron stars [2] nuclear force from lattice QCD [3] hyperon force – hyperonic matter and neutron star core [4] Hyperon force from lattice QCD [5] origin of repulsive core and the Pauli principle [6] Summary and Future 10 km YN and YY interactions Radius ~ 10 km Mass ~ solar mass Central density ~ 1012 kg/cm3 Hyperon matter? Solid Crust Neutron Liquid YN and YY interactions Radius ~ 10 km Mass ~ solar mass Central density ~ 1012 kg/cm3 Hyperon matter? Solid Crust Schaffner-Bielich, ``Strangeness in Compact Stars,'' Nucl. Phys.A 835, 279 (2010) [arXiv:1002.1658 [nucl-th]]. Neutron Liquid M-R relation of Neutron Stars and dense EOS Thermonuclear Burst in X-ray Binaries 4U 1608-248 EXO 1745-248 4U 1820-30 (i) Apparent surface area R 2 2GM A = 2 4 1 − D fc R −1 (ii) Eddington limit 4πGM 2GM 1− = 2 κ cs D R 1/ 2 Fedd Ozel, Baym & Guver, arXiv: 1002.3153 [astro-ph.HE] (N-Z) Nuclear 3D2D (N-Z-S) nuclearChart chart J-PARC@KEK, Japan(2009-) 3 known 40 known ~3000 known Λ hypernuclei Λ UΛ = - 30 MeV (UN = - 50 MeV) Hotchi et al., PRC 64 (2001) 044302 A. Umeya. J-PARC Hadron Salon talk (Aug.11, 2010) double-Λ hypernuclei Λ Λ 4He+Λ+Λ 7.25 ±0.1 MeV 0+ ・ ΛN attraction ・ ΛΛ weak attraction ・ No deeply bound H-dibaryon 1 fm 10 fm Outline [1] nuclear force – nuclei and neutron stars [2] nuclear force from lattice QCD [3] hyperon force – hyperonic matter and neutron star core [4] Hyperon force from lattice QCD [5] origin of repulsive core and the Pauli principle [6] Summary and Future 10 km ΛN interaction in (2+1)-flavor QCD LO potentials from BS wave function (2+1)-flavor, Iwasaki + clover (PACS-CS) L=2.9fm, a=0.09fm, 323x64 Nemura et al. (HAL QCD Coll.) arXiv: 1005.5352 [hep-lat] Scattering length from Lüscher’s formula with k from BS wave function LO potentiald from BS wave function ΛN interaction ・repulsive core + attractive well ・net attraction at low energy 精密ハイパー核計算によるハイペロン力 の選別 13C Λ 炭素のハイパー同位体 Λ 4He ハイペロン力以外の不定性を 精密計算(無限小ガウスローブ法)で排除 精密計算の予言 3/2- 960 keV ~ 360 ハイペロン力 (中間子交換模型) 1/23/2- 4He 後の実験結果(BNL-E929) 150 ~ 1/2- 4He 200 keV 1/23/2- 152 ± 54 ± 36 keV ハイペロン力 (クォーク模型) 肥山詠美子氏(理研)提供 1 fm 10 fm Outline [1] nuclear force – nuclei and neutron stars [2] nuclear force from lattice QCD [3] hyperon force – hyperonic matter and neutron star core [4] Hyperon force from lattice QCD [5] origin of repulsive core and the Pauli principle [6] Summary and Future 10 km BB interactions in a SU(3) symmetric world x 1. First step to predict YN, YY interactions not accessible in exp. 2. Origin of the repulsive core (universal or not) Six independent potentials in flavor-basis M. Oka. J-PARC Hadron Salon talk (June.17, 2010) Equal-time BS amplitudes in the SU(3) limit 1 27 Iwasaki + clover (CP-PACS/JLQCD) L=1.9 fm, a=0.12 fm, 163x32 mπ=835 MeV, mB=1752 MeV Inoue et al. (HAL QCD Coll.) ArXiv:1007.3559 [hep-lat] PTP (2010) in press. 8s Pauli principle at work ! 1 : allowed 27 : partially blocked 8s : almost blocked c.f. Oka, Shimizu, Yazaki , Nucl. Phys. A464 (1987) 700 BB potentials in flavor-basis (1S0 channel) NN BB potentials in flavor-basis (1S0 channel) NN BB potentials in flavor-basis (1S0 channel) NN mπ=749 MeV, mπ/mK=0.904 K. Sasaki (HAL QCD) S-wave ηc-N interaction cc no Pauli-blocking + QCD van der Walls attraction charmonium-nucleus bound state ? Brodsky et al., PRL 64 (1990) 1011 Quenched QCD: 323x48, L = 3 fm (2+1)-flavor QCD on-going BS wave function Kawanai & Sasaki, ArXiv:1009.3332 [hep-lat] Potential S-wave K+-p interaction Iwasaki + Clover (CP-PACS/JLQCD) a= 0.12 fm, L=1.9 fm, 163x32 mπ = 871 MeV, mK = 912 MeV mN = 1796 MeV Ikeda et al. (HALQCD Coll.) us ミクロ(素粒子・ハドロン・原子核)からマクロ(宇宙)への架け橋が 今後5年間に国内で大きく進展する? 素粒子 RIBF (2007-) ハドロン・原子核 J-PARC (2009-) 宇宙 次世代スパコン (2012-) Lattice Potentials Lattice Nuclei + ab initio Nuclear Calculation Imaginary Nuclei (mq > mqphys) Ordinary Nuclei Strange & Charm Nuclei Holographic Nuclei 三層構造の重要性 文科省「特定先端大型研究施設の 共用の促進に関する基本的方針」 に対する意見 2008年3月20日 素粒子論グループ 10 Eflops スパコンセンター 1 Eflops KEK, RIKEN, YITP, RCNP, .. X 1000 各研究室のクラスター 10 Pflops 2025年 スパコンセンター 1 Pflops KEK, RIKEN, YITP, RCNP, .. 各研究室のクラスター 2012年 X 1000 第一層: 挑戦的課題 第二層: 中小規模プロジェクト 第三層: 萌芽的課題