...

実施報告書04 (P63~97) :4MB - 佐賀県立九州シンクロトロン光研究

by user

on
Category: Documents
10

views

Report

Comments

Transcript

実施報告書04 (P63~97) :4MB - 佐賀県立九州シンクロトロン光研究
㧗ഴᩳ ㍈ࢺࣔࢢࣛࣇ࢕࣮ヨᩱ࣍ࣝࢲ࣮ࡢ㛤Ⓨ
Ἴከ⫄ࠊගཎᫀᑑࠊụ⏣㈼୍ࠊ୰ᓥⱥ἞㸦஑ᕞ኱Ꮫ࣭⥲⌮ᕤ㸧
⏣୰ᑘᕫࠊᮾ⏣㈼஧㸦஑ᕞ኱Ꮫ࣭ᕤ㸧
ᐑᓮ⿱ஓ㸦࣓ࣝࣅࣝ㸧
㟁Ꮚ⥺ࢺࣔࢢࣛࣇ࢕࣮ࡢᬑཬ࡜ᢏ⾡㛤Ⓨ࡟క࠸ࠊࡉࡲࡊࡲ࡞⤖ᬗᮦᩱ⤌⧊ࡢ ' ゎᯒࡢヨ
ࡳࡀጞࡲࡗ࡚࠸ࡿࠋᚑ᮶ࡣᅔ㞴࡜ࡉࢀ࡚ࡁࡓᅇᢡࢥࣥࢺࣛࢫࢺ࡟ࡼࡿつ๎᱁Ꮚࢻ࣓࢖ࣥᵓ㐀
ࡸ㌿఩ࡢࢺࣔࢢࣛࣇ࢕࣮ほᐹࠊ㟁Ꮚᅇᢡࢺࣔࢢࣛࣇ࢕࣮࡞࡝ࡀࡑࡢ౛࡛࠶ࡿࠋࡇࢀࡽࡢ '
ほᐹ࡛ࡣࠊᅇᢡ᮲௳ࡢ⢭ᐦ࡞ㄪᩚࡀ㔜せ࡛࠶ࡿࠋࡋ࠿ࡋࠊrq௨ୖࡢ㧗ゅᗘഴᩳࢆせࡍࡿࢺ
ࣔࢢࣛࣇ࢕࣮⏝ࡢヨᩱ࣍ࣝࢲ࣮ࡣࠊ ㍈ഴᩳࡶࡋࡃࡣࡑࢀ࡟ヨᩱࢫࢸ࣮ࢪᅇ㌿ᶵ⬟ࡀຍࢃࡗ
ࡓࡶࡢ࡛࠶ࡿࠋࡇࡢሙྜࠊᅇᢡ᮲௳ࡢㄪᩚ⠊ᅖࡣⴭࡋࡃ㝈ᐃࡉࢀࠊ' ほᐹࡢᡂྰࡣⷧ⭷ヨ
ᩱࡢ⤖ᬗ᪉఩࡟ᙉࡃ౫Ꮡࡍࡿࡇ࡜࡟࡞ࡿࠋ
ᡃࠎࡣࠊ⤖ᬗᮦᩱ⤌⧊ࡢ ' ほᐹ࡟฼⏝ྍ⬟࡞㧗ഴᩳ ㍈ヨᩱ࣍ࣝࢲ࣮ࢆ㛤Ⓨࡋࡓࠋヨᩱ
࣍ࣝࢲ࣮ࡢ㛗㍈࡟ᖹ⾜࡞ ; ㍈࡟࠾࠸࡚ࠊỗ⏝ᆺ 7(0㸦)(,7(&1$,*6XSHU7ZLQ㸧࡛rqࡢ
ヨᩱഴᩳࢆ☜ಖࡋࡘࡘࠊヨᩱ୰ᚰ఩⨨࡛ ; ㍈࡜┤⾜ࡍࡿỈᖹ㍈ < ࡜ᆶ┤㍈ = ࡛ࡑࢀࡒࢀrq
ഴᩳ࡜rqᅇ㌿ࢆᐇ⌧ࡋࡓࠋࡇࢀ࡟ࡼࡾࠊ㏻ᖖࡢ ㍈࣍ࣝࢲ࣮ࡢࡈ࡜ࡃᅇᢡ᮲௳ࡢ⢭ᐦㄪᩚ
ࡀྍ⬟࡜࡞ࡾࠊ㌿఩⤌⧊➼ࢆᗈ࠸ഴᩳゅᗘ⠊ᅖ࡛᫂░࡟ほᐹࡍࡿࡇ࡜ࡀྍ⬟࡜࡞ࡗࡓࠋ
㸫㸫
㸫㸫
㸫㸫
஑ᕞ኱Ꮫ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊࡢ⤂௓
஑ᕞ኱Ꮫ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊ ኱ᑿᓅྐᯇᮧᬗᏳ⏣࿴ᘯ⏣୰㘝ኈ
஑ᕞ኱Ꮫࡢ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊࡣࠊఀ㒔࢟ࣕࣥࣃࢫ࡟ ᖺᗘ࡟᪂ࡋࡃ㉸㧗ᅽ㟁Ꮚ㢧
ᚤ㙾ࢆタ⨨ࡋ㛫ࡶ࡞ࡃ ᖺࢆ㏄࠼ࡲࡍࠋ
㸳ᖺィ⏬࡛ᐇ᪋ࡉࢀ࡚ࡁࡓ௜ᖏタഛࡣࠊ࣓࢜࢞ᆺ㟁Ꮚศග⿦⨨ࠊࢸࣞࣉࣞࢮࣥࢫ㐲㝸᧯స⿦
⨨ࠊ࣮ࣞࢨ࣮ࣅ࣮࣒↷ᑕ⿦⨨ࠊࡑࡋ࡚᭱ᚋ࡟ඖ⣲ศᯒࠊ' ࢺࣔࢢࣛࣇ࢕⿦⨨ࡀ௜ຍࡉࢀࡿ
ࡇ࡜࡟ࡼࡾࠊࠕ㸱ḟඖࢼࣀ㉸ᵓ㐀ከඖゎᯒ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ࠖ࡜ࡋ࡚᏶ᡂࡋࡲࡋࡓࠋ
୍᪉ࠊ⟽ᓮ࢟ࣕࣥࣃࢫࡢྛ✀㟁Ꮚ㢧ᚤ㙾ࡢ⛣タ࠿ࡽ㸰ᖺ࡯࡝⤒㐣ࡋࠊఀ㒔࢟ࣕࣥࣃࢫࡢ㉸
㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊࡣୡ⏺࡟㄂ࢀࡿ㟁Ꮚ㢧ᚤ㙾ඹྠ฼⏝᪋タ࡜࡞ࡾࡲࡋࡓࠋ
ᙜ㉸㧗ᅽ㟁㢧ᐊࡣࠊ᭱ඛ➃㢧ᚤ⿦⨨࣭ᢏ⾡ࢆᏛෆࡢᏛ⏕࣭ᩍ⫋ဨ࡟ᥦ౪ࡋࠊ㟁Ꮚ㢧ᚤ㙾࡟
ࡼࡿ≀㉁ࡢࢼࣀᵓ㐀ホ౯࡟ᚑ஦࡛ࡁࡿᢏ⾡⪅࣭◊✲⪅ࡢ⫱ᡂ࡟㈨ࡍࡿࡔࡅ࡛ࡣ࡞ࡃ◊✲⏘ᐁ
Ꮫࡢ㐃ᦠ࣭༠ຊ࡟ࡼࡿ♫఍㈉⊩ࢆ୰ᮇ┠ᶆ࡜ࡋ࡚ᥖࡆ࡚࠸ࡲࡍࠋ
ࡇࢀࡽࡢ┠ⓗࢆ㐩ࡍࡿࡓࡵ௨ୗࡢࡼ࠺࡞ᯟ⤌ࡳ࡟ࡶཧຍࡋ࡚࠾ࡾࡲࡍࠋ
ᖺᗘ࠿ࡽࢫࢱ࣮ࢺࡋࡓᩥ⛉┬ࡢࠕඛ➃◊✲᪋タඹ⏝࢖ࣀ࣮࣋ࢩࣙࣥ๰ฟ஦ᴗ࡛ࠖጤ
クࡉࢀࡓ஑ᕞᆅ༊ࢼࣀࢸࢡࣀࣟࢪ࣮ᣐⅬࢿࢵࢺ࣮࣡ࢡࡢ୰ᚰᶵ㛵࡜ࡋ࡚ࡢάືࡍࡿࠋ
㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾㐃ᦠࢫࢸ࣮ࢩࣙࣥࢆ❧ࡕୖࡆࠊ㜰኱ࠊ໭኱ࠊྡ኱ࠊ஑኱ࠊ⏕⌮Ꮫ◊✲
ᡤ࡟タ⨨ࡉࢀ࡚࠸ࡿィ㸳ᶵࡢ +9(0 ⿦⨨ࢆ඲ᅜࡢ࣮ࣘࢨ࣮࡟ඹྠ฼⏝⿦⨨࡜ࡋ࡚㛤ᨺࡍࡿࠋ
㉸㢧ᚤࣜࢧ࣮ࢳࢥ࢔㸦௦⾲⪅᱓㔝⠊அᩍᤵ㸧ࡢඖࠊ㟁Ꮚ㢧ᚤ㙾ᢏ⾡ࡢ㛤Ⓨ࣭☜❧㛵ࡍࡿ
᳨ウࢆ⾜࠺ࠋ
㸫㸫
㸫㸫
஑ᕞᆅ༊ࢼࣀࢸࢡࣀࣟࢪ࣮ᣐⅬࢿࢵࢺ࣮࣡ࢡ
㉸㢧ᚤゎᯒᨭ᥼
஑ᕞ኱Ꮫ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊ
ᩥ㒊⛉Ꮫ┬࡛ࡣࠊᖹᡂ ᖺᗘࡼࡾඛ➃◊✲᪋タ౪⏝࢖ࣀ࣮࣋ࢩࣙࣥ๰ฟ஦ᴗࢆ㛤ጞࡋࡓࠋ
ࡑࢀࢆཷࡅ࡚ࠊబ㈡┴❧஑ᕞࢩࣥࢡࣟࢺࣟࣥග◊✲ࢭࣥࢱ࣮ࠊబ㈡኱Ꮫࢩࣥࢡࣟࢺࣟࣥගᛂ
⏝◊✲ࢭࣥࢱ࣮ࠊ໭஑ᕞ⏘ᴗᏛ⾡᥎㐍ᶵᵓ࡞ࡽࡧ࡟஑ᕞ኱Ꮫ㸦ศᏊ࣭≀㉁ྜᡂゎᯒᨭ᥼࠾ࡼ
ࡧ㉸㢧ᚤゎᯒᨭ᥼㸧ࡀ㐃ᦠࡋ஑ᕞᆅ༊ࢼࣀࢸࢡࣀࣟࢪ࣮ᣐⅬࢿࢵࢺ࣮࣡ࢡࢆᙧᡂࡋࡓࠋᮏ஦
ᴗ࡛ࡣࠊࢼࣀࢸࢡࣀࣟࢪ࣮◊✲࡟࠿࠿ࢃࡿ⏘ᐁᏛ⏺ࡢ◊✲⪅࡟ྛᶵ㛵࡟タ⨨ࡉࢀࡓ⿦⨨⩌ࡢ
฼⏝㛤ᨺࢆ⾜ࡗ࡚࠸ࡿࠋ
㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊ࡛ࡣࠊ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ࢆጞࡵ࡜ࡋ࡚ࠊヨᩱస〇ࡸࢹ࣮ࢱࡢྲྀᚓ࠾ࡼ
ࡧゎᯒ⏝ࡢ⿦⨨ࢆ㛤ᨺࡋ㉸㢧ᚤゎᯒᨭ᥼ࢆᐇ᪋ࡋ࡚࠸ࡿࠋࡉࡽ࡟ࠊᮏ஦ᴗࡢᑓ௵ࢫࢱࢵࣇࠊ
Ꮫෆࡢ◊✲⪅࡞ࡽࡧ࡟ᢏ⾡⪅࠿ࡽᵓᡂࡉࢀࡿ࣓ࣥࣂ࣮ࡀࠊᐇ㦂ィ⏬ࡢ⟇ᐃ࠿ࡽྛ⿦⨨ࡢ฼⏝
᪉ἲࠊྲྀᚓࢹ࣮ࢱࡢゎᯒホ౯࡟⮳ࡿᨭ᥼ࢆ⾜ࡗ࡚࠸ࡿࠋ
ᙜᶵ㛵࡛ࡣࠊ㏱㐣㟁Ꮚ㢧ᚤ㙾ἲࡢᇶᮏⓗᡭἲ࡟ຍ࠼࡚ࠊ㧗ศゎ⬟ീほᐹࠊ࢚ࢿࣝࢠ࣮ศᩓ
ᆺ㹖⥺ศගศᯒ㸦('6㸧ࠊ㟁Ꮚ࢚ࢿࣝࢠ࣮ᦆኻศගἲ㸦((/6㸧ࠊ཰᮰㟁Ꮚ⥺ᅇᢡἲ㸦&%('㸧ࠊ
ḟඖࢺࣔࢢࣛࣇ࢕࣮ࠊࡑࡢሙほᐹᐇ㦂ࡢᨭ᥼ࡢ௚ࠊ㞟᮰࢖࢜ࣥࣅ࣮࣒ヨᩱຍᕤ⿦⨨ࡸ㉸㧗
ᅽ㟁Ꮚ㢧ᚤ㙾ࢆ฼⏝ࡋࡓ◊✲ᨭ᥼ࡶ⢭ຊⓗ࡟⾜ࡗ࡚࠸ࡿࠋ
㸫㸫
㸫㸫
㸫㸫
㸫㸫
㸫㸫
㸫㸫
㸫㸫
㸫㸫
ࢩࣥࢡࣟࢺࣟࣥගศᯒࢆ⏝࠸ࡓ᭷⏣↝ࡢⓎⰍ࣓࢝ࢽࢬ࣒ࡢゎ᫂
బ㈡┴❔ᴗᢏ⾡ࢭࣥࢱ࣮ ⓑ▼ᩔ๎ ྜྷ⏣⚽἞ ᑎ㷂ಙ ຾ᮌᏹ᫛
᭷⏣↝ࢆࡣࡌࡵ࡜ࡍࡿబ㈡┴㝡☢ჾࡢⓎⰍᢏ⾡ࡣࠊỤᡞ᫬௦ึᮇ࠿ࡽ୰ᮇ࡟⤒㦂๎࡜ࡋ࡚㧗
ᗘ࡟☜❧ࡉࢀࡓࠋࡋ࠿ࡋࠊࡇࢀࡽࡢⓎⰍᢏ⾡ࡣ⫋ேࡢヨ⾜㘒ㄗ࡟ࡼࡿ〇㐀ᢏ⾡ࢆᇶ࡟ࡋࡓࡶ
ࡢ࡛࠶ࡾࠊⓎⰍ࣓࢝ࢽࢬ࣒࡟㛵ࡋ࡚ࡣࠊ㧗ᗘ࡞ศᯒᶵჾ࡟ࡼࡿ⛉Ꮫⓗ࡞᳨ドࡣ࡯࡜ࢇ࡝࡞ࡉ
ࢀ࡚࡞ࡃࠊ୙᫂࡞Ⅼࡀከ࠸ࠋ ᮏ◊✲࡛ࡣࠊࢩࣥࢡࣟࢺࣟࣥගࢆ฼⏝ࡋ࡚㝡☢ჾࡢⓎⰍ࣓࢝
ࢽࢬ࣒ࡢゎ᫂ࢆ┠ⓗ࡜ࡋ࡚⾜࡞ࡗࡓࠋ
㝡☢ჾࡢ௦⾲ⓗ࡞ⓎⰍᮦ࡛࠶ࡿ㕲ࡣ㔙⸆ࡸୗ⤮௜ࡅࠊୖ⤮௜ࡅࡢⓎⰍᮦ࡜ࡋ࡚ᗈࡃ⏝࠸ࡽࢀࠊ
ຍ⇕᮲௳ࡸ࢞ࢫ㞺ᅖẼ࡞࡝࡟ࡼࡾ㉥ࠊ㯤ࠊ⥳ࠊ㟷ࠊ㯮➼ࡢᵝࠎ࡞Ⰽࢆ♧ࡍࠋ
௒ᅇࡣࠊ㟷Ⰽ࠿ࡽ⥳Ⰽࡲ࡛ኚ໬ࡍࡿ㟷☢㔙ࡢⓎⰍᮦ࡛࠶ࡿ㕲ࡢ≧ែࢆࢩࣥࢡࣟࢺࣟࣥග
;$)6࡟ࡼࡗ࡚ศᯒࡋࠊⓎⰍኚ໬࡜㕲ࡢ≧ែ㸦㕲࢖࢜ࣥࡢ≧ែ➼㸧ࡢ㛵㐃ᛶࢆㄪ࡭ࠊ㟷☢ࡢ
ⓎⰍ࣓࢝ࢽࢬ࣒ࡢᇶ♏ⓗゎ᫂ࢆヨࡳࡓࠋ
㸫㸫
⢛᥊䊶⋡⊛
㒻⏛ེ䈱⊒⦡ᛛⴚ䈲䇮⡯ੱ䈱⹜ⴕ㍲⺋䈮䉋䉎⵾ㅧᛛⴚ䉕ၮ䈮䈚䈢䉅䈱䈪䈅䉍䇮
㜞ᐲ䈭ಽᨆᯏེ䈮䉋䉎⑼ቇ⊛䈭ᬌ⸽䈲䈅䉁䉍䈭䈘䉏䈩䈇䈭䈇䇯
䉲䊮䉪䊨䊃䊨䊮శಽᨆ䉕↪䈇䈢
᦭↰὾䈱⊒⦡䊜䉦䊆䉵䊛䈱⸃᣿
㒻⏛ེ䈱⊒⦡䉕቟ቯ䈚䈩ౣ⃻
䈜䉎䈖䈫䈏น⢻䈫䈭䉎䇯
㒻⏛ེ䈱⊒⦡䊜䉦䊆䉵䊛䉕⑼ቇ⊛
䈮⸃᣿䈜䉎੐䉕⋡ᜰ䈜
䈘䉌䈮䇮ᣂⷙ⊒⦡ᕈ㒻⏛ེ䈱
㐿⊒䈮䈧䈭䈕䉎䇯
㕍⏛䈱⊒⦡Ḯ䈪䈅䉎Fe䈱⁁ᘒᄌൻ䉕䉲䊮䉪䊨䊃䊨䊮శ䈪ಽᨆ䈜䉎੐䈮䉋䈦䈩䇮
㕍⏛䈱⊒⦡ᯏ᭴䉕⸃᣿䈜䉎䇯
⊕⍹ᢕೣ䊶ศ↰⑲ᴦ䊶ኹ㦮 ା䊶ൎᧁብᤘ
૒⾐⋵┇ᬺᛛⴚ䉶䊮䉺䊷
㒻⏛ེ㉽ਛߩ⊒⦡᧚㧔㋕㧕ߩ⎇ⓥ
XAFS
ࠪࡦࠢࡠ࠻ࡠࡦశࠍ೑↪ߒߚ⊒⦡ᯏ᭴ߩ⸃᣿
ࠟ࡜ࠬਛߩFeߩ⁁ᘒ㧔ଔᢙߩᄌൻ╬㧕
⊒⦡᧚䈫䉧䊤䉴䋨㉽䋩䈱⋧੕૞↪
⎇ⓥౝኈ㽲
⎇ⓥౝኈ㽳
㕍⏛䈲䇮὾ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈱㆑䈇䈮䉋䈦䈩䇮⊒⦡䈏ᄌൻ䈜䉎䇯
䋨㉄ൻ䋩
㕍⏛䈲䇮ၮ␆㉽䈱⚵ᚑ䈱㆑䈇䈮䉋䈦䈩䇮⊒⦡䈏ᄌൻ䈜䉎䇯
䋨ㆶర䋩
ㆶర䉧䉴Ớᐲ
Ớ
䋳䋫
Mg♽㉽
Ba♽㉽
Fe䈱ଔᢙᄌൻ䋿
䌤゠㆏䈱ㆫ⒖䈱䉣䊈䊦䉩䊷ᄌൻ䋿
䋲䋫
Fe
Ca♽㉽
㉽ਛ䈱⊒⦡ᚑಽ䈪䈅䉎Fe䈱৻ㇱ䈏䇮ㆶర὾ᚑ䈮䉋䈦䈩䋳ଔ䈎䉌䋲ଔ
䈮ᄌൻ䈜䉎䈖䈫䈪䇮㤛⦡䈎䉌㕍䋨✛䋩⦡䈮ᄌൻ䈜䉎䈫䈇䉒䉏䈩䈇䉎䇯
㉽⚵ᚑ䈱䉝䊦䉦䊥࿯㘃㊄ዻ䈱ᄌൻ䈮䉋䈦䈩䇮Fe䈱ଔᢙᄌൻ䉇䇮䋳d゠㆏䈱㔚
ሶ䈱ㆫ⒖䉣䊈䊦䉩䊷䈱ᄌൻ䈪䇮⊒⦡䈏㤛✛⦡䈎䉌㕍⦡䈮ᄌൻ䈜䉎䋿䋿
὾ᚑᤨ䈱ㆶరỚᐲ䈱ᄌൻ䈮䉋䉎Fe䈱⁁ᘒᄌൻ䋨ଔᢙ䋩䉕
XAFS᷹ቯ䈮䉋䈦䈩⺞䈼䉎
ၮ␆㉽䈱⚵ᚑ䈱㆑䈇䈮䉋䉎Fe䈱⁁ᘒᄌൻ䋨ଔᢙ䋩䉕XAFS᷹
ቯ䈮䉋䈦䈩⺞䈼䉎
ታ㛎ᣇᴺ
὾ᚑ᧦ઙ෸䈶㉽⚵ᚑ䈱㆑䈇䈮䉋䉎⊒⦡䈱ᄌൻ
⹜㛎↪ၮ␆㉽
㉄⚛Ớᐲ⸘ᜰ␜୯
䇼MG䇽
0.3(K2O Na2O) 0.4CaO 0.3MgO
0.5Al2O3 5SiO2
䇼CA䇽
0.3(K2O Na2O) 0.7CaO
0.5Al2O3 5SiO2
䇼BA䇽
0.3(K2O Na2O) 0.7BaO
0.5Al2O3 5SiO2
㶎ฦ㉽⮎䈮䈲Fe2O3䉕䈠䉏䈡䉏䋲wt%ᷝട䇯
䉝䊦䉦䊥࿯㘃㊄ዻ䉕ᄌൻ䈘䈞䈩䈇䉎䇯䋨ઁ䈱ൻቇ⚵ᚑ䈲ห䈛䋩
Fe2O3䉕ᷝട䈚䈭䈇㉽䈲䇮䈇䈝䉏䉅ή⦡ㅘ᣿䈭䉧䊤䉴䇯
1%
0%
-0.2%
-0.5%
-1.0%
-2.0%
-3.0%
-4.0%
-5.0%
MG
㉽
⹜
ᢱ
䋳⒳㘃䈱㉽⮎䉕⚛὾䈐㒻᧼䈮䈠䉏䈡䉏ᣉ㉽䈚䇮䈖䉏䉌䉕ㆶర䉧䉴Ớᐲ䉕ᄌൻ䈘䈞䋱䋳䋰䋰͠
䈪὾ᚑ䈚䇮⹏ଔ↪⹜ᢱ䉕૞⵾䈚䈢䇯
CA
BA
੹࿁䈲䇮㕍⏛䈱⊒⦡䊜䉦䊆䉵䊛䉕⸃᣿䈜䉎䈢䉄䈮䇮
㉄ൻ
䃁὾ᚑ᧦ઙ䉇㉽⚵ᚑ䈱⇣䈭䉎ฦ⒳㕍⏛㉽⹜ᢱ䈱⦡Ꮕ᷹ቯ
ㆶర䉧䉴Ớᐲ䈏㜞䈒䈭䉎䈖䈫䈪㤛⦡ĺ㕍⦡䈮ᄌൻ䇯
ㆶర䉧䉴Ớᐲ䈏㜞䈇䈾䈬⦡䈱ᓀᐲ䈏㜞䈒䈭䉎䇯
䌍䌧䇮Ca䇮Ba䈫ේሶ䈏ᄢ䈐䈒䈭䉎䈾䈬䇮㤛✛ĺ㕍䈮ᄌൻ䇯
䃁⊒⦡Ḯ䈪䈅䉎㕍⏛㉽ਛ䈱㋕䈱⁁ᘒᄌൻ䋨ଔᢙ╬䋩䉕䌘䌁䌆䌓ಽᨆ䈮䉋䈦䈩⸃ᨆ
㸫㸫
ㆶర
XAFS᷹ቯ⚿ᨐ䋨䋱䋩 ㆶర䉧䉴Ớᐲ䈱ᓇ㗀
XAFS᷹ቯ⚿ᨐ䋨䋱䋩
1.4
2008.8.21
N
R
dE
DW
CA OF 1%
2.9 㫧 0.5
1.88 㫧 0.02
7.3 㫧 2.7
0.07㫧 0.03
CA -0.2%
2.6 㫧 0.3
1.90 㫧 0.01
7.8 㫧 1.9
0.07 㫧 0.02
CA -2%
2.5 㫧 0.4
1.90 㫧 0.01
8.3 㫧 2.3
0.07 㫧 0.02
CA -4%
2.3 㫧 0.3
1.89 㫧 0.01
8.3 㫧 2.4
0.05 㫧 0.03
Normalized absorption
1.2
1
0.8
FeO
(Fe2+)
0.6
CA -0.2%
CA OF 1%
CA -2%
Fe2O3
(Fe3+)
0.4
0.2
CA -4%
FeO
0
Fe2O3
-0.2
7100
7110
7120
7130
7140
Energy (eV)
䊶὾ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏㜞䈇⹜ᢱ䈏䇮Fe䈱XANES(X✢ๆ෼┵᭴ㅧ) 䈱┙䈤਄䈏䉍䈏ૐ䉣䊈䊦䉩䊷
஥䈮䉒䈝䈎䈮䉲䊐䊃䈚䈩䈇䉎䇯
䊶ઁ䈱䋲⹜ᢱ䋨Mg♽,Ba♽䋩䈪䉅ห䈛௑ะ䈪䈅䈦䈢䇯
EXAFS䈱⸃ᨆ⚿ᨐ䈪䉅䇮὾ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏㜞䈇⹜ᢱ䈱ᣇ䈏䇮㓞ធේሶᢙ䋨㉄
⚛䈫઒ቯ䈚䈢႐ว䋩䈏ᷫዋ䈜䉎௑ะ䈏䈪䈢䇯䋨Fe2O3ĺ)H2䋩
὾ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏㜞䈇⹜ᢱ䋨䉋䉍㕍䈇㉽䋩䈏䇮Fe䈱䋲ଔ䈱⁁ᘒ䈮ㄭ䈒䈭䈦䈩䈇䉎䇯
㉽ਛ䈱Fe䈲ㆶర὾ᚑ䈮䉋䈦䈩䇮ଔᢙ䈏ᄌൻ䈚䈩䈇䉎䈫ᕁ䉒䉏䉎䇯
䉁䈫䉄
XAFS᷹ቯ⚿ᨐ䋨䋲䋩
1.4
ห৻䈱㉽⚵ᚑ䈱႐ว
㕍⏛㉽䈲䇮὾ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏ᄢ䈐䈒䈭䉎੐䈮䉋䈦䈩䇮⊒⦡䈏㤛⦡㸢㕍䋨✛䋩⦡䈮ᄌൻ䈜䉎䇯
XAFS᷹ቯ䈱⚿ᨐ䈎䉌䇮㕍⏛㉽ਛ䈱Fe䈲䇮὾ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏ᄢ䈐䈒䈭䉎੐䈮䉋䈦䈩ଔᢙ䈏䋲
ଔ䈎䉌䋳ଔ䈮ᄌൻ䈚䈩䈇䉎䈫ᕁ䉒䉏䉎䇯
䈖䉏䈏䇮㕍⏛㉽⊒⦡䈱ᄌൻⷐ࿃䈫ᕁ䉒䉏䉎䇯
㕍⏛㉽䋨ၮ␆㉽䋩䈱䉝䊦䉦䊥࿯㘃㊄ዻ䉕ᄌൻ䈘䈞䈢႐ว
ේሶ㊂䈏ᄢ䈐䈒䈭䉎䈮ᓥ䈇䇮⊒⦡䈏㤛✛⦡ĺ㕍✛⦡䈮ᄌൻ䈜䉎䇯
XAFS᷹ቯ䈱⚿ᨐ䈎䉌䇮
㕍⏛㉽䈱⊒⦡䈲⊒⦡Ḯ䈪䈅䉎Fe䈱䈢䈣න䈭䉎ଔᢙᄌൻ䈱䉂䈏⊒⦡䉕ᡰ㈩䈚䈩䈇䉎䈱䈪䈲䈭䈒䇮
Fe䈱㔚ሶ㈩⟎䈱䇮䈬䈱゠㆏䈱㔚ሶ䈏⒖േ䋨ㆫ⒖䋩䈚䈢䈎╬䈱⁁ᘒ䉕฽䉄䈢ⶄว⊛䈭ⷐ⚛䈮
䉋䈦䈩ᄌൻ䈚䈩䈇䉎䈫ᕁ䉒䉏䉎䇯
2008.8.21 data
Normalized absorption
1.2
1
0.8
CA -0.2%
0.6
0.4
MG -0.2%
0.2
BA -0.2%
0
-0.2
7100
7110
7120
7130
7140
Energy (eV)
Normalized absorption
1.4
2008.8.21 data
1.2
੹ᓟ䈱⸘↹
1
0.8
0.6
CA -2%
⃻Ბ㓏䈪䈲䇮㕍⏛㉽䈱⦡ᄌൻ䈫Fe䈱⁁ᘒᄌൻ䈱㑐ㅪᕈ䉕⷗䈇䈣䈚䈩䈲䈇䈭䈇䇯
੹ᓟ䇮὾ᚑᤨ䈱㔓࿐᳇᧦ઙ䉕ᄌൻ䈘䈞䈩૞⵾䈚䈢⹜ᢱ䈱XAFS᷹ቯ䋨エ䌘䈱XAFS᷹ቯ╬䋩䉕
➅䉍㄰䈚ⴕ䈇䇮㉽ਛ䈱㋕䈱ଔᢙ䇮㔚ሶ⁁ᘒ╬ᄌൻ䈫㉽䈱⦡ᄌൻ䈱㑐ㅪᕈ䉕⸃᣿䈚䈩䈇䈒䇯
䉁䈢䇮㋕㉽䈮㒢䉌䈝㌃㉽╬䈱ઁ⦡㉽䈱⊒⦡ᯏ᭴䉕⸃᣿䈚䈩䈇䈒䇯
MG -2%
0.4
0.2
BA -2%
0
-0.2
7100
7110
7120
7130
7140
⻢ㄉ
Energy (eV)
䉋䉍㕍⦡䈏ᒝ䈇⹜ᢱ䋨BA㉽䋩䈏䇮Fe䈱XANES䈱┙䈤਄䈏䉍䈏㜞䉣䊈䊦䉩䊷஥䈮䉲䊐䊃䈚䈩䈇䉎䇯
䉋䉍㕍⦡䈏ᒝ䈇⹜ᢱ䈱ᣇ䈏Fe䈱ଔᢙ䈏䋳ଔ䈮ㄭ䈒䈭䈦䈩䈇䉎䇯ĺ੍ᗐ䈫ㅒ䈱⚿ᨐ䇯
੹࿁䈱⎇ⓥ䉕ㅴ䉄䉎䈮䈅䈢䉍䇮਻Ꮊ䉲䊮䉪䊨䊃䊨䊮శ⎇ⓥ䉶䊮䉺䊷䈱೽ᚲ㐳䈱ᐔ੗᳁䇮
䉫䊦䊷䊒㐳䈱ጟፉ᳁䇮⎇ⓥຬ䈱⍹࿾᳁䇮㓈⼱᳁䉕䈲䈛䉄਻Ꮊ䉲䊮䉪䊨䊃䊨䊮శ䉶䊮䉺䊷
䈱⡯ຬ䈱ᣇ䇱䈮䈲䇮ᄙᄢ䈭䈗ᜰዉ䇮䈗දജ䉕㗂䈐䉁䈚䈢䇯
㸫㸫
Ni induced crystallographic stability of Cu6Sn5 for Pb-free solder
K. Nogita1, S. D. McDonald1, S. Suenaga2, T. Nishimura2,
R. Ohtani3 and K. Sumitani3
The University of Queensland1, Nihon Superior Co. Ltd.2, SAGA Light Source3
Cu6Sn5 is a promising intermetallic compound in structural and functional lead-free
solder joints. Cu6Sn5 has been reported to exist in two crystal structures with an allotropic
transformation from monoclinic Ș'-Cu6Sn5 at temperatures lower than 186ºC to
hexagonal Ș-Cu6Sn5 at higher temperatures. We recently discovered that the hexagonal
structure of Cu6Sn5 in the presence of trace Ni additions forms (Cu,Ni)6Sn5 which is
stable down to room temperature[1]. This report further confirms the phase stabilising
effect of Ni on Cu6Sn5 and the mechanisms of this discovery by synchrotron base powder
X-ray diffraction with Rietveld refinement analysis using Cu6-xNixSn5 (x=0, 0.5, 1, 1.5
and 2) samples with three different thermal annealing conditions.
[1] K. Nogita and T. Nishimura, Scripta Materialia 59 (2008) 191-194.
㸫㸫
㸫㸫
$J&X ඹ࢖࢜ࣥ஺᥮ἲ࡟࠾ࡅࡿ࣍࢘ࢣ࢖㓟࢞ࣛࢫࡢ╔Ⰽᶵᵓ
⚟ᒸ┴ᕤᴗᢏ⾡ࢭࣥࢱ࣮࣭㜰ᮏᑦᏕ㸪㸦ᰴ㸧ࢡࣛ࢖࣑ࣥࢢ࣭℈ᆅಙ
ගᶵ⬟ᛶ࢞ࣛࢫࡢタィࢆ┠ⓗ࡜ࡋ࡚ࠊ࢖࢜ࣥ஺᥮ἲࢆ⏝࠸࢞ࣛࢫᵓ㐀୰࡟஧ࡘࡢ␗࡞ࡿ㔠
ᒓ࢖࢜ࣥࢆྠ᫬࡟ᑟධࡋࠊࡑࢀࡒࢀࡢ┦஫స⏝࡟ࡼࡿᙧែኚ໬࡟ࡘ࠸᳨࡚ウࡋࡓࠋᮏ◊✲࡛
ࡣ࣍࢘ࢣ࢖㓟࢞ࣛࢫ3\UH[ᇶᯈࢆᑐ㇟࡜ࡋࠊ$Jࠊ&Xࠊ࠾ࡼࡧࡑࡢΰྜᮦࢆ⏝࠸࡚࣮࣌
ࢫࢺሬᕸЍ⇕ฎ⌮࡟ࡼࡿ✀ࠎࡢ࢖࢜ࣥ஺᥮ࢆ⾜࠸ヨᩱࢆㄪ〇ࡋࡓࠋࡇࢀ࡟ࡘ࠸࡚ࠊ྾ගᗘ ᐃࠊࢩࣥࢡࣟࢺࣟࣥග࡟ࡼࡿ ;$1(6 ᐃࠊ7(0 ほᐹࢆ⾜ࡗࡓࠋ
ࡑࡢ⤖ᯝࠊ⇕ฎ⌮᮲௳࡟ࡼࡿᙳ㡪ࡣ࠶ࡿࡶࡢࡢࠊ$J ༢⊂ᑟධࡋࡓሙྜࠊࣉࣛࢬࣔࣥ྾཰
࡟ࡼࡾ㔠ᒓࢥࣟ࢖ࢻ⏕ᡂࡀ☜ㄆࡉࢀࡿࡢ࡟ᑐࡋࠊ&X
༢⊂࡛ࡣ୺࡟㸯౯ࡢ࢖࢜ࣥ྾཰ࡀ᳨ฟࡉࢀࠊ&X࢖࢜
ࣥ࡜ࡋ࡚Ꮡᅾࡋ࡚࠸ࡿࡇ࡜ࡀࢃ࠿ࡗࡓࠋࡲࡓࠊ$J ࡜
&X ࡀΰᅾࡋࡓඹ࢖࢜ࣥ஺᥮ࢆ⾜࠺࡜ࠊ㔠ᒓ $J ࡟ࡼࡿ
ࣉࣛࢬࣔࣥ྾཰㔞ࡀⴭࡋࡃቑ኱ࡋࡓࠋࡇࡢ࡜ࡁࡢ࢞
ࣛࢫ୰ࡢ &X ࡣࠊᅗ࡟♧ࡍࡼ࠺࡟㸰౯࢖࢜ࣥࡀ୺య࡛
࠶ࡾࠊ$J ࡀᑟධࡉࢀࡿࡇ࡜࡛ 5HGR[ ࡀ㉳ࡇࡗ࡚࠸ࡿ
ࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋࡍ࡞ࢃࡕࠊ$J&X ඹ࢖࢜ࣥ஺
᥮ࢆ⾜࠺࡜ࠊ࢞ࣛࢫ୰ࡢ &X ࢖࢜ࣥࡣ㓟໬ࡉࢀ࡚㸰౯
࡟࡞ࡿ࡜࡜ࡶ࡟ࠊ$J ࢖࢜ࣥࡢ㑏ඖࡀ㐍ࡴࡓࡵࠊ$J ࢥ
ᅗ Cu ࡢ XANES ࢫ࣌ࢡࢺࣝ
㸦Cu,Cu2O,CuO ࡣᶆ‽ヨ⸆㸧
ࣟ࢖ࢻ㔞ࡀቑ኱ࡍࡿࡶࡢ࡜⪃࠼ࡽࢀࡿࠋ
㸫㸫
㸫㸫
㌾ X ⥺ศගࢫ࣌ࢡࢺࣝ ᐃ⿦⨨⏝⏕యヨᩱ ᐃࢩࢫࢸ࣒ࡢ㛤Ⓨ࡜⤖ᯝ
㏕ᕝ Ὀᖾࠊᯇᑿ ಟྖࠊᰩᓮ ᩄࠊ⬥⏣ ஂఙ㸦⚟ᒸ኱⌮㸧
࠙ᗎㄽࠚᡃࠎࡣࠊࡇࢀࡲ࡛࡟኱Ẽᅽୗ࡛ࡶ ᐃྍ⬟࡞⏕యヨᩱ ᐃࢩࢫࢸ࣒㸦௨ୗࠊ⁐ᾮࢭ
ࣝࢩࢫࢸ࣒㸧ࡢ㛤Ⓨࢆ⾜ࡗ࡚ࡁࡓࠋᮏ◊✲ࡢ┠ⓗࡣࠊ᪂ࡓ࡟㛤Ⓨࡋࡓ⏕యヨᩱࡢ࢖࣓࣮ࢪࣥ
ࢢ ᐃ࡟ࡶᑐᛂྍ⬟࡞⁐ᾮࢭࣝࢩࢫࢸ࣒࡟ࡼࡿ ᐃࢆ⾜࠸ࠊᚓࡽࢀࡓ⤖ᯝࢆࡶ࡜࡟ᮏ⿦⨨ࡢ
ᛶ⬟ホ౯ཬࡧሷ໬ࢼࢺ࣒ࣜ࢘Ỉ⁐ᾮ୰ࡢࢼࢺ࣒ࣜ࢘࢖࢜ࣥ࿘ࡾࡢỈ࿴ᵓ㐀࡟ࡘ࠸࡚ DV-XD
ศᏊ㌶㐨ィ⟬ἲࢆ⏝࠸࡚ゎᯒࢆ⾜࠺ࡇ࡜࡛࠶ࡿࠋ
࠙ᐇ㦂ࠚ ᐃ᪋タ㸸SAGA-LS BL-12 ( ᐃྍ⬟㡿ᇦ㸸⣙ 40 ~ 1500 eV )࣭ ᐃ⿦⨨㸸⏕యヨᩱ
ᐃࢩࢫࢸ࣒࣭ ᐃヨᩱ㸸NaCl ⢊ᮎ࣭Ỉ⁐ᾮ(5.0~1.0mol/l) (Na K-edge)ࠊMgCl2 ⢊ᮎ࣭Ỉ⁐
ᾮ (5.0~0.5mol/l) (Mg K-edge)ࠊࣁ࢖ࢻࣟ࢟ࢩ࢔ࣃࢱ࢖ࢺ Ca10(PO4)6(OH)2ࠊ࢘ࢧࢠࡢ㦵(Ca
LII,III-edge)
࠙⤖ᯝ࡜⪃ᐹࠚNaClࠊMgCl2 ࡟ࡘ࠸࡚ᅛయ⢊ᮎ࡜⣙ 5.0~1.0mol/l Ỉ⁐ᾮࡢ Na-KࠊMg-K
XANES ࢫ࣌ࢡࢺࣝ ᐃࢆ⾜ࡗࡓ⤖ᯝࠊࡑࢀࡒࢀࡢヨᩱࡢᅛయ࡜Ỉ⁐ᾮ࠿ࡽᚓࡽࢀࡿ
XANES ࢫ࣌ࢡࢺࣝࡢ㛫࡟㢧ⴭ࡞㐪࠸ࢆ☜ㄆࡋࡓࠋࡑࡢ⤖ᯝࠊ᪂つࡢ⁐ᾮࢭࣝࢩࢫࢸ࣒࡟࠾
࠸࡚ࠊ⁐ᾮヨᩱ୰ࡢ㍍ඖ⣲ࡢ XANES ࢫ࣌ࢡࢺࣝ ᐃࡀ༑ศྍ⬟࡛࠶ࡿࡇ࡜ࡀ☜ㄆࡉࢀࡓࠋ
㸫㸫
㸫㸫
ᨺᑕග ;$)6 ᐃ࡟ࡼࡿ %D7L2 ࢼࣀ⢏Ꮚࡢᐊ ⤖ᬗ໬ᣲືゎᯒ
㸦⚟ᒸ┴ᕤᢏࢭ㸧‫ྜྷ⸨ۑ‬ᅜᏕ࣭∾㔝᫭ஂ࣭᭷ᮧ㞞ྖ࣭ᒣୗὒᏊ
㸦஑ᕤ኱ᕤ㸧ୗᒸᘯ࿴㸦஑ᕞࢩࣥࢡࣟࢺࣟࣥග◊ࢭ㸧ᒸᓥᩄᾈ
%D7L2 ࡣ௦⾲ⓗ࡞ㄏ㟁యᮦᩱ࡛࠶ࡿࡀࠊ㏆ᖺᚤ⢏໬ࡀồࡵࡽࢀ࡚࠸ࡿࠋࡇࢀ࡟ᑐࡋᡃࠎࡣࠊ
%D ࡜ 7L ࡢ࢔ࣝࢥ࢟ࢩࢻΰྜ⁐ᾮ࡟ప ࡛ỈࢆῧຍࡋࡓᚋࠊΥ⛬ᗘࡢ ᗘ࡛⇍ᡂฎ⌮ࡍࡿࠊ
㧗⃰ᗘࢰࣝࢤࣝἲ࡜࿧ࡤࢀࡿ᪉ἲ࡛ %D7L2 ࢼࣀ⢏Ꮚࢆྵࡴࢤࣝ≧≀ࢆྜᡂࡋ࡚࠸ࡿ ࠋࡇ
ࡢ %D7L2 ప ⤖ᬗ໬ᣲື࡟ࡘ࠸᳨࡚ウࡍࡿࡓࡵࠊ⤖ᬗ໬๓DJLQJKࡢࢤࣝࠊ⤖ᬗ໬ᚋ
DJLQJKࡢࢤࣝ࡜ࠊᕷ㈍ %D7L2 ⢊ᮎ㸦ሜ໬Ꮫᕤᴗओ〇ࡢ %7㸧࡟ࡘ࠸࡚ࠊ7L. ➃ࡢ
;$1(6 ࡜ %D/Ϫ➃ࡢ (;$)6 ᐃࢆᐇ᪋ࡋࢫ࣌ࢡࢺࣝࢆẚ㍑ࡋࡓࠋ࠸ࡎࢀࡢ ᐃࡶࠊ6$*$
/6 ࣅ࣮࣒ࣛ࢖ࣥࢆ౑⏝ࡋ㏱㐣ἲ࡛⾜ࡗࡓࠋ7L. ➃ࡢ ;$1(6 ࢫ࣌ࢡࢺࣝ࡟࠾࠸࡚ࠊ࢚࣮ࢪ
ࣥࢢ Kࡢࢫ࣌ࢡࢺࣝ࡟ࡣࠊH9 ௜㏆࡟ࣉ࢚ࣜࢵࢪࣆ࣮ࢡ࡜ࠊ㹼H9 ࡟ࣈ࣮ࣟࢻ
࡞ࣆ࣮ࢡࡀぢࡽࢀࡓࠋ࢚࣮ࢪࣥࢢ᫬㛫ࡢᘏ㛗࡟క࠸ࠊH9 ௜㏆࡟㗦࠸ࣆ࣮ࢡࡀ⌧ࢀࠊ࢚
࣮ࢪࣥࢢ K ࡛ࡣ඲యⓗ࡞࣌ࢡࢺࣝࡢᙧ≧ࡀᕷ㈍ %D7L2 ⢊ᮎࡢࡶࡢ࡜㢮ఝࡋࡓࡶࡢ࡜࡞ࡗ
ࡓࠋ%D/Ϫ➃ࡢ (;$)6 ࢫ࣌ࢡࢺࣝࡶ࢚࣮ࢪࣥࢢ᫬㛫ࡢᘏ㛗࡟క࠸ࠊᕷ㈍ရ %D7L2 ⢊ࡢࢫ࣌ࢡ
ࢺࣝᙧ≧࡟㏆࡙ࡃ஦ࡀ☜ㄆࡉࢀࠊ㧗⃰ᗘࢰࣝࢤࣝἲ࡛ྜᡂࡋࡓ %D7L2 ࡀᕷ㈍ရ࡜ྠᵝࡢࢫ
࣌ࢡࢺࣝᙧ≧ࢆ♧ࡍࡇ࡜ࡀุࡗࡓࠋ
࠙ㅰ㎡ࠚᮏ◊✲ࡢ୍㒊ࡣ 1('2 ᢏ⾡㛤Ⓨᶵᵓᖹᡂ ᖺᗘ⏘ᴗᢏ⾡◊✲ຓᡂ஦ᴗࡢຓᡂࢆཷࡅ
࡚ᐇ᪋ࡋࡓࡶࡢ࡛ࡍࠋ
࠙ཧ⪃ᩥ⊩ࠚ᱓ཎㄔ಴⏣ዉὠᏊ⥴᪉㐨ᏊᒣୗὒᏊ᭷ᮧ㞞ྖ ࢭ࣑ࣛࢵࢡࢫ
>@
㸫㸫
㸫㸫
% ࢻ࣮ࣉ㉸ࢼࣀᚤ⤖ᬗࢲ࢖ࣖࣔࣥࢻỈ⣲໬࢔ࣔࣝࣇ࢓ࢫ࣮࢝࣎ࣥ⭷
ࡢ๰〇࡜ࡑࡢኴ㝧㟁ụ࡬ࡢᛂ⏝
኱᭤᪂▮ ྜྷṊ๛ Ọ㔝ᙲ ཎṊႹ ኱㇂ுኴ ℩ᡞᒣᐶஅ ᑠᯘⱥ୍ Ọᒣ㑥ோ ஑ᕞ኱⥲⌮ᕤ ᭷᫂㧗ᑓ ஑ᕞࢩࣥࢡࣟࢺࣟࣥග◊✲ࢭࣥࢱ࣮ ஑ᕞ኱㝔ᕤ
ࡣࡌࡵ࡟㸸㉸ࢼࣀᚤ⤖ᬗࢲ࢖ࣖࣔࣥࢻ81&'Ỉ
Temperature (K)
600
500
400
300
QP ௨ୗࡢࢲ࢖ࣖࣔࣥࢻࢼࣀᚤ⤖ᬗࢆỈ⣲໬࢔ࣔ
ࣝࣇ࢓ࢫ࣮࢝࣎ࣥࡀྲྀࡾᅖࡴᵓ㐀ࢆࡶࡘ᪂つᮦᩱ
࡛࠶ࡿ㸬81&'D&+ ࡣ࢔ࣔࣝࣇ࢓ࢫ࣮࢝࣎ࣥ࡜ከ
⤖ᬗࢲ࢖ࣖࣔࣥࢻࡢⰋ࠸Ⅼࢆేࡏᣢࡘ≉ᚩࢆ᭷ࡋ
࡚࠾ࡾ㸪◳㉁⓶⭷ࡢࡳ࡞ࡽࡎ༙ᑟయ࡜ࡋ࡚ࡶ⯆࿡
῝࠸>@㸬ᡃࠎࡣ௒ᅇ㸪ሗ࿌౛ࡀᩘᑡ࡞࠸ 81&'D
Conductivity (S/cm)
⣲໬࢔ࣔࣝࣇ࢓ࢫ࣮࢝࣎ࣥD&+ΰ┦⭷ࡣ㸪⢏ᚄ
10
0
‫ غ‬B 13at.%
ٟ B 7at.%
˜ B 3at.%
ً non–doped
&+ ࡢ S ᆺ໬ࢆ࣎ࣟࣥῧຍ࡟ࡼࡾヨࡳ㸪⭷ᵓ㐀ࢆ
ヲ⣽࡟ホ౯ࡋ㸪ኴ㝧㟁ụ࡬ࡢᛂ⏝ࢆ᳨ウࡋࡓ㸬
10
–1
2
ᐇ㦂᪉ἲ࡜⤖ᯝ⪃ᐹ㸸⭷స〇࡟ࡣ࣮ࣞࢨ࣮࢔ࣈࣞ
3
–1
4
1000/T (K )
Fig. 1 Change in the electrical conductivity
of UNCD/a-C:H films for the Boron content
▼ⱥᇶᯈࢆ౑⏝ࡋ㸪Ỉ⣲ᅽ 3D㸪ᇶᯈ ᗘ in the film.
࣮ࢩࣙࣥἲࢆ⏝࠸ࡓ㸬ᇶᯈ࡟ࡣ &]6Lᇶᯈ㸪
q& ࡛ᡂ⭷ࡋࡓࢱ࣮ࢤࢵࢺ࡟ࡣ࣎ࣟࣥࡀࢻ࣮ࣉࡉ
ࢀࡓࢢࣛࣇ࢓࢖ࢺࢆ౑⏝ࡋࡓ㸬స〇ࡋࡓ⭷ࡢᵓ㐀ホ౯ࢆ ; ⥺྾཰ᚤ⣽ᵓ㐀1(;$)6㸪ග㟁Ꮚ
ศග ᐃ;36㸪⭷୰ࡢ㟁Ẽఏᑟ≉ᛶࡣ 9DQGHU3DXZ ἲ࡟ࡼࡗ࡚ホ౯ࡋ㸪ఏᑟᆺࡣ⇕㉳㟁
ຊ࡟ࡼࡗุู࡚ࡋࡓ㸬ᅗ ࡟࣎ࣟࣥࢻ࣮ࣉ㔞ࡢ␗࡞ࡿ 81&'D&+ ⭷ࡢ㟁Ẽఏᑟᗘࡢ ᗘ౫
Ꮡᛶࢆ♧ࡍ㸬ࢻ࣮ࣉ㔞࡟ᛂࡌ࡚ఏᑟᗘࡀቑࡋ㸪࢟ࣕࣜ࢔⃰ᗘไᚚࡀྍ⬟࡛࠶ࡿࡇ࡜ࡀ☜ㄆ࡛
ࡁࡓ㸬ఏᑟᗘࡀ7 ࡟ẚ౛ࡍࡿࡇ࡜࠿ࡽ㸪࢟ࣕࣜ࢔ఏᑟ࡟ࡣ࣍ࢵࣆࣥࢢఏᑟࡀᨭ㓄ⓗ࡜
⪃࠼ࡽࢀࡿ㸬ࡑࡢ௚ヲ⣽ࡣⓎ⾲ᙜ᪥ሗ࿌ࡍࡿ㸬
>@7<RVKLWDNHHWDO-SQ-$SSO3K\V/
㸫㸫
1䋮INTRODUCTION
2䋮Experimental
⿥䊅䊉ᓸ⚿᥏䉻䉟䊟䊝䊮䊄/᳓⚛ൻ䉝䊝䊦䊐䉜䉴䉦䊷䊗䊮ᷙ⋧⤑䋨UNCD/a-C:H䋩
Rotate
䊧䊷䉱䊷䉝䊑䊧䊷䉲䊢䊮(PLD)ᴺ
᳓⚛ൻ䉝䊝䊦䊐䉜䉴䉦䊷䊗䊮䈏☸ᓘ10nmએਅ䈱䉻䉟䊟䊝䊮䊄ᓸ⚿᥏䉕ข䉍࿐䉃ᣂ᧚ᢱ
䉻䉟䊟䊝䊮䊄⁁
὇⚛
DLC (a-C:H)
⿥䊅䊉ᓸ⚿᥏
䉻䉟䊟䊝䊮䊄
UNCD
ᄙ⚿᥏
䉻䉟䊟䊝䊮䊄
ᒻᘒ
㕖᥏⾰
䊅䊉ᓸ⚿᥏
ᄙ⚿᥏
න⚿᥏
⇣⒳ၮ᧼䈻䈱
ᚑ㐳
䃁ኈᤃ
䂾น⢻
䂦࿎㔍
㬍ᭂ䉄䈩࿎㔍
᷷ᐲ቟ቯᕈ
㬍
䂾
䃁
䃁
䊋䊮䊄䉩䊞䉾䊒
< 5.5 eV
5.5 eV ?
5.5 eV
5.5 eV
⛘✼ᕈ
䂾
䂾
䃁
䃁
⤑䈱ᐔṖᕈ
䃁
䃁
㬍
䃁
ᾲવዉᐲ
㬍
䂾
䃁
䃁
ㅘㆊᕈ
䂾
䂾
䃁
䃁
H2 53.3 Pa
Wavelength : 193nm
Energy: 100mJ
Irradiation area: 2mm2
Repetition Rate: 50Hz
න⚿᥏
䉻䉟䊟䊝䊮䊄
Target
( Graphite )
Lens
Excimer Laser (ArF)
1 nm
45 q
Thin film
Substrate
㔚ሶ✢࿁᛬䊌䉺䊷䊮䈫䉻䉟䊟䊝䊮䊄111䊥䊮䉫䈱
৻ㇱ䈱࿁᛬శ䉕↪䈇䈢ᥧⷞ㊁TEM௝
UNCD/a-C:H㜞ಽ⸃⢻TEM௝
T. Hara et.al Diamond Relat. Mater.15(2006)649
䉝䊝䊦䊐䉜䉴䉦䊷䊗䊮
UNCD/a-C:H
䊶 ᚑ⤑䈏ኈᤃ
䊶 B䊄䊷䊒䈪pဳൻ
䊶 N䊄䊷䊒䈪nဳൻ
䊶 variable Eg
䊶 ⤑⴫㕙䈏ᭂ䉄䈩Ṗ
䉌䈎
䊶 ᚑ⤑䈏ኈᤃ
䊶 ᭂ䉄䈩ᄢ
ᄢ䈐䈭 ๆ෼ଥ
ᢙ
䊶 ⤑⴫㕙䈏ᭂ䉄䈩Ṗ䉌
䈎
䊶 N䊄䊷䊒䈪nဳൻ䋧
䉨䊞䊥䉝Ớᐲ೙ᓮ
?
䊶 䉨䊞䊥䉝Ớᐲ䈱೙
ᓮ䈏䈪䈐䈭䈇䋨⛘✼
ᕈ䋩
䊶 ૐ䈇᷷ᐲ቟ቯᕈ
ᄙ⚿᥏䊶න⚿᥏䉻䉟䊟
NCD
䊶 B䊄䊷䊒䈪p
ဳൻ䋧䉨䊞
䊥䉝Ớᐲ೙
ᓮ
䊶 N䊄䊷䊒䈪n
ဳൻ䋧䉨䊞
䊥䉝Ớᐲ೙
ᓮ
䊶 ⓥᭂ䈱䊪䉟䊄䉩䊞䉾䊒ඨ
ዉ૕
䊶B䊄䊷䊒䈪pဳൻ䋧䉨䊞䊥
䉝Ớᐲ೙ᓮ
䊶 䊐䉜䉶䉾䊃䋧
☸⇇
䊶 ๆ෼ଥᢙ䈏
ዊ䈘䈇
䊶䊓䊁䊨ᚑ㐳䈏࿎㔍
䊶Nဳൻ䈏࿎㔍
᭴ㅧ⹏ଔ
X✢ๆ෼ᓸ⚦᭴ㅧ(NEXAFS)
SAGA-LS BL12
శ㔚ሶಽశ᷹ቯ(XPS)
䊧䊷䉱䊷䊤䊙䊮ಽశశᐲ⸘
䊐䊷䊥䉣ᄌ឵⿒ᄖಽశశᐲ⸘(FTIR)
㔚᳇વዉ․ᕈ
Van der Pauwᴺ
વዉဳ್೎
ᾲ⿠㔚ജᴺ
વዉဳ೙ᓮ䋧䉨䊞䊥䉝Ớᐲ೙ᓮ䈏
䈪䈐䉏䈳䋬ᄢ䈐䈭ๆ෼ଥᢙ䉕᦭䈜
䉎ᣂⷙ䉝䊝䊦䊐䉜䉴♽ඨዉ૕᧚ᢱ
䈫䈚䈩⥝๧ᷓ䈇䋮
⋡⊛
UNCD/a-C:H䈱B䊄䊷䊒䈮
䉋䉎pဳൻ䈫ᄥ㓁㔚ᳰᔕ
↪䈻䈱น⢻ᕈ䉕ត䉎
Base vacuum < 10-4 Pa
Substrate temperature
550 qC
Target
Substrate
Graphite
Quartz
Boron-doped Graphite
n-Si(100)
ᧂ⍮䈱‛ᕈ
C1s
B/C ratio
O1s
Boron contents in films (at. %)
10
O(Auger)
B1s
800
HOPG 45°
600
400
200
QRQ±GRSHG
5
0
0
0
5
10
15
Boron contents in targets (at. %)
Binding energy (eV)
⤑ਛ䈻䈱B䊄䊷䊒㊂䈏㗼⪺䈮Ⴧട
B/C 䋽
81&'D±&+
Intensity (arb.unit)
20
1kV 0.2min.
280
B (10at.%) doped
B䊄䊷䊒UNCD/a-C:H
Barea/BP + Carea/CP
ɽ
B䈮⿠࿃䈜䉎䊏䊷䉪䈏287.5eVઃㄭ䈮಴⃻
280
䉺䊷䉭䉾䊃䊷⤑㑆䈪⚂30%䊨䉴
290
540
Conductivity[S/cm]
0
Temperature (K)
300
±
±
n-Si(100)ၮ᧼਄䈮䊓䊁䊨ᚑ㐳䈚䈢p-UNCD⤑䈱I-V․ᕈ
±
3
p-UNCD
4
5
10
- in the dark
±
0.0003
٨ B 13at.% doped
ٌ B 7at.% doped
‫ ع‬B 3at.% doped
‫غ‬QRQ±GRSHG
n-Si(100)
- under illumination
0.0002
Al electrode
0.0001
0.22
0.24
1/4
±
(1/T) (K )
10
of D(BD_004_b)
vs. hQ
Plot ofPlot
D vs.hQ
7
10
0
±
±
0
Voltage (V)
1
6
10
䊗䊨䊮䊄䊷䊒㊂䉕਄᣹
‫ غ‬B 13at.%
ٟ B 7at.%
3䌾6eV䈮䈍䈇䈩
ๆ෼ଥᢙ106(cm-1)
10
10
⤑ਛ䈱㔚᳇વዉᐲ䈏਄᣹
±
3
10
±
2
5
10
4
˜ B 3at.%
ً undoped
10
⺞ᩏਛ
Pd electrode
activation
energy
95meV
=100m(eV)
1000/T
0.2
ʋ*C C䈱৻ㇱ䈏ʍ*CB䈮⟎឵?
-1
Conductivity (S/cm)
0
330
6䋮Hetero Junction
Temperature [K]
340
240
2
±
320
0
Current (A)
400
±
500
lnǻ(ohm cm )
600
10
440
310
Photon energy (eV)
0
10
300
D [cm ]
600
400
200
Binging energy (eV)
5䋮Conductivity measurement
10
ʋ*C C䈏non-dope UNCD䈮Ყ䈼䈩ዊ䈘䈇
SR
Current (A)
800
330
ʍ*CC 䈏 ʍ*CH, ʋ*C{C 䈫Ყ䈼䈩ᄢ䈐䈇
B (20at.%) doped
1kV 5.0min.
1000
300
310
320
Photon energy (eV)
UNCD/a-C:H䈱․ᓽ
Barea/BP
1kV 1.5min.
O1s 䈲⤑⴫㕙䈱ਇ⚐‛
290
[S. Ohmagari, T. Yoshitake, A. Nagano, S. AL-Riyami, R. Ohtani, H. Setoyama,
E. Kobayashi, and K. Nagayama, Jornal of Nanomaterials, article in press]
1kV 0.5min.
1kV 2.5min.
81&'D±&+
B (5at.%) doped
287.5
Barea, Carea : Total area of Boron and Carbon
BP, CP : Photoionization energy ( MgKɲ line )
O1s 䈲Ar+䉴䊌䉾䉺䈪ᶖṌ
QRQ±VSW
Intensity (arb.unit)
Intensity (arb.unit)
± B 20at.% target
± B 10at.% target
± B 5at.% target
Intensity (arb.unit)
(a)
1000
ʍ*
ǻ*C=C
ʋ*
15
ǻ*C҂C
4䋮Near-edge X-ray absorption Fine Structure
Ǹ*C=C
ǻ*CH
Ǹ*C҂C
ǻ*&±&
3䋮X-ray photoemission spectroscopy
3
±
1000/T (K )
4
±
䉨䊞䊥䉝Ớᐲ೙ᓮ䈏น⢻
䉨䊞䊥䉝વዉ䈮䈲䊖䉾䊏䊮䉫વዉ䈏ᡰ㈩⊛
㸫㸫
0
Voltage (V)
1
1
2
3
4
5
Photon energy [eV]
6
7
T. Yoshitake et al. Jpn. J. Appl. Phys. 46, L936 (2007)
UNCD⭯⤑䈲ᄥ㓁㔚ᳰ䈱⍴ᵄ㐳஥䈱ๆ෼ጀ䈫䈚䈩᦭ᦸ
ྠ㍈ᆺ䜰䞊䜽䝥䝷䝈䝬䜺䞁䛻䜘䜛㉸䝘䝜ᚤ⤖ᬗ䝎䜲䝲䝰䞁䝗/Ỉ⣲໬䜰䝰䝹
䝣䜯䝇䜹䞊䝪䞁⭷䛾๰〇䛸䛭䛾ᙧᡂᶵᵓ
ⰼ⏣㈼ᚿ 1䠈୰ᕝ ඃ 1䠈すᒣ㈗ྐ 2䠈ྜྷ⏣ᬛ༤ 1䠈ྜྷṊ ๛ 1䠈኱㇂ுኴ 3䠈㝮㇂࿴Ⴙ 3䠈ᒸᓥᩄᾈ 3䠈
℩ᡞᒣᐶஅ 3䠈ᑠᯘⱥ୍ 3䠈Ọᒣ㑥ோ 2
1
஑኱㝔⥲⌮ᕤ䠈2 ஑኱㝔ᕤ䠈3 ஑ᕞ䝅䞁䜽䝻䝖䝻䞁ග◊✲䝉䞁䝍䞊
ྠ㍈ᆺ䜰䞊䜽䝥䝷䝈䝬䜺䞁䜢⏝䛔䛯䜰䞊䜽䝥䝷䝈䝬ἲ䛻
䞁 (UNCD/a-C) ⭷䛾๰〇䜢ヨ䜏䛯䠊䜎䛯䠈䛭䛾ᙧᡂᶵᵓ
䛻㛵䛧䛶⪃ᐹ䜢⾜䛳䛯䠊స〇䛧䛯⭷䛾ᵓ㐀ホ౯䛿䠈䝅䞁䜽
䝻䝖䝻䞁ග (஑ᕞ䝅䞁䜽䝻䝖䝻䞁ග◊✲䝉䞁䝍䞊BL12, 15)
䜢⏝䛔䛯⢊ᮎ X ⥺ᅇᢡ (XRD)䠈ග㟁Ꮚศග (XPS) 䛻䜘
䜚⾜䛳䛯䠊స〇䛧䛯⭷䛾 X ⥺ᅇᢡ䝟䝍䞊䞁䜢 Figure 1 䛻
♧䛩䠊Diamond-111, 220 ᅇᢡ䝸䞁䜾䛜ほ 䛥䜜䠈స〇䛧䛯
Intensity (arb. unit)
䜘䜚㉸䝘䝜ᚤ⤖ᬗ䝎䜲䝲䝰䞁䝗/Ỉ⣲໬䜰䝰䝹䝣䜯䝇䜹䞊䝪
1
1
1
d
n
o
m
ai
D
1
1
1
Ͳ
D
30
40
0
2
2
Ͳ
D
0
2
2
d
n
o
m
ai
D
⭷୰䛻 UNCD ⤖ᬗ䛜⏕ᡂ䛧䛶䛔䜛䛣䛸䛜ศ䛛䜛䠊ᅇᢡ䝢
䞊䜽䛾್༙ᖜ䛛䜙 UNCD ⤖ᬗ䛾⢏ᚄ䛿⣙ 2 nm 䛸ぢ✚䜒
䜙䜜䛯䠊䜎䛯䠈〇⭷୰䛻Ⓨ⏕䛩䜛䝥䝷䝈䝬䝥䝹䞊䝮䜢ほ 䛧䠈UNCD ᙧᡂᶵᵓ䛻㛵䛧䛶⪃ᐹ䜢⾜䛳䛯䠊䛭䛾௚䛾⤖
ᯝ䛸⪃ᐹ䛿Ⓨ⾲ᙜ᪥䛻ሗ࿌䛩䜛䠊
㸫㸫
0
10
20
50
60
70
2ǰ (deg)
Figure 1 : X-ray diffraction pattern of
the deposited film, which was measured
with 12-keV synchrotron radiation. The
inset shows Debye-Scherrer rings taken
with an imaging plate.
㸫㸫
Near-Edge X-ray Absorption Fine-Structure and X-ray Photoemission
Spectroscopies of Nitrogen-doped Ultrananocrystalline
Diamond/Hydrogenated Amorphous Carbon Films
S. Al-Riyami, S. Ohmagari, T. Yoshitake, R. Ohtani1, H. Setoyama1, E. Kobayashi1,and K. Nagayama
Kyushu University, 1SAGA-LS
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H)
composite films were deposited on Si substrates at a substrate temperature of 550 qC by pulsed laser
deposition using a graphite target. The ambient pressure was fixed to be 53.3 Pa and the nitrogenation
of the films was controlled by the inflow ratio between the hydrogen and nitrogen gases. The
chemical bonding structure was studied by near-edge X-ray absorption fine-structure (NEXAFS) and
X-ray photoemission spectroscopy (XPS). The sp3/(sp3+sp2) ratio of the 9.7 at.% nitrogen-doped films
was estimated to be 59 % from the peak decomposition of the XPS spectrum as shown in Fig. 1. The
full-width at half-maximum of the sp3 peak was 0.9 eV. This small value is specific to UNCD/a-C:H
films.(1) The NEXAFS spectra showed that the S* peaks shift toward higher energies with the increase
in the nitrogen content. Further details will be shown in the presentation.
3
sp = 59 %
N 9.7 at. %
FWHM = 0.9 eV
Intensity (arb.unit)
Intensity (arb.unit)
N 6.4 at. %
3
sp
sp
C–O /C–N
2
C=O
N 4.8 at. %
N 1.5 at. %
non doped UNCD
HOPG angle 45'
292
290
288
286
284
282
280
280
290
300
310
320
330
Binding energy (eV)
Binding energy (eV)
Fig. 1 Typical XPS Spectrum of nitrogen-doped films.
films
Fig. 2 NEXAFS spectra of nitrogen-doped UNCD/a-C:H
(1) T. Yoshitake, A. Nagano, S. Ohmagari, M. Itakura, N. Kuwano, R. Ohtani, H. Setoyama, E. Kobayashi, and K. Nagayama: Jpn. J.
Appl. Phys. 48 (2009) 020222.
㸫㸫
Experimental
Rotate
Pulsed Laser Deposition (PLD)
Wavelength : 193nm
Energy: 100mJ
Irradiation area: 2mm2
Repetition Rate: 50Hz
Background and Aim
It has been known that nitrogen-doping for diamond is ineffective for realizing n-type
conduction because nitrogen in diamond forms a deep donor level. For amorphous
carbon, the electrical conductivity is difficult to be controlled although the n-type
conduction is realized, by the nitrogen-doping. On the other hand, it has recently been
reported that nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated
amorphous carbon (a-C:H) composite films possess n-type conduction with high
electrical conductivities [1]. The nitrogen-doping effects on UNCD/a-C:H , which are
apparently different from those on diamond and amorphous carbon, are of interest from
physical viewpoint. In this study, the chemical bonding structures of nitrogen-doped
UNCD/a-C:H films were investigated by near-edge X-ray absorption fine-structure
(NEXAFS) and X-ray photoemission spectroscopy (XPS).
N2+H2 53.3 Pa
Target
( Graphite )
Lens
Excimer Laser (ArF)
45 q
Thin film
Substrate
Base vacuum < 10-4 Pa
Structural evaluation
NEXAFS
XPS and SR-PES
Raman spectroscopy
FTIR
Electrical conductivity
Van der Pauw method
XPS C1s survey spectrum of non doped UNCD and nitrogen ±doped UNCD
Substrate temperature 550 qC
SAGA-LS BL12
Substrate
Target
n-Si(100)
NEXAFS spectra of nitrogen-doped UNCD/a-C:H films
C1s
C1s
V*
S*
N 9.7 at.%
NEXAFS spectrum :
¾ The S* peak was broadened with
the nitrogen content.
¾ The V*C
C peak was broadened
with the nitrogen content. This
might be due to the overlapping of
V*C
N peak whose position is
extremely close to that of V*C
C peak.
O1s
N 6.4 at.%
N1s
N 4.8 at.%
Intensity (arb.unit)
Intensity [arb.unit]
Quartz
Graphite
non doped UNCD
N 1.5 at.%
non doped UNCD
N 1.5 at.%
N 4.8 at.%
N 6.8 at.%
HOPG (45' )
N 9.7 at. %
600
Binding energy (eV)
200
280
290
Typical XPS C1s Spectrum of nitrogen-doped films
2
&±2&±1
290
288
286 284
Binding energy (eV)
sp
282
N 6.4 at. %
3
sp = 61.3 %
FWHM =0.9 eV
Intensity (arb.unit)
Intensity (arb.unit)
292
3
sp
280292
320
330
N 4.8 at. %
3
N 1.5 at. %
sp = 62.3 %
FWHM =0.91eV
3
sp
&±2&±1
290
310
Typical XPS C1s Spectrum of nitrogen-doped films
Intensity (arb.unit)
N 9.7 at. %
3
sp = 59 %
FWHM =0.9 eV
300
Binding energy (eV)
288
286
284
Binding energy (eV)
2
sp
282
3
sp = 65 %
FWHM = 0.9 eV
3
sp
2
&±2&±1
sp
Intensity (arb.unit)
1000
3
sp
2
sp
&±2&±1
280
292
㸫㸫
290
288 286 284
Binding energy (eV)
282
280 292
290
288 286 284 282
Binding energy (eV)
280
Estimation of sp2 and sp3 value by NEXAFS or XPS
Summary :
1. From the decomposition of the XPS spectrum:
sp 2 %
The sample
sp3 %
Nitrogen at. %
NEXAFS
XPS
XPS
9.7
53
41
59
6.4
51.3
38.7
61.3
4.8
51
37.7
62.3
1.5
46
35
65
0
58
32
68
¾ The sp3/ (sp3+sp2) value of the non-doped films was estimated to be 68 %[2].
¾ It gradually decreased with the nitrogen content in the films.
¾ The full-width at half-maximum of the sp3 peak was 0.9 eV. The small value is
specific to UNCD/a-C:H films [3].
2. From the NEXAFS spectrum :
¾ The S* peak was broadened with the nitrogen content.
¾ The V*CC peak was broadened with the nitrogen content. This might be due to
the overlapping of V*CN peak whose position is extremely close to that of
V*CC peak.
References:
[1] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A Curtiss, A. N.Goyette, D. M.
Gruen, A. R. Krauss, J. Schulueter, A. Sumant, and P. Zapol, Appl.Phys. Lett. 79, 1441(2001).
[2] T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, and K. Nagayama: Jpn. J. Appl.
Phys. 46 (2007) L936.
[3] T. Yoshitake, A. Nagano, S. Ohmagari, M. Itakura, N. Kuwano, R. Ohtani, H. Setoyama, E.
Kobayashi, and K. Nagayama: Jpn. J. Appl. Phys. 48 (2009) 020222.
sp2 values were increased with increasing nitrogen contents
㸫㸫
ᆅ⌫⾲ᒙ≀㉁ࡢࢼࣀࣞ࣋ࣝ⌧㇟
Ᏹ㒔ᐑ ⪽ (஑኱㝔࣭⌮࣭໬Ꮫ)
ᆅ⌫⾲ᒙࡣẚ㍑ⓗ࡟ప ࡛࠶ࡿࡓࡵ࡟ࠊࢼࣀࢧ࢖ࢬࡢኳ↛㖔≀ࡀᏳᐃ࡟Ꮡᅾࡍࡿ࡜⪃࠼ࡽࢀ
࡚࠸ࡿࠋࡇࢀࡽࡢࢼࣀ⤖ᬗࡣࠊ⾲ᒙ⎔ቃ᮲௳ୗ࡛⏕ᡂࠊ⁐ゎࠊ྾╔ࠊจ㞟ࠊᣑᩓࠊ࡞࡝ࡢ⌧
㇟ࢆࢼࣀࢫࢣ࣮࡛ࣝ࠾ࡇࡋࠊ⎔ቃၥ㢟࡜࡞ࡿ᭷ᐖඖ⣲ࡢᣲືࢆᨭ㓄ࡍࡿࡇ࡜ࡀከ࠸ࠋᮏሗ࿌
࡛ࡣࠊࡇࢀࡲ࡛࡟㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ࢆ⏝࠸࡚⾜ࡗࡓࠊᆅ⌫⾲ᒙ≀㉁ࡢほᐹ࠿ࡽ᫂ࡽ࠿࡟࡞ࡗ
ࡓᵝࠎ࡞ࢼࣀࢫࢣ࣮ࣝ⌧㇟ࢆ⤂௓ࡍࡿࠋ
㸦㸯㸧㔠㖔ᗋࡢ㕲◲໬≀୰࡟Ꮡᅾࡍࡿᚤ㔞㔠ᒓࡢᅛ⁐࡜ࢼࣀ⤖ᬗࡢ㛵ಀࢆ(03$ࠊ6,06ࠊ7(0
㸦=ࢥࣥࢺࣛࢫࢺἲ㸧ࢆ⏝࠸࡚ゎᯒࡋࠊ㔠ࡢሙྜࠊS\ULWH୰ࡢ⁐ゎ㝈⏺⥺ࡀ$Vࡢ⃰ᗘ࡟ẚ౛
ࡋ࡚Ꮡᅾࡋࠊࡑࡢ㝈⏺⥺ࡼࡾ㧗⃰ᗘ࡛ࡣ㔠ࡀࢼࣀ⤖ᬗ࡛Ꮡᅾࡍࡿࡇ࡜ࢆ᫂ࡽ࠿࡟ࡋࡓࠋࡲࡓࠊ
ࡇࢀࡽࢼࣀ⢏Ꮚࡢ⇕ᣲືࢆ7(0ࡑࡢሙほᐹ࠿ࡽࠊ2VZDOGULSHQLQJ⌧㇟ࡀぢࡽࢀࠊࡑࡢ⢒⢏໬
᭤⥺ࡣ㔠ࡢ⁐ゎ᭤⥺ࡼࡾࡶప ഃ࡟ࢩࣇࢺࡋࠊࡇࡢ⌧㇟ࡢᙉ࠸࣐ࢺࣜࢵࢡࢫ౫Ꮡᛶࡀ᫂ࡽ࠿
࡟࡞ࡗࡓࠋ
㸦㸰㸧ᆅୗỈᖏ୰ࡢࢼࣀࢧ࢖ࢬ⢏Ꮚࡣ᭷ᐖ㔠ᒓ࡜⤖ྜࡋ࡚Ᏻᐃ࡞ࢥࣟ࢖ࢻ࡜ࡋ࡚㐲㝸ࡲ࡛ᣑ
ᩓࡉࢀࡿࠋ0D\DN5XVVLD࡜1HYDGD7HVW6LWH176ࡢᆅୗỈᖏࡢ⣔⤫ⓗศᯒ࠿ࡽࠊ0D\DN
㐲㝸࡟ᣑᩓࡉࢀࡓ3Xࡀ㠀ᬗ㉁⌫≧ࡢ㸦Ỉ㸧㓟໬㕲ࢼࣀ⢏Ꮚୖ࡟8࡜ྠࡌศᕸ࡛Ꮡᅾࡍࡿࡇ࡜
ࡀศ࠿ࡗࡓࠋࡲࡓࠊ176࡛ࡣ&VXUDQDWHࠊ&R&U)H1L0R㔠ᒓ㞟ྜయࠊ࢘ࣛࢽࣝ㖔≀
㸦1DEROWZRRGLWHࠊR[LGHK\GUDWHV㸧ࡀࢼࣀࢧ࢖ࢬ࡛Ꮡᅾࡋࠊ␗✀ࡢᨺᑕᛶ᰾✀࡟ᑐࡋ࡚ࠊ
␗࡞ࡿ┦ࡢࢥࣟ࢖ࢻࡀᣑᩓࣉࣟࢭࢫࢆᨭ㓄ࡋ࡚࠸ࡿࡇ࡜ࡀ♧၀ࡉࢀࡓࠋ
௚࡟㸦㸱㸧㟁Ꮚ࣭࢖࢜ࣥࣅ࣮࣒ࢆ⏝࠸ࡓ㖔≀ࡢᨺᑕ⥺ᦆയࣉࣟࢭࢫࡑࡢሙほᐹࠊ㸦㸲㸧㕲㓟
໬≀ࢼࣀ⤖ᬗࡢ᭷ᐖ㔠ᒓྲྀࡾ㎸ࡳᶵᵓࠊ࡟㛵ࡋ࡚Ⓨ⾲ࢆ⾜࠺ࠋ
㸫㸫
㸫㸫
࢔ࣃࢱ࢖ࢺ࡜Ỉ⁐ᛶ㖄ࡢ┦஫స⏝࡟ࡼࡿࢼࣀࢫࢣ࣮ࣝ⌧㇟
ୖ▼ ⍛ః࣭Ᏹ㒔ᐑ ⪽ (஑኱㝔࣭⌮࣭໬Ꮫ)
ࣁ࢖ࢻࣟ࢟ࢩ࢔ࣃࢱ࢖ࢺ(Ca5(PO4)3OH, HAP)ࡣ㦵ࡸṑࡢᵓᡂᡂศ࡛࠶ࡾ㔜せ࡞⏕య㖔≀࡛
࠶ࡿࠋࡲࡓࠊ࢔ࣃࢱ࢖ࢺࡣPb࡞࡝ࡢ᭷ᐖ㔠ᒓࢆᅛᐃࡍࡿᛶ㉁ࢆᣢࡘࠋࡇࢀࡣࠊ࢔ࣃࢱ࢖ࢺ
ෆࡢCa࢖࢜ࣥ࡜㔠ᒓ࢖࢜ࣥࡢ⨨᥮ࡸࠊ࢔ࣃࢱ࢖ࢺࡢ⁐ゎ࡟ࡼࡗ࡚౪⤥ࡉࢀࡿࣜࣥ㓟࡟ࡼࡗ
࡚㔠ᒓ࢖࢜ࣥࡀ㞴⁐ゎᛶࡢᒙ࡬࡜ྲྀࡾ㎸ࡲࢀࡿࡓࡵ㉳ࡇࡿࠋᮏ◊✲࡛ࡣ࢔ࣃࢱ࢖ࢺ̾Pb㛫┦
஫స⏝࡟ࡼࡿ཯ᛂ⏺㠃㏆ഐࡢࢼࣀࢫࢣ࣮ࣝ⌧㇟ࢆゎ᫂ࡍࡿࡓࡵࠊpH = 5.0ࠊᐊ ࠊ◪㓟㖄⁐
ᾮ୰㸦2 mM㸧࡛ྜᡂ⢊ᮎHAP ࡜༢⤖ᬗࡢኳ↛ࣇࣝ࢜ࣟ࢔ࣃࢱ࢖ࢺ
((Ca4.915Na0.014)(P3.029Si0.010)O12(F0.930Cl0.098), FAP)ࡢ⁐ゎᐇ㦂ࢆ⾜ࡗࡓࠋ
᩿㠃㏱㐣㟁㢧ἲ࠿ࡽࠊFAP⾲㠃࡛Caࡀ㑅ᢥⓗ࡟⁐⬺ࡍࡿࡇ࡜ࠊPbࡣ஧ḟ㖔≀࡜ࡋ࡚ᅛᐃࡉ
ࢀࡿࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࠋࡲࡓࠊࡑࡢᒙ࡟࠾࠸࡚Ca̾Pb࢖࢜ࣥ஺᥮ᶵᵓࡀ㉳ࡇࡗ࡚࠸࡞࠿
ࡗࡓࠋࡲࡓࠊHAP⾲㠃࡟࠾࠸࡚ࡣb㍈᪉ྥ࡟࢚ࣆࢱ࢟ࢩࣕࣝ࡟ᡂ㛗ࡋ࡚࠸ࡿPb஧ḟ㖔≀ࡢ⏕
ᡂࡀࡳࡽࢀࡓࠋࡇࡢPb஧ḟ㖔≀ࡣ⢊ᮎX⥺ᅇᢡࡢ⤖ᯝ࠿ࡽࣁ࢖ࢻࣟ࢟ࢩࣃ࢖࣮ࣟࣔࣇ࢓࢖ࢺ
(Pb5(PO4)3OH, HPY)࡛࠶ࡿ࡜ྠᐃࡉࢀࡓࠋࡇࡢHPY࡟ࡣ␗࡞ࡿ㸰ࡘࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࡀࡳ
ࡽࢀࡓࠋ୍ࡘࡣࠊHAPࡢ⁐ゎ࡟ࡼࡗ࡚཯ᛂ⁐ᾮ඲యࡀHPY࡟ᑐࡋ࡚㣬࿴≧ែ࡟࡞ࡗࡓࡓࡵ
HAPୖ࡟HPYࡀ⏕ᡂࡍࡿ࣓࢝ࢽࢬ࣒ࠊࡶ࠺୍ࡘࡣࠊHAP ࡢ⾲㠃࡛HAPࡢ⁐ゎࡢᚋ༶ᗙ࡟
HPYࡀ⏕ᡂࡍࡿ࣓࢝ࢽࢬ࣒࡛࠶ࡿࠋࡲࡓࠊ⏕ᡂࡋࡓHPYࡣ30᪥㛫ࡢ཯ᛂ࡟࠾࠸࡚ࡶᏳᐃ࡟Ꮡ
ᅾࡋᚎࠎ࡟ᡂ㛗ࡍࡿᵝᏊࡀࡳࡽࢀࡓࠋ
ࡇࢀࡽࡢ⤖ᯝ࡟ࡼࡾࠊࣃ࢖࣮ࣟࣔࣇ࢓࢖ࢺࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࡢ࢔ࣃࢱ࢖ࢺࡢ⤖ᬗ㠃࡟ᑐࡍ
ࡿ౫Ꮡᛶࡸ⏕ᡂࡋࡓࣃ࢖࣮ࣟࣔࣇ࢓࢖ࢺࡢᡂ㛗࡜࠸ࡗࡓ࢔ࣃࢱ࢖ࢺ࡟ࡼࡿ㖄ᅛᐃࡢ࣓࢝ࢽࢬ
࣒ࡀ᫂ࡽ࠿࡟࡞ࡗࡓࠋ
㸫㸫
㸫㸫
Fly UP