Comments
Transcript
実施報告書04 (P63~97) :4MB - 佐賀県立九州シンクロトロン光研究
㧗ഴᩳ ㍈ࢺࣔࢢࣛࣇ࣮ヨᩱ࣍ࣝࢲ࣮ࡢ㛤Ⓨ Ἴከ⫄ࠊගཎᫀᑑࠊụ⏣㈼୍ࠊ୰ᓥⱥ㸦ᕞᏛ࣭⥲⌮ᕤ㸧 ⏣୰ᑘᕫࠊᮾ⏣㈼㸦ᕞᏛ࣭ᕤ㸧 ᐑᓮ⿱ஓ㸦࣓ࣝࣅࣝ㸧 㟁Ꮚ⥺ࢺࣔࢢࣛࣇ࣮ࡢᬑཬᢏ⾡㛤Ⓨక࠸ࠊࡉࡲࡊࡲ࡞⤖ᬗᮦᩱ⤌⧊ࡢ ' ゎᯒࡢヨ ࡳࡀጞࡲࡗ࡚࠸ࡿࠋᚑ᮶ࡣᅔ㞴ࡉࢀ࡚ࡁࡓᅇᢡࢥࣥࢺࣛࢫࢺࡼࡿつ๎᱁Ꮚࢻ࣓ࣥᵓ㐀 ࡸ㌿ࡢࢺࣔࢢࣛࣇ࣮ほᐹࠊ㟁Ꮚᅇᢡࢺࣔࢢࣛࣇ࣮࡞ࡀࡑࡢ࡛࠶ࡿࠋࡇࢀࡽࡢ ' ほᐹ࡛ࡣࠊᅇᢡ᮲௳ࡢ⢭ᐦ࡞ㄪᩚࡀ㔜せ࡛࠶ࡿࠋࡋࡋࠊrq௨ୖࡢ㧗ゅᗘഴᩳࢆせࡍࡿࢺ ࣔࢢࣛࣇ࣮⏝ࡢヨᩱ࣍ࣝࢲ࣮ࡣࠊ ㍈ഴᩳࡶࡋࡃࡣࡑࢀヨᩱࢫࢸ࣮ࢪᅇ㌿ᶵ⬟ࡀຍࢃࡗ ࡓࡶࡢ࡛࠶ࡿࠋࡇࡢሙྜࠊᅇᢡ᮲௳ࡢㄪᩚ⠊ᅖࡣⴭࡋࡃ㝈ᐃࡉࢀࠊ' ほᐹࡢᡂྰࡣⷧ⭷ヨ ᩱࡢ⤖ᬗ᪉ᙉࡃ౫Ꮡࡍࡿࡇ࡞ࡿࠋ ᡃࠎࡣࠊ⤖ᬗᮦᩱ⤌⧊ࡢ ' ほᐹ⏝ྍ⬟࡞㧗ഴᩳ ㍈ヨᩱ࣍ࣝࢲ࣮ࢆ㛤Ⓨࡋࡓࠋヨᩱ ࣍ࣝࢲ࣮ࡢ㛗㍈ᖹ⾜࡞ ; ㍈࠾࠸࡚ࠊỗ⏝ᆺ 7(0㸦)(,7(&1$,*6XSHU7ZLQ㸧࡛rqࡢ ヨᩱഴᩳࢆ☜ಖࡋࡘࡘࠊヨᩱ୰ᚰ⨨࡛ ; ㍈┤⾜ࡍࡿỈᖹ㍈ < ᆶ┤㍈ = ࡛ࡑࢀࡒࢀrq ഴᩳrqᅇ㌿ࢆᐇ⌧ࡋࡓࠋࡇࢀࡼࡾࠊ㏻ᖖࡢ ㍈࣍ࣝࢲ࣮ࡢࡈࡃᅇᢡ᮲௳ࡢ⢭ᐦㄪᩚ ࡀྍ⬟࡞ࡾࠊ㌿⤌⧊➼ࢆᗈ࠸ഴᩳゅᗘ⠊ᅖ࡛᫂░ほᐹࡍࡿࡇࡀྍ⬟࡞ࡗࡓࠋ 㸫㸫 㸫㸫 㸫㸫 ᕞᏛ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊࡢ⤂ ᕞᏛ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊ ᑿᓅྐᯇᮧᬗᏳ⏣ᘯ⏣୰㘝ኈ ᕞᏛࡢ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊࡣࠊఀ㒔࢟ࣕࣥࣃࢫ ᖺᗘ᪂ࡋࡃ㉸㧗ᅽ㟁Ꮚ㢧 ᚤ㙾ࢆタ⨨ࡋ㛫ࡶ࡞ࡃ ᖺࢆ㏄࠼ࡲࡍࠋ 㸳ᖺィ⏬࡛ᐇࡉࢀ࡚ࡁࡓᖏタഛࡣࠊ࣓࢜࢞ᆺ㟁Ꮚศග⨨ࠊࢸࣞࣉࣞࢮࣥࢫ㐲㝸᧯స ⨨ࠊ࣮ࣞࢨ࣮ࣅ࣮࣒↷ᑕ⨨ࠊࡑࡋ࡚᭱ᚋඖ⣲ศᯒࠊ' ࢺࣔࢢࣛࣇ⨨ࡀຍࡉࢀࡿ ࡇࡼࡾࠊࠕ㸱ḟඖࢼࣀ㉸ᵓ㐀ከඖゎᯒ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ࠖࡋ࡚ᡂࡋࡲࡋࡓࠋ ୍᪉ࠊ⟽ᓮ࢟ࣕࣥࣃࢫࡢྛ✀㟁Ꮚ㢧ᚤ㙾ࡢ⛣タࡽ㸰ᖺ⤒㐣ࡋࠊఀ㒔࢟ࣕࣥࣃࢫࡢ㉸ 㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊࡣୡ⏺ࢀࡿ㟁Ꮚ㢧ᚤ㙾ඹྠ⏝タ࡞ࡾࡲࡋࡓࠋ ᙜ㉸㧗ᅽ㟁㢧ᐊࡣࠊ᭱ඛ➃㢧ᚤ⨨࣭ᢏ⾡ࢆᏛෆࡢᏛ⏕࣭ᩍ⫋ဨᥦ౪ࡋࠊ㟁Ꮚ㢧ᚤ㙾 ࡼࡿ≀㉁ࡢࢼࣀᵓ㐀ホ౯ᚑ࡛ࡁࡿᢏ⾡⪅࣭◊✲⪅ࡢ⫱ᡂ㈨ࡍࡿࡔࡅ࡛ࡣ࡞ࡃ◊✲⏘ᐁ Ꮫࡢ㐃ᦠ࣭༠ຊࡼࡿ♫㈉⊩ࢆ୰ᮇ┠ᶆࡋ࡚ᥖࡆ࡚࠸ࡲࡍࠋ ࡇࢀࡽࡢ┠ⓗࢆ㐩ࡍࡿࡓࡵ௨ୗࡢࡼ࠺࡞ᯟ⤌ࡳࡶཧຍࡋ࡚࠾ࡾࡲࡍࠋ ᖺᗘࡽࢫࢱ࣮ࢺࡋࡓᩥ⛉┬ࡢࠕඛ➃◊✲タඹ⏝ࣀ࣮࣋ࢩࣙࣥฟᴗ࡛ࠖጤ クࡉࢀࡓᕞᆅ༊ࢼࣀࢸࢡࣀࣟࢪ࣮ᣐⅬࢿࢵࢺ࣮࣡ࢡࡢ୰ᚰᶵ㛵ࡋ࡚ࡢάືࡍࡿࠋ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾㐃ᦠࢫࢸ࣮ࢩࣙࣥࢆ❧ࡕୖࡆࠊ㜰ࠊࠊྡࠊࠊ⏕⌮Ꮫ◊✲ ᡤタ⨨ࡉࢀ࡚࠸ࡿィ㸳ᶵࡢ +9(0 ⨨ࢆᅜࡢ࣮ࣘࢨ࣮ඹྠ⏝⨨ࡋ࡚㛤ᨺࡍࡿࠋ ㉸㢧ᚤࣜࢧ࣮ࢳࢥ㸦௦⾲⪅᱓㔝⠊அᩍᤵ㸧ࡢඖࠊ㟁Ꮚ㢧ᚤ㙾ᢏ⾡ࡢ㛤Ⓨ࣭☜❧㛵ࡍࡿ ᳨ウࢆ⾜࠺ࠋ 㸫㸫 㸫㸫 ᕞᆅ༊ࢼࣀࢸࢡࣀࣟࢪ࣮ᣐⅬࢿࢵࢺ࣮࣡ࢡ ㉸㢧ᚤゎᯒᨭ ᕞᏛ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊ ᩥ㒊⛉Ꮫ┬࡛ࡣࠊᖹᡂ ᖺᗘࡼࡾඛ➃◊✲タ౪⏝ࣀ࣮࣋ࢩࣙࣥฟᴗࢆ㛤ጞࡋࡓࠋ ࡑࢀࢆཷࡅ࡚ࠊబ㈡┴❧ᕞࢩࣥࢡࣟࢺࣟࣥග◊✲ࢭࣥࢱ࣮ࠊబ㈡Ꮫࢩࣥࢡࣟࢺࣟࣥගᛂ ⏝◊✲ࢭࣥࢱ࣮ࠊᕞ⏘ᴗᏛ⾡᥎㐍ᶵᵓ࡞ࡽࡧᕞᏛ㸦ศᏊ࣭≀㉁ྜᡂゎᯒᨭ࠾ࡼ ࡧ㉸㢧ᚤゎᯒᨭ㸧ࡀ㐃ᦠࡋᕞᆅ༊ࢼࣀࢸࢡࣀࣟࢪ࣮ᣐⅬࢿࢵࢺ࣮࣡ࢡࢆᙧᡂࡋࡓࠋᮏ ᴗ࡛ࡣࠊࢼࣀࢸࢡࣀࣟࢪ࣮◊✲ࢃࡿ⏘ᐁᏛ⏺ࡢ◊✲⪅ྛᶵ㛵タ⨨ࡉࢀࡓ⨨⩌ࡢ ⏝㛤ᨺࢆ⾜ࡗ࡚࠸ࡿࠋ ㉸㧗ᅽ㟁Ꮚ㢧ᚤ㙾ᐊ࡛ࡣࠊ㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ࢆጞࡵࡋ࡚ࠊヨᩱస〇ࡸࢹ࣮ࢱࡢྲྀᚓ࠾ࡼ ࡧゎᯒ⏝ࡢ⨨ࢆ㛤ᨺࡋ㉸㢧ᚤゎᯒᨭࢆᐇࡋ࡚࠸ࡿࠋࡉࡽࠊᮏᴗࡢᑓ௵ࢫࢱࢵࣇࠊ Ꮫෆࡢ◊✲⪅࡞ࡽࡧᢏ⾡⪅ࡽᵓᡂࡉࢀࡿ࣓ࣥࣂ࣮ࡀࠊᐇ㦂ィ⏬ࡢ⟇ᐃࡽྛ⨨ࡢ⏝ ᪉ἲࠊྲྀᚓࢹ࣮ࢱࡢゎᯒホ౯⮳ࡿᨭࢆ⾜ࡗ࡚࠸ࡿࠋ ᙜᶵ㛵࡛ࡣࠊ㏱㐣㟁Ꮚ㢧ᚤ㙾ἲࡢᇶᮏⓗᡭἲຍ࠼࡚ࠊ㧗ศゎ⬟ീほᐹࠊ࢚ࢿࣝࢠ࣮ศᩓ ᆺ㹖⥺ศගศᯒ㸦('6㸧ࠊ㟁Ꮚ࢚ࢿࣝࢠ࣮ᦆኻศගἲ㸦((/6㸧ࠊ᮰㟁Ꮚ⥺ᅇᢡἲ㸦&%('㸧ࠊ ḟඖࢺࣔࢢࣛࣇ࣮ࠊࡑࡢሙほᐹᐇ㦂ࡢᨭࡢࠊ㞟᮰࢜ࣥࣅ࣮࣒ヨᩱຍᕤ⨨ࡸ㉸㧗 ᅽ㟁Ꮚ㢧ᚤ㙾ࢆ⏝ࡋࡓ◊✲ᨭࡶ⢭ຊⓗ⾜ࡗ࡚࠸ࡿࠋ 㸫㸫 㸫㸫 㸫㸫 㸫㸫 㸫㸫 㸫㸫 㸫㸫 㸫㸫 ࢩࣥࢡࣟࢺࣟࣥගศᯒࢆ⏝࠸ࡓ᭷⏣↝ࡢⓎⰍ࣓࢝ࢽࢬ࣒ࡢゎ᫂ బ㈡┴❔ᴗᢏ⾡ࢭࣥࢱ࣮ ⓑ▼ᩔ๎ ྜྷ⏣⚽ ᑎ㷂ಙ ᮌᏹ ᭷⏣↝ࢆࡣࡌࡵࡍࡿబ㈡┴㝡☢ჾࡢⓎⰍᢏ⾡ࡣࠊỤᡞ௦ึᮇࡽ୰ᮇ⤒㦂๎ࡋ࡚㧗 ᗘ☜❧ࡉࢀࡓࠋࡋࡋࠊࡇࢀࡽࡢⓎⰍᢏ⾡ࡣ⫋ேࡢヨ⾜㘒ㄗࡼࡿ〇㐀ᢏ⾡ࢆᇶࡋࡓࡶ ࡢ࡛࠶ࡾࠊⓎⰍ࣓࢝ࢽࢬ࣒㛵ࡋ࡚ࡣࠊ㧗ᗘ࡞ศᯒᶵჾࡼࡿ⛉Ꮫⓗ࡞᳨ドࡣࢇ࡞ࡉ ࢀ࡚࡞ࡃࠊ᫂࡞Ⅼࡀከ࠸ࠋ ᮏ◊✲࡛ࡣࠊࢩࣥࢡࣟࢺࣟࣥගࢆ⏝ࡋ࡚㝡☢ჾࡢⓎⰍ࣓࢝ ࢽࢬ࣒ࡢゎ᫂ࢆ┠ⓗࡋ࡚⾜࡞ࡗࡓࠋ 㝡☢ჾࡢ௦⾲ⓗ࡞ⓎⰍᮦ࡛࠶ࡿ㕲ࡣ㔙⸆ࡸୗ⤮ࡅࠊୖ⤮ࡅࡢⓎⰍᮦࡋ࡚ᗈࡃ⏝࠸ࡽࢀࠊ ຍ⇕᮲௳ࡸ࢞ࢫ㞺ᅖẼ࡞ࡼࡾ㉥ࠊ㯤ࠊ⥳ࠊ㟷ࠊ㯮➼ࡢᵝࠎ࡞Ⰽࢆ♧ࡍࠋ ᅇࡣࠊ㟷Ⰽࡽ⥳Ⰽࡲ࡛ኚࡍࡿ㟷☢㔙ࡢⓎⰍᮦ࡛࠶ࡿ㕲ࡢ≧ែࢆࢩࣥࢡࣟࢺࣟࣥග ;$)6ࡼࡗ࡚ศᯒࡋࠊⓎⰍኚ㕲ࡢ≧ែ㸦㕲࢜ࣥࡢ≧ែ➼㸧ࡢ㛵㐃ᛶࢆㄪࠊ㟷☢ࡢ ⓎⰍ࣓࢝ࢽࢬ࣒ࡢᇶ♏ⓗゎ᫂ࢆヨࡳࡓࠋ 㸫㸫 ⢛᥊䊶⋡⊛ 㒻⏛ེ䈱⊒⦡ᛛⴚ䈲䇮⡯ੱ䈱⹜ⴕ㍲⺋䈮䉋䉎ㅧᛛⴚ䉕ၮ䈮䈚䈢䉅䈱䈪䈅䉍䇮 㜞ᐲ䈭ಽᨆᯏེ䈮䉋䉎⑼ቇ⊛䈭ᬌ⸽䈲䈅䉁䉍䈭䈘䉏䈩䈇䈭䈇䇯 䉲䊮䉪䊨䊃䊨䊮శಽᨆ䉕↪䈇䈢 ↰䈱⊒⦡䊜䉦䊆䉵䊛䈱⸃ 㒻⏛ེ䈱⊒⦡䉕ቯ䈚䈩ౣ 䈜䉎䈖䈫䈏น⢻䈫䈭䉎䇯 㒻⏛ེ䈱⊒⦡䊜䉦䊆䉵䊛䉕⑼ቇ⊛ 䈮⸃䈜䉎䉕⋡ᜰ䈜 䈘䉌䈮䇮ᣂⷙ⊒⦡ᕈ㒻⏛ེ䈱 㐿⊒䈮䈧䈭䈕䉎䇯 㕍⏛䈱⊒⦡Ḯ䈪䈅䉎Fe䈱⁁ᘒᄌൻ䉕䉲䊮䉪䊨䊃䊨䊮శ䈪ಽᨆ䈜䉎䈮䉋䈦䈩䇮 㕍⏛䈱⊒⦡ᯏ᭴䉕⸃䈜䉎䇯 ⊕⍹ᢕೣ䊶ศ↰⑲ᴦ䊶ኹ㦮 ା䊶ൎᧁብᤘ ⾐⋵┇ᬺᛛⴚ䉶䊮䉺䊷 㒻⏛ེ㉽ਛߩ⊒⦡᧚㧔㋕㧕ߩ⎇ⓥ XAFS ࠪࡦࠢࡠ࠻ࡠࡦశࠍ↪ߒߚ⊒⦡ᯏ᭴ߩ⸃ ࠟࠬਛߩFeߩ⁁ᘒ㧔ଔᢙߩᄌൻ╬㧕 ⊒⦡᧚䈫䉧䊤䉴䋨㉽䋩䈱⋧↪ ⎇ⓥౝኈ㽲 ⎇ⓥౝኈ㽳 㕍⏛䈲䇮ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈱㆑䈇䈮䉋䈦䈩䇮⊒⦡䈏ᄌൻ䈜䉎䇯 䋨㉄ൻ䋩 㕍⏛䈲䇮ၮ␆㉽䈱⚵ᚑ䈱㆑䈇䈮䉋䈦䈩䇮⊒⦡䈏ᄌൻ䈜䉎䇯 䋨ㆶర䋩 ㆶర䉧䉴Ớᐲ Ớ 䋳䋫 Mg♽㉽ Ba♽㉽ Fe䈱ଔᢙᄌൻ䋿 䌤゠䈱ㆫ⒖䈱䉣䊈䊦䉩䊷ᄌൻ䋿 䋲䋫 Fe Ca♽㉽ ㉽ਛ䈱⊒⦡ᚑಽ䈪䈅䉎Fe䈱৻ㇱ䈏䇮ㆶరᚑ䈮䉋䈦䈩䋳ଔ䈎䉌䋲ଔ 䈮ᄌൻ䈜䉎䈖䈫䈪䇮㤛⦡䈎䉌㕍䋨✛䋩⦡䈮ᄌൻ䈜䉎䈫䈇䉒䉏䈩䈇䉎䇯 ㉽⚵ᚑ䈱䉝䊦䉦䊥㘃㊄ዻ䈱ᄌൻ䈮䉋䈦䈩䇮Fe䈱ଔᢙᄌൻ䉇䇮䋳d゠䈱㔚 ሶ䈱ㆫ⒖䉣䊈䊦䉩䊷䈱ᄌൻ䈪䇮⊒⦡䈏㤛✛⦡䈎䉌㕍⦡䈮ᄌൻ䈜䉎䋿䋿 ᚑᤨ䈱ㆶరỚᐲ䈱ᄌൻ䈮䉋䉎Fe䈱⁁ᘒᄌൻ䋨ଔᢙ䋩䉕 XAFS᷹ቯ䈮䉋䈦䈩⺞䈼䉎 ၮ␆㉽䈱⚵ᚑ䈱㆑䈇䈮䉋䉎Fe䈱⁁ᘒᄌൻ䋨ଔᢙ䋩䉕XAFS᷹ ቯ䈮䉋䈦䈩⺞䈼䉎 ታ㛎ᣇᴺ ᚑ᧦ઙ䈶㉽⚵ᚑ䈱㆑䈇䈮䉋䉎⊒⦡䈱ᄌൻ ⹜㛎↪ၮ␆㉽ ㉄⚛Ớᐲ⸘ᜰ␜୯ 䇼MG䇽 0.3(K2O Na2O) 0.4CaO 0.3MgO 0.5Al2O3 5SiO2 䇼CA䇽 0.3(K2O Na2O) 0.7CaO 0.5Al2O3 5SiO2 䇼BA䇽 0.3(K2O Na2O) 0.7BaO 0.5Al2O3 5SiO2 㶎ฦ㉽⮎䈮䈲Fe2O3䉕䈠䉏䈡䉏䋲wt%ᷝട䇯 䉝䊦䉦䊥㘃㊄ዻ䉕ᄌൻ䈘䈞䈩䈇䉎䇯䋨ઁ䈱ൻቇ⚵ᚑ䈲ห䈛䋩 Fe2O3䉕ᷝട䈚䈭䈇㉽䈲䇮䈇䈝䉏䉅ή⦡ㅘ䈭䉧䊤䉴䇯 1% 0% -0.2% -0.5% -1.0% -2.0% -3.0% -4.0% -5.0% MG ㉽ ⹜ ᢱ 䋳⒳㘃䈱㉽⮎䉕⚛䈐㒻᧼䈮䈠䉏䈡䉏ᣉ㉽䈚䇮䈖䉏䉌䉕ㆶర䉧䉴Ớᐲ䉕ᄌൻ䈘䈞䋱䋳䋰䋰͠ 䈪ᚑ䈚䇮⹏ଔ↪⹜ᢱ䉕䈚䈢䇯 CA BA ࿁䈲䇮㕍⏛䈱⊒⦡䊜䉦䊆䉵䊛䉕⸃䈜䉎䈢䉄䈮䇮 ㉄ൻ 䃁ᚑ᧦ઙ䉇㉽⚵ᚑ䈱⇣䈭䉎ฦ⒳㕍⏛㉽⹜ᢱ䈱⦡Ꮕ᷹ቯ ㆶర䉧䉴Ớᐲ䈏㜞䈒䈭䉎䈖䈫䈪㤛⦡ĺ㕍⦡䈮ᄌൻ䇯 ㆶర䉧䉴Ớᐲ䈏㜞䈇䈾䈬⦡䈱ᓀᐲ䈏㜞䈒䈭䉎䇯 䌍䌧䇮Ca䇮Ba䈫ේሶ䈏ᄢ䈐䈒䈭䉎䈾䈬䇮㤛✛ĺ㕍䈮ᄌൻ䇯 䃁⊒⦡Ḯ䈪䈅䉎㕍⏛㉽ਛ䈱㋕䈱⁁ᘒᄌൻ䋨ଔᢙ╬䋩䉕䌘䌁䌆䌓ಽᨆ䈮䉋䈦䈩⸃ᨆ 㸫㸫 ㆶర XAFS᷹ቯ⚿ᨐ䋨䋱䋩 ㆶర䉧䉴Ớᐲ䈱ᓇ㗀 XAFS᷹ቯ⚿ᨐ䋨䋱䋩 1.4 2008.8.21 N R dE DW CA OF 1% 2.9 㫧 0.5 1.88 㫧 0.02 7.3 㫧 2.7 0.07㫧 0.03 CA -0.2% 2.6 㫧 0.3 1.90 㫧 0.01 7.8 㫧 1.9 0.07 㫧 0.02 CA -2% 2.5 㫧 0.4 1.90 㫧 0.01 8.3 㫧 2.3 0.07 㫧 0.02 CA -4% 2.3 㫧 0.3 1.89 㫧 0.01 8.3 㫧 2.4 0.05 㫧 0.03 Normalized absorption 1.2 1 0.8 FeO (Fe2+) 0.6 CA -0.2% CA OF 1% CA -2% Fe2O3 (Fe3+) 0.4 0.2 CA -4% FeO 0 Fe2O3 -0.2 7100 7110 7120 7130 7140 Energy (eV) 䊶ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏㜞䈇⹜ᢱ䈏䇮Fe䈱XANES(X✢ๆ┵᭴ㅧ) 䈱┙䈤䈏䉍䈏ૐ䉣䊈䊦䉩䊷 䈮䉒䈝䈎䈮䉲䊐䊃䈚䈩䈇䉎䇯 䊶ઁ䈱䋲⹜ᢱ䋨Mg♽,Ba♽䋩䈪䉅ห䈛ะ䈪䈅䈦䈢䇯 EXAFS䈱⸃ᨆ⚿ᨐ䈪䉅䇮ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏㜞䈇⹜ᢱ䈱ᣇ䈏䇮㓞ធේሶᢙ䋨㉄ ⚛䈫ቯ䈚䈢႐ว䋩䈏ᷫዋ䈜䉎ะ䈏䈪䈢䇯䋨Fe2O3ĺ)H2䋩 ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏㜞䈇⹜ᢱ䋨䉋䉍㕍䈇㉽䋩䈏䇮Fe䈱䋲ଔ䈱⁁ᘒ䈮ㄭ䈒䈭䈦䈩䈇䉎䇯 ㉽ਛ䈱Fe䈲ㆶరᚑ䈮䉋䈦䈩䇮ଔᢙ䈏ᄌൻ䈚䈩䈇䉎䈫ᕁ䉒䉏䉎䇯 䉁䈫䉄 XAFS᷹ቯ⚿ᨐ䋨䋲䋩 1.4 ห৻䈱㉽⚵ᚑ䈱႐ว 㕍⏛㉽䈲䇮ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏ᄢ䈐䈒䈭䉎䈮䉋䈦䈩䇮⊒⦡䈏㤛⦡㸢㕍䋨✛䋩⦡䈮ᄌൻ䈜䉎䇯 XAFS᷹ቯ䈱⚿ᨐ䈎䉌䇮㕍⏛㉽ਛ䈱Fe䈲䇮ᚑᤨ䈱ㆶర䉧䉴Ớᐲ䈏ᄢ䈐䈒䈭䉎䈮䉋䈦䈩ଔᢙ䈏䋲 ଔ䈎䉌䋳ଔ䈮ᄌൻ䈚䈩䈇䉎䈫ᕁ䉒䉏䉎䇯 䈖䉏䈏䇮㕍⏛㉽⊒⦡䈱ᄌൻⷐ࿃䈫ᕁ䉒䉏䉎䇯 㕍⏛㉽䋨ၮ␆㉽䋩䈱䉝䊦䉦䊥㘃㊄ዻ䉕ᄌൻ䈘䈞䈢႐ว ේሶ㊂䈏ᄢ䈐䈒䈭䉎䈮ᓥ䈇䇮⊒⦡䈏㤛✛⦡ĺ㕍✛⦡䈮ᄌൻ䈜䉎䇯 XAFS᷹ቯ䈱⚿ᨐ䈎䉌䇮 㕍⏛㉽䈱⊒⦡䈲⊒⦡Ḯ䈪䈅䉎Fe䈱䈢䈣න䈭䉎ଔᢙᄌൻ䈱䉂䈏⊒⦡䉕ᡰ㈩䈚䈩䈇䉎䈱䈪䈲䈭䈒䇮 Fe䈱㔚ሶ㈩⟎䈱䇮䈬䈱゠䈱㔚ሶ䈏⒖േ䋨ㆫ⒖䋩䈚䈢䈎╬䈱⁁ᘒ䉕䉄䈢ⶄว⊛䈭ⷐ⚛䈮 䉋䈦䈩ᄌൻ䈚䈩䈇䉎䈫ᕁ䉒䉏䉎䇯 2008.8.21 data Normalized absorption 1.2 1 0.8 CA -0.2% 0.6 0.4 MG -0.2% 0.2 BA -0.2% 0 -0.2 7100 7110 7120 7130 7140 Energy (eV) Normalized absorption 1.4 2008.8.21 data 1.2 ᓟ䈱⸘↹ 1 0.8 0.6 CA -2% Ბ㓏䈪䈲䇮㕍⏛㉽䈱⦡ᄌൻ䈫Fe䈱⁁ᘒᄌൻ䈱㑐ㅪᕈ䉕䈇䈣䈚䈩䈲䈇䈭䈇䇯 ᓟ䇮ᚑᤨ䈱㔓࿐᳇᧦ઙ䉕ᄌൻ䈘䈞䈩䈚䈢⹜ᢱ䈱XAFS᷹ቯ䋨エ䌘䈱XAFS᷹ቯ╬䋩䉕 ➅䉍䈚ⴕ䈇䇮㉽ਛ䈱㋕䈱ଔᢙ䇮㔚ሶ⁁ᘒ╬ᄌൻ䈫㉽䈱⦡ᄌൻ䈱㑐ㅪᕈ䉕⸃䈚䈩䈇䈒䇯 䉁䈢䇮㋕㉽䈮㒢䉌䈝㌃㉽╬䈱ઁ⦡㉽䈱⊒⦡ᯏ᭴䉕⸃䈚䈩䈇䈒䇯 MG -2% 0.4 0.2 BA -2% 0 -0.2 7100 7110 7120 7130 7140 ⻢ㄉ Energy (eV) 䉋䉍㕍⦡䈏ᒝ䈇⹜ᢱ䋨BA㉽䋩䈏䇮Fe䈱XANES䈱┙䈤䈏䉍䈏㜞䉣䊈䊦䉩䊷䈮䉲䊐䊃䈚䈩䈇䉎䇯 䉋䉍㕍⦡䈏ᒝ䈇⹜ᢱ䈱ᣇ䈏Fe䈱ଔᢙ䈏䋳ଔ䈮ㄭ䈒䈭䈦䈩䈇䉎䇯ĺ੍ᗐ䈫ㅒ䈱⚿ᨐ䇯 ࿁䈱⎇ⓥ䉕ㅴ䉄䉎䈮䈅䈢䉍䇮Ꮊ䉲䊮䉪䊨䊃䊨䊮శ⎇ⓥ䉶䊮䉺䊷䈱ᚲ㐳䈱ᐔ᳁䇮 䉫䊦䊷䊒㐳䈱ጟፉ᳁䇮⎇ⓥຬ䈱⍹᳁䇮㓈⼱᳁䉕䈲䈛䉄Ꮊ䉲䊮䉪䊨䊃䊨䊮శ䉶䊮䉺䊷 䈱⡯ຬ䈱ᣇ䇱䈮䈲䇮ᄙᄢ䈭䈗ᜰዉ䇮䈗දജ䉕㗂䈐䉁䈚䈢䇯 㸫㸫 Ni induced crystallographic stability of Cu6Sn5 for Pb-free solder K. Nogita1, S. D. McDonald1, S. Suenaga2, T. Nishimura2, R. Ohtani3 and K. Sumitani3 The University of Queensland1, Nihon Superior Co. Ltd.2, SAGA Light Source3 Cu6Sn5 is a promising intermetallic compound in structural and functional lead-free solder joints. Cu6Sn5 has been reported to exist in two crystal structures with an allotropic transformation from monoclinic Ș'-Cu6Sn5 at temperatures lower than 186ºC to hexagonal Ș-Cu6Sn5 at higher temperatures. We recently discovered that the hexagonal structure of Cu6Sn5 in the presence of trace Ni additions forms (Cu,Ni)6Sn5 which is stable down to room temperature[1]. This report further confirms the phase stabilising effect of Ni on Cu6Sn5 and the mechanisms of this discovery by synchrotron base powder X-ray diffraction with Rietveld refinement analysis using Cu6-xNixSn5 (x=0, 0.5, 1, 1.5 and 2) samples with three different thermal annealing conditions. [1] K. Nogita and T. Nishimura, Scripta Materialia 59 (2008) 191-194. 㸫㸫 㸫㸫 $J&X ඹ࢜ࣥἲ࠾ࡅࡿ࣍࢘ࢣ㓟࢞ࣛࢫࡢ╔Ⰽᶵᵓ ⚟ᒸ┴ᕤᴗᢏ⾡ࢭࣥࢱ࣮࣭㜰ᮏᑦᏕ㸪㸦ᰴ㸧ࢡ࣑ࣛࣥࢢ࣭℈ᆅಙ ගᶵ⬟ᛶ࢞ࣛࢫࡢタィࢆ┠ⓗࡋ࡚ࠊ࢜ࣥἲࢆ⏝࠸࢞ࣛࢫᵓ㐀୰ࡘࡢ␗࡞ࡿ㔠 ᒓ࢜ࣥࢆྠᑟධࡋࠊࡑࢀࡒࢀࡢ┦స⏝ࡼࡿᙧែኚࡘ࠸᳨࡚ウࡋࡓࠋᮏ◊✲࡛ ࡣ࣍࢘ࢣ㓟࢞ࣛࢫ3\UH[ᇶᯈࢆᑐ㇟ࡋࠊ$Jࠊ&Xࠊ࠾ࡼࡧࡑࡢΰྜᮦࢆ⏝࠸࡚࣮࣌ ࢫࢺሬᕸЍ⇕ฎ⌮ࡼࡿ✀ࠎࡢ࢜ࣥࢆ⾜࠸ヨᩱࢆㄪ〇ࡋࡓࠋࡇࢀࡘ࠸࡚ࠊ྾ගᗘ ᐃࠊࢩࣥࢡࣟࢺࣟࣥගࡼࡿ ;$1(6 ᐃࠊ7(0 ほᐹࢆ⾜ࡗࡓࠋ ࡑࡢ⤖ᯝࠊ⇕ฎ⌮᮲௳ࡼࡿᙳ㡪ࡣ࠶ࡿࡶࡢࡢࠊ$J ༢⊂ᑟධࡋࡓሙྜࠊࣉࣛࢬࣔࣥ྾ ࡼࡾ㔠ᒓࢥࣟࢻ⏕ᡂࡀ☜ㄆࡉࢀࡿࡢᑐࡋࠊ&X ༢⊂࡛ࡣ㸯౯ࡢ࢜ࣥ྾ࡀ᳨ฟࡉࢀࠊ&X࢜ ࣥࡋ࡚Ꮡᅾࡋ࡚࠸ࡿࡇࡀࢃࡗࡓࠋࡲࡓࠊ$J &X ࡀΰᅾࡋࡓඹ࢜ࣥࢆ⾜࠺ࠊ㔠ᒓ $J ࡼࡿ ࣉࣛࢬࣔࣥ྾㔞ࡀⴭࡋࡃቑࡋࡓࠋࡇࡢࡁࡢ࢞ ࣛࢫ୰ࡢ &X ࡣࠊᅗ♧ࡍࡼ࠺㸰౯࢜ࣥࡀయ࡛ ࠶ࡾࠊ$J ࡀᑟධࡉࢀࡿࡇ࡛ 5HGR[ ࡀ㉳ࡇࡗ࡚࠸ࡿ ࡇࡀ᫂ࡽ࡞ࡗࡓࠋࡍ࡞ࢃࡕࠊ$J&X ඹ࢜ࣥ ࢆ⾜࠺ࠊ࢞ࣛࢫ୰ࡢ &X ࢜ࣥࡣ㓟ࡉࢀ࡚㸰౯ ࡞ࡿࡶࠊ$J ࢜ࣥࡢ㑏ඖࡀ㐍ࡴࡓࡵࠊ$J ࢥ ᅗ Cu ࡢ XANES ࢫ࣌ࢡࢺࣝ 㸦Cu,Cu2O,CuO ࡣᶆ‽ヨ⸆㸧 ࣟࢻ㔞ࡀቑࡍࡿࡶࡢ⪃࠼ࡽࢀࡿࠋ 㸫㸫 㸫㸫 ㌾ X ⥺ศගࢫ࣌ࢡࢺࣝ ᐃ⨨⏝⏕యヨᩱ ᐃࢩࢫࢸ࣒ࡢ㛤Ⓨ⤖ᯝ ㏕ᕝ Ὀᖾࠊᯇᑿ ಟྖࠊᰩᓮ ᩄࠊ⬥⏣ ஂఙ㸦⚟ᒸ⌮㸧 ࠙ᗎㄽࠚᡃࠎࡣࠊࡇࢀࡲ࡛Ẽᅽୗ࡛ࡶ ᐃྍ⬟࡞⏕యヨᩱ ᐃࢩࢫࢸ࣒㸦௨ୗࠊ⁐ᾮࢭ ࣝࢩࢫࢸ࣒㸧ࡢ㛤Ⓨࢆ⾜ࡗ࡚ࡁࡓࠋᮏ◊✲ࡢ┠ⓗࡣࠊ᪂ࡓ㛤Ⓨࡋࡓ⏕యヨᩱࡢ࣓࣮ࢪࣥ ࢢ ᐃࡶᑐᛂྍ⬟࡞⁐ᾮࢭࣝࢩࢫࢸ࣒ࡼࡿ ᐃࢆ⾜࠸ࠊᚓࡽࢀࡓ⤖ᯝࢆࡶᮏ⨨ࡢ ᛶ⬟ホ౯ཬࡧሷࢼࢺ࣒ࣜ࢘Ỉ⁐ᾮ୰ࡢࢼࢺ࣒ࣜ࢘࢜ࣥ࿘ࡾࡢỈᵓ㐀ࡘ࠸࡚ DV-XD ศᏊ㌶㐨ィ⟬ἲࢆ⏝࠸࡚ゎᯒࢆ⾜࠺ࡇ࡛࠶ࡿࠋ ࠙ᐇ㦂ࠚ ᐃタ㸸SAGA-LS BL-12 ( ᐃྍ⬟㡿ᇦ㸸⣙ 40 ~ 1500 eV )࣭ ᐃ⨨㸸⏕యヨᩱ ᐃࢩࢫࢸ࣒࣭ ᐃヨᩱ㸸NaCl ⢊ᮎ࣭Ỉ⁐ᾮ(5.0~1.0mol/l) (Na K-edge)ࠊMgCl2 ⢊ᮎ࣭Ỉ⁐ ᾮ (5.0~0.5mol/l) (Mg K-edge)ࠊࣁࢻࣟ࢟ࢩࣃࢱࢺ Ca10(PO4)6(OH)2ࠊ࢘ࢧࢠࡢ㦵(Ca LII,III-edge) ࠙⤖ᯝ⪃ᐹࠚNaClࠊMgCl2 ࡘ࠸࡚ᅛయ⢊ᮎ⣙ 5.0~1.0mol/l Ỉ⁐ᾮࡢ Na-KࠊMg-K XANES ࢫ࣌ࢡࢺࣝ ᐃࢆ⾜ࡗࡓ⤖ᯝࠊࡑࢀࡒࢀࡢヨᩱࡢᅛయỈ⁐ᾮࡽᚓࡽࢀࡿ XANES ࢫ࣌ࢡࢺࣝࡢ㛫㢧ⴭ࡞㐪࠸ࢆ☜ㄆࡋࡓࠋࡑࡢ⤖ᯝࠊ᪂つࡢ⁐ᾮࢭࣝࢩࢫࢸ࣒࠾ ࠸࡚ࠊ⁐ᾮヨᩱ୰ࡢ㍍ඖ⣲ࡢ XANES ࢫ࣌ࢡࢺࣝ ᐃࡀ༑ศྍ⬟࡛࠶ࡿࡇࡀ☜ㄆࡉࢀࡓࠋ 㸫㸫 㸫㸫 ᨺᑕග ;$)6 ᐃࡼࡿ %D7L2 ࢼࣀ⢏Ꮚࡢᐊ ⤖ᬗᣲືゎᯒ 㸦⚟ᒸ┴ᕤᢏࢭ㸧ྜྷ⸨ۑᅜᏕ࣭∾㔝ஂ࣭᭷ᮧ㞞ྖ࣭ᒣୗὒᏊ 㸦ᕤᕤ㸧ୗᒸᘯ㸦ᕞࢩࣥࢡࣟࢺࣟࣥග◊ࢭ㸧ᒸᓥᩄᾈ %D7L2 ࡣ௦⾲ⓗ࡞ㄏ㟁యᮦᩱ࡛࠶ࡿࡀࠊ㏆ᖺᚤ⢏ࡀồࡵࡽࢀ࡚࠸ࡿࠋࡇࢀᑐࡋᡃࠎࡣࠊ %D 7L ࡢࣝࢥ࢟ࢩࢻΰྜ⁐ᾮప ࡛ỈࢆῧຍࡋࡓᚋࠊΥ⛬ᗘࡢ ᗘ࡛⇍ᡂฎ⌮ࡍࡿࠊ 㧗⃰ᗘࢰࣝࢤࣝἲࡤࢀࡿ᪉ἲ࡛ %D7L2 ࢼࣀ⢏Ꮚࢆྵࡴࢤࣝ≧≀ࢆྜᡂࡋ࡚࠸ࡿ ࠋࡇ ࡢ %D7L2 ప ⤖ᬗᣲືࡘ࠸᳨࡚ウࡍࡿࡓࡵࠊ⤖ᬗ๓DJLQJKࡢࢤࣝࠊ⤖ᬗᚋ DJLQJKࡢࢤࣝࠊᕷ㈍ %D7L2 ⢊ᮎ㸦ሜᏛᕤᴗओ〇ࡢ %7㸧ࡘ࠸࡚ࠊ7L. ➃ࡢ ;$1(6 %D/Ϫ➃ࡢ (;$)6 ᐃࢆᐇࡋࢫ࣌ࢡࢺࣝࢆẚ㍑ࡋࡓࠋ࠸ࡎࢀࡢ ᐃࡶࠊ6$*$ /6 ࣅ࣮࣒ࣛࣥࢆ⏝ࡋ㏱㐣ἲ࡛⾜ࡗࡓࠋ7L. ➃ࡢ ;$1(6 ࢫ࣌ࢡࢺࣝ࠾࠸࡚ࠊ࢚࣮ࢪ ࣥࢢ Kࡢࢫ࣌ࢡࢺࣝࡣࠊH9 ㏆ࣉ࢚ࣜࢵࢪࣆ࣮ࢡࠊ㹼H9 ࣈ࣮ࣟࢻ ࡞ࣆ࣮ࢡࡀぢࡽࢀࡓࠋ࢚࣮ࢪࣥࢢ㛫ࡢᘏ㛗క࠸ࠊH9 ㏆㗦࠸ࣆ࣮ࢡࡀ⌧ࢀࠊ࢚ ࣮ࢪࣥࢢ K ࡛ࡣయⓗ࡞࣌ࢡࢺࣝࡢᙧ≧ࡀᕷ㈍ %D7L2 ⢊ᮎࡢࡶࡢ㢮ఝࡋࡓࡶࡢ࡞ࡗ ࡓࠋ%D/Ϫ➃ࡢ (;$)6 ࢫ࣌ࢡࢺࣝࡶ࢚࣮ࢪࣥࢢ㛫ࡢᘏ㛗క࠸ࠊᕷ㈍ရ %D7L2 ⢊ࡢࢫ࣌ࢡ ࢺࣝᙧ≧㏆࡙ࡃࡀ☜ㄆࡉࢀࠊ㧗⃰ᗘࢰࣝࢤࣝἲ࡛ྜᡂࡋࡓ %D7L2 ࡀᕷ㈍ရྠᵝࡢࢫ ࣌ࢡࢺࣝᙧ≧ࢆ♧ࡍࡇࡀุࡗࡓࠋ ࠙ㅰ㎡ࠚᮏ◊✲ࡢ୍㒊ࡣ 1('2 ᢏ⾡㛤Ⓨᶵᵓᖹᡂ ᖺᗘ⏘ᴗᢏ⾡◊✲ຓᡂᴗࡢຓᡂࢆཷࡅ ࡚ᐇࡋࡓࡶࡢ࡛ࡍࠋ ࠙ཧ⪃ᩥ⊩ࠚ᱓ཎㄔ⏣ዉὠᏊ⥴᪉㐨ᏊᒣୗὒᏊ᭷ᮧ㞞ྖ ࢭ࣑ࣛࢵࢡࢫ >@ 㸫㸫 㸫㸫 % ࢻ࣮ࣉ㉸ࢼࣀᚤ⤖ᬗࢲࣖࣔࣥࢻỈ⣲ࣔࣝࣇࢫ࣮࢝࣎ࣥ⭷ ࡢ〇ࡑࡢኴ㝧㟁ụࡢᛂ⏝ ᭤᪂▮ ྜྷṊ๛ Ọ㔝ᙲ ཎṊႹ ㇂ுኴ ℩ᡞᒣᐶஅ ᑠᯘⱥ୍ Ọᒣ㑥ோ ᕞ⥲⌮ᕤ ᭷᫂㧗ᑓ ᕞࢩࣥࢡࣟࢺࣟࣥග◊✲ࢭࣥࢱ࣮ ᕞ㝔ᕤ ࡣࡌࡵ㸸㉸ࢼࣀᚤ⤖ᬗࢲࣖࣔࣥࢻ81&'Ỉ Temperature (K) 600 500 400 300 QP ௨ୗࡢࢲࣖࣔࣥࢻࢼࣀᚤ⤖ᬗࢆỈ⣲ࣔ ࣝࣇࢫ࣮࢝࣎ࣥࡀྲྀࡾᅖࡴᵓ㐀ࢆࡶࡘ᪂つᮦᩱ ࡛࠶ࡿ㸬81&'D&+ ࡣࣔࣝࣇࢫ࣮࢝࣎ࣥከ ⤖ᬗࢲࣖࣔࣥࢻࡢⰋ࠸Ⅼࢆేࡏᣢࡘ≉ᚩࢆ᭷ࡋ ࡚࠾ࡾ㸪◳㉁⓶⭷ࡢࡳ࡞ࡽࡎ༙ᑟయࡋ࡚ࡶ⯆ ῝࠸>@㸬ᡃࠎࡣᅇ㸪ሗ࿌ࡀᩘᑡ࡞࠸ 81&'D Conductivity (S/cm) ⣲ࣔࣝࣇࢫ࣮࢝࣎ࣥD&+ΰ┦⭷ࡣ㸪⢏ᚄ 10 0 غB 13at.% ٟ B 7at.% B 3at.% ً non–doped &+ ࡢ S ᆺࢆ࣎ࣟࣥῧຍࡼࡾヨࡳ㸪⭷ᵓ㐀ࢆ ヲ⣽ホ౯ࡋ㸪ኴ㝧㟁ụࡢᛂ⏝ࢆ᳨ウࡋࡓ㸬 10 –1 2 ᐇ㦂᪉ἲ⤖ᯝ⪃ᐹ㸸⭷స〇ࡣ࣮ࣞࢨ࣮ࣈࣞ 3 –1 4 1000/T (K ) Fig. 1 Change in the electrical conductivity of UNCD/a-C:H films for the Boron content ▼ⱥᇶᯈࢆ⏝ࡋ㸪Ỉ⣲ᅽ 3D㸪ᇶᯈ ᗘ in the film. ࣮ࢩࣙࣥἲࢆ⏝࠸ࡓ㸬ᇶᯈࡣ &]6Lᇶᯈ㸪 q& ࡛ᡂ⭷ࡋࡓࢱ࣮ࢤࢵࢺࡣ࣎ࣟࣥࡀࢻ࣮ࣉࡉ ࢀࡓࢢࣛࣇࢺࢆ⏝ࡋࡓ㸬స〇ࡋࡓ⭷ࡢᵓ㐀ホ౯ࢆ ; ⥺྾ᚤ⣽ᵓ㐀1(;$)6㸪ග㟁Ꮚ ศග ᐃ;36㸪⭷୰ࡢ㟁Ẽఏᑟ≉ᛶࡣ 9DQGHU3DXZ ἲࡼࡗ࡚ホ౯ࡋ㸪ఏᑟᆺࡣ⇕㉳㟁 ຊࡼࡗุู࡚ࡋࡓ㸬ᅗ ࣎ࣟࣥࢻ࣮ࣉ㔞ࡢ␗࡞ࡿ 81&'D&+ ⭷ࡢ㟁Ẽఏᑟᗘࡢ ᗘ౫ Ꮡᛶࢆ♧ࡍ㸬ࢻ࣮ࣉ㔞ᛂࡌ࡚ఏᑟᗘࡀቑࡋ㸪࢟ࣕࣜ⃰ᗘไᚚࡀྍ⬟࡛࠶ࡿࡇࡀ☜ㄆ࡛ ࡁࡓ㸬ఏᑟᗘࡀ7 ẚࡍࡿࡇࡽ㸪࢟ࣕࣜఏᑟࡣ࣍ࢵࣆࣥࢢఏᑟࡀᨭ㓄ⓗ ⪃࠼ࡽࢀࡿ㸬ࡑࡢヲ⣽ࡣⓎ⾲ᙜ᪥ሗ࿌ࡍࡿ㸬 >@7<RVKLWDNHHWDO-SQ-$SSO3K\V/ 㸫㸫 1䋮INTRODUCTION 2䋮Experimental 䊅䊉ᓸ⚿᥏䉻䉟䊟䊝䊮䊄/᳓⚛ൻ䉝䊝䊦䊐䉜䉴䉦䊷䊗䊮ᷙ⋧⤑䋨UNCD/a-C:H䋩 Rotate 䊧䊷䉱䊷䉝䊑䊧䊷䉲䊢䊮(PLD)ᴺ ᳓⚛ൻ䉝䊝䊦䊐䉜䉴䉦䊷䊗䊮䈏☸ᓘ10nmએਅ䈱䉻䉟䊟䊝䊮䊄ᓸ⚿᥏䉕ข䉍࿐䉃ᣂ᧚ᢱ 䉻䉟䊟䊝䊮䊄⁁ ⚛ DLC (a-C:H) 䊅䊉ᓸ⚿᥏ 䉻䉟䊟䊝䊮䊄 UNCD ᄙ⚿᥏ 䉻䉟䊟䊝䊮䊄 ᒻᘒ 㕖᥏⾰ 䊅䊉ᓸ⚿᥏ ᄙ⚿᥏ න⚿᥏ ⇣⒳ၮ᧼䈻䈱 ᚑ㐳 䃁ኈᤃ 䂾น⢻ 䂦࿎㔍 㬍ᭂ䉄䈩࿎㔍 ᷷ᐲቯᕈ 㬍 䂾 䃁 䃁 䊋䊮䊄䉩䊞䉾䊒 < 5.5 eV 5.5 eV ? 5.5 eV 5.5 eV ⛘✼ᕈ 䂾 䂾 䃁 䃁 ⤑䈱ᐔṖᕈ 䃁 䃁 㬍 䃁 ᾲવዉᐲ 㬍 䂾 䃁 䃁 ㅘㆊᕈ 䂾 䂾 䃁 䃁 H2 53.3 Pa Wavelength : 193nm Energy: 100mJ Irradiation area: 2mm2 Repetition Rate: 50Hz න⚿᥏ 䉻䉟䊟䊝䊮䊄 Target ( Graphite ) Lens Excimer Laser (ArF) 1 nm 45 q Thin film Substrate 㔚ሶ✢࿁᛬䊌䉺䊷䊮䈫䉻䉟䊟䊝䊮䊄111䊥䊮䉫䈱 ৻ㇱ䈱࿁᛬శ䉕↪䈇䈢ᥧⷞ㊁TEM UNCD/a-C:H㜞ಽ⸃⢻TEM T. Hara et.al Diamond Relat. Mater.15(2006)649 䉝䊝䊦䊐䉜䉴䉦䊷䊗䊮 UNCD/a-C:H 䊶 ᚑ⤑䈏ኈᤃ 䊶 B䊄䊷䊒䈪pဳൻ 䊶 N䊄䊷䊒䈪nဳൻ 䊶 variable Eg 䊶 ⤑㕙䈏ᭂ䉄䈩Ṗ 䉌䈎 䊶 ᚑ⤑䈏ኈᤃ 䊶 ᭂ䉄䈩ᄢ ᄢ䈐䈭 ๆଥ ᢙ 䊶 ⤑㕙䈏ᭂ䉄䈩Ṗ䉌 䈎 䊶 N䊄䊷䊒䈪nဳൻ䋧 䉨䊞䊥䉝Ớᐲᓮ ? 䊶 䉨䊞䊥䉝Ớᐲ䈱 ᓮ䈏䈪䈐䈭䈇䋨⛘✼ ᕈ䋩 䊶 ૐ䈇᷷ᐲቯᕈ ᄙ⚿᥏䊶න⚿᥏䉻䉟䊟 NCD 䊶 B䊄䊷䊒䈪p ဳൻ䋧䉨䊞 䊥䉝Ớᐲ ᓮ 䊶 N䊄䊷䊒䈪n ဳൻ䋧䉨䊞 䊥䉝Ớᐲ ᓮ 䊶 ⓥᭂ䈱䊪䉟䊄䉩䊞䉾䊒ඨ ዉ 䊶B䊄䊷䊒䈪pဳൻ䋧䉨䊞䊥 䉝Ớᐲᓮ 䊶 䊐䉜䉶䉾䊃䋧 ☸⇇ 䊶 ๆଥᢙ䈏 ዊ䈘䈇 䊶䊓䊁䊨ᚑ㐳䈏࿎㔍 䊶Nဳൻ䈏࿎㔍 ᭴ㅧ⹏ଔ X✢ๆᓸ⚦᭴ㅧ(NEXAFS) SAGA-LS BL12 శ㔚ሶಽశ᷹ቯ(XPS) 䊧䊷䉱䊷䊤䊙䊮ಽశశᐲ⸘ 䊐䊷䊥䉣ᄌ឵⿒ᄖಽశశᐲ⸘(FTIR) 㔚᳇વዉ․ᕈ Van der Pauwᴺ વዉဳ್ ᾲ㔚ജᴺ વዉဳᓮ䋧䉨䊞䊥䉝Ớᐲᓮ䈏 䈪䈐䉏䈳䋬ᄢ䈐䈭ๆଥᢙ䉕䈜 䉎ᣂⷙ䉝䊝䊦䊐䉜䉴♽ඨዉ᧚ᢱ 䈫䈚䈩⥝ᷓ䈇䋮 ⋡⊛ UNCD/a-C:H䈱B䊄䊷䊒䈮 䉋䉎pဳൻ䈫ᄥ㓁㔚ᳰᔕ ↪䈻䈱น⢻ᕈ䉕ត䉎 Base vacuum < 10-4 Pa Substrate temperature 550 qC Target Substrate Graphite Quartz Boron-doped Graphite n-Si(100) ᧂ⍮䈱‛ᕈ C1s B/C ratio O1s Boron contents in films (at. %) 10 O(Auger) B1s 800 HOPG 45° 600 400 200 QRQ±GRSHG 5 0 0 0 5 10 15 Boron contents in targets (at. %) Binding energy (eV) ⤑ਛ䈻䈱B䊄䊷䊒㊂䈏㗼⪺䈮Ⴧട B/C 䋽 81&'D±&+ Intensity (arb.unit) 20 1kV 0.2min. 280 B (10at.%) doped B䊄䊷䊒UNCD/a-C:H Barea/BP + Carea/CP ɽ B䈮࿃䈜䉎䊏䊷䉪䈏287.5eVઃㄭ䈮 280 䉺䊷䉭䉾䊃䊷⤑㑆䈪⚂30%䊨䉴 290 540 Conductivity[S/cm] 0 Temperature (K) 300 ± ± n-Si(100)ၮ᧼䈮䊓䊁䊨ᚑ㐳䈚䈢p-UNCD⤑䈱I-V․ᕈ ± 3 p-UNCD 4 5 10 - in the dark ± 0.0003 ٨ B 13at.% doped ٌ B 7at.% doped عB 3at.% doped غQRQ±GRSHG n-Si(100) - under illumination 0.0002 Al electrode 0.0001 0.22 0.24 1/4 ± (1/T) (K ) 10 of D(BD_004_b) vs. hQ Plot ofPlot D vs.hQ 7 10 0 ± ± 0 Voltage (V) 1 6 10 䊗䊨䊮䊄䊷䊒㊂䉕 غB 13at.% ٟ B 7at.% 3䌾6eV䈮䈍䈇䈩 ๆଥᢙ106(cm-1) 10 10 ⤑ਛ䈱㔚᳇વዉᐲ䈏 ± 3 10 ± 2 5 10 4 B 3at.% ً undoped 10 ⺞ᩏਛ Pd electrode activation energy 95meV =100m(eV) 1000/T 0.2 ʋ*C C䈱৻ㇱ䈏ʍ*CB䈮⟎឵? -1 Conductivity (S/cm) 0 330 6䋮Hetero Junction Temperature [K] 340 240 2 ± 320 0 Current (A) 400 ± 500 lnǻ(ohm cm ) 600 10 440 310 Photon energy (eV) 0 10 300 D [cm ] 600 400 200 Binging energy (eV) 5䋮Conductivity measurement 10 ʋ*C C䈏non-dope UNCD䈮Ყ䈼䈩ዊ䈘䈇 SR Current (A) 800 330 ʍ*CC 䈏 ʍ*CH, ʋ*C{C 䈫Ყ䈼䈩ᄢ䈐䈇 B (20at.%) doped 1kV 5.0min. 1000 300 310 320 Photon energy (eV) UNCD/a-C:H䈱․ᓽ Barea/BP 1kV 1.5min. O1s 䈲⤑㕙䈱ਇ⚐‛ 290 [S. Ohmagari, T. Yoshitake, A. Nagano, S. AL-Riyami, R. Ohtani, H. Setoyama, E. Kobayashi, and K. Nagayama, Jornal of Nanomaterials, article in press] 1kV 0.5min. 1kV 2.5min. 81&'D±&+ B (5at.%) doped 287.5 Barea, Carea : Total area of Boron and Carbon BP, CP : Photoionization energy ( MgKɲ line ) O1s 䈲Ar+䉴䊌䉾䉺䈪ᶖṌ QRQ±VSW Intensity (arb.unit) Intensity (arb.unit) ± B 20at.% target ± B 10at.% target ± B 5at.% target Intensity (arb.unit) (a) 1000 ʍ* ǻ*C=C ʋ* 15 ǻ*C҂C 4䋮Near-edge X-ray absorption Fine Structure Ǹ*C=C ǻ*CH Ǹ*C҂C ǻ*&±& 3䋮X-ray photoemission spectroscopy 3 ± 1000/T (K ) 4 ± 䉨䊞䊥䉝Ớᐲᓮ䈏น⢻ 䉨䊞䊥䉝વዉ䈮䈲䊖䉾䊏䊮䉫વዉ䈏ᡰ㈩⊛ 㸫㸫 0 Voltage (V) 1 1 2 3 4 5 Photon energy [eV] 6 7 T. Yoshitake et al. Jpn. J. Appl. Phys. 46, L936 (2007) UNCD⭯⤑䈲ᄥ㓁㔚ᳰ䈱⍴ᵄ㐳䈱ๆጀ䈫䈚䈩ᦸ ྠ㍈ᆺ䜰䞊䜽䝥䝷䝈䝬䜺䞁䛻䜘䜛㉸䝘䝜ᚤ⤖ᬗ䝎䜲䝲䝰䞁䝗/Ỉ⣲䜰䝰䝹 䝣䜯䝇䜹䞊䝪䞁⭷䛾〇䛸䛭䛾ᙧᡂᶵᵓ ⰼ⏣㈼ᚿ 1䠈୰ᕝ ඃ 1䠈すᒣ㈗ྐ 2䠈ྜྷ⏣ᬛ༤ 1䠈ྜྷṊ ๛ 1䠈㇂ுኴ 3䠈㝮㇂Ⴙ 3䠈ᒸᓥᩄᾈ 3䠈 ℩ᡞᒣᐶஅ 3䠈ᑠᯘⱥ୍ 3䠈Ọᒣ㑥ோ 2 1 㝔⥲⌮ᕤ䠈2 㝔ᕤ䠈3 ᕞ䝅䞁䜽䝻䝖䝻䞁ග◊✲䝉䞁䝍䞊 ྠ㍈ᆺ䜰䞊䜽䝥䝷䝈䝬䜺䞁䜢⏝䛔䛯䜰䞊䜽䝥䝷䝈䝬ἲ䛻 䞁 (UNCD/a-C) ⭷䛾〇䜢ヨ䜏䛯䠊䜎䛯䠈䛭䛾ᙧᡂᶵᵓ 䛻㛵䛧䛶⪃ᐹ䜢⾜䛳䛯䠊స〇䛧䛯⭷䛾ᵓ㐀ホ౯䛿䠈䝅䞁䜽 䝻䝖䝻䞁ග (ᕞ䝅䞁䜽䝻䝖䝻䞁ග◊✲䝉䞁䝍䞊BL12, 15) 䜢⏝䛔䛯⢊ᮎ X ⥺ᅇᢡ (XRD)䠈ග㟁Ꮚศග (XPS) 䛻䜘 䜚⾜䛳䛯䠊స〇䛧䛯⭷䛾 X ⥺ᅇᢡ䝟䝍䞊䞁䜢 Figure 1 䛻 ♧䛩䠊Diamond-111, 220 ᅇᢡ䝸䞁䜾䛜ほ 䛥䜜䠈స〇䛧䛯 Intensity (arb. unit) 䜘䜚㉸䝘䝜ᚤ⤖ᬗ䝎䜲䝲䝰䞁䝗/Ỉ⣲䜰䝰䝹䝣䜯䝇䜹䞊䝪 1 1 1 d n o m ai D 1 1 1 Ͳ D 30 40 0 2 2 Ͳ D 0 2 2 d n o m ai D ⭷୰䛻 UNCD ⤖ᬗ䛜⏕ᡂ䛧䛶䛔䜛䛣䛸䛜ศ䛛䜛䠊ᅇᢡ䝢 䞊䜽䛾್༙ᖜ䛛䜙 UNCD ⤖ᬗ䛾⢏ᚄ䛿⣙ 2 nm 䛸ぢ✚䜒 䜙䜜䛯䠊䜎䛯䠈〇⭷୰䛻Ⓨ⏕䛩䜛䝥䝷䝈䝬䝥䝹䞊䝮䜢ほ 䛧䠈UNCD ᙧᡂᶵᵓ䛻㛵䛧䛶⪃ᐹ䜢⾜䛳䛯䠊䛭䛾䛾⤖ ᯝ䛸⪃ᐹ䛿Ⓨ⾲ᙜ᪥䛻ሗ࿌䛩䜛䠊 㸫㸫 0 10 20 50 60 70 2ǰ (deg) Figure 1 : X-ray diffraction pattern of the deposited film, which was measured with 12-keV synchrotron radiation. The inset shows Debye-Scherrer rings taken with an imaging plate. 㸫㸫 Near-Edge X-ray Absorption Fine-Structure and X-ray Photoemission Spectroscopies of Nitrogen-doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films S. Al-Riyami, S. Ohmagari, T. Yoshitake, R. Ohtani1, H. Setoyama1, E. Kobayashi1,and K. Nagayama Kyushu University, 1SAGA-LS Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films were deposited on Si substrates at a substrate temperature of 550 qC by pulsed laser deposition using a graphite target. The ambient pressure was fixed to be 53.3 Pa and the nitrogenation of the films was controlled by the inflow ratio between the hydrogen and nitrogen gases. The chemical bonding structure was studied by near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoemission spectroscopy (XPS). The sp3/(sp3+sp2) ratio of the 9.7 at.% nitrogen-doped films was estimated to be 59 % from the peak decomposition of the XPS spectrum as shown in Fig. 1. The full-width at half-maximum of the sp3 peak was 0.9 eV. This small value is specific to UNCD/a-C:H films.(1) The NEXAFS spectra showed that the S* peaks shift toward higher energies with the increase in the nitrogen content. Further details will be shown in the presentation. 3 sp = 59 % N 9.7 at. % FWHM = 0.9 eV Intensity (arb.unit) Intensity (arb.unit) N 6.4 at. % 3 sp sp C–O /C–N 2 C=O N 4.8 at. % N 1.5 at. % non doped UNCD HOPG angle 45' 292 290 288 286 284 282 280 280 290 300 310 320 330 Binding energy (eV) Binding energy (eV) Fig. 1 Typical XPS Spectrum of nitrogen-doped films. films Fig. 2 NEXAFS spectra of nitrogen-doped UNCD/a-C:H (1) T. Yoshitake, A. Nagano, S. Ohmagari, M. Itakura, N. Kuwano, R. Ohtani, H. Setoyama, E. Kobayashi, and K. Nagayama: Jpn. J. Appl. Phys. 48 (2009) 020222. 㸫㸫 Experimental Rotate Pulsed Laser Deposition (PLD) Wavelength : 193nm Energy: 100mJ Irradiation area: 2mm2 Repetition Rate: 50Hz Background and Aim It has been known that nitrogen-doping for diamond is ineffective for realizing n-type conduction because nitrogen in diamond forms a deep donor level. For amorphous carbon, the electrical conductivity is difficult to be controlled although the n-type conduction is realized, by the nitrogen-doping. On the other hand, it has recently been reported that nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films possess n-type conduction with high electrical conductivities [1]. The nitrogen-doping effects on UNCD/a-C:H , which are apparently different from those on diamond and amorphous carbon, are of interest from physical viewpoint. In this study, the chemical bonding structures of nitrogen-doped UNCD/a-C:H films were investigated by near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoemission spectroscopy (XPS). N2+H2 53.3 Pa Target ( Graphite ) Lens Excimer Laser (ArF) 45 q Thin film Substrate Base vacuum < 10-4 Pa Structural evaluation NEXAFS XPS and SR-PES Raman spectroscopy FTIR Electrical conductivity Van der Pauw method XPS C1s survey spectrum of non doped UNCD and nitrogen ±doped UNCD Substrate temperature 550 qC SAGA-LS BL12 Substrate Target n-Si(100) NEXAFS spectra of nitrogen-doped UNCD/a-C:H films C1s C1s V* S* N 9.7 at.% NEXAFS spectrum : ¾ The S* peak was broadened with the nitrogen content. ¾ The V*C C peak was broadened with the nitrogen content. This might be due to the overlapping of V*C N peak whose position is extremely close to that of V*C C peak. O1s N 6.4 at.% N1s N 4.8 at.% Intensity (arb.unit) Intensity [arb.unit] Quartz Graphite non doped UNCD N 1.5 at.% non doped UNCD N 1.5 at.% N 4.8 at.% N 6.8 at.% HOPG (45' ) N 9.7 at. % 600 Binding energy (eV) 200 280 290 Typical XPS C1s Spectrum of nitrogen-doped films 2 &±2&±1 290 288 286 284 Binding energy (eV) sp 282 N 6.4 at. % 3 sp = 61.3 % FWHM =0.9 eV Intensity (arb.unit) Intensity (arb.unit) 292 3 sp 280292 320 330 N 4.8 at. % 3 N 1.5 at. % sp = 62.3 % FWHM =0.91eV 3 sp &±2&±1 290 310 Typical XPS C1s Spectrum of nitrogen-doped films Intensity (arb.unit) N 9.7 at. % 3 sp = 59 % FWHM =0.9 eV 300 Binding energy (eV) 288 286 284 Binding energy (eV) 2 sp 282 3 sp = 65 % FWHM = 0.9 eV 3 sp 2 &±2&±1 sp Intensity (arb.unit) 1000 3 sp 2 sp &±2&±1 280 292 㸫㸫 290 288 286 284 Binding energy (eV) 282 280 292 290 288 286 284 282 Binding energy (eV) 280 Estimation of sp2 and sp3 value by NEXAFS or XPS Summary : 1. From the decomposition of the XPS spectrum: sp 2 % The sample sp3 % Nitrogen at. % NEXAFS XPS XPS 9.7 53 41 59 6.4 51.3 38.7 61.3 4.8 51 37.7 62.3 1.5 46 35 65 0 58 32 68 ¾ The sp3/ (sp3+sp2) value of the non-doped films was estimated to be 68 %[2]. ¾ It gradually decreased with the nitrogen content in the films. ¾ The full-width at half-maximum of the sp3 peak was 0.9 eV. The small value is specific to UNCD/a-C:H films [3]. 2. From the NEXAFS spectrum : ¾ The S* peak was broadened with the nitrogen content. ¾ The V*CC peak was broadened with the nitrogen content. This might be due to the overlapping of V*CN peak whose position is extremely close to that of V*CC peak. References: [1] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A Curtiss, A. N.Goyette, D. M. Gruen, A. R. Krauss, J. Schulueter, A. Sumant, and P. Zapol, Appl.Phys. Lett. 79, 1441(2001). [2] T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara, and K. Nagayama: Jpn. J. Appl. Phys. 46 (2007) L936. [3] T. Yoshitake, A. Nagano, S. Ohmagari, M. Itakura, N. Kuwano, R. Ohtani, H. Setoyama, E. Kobayashi, and K. Nagayama: Jpn. J. Appl. Phys. 48 (2009) 020222. sp2 values were increased with increasing nitrogen contents 㸫㸫 ᆅ⌫⾲ᒙ≀㉁ࡢࢼࣀࣞ࣋ࣝ⌧㇟ Ᏹ㒔ᐑ ⪽ (㝔࣭⌮࣭Ꮫ) ᆅ⌫⾲ᒙࡣẚ㍑ⓗప ࡛࠶ࡿࡓࡵࠊࢼࣀࢧࢬࡢኳ↛㖔≀ࡀᏳᐃᏑᅾࡍࡿ⪃࠼ࡽࢀ ࡚࠸ࡿࠋࡇࢀࡽࡢࢼࣀ⤖ᬗࡣࠊ⾲ᒙ⎔ቃ᮲௳ୗ࡛⏕ᡂࠊ⁐ゎࠊ྾╔ࠊจ㞟ࠊᣑᩓࠊ࡞ࡢ⌧ ㇟ࢆࢼࣀࢫࢣ࣮࡛ࣝ࠾ࡇࡋࠊ⎔ቃၥ㢟࡞ࡿ᭷ᐖඖ⣲ࡢᣲືࢆᨭ㓄ࡍࡿࡇࡀከ࠸ࠋᮏሗ࿌ ࡛ࡣࠊࡇࢀࡲ࡛㏱㐣ᆺ㟁Ꮚ㢧ᚤ㙾ࢆ⏝࠸࡚⾜ࡗࡓࠊᆅ⌫⾲ᒙ≀㉁ࡢほᐹࡽ᫂ࡽ࡞ࡗ ࡓᵝࠎ࡞ࢼࣀࢫࢣ࣮ࣝ⌧㇟ࢆ⤂ࡍࡿࠋ 㸦㸯㸧㔠㖔ᗋࡢ㕲◲≀୰Ꮡᅾࡍࡿᚤ㔞㔠ᒓࡢᅛ⁐ࢼࣀ⤖ᬗࡢ㛵ಀࢆ(03$ࠊ6,06ࠊ7(0 㸦=ࢥࣥࢺࣛࢫࢺἲ㸧ࢆ⏝࠸࡚ゎᯒࡋࠊ㔠ࡢሙྜࠊS\ULWH୰ࡢ⁐ゎ㝈⏺⥺ࡀ$Vࡢ⃰ᗘẚ ࡋ࡚Ꮡᅾࡋࠊࡑࡢ㝈⏺⥺ࡼࡾ㧗⃰ᗘ࡛ࡣ㔠ࡀࢼࣀ⤖ᬗ࡛Ꮡᅾࡍࡿࡇࢆ᫂ࡽࡋࡓࠋࡲࡓࠊ ࡇࢀࡽࢼࣀ⢏Ꮚࡢ⇕ᣲືࢆ7(0ࡑࡢሙほᐹࡽࠊ2VZDOGULSHQLQJ⌧㇟ࡀぢࡽࢀࠊࡑࡢ⢒⢏ ᭤⥺ࡣ㔠ࡢ⁐ゎ᭤⥺ࡼࡾࡶప ഃࢩࣇࢺࡋࠊࡇࡢ⌧㇟ࡢᙉ࠸࣐ࢺࣜࢵࢡࢫ౫Ꮡᛶࡀ᫂ࡽ ࡞ࡗࡓࠋ 㸦㸰㸧ᆅୗỈᖏ୰ࡢࢼࣀࢧࢬ⢏Ꮚࡣ᭷ᐖ㔠ᒓ⤖ྜࡋ࡚Ᏻᐃ࡞ࢥࣟࢻࡋ࡚㐲㝸ࡲ࡛ᣑ ᩓࡉࢀࡿࠋ0D\DN5XVVLD1HYDGD7HVW6LWH176ࡢᆅୗỈᖏࡢ⣔⤫ⓗศᯒࡽࠊ0D\DN 㐲㝸ᣑᩓࡉࢀࡓ3Xࡀ㠀ᬗ㉁⌫≧ࡢ㸦Ỉ㸧㓟㕲ࢼࣀ⢏Ꮚୖ8ྠࡌศᕸ࡛Ꮡᅾࡍࡿࡇ ࡀศࡗࡓࠋࡲࡓࠊ176࡛ࡣ&VXUDQDWHࠊ&R&U)H1L0R㔠ᒓ㞟ྜయࠊ࢘ࣛࢽࣝ㖔≀ 㸦1DEROWZRRGLWHࠊR[LGHK\GUDWHV㸧ࡀࢼࣀࢧࢬ࡛Ꮡᅾࡋࠊ␗✀ࡢᨺᑕᛶ᰾✀ᑐࡋ࡚ࠊ ␗࡞ࡿ┦ࡢࢥࣟࢻࡀᣑᩓࣉࣟࢭࢫࢆᨭ㓄ࡋ࡚࠸ࡿࡇࡀ♧၀ࡉࢀࡓࠋ 㸦㸱㸧㟁Ꮚ࣭࢜ࣥࣅ࣮࣒ࢆ⏝࠸ࡓ㖔≀ࡢᨺᑕ⥺ᦆയࣉࣟࢭࢫࡑࡢሙほᐹࠊ㸦㸲㸧㕲㓟 ≀ࢼࣀ⤖ᬗࡢ᭷ᐖ㔠ᒓྲྀࡾ㎸ࡳᶵᵓࠊ㛵ࡋ࡚Ⓨ⾲ࢆ⾜࠺ࠋ 㸫㸫 㸫㸫 ࣃࢱࢺỈ⁐ᛶ㖄ࡢ┦స⏝ࡼࡿࢼࣀࢫࢣ࣮ࣝ⌧㇟ ୖ▼ ⍛ః࣭Ᏹ㒔ᐑ ⪽ (㝔࣭⌮࣭Ꮫ) ࣁࢻࣟ࢟ࢩࣃࢱࢺ(Ca5(PO4)3OH, HAP)ࡣ㦵ࡸṑࡢᵓᡂᡂศ࡛࠶ࡾ㔜せ࡞⏕య㖔≀࡛ ࠶ࡿࠋࡲࡓࠊࣃࢱࢺࡣPb࡞ࡢ᭷ᐖ㔠ᒓࢆᅛᐃࡍࡿᛶ㉁ࢆᣢࡘࠋࡇࢀࡣࠊࣃࢱࢺ ෆࡢCa࢜ࣥ㔠ᒓ࢜ࣥࡢ⨨ࡸࠊࣃࢱࢺࡢ⁐ゎࡼࡗ࡚౪⤥ࡉࢀࡿࣜࣥ㓟ࡼࡗ ࡚㔠ᒓ࢜ࣥࡀ㞴⁐ゎᛶࡢᒙྲྀࡾ㎸ࡲࢀࡿࡓࡵ㉳ࡇࡿࠋᮏ◊✲࡛ࡣࣃࢱࢺ̾Pb㛫┦ స⏝ࡼࡿᛂ⏺㠃㏆ഐࡢࢼࣀࢫࢣ࣮ࣝ⌧㇟ࢆゎ᫂ࡍࡿࡓࡵࠊpH = 5.0ࠊᐊ ࠊ◪㓟㖄⁐ ᾮ୰㸦2 mM㸧࡛ྜᡂ⢊ᮎHAP ༢⤖ᬗࡢኳ↛ࣇࣝ࢜ࣟࣃࢱࢺ ((Ca4.915Na0.014)(P3.029Si0.010)O12(F0.930Cl0.098), FAP)ࡢ⁐ゎᐇ㦂ࢆ⾜ࡗࡓࠋ ᩿㠃㏱㐣㟁㢧ἲࡽࠊFAP⾲㠃࡛Caࡀ㑅ᢥⓗ⁐⬺ࡍࡿࡇࠊPbࡣḟ㖔≀ࡋ࡚ᅛᐃࡉ ࢀࡿࡇࡀ᫂ࡽ࡞ࡗࡓࠋࡲࡓࠊࡑࡢᒙ࠾࠸࡚Ca̾Pb࢜ࣥᶵᵓࡀ㉳ࡇࡗ࡚࠸࡞ ࡗࡓࠋࡲࡓࠊHAP⾲㠃࠾࠸࡚ࡣb㍈᪉ྥ࢚ࣆࢱ࢟ࢩࣕࣝᡂ㛗ࡋ࡚࠸ࡿPbḟ㖔≀ࡢ⏕ ᡂࡀࡳࡽࢀࡓࠋࡇࡢPbḟ㖔≀ࡣ⢊ᮎX⥺ᅇᢡࡢ⤖ᯝࡽࣁࢻࣟ࢟ࢩࣃ࣮ࣟࣔࣇࢺ (Pb5(PO4)3OH, HPY)࡛࠶ࡿྠᐃࡉࢀࡓࠋࡇࡢHPYࡣ␗࡞ࡿ㸰ࡘࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࡀࡳ ࡽࢀࡓࠋ୍ࡘࡣࠊHAPࡢ⁐ゎࡼࡗ࡚ᛂ⁐ᾮయࡀHPYᑐࡋ࡚㣬≧ែ࡞ࡗࡓࡓࡵ HAPୖHPYࡀ⏕ᡂࡍࡿ࣓࢝ࢽࢬ࣒ࠊࡶ࠺୍ࡘࡣࠊHAP ࡢ⾲㠃࡛HAPࡢ⁐ゎࡢᚋ༶ᗙ HPYࡀ⏕ᡂࡍࡿ࣓࢝ࢽࢬ࣒࡛࠶ࡿࠋࡲࡓࠊ⏕ᡂࡋࡓHPYࡣ30᪥㛫ࡢᛂ࠾࠸࡚ࡶᏳᐃᏑ ᅾࡋᚎࠎᡂ㛗ࡍࡿᵝᏊࡀࡳࡽࢀࡓࠋ ࡇࢀࡽࡢ⤖ᯝࡼࡾࠊࣃ࣮ࣟࣔࣇࢺࡢ⏕ᡂ࣓࢝ࢽࢬ࣒ࡢࣃࢱࢺࡢ⤖ᬗ㠃ᑐࡍ ࡿ౫Ꮡᛶࡸ⏕ᡂࡋࡓࣃ࣮ࣟࣔࣇࢺࡢᡂ㛗࠸ࡗࡓࣃࢱࢺࡼࡿ㖄ᅛᐃࡢ࣓࢝ࢽࢬ ࣒ࡀ᫂ࡽ࡞ࡗࡓࠋ 㸫㸫 㸫㸫