Comments
Description
Transcript
DEM 型歩行者モデルによる回避シミュレーション
!"# ဳᱠⴕ⠪ࡕ࠺࡞ߦࠃࠆ࿁ㆱࠪࡒࡘ࡚ࠪࡦ$ ዊᴰቁਯ %㧘ㄞౝિᅢ %㧘⿒Ⴆㆯᄙ &$ % หᔒ␠ᄢቇ Ꮏቇㇱ$ Ꮏቇ⎇ⓥ⑼$ & หᔒ␠ᄢቇᄢቇ㒮 ⷐ$ ☳Ꮏቇ߿⾰ജቇߢᵈ⋡ߐࠇߡࠆ !"# ߦ '( ࡕ࠺࡞ࠍេ↪ߒ㧘ⴕേ․ᕈࠍ⚦ߦߒߚ !"# ဳᱠⴕ⠪ࡕ࠺࡞ߦߟߡㅀߴࠆߚߞⴕߡ↪ࠍ࡞࠺ࡕߩߘޔߦࠄߐޕ㓚ኂ‛߿ઁߩᱠⴕ⠪ࠍ࿁ㆱߔࠆࠪ ࡒࡘ࡚ࠪࡦࠍ⚫ߔࠆޕ$ )*+,-./01$2,345.6,+/$78$!"#$9++6$:;.<<,0$#+-15$ :.=.84=,$>+,?43,%@$A+746.=.$:B4C,40D,%@$E8+6.$)=.6B4=.&$ %!1F.;631/6$+<$:10D/+5+G8@$!+BD,BD.$H/,*1;B,68$ $ &I;.-J$20D++5$+<$"/G,/11;,/G@$!+BD,BD.$H/,*1;B,68$ )7B6;.06$ K/$ 6D,B$ B64-8@$ L1$ 1MF5.,/$ !"#$ 9++6$ :;.<<,0$ #+-15$ -1B0;,71-$ ,/$ -16.,5@$ LD,0D$ 4B1$ '($ 3+-15$ 6+$ !"#$ .661/6,+/NG166,/G$ ,/$ 6D1$ <,15-$ +<$ 3,0;+31;,6,0B$ ./-$ 61;;.310D./,0BJ$ K/$ .--,6,+/@$ L1$ ,/6;+-401$ .$ B,345.6,+/$.*+,-,/G$+7B6.051$./-$+6D1;$<++61;$78$4B,/G$6D1$3+-15J$ $ 1 ߪߓߦ 〝✼߿࡞ࡕࠣࡦࡇ࠶࡚ࠪޔᣣߪߚ߹ޔ㔡߿Ἣ ἴߥߤߩἴኂᤨߥߤޔ᭽ߥޘ႐㕙ߢᷦṛ߿ᷙ㔀߇⊒ ↢ߔࠆߥ߁ࠃߩߎޕᷦṛ߿ᷙ㔀ߣߞߚ߽ߩߪੱߦ OV ࡕ࠺࡞ࠍេ↪ߔࠆޕOV ࡕ࠺࡞ߪ೨ᣇ☸ሶߣߩ〒 㔌߆ࠄᦨㆡߥ☸ሶㅦᐲࠍ᳞☸ޔሶࠍടㅦ߅ࠃ߮ᷫ ㅦߐߖࠆ⸘▚ᣇᴺߢࠆ[4] ޕx ߦ⟎ߔࠆ☸ሶടㅦ ᐲ a ߪ☸ሶ㑆〒㔌 'x ࠍ↪ߡએਅߩᑼߢߐࠇࠆޕ a D V 'x v (1) ♖⊛ࠬ࠻ࠬࠍਈ߃ޔㅢߩ⊒↢₸ࠍ㜞ࠆޕ ߎߎߢ ޔD ߪᗵᐲଥᢙ㧘 v ߪ☸ሶㅦᐲ㧘 V 'x ߪ☸ ࠃߞߡޔᷦṛࠍ⸃ᶖ✭ߒߦ࠭ࡓࠬ߇ੱޔ⒖േ ሶ 㑆 〒㔌 ߆ࠄ ᳞ ࠄ ࠇࠆ ᦨ ㆡㅦ ᐲ㑐 ᢙ ߢ ࠆޕ ߢ߈ࠆⅣႺࠍ⸳⸘ߔࠆߚㅢࡕ࠺࡞ߦࠃࠆㅢᵹ ⸃ᨆ߇㊀ⷐߣߥࠆޕ ߢߪゞ߿ੱߥߤߩኻ⽎‛ࠍ☸ሶߢߒޔޘ V 'x ߪએਅߩᑼߢ᳞ࠄࠇࠆޕ V 'x v max 2 § § d ·· § 'x d · ¨¨ tanh¨ ¸ tanh¨ ¸ ¸¸ (2) © w ¹¹ © w ¹ © ߩ☸ሶേࠍㅊ〔ߔࠆࡒࠢࡠࡕ࠺࡞ࠍ↪ߚ⸃ᨆ߇ ߎߎߢޔv max ߪ㒢ㅦᐲ'ޔx ߪ☸ሶ㑆〒㔌ޔd, w ߪ ৻⥸⊛ߢࠆ[1,2]⎇ᧄޕⓥߢߪⓨ㑆ࠍㅪ⛯⊛ߦᝒ߃ޔ ቯᢙߢࠆ⎇ᧄޕⓥߢߪ d 0.47, w 0.45 ߣߒߚޕ ℂ⺰ߦၮߠ߈☸ሶേࠍ⸘▚ߔࠆ DEM (Distinct ᰴߦޔDEM ߦߟߡ⺑ߔࠆޕDEM ߣߪ⸃ޔᨆኻ Element Methodޔⷐ⚛ᴺ) [3]ࠍ↪ߡⴕേ․ᕈࠍ ⽎ߩ᭴ㅧࠍㅪ⛯ߣߒߡߪขࠅᛒࠊߕޔ☸ߩޘ ⚦ߦߒߚᱠⴕ⠪ࡕ࠺࡞ࠍ᭴▽ߔࠆ☸ޔߚ߹ޕ ሶⷐ⚛߆ࠄߥࠆ㓸วߢࡕ࠺࡞ൻߒߩߘޔ㓸วࠍ ሶߩടㅦᐲ⸘▚ߦߪ OV (Optimal Velocityᦨޔㆡㅦᐲ) 㔌ᢔ⊛ߦ⸃ᨆߔࠆᚻᴺߢࠆ[3]ޕDEM ߢߪ☸ሶട & ㅦᐲ a ࠍᓸዊᤨ㑆Ⴧಽ 't ߢᏅಽㄭૃߒߡ⸘▚ߔࠆޕ & * ߘߒߡޔㅦᐲ v ߅ࠃ߮⟎ x ࠍએਅߩᑼߢ᳞☸ሶ ࡕ࠺࡞[4]ࠍេ↪ߔࠆޕ ߘߒߡޔ᭴▽ߒߚࡕ࠺࡞ࠍ↪ߡ㓚ኂ‛߿ઁߩᱠⴕ ⠪ࠍ߃ߚ㓚ኂ࿁ㆱࠪࡒࡘ࡚ࠪࡦࠍⴕߞߚߐޕ ࠄߦࠪࡒࡘ࡚ࠪࡦห᭽ߩታ㛎ࠍⴕ⚿ޔᨐࠍᲧ セߒߡࡕ࠺࡞ߩലᕈࠍᬌ⸽ߒߚޕ & !"# ဳᱠⴕ⠪ࡕ࠺࡞ߩⷐ$ DEM ဳᱠⴕ⠪ࡕ࠺࡞ߩ᭴▽ࠍⴕ߁ߦߚࠅޔᱠⴕ ⠪ࠍ☸ሶߣߒߡࡕ࠺࡞ൻߒߚ☸ሶߩടㅦᐲ⸘▚ߦߪ ࠍᤨޘೞޘ⒖േߐߖࠆޕ & & * v t 't v t a t 't 't & & & x t 't x t v t 't 't (3) (4) ߎߩࠃ߁ߦᣂߒᤨೞ t 't ߦ߅ߌࠆടㅦᐲࠍᢙ ୯Ⓧಽߔࠆߣᤨޔೞ t 't ߦ߅ߌࠆᄌ߅ࠃ߮ㅦᐲ ߇ᓧࠄࠇࠆ' ࠍ▚⸘ߩߎޕt ߢ➅ࠅߔߎߣߦࠃߞߡ ☸ሶߩㆇേ゠〔߇⸘▚ߢ߈ࠆޕ ᧄ᧪ DEM ߢߪ☸ሶห჻߇ធ⸅ߒߚ㓙ޔVoigt ࡕ࠺ ߥࠆน⢻ᕈ߇ࠆߣ⠨߃ࠄࠇࠆߢߎߘޕ㧘 i o j ᣇ ࡞ࠍ↪ߡធ⸅ജࠍ⸘▚ߒടㅦᐲࠍ᳞ࠆ߇ޔᱠⴕ ะߦኻߒߡ☸ሶ i, j ߇ធ⸅ߔࠆᤨ㑆 't ij ࠍએਅߩᑼ ⠪ࡕ࠺࡞ߢߪ㕖ធ⸅⁁ᘒߢ☸ሶߩടㅦᐲࠍ⸘▚ߔࠆ ࠃࠅ᳞ࠆޕ ᔅⷐ߇ࠆޔߢߎߘޕㅀߩ OV ࡕ࠺࡞ࠍ↪ߡട ㅦᐲ⸘▚ࠍⴕ߁ߎߣߢ DEM ဳᱠⴕ⠪ࡕ࠺࡞ࠍ᭴▽ & & xi x j ri r j & & v ni cos T ni v nj cos T nj 't ij ߔࠆޕ ⛯ߡޔ᭴▽ߒߚࡕ࠺࡞ࠍ↪ߚ㓚ኂ࿁ㆱࠕ࡞ࠧ ࠭ࡓߦߟߡㅀߴࠆ☸ޔߪߢ࡞࠺ࡕߩߎޕሶ i ߩ⋡ ᮡᣇะߦኻߒߡㅴⴕߩᅹߍߣߥࠆน⢻ᕈߩࠆ㓚ኂ ☸ሶࠍ್ߔࠆⷞ㊁㗔ၞⷞޔ㊁㗔ၞߦ߹ࠇࠆ☸ሶ & ߩౝታ㓙ߦᷫㅦࡌࠢ࠻࡞ v o ߩᓇ㗀ࠍฃߌࠆ☸ሶࠍ ್ߔࠆ⊒㗔ၞࠍቯ⟵ߔࠆ[1]ⷞޕ㊁㗔ၞ߅ࠃ߮⊒ 㗔ၞࠍ࿑ 1 ߦ␜ߔޕ i ߘߒߡᤨޔೞ t ߢߩ☸ሶߩ⟎߅ࠃ߮ㅦᐲᖱႎ߆ࠄ & & 't ij ᓟߩ☸ሶ i, j ߩ⟎ xic , x cj ࠍߘࠇߙࠇ᳞ࠆޕ ☸ሶ i c, j c ߩ⟎㑐ଥࠃࠅ☸ሶ i c ߩ⊒㗔ၞౝߦ☸ሶ j c ߩਛᔃ߇ሽߔࠆ߆ุ߆್ቯߔࠆ☸ޕሶ j c ߇ሽ ߒߥ႐ว(࿑ 3(a))☸ޔሶ j ߪ☸ሶ i ߦᐓᷤߒߥߣ & ⠨߃ࠄࠇࠆߚޔᷫㅦࡌࠢ࠻࡞ v o ߩᓇ㗀ࠍฃߌߥ ߣߒߡ☸ሶ i ߩ⋡ᮡᣇะߦኻߒᦨ㜞ㅦᐲ v i max ࠍਈ 30 4ri (5) $ ߃ࠆ৻ޕᣇޔሽߒߚ႐ว(࿑ 3(b))☸ޔሶ j ߪ☸ሶ i ߩㅴⴕߩᅹߍߦߥࠆߣ⠨߃ࠄࠇࠆߚޔᷫㅦࡌࠢ࠻ & ࡞ v o ߩᓇ㗀ࠍฃߌࠆޕ 3d 6d Target direction jc i i j ic ic : affected area j jc : area of field of view ࿑ 1: ⷞ㊁㗔ၞ߅ࠃ߮⊒㗔ၞ & (a) v o 㧔 ri ߪ☸ሶ i ߩ☸ሶඨᓘ㧕 & (b) v o z 0 0 ࿑ 3: ⊒㗔ၞߢߩ㓚ኂ☸ሶ್ቯ Obstacle & vo i j T j T ni T nj & vnj Target & Movement vni ࿑ 2: ☸ሶ i, j ߩ☸ሶ⟎߅ࠃ߮ㅦᐲߩ㑐ଥ 㧔㤛⦡⍫ශߪ☸ሶߩㅴⴕㅦᐲࡌࠢ࠻࡞㧕 ⷞ㊁㗔ၞౝߦ㓚ኂ☸ሶ j ߩਛᔃ߇ሽߒߥ႐วޔ ☸ሶ i ߪࠅߩ☸ሶ߆ࠄߩᓇ㗀ࠍฃߌߥߣߒߡ☸ ሶ i ߩ⋡ᮡᣇะߦኻߒᦨ㜞ㅦᐲ vi max ࠍਈ߃ࠆ৻ޕᣇޔ ⷞ㊁㗔ၞౝߦࠆ☸ሶ j ߩਛᔃ߇ሽߔࠆ႐วᤨޔ ೞ t ߢ ߩ i o j ᣇ ะ ߦ ኻ ߔ ࠆ ☸ ሶ i, j ߩ ㅦ ᐲ & & v ni cos T ni 㧘 v nj cos T nj ࠍߘࠇߙࠇ᳞ࠆ(࿑ 2)ޕ & & v ni cos T ni d v nj cos T nj ߩ႐ว☸ޔሶ i ߪ☸ሶ j ߦㅊ ߟ߆ߥߚޔᓇ㗀ࠍฃߌߥߣߒߡ☸ሶ i ߩ⋡ ᮡ ᣇ ะ ߦ ኻ ߒ ᦨ 㜞 ㅦ ᐲ v i max ࠍ ਈ ߃ ࠆ ޕㅒ ߦ & & v ni cos T ni ! v nj cos T nj ߩ႐ว ޔi o j ᣇะߦኻߒߡ ☸ሶ i ߪ☸ሶ j ߦㄭߠߡߊߚޔㅴⴕߩᅹߍߦ & ᷫㅦᐲ v o ߪᑼ(2)ߩᦨㆡㅦᐲ㑐ᢙࠍ↪ߒߡએਅ ߩᑼࠃࠅ᳞ࠆ(࿑ 4(a))ޕ D V 'xij v ni cos T nic 't & vo 'x & ij & & & & min xi x j , xi x cj $ $ OPQ$ & ߐࠄߦ ޔvo ࠍ↪ߡᤨޔೞ t 't ߦ߅ߌࠆ i o j ᣇ ะߦኻߔࠆㅴⴕᣇะ T nic ࠍ T nic t 't & & § v ni cosT nic t v o · sin T jc ¸ $ ORQ$ cos 1 ¨ ¨ ¸ sin T vi max jc © ¹ & ߣߒޔㅴⴕㅦᐲ v ni ߪએਅߩࠃ߁ߦ᳞ࠆ(࿑ 4(b))ޕ v&ni ° ®& ° v ni ¯ vi max T ni c T jc d S 6 S· § vi max cos¨ T nic T jc ¸ 6¹ © T ni c T jc ! S 6 $ OSQ$ ߎߩࠕ࡞ࠧ࠭ࡓࠍ↪ࠆߎߣߢ⋡ޔᮡᣇะߦ㓚 ኂ‛߇ሽߒߡ߽ή㚝ߥᷫㅦ߿㕒ᱛࠍߖߕޔㅴⴕᣇ ะߩߺࠍᓮߒߡ㓚ኂࠍ࿁ㆱߢ߈ࠆߣ⠨߃ࠄࠇࠆޕ Condition X-Y coordinate([m], [m]) Target direction Max speed ( v max ) [m/s] No. No.1 No.2 No.1 No.2 No.1 No.2 (1) (-2,0) (0,0) X 0 0.86 0 (2) (-2,0) (-2,0) X X 0.86 0.43 (3) (-2,0) (2,0) X -X 0.86 0.86 1: ࿁ㆱࠪࡒࡘ࡚ࠪࡦࡄࡔ࠲ Obstacle & vo T jc i T ni jc ࠍ࿑ 5 ߦ␜ߔޕᱠⴕ⠪ߩേߪ࿑ 6 ߦ␜ߔࠃ߁ߦⵍ Target j & vni 㛎⠪߹ߚߪ㓚ኂ‛ߩೋᦼ⟎߅ࠃ߮ㅴⴕᣇะߪࠪࡒ ࡘ࡚ࠪࡦߣห᭽ߣߒⵍޔ㛎⠪ߦߪ⋡ᮡᣇะߦኻ (a) t Obstacle i ࡊ࠴ࡖࠪࠬ࠹ࡓࠍ↪ߡ⸘᷹ߒߚ⸘ޕ᷹ᤨߩࠨࡦࡊ ࡦࠣᵄᢙߪ 200[Hz]ߣߒߚޕฦ᧦ઙߦ߅ߌࠆⵍ Movement & vo 㛎⠪ߦ 4 ߟߩࡑࠞࠍขࠅઃߌࡖࠠࡦ࡚ࠪࡕޔ T jc ߒߡ⥄ὼߦᱠߊࠃ߁ᜰ␜ߒߚⵍޔߚ߹ޕ㛎⠪ߦߪ⋡ jc Target ᮡᣇะ߇⏕ߦߥࠆࠃ߁ߡ↪ࠍࡦࠦࠞޔ j 3[m]ߩㅢ〝ࠍ⸳ߌߚ(࿑ 5)ޕ T ni 1.5m 1.5m Movement& vni y (b) t 't x ࿑ 4: ☸ሶ i ߩㅦᐲࡌࠢ࠻࡞⸘▚ ࿑ 5: ታ㛎ߩ᭽ሶ((1)㓚ኂ࿁ㆱߩ႐ว) T 㓚ኂ࿁ㆱ⹜㛎$ ᭴▽ߒߚࡕ࠺࡞ߩലᕈࠍᬌ⸽ߔࠆߚޔ㓚ኂ‛߿ ઁߩᱠⴕ⠪ࠍ࿁ㆱߔࠆࠪࡒࡘ࡚ࠪࡦ߅ࠃ߮ታ㛎 ࠍⴕߞߚ⹜ߩࠄࠇߎޕ㛎ߢߪ(ޔ1)㕒ᱛߒߚ㓚ኂ‛ࠍ ࿁ㆱߔࠆ႐ว(㓚ኂ࿁ㆱ)(ޔ2)㓚ኂ߇ห৻ᣇะߦ⒖േ ߒߡࠆ႐ว(ㅊߒ)(ޔ3)ኻᣇะߦ⒖േߒߡ ࠆ႐ว(ߔࠇ㆑)ߦߟߡᬌ⸽ߒߚޕએਅߦ࿁ㆱࠪ ࡒࡘ࡚ࠪࡦ߅ࠃ߮ታ㛎ߦߟߡㅀߴࠆޕ TJ% ࿁ㆱࠪࡒࡘ࡚ࠪࡦ$ (a) ᱜ㕙 (b) 㕙 (c) ⢛㕙 ࿑ 6: ⵍ㛎⠪ߩࡑࠞขࠅઃߌ⟎ 㧔ฝ⢋ޔᏀ⢋ޔ⢛ਛ࠻࠶ࡈࠝޔ㧕 1 ߦฦ᧦ઙߢߩ 2 ☸ሶߩ X-Y ೋᦼᐳᮡ⋡ޔᮡᣇ ะ߅ࠃ߮ᦨᄢㅦᐲࠍ␜ߔߪߢࡦ࡚ࠪࡘࡒࠪᧄޕ ☸ሶඨᓘࠍ 0.2[m]ᤨޔ㑆Ⴧಽࠍ 1.010-4[s]ߣߒߚޕ TJ& ࿁ㆱታ㛎$ ࠪࡒࡘ࡚ࠪࡦห᭽ߩታ㛎ࠍⴕߞߚޕታ㛎ߩ᭽ሶ U ⚿ᨐ߅ࠃ߮⠨ኤ$ ฦ᧦ઙߦ߅ߌࠆ࿁ㆱࠪࡒࡘ࡚ࠪࡦߩ 5 ⑽㑆ߩ ☸ሶ゠ࠍ࿑ 7 ߦ␜ߔ☸⊕ޕሶߪ NO.1ޔ㤥☸ሶߪ No.2 ߩ☸ሶࠍߘࠇߙࠇߒߡࠆޕᰴߦޔ࿁ㆱታ㛎 ߦ߅ߌࠆⵍ㛎⠪ߩᱠⴕ゠〔ࠍ࿑ 8 ߦ␜ߔޕ࿑ 7,8 ࠃ ᓟߪოߩᓇ㗀ࠍ⠨ᘦߒߚࡕ࠺࡞ࠍ⠨߃ࠆߦࠄߐޕ ࠅޔ࿁ㆱࠪࡒࡘ࡚ࠪࡦߩ☸ሶ゠ߪ࿁ㆱታ㛎ߩ ኻ⽎ᢙࠍჇ߿ߒ⟲㓸ߢߩⴕേ․ᕈࠍ⺞ᩏߒޔᱠⴕ⠪ ᱠⴕ゠ߣࠃߊ৻⥌ߒߡࠆޔߚ߹ޕฦ࿑ߪ৻ቯᤨ ߩⴕേ․ᕈࠍ⚦ߦߒߚࡕ࠺࡞ߩ᭴▽ࠍ⋡ᜰߔޕ 㑆㑆㓒ߢ⟎ᐳᮡࠍࡊࡠ࠶࠻ߒߡࠆ࠻࠶ࡠࡊޕ㑆 㓒ࠍࠆߣࡃߟ߈߇ࠄࠇߥߚࡘࡒࠪޔ ෳ⠨ᢥ₂$ ࡚ࠪࡦߣታ㛎ߩᣇߦ߅ߡ৻ቯㅦᐲߢ⒖േߒߡ [1] E. Harada, H. Gotoh, Y. Maruyama, Proposal of ࠆߎߣ߇ࠊ߆ࠆޕએߩ⚿ᨐ߆ࠄ⎇ᧄޔⓥߢ᭴▽ߒ DEM-base Crowd Refuge Model with the Optimal ߚ DEM ဳᱠⴕ⠪ࡕ࠺࡞ߪലߢࠆߣ⸒߃ࠆޕ Velocity Model, Japan Society of Civil Engineers, ߹ߚޔታ㛎ߢߪⵍ㛎⠪߇⒖േᓟߦ x =2[m]ઃㄭߦ Vol.51 (2007) 553-558. ㆐ߒߚᤨ࠻࠶ࡠࡊޔ㑆㓒߇⁜ߊߥࠅޔᱠⴕㅦᐲ߇ૐ [2] K. Nishinari, Jammology Physics of Self-driven ਅߔࠆะ߇ࠄࠇࠆ࠴ࡊࡖࠠࡦ࡚ࠪࡕߪࠇߎޕ Particles Toward Solution of All Jams, Tenth Annual ࡖߩࡑࠞ⼂▸࿐ߩ㒢߇ߞߚߚޔ Japanese-American Frontiers of Science Symposium x =2[m]ߢ㕒ᱛߔࠆࠃ߁ᜰ␜ߒߚߚߢࠆࡒࠪޕ (2007). ࡘ࡚ࠪࡦߢߪ⋡ᮡᣇะߦ⒖േߒ⛯ߌࠆࠃ߁ߦ⸳ [3] P.A. Cundall, O.D.L.Strack, A Discrete Numerical ቯߒߡࠆ߇ޔ㓚ኂߩ࿁ㆱᓟߥߩߢ㓚ኂࠍ࿁ㆱߔࠆ Model for Granular Assemblies Geo-technique, Vol.29 ⚿ᨐߦᄢ߈ߥᓇ㗀ߪߥߣ⠨߃ࠄࠇࠆޕ No.1 (1979) 47-65. [4] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and V ߹ߣ$ Y. Sugiyama, Dynamical model of traffic congestion ᧄ⎇ⓥߢߪޔDEM ߦ OV ࡕ࠺࡞ࠍេ↪ߔࠆߎߣߢޔ DEM ဳᱠⴕ⠪ࡕ࠺࡞ߩ᭴▽ࠍⴕߞߚࠍ࡞࠺ࡕߩߘޕ and numerical simulation. Phys. Rev. E, Vol.51 No.2 (1995) 1035- 1042. ↪ߡ㓚ኂࠍ࿁ㆱߔࠆࠪࡒࡘ࡚ࠪࡦࠍⴕߞߚ⚿ ᨐޔታ㓙ߩᱠⴕ⠪ห᭽ߩᱠⴕേ߇ࠄࠇߚޕ 1.5m 1.5m 1.5m 2m -2m y -1.5m 2m -2m x y -1.5m 2m x (a) Condition No.1 -2m y -1.5m (b) Condition No.2 (c) Condition No.3 ࿑ 7: ࿁ㆱࠪࡒࡘ࡚ࠪࡦߦ߅ߌࠆ☸ሶ゠ (a) Condition No.1 (b) Condition No.2 ࿑ 8: ࿁ㆱታ㛎ߦ߅ߌࠆⵍ㛎⠪ߩᱠⴕ゠ (c) Condition No.3 x