Comments
Description
Transcript
2013年1月~2013年12月
᳃ Წ ᲫᲲ Ჰ ᲧᲯᲯ Ც Ჱ ʮᣃငಅܖٻዮӳဃԡᅹܖᢿ ࠰إ #PPWCN4GRQTVQHVJG(CEWNV[QH.KHG5EKGPEGU -[QVQ5CPI[Q7PKXGTUKV[ ģᇹᲮӭĤ ᲬᲪᲫᲭ ࠰ ⬻⾲㠃ࡽග࡛┤᥋⬻⾑ὶኚࢆィ ࡍࡿ᪂ᢏ⾡ ࡇࢀࡲ࡛ࠊ㢌ࡢ⾲㠃」ᩘࡢග※ཷගࢭࣥࢧ࣮ࢆ㓄⨨ࡋࠊࢭࣥࢧ࣮ࡢሗࢆࡶ ⬻⾑ὶࡢኚࢆ⬻⾲㠃ୖࡢศᕸࡋ࡚ ḟඖ⏬ീࡋ࡚⾲♧ࡍࡿࠕගࢺ࣏ࢢࣛࣇ ࣮ࠖ࠸࠺ᢏ⾡ࡣᐇ⏝ࡉࢀ࡚࠸ࡲࡋࡓࡀࠊ✵㛫ゎീᗘࡀ FP ⛬ᗘ࡛㸦FP ᱁Ꮚ≧ࣉ ࣮ࣟࣈ㓄⨨ࡢሙྜ㸧ࠊ⬻௨እࡢ⓶⤌⧊࡞ࡽಙྕࡀΰධࡍࡿྍ⬟ᛶࡀ࠶ࡾࡲࡋࡓࠋ ᅇࠊୡ⏺ඛ㥑ࡅࠊ㯞㓉ࡋࡓ࣑ࢽࣈࢱࢆ⏝࠸࡚⬻⓶㉁⾲㠃ࡽࢲࣞࢡࢺග ࡛⬻ࡢ⾑ὶᛂࢆィ ࡋࠊ⬻άືࢆ㧗⢭ᗘࡢ㸰ḟඖ࣐ࢵࣉࡋ࡚⾲⌧ࡍࡿᡭἲࡢ㛤Ⓨ ᡂຌࡋࡲࡋࡓࠋࡇࡢࠕࢲࣞࢡࢺගࢺ࣏ࢢࣛࣇ࣮ἲࠖࡼࡾࠊ⬻ࡢ⾲㠃」ᩘࡢ ග※ཷගࢭࣥࢧ࣮ࢆ PP 㛫㝸࡛㓄⨨ࡋࠊ⣙ PP ࡢ㧗⢭ᗘ࡛ࠊ␗࡞ࡿ⨨ࡢ⬻άືࢆ ศ㞳ࡍࡿࡇࡀྍ⬟࡞ࡾࡲࡋࡓࠋ ᚋࠊ࣑ࢽࣈࢱࡼࡿᇶ♏ᐇ㦂ࢆ㐍ࡵࠊࣄࢺࡢ⬻⚄⤒እ⛉ᡭ⾡୰ࡢ⬻ᶵ⬟ࣔࢽࢱࣜ ࣥࢢࡢ⮫ᗋᛂ⏝ᐇ⌧ࢆ┠ᣦࡋ࡚࠸ࡁࡲࡍࠋ ࡞࠾ࠊࡇࡢᡂᯝࡣ⮬་⛉Ꮫࠊ୰ኸᏛࠊி㒔⏘ᴗᏛࡽࡢࢢ࣮ࣝࣉࡼࡿඹྠ ◊✲࡛ᚓࡽࢀࡓࡶࡢ࡛ࡍࠋ 8JD0HWDOKWWSG[GRLRUJMQHXURLPDJH ┠ ḟ ᕳ㢌ゝ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ◊✲ᐊ࣓ࣥࣂ࣮࣭ົᐊࢫࢱࢵࣇ୍ぴ࣭Ꮫጤဨጤဨ୍ぴ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㸰㸮㸯㸱ᖺάືグ㘓 ⏕ࢩࢫࢸ࣒Ꮫ⛉ ⏕ࢩࢫࢸ࣒Ꮫ⛉ࡢᩍ⫱◊✲άື ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᯈ 㔝 ┤ ᶞ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ఀ ⸨ ⥔ ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㯮 ᆏ ග ᩍ ᤵ㸦Ꮫ㒊㛗㸧 ࣭࣭࣭࣭࣭࣭࣭࣭࣭ బ ⸨ ㈼ ୍ ᩍ ᤵ㸦Ꮫ⛉௵㸧 ࣭࣭࣭࣭࣭࣭࣭࣭ ᔱ ᮏ ఙ 㞝 ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ℩ ᑿ ⨾ 㕥 ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ୰ ⏣ ༤ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ Ọ ⏣ ᏹ ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ୰ ᮧ ᬸ ᏹ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ༓ ᑜ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ⚟ ᡂ ⾜ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ඵ ᮡ ㈆ 㞝 ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᶓ ᒣ ㅬ ᩍ ᤵ㸦Ꮫ⛉௵㸧 ࣭࣭࣭࣭࣭࣭࣭ ྜྷ ⏣ ㈼ ྑ ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ⏕㈨※⎔ቃᏛ⛉ ⏕㈨※⎔ቃᏛ⛉ࡢᩍ⫱◊✲άື ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㔠 Ꮚ ㈗ ୍ ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ Ἑ 㑔 ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᮌ ᮧ ᡂ ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㧗 ᶫ ⣧ ୍ ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ὠ ୗ ⱥ ᫂ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᑎ ᆅ ᚭ ᩍ ᤵ㸦Ꮫ⛉௵㸧 ࣭࣭࣭࣭࣭࣭࣭࣭ 㔝 ᮧ ဴ 㑻 ᩍ ᤵ㸦Ꮫ⛉௵㸧 ࣭࣭࣭࣭࣭࣭࣭ ᮏ ᶫ ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᒣ ᓊ ༤ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ື≀⏕་⛉Ꮫ⛉ ື≀⏕་⛉Ꮫ⛉ࡢᩍ⫱◊✲άື ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᵳ බ ୍ ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ຍ ⸨ ၨ Ꮚ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㔝 වḟ㑻 ຓ ᩍ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㰻 ⸨ ᩄ அ ᩍ ᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᰁ ㇂ ᱻ ຓ ᩍ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ 㧘 ᱓ ᘯ ᶞ ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ➉ ෆ ᐇ ᩍ ᤵ㸦Ꮫ⛉௵㸧 ࣭࣭࣭࣭࣭࣭࣭࣭ Ჴ ᶫ 㟹 ⾜ ຓ ᩍ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ す 㔝 ె ௨ ᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ๓ ⏣ ⛅ ᙪ ᩍ ᤵ㸦Ꮫ⛉௵㸧 ࣭࣭࣭࣭࣭࣭࣭ ᯇ ᮏ ⪔ ୕ ᐈဨᩍᤵ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᮧ ⏣ ⱥ 㞝 ᩍ ᤵ㸦Ꮫ㒊㛗㸧 ࣭࣭࣭࣭࣭࣭࣭࣭ 㸰㸮㸯㸱ᖺ ⥲ྜ⏕⛉Ꮫ㒊 ◊✲ࢺࣆࢵࢡࢫ ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ᕳ㻌 㢌㻌 ゝ㻌 ⥲ྜ⏕⛉Ꮫ㒊㛗㻌 㯮㻌 ᆏ㻌 㻌 㻌 ග㻌 㻌 ⥲ྜ⏕⛉Ꮫ㒊ࡣࠊᖹᡂ㸰㸰ᖺ㛤タࡉࢀࡓᮏᏛ࡛ࡣ᭱ࡶ᪂ࡋ࠸Ꮫ㒊࡛ࡍࠋึ௦Ꮫ㒊㛗ࡢỌ⏣ᏹᩍ ᤵࡢᏛ㒊㛗㏥௵ࢆཷࡅࠊᖺ㸲᭶⚾ࡀḟᮇᏛ㒊㛗ࢆᣏࡋࡲࡋࡓࠋὸᏛ㠀ᡯࡢ⚾ࡣࠊᑓ௵ᩍဨ㸱 㸳ྡࠊࣉࣟࢪ࢙ࢡࢺຓᩍ㸯㸰ྡຍ࠼ࠊ࣏ࢫࢻࢡࠊᐈဨ◊✲ဨ࡞ࡢከࡃࡢᵓᡂဨࢆᢪ࠼ࡿ⥲ྜ⏕ ⛉Ꮫ㒊ࡢ⯦ྲྀࡾࡣⲴࡀ㔜ࡃࠊᏛ㒊㐠ႠᏳࢆឤࡌࡲࡋࡓࡀࠊఱࡇࡢ⃭ືࡢ㸯ᖺࢆࡾษࡿࡇ ࡀ࡛ࡁࡲࡋࡓࠋࡇࢀࡶࡦ࠼ⓙᵝࡢࡈ༠ຊࡈ⌮ゎࡼࡿࡶࡢឤㅰࡢẼᣢࡕ୍࡛ᮼ࡛ࡍࠋ ᖹᡂ㸰㸳ᖺᗘࢆࡶࡗ࡚㸲ᖺ㛫ࡢᏛ㒊ᡂᖺᗘࢆ⤊࠼ࡿ⥲ྜ⏕⛉Ꮫ㒊࡛ࡣࠊ㸯ᖺࢆࡅ࡚ᩍ⫱࣭◊ ✲యࢆ᳨ドࡋࡲࡋࡓࠋᩍ⫱㠃࡛ࡣ࣒࢝ࣜ࢟ࣗࣛࢆᨵゞࡋࠊࡼࡾຠ⋡ⓗ࡞ࡶࡢࢆసᡂࡋࡲࡋࡓࠋࡲࡓ ᮏᖺᗘࡽࠊᩥ㒊⛉Ꮫ┬᥇ᢥࡢ⌮⣔ࢢ࣮ࣟࣂࣝேᮦ⫱ᡂᴗࡀᮏ᱁ⓗጞࡲࡾࠊᐇࡋࡓⱥㄒᩍ⫱ࡀ ᐇࡉࢀࡲࡍࠋ◊✲㠃࡛ࡣࠊᮏᏛ㒊⊂⮬ࡢ◊✲ᨭไᗘ࡛࠶ࡿࣉࣟࢪ࢙ࢡࢺ◊✲ᨭไᗘࡘ࠸࡚㆟ ㄽࢆ㔜ࡡ࡚ࡁࡲࡋࡓࠋࡲࡓࠊ⥲ྜ⏕⛉Ꮫ㒊ࢆᇶ♏Ꮫ㒊ࡋ࡚ࠊᏛ㝔⏕⛉Ꮫ◊✲⛉㸦ಟኈㄢ⛬㸧 ࢆ⏦ㄳࡋ࡚࠾ࡾࡲࡋࡓࡀࠊᩥ㒊⛉Ꮫ┬ࡼࡾㄆྍࢆཷࡅࠊᬕࢀ࡚ࡇࡢ㸲᭶ࡽ᪂◊✲⛉ࢆ㛤タࡍࡿࡇ ࡀ࡛ࡁࡲࡋࡓࠋࡇࢀࢆࡶࡗ࡚ࠊᏛ㒊ࡽᏛ㝔ࡲ୍࡛㈏ࡋ࡚ᩍ⫱࣭◊✲ྲྀࡾ⤌ࡴ⎔ቃࡀᩚഛࡉࢀࡲ ࡋࡓࠋ ࡇࡢ㸱᭶ึࡵ࡚ࡢ༞ᴗ⏕ࢆ㏦ࡾฟࡋࡓࡇࡣࠊᮏᏛ㒊ࡗ࡚ኚᎰࡋ࠸ࡇ࡛ࡋࡓࠋᖾ࠸ࡶ ᑵ⫋ࡣ㡰ㄪ࡛ࠊᑵ⫋ෆᐃ⋡ࡣ㠀ᖖ㧗࠸ࡶࡢ࡛ࡋࡓࠋࡲࡓࠊᏛ㝔ࡶከࡃࡢᏛ⏕ࡀ㐍Ꮫࡋࠊ᪂◊✲ ⛉ࡶᐃဨࢆୖᅇࡿෆ㒊㐍Ꮫ⪅ࡀ࠶ࡾࡲࡋࡓࠋ༞ᴗ⏕ࡢⓙࡉࢇࡣࠊࡑࢀࡒࢀ㐍㊰ࡣ␗࡞ࡾࡲࡍࡀࠊ Ꮫ࡛ᇵࡗ࡚ࡁࡓࡇࢆ༑ศⓎࡋ࡚ࡈά㌍ࡉࢀࡿࡇࢆ㢪ࡗ࡚࠸ࡲࡍࠋⓙࡉࢇࡢ㊊㊧ࡀᚋ㍮㐩ࡢṌࡴ ࡁ㐨࡞ࡗ࡚࠸ࡁࡲࡍࠋ ࡲࡓࠊᖹᡂ㸰㸳ᖺᗘࢆࡶࡗ࡚㸳ྡࡢᩍဨ㸦⏕ࢩࢫࢸ࣒Ꮫ⛉ࡽࡣఀ⸨ࠊ⚟ࠊඵᮡࠊྜྷ⏣ྛᩍᤵࠊ ື≀⏕་⛉Ꮫ⛉ࡽࡣᵳᩍᤵ㸧ࡀ㏥⫋ࡉࢀࡲࡋࡓࠋඛ⏕᪉ࡣࠊᏛ㒊ࡢタ❧ࡽ᪥⮳ࡿࡲ࡛ Ꮫ㒊ࢆ≌ᘬࡋ࡚࠸ࡓࡔࡁࡲࡋࡓࠋᮏᏛ㒊ࡀணࢆୖᅇࡿ㡰ㄪ࡞ࢫࢱ࣮ࢺࢆษࡿࡇࡀ࡛ࡁࡓࡢࡶࠊඛ ⏕᪉ࡢࡈᑾຊࡢࡓࡲࡶࡢឤㅰ⮴ࡋࡲࡍࠋ୍᪉ࠊ᪂つᩍဨ᥇⏝ேࡶేࡏ࡚⾜࠸ࠊ㸲᭶ࡣ᪂ࡋࡃ㸲 ྡࡢᩍဨࢆ࠾㏄࠼ࡋࡲࡋࡓࠋࡇࢀࡽࡣ᪂ࡋ࠸ඛ⏕᪉ຊࢆྜࢃࡏ࡚ࠊࡼࡾ⣲ᬕࡽࡋ࠸Ꮫ㒊ࡋ࡚࠸ ࡡࡤ࡞ࡾࡲࡏࢇࠋ ࡇࡢࡼ࠺ࠊᏛ㒊ᡂᖺᗘࢆ⤊࠼ࡓ⥲ྜ⏕⛉Ꮫ㒊ࡣࠊḟࡢࢫࢸ࣮ࢪྥࡗ࡚ࢫࢱ࣮ࢺࢆษࡾࡲ ࡋࡓࠋࡉࡽᖺᗘࡣࠊ⏕⛉Ꮫ◊✲⛉༤ኈᚋᮇㄢ⛬ࡢタ⨨⏦ㄳࡢ‽ഛࢆࡣࡌࡵࡲࡍࠋ༤ኈᚋᮇㄢ ⛬ࢆ㛤タࡋ࡚㧗࠸ࣞ࣋ࣝࡢᩍ⫱࣭◊✲άືࢆ⾜࠸ࠊ᭱ึࡢᏛྲྀᚓ⪅ࢆ㏦ࡾฟࡋ࡚ࡣࡌࡵ୍࡚ே๓ࡢ Ꮫ㒊࣭◊✲⛉࠸࠼ࡿࡢ࡛ࡋࡻ࠺ࠋࡑࢀࡲ࡛ࡓࡺࡲࡠ๓㐍ࡀᚲせ࡛ࡍࠋ Ꮫ㒊ࡋ࡚⬚✺ࡁඵࡢኚ࡞ᮇࢆྥ࠼࡚࠾ࡾࡲࡍࡀࠊᩍ⫱࣭◊✲ࡢᡭࢆỴࡋ࡚⦆ࡵࡿࢃࡅ ࡣ⾜ࡁࡲࡏࢇࠋᮏᏛ㒊ࡣ⮬ࡽࡢάືࢆ᳨ドࡍࡿࡓࡵࠊᏛ㒊⊂⮬ࡢྲྀࡾ⤌ࡳࡋ࡚ᖺሗࢆⓎ⾜ࡋ࡚࠸ ࡲࡍࠋᖺࡢᖺሗࢆᡭྲྀࡗࡓⓙࡉࡲࡣࠊ⃭ືࡢᏛ㒊㐠Ⴀࡢ୰ࠊᏛ㒊ᵓᡂဨࡀᠱ࡞ࡗ࡚ᩍ⫱࣭ ◊✲ྲྀࡾ⤌ࢇ࡛ࡁࡓドࡋࢆឤࡌྲྀࡗ࡚࠸ࡓࡔࡅࢀࡤᖾ࠸࡛ࡍࠋ㻌 ⥲ྜ⏕⛉Ꮫ㒊ᩍဨ◊✲ᐊ୍ぴ Ꮫ⛉ ᙺࠉ⫋ ࢫࢱࢵࣇ➼ྡ⡙ ࠉ◊✲ဨ ࠉ≉ᐃ◊✲ဨ㸦3' ࠉ≉ᐃ◊✲ဨ㸦75 ⫋ࠉྡ Ặࠉࠉྡ ᩍࠉࠉᤵ ᯈࠉ㔝ࠉ┤ࠉᶞ ᐈဨᩍᤵ ఀࠉ⸨ࠉ⥔ࠉ ༓ࠉⴥࠉᚿࠉಙ Ꮫ㒊㛗 ᩍࠉࠉᤵ 㯮ࠉᆏࠉࠉࠉග ୰ࠉᒣࠉ႐ࠉ᫂ Ꮫ⛉௵ ᩍࠉࠉᤵ బࠉ⸨ࠉ㈼ࠉ୍ ᐈဨᩍᤵ ᔱࠉᮏࠉఙࠉ㞝 ୰ࠉᒣࠉ⚽ࠉ႐ ᩍࠉࠉᤵ ℩ࠉᑿࠉ⨾ࠉ㕥 ᩍࠉࠉᤵ ୰ࠉ⏣ࠉࠉࠉ༤ ⛅ࠉ⏣ࠉࠉࠉ⸅ ᐈဨᩍᤵ Ọࠉ⏣ࠉࠉᏹ ₻ࠉ⏣ࠉࠉࠉு ᩍࠉࠉᤵ ୰ࠉᮧࠉᬸࠉᏹ ᩍࠉࠉᤵ ࠉࠉࠉ༓ࠉᑜ ᩍࠉࠉᤵ ⚟ࠉࠉᡂࠉ⾜ ᐈဨᩍᤵ ඵࠉᮡࠉ㈆ࠉ㞝 ᩍࠉࠉᤵ ᶓࠉᒣࠉࠉࠉㅬ ᓊࠉᕝࠉ῟ࠉ୍ ᐈဨᩍᤵ ྜྷࠉ⏣ࠉ㈼ࠉྑ ⳢࠉཎࠉెዉᏊ 㕥ࠉᮌࠉಇࠉ ⛯ࠉ⏣ࠉⱥ୍㑻 ඖࠉᓥࠉඃࠉᏊ ᩍᤵ 㔠ࠉᏊࠉ㈗ࠉ୍ ᩍᤵ Ἑࠉ㑔ࠉࠉࠉ ᩍᤵ ᮌࠉᮧࠉᡂࠉ ᩍᤵ 㧗ࠉᶫࠉ⣧ࠉ୍ ᩍࠉࠉᤵ ὠࠉୗࠉⱥࠉ᫂ 㭯ࠉᮧࠉಇࠉ Ꮫ⛉௵ ᩍࠉࠉᤵ ᑎࠉᆅࠉࠉࠉᚭ 㧗ࠉᶫࠉࠉࠉு Ꮫ⛉௵ ᩍࠉࠉᤵ 㔝ࠉᮧࠉဴࠉ㑻 ᩍᤵ ᮏࠉᶫࠉࠉࠉ ᱩࠉᕝࠉࠉᏘ ᩍࠉࠉᤵ ᒣࠉᓊࠉࠉࠉ༤ 㧗ࠉᶫࠉࠉࠉு ⏕ ࢩ ࢫ ࢸ ࣒ Ꮫ⛉௵ ⏕ ㈨ ※ ⎔ ቃ ᐈဨᩍᤵ ື ≀ ⏕ ་ ⛉ Ꮫ⛉௵ Ꮫ⛉௵ Ꮫ㒊㛗 ࠉᵳࠉබࠉ୍ ຓᩍ ㅮᖌ ᐈဨ◊✲ဨ კク࣭ዎ⣙⫋ဨ 7KHHUDZXW&KDQPHH ༓ࠉⴥࠉ┤ࠉ⨾ Ⲕࠉ㇂ࠉᝆࠉᖹ ⫧ࠉሯࠉ㟹ࠉᙪ 㧗ࠉᶫࠉ⏤ࠉ⾰ ᶓࠉᒣࠉ᭸ࠉᏊ ࠉ㈗அ ዉⰋ㔜ࠉಇ 㯮ࠉᕝࠉὒࠉ୍ ୖࠉ㔝ࠉಙࠉὒ ὸࠉ㔝ࠉᘯࠉႹ ΎỈࠉ⏨ Ἑࠉ㔝ࠉṇࠉᏕ ᮧࠉୖࠉࠉࠉ᠇ ▼ࠉ⏣ࠉ᭷ᕼᏊ ㇂ࠉ⏣ࠉ࿘ࠉᖹ ఀࠉ⸨ࠉ㐍ࠉஓ ᳃ࠉᡞࠉࠉ ᒣࠉᮏࠉὒࠉᖹ ▼ࠉ⏣ࠉ⋢ࠉ⨾ 6KRVKDQD%DU1XQ ⚟ࠉ⏣ࠉὈࠉᏊ ▼ࠉ⏣ࠉ❳ࠉ୍ ୰ࠉᒣࠉࠉࠉᐇ ▼ࠉࠉὈࠉ㞝 ゅࠉ⏣ࠉ⨺ࠉᖹ ඖࠉᓥࠉྐࠉᑜ ⏤ࠉⰋࠉࠉࠉ㝯 ୰ࠉすࠉ ࠉᏊ ୰ࠉᔱࠉᬗࠉᏊ ୰ࠉᮧࠉ⣧ࠉ ⏣ࠉ୰ࠉ୍ࠉᕭ 㕥ࠉᮌࠉ⣧ࠉᏊ ᫍࠉࠉࠉࠉ୍ ྜྷࠉ⏣ࠉ㈗ࠉᚨ ྜྷࠉ⏣ࠉึࠉె ᒸࠉᮏࠉࠉࠉ㑳 ୰ࠉ┈ࠉᮁࠉᏊ ୰ࠉᒣࠉࠉᩯ ዟࠉᒣࠉࠉỌ ➉ࠉෆࠉࠉࠉ๛ ⸨ࠉᮏࠉ༟ࠉ▮ ሯࠉ㇂ࠉ┿ࠉ⾰ *\DZDOL<DGDY3UDVDG ୖࣀᒣࠉ⳹⧊ ྜྷࠉ⏣ࠉࠉࠉᚭ ⛅ࠉࠉࠉᾈ ὠࠉᏲࠉ⪨ࠉⰋ ᒣࠉᮏࠉ┿ࠉ⣖ ᳜ᮧࠉ㤶⧊ ᑠࠉཎࠉ┿ࠉ⨾ Ἠࠉࠉࠉࠉ᱇ Ᏻࠉᮏࠉᬒࠉኴ ஂࠉᇼࠉ㯞⾰Ꮚ ⸭⏣ࠉῄண ᒣୗࠉ㝧Ꮚ ụࠉỌࠉࠉᏹ ఀࠉ⸨ࠉ㝯ࠉ㉳ Ἠࠉࠉࠉ༓ࠉຍ ᮡࠉỤࠉ┿⌮Ꮚ ⏣ࠉ㑔ࠉ㍤ࠉ㞝 ᮧࠉࠉెࠉྐ ᕝࠉ㷂ࠉᡂࠉே Ώࠉ㎶ࠉṇࠉ⩏ Ώ㑓ࠉ⿱Ꮚ ᩍࠉࠉᤵ ຍࠉ⸨ࠉၨࠉᏊ ຓࠉࠉᩍ ࠉ㔝ࠉවḟ㑻 ᩍࠉࠉᤵ 㰻ࠉ⸨ࠉᩄࠉஅ ຓࠉࠉᩍ ᰁࠉ㇂ࠉࠉࠉᱻ ᩍᤵ 㧘ࠉ᱓ࠉᘯࠉᶞ ᩍࠉࠉᤵ ➉ࠉෆࠉࠉࠉᐇ ຓࠉࠉᩍ Ჴࠉᶫࠉ㟹ࠉ⾜ ᩍᤵ すࠉ㔝ࠉెࠉ௨ ⴗࠉཎࠉඞࠉ㑻 ᩍࠉࠉᤵ ๓ࠉ⏣ࠉ⛅ࠉᙪ ⡿ࠉᔱࠉ᭷Ꮚ ᐈဨᩍᤵ ᯇࠉᮏࠉ⪔ࠉ୕ ᩍࠉࠉᤵ ᮧࠉ⏣ࠉⱥࠉ㞝 ▼ࠉ⏣ࠉႛࠉ⿱ బࠉࠉṇࠉ᫂ ࠉ㔝ࠉ⏤㔛Ꮚ ⏣ࠉ୰ࠉ⨾ࠉᏊ ᕝཎࠉ⍞✑ ⥲ྜ⏕⛉Ꮫ㒊ົᐊࢫࢱࢵࣇྡ⡙ ࢫࢱࢵࣇ➼ྡ⡙ Ꮫ㝔⏕ ࡑࡢ 2QWRQJ3DZDUDLG' ୰ࠉ᳃ࠉࠉኴ0 㰻ࠉ⸨ࠉ㝯ࠉᗣ0 .VHQLD3DYORYQD6KFKHUEDNRYD' ࠉ⏣ࠉளభ⨾' ➉ࠉෆࠉ㷋ࠉே0 ᳃ࠉࠉࠉຬࠉః' ⏣ࠉ୰ࠉࡳ࡞ࡳ0 すࠉᑿࠉ㝯ࠉ⏨0 ⏣ࠉ୰ࠉᾴࠉኴ0 ᑠࠉ㇂ࠉࠉ⌮' -HHUDZDW6RRQWKRUQVLW' 嚔ࠉ⏣ࠉࠉࠉ⯟0 㣤ࠉ⏣ࠉⱥࠉ᫂0 ୰ࠉᮧࠉ༟ࠉဢ0 ⸨ࠉࠉඞࠉᘺ0 ෆࠉụࠉఙࠉ0 ᐑࠉ⃝ࠉᖾࠉᶞ0 ᕝࠉࠉᘺࠉ୍' ࠉ▮ࠉᝆࠉ㈗0 ⚟ࠉỌࠉ᫂᪥⨾0 ࠉୖࠉ⌮ᜨᏊ0 ᒸࠉ㒊ࠉ┿ࠉᘺ0 嚨ࠉࠉࠉ㞞ࠉஅ0 ᰘࠉ⏣ࠉᖾࠉᖹ0 ᒣࠉᮏࠉ୍ࠉⓡ0 6ULPRQWUL3DLWRRQ' బࠎᮌࠉࠉᶞ' బࠎᮌࠉ୍ࠉ㤿0 9HODGR)HUQDQGHV,JRU' 6DUDZXW7DNVLQRURV' బࠎᮌࠉࠉࠉ⥤Ꮫ㝔ጤク⏕ Ọࠉཎࠉ⚽ࠉ๛Ꮫ㝔ጤク⏕ ᕝࠉ㷂ࠉ㑥ࠉேᏛ㝔ጤク⏕ ᇉࠉⰼࠉኴࠉ୍Ꮫ㝔ጤク⏕ ᙺࠉ⫋ࠉྡࠉ➼ Ꮫ㛗ᐊࠉࠉࠉ⥲ྜ⏕⛉Ꮫ㒊㛗⿵బ ᩍᏛࢭࣥࢱ࣮ㄢ㛗⿵బ㸦⥲ྜ⏕⛉Ꮫ㒊ᢸᙜ㸧 ᩍᏛࢭࣥࢱ࣮ㄢဨࠉࠉ㸦⥲ྜ⏕⛉Ꮫ㒊ᢸᙜ㸧 ᩍᏛࢭࣥࢱ࣮ዎ⣙⫋ဨ㸦⥲ྜ⏕⛉Ꮫ㒊ᢸᙜ㸧 ᩍᏛࢭࣥࢱ࣮ዎ⣙⫋ဨ㸦⥲ྜ⏕⛉Ꮫ㒊ᢸᙜ㸧 ᩍᏛࢭࣥࢱ࣮ዎ⣙⫋ဨ㸦⥲ྜ⏕⛉Ꮫ㒊ᢸᙜ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮კク⫋ဨ㸦ᐇ㦂⿵ຓဨ㸧 ᩍᏛࢭࣥࢱ࣮≉ᐃ⫋ဨ㸦㹐㹇ᴗົᢸᙜ㸧 Ặࠉࠉྡ ᳝ࠉࠉࠉΎࠉ 㕥ࠉᮌࠉఙࠉ⏨ ᓥࠉ㒊ࠉ▱ࠉ⨾ ຍࠉ⸨ࠉࠉ㤶 ᖹࠉඖࠉ⨾ࠉ✑ ఀࠉཎࠉࠉ⨾ ⲨࠉᮌࠉెዉᏊ ᰩࠉᮏࠉࠉୡ 㔜ࠉ ࠉ⍛ࠉ㔛 すࠉ⏣ࠉ┿బᏊ すࠉᮧࠉ㤶ࠉ㔛 ஂࠉᐩࠉࠉ ᮧࠉᮌࠉ┤ࠉᏊ ྜྷࠉ⏣ࠉဴࠉ ⱝࠉ➉ࠉ㯞ࠉ⪨ ◽ࠉᒣࠉ⳯ࠎᏊ Ꮫጤဨ➼ጤဨྡ⡙ ጤࠉဨࠉࠉ➼ࠉྡࠉ⛠ Ꮫඹ㏻࣒࢝ࣜ࢟ࣗࣛጤဨ Ꮫඹ㏻࣒࢝ࣜ࢟ࣗࣛ᥎㐍ጤဨ ேᶒࢭࣥࢱ࣮㐠Ⴀጤဨ ேᶒጤဨ ேᶒࢭࣥࢱ࣮❆ཱྀ┦ㄯဨ ࢚ࣜࢰࣥ࢜ࣇࢫ㐠Ⴀጤဨ ㏻ᑐ⟇ጤဨ ┬࢚ࢿࣝࢠ࣮᥎㐍ጤဨ ⮬ᕫⅬ᳨࣭ホ౯㐠Ⴀጤဨ㸦⥲ྜ⏕⛉Ꮫ㒊㸧 ⮬ᕫⅬ᳨࣭ホ౯㐠Ⴀጤဨ㸦ᕤᏛ◊✲⛉㸧 Ꮫ㒊ࠉ㹄㹂㸭㹑㹂᥎㐍࣮࣡࢟ࣥࢢࢢ࣮ࣝࣉ Ꮫ㝔ࠉ㹄㹂㸭㹑㹂᥎㐍࣮࣡࢟ࣥࢢࢢ࣮ࣝࣉ ᩍົጤဨ Ꮫ⏕㒊ጤဨ㸦ව࣭ዡᏛ⏕㑅⪃ጤဨ㸧 Ꮫ⏕ᑅᩍ⫱ࢫࢱࢵࣇ 㞀ࡀ࠸Ꮫ⏕ᨭጤဨ ධᏛヨ㦂ጤဨ 㸿㹍ධヨጤဨ 㐍㊰ࢭࣥࢱ࣮㐠Ⴀጤဨ ᅗ᭩㤋ጤဨ Ꮫ⾡࣏ࣜࢪࢺࣜ㐠Ⴀጤဨ ᅜ㝿ὶ᥎㐍ጤဨ 㹅㹑㹁㸦ࢢ࣮ࣟࣂࣝࢧ࢚ࣥࢫࢥ࣮ࢫ㸧࣮࣡࢟ࣥࢢࢢ࣮ࣝࣉ ␃Ꮫࢻࣂࢨ࣮ Ꮫ㝔ጤဨ ᩍ⫋ㄢ⛬ᩍ⫱ࢭࣥࢱ࣮㐠Ⴀጤဨ ሗᇶ┙㐠Ⴀጤဨ ࢿࢵࢺ࣮࣡ࢡࢭ࢟ࣗࣜࢸᡤᒓ⟶⌮㈐௵⪅ 㸦ࢿࢵࢺ࣮࣡ࢡࢭ࢟ࣗࣜࢸጤဨ㸧 ㄽ㞟⦅㞟⣔ิጤဨ ጤဨẶྡ 㯮ࠉᆏࠉࠉࠉග ᮧࠉ⏣ࠉⱥࠉ㞝 すࠉ㔝ࠉెࠉ௨ ୰ࠉ⏣ࠉࠉࠉ༤ すࠉ㔝ࠉెࠉ௨ ὠࠉୗࠉⱥࠉ᫂ Ἑࠉ㑔ࠉࠉࠉ ࠉ㔝ࠉවḟ㑻 ὠࠉୗࠉⱥࠉ᫂ బࠉ⸨ࠉ㈼ࠉ୍ ᮧࠉ⏣ࠉⱥࠉ㞝 ࠉࠉࠉ༓ࠉᑜ ࠉࠉࠉ༓ࠉᑜ ๓ࠉ⏣ࠉ⛅ࠉᙪ 㧘ࠉ᱓ࠉᘯࠉᶞ ⚟ࠉࠉᡂࠉ⾜ ຍࠉ⸨ࠉၨࠉᏊ ຍࠉ⸨ࠉၨࠉᏊ ᯈࠉ㔝ࠉ┤ࠉᶞ 㰻ࠉ⸨ࠉᩄࠉஅ 㰻ࠉ⸨ࠉᩄࠉஅ ᯈࠉ㔝ࠉ┤ࠉᶞ ୰ࠉᮧࠉᬸࠉᏹ ᰁࠉ㇂ࠉࠉࠉᱻ ࠉࠉࠉ༓ࠉᑜ ℩ࠉᑿࠉ⨾ࠉ㕥 ᮌࠉᮧࠉᡂࠉ 㧗ࠉᶫࠉ⣧ࠉ୍ Ჴࠉᶫࠉ㟹ࠉ⾜ 㔝ࠉᮧࠉဴࠉ㑻 ± ¶u}·± iéëñý){ÏĉigÛéëñýÊÂÈrÍÊÖ»ĉ(ăùĂÎ\Ûą ąăùĂÉÎiaÍÐÇÀÈWÂȹØĊu}.Ï"ÍxÂÆÕºÍ% 8ÍÚÆ×ĉ¥(ÎĉÎ\Yĉ2ͼÀØQiîĄ÷åÎøàĆĂòÝĄæ Ê h\YĉèĂêY GÎ(\YĉüóçĄôāÜÉÎßöĂäĆji\YĉāĄ ¦Ô§ÌËÎA ®Cĉ7.(Î\ĉ$ûóāðåëÍ ¼ÀØ(\ÍØÑÉĉÑÁÍîĄ÷åąÎE½ÖEc¤|ĉÁÖÍÅÙÖ Îą£LÑÉÛ*ÍÂȹØĊÑÆ/ÊÃØigÓ%Zɸ×ĉĉqiĉ y ĉpÌËͼÀØ[r(Î\ÛWÂĉnoÛ\(Îl:ÍÕØéëñýv ÊÊÖ»Èu}Û5©ÂȹØĊ± ± ± 細胞外マトリックス 成長因子など (瀬尾:癌細胞と神経細胞におけるシグナル伝達) (板野:癌微小環境形成の分子機構と癌幹細胞制御) (八杉:器官形成におけるシグナル伝達と細胞間相互作用) P 細胞膜 (佐藤:卵細胞と癌細胞におけるシグナル伝達) 子 体/ P 分 接着 受容 各種 ゴルジ体 シグナル伝達 (中村:ゴルジ体の形成と機能) (横山:空胞系プロトンポンプの分子機構) 核 小胞体 (嶋本:翻訳過程における分子機械のナノバイオロジー) (伊藤:リボソーム上での合成途上ペプチドのはたらき) ムチン (永田:タンパク質の品質管理機構とオルガネラ恒常性) (中田:腫瘍細胞の悪性化と免疫能の低下) 糖鎖 (黒坂、福井: 神経細胞の糖鎖の合成と機能) ミトコンドリア (吉田:エネルギー産生、タンパク質の折れたたみ) 神経シナプス ± (浜:シナプス形成と細胞外マトリックス) ± ¶O·± ± ć]ÎúĆêĈÏĉÍ0O!¾F?ÃØIX{sÎāëóɸØĊV){Ï+! ³´ Í/ÂÈ ²³ Î0O!¾)½ÖXÑÉÎB<ÂÆ3POÛ,ÂȹØĊe Íċ;S)UÎøăðéþĆìíüõĆÊč;z)U¬Î#w¼ÕÐCkeu}ÉÏĉ O!ċ¾)ičĎÛH1ÃØĊáāãÿĀýÎYEÏ]Î×ɸØĊ)tAÍ id)Ê)Î#wÛĉČ;]ÑÉÍid)ĉ(id)ĉid)ĉid)ą), ¯ÌËÎ#w0¨{sÛĉÅÎAĉÕ×0¨Dΰ¹¥(9)µqiid)ĉy id)ĉ m)ĉîĄ÷åÎY Í«ÚØ{sĉCkrÌ,¯{sćiéëñý,ĈÌËÛ) Âĉč;z)U½Öu}-Í6ÂÈXu}Í×ÒĊÑÆĉ0¨{sÊÂÈÎÔb ÍÓ%¿ÎTªÛ¹È¹ØĊXA΢ÍǹÈÏ&)¢)Û>¿J'Âĉ4Ê ¸ÚÄÆãþāÜ@EÛ¢íĄîĆÊΡMÍÕØâÞïĄëÎ,RÉNKÂȹØĊ ;=Ï~ċUiÎX;=ɸ×ĉÅ΢^+f_Í`sÂȹØĊ± ± 科目名 配当学年 担当教員 フレッシャーズセミナー 1 伊藤、吉田、黒坂、福井、永田、瀬尾、佐藤、八杉、中田、 嶋本、中村、浜、板野、横山 生物学通論A、B 1 八杉、嶋本 化学通論A、B 1 横山 生命システム概論 1 吉田、永田 物質生物化学 1 黒坂、浜 分子生物学 2 伊藤、瀬尾 遺伝子工学 2 伊藤、嶋本 代謝生物化学 2 吉田、中田 細胞生物学 2 福井、永田 発生生物学 2 佐藤、八杉 システム生物学 3 中村、板野 バイオ解析科学 3 中村、板野 タンパク質制御システム 3 吉田、永田 糖鎖生物学 3 福井、中田 細胞情報システム学 3 瀬尾 免疫学 3 中田 神経生物学 3 浜 構造生物学 3 横山 腫瘍生物学 3 佐藤 再生システム学 3 八杉 放射線生物学 3 黒坂 3 板野 薬理学 生命システム演習Ⅰ、Ⅱ、Ⅲ 1, 2 瀬尾、板野、横山、黒坂、中村 生命システム英語購読Ⅰ、Ⅱ、Ⅲ 2, 3 黒坂、嶋本、吉田、中田、伊藤、永田 生物学実験 生命システム実習Ⅰ、Ⅱ 1 2, 3 基礎特別研究 3 応用特別研究 4 福井、佐藤、中村、浜 伊藤、吉田、黒坂、福井、永田、瀬尾、佐藤、八杉、中田、 嶋本、中村、浜、板野、横山 伊藤、吉田、黒坂、福井、永田、瀬尾、佐藤、八杉、中田、 嶋本、中村、浜、板野、横山 伊藤、吉田、黒坂、福井、永田、瀬尾、佐藤、八杉、中田、 嶋本、中村、浜、板野、横山 (注:化学実験は非常勤講師によって行われている。) ᩍᤵ㻌 ᯈ㔝㻌 ┤ᶞ ᢠ⪁་Ꮫ◊✲ᐊ Prof. Naoki Itano, Ph.D.㻌 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻭㼚㼠㼕㻙㻭㼓㼕㼚㼓㻌㻹㼑㼐㼕㼏㼕㼚㼑㻌 㻌 䠍䠊◊✲ᴫせ㻌 䛾せᅉ䛸⪃䛘䜙䜜䚸᰿ⓗ⒪䛾ᶆⓗ䛸䛧䛶㔜せど䛥䜜 㻌 㧗㱋♫䛾ᛴ㏿䛺㐍⾜䜢⫼ᬒ䛸䛧䛶䚸ㆤ䛺䛹ᵝ䚻 䛶䛔䜛䚹㻌 䛺ၥ㢟䛾ゎỴ 䛜ᛴົ䛾ㄢ 㢟䛸䛺䛳䛶䛔䜛䚹ᙜ◊✲ᐊ 䛾 ⒴ᖿ⣽⬊䛿ṇᖖᖿ⣽⬊䛸ྠᵝ䛻䚸≉Ṧ䛺ᚤᑠ⎔ቃ㻔ᖿ ┠ᶆ䛿䚸⪁䛻≉ᚩⓗ䛺ⓗ䛺≧ែ䛻ධ䛧䚸㛗ᑑ䛾 ⣽⬊䝙䝑䝏㻕ෆ䛷⏕Ꮡ䛧䚸䛭䛾ᖿ⣽⬊ᛶ䜢⥔ᣢ䛧䛶䛔䜛䛸 ㉁䠄ඖẼ䛻㛗ᑑ䜢ாཷ䛷䛝䜛≧ែ䠅䜢☜ಖ䛩䜛䛯䜑䛾㠉 ⪃䛘䜙䜜䛶䛔䜛䚹ᚑ䛳䛶䚸⒴ᖿ⣽⬊䛾ᖿ⣽⬊ᛶ䜢႙ኻ䛥 ᪂ⓗ䛺ᢏ⾡䜢☜❧䛩䜛䛣䛸䛷䛒䜛䚹ᢠ⪁་Ꮫ◊✲ᐊ䛷 䛫䚸ᝏᛶᙧ㉁㌿䜢㜼Ṇ䛩䜛䛯䜑䛻䛿䚸⒴ᖿ⣽⬊䝙䝑䝏 䛿䚸䛣䛾┠ⓗ䛾䛯䜑䚸ศᏊ⏕≀Ꮫ䚸⣽⬊⏕≀Ꮫ䚸⏕Ꮫ䚸 䜢ᶆⓗ䛸䛩䜛䛣䛸䛜㔜せ䛷䛒䜛䚹ᮏ◊✲䛾┠ⓗ䛿䚸⒴ 䛭䛧䛶䚸㑇ఏᏊᕤ Ꮫ䛾ඛ➃ ᢏ⾡䜢㥑䛧䛶䚸௨ୗ䛾◊ ᖿ⣽⬊䝙䝑䝏䛾ᙧᡂ䜢ᨭ㓄䛧䛶䛔䜛⣽⬊ᡂศཬ䜃ศᏊ ✲ㄢ㢟䛻ྲྀ䜚⤌䜣䛷䛔䜛䚹㻌 䜢ྠᐃ䛧䚸䛭䛾ᙧᡂ䜢䝁䞁䝖䝻䞊䝹䛩䜛䛣䛸䛻䜘䜚䚸⒴䜢ఇ 㻌 ╀䛻ᑟ䛟䛯䜑䛾᪂つ⒪ἲ䜢☜❧䛩䜛䛣䛸䛷䛒䜛䚹㻌 䠍䠉䠍㻦䝠䜰䝹䝻䞁㓟⏕ྜᡂᶵᵓ䛾ゎ᫂䛸䜰䞁䝏䜶䜲䝆䞁䜾 ᢏ⾡䜈䛾ᒎ㛤㻌 㛵⠇ᶵ⬟䛾పୗ䛜ཎᅉ䛷ᐷ䛯䛝䜚䛻䛺䜛㧗㱋⪅䛜ቑ 䛘䛶䛔䜛䚹䛣䛾せᅉ䛸䛧䛶䚸㛵⠇䛷䜽䝑䝅䝵䞁䜔₶䛾ᙺ 䜢䛩䜛䝠䜰䝹䝻䞁㓟䛾ῶᑡ䛜䛒䜛䚹䝠䜰䝹䝻䞁㓟䛿䚸㻺㻙 䜰䝉䝏䝹䜾䝹䝁䝃䝭䞁㻔㻳㼘㼏㻺㻭㼏㻕䛸䜾䝹䜽䝻䞁㓟㻔㻳㼘㼏㻭㻕䛜䚸 䃑䇲㻝㻘㻟 䛸䃑䇲㻝㻘㻠 ⤖ྜ䛷䛻㐃⤖䛧䛯 㻞 ⢾䝴䝙䝑䝖䛾⧞ 䜚㏉䛧ᵓ㐀䛛䜙䛺䜛㧗ศᏊከ⢾䛷䛒䜚䚸≉䛻⤖ྜ⤌⧊䛾 ⣽⬊እ䝬䝖䝸䝑䜽䝇ᡂศ䛸䛧䛶ᗈ䛟Ꮡᅾ䛧䛶䛔䜛䚹⣽⬊䛿䛣 䛾䝬䝖䝸䝑䜽䝇䛻䝠䜰䝹䝻䞁㓟 ཷᐜయ䜢䛧䛶᥋╔䛧䚸⣽ ⬊ෆሗఏ㐩⣔䜢άᛶ䛧䛶⣽⬊ቑṪ䜔⛣ື䛾ㄪ⠇ 䛻ാ䛟䛸䛥䜜䜛䠄ᅗ䠍䠅䚹⚾㐩䛿䚸ୡ⏺䛻ඛ㥑䛡䛶䚸ື≀䛾 䝠䜰䝹䝻䞁㓟ྜᡂ㓝⣲䜢ぢฟ䛧䚸䝠䜰䝹䝻䞁㓟ྜᡂᶵᵓ 䛾ゎ᫂䛻ྲྀ䜚⤌䜣䛷䛝䛯䚹䛭䛧䛶䚸ྜᡂ㓝⣲㑇ఏᏊ⤌ 䛘䝍䞁䝟䜽㉁䜢⏝䛔䛯ヨ㦂⟶ෆ䝠䜰䝹䝻䞁㓟ྜᡂ䝅䝇䝔 䝮䛾㛤Ⓨ䛻ᡂຌ䛧䚸㓝⣲䜢άᛶ䛩䜛ྜ≀䛾᥈⣴䜢 ጞ䜑䛶䛔䜛䚹ᚋ䚸䝠䜰䝹䝻䞁㓟⏕ྜᡂᶵᵓ䛾ᐜゎ᫂ 䛻ྲྀ䜚⤌䜏䚸䛭䛾◊✲䜢㏻䛨䛶䚸䜰䞁䝏䜶䜲䝆䞁䜾䜈䛾ᢏ ⾡ᒎ㛤䜢┠ᣦ䛩䚹㻌 㻌 䠍䠉䠎䠖⒴ᚤᑠ⎔ቃᙧᡂ䛾ศᏊᶵᵓ䛸⒴ᖿ⣽⬊䝙䝑䝏䜢 ᶆⓗ䛸䛧䛯⒪䛾ᇶ┙◊✲㻌 㧗㱋 ♫䛾฿᮶䛻䜘䛳䛶䚸ᡃ 䛜ᅜ䛷䛿䚸⒴䛜 䛺 Ṛᅉ䛸䛺䜚䚸䛭䛾ඞ᭹䛜♫ⓗせㄳ䛸䛺䛳䛶䛔䜛䚹⒴䛿䚸 ⏕䝅䝇䝔䝮䛾⢭ᕦ䛺䝁䞁䝖䝻䞊䝹䜢㐓⬺䛧䛶⣽⬊䛜ቑ 䛘⥆䛡䜛䛣䛸䛷Ⓨ䛩䜛䛜䚸⒴䛾㐍ᒎ䚸㌿⛣䚸Ⓨ䛾ṇ ☜䛺ᶵᵓ䛻䛴䛔䛶䛿䚸ᮍ䛰༑ศ䛺ゎ᫂䛜䛺䛥䜜䛶䛔䛺䛔䚹 ㏆ᖺ䚸ከ䛟䛾⒴䛻䛚䛔䛶䚸䛂⒴ᖿ⣽⬊䛃䛾Ꮡᅾ䛜ሗ࿌䛥䜜 䛶䛚䜚䚸䛣䛾⣽⬊䛜⒴䛾※䛷䛒䜛䛸䛔䛖⪃䛘䛻ὀ┠䛜㞟䜎 䛳䛶䛔䜛䚹⒴ᖿ⣽⬊䛿䚸ᚑ᮶䛾Ꮫ⒪ἲ䜔ᨺᑕ⥺⒪ 䛻ᢠᛶ䜢♧䛩䛣䛸䛛䜙䚸㌿⛣䜔Ⓨ䜢ᘬ䛝㉳䛣䛩᭱ ᅗ䠍䠊䝠䜰䝹䝻䞁㓟ྜᡂ䛸䝅䜾䝘䝹ఏ㐩 㻌 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 㻌 ᡃ䚻䛿䛣䜜䜎䛷䛻䚸䝠䜰䝹䝻䞁㓟䜢㐣⏘⏕䛩䜛ங⒴ Ⓨ䝰䝕䝹䝬䜴䝇䜢స〇䛧䚸ங⒴䛻䛚䛡䜛䝠䜰䝹䝻䞁㓟 ⏘⏕䛾ቑຍ䛜䚸ங⒴䛾㐍ᒎ䜢ຍ㏿䛩䜛䛣䛸䜢᫂䜙䛛䛻䛧 䛶䛝䛯䚹䛣䛾⤖ᯝ䛻ᇶ䛵䛔䛶䚸⒴⣽⬊䛻䛚䛡䜛䝠䜰䝹䝻䞁 㓟䛾㐣䛺⏘⏕䛜䚸⒴Ⓨ⏕㐣⛬䛻䛚䛔䛶䚸⒴ᖿ⣽⬊䜢 ቑᖜ䛧䛶⒴㐍ᒎ䜢ಁ㐍䛩䜛䛸䛔䛖௬ㄝ䜢❧䛶䚸䛭䛾ド᫂ 䜢⾜䛳䛯䚹䝠䜰䝹䝻䞁㓟䜢㐣⏘⏕䛩䜛ங⒴Ⓨ䝰䝕䝹 䝬䜴䝇䛸ᑐ↷䝬䜴䝇䛻Ⓨ⏕䛧䛯ங⒴䛛䜙ங⒴⣽⬊䜢ᶞ❧ 䛧䚸⣽⬊⾲㠃䛻䛚䛡䜛 CD44 䛸 CD24 䛾Ⓨ⌧䛻䛴䛔䛶 FACS ゎᯒ䜢⾜䛳䛯䚹䛭䛧䛶䚸䝠䜰䝹䝻䞁㓟䜢㐣⏘⏕䛩 䜛ங⒴䛷䛿䚸ᑐ↷䛻ẚ䛧䛶 CD44high /CD24 low ⒴ᖿ⣽⬊ ᵝ⣽⬊䛜ቑᖜ䛧䛶䛔䜛䛣䛸䜢᫂䜙䛛䛻䛧䛯䠄ᅗ䠎䠅䚹䛥䜙䛻䚸 Hoechst 33342 Ⰽ⣲䛾㝖⬟䜢ᣦᶆ䛻 Side population (SP)⣽⬊䛸㠀 SP ⣽⬊䜢ศ㞳䛧䛯䚹FACS ゎᯒ䛾⤖ᯝ䚸䝠 䜰 䝹 䝻 䞁 㓟 㐣 ⏘ ⏕ ங ⒴ ⏤ ᮶ 䛾 SP ⣽ ⬊ ୰ 䛻 䛿 䚸 CD44 high /CD24 low ⒴ᖿ⣽⬊ᵝ⣽⬊䛜⃰⦰䛥䜜䛶䛔䜛䛣䛸 䜢᫂䜙䛛䛻䛧䛯䚹䜎䛯䚸䝠䜰䝹䝻䞁㓟㐣⏘⏕ங⒴⏤᮶䛾 eradication of cancer has become a social mission. SP ⣽⬊䛿䚸mammosphere ᙧᡂ⬟䜔㐀⭘⒆⬟䛸䛔䛳䛯⒴ Although it is well known that uncontrolled cell ᖿ⣽⬊䛾≉ᚩ䜢♧䛩䛣䛸䜢᫂䜙䛛䛻䛧䛯䚹㻌 proliferation leads to the development of cancers, the precise 䝠䜰䝹䝻䞁㓟 㐣⏘⏕ங⒴ ᑐ↷ங⒴ mechanisms underlying metastatic tumor progression and recurrence have not been fully resolved. ⒴ ⒴ᖿ⣽⬊ Cancer stem cells (CSCs) have recently been reported to exist in many malignancies and have attracted remarkable attention because they are believed to be the only cells capable of initiating cancer growth. Because CSCs are relatively resistant to conventional chemotherapy and radiotherapy, and because they are closely associated with cancer metastasis and recurrence, ᅗ䠎䠊䝠䜰䝹䝻䞁㓟㐣⏘⏕ங⒴䛻䛚䛡䜛⒴ᖿ⣽⬊䛾 ቑᖜ CSCs, like normal stem cells, reside and maintain their 㸱㸬Research projects and annual reports stemness within a specialized microenvironment called a 1-1. Elucidation of the Biosynthetic Process of Hyaluronan and its targeting them is now a primary goal in cancer therapy. Application to Anti-aging stem cell niche. Thus, strategies to limit their stemness and malignant transformation must focus on the Technologies importance of targeting this CSC niche. The main There are an increasing number of bedridden elderly purpose of our research in this domain is to identify the people in Japan with a loss of joint function due to cellular and molecular cues that govern the formation of conditions like osteoarthritis. Hyaluronan (HA) acts as a the specialized CSC niche microenvironment and cushion and lubricant in articulating joints. It is an establish novel therapies to induce a state of cancer integral component of the synovial fluid between joints, dormancy by controlling the niche. but becomes reduced by age and thereby causes functional disorders. HA is a high molecular-mass 2. Our previous studies using a hyaluronan synthase 2 polysaccharide matrix, (Has2) transgenic mouse model demonstrated that especially of that of connective tissues, and is composed hyaluronan overproduction by cancer cells caused rapid of development of aggressive breast carcinoma at a high repeating found in the disaccharide extracellular units in which N-acetylglucosamine (GlcNAc) and glucuronic acid incidence. (GlcUA) are linked together by alternating ß-1,3 and overexpression and hyaluronan overproduction may ß-1,4 linkages (Figure 1). Our laboratory discovered the accelerate first mammalian HA synthase (HAS) gene and has been subpopulations during cancer development. Primary thoroughly HA cancer cells were established from mammary tumors biosynthesis ever since. Recently, we succeeded in developed in transgenic mice and subjected to the flow establishing an in vitro reconstitution system using a cytometric investigating the mechanism of Thus, cancer we hypothesize progression analysis. Flow that Has2 by expanding CSC cytometric analysis recombinant HAS protein and developed a screening demonstrated system for compounds that have HAS activation CSC-like cells in Has2-overexpressing cancer cells potential. Our future challenge is therefore to understand (Figure 2). Hoechst 33342 dye exclusion assay was then the entire mechanism of HA biosynthesis and apply this performed to sort side population (SP) from non-side knowledge population to developing innovative anti-aging technologies. the enrichment (non-SP) Has2-overexpressing of CD44 high /CD24 low cells. The SP cancer cells contained fraction of more CD44high /CD24 low CSC-like cells than that of control 1-2. Studies on Cancer Microenvironment Formation and cells. We found that this subpopulation exhibited several the Establishment of Therapies Targeting Cancer Stem characteristics that were similar to CSCs, including Cell Niches cancer-initiating and mammosphere-forming abilities. Cancer has become the leading cause of death in our 㻌 country due to increased longevity, and as such the 䠐䠊ㄽᩥ䠈ⴭ᭩䛺䛹㻌 䠏䠅㻌 Ꮫእάື㻌 ᯈ㔝┤ᶞ䠖㻌᪥ ᮏ⏕Ꮫホ㆟ဨ㻌 ᪥ᮏ⢾㉁Ꮫホ㆟ဨ㻌 P. Ontong, Y. Hatada, S. Taniguchi, I. Kakizaki, N. Itano: Effect ᪥ᮏ⤖ྜ⤌⧊Ꮫホ㆟ጤဨ 㻌 of a cholesterol-rich lipid environment on the enzymatic activity of reconstituted hyaluronan synthase. Biochem. ᪥ᮏ䛜䜣㌿⛣Ꮫホ㆟ጤဨ 㻌 Biophys. Res. Commun. 443, 666-671 䝥䝻䝔䜸䜾䝸䜹䞁䝣䜷䞊䝷䝮ୡヰே 㻌 ᪥ᮏᏛ⾡⯆㻌 Y. Kashima, M. Takahashi, Y. Shiba, N. Itano, A. Izawa, J. ⛉Ꮫ◊✲㈝ጤဨᑓ㛛ጤဨ㻌 Koyama, J. Nakayama, S. Taniguchi, K. Kimata, U. Ikeda: 㻌 Crucial role of hyaluronan in neointimal formation after vascular injury. PLoS One. 8, e58760 T. Ikuta, Y. Kobayashi, M. Kitazawa, K. Shiizaki, N. Itano, T. 䠐䠅㻌 ཷ㈹➼㻌 䛺䛧㻌 㻌 Noda, S. Pettersson, L. Poellinger, Y. Fujii-Kuriyama, S. 䠑䠅㻌 䛭䛾㻌 㻌 Taniguchi, K. Kawajiri: ASC-associated inflammation ᒸᒣᏛᖹᡂ 㻞㻡 ᖺᗘ་Ꮫ◊✲䜲䞁䝍䞊䞁䝅䝑䝥Ꮫ⏕䛾ཷ䛡ධ promotes cecal tumorigenesis in aryl hydrocarbon 䜜䛸ᣦᑟ䚸ᖹᡂ 㻞㻡 ᖺ 㻥 ᭶ 㻞 ᪥䡚㻝㻝 ᭶ 㻞㻥 ᪥㻌 receptor-deficient mice. Carcinogenesis. 34, 1620-1627 䝩䞊䝮䝨䞊䝆䠖㻌 ᮃ᭶ಙ䠈ᯈ㔝┤ᶞ䠖䠉⢾㙐䛸ᝈ䇲㻌 ⒴㐍ᒎ䛻䛚䛡䜛䝠䜰䝹䝻䞁 㓟⭘⒆ᚤᑠ⎔ቃ䛾ᙺ䠊 ⌮䛸⮫ᗋ 㻌 31, 875-882㻌 (⥲ㄝ) 㼔㼠㼠㼜㻦㻛㻛㼣㼣㼣㻚㼏㼏㻚㼗㼥㼛㼠㼛㻙㼟㼡㻚㼍㼏㻚㼖㼜㻛㼪㼕㼠㼍㼚㼛㼚㻛㼕㼚㼐㼑㼤㻞㻚㼔㼠㼙㼘㻌 㻌 㻌 䠑䠊ᏛⓎ⾲䛺䛹㻌 N. Itano: Impact of the hyaluronan-rich tumor microenvironment on cancer progression. International Society for Hyaluronan Sciences 9th International Conference (Hyaluronan 2013), Oklahoma City, OK, USA 2013.7.6㻌 (ᣍᚅㅮ₇) T. Chanmee, K. Konno, P. Kongtawelert, N. Itano: Hyperproduction of hyaluronan generate cancer stem-like cells. International Society for Hyaluronan Sciences 9th International Conference (Hyaluronan 2013), Oklahoma City, OK, USA 2013.7.7 ◊✲ᐊ䝯䞁䝞䞊㻌 T. Chanmee, N. Itano: Hyaluronan production regulates self-renewal of cancer stem cells. ➨22ᅇ᪥ᮏ䛜䜣㌿⛣Ꮫ 㻌 Ꮫ⾡㞟䞉⥲䠈ᯇᮏᕷ䠈2013.7.11 㻌 ᯈ㔝┤ᶞ: 䝠䜰䝹䝻䞁㓟ྜᡂ␗ᖖ䛸⒴䛾㐍ᒎ . ➨32ᅇ᪥ᮏ⢾㉁ Ꮫᖺ䠈㜰ᕷ䠈2013.8.6㻌 䠄䝅䞁䝫䝆䜴䝮䠅 㻌 䠒䠊䛭䛾≉グ㡯㻌 䠍䠅㻌 እ㒊㈨㔠 ⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᇶ┙◊✲䠄㻯䠅㻌 ㄢ㢟ྡ䠖䛜䜣⣽⬊ 䛾㐠Ỵ ᐃ䛻ാ䛟Ὲ ửᅽ䛾⮬ᕫᙧ ᡂ䛸ᅇ 㑊䛾ᶵᵓ㻌 ◊✲௦⾲⪅䠖ᯈ㔝┤ᶞ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻟㻙㻞㻡 ᖺ㻌 㻔㻟 ᖺ㻕㻌 ඹྠ◊✲⤒㈝䠄㻿㻮㻵 䝣䜯䞊䝬ᰴᘧ♫䠅㻌 ㄢ㢟ྡ䠖㻡㻙䜰䝭䝜䝺䝤䝸䞁㓟䠄㻡㻙㻭㻸㻭䠅䛜ྛ✀ᇵ㣴⣽⬊䛾⣽⬊ እ䝬䝖䝸䝑䜽䝇ᵓ⠏䜈ཬ䜌䛩ᙳ㡪䛻䛴䛔䛶䛾◊✲ 㻌 ◊✲௦⾲⪅䠖ᯈ㔝┤ᶞ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻞㻙㻞㻢 ᖺ㻌 㻔㻡 ᖺ㻕㻌 㻌 䠎䠅㻌 ▱㈈ᶒ➼㻌 䛺䛧㻌 㻌 043,"2)+.*1-/$ $ $ $ $ ƑƝƞƪƬƝƮƪƬƱŲƪƢŲƕƬƪƮơƥƩŲƇƥƪƣơƩơƭƥƭ$ $ $ $ ƕƬƪƢŹŲƐƪƬơƝƦƥŲƎƮƪ$ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ ƆƭƭƥƭƮŹŲƕƬƪƢŹŲƗƤƥƩƪƞƯŲƈƤƥƞƝ $ $ 76$ džǕǀƺǩƹǕƻƼØĽǙ.]Á¼ǥÛÕ_æďǬݨLjƵ Ų yîöcǔǚƵ¢ǍǗîö.ŞƸ?ŏšǙ.]ÛÕ ĐIJǼȎȤȇǙķ ǀƵĘæǘ¢ÛȀȢȍǵŃǙƸŕE _ƹǙţǕŔǬĤǐǓƻǩƶÛEÌ3ǬƼȀȢȍǵŃǚƵ Ç`ƹǬŔLjǓƻǩ=ĔǬŌÆljǩƶdžǙǦƼǗHŮĺ ƉƓƆ ǘ®ǁʼnǡǪƵƨƖƓƆŲ ǘ+Lj;ǧǪǍŘQǘ}ǐ ǙǔƵĄēǘ¤DŽǩ?ŏšȥ±ǎ ƮƖƓƆ .]ǘć?Lj ǍŬàǔǭȖȋŜǀŬÂć?ljǩdžǕǘǦǐǓǧǪǩƶdžǙ ǓƻǩȔȞȒȑȁȇšȦǘËéLjǍîöǬiţLjǓƻǩƶŲ Ų ƸĐIJƹǚǾȢȆȝȟȇǶȕǙǴȤǕǗǩŖôǔƺǨƵȞȓǿȤȗ ǘƾƻǓȅǹȤȅǮȢǶȥQ,ÙȦǕȒȑȁȇć?zȥǷ 86 ($ ȖǼȆȞȤȦǀĤǫǪǩdžǕǘǦǨŔĤljǩƶȒȑȁȇŇóÌ żŶŲ ƒƥƢƒ Ǭ0ÜLjǍȀȢȍǵŃĖ%L]ȴȷȵȰǙ¼ŒǕÁ ǘƾƻǓÛLJǪǩ?ŏšȥƫƪƧƱƫơƫƮƥƠƱƧŸƮƖƓƆȦǚƵ ĔǙݵȮŲ ·ĞğǙ ƒƥƢƒ ǚĖĿŐŚ/ǕǗǩâÅŭO ȆȢȊȟǬŐǐǓȞȓǿȤȗǙWǘ-ǓĤǂƶŲ ǬȲ²øǘǤǏƵĖȀȢȍǵŃǬĖǘ%LJNjǩ ƛƥƠƈ ĆŅǘ Ų ƷǚƵdžǪǧǙŖôǀƵÁºæǔ6ķǗǤǙǔǚǗǂƵȞ ǦǐǓĖǘ%LJǪǩƶ·Ğğǘ^NljǩǑǙ ƛƥƠƈ L] ȓǿȤȗǕ?ŏšǀëÜLjǑǑƵċ Ǚ1Ǭ ǙƼǏƵƗƫƪƎƎƎƏ ǀĬǗL]ǕLjǓ"ƻǓƻǩǀƵƗƫƪƎƎƎƏ Ǚ ǐǓŔĤljǩǤǙǔƺǩdžǕǬðLjƵËéLjǓƻǩƶƸ?ŏ ÌǀljǩǕƵùȩǙL]ǔƺǩ ƛƥƠƈŽ ǀĵfLJǪǓ" ǔ"ǂƹǕƻƼƵȀȢȍǵŃǙ¢ǍǗƺǨ£ǤĭƻǎLjǍƶ) ǂƶƒƥƢƒ ǚ ƛƥƠƈ ĆŅǙÌǬșȉȀȤLjǓƵÌ«ǘ æǘǚƵȀȢȍǵŃǙĄēĦjǞǙhN4ǬçĮLjǓĖ ƛƥƠƈŽ ǙĐIJǬĵfljǩ1L]ǔƺǨƵ Ř]Ǚ ŎŖŰ3L] ƗơƟƆ ǙãØ1ǬĤƼYĕğ ƗơƟƒ ǥƵĖȀ Í ƔƖƋ ǘǦǐǓǹȤȇLJǪǩƶȱȷȶȱǙ ƈ ²øŊǂǘǚȞȓǿ ȢȍǵŃǙĄēĖǞǙ%ŖôǬçĮLjǓĖ%ħč ȤȗȆȢȊȟǕëÜljǩdžǕǘǦǐǓėǧǙĐIJŢǭȠ ƛƥƠƈ ǙĐIJ1ǬĤƼ·Ğğ ƒƥƢƒ ǗǖǬǕǨƺDžǓƻǩƶŲ ǼȆǬxǁńdžljǭȖȋŜŚ/ȥǭȠǼȆŚ/ȦǀƺǩƶdžǙŢ Ų ƖơƣƯƧƝƮƪƬƱŲ ƩƝƭƟơƩƮŲ ƫƪƧƱƫơƫƮƥƠơ ǕDǛǪǩdžǪǧǙșȉȀ ǭȠǼȆǚœĈLjǍȫǑǙǹȇȢǔīKČǨŋLJǪǩƶdžǙ ȤȀȢȍǵŃǚȞȓǿȤȗȆȢȊȟǙ.ǕëÜLjǓĐIJ ŤƵ÷ǏÃǡǐǍȞȓǿȤȗǘǦǐǓ ƨƖƓƆ Ǚ¼ŒǀǠ ǘȐȠȤǴǬƿDŽǩƸǭȠǼȆŚ/ƹǬǑ£ƵȲ²øŊǂ ǃǪƵÍŘ] ǙĐIJǀ=ĔǕǗǩƶljǗǫǏƵǭȠ ǙƸǾȢǺȤƹř.ǚȀȢȍǵŃhN4ħčǙ"ǁǬ<DŽƵnj ǼȆǙ«ŤǀŢƻǠǖ ƛƥƠƈŽ ǙãØşǀ§ljǩƶǭȠǼȆ ǪǧǙÌǘDLjǓĐIJǘȐȠȤǴǬƿDŽǩ«ŤǬÇǣǓ ǚ ƒƥƢƒ ?ŏšǀ ƗƫƪƎƎƎƏ ǘǦǩĖąʼnǢ:Ǭ<DŽǩǕ ƻǩƶdžǙǦƼǘ ƨƖƓƆ ǔǙȞȓǿȤȗǙ3ǁǀ1LJǪƵ İŧLJǪǩǍǣƵƗƫƪƎƎƎƏ ÌǕ ƛƥƠƈŽ ãØşǀōëťǬð ƨƖƓƆ .]Ǚ×V4Ǖ¾æŘ]ǙĐIJ1ǀĤǫǪǩƶ ljƶdžǙȏǮȤȇȌȂǵÁ¼ǬaűȃȤȟǕLjǓ0ÜljǩǕƵ ǡǍĐIJǼȎȤȇǙċ 1ǚƵ¢ÛȔȞȒȑȁȇšǙȏDz êæǗÏ`ǀMũǗĄē*Ǚ ƗƫƪƎƎƎƏŲ ŵƛƥƠƈŶŲ ǙÌǬƵ ȤȟȅǮȢǶǥhN4ǗǖǙƸÓȑȡǾǼƹǀæïǘńdžǩ ƑƝƟƜ śĂÌƿǧd©ǘƵƿǑ`şæǘĭõǤǩdžǕǀǔǁ ǍǣǙŝĬǗĬĂǔǚǗƻƿǕđƽǓƻǩƶŲ ǩƶdžǙǦƼǗȠȔȤȀȤǔƺǩŲ ŴŸ ǬÌÜLj Ų ƗơƟƒ ǥ ƒƥƢƒ ǙãĭǘǦǨðLjǍƸĐIJǙǼȎȤȇǀƵ? ǓƵƛƥƠƈ ȀȢȍǵŃǙ¼ŒǕÁĔǙĴĄǗݵǬŔǣǓƻǩƶ ŏšǙǭȖȋŜŚ/ƾǦǜnjǙ3æ×ǘǦǨ{ūLJǪǩ ³svǚƵ´Y_Ò°îöcƵ[ę#øò_ĥY_ ŦY_RnîöcǗǖǕǙ(AîöǘǦǨƵ¢ǍǘÇ`LJǪ Ǎ ƛƥƠƈ Ǚć¬¼ŒǘPǒǂÁĔݵǬĤǐǍƶnjǙć¶Ƶ ƛƥƠƈ ǙÌǘŝĬǗǭȖȋŜÄPǬA`LjǍƶnjLjǓƵƛƥƠƈ ǚȔȞȒȑȁȇŎŖȁȚȊȟǘǦǧNJƵĖ*řǘįÅÚT ǬǨ-ljdžǕǘǦǐǓƵȀȢȍǵŃǙĖąʼnǢǬŔljǩǕ ǙƵ¢ǍǗȘdzȉǽȗǬGLjǍƶŲ Ų ŽŶŲ ĐIJǭȠǼȆǙİŧÁ¼ȮŲ ĐIJŢǭȠǼȆǬńdžljdžǕ ǘǦǐǓȀȢȍǵŃ.ÈŰ3L] ƗơƟƆ ǙĐIJķþǬĤƼ ƗơƟƒ ǚƵnjǪėņǻǶȈȟŚ/ǬǤǑ.ÈȀȢȍǵŃǔƺǨƵ njǙ?ŏšǀ ƗơƟ ħčǘǦǩĖŎŖ:Ǭ<DŽǩǕǭȠ ǼȆǀİŧLJǪǩǕƻƼȏǮȤȇȌȂǵ1Ǭ<DŽǩƶƗơƟƒ Ǚ This year’s accomplishments: ĐIJǭȠǼȆǀĖŎŖ:ǘƻİŧLJǪǩÁ¼ǘƵƗơƟƒ 1. Analysis of the membrane protein insertase YidC using ?ŏšǙƼǏƵȞȓǿȤȗǙWǔȞȓǿȤȗǘŊLjǍř MifM. YidC is an evolutionarily conserved membrane protein ǘƺǩ żŻ ÄPǙǭȖȋŜŚ/ǀĬǕLJǪǩdžǕǬĭ-Lj that facilitates insertion of a class of cellular proteins into the ǍƶǭȠǼȆǙ1ǘǚǻǶȈȟŚ/ǕǭȠǼȆŚ/Wǘ membrane. B. subtilis MifM up-regulates translation of the ƗơƟƒ ǙZŭOǀťljǩdžǕǀ¨ǧƿǕǗǐǍƶŲ cis-located target gene that encodes a YidC homolog (YidC2) by undergoing translational elongation arrest. This system ȮŲ ĐIJŢǘƾDŽǩÎő operates when the activity of the main YidC homolog is ǥ«!ÃǀǖǙôvĘæǘńdžǐǓƻǩǙƿǬ¨ǧƿ lowered. We used this MifM-mediated YidC monitoring ǘljǩǍǣƵ?ŏšȥƳƩƝƭƟơƩƮƪƨơƴǕDǝdžǕǬGȦǀ mechanism as a research tool. A lacZ translational fusion, ²øǘ(¯ć?ǔœćLjǍ ƮƖƓƆ ǬǤǑdžǕǬ0ÜLjǍaű mifM-yidC2'-lacZ, can report the cellular activity of the YidC £ÉǬţãLjƵĊĎæݵǬĤǐǓƻǩƶ¥ǘƵYĕğǙŘ pathway, which otherwise is difficult to assess directly. In ] żŷŻŻŻ ǙĐIJǬƵȍȟǼȁDZǯǼ ƥƩŲưƥưƪ aűǕĀ collaboration with the Nureki (University of Tokyo) and the ĪL]ǬÜƻǩ ƥƩŲưƥƮƬƪ ĐIJaűǔA«ĤæǘķǟǍƶnj Tsukazaki (Nara Institute of Science and Technology) Ǚć¶ƵXǂǙȀȢȍǵŃǙ?ǀ?ı ſŻŻŻ ýŊǂǘ9 laboratories, we carried out functional dissection of YidC that ǝřǔÎőljǩǕƻƼWǙaǀ¨ǧƿǘǗǐǍƶƎƩŲ was based on its newly solved crystal structure. Our results ưƥưƪ Ǖ ƥƩŲ ưƥƮƬƪ ǔǙŗƻǥ(ŐƿǧnjǪǧǬ.ůLjƵĐIJ suggest that YidC mediates membrane protein insertion by ÎőǙ8LǬǐǓƻǩƶŲ providing a hydrophilic platform within the membrane interior, Ų instead of forming a polypeptide-conducting channel. žŽ ſŶŲ ÔǻȜȂǵŇ+L]Ʋ Ǚ1Á¼ȮŲ bFîöFǙÞę 2. Arrest release mechanisms of SecM. E. coli SecM is a 7UǀǕǗǐǍ¦ÿ(AîöǘǦǨƵYĕğǘƾƻǓÔ secretory protein encoded by an upstream open reading frame ǻȜȂǵȥǼȆȠǼȦüŘ]ǙŇ+Ǭ>ǩƲžŽŲ ȀȢȍǵŃǀƵ of secA. It controls the expression of SecA, the export-driving ƗƖƕ ĆŅǘǦǐǓĄēĖǘhN4ljǩdžǕƵnjǙdžǕǀȀȢȍ ATPase, by undergoing translational elongation arrest, which ǵŃqȥƫƬƪƮơƪƭƮƝƭƥƭȦǙĉǘŝĬǔƺǩdžǕǬĭ-Lj is in turn subject to export-coupled release. We found that a ǍƶŲ sequence of 10 amino acids, which resides just upstream of the polypeptide region embraced by the exit port of the ribosome, Research projects and annual reports participates in the event of arrest release. Thus, not only the We intend to develop a new area of research, which signal peptide and the arrest motif but also the segment might be called “nascent chain biology” by addressing a flanked by them is important for the regulatory function of concept that translation elongation speed is fine-tuned by SecM. intra-ribosomal part of amino acid sequences of the translation product as well as by dynamic behaviors the We examined the generality of the occurrence of translational We found pausing by detecting nascent chain intermediates in the that some of cellular factors that facilitate secretory protein biosynthesis of E. coli proteins, using methods based on the export and membrane protein insertion are controlled by presence of a covalently attached tRNA at the end of each regulatory nascent polypeptides that function in accordance nascent chain. Combined approaches by in vivo pulse-chase with this principle. We are studying molecular mechanisms labeling and cell-free translation revealed that a majority of and physiological outcomes of the regulation. extra-ribosomal part of the same nascent chain. of 3. Profiling translational elongation of E. coli proteins. Also, we have the ~1,000 proteins examined underwent one or multiple developed experimental methods that enable us to study events of pausing either in vitro, in vivo or both. A variety of cellular polypeptidyl-tRNAs, obligatory but poorly studied mechanisms can be considered that account for the pausing intermediates in translation, which we proposed to call and we are in the process of elucidating them. collectively "a nascentome". We are combining these 4. Involvement of membrane localization in the approaches to uncover still unknown principles and details regulation of the heat shock transcription factor σ32. A that accompany the processes of genetic information collaborative study coordinated by Dr. Yura, a prominent transformation into biological outputs. guest scientist in this laboratory, revealed that the transcription factor σ32 of E. coli is localized to the cytoplasmic membrane. This unexpected property of σ32 has been shown to be 7tƅŲ řÖáæ ƥƩŲưƥưƪ $¸ÀÉǘǦǩȀȢȍǵŃĖŎŖŔ important for the feedback regulation of its activity and, hence, L] ƗơƟƉƋ ǙPŃć?řǙăŹŲ ù żŻ KŲ ŽżŲ āYĕğî for the maintenance of proteostasis both in the cytosol and the öŷŲ ŪlìIeŷŲŽŻżžŹŲƁŹŲŽŻŸŽżŲ membrane. ƈƤƝƠƝƩƥŷŲƛŹŷŲƈƤƥƞƝŷŲƗŹŲƝƩƠŲƎƮƪŷŲƐŹŲƕƬƪƢƧƥƩƣŲƫƪƧƱƫơƫƮƥƠƱƧŸƮƖƓƆƭŲƮƪŲ $ ƬơươƝƧŲƬơƝƧŲƫƥƟƮƯƬơƭŲƪƢŲƮƬƝƩƭƧƝƮƥƪƩŲơƧƪƩƣƝƮƥƪƩŹŲƖƥƞƪƭƪƨơƭŲ 96!5'&$ Kumazaki, K*., Chiba, S*., Takemoto, M., Furukawa, A., Nishiyama, ƈƪƩƢơƬơƩƟơŲŽŻżžŷŲƓƝƫƝŲƚƝƧƧơƱŷŲƈƝƧƥƢƪƬƩƥƝŷŲƙƗƆŷŲƏƯƧƱŲƄŸżŽŷŲŽŻżžŲ ƈƤƥƞƝŷŲƗŹŲƝƩƠŲƎƮƪŷŲƐŹƅŲƒƥƢƒŲƥƩƠƯƟơƭŲƨƯƧƮƥƭƥƮơŲƬƥƞƪƭƪƨơŲƭƮƝƧƧƥƩƣŲƥƩŲ K., Sugano, Y., Mori, T., Dohmae, N., Hirata, K., Nakada-Nakura, ƨƪƩƥƮƪƬƥƩƣŲƨơƨƞƬƝƩơŲƫƬƪƮơƥƩŲƞƥƪƣơƩơƭƥƭŹŲƖƥƞƪƭƪƨơƭŲƈƪƩƢơƬơƩƟơŲ Y., Maturana, A.D., Tanaka, Y., Mori, H., Sugita, Y., Arisaka, F., ŽŻżžŷŲƓƝƫƝŲƚƝƧƧơƱŷŲƈƝƧƥƢƪƬƩƥƝŷŲƙƗƆŷŲƏƯƧƱŲƄŸżŽŷŲŽŻżžŲ Ito, K., Ishitani, R., Tsukazaki, T. and Nureki, O. (2014) Structural ƈƤƝƠƝƩƥŷŲƛŹŷŲƔƩƪŷŲƐŹŷŲƎƮƪŷŲƐŹŷŲƐƯƭƯƦƝƦơŷŲƐŹŲƝƩƠŲƆƞƪŷŲƘŹƅŲƆƬƢƆŲ basis for Sec-independent membrane protein insertion by YidC. ŵƛƤƠƑŶźƖƋŽŲƝƩƠŲƆƬƢƇŲŵƛƝơƏŶŸƨơƠƥƝƮơƠŲƝƧƮơƬƩƝƮƥươŲƬƥƞƪƭƪƨơŲ Nature, in press (*These authors contributed equally to this work) ƬơƭƟƯơŲƭƱƭƮơƨƭŲƥƩŲƊƭƟƤơƬƥƟƤƥƝŲƟƪƧƥŹŲƖƥƞƪƭƪƨơƭŲƈƪƩƢơƬơƩƟơŲŽŻżžŷŲ ƓƝƫƝŲƚƝƧƧơƱŷŲƈƝƧƥƢƪƬƩƥƝŷŲƙƗƆŷŲƏƯƧƱŲƄŸżŽŷŲŽŻżžŲ Mio, K., Tsukazaki, T., Mori, H., Kawata, M., Moriya, T., Sasaki, Y., Ishitani, R., Ito, K., Nureki, O. and Sato, C. (2013) Conformational 5ġƵĢĉªƅŲ ĐIJǭȠǼȆǬLjǍ·Ğğ ƒƥƢƒ ǘǦǩģå ŃĖąʼnL] ƛƥƠƈ Ǚ1ŹŲ ǶȝȗŨğǸȋȗÁĔĻŷŲ ûÊŷŲ variation of the translocon enhancing chaperone SecDF. J. Struct. ŽŻżžŹŲƄŹŲƂŸƄŲ Funct. Genomics, 10.1007/s10969-013-9168-4 Lim, B., Miyazaki, R., Neher, S., Siegele, D.A., Ito, K., Walter, P., 5ġƵĢĉªƅŲ ·Ğğ ƒƥƢƒ ǚƵțȉȤǵǗĐIJǭȠǼȆǬ Akiyama, Y*., Yura, T*. and Gross, C.A*. (2013) Heat shock LjǓģåŃĖąʼnL]ǙãØşǬķþljǩŹŲ ù Ƃ KĄğ_Ĝ transcription factor σ32 co-opts the signal recognition particle to ǹȡȂǾǰȗŷŲ umpŷŲŽŻżžŹŲƃŹŲƂŸƄŲ regulate protein homeostasis in E. coli. PLoS Biol. 11(12), ĝļrƵ5ġƵĢĉªƅŲ ?ŏšǙݵǘǦǩĐIJ ŢŖôǙ&dݨǘCDŽǓŹŲ ù Ƃ KĄğ_ĜǹȡȂǾǰȗŷŲ u e1001735. DOI: 10.1371/journal.pbio.1001735 (*Corresponding mpŷŲŽŻżžŹŲƃŹŲƂŸƄŲ authors) Ito, K. and Chiba, S. (2013) Arrest peptides: cis-acting modulators of ĝļrƵ5ġƵĢĉªƅŲ YĕğĐIJŏšǙĊĎæݵŹŲ ¦³Ř_ùŲ ȭȬKYŷŲ ďSYȣ¦@ǴȚȢȍǼŷŲŽŻżžŹŲ translation. Annu. Rev. Biochem. 82, 171–202 (Review) ƄŹŲżƄŸŽżŲ Akiyama, Y., and Ito, K. (2013) HtpX peptidase. pp. 683-685, Handbook of Proteolytic Enzymes 3rd ed. (ed. Rawlings, N. D. and Salvesen, G.) Academic Press (Review) ;6%( Hizukuri, Y., Ito, K., and Akiyama, Y. (2013) RseP Peptidase. pp. #$ ȨȦŲ WřŁŠ 1545-1550, Handbook of Proteolytic Enzymes 3rd ed. (ed. ò_îöŀĩ2ŠȣPèîöȥƇȦŲ Ų Rawlings, N. D. and Salvesen, G.) Academic Press (Review) ĶŮBȮȀȢȍǵŃhN4ǬșȉȀȤljǩĐIJŏšǙ.]ÁŲ Ų îöĦĒȮ5ġŷŲ ;~svȮƍŽƀŸŽƂ sŲ ŵž sŶŲ :6'&$ Ų 5ġƵĢĉªƅŲ ·Ğğ ƒƥƢƒŲ ǘǦǩțȉȤǵǗĐIJǭȠǼȆ ò_îöŀĩ2ŠȣæĠěŲ ½wǬ0ÜLjǍģåŃĖąʼnǙșȉȀȞȢǶŹŲ ùȩKŲ ĶŮBȮ¢LjƻÁĔǬǑĐIJŏšǙÆŲ ƖƎƇƔƗƔƒƊŲƒƊƊƘƎƓƌŷŲ ´ňoY_ŷŲŽŻżžŹŲžŹŲŽƃŸŽƄŲ îöĦĒȮ5ġŷŲ ;~svȮƍŽſŸŽƀ sŲ ŵŽ sŶŲ ƎƮƪŷŲƐŹŲƝƩƠŲƈƤƥƞƝŷŲƗŹƅŲƖơƣƯƧƝƮƥƪƩŲƪƢŲƨơƨƞƬƝƩơŲƮƬƝƩƭƧƪƟƝƮƥƪƩŲƝƩƠŲ ƥƩƮơƣƬƝƮƥƪƩŲƭƱƭƮơƨƭŲƞƱŲƬƥƞƪƭƪƨơŲƭƮƝƧƧƥƩƣŹŲƇƥƪƫƤƱƭƥƟƝƧŲƗƪƟƥơƮƱŲ ȩȧíľ¿úŲ ǗLjŲ Ȫȧ_WÌ3Ų ƒơơƮƥƩƣŲųƒơƨƞƬƝƩơŲƕƬƪƮơƥƩŲƋƪƠƥƩƣųŹŲƗơƪƯƧŷŲƐƪƬơƝŷŲƒƝƱŲżƄŸŽŽŷŲ ƒơƨƞơƬŷŲƋƝƟƯƧƮƱŲƪƢŲżŻŻŻŲŵƤƮƮƫƅźźƢżŻŻŻŹƟƪƨźŶŲ ȥĸ¡ijǻǼȄ ŽŻżžŲ ȥ|ĹÑȦŲ ȗȦŲ ĢĉªŲ 5ġƵĢĉªƅŲ ·Ğğ ƒƥƢƒ ǘǦǩțȉȤǵǗĐIJǭȠǼȆǕ ģåŃĖąʼnL]Ǚ1ŹŲ ù żŻ KŲ Žż āYĕğîöŷŲ Ū lìIeŷŲŽŻżžŷŲƁŹŽŻŸŽżŲ ĝļrƵ5ġƵĢĉªƅŲ ?ŏšǙݵǘǦǩĐIJ ŢŖôǙ&dݨǘCDŽǓŹŲ ù żŻ K Žż āYĕğîöŷŲ Ū lìIeŷŲŽŻżžŹŲƁŹŲŽŻŸŽżŲ äŲ 'ƵßÝŲ Ĩā]ƵRnŲ ƵĢĉªƵñkŲ ĚiƵ»Ų ÛÕŘŁÐǘťljǩYĕğg\F9ǜȲȯȳƕ 8¹ÛÕŕ J\F\FŲ ĢĉªŲ ȫȧ<łúŲ Ų ĝļr7Uǀ¦³Ř_ù ƃƀ KY ƇơƭƮŲ ƕƝƫơƬƭ łǬ< łLjǍƶŲ ! ! Prof. Akira Kurosaka, Ph. D. ŀ "$%,-$.,-0!,(!#'/-,)+0&,%*,+,)0! ! ! ! Assist. Prof. Yoshiaki Nakayama, Ph. D. 76! ǥģ U B Ɣ© Ĝ G ĺ ƉƪƅƕƔǪÎ á ǪſƧƜƼǡƱ ŀ ÛĨƙ&/qƚĤýƗåąkĹ/qƙƑƔŻ ßéƝƕ ƩǪƌƙĚƚǪżƃƑƀƙLJƳǗƘ ƁK £ ƉƪƅƕǪv ± ƇƍÎ á ß é Ɲƙ ķƆƫƪǫwźƚ *ƉƪǫƇƀƇƅƙ¦ƔƚǪĴÎáÜßé * Ƙĩ ī ŞŹƱDŽLjǢƹǠƻnjƿǛǥŁŘťŭŞŒŦłǪǚǥǐǧǃǨŝťůǩǪ ƙGĺƁpýƔŻƪÖƙ=Ķ¯ƁŻƐƍǫwźƚǪÈ ŻƪżƚǴŹƱDŽLjǢƼǢƾƿǛǥŁŘŭŦŞŒŦłƕLJǥǒƻĐ G ĺ Ü ƘÎ á ƙDŽǡǥǪnjǣƷǏǥ¢ H ƙǓǍǤƺǁǢH ƕƙī Ƙi ƔǪŠňŐ ßéƮÉīƔ(µƧƃÎáßéƝƕ v Ɔ ƫ ƪ ş Ź Ƽ ǡ ƾ ǁ Ǎ E â 5 Ǩ ŘťŭŞŒŦαň Ÿ ŢŨŲņţūŲŃŀ ƪƘv%Ƈƍǫŀ ŝťůαňŸŢŨŲņţūŲŃŀ ŘŭŦŞŒŦβňŸŢŨŲņţūŲǩƮ ƑÛ Ĩ Ƙ ǯǩƌƙ ƙşńƼǡƾǁǍEÛĨƙêĂŀ §ÆƇǪƌƫƨƙƘëƘſƄƪêƮĂƇƓżƪǫƅ ŀ ŀ ǜLjǥEÛĨƙĂƘ&žƓǪwźƚßéMƔö ƙƔ ŘťŭŞŒŦαňŸŢŨŲņţūŲ ƙÛĨƚǪÙrLJǥǒƻĐ Ɖƪÿ şńƼǡƾǁǍEÛĨƙêƮǪDžǖǠǕƲljǁǟ ƔŻƪǜLjǥƘNƃþƨƫƪƅƕƀƨǪǜLjǥEÛĨƕƤ9 ƮºżƓČƞƍǫŀ ƛƫƪǫŀ ŀ ŀ ǜLjǥEÛĨƙ5vĪQ/qƚÛēÐĢÞ 864! ŤŕŠńŘťŭŞŒŦőŀ űŰŭŶűŨűŴŬŧŨŀ ŞńťŦŨŴŶŭŪťŭťŦŴŰųťŮŬůŶŭńŀ ňłŀŘťŭŞŒŦńţňŎ Ğ T ǚƴǃƙĂ ŀ ŴŲťůųũŨŲťųŨŀ Łį ŘťŭŞŒŦńţłƘƧƩăSƆƫƪŅŀ ƅƙĢ ŀ wźƚ ŘťŭŞŒŦńţňŎ ƙêĂƙƍƣŃŘťŭŞŒŦńţňŎ ÞƚǓnjƘſżƓƚ ʼnŇ ÑķƀƨvƪOƂƗĞTǕưǛǡ ĞTǚƴǃƮüƇƍǫƅƙĞTǚƴǃƚ ǧƮivƉƪǫwźƚƅƫƠƔƘǪÎá³½ÄƘöƉ Ĥ ^ ƙÁ ´ ƮÌ ƇŃŀ ĥ ¸ E ǚƴǃƕ¥ Ĕ ƇƓ ĸ ƪ ŘťŭŞŒŦńţŐǪńǵňŎ Ʈ,IJƇƍǫƅƙ ʼn ƑƙƱƳdžǀƳ Ħ Ɓ ^ ƇƓżƍǫƅƙĞ T ƙà ¶ ĵ F ƙĈ ß ƗĂ ǜ ƚ Ǫ Ģ Þ ¨ r Ƙ Ĭ ƭ ƪ Ǟ Lj ǧ Ǖ Ƙ L ½ Ʈ Ə Ǫ Ŭůŀ Ʈ÷ƐƍƕƅƬŃĄuƮ4ƪªļƥzĵFƘhż ŵŬŴŲŰ ƔƙĢÞ¨rƁƟƕƯƖƔƂƗżǪƿǖǕưǛǡ öƁĉƣƨƫƍ ƘŃ®íƕƇƓƃĀeğƙ ǧƘ_ƉƪǫwźƚǪŀ şńƼǡƾǁǍEÛĨǪſƧƜƌƙ í Ɣ à ¶ Ƈ Ɠ ż ƍ ŀ ŁŗŬŪŅŀ ňłŀ ǫ ƅ ƫ ƨ ƙ â ƀ 5 v Ģ Þ ƙ Ƙë ƘſƄƪ ê Ă ƮÆ Ä ƕƇƓǪ ƨŃŘťŭŞŒŦńţňŎ Ɓ®íƘſżƓĸ÷)Ʈ¡Ƙ# ƙƧŽƗċĶƘ0ƩàƯƔżƪǫŀ ŀ oƇƓżƪƅƕƁÌ<Ɔƫƍǫŀ * ƘĬ ƭƪ@ T Ʈ& žƓG ĺ Ɖƪƅƕ *ƆƋ ňłŀŘťŭŞŒŦńţňŎ ƙ ê Ă ŀ ŀ wźƚŀ ŘťŭŞŒŦńţňŎ ƁǪvƙëƘſżƓƚªļƥ ĀeŃŀ ]ëƙÎáßéƘhƃöƇǪÎá *ƘĬƭ ƪƅƕǪƠƍƗGĺßéƮºżƍXĽƔƚ ŘťŭŞŒŦńţňŎ ƁƶǥǍƿƳnjǧǁǃáĒƮČ×ƇƓżƪ2êrƤþżƎ Ƈƍǫŀ dfƚǪŘťŭŞŒŦńţňŎ ƙĞTǚƴǃƮ üƇƓƌƙêƮĂƇƍǫŀ ǭłŀ DžǖǠǕƲljǁǟƮº żƍ ŘťŭŞŒŦńţ ǕưǛǡǧƙŀ ŀ ŀ êĂŀ ŀ ĢÞ¨rƁƔƂƊ¸*VÄƗĂƁAijƗƿǖ ǕưǛǡǧƮƗLJǧƽljnjƇƓǪDžǖǠǕƲljǁǟƮºżƓ à ¶ Ă ǪſƧƜ ê ĭ Y X Ľ Ʈ÷ ƐƓƂƍǫ d f ƚǪƽǐǜãı|øƔŻƪ ţŒŜŖŞ ¦ƥ ŔšŚŢŠšņŔťų ǁ ǃNJǜƮºżƓǪL½üƮćơƍǫŀ Ǯǩŀ ŠňŐèrìÂßéƮºżƍÿÎá *ǞNjŀ ! Fig. 1 ʼn ł ŀţ Œ Ŝ Ŗ Ş Ń ŀŔ š Ś Ţ Š š ņ Ŕ ť ų ǁ ǃ NJ ǜ Ʈ º ż ƍ Dž ǖ Ǡ Ǖ ŀ ŀŀŀŀǢƙË Ô ŀ ŀ ŀ Ʋljǁǟ ŘťŭŞŒŦńţ ǕưǛǡǧL ½ ƙ ü ŀ ŀ Î á ß é ƙ ê ƥ ŀ wźƁƅƫƠƔƘ,IJǦ6WƇƍDžǖǠǕƲljǁǟ * ƙĂ Ö Ƙº żƨƫƪǪN *êƮƉƪǚƴǃèrì¼ ŠňŐ ßéƚǪǣLjǐƳ ŘťŭŞŒŦńţ ƱƳdžǀƳǜƙŽƏƔŃŀ ³ƘƌƙêƁ ƀƐ ƓżƗż ŘťŭŞŒŦńţ ƘƑżƓŃŀ ƽǐǜã ı | ø ƔŻƪ ţŒŜŖŞ ¦ƥ ŔšŚŢŠšņŔťų ǁǃNJǜƮºżƓǪƌƙL½ -T18 are catalytically inactive, while GalNAc-T9 and üƮćơƍǫƅƫƠƔƘ ŘťŭŞŒŦńţŐ ƥńţňŏ Ƙ[Ɖ -T17, which were identified by us, are brain-specific and ƪ ţŒŜŖŞ ǘƻLJǧǪŔšŚŢŠš ǘƻLJǧƮØƇǪDžǖǠǕ biologically important for the neural differentiation. Ʋljǁǟ1 Ú - Ƙ ĝ r Ƙà ¶ ƆƋƍƕƅƬǪ Ä ġ ! Based on these backgrounds, we have focused on the ƘL½Ʈ\ƉƪƅƕƘv%ƇƓżƪǫŀ functions of glycosyltransferases to make O-glycan Ŋǩŀ ŠňŐ èrìÂßéƮºżƍÿÎá *ǞNjŀ ŀ ŀ ǢƙËÔŀ carbohydrate-linkage structures, and obtained the following findings. ŀ ŀ ŠňŐ ßéƙmƙ *¦ƚǪǣLjǐƳǥģUB 1) Analysis of mice defective of a GalNAc-T17 gene Ɣ© Ĝ G ĺ ƇǪß é ı I Ʈi v ƆƋƪ ¦ Ɓº żƨ We found that GalNAc-T17 KO mice showed ƫƓƂƍǫƇƀƇƅƙ¦ƔƚǪĴÎáÜßéƁK£Ɖ decreased body weight compared with wild-type mice ƪƅƕǪv ± ƇƍÎ á ß é Ɲƙ (Fig. * Ƙĩ ī ƙG ĺ Ɓ 1). Analysis of GalNAc-T17 expression pýƔŻƪÖƙ=Ķ¯ƁŻƐƍǫwźƚǪ©ĜGĺƁĴ demonstrated that it was expressed not only in Î á ß é ƙK £ ƙ. @ ƕæ žǪ È G ĺ ƮH ƕƇƍ hippocampus and amygdala, but in ventromedial nucleus ÉīƔ(µƙðżÎáßé of hypothalamus, which is known as satiety center. ƠƔƙÎ á ß é *ÜƮËÔƇƍǫƅƫ * ƘĬ ƭƪ@ T ƙÊ Ò ƘH ƒƂǪŁŬłŀ GalNAc-T17 may therefore positively regulate feeding ǠǛǏǥƮƾǧnjƇƍG ĺ Å Ɣ, ` G ĺ ƉƪǪŁŬŬłŀ Ƴǥ behavior. ǃǡǥƥnjǠǥǃǕƵǡǥÖƙÎá 2) Production of zebrafish GalNAc-T mutants *@TƮ8Ƣ°ö¬ GCƮºżƪǪŁŬŬŬłŀ ǣLjǐƳǥģƘ&žƓǪǐljLjǁƼǎ ǢĭY$ƔŻƪ ŕŒŠţ Ʈ«&ƉƪǪŁŬŵłŀ *ƙ"¤ İƘ ŗŘŗŏ Ʈ«&ƉƪÖƙƮƕƩƫƍǫƌƙâǪ To produce zebrafish mutants defective of GalNAc-T genes, we employed recently developed genome-editing technology, TALEN and CRISPR/Cas systems. We *Ċ\ĪQk Ŋŋ ÆƘÎáÓđƙivǪō Æ found that mutations were successfully introduced at the ƘƚƧƩ¨ÃƗÓđgƁāZƆƫƍǫ¿ñƥƸǢ target sites in the zebrafish embryos using TALEN and ǁƴǜƳǝǧǂǥƼƗƖƘƧƪĂƘƧƩǪō ÆƔïj CRISPR/Cas vectors for GalNAc-T9 and -T18. ÄƗÎá¨)ƮƇƍv±ÎáßéƝƙ 3) A rapid and efficient method for neuronal *Ɓĉƣƨ ƫƪƔǪƼǡƱßéƚUBƇƗƀƐƍǫƧƩǪ Ƈż¦ƔƚǪŠňŐ ßéƚmƙÝ+ (µƧƃÎáßéƘƙơ induction of P19 embryonic carcinoma cell line ƙīƔǪ *ƉƪƅƕƁƨƀƕƗƐƍǫŀ We revised a novel method to efficiently differentiate P19 cells into neurons by an adherent culture in ǯǩƌƙ ƙşńƼǡƾǁǍEÛĨƙêĂŀ laminin-coated dish in the presence of several reagents to ŀ ßéMƔöƉƪÿ şńƼǡƾǁǍEÛĨƙêƮǪ induce neural differentiation and suppress growth of DžǖǠǕƲljǁǟƮºżƓČƞƍǫwźƚƅƙÛĨĚƙ non-neural cells. 5vƘĬƭƪÛēÐĢÞƁ"èƘſżƓëƘhƃà within 4 days without gliogenesis. ¶ƉƪƅƕƮþżƎƇƍǫƠƍǪĢÞƙöƮ}#Ɖƪ obtained were responsive to several neurotransmitters ƕǪëƘſżƓit½cƮ¸ƈƪƙƘ[ƇǪ ƙàäƔ with functional neuronal networks. ƙù ¶ E ƙL * ƚā Z ƆƫƗƀƐƍǫƅƙ ƀƨǪƅƙ 4) Analysis of extracellular O-glycosylation ĢÞƁƘëƘſżƓêƉƪƁÌ<Ɔƫƍǫŀ The new method induced neurons The mature neurons We investigated the function of a glycosyltransferase ŀ in Research projects and annual reports O-glycosylation. zebrafish, which catalyzes extracellular novel We found that it was strongly We have been investigating roles of O-linked sugar expressed in the brain of zebrafish embryos, and its chains with the linkage structures, GalNAcα1→Ser(Thr), suppression caused alterations in the brain development. Manα1→Ser(Thr), or GlcNAcβ1→Ser(Thr). O-GalNAc-type sugar chains are called mucin-type 96532! carbohydrates and their biosynthesis is initiated by a Y. Nakayama, A. Wada, R. Inoue, K. Terasawa, I. Kimura, N. group of enzymes, UDP-GalNAc: polypeptide N-acetyl- Nakamura, A. Kurosaka: A Rapid and Efficient Method for galactosaminyltransferases (GalNAc-Ts). Neuronal Induction of the P19 Embryonic Carcinoma Cell Line. GalNAc-Ts consist of a large gene family with 20 isozymes in humans. Interestingly, GalNAc-T8, -T9, -T17, and Journal of Neuroscience Methods, in press. M. Ogawa, N. Nakamura, Y. Nakayama, A. Kurosaka, H. Manya, ĿDŀ ǰ¸*VĆč;ǪõVė¾ ğR;ŀ M. Kanagawa, T. Endo, K. Furukawa, T. Okajima: GTDC2 ŀ modifies O-mannosylated ŷ-dystroglycan in the endoplasmic Ǯǩŀ ƌƙ ŀ reticulum to generate N-acetyl-glucosamine epitopes reactive ĿDŀ ǰśŢŤ ƿƳƶǥǃƾǧǃǨĠ¹OVĮ_ľ¸l with CTD110.6 antibody. (2013) Biochem Biophys Res Ƙ ŘŗŠ ƙöƕÚüXĽƮ÷ƐƍǫǩǨʼnŇňŊŅŎŅʼnōǩǫŀ Commun 440(1), 88-93 ŀ I. Kimura, Y. Nakayama, Y. Zhao, M. Konishi, N. Itoh: Neurotrophic effects of neudesine in the central nervous system. (2013) Front Neurosci 7 (article111), 1-5 Y. Nakayama, N. Nakamura, D. Tsuji, K. Itoh, A. Kurosaka: Genetic diseases associated with protein glycosylation disorders in mammals. pp. 244-269 in Genetic Disorders, Maria Puiu (Ed.), ISBN: 978-953-51-08866-3, InTech. ŀ :632ŀ a>, :»ŻƦơ, Ç, ĿDǰ P19ǚƴǃèrì ÂßéƮºżƍĖęƀƑ(µƙðżÎáĊ\¦ƙËÔ. Õ36? T¸²VdǪÎybǪ2013.12.3-6 Y. Nakayama, K. Kato, N. Nakamura, A. Kurosaka: The roles of a putative polypeptide GalNAc-transferase/Wbscr17. International Symposium on Glyco-Neuroscience, Awaji city (Japan) 2014.1.9-11 ŀ ;614! Ǭǩŀ Mğďħ ¹Vě6ÊÒǨƳǥLJǧǗǤNJƳǥÍǩŀ ċ Ķ 7 ǰǶDZdzDzǁǃNJǜČ × õ ƙǃƻǡǧǏǥƼÜ ƘĬ ƉƪÊ Òŀ ÊÒùçǰĿDŀ Ǫ0ndfǰřʼnŌ dǨň dǩŀ ŀ VøÊÒ'vHħ'vħǦxÄôòÊÒŀ ċ Ķ 7 ǰǞNjǢ¸ ² Ʈ¨ º Ƈƍ P r ë À s Ĭ ě ƷǧǕưǥ ÛēÐĢÞƙêĂŀ ÊÒ ~çǰĿDŀ Ńŀ 0ndfǰřʼnŌńʼnō dŀ Łʼn dłŀ ŀ ÏVÊÒĎû'ħǦVøĵFǪÎáÛĨ¸²Vŀ ċ Ķ 7 ǰÎ á ? Ē i v ƘſƄƪǜLjǥE Û Ĩ ƘƧƪ ƍƗî ĕĘ#oǁǃNJǜƙĂŀ ÊÒùçǰa>Ńŀ 0ndfǰřʼnŋńʼnŌ dŀ Łʼn dłŀ ŀ VøÊÒ'vHħ'vħǦó{ÊÒŁœłŀ ċ Ķ 7 ǰ ĺ · J ƙì Â ß é ƘſƄƪǚƻǤǔǐƿƳnjǧ ǁǃƙêĂŀ ÊÒùçǰa>Ńŀ 0ndfǰřʼnŌńʼnō dŀ Łʼn dłŀ ŀ ǭǩŀ VM¨)ŀ ŀ ǠǙǝǥǑǧŀ ňŌ 3ĻúƘƓŀ ŀ > 2> 6 Prof. Ken-ichi Sato, Ph.D.Õ ACDMOCPMOR>MG>?FJJ>BIHLCJILH>CLE>@FQFJMNKFLP> > > 5> Assist. Prof. Takashi Ijiri, Ph.D. ts*+ 4> ßĮijÇ"äąê EGFR õm§óòćãąûðô= ßĈċĊįĕß ðöæþï´äąêõöÖ 2äąê 200 ¿ÛB®¹`õNćÿñô]åê×Ć 1911 LõĦĊěijĴĭċĕ$?ôāĄĞIJěĮô£¨ćíá êåêëß(ăĈðÛĄġ쩦ßĈ¥õvÑÓ ĄċĊįĕÖçóĆëĭċĕ£ ¨ ċĊįĕĶRous sarcoma >ôÝ⥠Src Aó[ĉħěĵēĕmlôÝÛ virusķõ ôāĄ×ãõp , ó ´ öÖÝāè# ï EGFR õĮijÇ"ñuU"ßȳóQ ć êõëôóäąêĭċĕ£ ¨ ċĊįĕõßĈÄ ãñß5äąïÛĄ×èãð LMövÑÓ> ć\ìïÛĄ @ðÚĄċĊįĕUĒĵĐÄ@Ķv-srcķõ´ÖÝāø ðõ EGFR õĮijÇ"Ķ|ôėıēij 845 ĮijÇ"ķ}V ãõßĈÄ@ôāáêlÁćÿíĞIJěĮ¥Uß õ"BYtÝāøË_¬[tôāĄµiô ĈÄ@Ķ0ļ&ßĈÄ@ķõ¥UĒĵĐÄ@ Yåê×èõjÖsÍtôāăx ±åê Ķc-srcķõ´ÖèåïãąĂĹíõÄ@ÞĂíáĂąĄ EGFR ôÝÛïvÑÓTUõėıēijĮijÇ"ßk ĖijĠĐ¼{ĶSrc ñçĄķèąéąôÀô´Ă +§ðÚĄãñßĆÞìêêþĶ8ĸķÖ RèõĮijÇ ą Ą Ė ij Ġ Đ ¼ ė ı ē ij Į ij Ç " Æ u U Ķ proteintyrosine kinase activityķõ´ùñíóßăÖ~õ "ĉĩğÇq<-õ|DóòćÝãóÜDðÚĄ× >> @Ĵ¥İĥįõēđĝįÃmlõõ÷ñíñ óìïÛĄ×Ćêåêëõ F ðöÖĉĢĮĎęīďč įõ%Āf¤ÖÝāøÛáíÞõÐõġě;ÒßĈ ¥ ćE Ô ĬĚįñåïÖèąĂõ ¥ m § ôÝ⥠Src Ýāøèõ3¾ðöêĂáēđĝįÃ@¢õQ ća ĂÞôçĄñÛܸ Ï ô( ă ĈðÛĄ×ĉĢĮĎ ęīďčįõ%Āf¤ćÛêĶ%¥ĤıĔČ ĐěķðöõĺyôÈyć¡ÛïÛĄ× Õ ĸķ-XS Src Y$V)("0 Õ Ĺķ./1;q1j^`ngl^orY"0 Õ ĺķ./1j^`ngl^oY!,V"0' t> 3%&T\Z3%<=&XV[WS EGFR Yenaomo9 Õ %¥ĤıĔČĐěõúÜðöÖLMô=2åê% ¥ªĨĊĐıĜīĊijõm§ôÌçĄXjćûñþê B®¹`ćZåê×~9öo&õZwð ûêÖġěßĈ¥ćÛêĶßĈ¥ĤıĔČĐěķ ÚĄĶKX 25 L 12 ch~9ķ×èõúÞõõÂ^ñ ðöÖõĺyôÈyć¡ÛïÛĄ× åïönõĹyßÚĄ×ĸíö%¥ªXć[&ñåï Õ ĸķSrc $V./#8l_hckY: X åêĭĘěĬğĐıĵĝį[ ĭĊģĭĮõU } µ i Õ ĹķU]./1j^`ngl^oY"0 ðÚĄĶ8Ĺķ× LMö[Đıĵijõô%¥ªĨ Õ ĺķ./1"0V"0Y`nbfp` ĊĐıĜīĊijĖijĠĐ¼ ôõü' T U ć çÿõÖÎ Ĩ ãąĂõö.4BÅĤıĔČĐěØdU rmlôÝâĄr¥ªēđĝįÃõÙõ ñåïÖBĻLĺ0Ķ²I°»Ö*JûòÞÖ C P ! ķÝāø/ ĺL Ļ0 ĶH W Ö6 Ê g Ö« : SeÖ½ķć1ýėĵĪð(ăĈðÛĄ× Õ usY*+> Õ bLôíîàÖßĈ¥ĤıĔČĐěõúÜð·¹` ćĸ=¯åêĶSato et al. Int. J. Mol. Sci. 2013ķ×ãõ ¹`ðöXÉ7@)G EGFR õ 845 õėı u> `npo 4H3B8 Y./1j^`ngl^odoi`7VY ēijq<Ķėıēij 845ķõĮijÇ"ôzyćÚïÖèõĮ ĊĐıĜīĊijUõ%¥ªĖijĠĐ¼ôõü'TUć ijÇ"ºÆðÚĄ Src ñõÌĀO¶ėıēijq< çÿõÖèåï ĖijĠĐ¼ ô' T U ć çÿõõ $uMjt yw/sx|nEw identify a change(s) in the proteome compositions during §©¨ 7I¨ ` "]pn hormone-induced oocyte maturation and subsequent q¬mRUB53B5 Pxm sperm-induced egg activation. z{sW£§¤¨_Zx¨ ` in the Egg Project include characterization of rat monoclonal antibodies that Other on-going subjects were raised against membrane proteins of unfertilized Xenopus eggs, live cell-imaging of ATP in Xenopus oocytes and eggs by the use of ATeam, a FRET-based probe for ATP visualization and quantification (in collaboration with Drs. Ken Yokoyama and Jun-ichi Kishikawa, Kyoto Sangyo University; Yasuhiro Iwao, Yamaguchi University; and Hiromi Imamura, Kyoto University) and & ! "!# analysis of stomatin-like protein 2 as a newly identified tyrosine kinase substrate that localizes to membrane C+;aypqKNonw¡¥ microdomains and mitochondria in Xenopus eggs (in ¤¦ QrvQ @tB5Y' collaboration with Drs. Hitoshi Sawada and Lixy ywsm 5 Y ' 6 c y}W ¨ Yamada, Nagoya University). In the study of human ` S , d pto pspq ^ O m bladder carcinoma cells, which we call Cancer Cell z 4\] onw 3,000 Project, we are now investigating phosphorylation state RUª(o0,A:RU«s]._Zxm of the epidermal growth factor receptor/kinase (EGFR) 9i<>=¨ ` h£¢ in 5637 cells that are cultured under serum-containing or §¤¥[1rw~|ª%!!gF!KN serum-deprived conditions. Results obtained demonstrate L & X ? # k - K N «nz T 2 m 5 that EGFR is tyrosine-phosphorylated in serum-deprived Y ' 6 c y}W ¨ ` S , b @ J d 5637 cells, where sustained Src activation has been @towt/s~|ª«n)w © shown to occur and to play an important role in the xm,AQqRUW£§¤ anti-apoptotic growth of the cells under these culture ¨ Q 8 V D * H G e 8 6 f _ conditions. Our special interest is to determine the pu"on occurrence of phosphorylation of Tyr-845 of the EGFR, l a Src-dependent phosphorylation site, and to evaluate its Research projects and annual reports Research in our laboratory focuses on the physiological physiological function. l function of the tyrosine kinase Src and its interacting '%$ signaling proteins in oocyte/egg of the African clawed Sato, K.: Cellular functions regulated by phosphorylation of frog Xenopus laevis and in human bladder carcinoma EGFR on Tyr845. International Journal of Molecular Sciences cells (e.g. 5637 cells). In the study of Xenopus 14, 10761-10790, 2013. oocyte/egg, which we call Egg Project, we are currently Ijiri, T.W., Vadnais, M.L., Huang, A.P., Lin, A.M., Levin, L.R., examining whether animal and vegetal hemispheres are Buck, J., Gerton, G.L.: Thiol changes during epididymal different with each other in their compositions of maturation: membrane-associated proteins. To this end, we have spermatozoa? Andrology in press201312. a link to flagellar angulation in mouse prepared low density, detergent-insoluble membrane Ijiri, T.W., Vadnais, M.L., Lin, A.M., Huang, A.P., Cao, W., fractions (membrane microdomains) from both animal Merdiushev, T., Gerton, G.L.: Male mice express sperma- and vegetal halves of immature ovarian Xenopus oocytes, togenic cell-dpecific triosephosphate isomerase isozymes. performed two-dimensional electrophoresis and mass Molecular Reproduction and Development 80, 862-870, 2013. spectrometry of proteins. Results obtained so far show Sato, K., Mahbub Hasan, A.K.M., Ijiri, T.W.: Focused proteom- that there are indeed common as well as distinct protein ics on egg membrane microdomains to elucidate the cellular compositions in these samples. Further study will aim to and molecular mechanisms of fertilization in the frog Xenopus laevis. In Sexual Reproduction of Animals and Plants in press. ¤ (Springer) Ijiri, T.W., Kishikawa, J., Imamura, H., Iwao, Y., Yokoyama, K., Sato, K.: ATP imaging in Xenopus laevis oocytes. In Sexual Reproduction of Animals and Plants in press. (Springer) : ÏÐìh d 1 íU 1 $ ® S l ®Ñâ ÝÐì}JDî, 2013. ¤ ðî¤ - s1ovëO1¢)ovíovî¤ £%òzÞÄÈè×áÄêÁ*¼¸¿0m j¼ #¾0\X¤ ovò§¤ !EABòª«¨ª¬ A¤ ¥ª A¦¤ iW.1Oov£KHMLÝèÉåठ¤ £%ò#3:;-..5 ®<?a®T®>4nu®r®;7C 2<09¤ 2®Y9®: ATP quantification and live-imaging in Xenopus laevis oocyte. w36&PR0hd1AïpI @ï2013.12.3-6 = ovò§¤ !EABòª¬ A¤ ¥© A¦¤ ñî¤ 1-áÕý³µ¿ov¤ ®<?a®T®>4nu®r®;7C AB½k·¹1NíIjiri et al. J. Signal Transd. 2012î 2 ®Y 9 ® : ÂÛæÆÓáÇÅç ^ z ½³µ¿ ´ovÊßãØÔÃÌÄÖ Global Medical Discovery ¾ Key ATP¾b3¼ATPåÄÜÄáìÎêÉ. w51&PRhdd Scientific Articles ¾ º ¼ · » { ¶ À ¹ ¯ g1Aï@ï2013.10.28-30 URL:http://globalmedicaldiscovery.com/category/key-scienti ®ÞÜÜÙÌêAKM®®f=5/®VR6+® [RZ: ÓáÇÅçGc½²ÞÄÈè×áÄêUPIII-Src fic-articles/ Í ÏÔ à ¾ \ , . w 84& P R d 1 . ï: 9 @ ï 2013.9.26-28 ®T®;7C2®Y9®: ÂÛæÆÓ áÇÅç^z½³µ¿ATP¾b3¼ATPÄáìÎêÉ. w84&PRd1.ï:9@ï2013.9.26-28 > 4 n u ®( ] | ® Q ® ®; 7 C 2 : ÓáÇ Åç¾Gct½³µ¿"y¼`¾eE. w84&P Rd1.ï:9@ï2013.9.26-28 : z Þ Ä È è × á Ä ê ½ 8 ' ¸ ¿ uroplakin III (UPIII)-SrcÍÏÔà¾Xx¼hg\. PRÓáÇÅçov¡ ï|q@ï2013.9.23-25 A)+4/">*%68C7(& ,$1' @!?B: ÂÛæÆÓáÇÅç^z½³ µ¿ ATP ¾b 3 ¼ATPÄáìÎêÉ. P R ÓáÇÅço v ¡ï|q@ï2013.9.23-25 Sato, K.: A possible membrane maturation mechanism in oocytes of the frog Xenopus laevis. Ëì×êov°"y¼kh¾ 15 2013 `F±ïÝæÞÏíÂáæÆîï2013.7.14-19 Ijiri, T.W., Kishikawa, J., Imamura, H., Sakiie, M., Ueno, S., Iwao, Y., Yokoyama, K., Sato, K.: ATP quantification and ATP imaging in Xenopus laevis oocyte. Ëì×êov°"y¼ kh¾`F±ïÝæÞÏíÂáæÆîï2013.7.14-19 Sato, K.: A possible membrane maturation mechanism in oocytes of the frog Xenopus laevis. EMBOéìÈÍäÒÝïÚØãçÏ íÛåêÏîï2013.6.11-15 Ijiri, T.W., Kishikawa, J., Imamura, H., Sakiie, M., Ueno, S., Iwao, Y., Yokoyama, K., Sato, K.: ATP quantification and ATP imaging in Xenopus laevis oocyte. FIR, DE, 2013.6.6-8 : UPIII-Src signaling system in egg membrane microdomains of the frog Xenopus laevis is required for fertilization, can be reconstituted in HEK293-overexpression system, and becomes functional after oocyte maturation. O1 ¢)ovÂè¢)ïV_@ï2013.6.1-3 14 2013 11 ~ ! ! Prof. Nobuo Shimamotoƀ "$%+,$-+,.!+&!#$*+%(+)+'. ! ! ! Assist. Prof. Hideki Nakayama. 54! »NJǞdžLJĤDÓdžIŶǡómǑǜdždzǁǐDZǠdzómǡ ƀ çéà_ǝǤǀéǣnjǷȌȬȘȂŋǠǟǝ%¯ Ǥǀȴē Ġ é à _ Nj ij ǝDžDzǀX Ģ ĩ ȴē Ġ ǦǣȌȬ ǘ j ǠÀ ¹ ǣ njǞǑǜè Ķ ǓdzǁǏǣÀ ¹ ǣX njǐ ȘȂŋǣȓȖǺȬȇǼȂȆȥȬĭǣaë0ǷĬǑǜś ǤǀƉƅƉƈƈƳƲ ǝDžDzǀǗǣëÀ»ǞéèõĝǷǀ& ǬǜdžǘǏǞNj-ǡǛǠNjDzǛǛDždzǁƀ ] À ¹ ǣ. njǮ{ ǣU 0 ǞǑǜè Ķ ǓdzǏǞNjȓȖȗǺ ȶƃŐ$ǣȓȖȗǺǾȪȇȮƀ ǾȪȇȮǙǁ®ÿĊcǤŢ]óçǣȓȖȗǺǾȪȇȮ ơƞƒ ȟȧȣȦȮȊǡǤǀDžDZǯdzàèõǀ0_õǀéà_ Ƿ ÿ Ċ Ǒ ǜ lj Dz ǀ ȗ Ȃ ȏ ȧ Ǹ ǣ é ^ ð Ǟ ơƞƒƀ õ & ² Å Njĺ ǪDZǴǘ& ] À ¹ ǝDždzǁX njǠ Ķ ƵƴƱƼƲƫƷƧƸƫ ǷhņǞǑǜÿĊǷĬǚǘǁǗǣŞĈǝǀç ÊIŶǤÂǣŘDzǝDždzǁƂƉƃțȪȤȮȌȮǞǣĕ?ǣȇ P ǣW Ǎǣ ƘƗƠ ǡ7 ǚǜ ǶDzLJdzŸ Ī Ǡá ǷǭǛ ȩȬȠȺĕ?ǽȕȨȁȮǤǀŐ$Ŭ[¥ǡ Ɗ ®ũ ƕƞƒ Ƿ ƓƅƲƧƭƭƯƴ Ƿó¤Ǒǘǁƀ ǨǟǍzǍÜǎǴǥǠDZǠdžǡǭŭǶDZǔǀơƞƒ ū¥ ƀ ǡ Ǥ Ï ǡ ć . ǝ nj dz Ǩ ǟ y Ǎ Ǡ ǎ Ǵ ǥ Ǡ DZ Ǡ dž ǁƀ 642! ƂƊƃƒƨƴƷƹƯƻƫ Ő$ǣĝȺŐ$Ŭ[¥ǡýdž ơƞƒ ǷWŧ ƀ Ɖƃƀ ōŗĦ ƘƗƠƀƓƅƲƧƭƭƯƴ ǣó¤ƀ ǡ dzǽȕȨȁȮǣÑ ʼn ǷǓdzǣNJȻƂƋƃW Ǎǣé 0 _ ƘƗƠ Ƿ'ëǑǘ Ɖ ēĠéà_ǣÿĊǡǀdžǍǛNJǣ õÅǝǤǀŐ$Ŭ[L]ȆȃȠ Əƈ NjȟȧȣȦȮȊNJDZ ƘƗƠ UòǷıǑǘǞǏǵǀÞǀŗĦNjǩǝǣ ĶųǓdzǏǞNjĂǐǴdzǣǡǀƗơƖƣ ǤǠǖòǠdzĶťNj ƘƗƠ ǰDzǀôŜdž ƘƗƠ Nj%¯ǜdžǘȯbGÿĊ ǠǐǴǜdždzǣNJǁƂƌƃțȪȤȮȌȮǷūXǠ´Ħ ƕƞƒ GǣnǓdzSTıǞ#AǝáķíŁȰǁ¤dzǐ NJDZǟǣǰLJǡǑ%ǓǏǞǦǣ ƕƞƒƀƸƱƯƪƯƳƭ ǣdǁƀ Ǥ}¯ǣ©žÇØǣ ƘƗƠƤƥƌ ǞAĈwǝDžDzǀWǍóç A ǐǴdzȌȬȘȂŋǝǤ´Ħǝǣ ƭƬƵƀ ƬƺƸƯƴƳ ǝî0Nj B -35 4 3 2 E -35 -10 -10 :ġǝDždzǁ©XǣūǤǀŗĦNj ƥƫƳƺƸ ǡÆǧǜǀ non-template nontemplate ƯƳƀ ƻƯƹƷƴ ǝ ƉƉƈ ƯƳƀ ƻƯƻƴ ǝȵȸȳŜdžǏǞǝDždzǁ®E second channel DNA core îǝÝÛ?ǶǕNj%¯dz¼ǡǠDzƄȴ&]ǣŖŎǤ &:ġǞǠǚǘǁǩǘǀWŧ0ǝīNjŌĦǡU0Ǔ C D -35 dzáNjDždzǁƀ Ɗƃƀ XĢĩǣé^ðǣȓȖȗǺǾȪȇȮƀ -35 F -10 -10 ƀ XĢĩǭǣéàǞA¼ǀQźǑėǎdzǞÄǢǁǏǣǰ LJǠÄǡǑǜ%¯dzǙǎé^ǝnjǘǭǣNjǀçPé^ ĊǐǴǘǏǞNjǠdžǁWǍǣŢ]ǣÀġNjŭŚǓdzē NȴȲƒƅƕ WǍǣúùǷĶÊǓdz ƒƨƴƷƹƯƻƫ Ő$ǣȤȐȨƄƀƖƄƗƀ ơƞƒƀƵƴƱƼƲƫƷƧƸƫ ǣ©¢ȤȐȨƂğ×ǑǘȈȄȎȍȏȧǸǝDždzƃǞ ƒƨƴƷƹƯƻƫ Ő$àǣ%8ǁƀ ƀ Ġéà_ǣIJŲçņǙNJDZǝDždzǁXĢĩǝǤ ƊƇƋ ǣ ƀ Kǣł¡ǝǤ Ɗƈƈ Ŕdž¡åǷxëǑǜ èǑǀÔ Ţ]ǣÀġNj`%¯dzçPǀǂǤ ƹƲơƞƒ ǣÿ ǣLǤǀȚȦȬȒŲĻǡőǐǴǘ Ɖ &] ƗơƖƣ čǣƿ Ċ Ƿ NjNJDzǡǑǜǀǏǣI Ŷ ǡ Ǒǘǁ? ģ Ä «BażƿǝǀażÅǣŠëŮïǷōLjǘDzǀŞ+ǡ ǷëdžǘŢ_ǣĕ³ǀvŝǠǏǞǡǀé^ǷĘǓdz 3Ē0ǑǘȤȐȨǷi À»ǡǤ ƹƲơƞƒ ǷŵL]ǞǑǜCǫǭǣNjóĴǐǴ DZNJǡǑǘǁǗǣǝǀażõĹǝĮǎǷǭǛ ǘǁǩǘǀ© ǭLJȴǛ Ĭ ǓdzĔ ŏ NjDžDzǀk ǠǍǞǭȹ ƧƨƴƷƹƯƻƫ Ő$ǣ¢À»ǞǑǜǀƨƧƩưƹƷƧƩưƯƳƭƀ ƲƴƪƫƱ Ƿ Ǜǣ ƵƷƴƹƫƧƸƫƇƩƮƧƵƫƷƴƳ NjŵǝDždzǏǞNjóĴǝnjǘǁ HǑǘǁǏǣ ƲƴƪƫƱ ǤǀƉƅƋ ǣIŶǣĶĎǷLj~dzǁǩ ŽdžǘǏǞǡǀǏǴDZǣģÄǤǀ¶źȩȜȨǣ Ɗƈ ǸȡȖ ǘǀȚȦǻȬŝ.ǡǀřwłǮšćãèłǷi ŤǝøİǐǴǘǁ>ǂǣŢ]ǣ3äÁ·ǣÄÙĔ ǏǞǣľDzǷ¤ĀǡǑǜǀÃĀǠàè_ǣǡĶťǷĬ Ş § Ě NJDZǀ: ġ ǠÀ » ǷĖ Dzœ ǫǏǞNj% ¯ dzǁ V LJǧnjǏǞǷǑǘƂƔƮƫƲƀ ơƫƻƃǁǩǘǀǏǣĞLjǷóm ǠǏǞǡýEǡǓdz ƵƷƴƹƫƧƸƫ Ţ]ǭóĴǐǴǀǏǣŢ ǐǕǀĐO ƞƔƚ ǣ ƝƆƜƧƸƮƱƫƻ ǣȃȨȮțǞ#AǑǜǀŐ ]Njś0^ǐǴǜldzǣǤǀűMǞǑǜǣé^À $ǣ ƵƧƺƸƫ ǞǗǣéèõĝǷłǒǘƂƣƷƧƳƸƩƷƯƵƹƯƴƳƃǁƀ ǑǜdždzĉǝDždzǁǑNJǑǀǏǣÄƇé^ǣÀ»Ǥǀ!Ǎÿ ǑǘľǚǘĶťǝDždzǏǞǷ¤ Ǔdz Research projects and annual reports Among the enzymes, RNA polymerase is one of the Nanobiology is a biology in which physiological changes earliest to which new physical and chemical techniques are described in terms of the movemants of biological have been applied in mechanistic study. However, the molecules. We push nanobiology in the fields of following four problems are left contradictory. (1) transcription and survival strategy of bacteria. Dillemma on the binding to a promoter sequence: It must 1) B-maggio: a new GFP resistant to photobleaching be strong enough to make a DNA bubble, while it must We have invented a new GFP which may replace be weak enough to allow the promoter clearance in conventional GFPs now used for most purposes. It emits elongation. (2) What is the significance of abortive a green fluorescent with a peak at 512 nm with the transcription, which seems to waste a lot of energy. (3) Is excitation maximum at 493 nm as strong as GFPUV4, sigma-70 released during transcription initiation. (4) The which is supposed to be the brightest in E. coli. contribution of the sliding along DNA in promotor Therefore, abundant proteins can be easily visualized by search. I have cited about 200 papers to examine the fusing gfp with their genes in chromosome. Its most contradictions. I found some contradictions are due to distinct merit is the resistance against photobleaching, ignorance of the technical limit of FRET, and the others which is 250-fold and 110-fold stronger than Venus in are due to the confusion between abortive initiation and vitro and in vivo, respectively. This simplifies the focus productive initiation with excluded NTP substrates. adjustment in imaging, and a big inprovement in the Reconsideration of published results enabled me to tracing single fusion molecules. propose a more consistent model for abortive initiation 2) Survival strategy of E. coli cells where abortive transcripts are released by backtracking. Bacteria can survive in non-growing conditions. In In this model, RNA polymerase can stock enough energy evolutional selection, this survival is as important as as the form of DNA squrunching to clear the promoter their growth, but the underlying mechanism is poorly and release sigma-70 during early transcription in understood because of the complexity of the problem. productive conformation. The polymerase can Since cell must degrade their used proteins to salvage alternatively form another conformation with less amino acids for their survival, we at first focused on the contacts with signa-70, which allow itself to backtrack to relationship between this protein turnover and tmRNA. release abortive transcript but inhibits sigma-70release The tmRNA (ssrA) and SmpB induce the degradation of and promoter clearance. This model provides the nascent polypeptide by ssrA-tagging in response to a answers of the problems (1)~(3). In addition, I pointed reduced level of amino acids in stationary phase. We out the confusion of Brownian motion and the prepared the disruptants of genes relating to the tmRNA transition-state theory. Therefore, the two-pawl ratchet system as well as major chaperons and AAA+proteases. mechanism of elongation is still possible to be Unexpectedly and probably fortunately, most examined non-Brownian. This misunderstanding led several wrong protease/chaperon genes are synthetic lethal with ∆ssrA conclusion on the existence of sliding even in the recent or ∆smpB, demonstrating that there are two parallel papers (Chem Rev). This more strict understanding of pathways in the surviving mechanism. One is dependent chemicsl reaction enabled the reconsideration of a on the tmRNA system, and the other on clpA, clpP, clpX, pausing phonomenon (Transcription, 2013). dnaJ, hslU, hslV, htpG, prc, and sspB, at least. Among ƀ the examined genes, non-synthetic-lethal genes were 74310! only clpB and lon, which could be thus involved the ƢƮƯƲƧƲƴƹƴƀƞƆƀƞƧƳƴƨƯƴƱƴƭƼƀƴƬƀơƞƒƀƵƴƱƼƲƫƷƧƸƫƑƀƓƯƴƱƴƭƯƩƧƱƀ tmRNA pathway. Another conclusion is that the ƔƴƳƸƫƶƺƫƳƩƫƀƴƬƀƚƳƮƴƲƴƭƫƳƫƯƹƼƀƯƳƀơƫƧƩƹƧƳƹƄƀƔ Ɣ Ʈ ƫ Ʋ Ɔ ƀơ ƫ ƻ Ɔ ƀ tmRNA-dependent degradation is not contributing to the protein turnover, because the main proteases in the Ɖ Ɖ Ƌ Ƅ ƀ ƐƌƈƈƅƊƊƀ system, ClpXP, ClpAP, and Prc(Tsp), are synthetic lethal. ƚƲƧƸƮƯƲƯƽƺƀƝƄƀƢƮƯƲƧƲƴƹƴƀƞƄƀƟƸƮƯƲƧƀƣƄƀƜƧƸƮƱƫƻƄƀƝƆƀ 3) Nanobiology of RNA polymerase ƣƷƧƳƸƩƷƯƵƹƯƴƳƀƫƱƴƳƭƧƹƯƴƳƑƀƙƫƹƫƷƴƭƫƳƴƺƸƀƹƷƧƩưƯƳƭƀƴƬƀơƞƒƀ ƵƴƱƼƲƫƷƧƸƫƀƧƳƪƀƨƯƴƱƴƭƯƩƧƱƀƚƲƵƱƯƩƧƹƯƴƳƸƆƀƣ ƣƷƧƳƸƩƷƯƵƹƯƴƳƀ ȆǼȨȗȄȮȫȭȀȉȔǸǀoąJǀq®ů: ȗȂȏȧǸ 1 ēĠǦǣȌȬȘȂŋȓȖǺȬȇǼȂȆȥȬ. Č 7 K ēĩ_ħ ƍƄƀ ȄȪȎȉǻȢǀ5rǀ2013. 8. 7-9 q®ůǀȴȳċƀ ȌȬȘȂŋƀ ȯĸȰƀ ƔƫƱƱƀƓƯƴƱƴƭƼƑƀƒƀƢƮƴƷƹƀ oąJǀq®ů: +AAA proteases Ǟ tmRNA ƔƴƺƷƸƫƄƀƋƷƪƀƫƪƆƀƓƴƱƸƴƻƫƷƄƀƢƆơƆƄƀƢƮƫƵƮƧƷƪƄƀƖƆƒƆƄƀƦƮƯƹƫƄƀ ƙƆƒƆƄƀƙƼƧƲƸƄƀƛƆƢƆƀƛƴƮƳƀƦƯƱƱƫƼƀƁƀƢƴƳƸƀƚƳƩƆƀ RāȄȮȈǀ `t¬Š ǡljǎdz|,. Č 7 K ēĩ_ħȄȪȎȉǻȢǀ5rǀ 2013. 8. 7-9 oąJ ǀ@ìą= ǀq®ů: in vivo 100S ribosome ȧ ȞȋȮȢ{ǣÖ`ÌǣŬó. Č 36 K£®&]éà_ ēĠéà_ǀÈì öĸǀ°0_A uȱĄrȱ2013. 12. 3-6 q®ůǀƀ ƿȧȞȋȮȢƿƄƀ ƿȌȬȘȂŋǞǤƾƀ Ţ]NŪƀ ȆǼȨȗȄȮȫȭȀȉȔǸǀoąJǀq®ů: ȴȳȳȼȦǺȞȋ ȮȢǡǰdzXĢĩǣ`t¬ǝǣ viability ǣĘ. Č 36 K£ ƊƈƉƋƀ ¨Ż ®&]éà_uȱĄrȱ2013.12 .3-6 94/2 ! oąJǀƀ ƿȑȦȬȈȩȮȆȥȬƿƀ Ţ]NŪƀ ƊƈƉƋƀ ȴȰƀ VţŊŨ ¨Ż #AÿĊǾȧȬȘȈƂ·ƃƀ ƙƊƊƅƊƎƀ ĿŶBȺƀ ǾȧȬȘȈǿȬȍȩȗȮǷ'ëǑǘȗȂȏȧǸēĠǡ q®ůƀ ȷċƀ ȓȖȠȆȬǞǑǜǣơƞƒȟȧȣȦȮȊƄĨĽ hǓdzàŋi ÌǣŬóƀ ł¡ȉȡȓȮƀ ȵȴđǣ&]éà_ƀ ÕŒ"ęǀ¸/ěƀ ðõÿĊR÷{ ºƀ ƊƈƉƋƀ ŃŀăȅǺǽȬȏǹșǹȂƀ ƀ ĿŶBȺǃȌȬȘȂŋǣéǞďèDŽƀ ƀ ȵȰƀ üŇ½čƀ ƀ 8410ƀ Nobuo Shimamoto: E. coli to be or not to be, 1st Singapore- oąJǀž¿ſû]ǀq®ůƀ áķ%Źƀ ¢ĵīȌȬ ȘȂŋƀ %Źñ<ȺáŹƊƈƉƋƅƊƌƎƎƌƊƀ ƀ ƊƈƉƋuƉƉªƊƐ£ƀ Japan-India Joint Symposium on Protein-DNA Interactions in Prokaryotic Nucleoid and Eukariotic Chromatin, Singapore ȶȰƀ _VÎ.ƀ ƀ National University, Singapore, 2013. 7. 22-23 ƢƮƯƲƧƲƴƹƴƀƞƆƑƀƒƸƯƧƳƀƧƳƪƀƟƩƫƧƳƯƧƳƀƔƴƳƬƫƷƫƳƩƫƀƴƬƀ q®ů:ƀ ȌȬȘȂŋ-DNA ǣ&]ļńǡljǎdz.çņ I, ƣƷƧƳƸƩƷƯƵƹƯƴƳƄƀƚƳƹƫƷƳƧƹƯƴƳƧƱƀƓƴƧƷƪƀ ƀ II. éÀġ.ǡŭǓdzȫȮȂȆȥȎț, 1ÒşX_Ŵ] Ć_ÿĊ 2013. 3. 4-5 q ® ů :ƀ é à _ ǝǪdzǀ0 _ Ì ) ǣà è õ R ÷ . Y ĥ Z ]X_ 2013. 6. 7 o ą J ǀ@ ì ą = ǀq ® ů Ⱥ in vivo 100S ribosome Ö`ÌǣŬó. Č 10 Kƀ 21 đXĢĩÿĊǀŅrǀȵ ȳȴȶ.6.20-21 ȆǼȨȗȄȮȫȭȀȉȔǸǀ o ą J ǀq ® ů : X Ģ ĩ 4 dž (ȉȨȅǺȂȨǡljǎdzȦǺȞȋȮȢǣ&sǣU0). Č 10 Kƀ 21 đXĢĩÿĊǀŅrǀȵȳȴȶ. 6. 20-21 @ìą=, pì6į 2, oąJ, ßÍ;, 9ɦ, ìŰ Ĝ, Fì2], q®ů, Fì¤, þФ: 100S ȧȞȋ ȮȢ{Ţ] rmf ǣ cAMP-CRP ǡǰdzŐ$(. Č 15 K £® RNA _uǀ±orǀ2013. 7. 24-26 oąJ ǀq®ů: +AAA proteases Ǟ tmRNA: `t¬ Šǡljǎdz|,. Č 15 K £® RNA _uǀ±orǀ 2013. 7. 24-26 ƢƮƯƲƧƲƴƹƴƀƞƆƑƀƘƫƳƫƸƀƹƴƀƔƫƱƱƸƄƀƹƷƧƳƸƬƫƷƀƫƪƯƹƴƷƀ q®ůȺ&]éà_ħeÚRŨfµ\Gƀ q®ůȺéààè_&Ŧ\Gƀ oąJƑƀ ēĩ_ħȄȪȎȉǻȢ ƦƘ \Gƀ ƀ ƀ ƀ Nȵƀ ȴȸ<Ż*ǡ ǜƀ NJDZq®ǀáÿ ég®Ëňǀáÿ éžÚX¾ǀŷNj xnjǛǚǜdždz êXæǞæǡŕ ǷNJǎǜdždz¤dz džêXâǣȌȝ ȈȑȧȮƀ F %F 1@ Prof. Misuzu Seo, Ph. D.F UZ[efZhefjFe_FYZg\ibZfFZd]FV^ifedZbFOaebe`j Ė +,!7F gTf,?Ţ ijĺľĦ ű[!°ŒŖŮŞńıijIJĝ ° Ė KţÆÒFŻ űn!ŒůŘ ĨĮİĚĝ ÆÒŢźƗƇƚ\kō<bœŘŅ KŞœŜÆÒ×2PšÉ4œńÆÒŻŹƆ ŢÉŌŬńyãoōŲ$ŞœŜ ıijIJĝ ŇŮňţŗŢ Ė ÆÒD=KŪ»ÈøÅŶŴƁƘŽ ŹƆƖ ,ńü+ń\ ŻŹƆƖŢšL>ŕŮ jŢ!ašŏċœŜňŮŅÆÒD=KŢ2P ţ~*ŝŇŮŞÐŊŬůŮŅĖ ţńËÊÙÆÒD=K2PƛĪīĪijƜŪܲD Ė =K2PėĶĩīĪijĘűţŔŨŞŕŮƂƗŻƘŷƆƚſ Ė ?2PŝŇŮōń»ÈøÅŶŴƁƘŽ ƖÿÄű+ŒŖń+ÆÒŢDń KŢ2P Ė ţƂƗŻƘŷƆƚſúűrŘŠň2PŝŇŮŅőů Ė ŬŢ2PšƕŶƘƅŝŇŮÆÒD=KŪøÅŶŴƁ Ė ƘŽ KōÉ4ŕŮŞ±ÆÒŢŻŹƆƖÿű Ė f,œń»È<öŪÜÂŢ\kŠşŢ¡dÁűN Ė ŕŮŅ2PōŕŮŻŹƆƖÿō§TűŎŘŕŞń Ė ōŲŪ»ÈĪhńŗŢ ŢGŏŢ«űZŎôőŕŅĖ Ė Ė Ė Kű®Ţ±ŞŕŮőŞ Ė ¸¾OŝţńőŢūʼnŠÆÒŻŹƆƖÿާT šūŮ«Ţ°¬ƐŵƇžƏűä|œńyŘŠ K± Ûűĉ°ŕŮőŞű´ŞœŜňŮŅĖ ĖĖĖĖĖĖ u+, F 1 VEGF-A ú 07: NRP1 1_ÒFELY2®^ KHF YQSRINJ IKGVXWKHu>. ç=øā1Ë.Û<qĔ$:VEGF-A 2=ø ;qmz-3u#"F ā ^ 0 å Ú d Ĕ $ : NRP1 < g # , ø ā u - Ė Ü Â ² D = K Ė ėĶĩīĪĚĦĘĖ ţńÔ šŋňŜÔ GIPC1/Syx ĉ n1¦¯<č#øāuĪÅ<y«$: ÜÂy¡űêRœ¯ÆÒŢDŞ¡Lń÷½űû RhoA <Ñ}"%:RhoA 1Ñ}/&®=ø ŕŮŅlņţńĶĩīĪĚĦ ōܲÆÒřŐŝţŠŏń ā1Ë.Û<qĔ$:15)º8-2/ ¯ÆÒŢDŞ¡LűûŕŮőŞńŗœŜńŗŢû RhoA 1Ñ}<ġ$:!.·(/±=ÏãzĬx *ţܲÆÒŞ¯ÆÒš°ŕŮƇƓƚƗƋƕƘ Éæąĭ1ğå0¿|-:.Ā8;: ĚĝƛıijIJĝƜűŕŮŻŹƆƖÿšLŕŮőŞű¹œŘŅ ÷ ½ f Ɗ Ƅ ² Ö m U ² ¯ ¥ Ţ ĨĮİĚĝ Æ Ò ţ ń LHF E=mztlnx0/4-3$ M { ĶĩīĪĚĦ ű°œ ĶĩīĪĚĦ ţ ıijIJĝ űœŜ ĨĮİĚĝ Æ |} PFGRSRXMTTT\Humz<~ ÒűDŒŖńõCĎLjŢźƗƇƚ\kűûœ u8F F ŘŅıijIJĝ Ţ ŀĺijıĦ űRœńıijIJĝ Ţ°űn!œŘ Ė #޸¾ŝĒþŢmU²ōŲhÑšŋňŜńō ĨĮİĚĝ ÆÒŝţźƗƇƚ\kōn!Œůń5ŔÆÒš Ų Ç Í ¥ Ţ ijıĦ ű £ ň Ř ijĵĚIJħij š ū Ś Ŝ ıijIJĝ ű[!°ŒŖŮŞ<bœŘŅœŌœńıijIJĝ ŢÆ ĪīĪijğĭĭĭķ Ţ ° ō û œ Ŝ ň Ů ő Ş ű â œ Ř Ņ ÒĐ@űuŒŖŘE§ű[!°ŒŖŜũźƗƇ ĪīĪijğĭĭĭķ Ţ°ōōŲÆÒš¥ŕŮŢŌńÔÇ ƚ\kţ<bœŠŌŚŘŅőůŬŢÉŌŬńıijIJĝ ŢÆ ÍšûœŘĊÚÄÆÒš¥ŕŮŢŌìťŮŘŨń ÒĐ@ţńĨĮİĚĝ ÆÒšŋňŜźƗƇƚ\kûŻ ĒþōŲhÑŢÔÇÍű©ÇÍ Øšūŭä ŹƆƖűÿŕŮŘŨšcďŝŇŮőŞō|ŬŌšŒů œŘŅŗŢÉńĒþōŲÆÒš ĪīĪijğĭĭĭķ Ţ°ōé ŘŅŒŬšńıijIJĝ ŢÆÒĐ@ţõCƀƘƉŸóŝŇŮ ŨŬůŘōńčtŕŮT²ÆÒšţ ĪīĪijğĭĭĭķ Ţ īĭIJħĝ ŞńijĺľīĩĪ ŝŇŮ ĴŃł ŞÉ4œńīĭIJħĝěĴŃł à4 °ţéŨŬůŠŌŚŘŅŧŘńĪīĪijğĭĭĭķ Ţ°ōé \kűêRŕŮőŞű¹œŘŅ'ŊŜńīĭIJħĝěĴŃł à ŨŬůŘōŲÆÒšŋňŜÆÒDƎƚŵƚŝŇŮ 4ţÆÒĔŢÌkšċŰŮ įĻĢģ ō ØŒůŘőŞŌŬńĪīĪijğĭĭĭķ Ţ°ōōŲÆ KĄ ī ƀƘƉŸ óŝŇŮ ijĺľĦ űf,ŕŮőŞű|ŬŌšœŘŅŧŘń ÒŢDűûœŜňŮőŞō¹:ŒůŘŅ¸¾ŝţń ĒþōŲšŋŐŮ ĪīĪijğĭĭĭķ ŢōŲif,ûƐŵƇž Ė Ė Ė In ƏűäŕŮŘŨšńĪīĪijğĭĭĭķ Ţ°ōňĒþōŲ anti-angiogenic drug for the treatment of metastatic ÆÒŢ ĩħīĭĚĝĜ ű£ňŜåœŘŅĩħīĭĚĝĜ ÆÒš colon cancer, bevacizumab (Avastin, Genentech) based ĪīĪijğĭĭĭķ űý%°ŒŖŮőŞšūŭńÆÒDÓŢ on Judah Folkman’s hypothesis that tumor growth is ûōéŨŬůŘŅĪīĪijğĭĭĭķ ŢƂƗŻƘƕƘă,ōéŨŬ angiogenesis-dependent and that its inhibition might be ůŘőŞŌŬńĪīĪijğĭĭĭķ ōf,ŒůńĒþōŲÆÒŢ therapeutic. DŻŹƆƖōf,œŜňŮőŞō¹:ŒůŘŅŒŬšń antibody that neutralizes the vascular endothelial growth ĪīĪijğĭĭĭķ ° ĩħīĭĚĝĜ ÆÒŝţńĪīĪĝĤ "šūŭ factor (VEGF-A). Malignant tumors express VEGF-A ŒŬšÆÒDÓŢûōéŨŬůŘŅĪīĪĝĤ Ţ° which recruits blood vessels, thereby supplying tumors ţĒþōŲÇÍŢËÊÙÆÒŝĕŏŠŚŜňŮőŞō with oxygen and nutrients that promote tumor cell B8ŒůŜňŮőŞŌŬńËÊÙÆÒŌŬ migration ŒůŘ 2004, the U.S. Avastin FDA is a proliferation, approved humanized survival, the first monoclonal and metastasis. ĪīĪĝĤ šĒþōŲÆÒŢ ĪīĪijğĭĭĭķ ō0dŕŮőŞšū VEGF-A signals via a tyrosine kinase receptor, VEGFR2, ŭńĒþōŲÆÒŢDÓōûœŜňŮőŞō¹:Œ are blocked by Avastin to suppress tumor angiogenesis. ůŘŅ ŢÉŌŬńĒ þ ōŲšŋňŜńĪīĪijğĭĭĭķ However the impact on overall survival is not well °ō{ŕŮőŞšūŭńĒþōŲŢif,ōûœ documented and in fact some tumors are no longer being ŜňŮőŞō¹:ŒůŘŅĖ treated with Avastin. Neuropilin-1 (NRP1), a 130kDa MHF ~ ) 2 ? ( & NdegcadIK v transmembrane protein known as another VEGF-A V^hfadIK twxBAyCoxkF receptor expressed in some malignant cancer cells. Ė ŵƖƎƘ¬Ïţń; \kŋūŤ;ÅĈާTŞ Therefore, it has been thought that NRP1 may induce ffÕÓ¬űʼnIfªhŝŇŮōńŗ tumor proliferation, migration and survival, but its Ţ mechanisms remain to be fully elucidated.Ė KA³šśňŜţŦŞŲş|ŬŌšŒůŜňŠňŅ lņţńƀƘƉŸóƍƑƗżƚsÅšūŭŵƖƎƘ¬ In this study, we showed that NRP1 indeed acts as Ï/=ĀK ŢĀK¢ŝŇŮ ĦĽľŀļĻĽĚĝ VEGF-A ō ; Å \ k ű ! a ŕ Ů ıĸŁĿĻĽĚĝ Ż Ź Ɔ Ɩ Ţ 2 P proliferation signaling into the cells. Actually, VEGF-A ıĸľĹĸĽĻĽ ŋūŤ Ĩħħ Şĕňµ5fōŇŮőŞűâœń binding to tumor expressing NRP1 activated RhoA ĦĽľŀļĻĽĚĝ ōÆÒFŝ ıĸŁĿĻĽĚĝ ޵£œŜňŮőŞ activity through the complex formation with GIPC1 and ű¹œŘŅáÍģÐ<Ý(ĩ8 Syx that are expressed in the cells with the NRP1 . è´æ0ú $:!.<º80# cytoplasmic domain, thereby inducing a proliferative and ( 5 ( 1 Û Ø æ Ñ 3 4 $ survival signal in the tumor cells.ĖDJM-1 cell, malignant 1§Ħ<ÆČ#(íùöøāÄ-: skin cancer cell line, expresses VEGF-A and NRP1 <x}č#íùđ÷tó1¯ĝvĜ<¦¯" endogenously. The malignant cancer cells can proliferate %(© Ù5(2 . well <¼Ô{#('1ú Ù-2¯ĝ VEGF-A or NRP1 expression by siRNA treatment in the vĜøāćĥ0åÚ$: n0oÝ#¯ cells inhibited the cancer cell proliferation in 3D agar ĝvĜ< "%( < . culture condition. However, Avastin did not inhibited ¼0Ô{$:.¯ĝvĜ1 Ċ8;/*( colony formation, suggesting that NRP1 mediates !1úÂ8 2 1¯ĝvĜ VEGF-A 1øāuFELYlĖ<ġ#,:!.º8 cytoplasmic deletion mutants in DJM-1 cells where 0/*(j^1úÂ<5.6. endogenous NRP1 expression was abrogated with NRP1 in receptor in tumor cells anchorage-independent signals. Lentiviral to manner. expression transduce Silencing of NRP1 .è´æ0ú $:!.079 shRNA did not restore the colony formation, while FELY<ġ#,:!.ì";(½/: lentiviral xUCMHT<ċº$:a-:Ė Co-immunoprecipitation experiments showed that two proteins, GIPC1 and Syx interacted with the NRP1 3. Research projects and annual reports cytoplasmic region. Knock down of either GIPC1 or Syx 1)FF VEGF-A induces VEGFR-independent signaling, expression in DJM-1 cells, as well as VEGF-A or NRP1 Neuropilin dependent Tumorigenesis.Ė Ė siRNA treatment of the cells, inhibited tumor colony expression of wild type NRP1 did. NRP1 that expression of FGF18 was upregulated in fibroblast cytoplasmic region requires interaction with GIPC1 and of esophageal cancer. Therefore, cell proliferation of Syx to induce tumor proliferative and survival signals. esophageal carcinoma may be enhanced by FGFR3IIIc Pull-down assay of active RhoA showed that siVEGF-A, binding to FGF18 from fibroblast in esophageal NRP1, GIPC1 or Syx treatment inactivated RhoA carcinoma. These results indicate that the upregulated activity. These results indicate that the NRP1 signal expression of FGFR3 IIIc in human ESCC enhancesF cell activates RhoA to promote DJM-1 cell proliferation.Ė proliferation and may promote tumor progression.Ė 2: Enhanced Expression of Fibroblast Growth Factor 3: Anosmin-1 inhibits Netrin-1-induced growth cone Receptor 3 IIIc Promotes Human Esophageal Cancer collapse. Ė formation. These results suggest that the Malignant Progression.Ė Kallmann syndrome is characterized by Ė Ė Ė The expression of FGFR isoforms is temporally and hypogonadism due to gonadotropin-releasing hormone spatially regulated in embryos and in normal adult (GnRH) deficiency, and a defective sense of smell organs. Alternative splicing of the FGFR gene has been related to the defective development of the olfactory implicated in carcinogenesis. Switch expression of bulbs and olfactory tracts. This syndrome is caused by FGFR to mesenchymal isoforms, enabling cells to mutations affecting the KAL1 gene, which codes for the receive signals usually restricted to the connective tissue. extracellular protein anosmin-1. However, the molecular FGFR3 has two different transmembrane-type isoforms, pathogenesis is poorly understood. In the previous study, FGFR3 IIIb and IIIc, which are produced by alternative we show that Anosmin-1 FNIII repeats also show 40% of splicing and have distinctive ligand-specificities. In homology with Netrin-1 receptors DCC and Neogenin, normal tissues, IIIb isoform is mainly expressed in the which are expressed by growing nerve cells in the epithelium, whereas IIIc isoform is mainly expressed in developing vertebrate brain. In addition, the Netrin-1 the mesenchyme. In the previous study, we found the Knock-out mouse shows defective of the olfactory tracts expression of FGFR3IIIc isoform was upregulated in the and the migration of GnRH neuron. We hypothesized 86% of the human esophageal squamous cell carcinoma that Anosmin-1 acts as a soluble receptor for Netrin-1, (ESCC) specimens analyzed by RT-PCR. However, it thus Anosmin-1 inhibits axon guidance cue of Netrin-1. was unclear whether the enhanced expression of FGFR3 F F F In this study, the role of Anosmin-1 as an inhibitor IIIc is due to cancer cells or to increased mesenchymal for Netrin-1-induced growth cone collapse was tested. cell population to the tumor region by inflammatory First, we tested whether Anosmin-1 and Netrin-1 bind infiltration. ĖĖ directly by immunoprecipitation assay using condition Ė Ė Ė To clarify this, we performed immunostaining of medium tumor sections obtained from esophageal cancer patients expressing HEK293T cells. The result showed that and showed that FGFR3IIIc was specifically expressed Anosmin-1directly bound to Netrin-1. Next, to determine in the human ESCC but not the adjacent normal Anosmin-1 regulate biological activity of Netrin-1, we epithelial cellsuggesting that it is upregulated during performed the growth cone collapse assay. As a result, tumor of Netrin-1 alone induced growth cone collapse. In contrast, FGFR3IIIc in ESCC was consistent with expression of co-treatment of growth cones with Netrin-1 and Ki67 by immunostaining, suggesting that the expression Anosmin-1 did not induce the collapse. These results of FGFR3IIIc in ESCC enhances cell proliferation.Ė suggest that normal Anosmin-1 may act as an inhibitor Ė Ė Ė In order to further demonstrate the effects of FGFR3 for the signal of Netrin-1-mediated growth cone collapse IIIc expression, we analyzed cell proliferation of FGFR3 in the developmental process of the central nervous IIIc-overexpressing human ESCC, ECGI-10. The effects system, contributing to an elongation pathway of the of FGFR3IIIc overexpression increased cell proliferation olfactory axons and the associated migration of GnRH by autophosphorylation of FGFR3IIIc in no addition of neuron. progression. Moreover, the expression FGFs. Moreover, reactivity of FGFR3IIIc to FGF18 in was F upregulated by cell proliferation assay. It was reported F FGFR3IIIc-overexpressed ECGI-10 cells of Anosmin-1-Myc- and Netrin-1-V5-F :5srF pu'9DF M. Fukami, M.Iso, N. Sato, M. Igarashi, M. Seo, I. Kazukawa, ƝƜĖ Fāñą E. Kinoshita, S. Dateki, T. Ogata: Submicroscopic deletion ¼M¸¾ðß(ąƙA³ƛħƜĖ involving the fibroblast growth factor receptor 1 gene in a ë đ 6 Ƥ¦ K I f f f Õ Ó ¬ h Ñ Ţy œň patient çxŢĉ°Ş®ŶŴƅƔŴƘŢkĖ with combined pituitary hormone deficiency. ¸¾ Endocrine J. 60(8):1013-1020 (2013.5) A. Shimizu, H. Nakayama, P. Wang, C. Konig, T. Akino, J. pÑƤSÎĆęĖ 1`VXƤĬĞĠĚĞĢ VĖ ėğ VĘĖ 5¸¾ƙŴƘƀƚƌƗƃŴƘYºĖ Sandlund, S. Coma, JE. Jr. Italiano, A. Mammoto, DR. ëđ6ƤVEGF ŻŽƃƏìÃÛŢŽŸƕƚƇƘŹÄšċŕٸ Bielenberg, M. Klagsbrun:Netrin-1 promotes glioblastoma ¾Ė ¸¾ pÑƤSÎĆęĖ 1`VXƤĬĝĥĚĞġ VĖ ėģ VĘĖ cell invasiveness and angiogenesis by multiple pathways ƞƜĖ ·ïÀĖ ŠœĖ including ƟƜĖ MF+Ė SÎĆƤz¡,Mèî9Ė activation of RhoA, cathepsin B, and cAMP-response element-binding protein. J. Biol. Chem. Ė Ė Ė Ė Ė Ė Ė Ė Ė ¹ÀÛ}kĒà¶Ęiď (2010.10.1) 288(4): 2210-2222 (2013) ¹ÀÛ}kĒà¶Ę£b (2011. 10.1 ) C. Waga, H. Asano, T. Sanagi, E. Suzuki, Y. Nakamura, A. Ė Ė Ė Ė Ė Ė Ė Ė Ė SÎĆƤĂW°|À&)ÑÞ]QJ9Ė Tsuchiya, M. Itoh, Y. Goto, S. Kohsaka, S. Uchino, ƠƜĖ 2òÀĖ ŠœĖ Identification of two novel Shank3 transcripts in the ơƜĖ ŗŢ Ė Ė 1) SÎĆƤĂW°|À&)ÑÞ]QJ9ŞœŜń¿ developing mouse neocortex. J. Neurochem. 128(2): 280-93 ơƢ<ĂW°|À&)ÑŢQűÝŚŘŅ2013 V 3 } (2014) 2) SÎĆƤk¤ĝ øāË\xĈ\= *6sr ¿ ĢĜ < Ė z ¡ , M ù ¨ w ā ńH Č H M 7 ¤ ŷ ƒƘƉŽĖ - M ā ƙć ē ń2013.5.18 M. Seo, A. Yoshida, A. Shimizu, VEGF-A/NRP1 signaling induces GIPC1/Syx complexes, resulting in RhoA activation ×ýěĮeęÜÇĢīôû³Ç øā to promote survival and growth of human malignant skin .wÛ~ã31¬Ý<¸#( cancer cells. Vascular Biology Program, Prof. Klagsbrun’s ×ýě.×ëñĮéòµ`ÃÛª invitation, Children’s Hospital Boston, Harvard Medical 1eęër1(61Ďÿ¹À1¾tó~ã xÉæ School, Boston, U.S. A. 2013.4.11 ėq_íĘ ą0+,h<¸#( Þ c m ý Õ Ì » ß Michael Klagsbrun × ý ě Į VEGF-A/NRP1 FELY2OK®çăäøā1Ë Ė <qĔ$:õ 60 ¹ÀÛ}kĒà¶ĘpkÞ¡ Ė 2013.5.18ĬħåćRGI]åćĭ Ė Ė ôuîfÕÌ»ßÀÎêĨ×ýěĮAnosmin-1 0 7: RGMa 1¯ĝvĜ oÝ1ġÊÈ1ċºõ 60 Ė ¹ÀÛ}kĒà¶ĘpkÞ¡2013.5.18. Ĭ Ė ħåćRGI]åćĭ Ė ÞcmýÕÌ»ßMichael Klagsbrun×ýě Į Ė VEGF-A/NRP1FELY2OK®^ç=øā1Ë Ė <B]KDX[07*,qĔ$:õ17¹À=xÉ Ė æÏãkĆĤkeę¡2013.6.12-14ĬZ]DFV Ė JQĭ Ė ÓĚ¥ĮS@GĂçĐåĖĕð0 :ĄĞâĠēx Shank31NX>[KåÚċÁN?BPA]WT2013e ęÜÇü ÛïĘ2013.7.19Ĭ²¨ĎÖĭ ôuîfÓĚ¥ÕÌ»ß×ýěĮCYS[âsþ ėlÜØAnosmin-12đ÷åRGMa.Netrin-1 1¯ĝvĜ1 oÝ<ġ$:õ36¹ÀxÛØ k¢kí°¡2013.12.5ĬRGI]åćĭ ¸ ¾ O ¶ Ƥĝġ 3 ē á šŜń. æ e ųƖƈƏ£ šv ^ ƛĞĜĝğ Vƣ}ƞƢzƜĖ 9 #9 Prof. Hiroshi Nakada, Ph.D.ĵ BGHPQGRPQT9PJ9ANNSOPKMTIPHLPMPKT9 9 *#9 29 Assist. Prof. Kaoru Akita, Ph.D. ih)+49 ŐŗŇļĸŇň Ą=Ƌ¦ƉĝğźƗŬŚĸŠũŚ ƊÒÅĠ ĵ DŽƲǎƋB @ F Ŭ» 5 F ŬÉ ´ F ƈƇƊ Ô é ï ā ƚƑƀƔŻŬë¢ƆŻƄè ôP´ƚ ĠŻƀŭŹƊë¢ Ɖ İƚĆŰą,ƅŮƕŬUƊ ŒĸƧNJƣǎƚƂĴ, ƂůƄƋŬŐŗŇļ ÒÅèôƆƪƧnjƳƦ ń ÒÅèôƆƊ XƊæưǎƻƦęƅŮƖŭDŽƲǎƋ, · JƆ÷ë =J DŽ & K ij ƉƓƁ ƄƑ> ¬ ƊÅ Ĕ Ŵč ƐƔƗƀŭ y Ŭ ƲǎƉV. źƗŬÉ ' ƉsŶ, kŻƄůƖŭÑ 5Ɖ ŐŗŇļ ƋĞƉÒÅŽƖ ʼnŋŊ ƒ ŊŋŊ ;]ųƔƊƪ Űè ô ƊS 5 ƉƂůƄƋŬ! žŬ Ô é ï Ɗe Q Ŵ ƧƷNjƚìǓPoŽƖ±õƚŰƆźƗƄŵƀŴŬÛ ŸƔƗƖŭ³nƈÔèôƅƋŬèôƊªŴíźƗŬ âƋƑŰǕƂƊ ŐŗŇļ ƪƧƷNjĢêĚƚƔųƉŻƀ ưƟƵƫdžǎƦƪLjǎƚOƉŻƄŬèôāİƋƝƾƣǐNj ŹƆƉƈƖŭ ŬÑ é ï | ` È O ƉƋŬ< ¾ J ƊnjƦ ƆƺƯljƴljǐNj Ɖ- ƔƗƄůƖŭÑ5 Ɖ ůưƟƵ ƲǎƑUŶYIŻŬŐŗŇļ ƆƊÖËŴ[źƗƖŭƤ ƫdžǎƦƪLjǎƚƋżƐƆŻƀèô Ø ± «ŴeQŻŬDŽ njƦƲǎĸľ Ɗë=ƆƪƧƷNjĢƉƂůƄƑ¨ĉŻŬ> ƲǎƊƓŰƈŬ ƝƾƣǐNjƉĝğźƗƖæưǎƻƦ ¬ƉƤnjƦƲǎĸľ Ɗë=ƉƁƄŪĸƣƴƸǎŴ ŐŗŇļ ę Ƒè ô ā c $ Ɖĝ ğ ź ƗƖŭ Ñ Ä Ɖ Ųů ƄŬ ƍƊNJƦNjǐƵźƗƖŹƆŴƙųƁƀŭĵ ĵ ,· źƗƀDŽƲǎƋþ¹ ƒNJǎƻ¼ 9ƌÑ éï | ` ÈO ƉYIŻŬ³ n ƈ Ô éï ƅƋŬĈ Ŵ< õ ƈ j:9 `_db^ = W ?@<> [("Z\] EBD;> ,XƆƊÖËŴ<õƆƈƖŭƎƀŬÑèô÷Ɗ÷ 7[9 ë=JDŽƲǎƑÑéï|` ÈOƊH XŮƖůƋĪ ę ĵ 6ÆÍ Â¯ÄèôĶŝŠňŇķƚƪƧnjƳƦĸľ ƉYI ŽƖè ô Ɗèô ÷ ưǎƻƦęƆƊÖ Ë Ŵ< ƊYIƅ ŏœŕ *ÇŻƀN=ŬōŏĸļĽ ƊÊɃ őŊĸūņ õƆƈƖŭŹƊƓŰƉŬÑé ï|` ÈO ƅƋŬDŽƲǎƚ ƊNJǎĥ5Ŵ/źƗƖŹƆŴƙųƁƀŭŝŠňŇ Ɗèôā ~ ƆŻƀƀƈ, X Ī Ö Ë ŴÉżŬÑ è ô ƊĠ b İƊưǎƻƦęƚ£°Čýƅ*ÇŻŬèôƚ<¾5xŬ ƒ"ÐèôƊ/ƚƑƀƔŽ,XÓóƆƈƁƄůƖŭĵ ƪƧnjƳƦĸľ Ɔ£ °źƗƀ,Xƚ¨ çŻƀƆŹƘŬŇňļĿ ĵ Ŵ¨+źƗƀŭƪƧnjƳƦĸľ Ɔ ŇňļĿ ƚË jh[)+9 ůƀ œŤŢŨŝŠŝŦũĵşŝŜřŦŝŢšĵřťťřũ ƉƓƁƄƑƊë¢Ŵz if9 '$,.[! U]0-cae CF?< [ &/9 ƔƗƀŭƪƧnjƳƦĸľ Ɔ ŇňļĿ ƊéƏűƚËůƀǀnj ǐƵƝƳƭƟƉƓƁƄƑ ,X Ɗë =ƚÜ čŽƖƆƆƑƉŬ ĵ ŐŗŇļ ƋÔÑèôƉ ƪƝNJƱǐƮ*ÇŻƀ ŇňļĿ ƅƋë=õŴ»WŽƖŹƆ ġÓ ƉÒ ÅŽƖ÷ ë= JDŽƲ ųƔƪƝ Njĥ Ɖ Y Żƀë = ƅŮƖŹƆ ŴÜ č ź Ɨƀŭ ǎƅŬƪƧnjƳƦ ƿƜǃNJǐƉë ŌʼnŎĽńľŖ Ɖ ŏœŕ ;]Ą=ǑŖŏŔĸĿŬŐňĽŬŇňļĿǒ = Ž Ɩ< õ ƊŮ ƖU ¬ ƈƪ ƚw /Ò ÅŻƀè ôǑŖŏŔǘǒƚË ůŬźƔƉĦ É J ƪƧ ƝǍƧNJƣǎƚÒÅŻƄůƖŭǀ njƳƦ ľǑŖŏŔĺŕŝŜŘŖǒŮƖůƋƪƝNjĥƆƊë=õƚ² njǐƵƝƳƭƟƒǀNjƱƠǎƝƳ WŻƀSÏJƪƧnjƳƦ ľĶŖŏŔĺŕŝŜŔŅķƚ_#Żƀèôƚ ƭƟƉƓƕƪƧnjƳƦ ń ŴƑw ĐăŻƀŭŹƗƊèôƚËůƄŬŏœŕ 0ÀxŬèôƊ< Ŷ ŐŗŇļ Ɔë=ŽƖŹƆŴƙų ¾5ÃƚĐăŻŬőŊĸūņ ƊNJǎĥ5ƚµĜŻƀƆŹƘŬ ƁƀŭƼƵÑéïƚ ƪƧnjƳƦ ŖŏŔĺŕŝŜŘŖ ƅèôƅƋ/źƗŬŖŏŔĺŕŝŜŔŅ èôƅƋ ń Ɔ ŐŗŇļ ƚËů ŖŏŔ è ô Ɖ Ğ ů nj ǁ Nj Ɖ G { Ż ƀ ŭ ƪƧ nj Ƴ Ʀ ĸľ Ɗ Ƅ" Ð ¤ ú Ž ƖƆ , X Ɗ& ŇňļĿ ƍƊë=ŴŬŖŏŔĿ MĢƚ/ŽƖŹƆŴƙ a I Ŵ ć ^ ź Ɨ ƀ ŭ ųƁƀŭſƊ±«ƉƂůƄƋŬƪƧnjƳƦĸľ ƉƓƖ ŇňļĿ ŐŗŇļŚňőŅ ƚ ǂ Ơ Ƭ ľŖľ è ô ƒ Ƽ Ƶ V ö Ñ è ô ¥ ųƔ ŖŏŔĸĿ ƍƊ ŏœŕ ƊàÿƊ/ŴÝEźƗƀŭĵ ŌŇŖļļŁ èôƉ_#ŻŬ<¾JƪƧnjƳƦ ń Ɗë=Ɖ ĵ ŰŪĸƣƴƸǎƆ ŐŗŇļĸŇň Ɗ&¶ƉƂůƄ¨ĉŻƀŭſ Research projects and annual reports Ɗë ¢ŬŪĸƣƴƸǎƋŬƪƧnjƳƦ ń ƊÁ u Y Ó Ɖ Mucins are major components covering the luminal ŐŗŇļĸŇň ƉNJƦNjǐƵź Ɨƀŭſ Ɗx Ŭ ŪĸƣƴƸǎ Ɔ surfaces of the epithelial respiratory, gastrointestinal, and reproductive tracts, and are high molecular weight MUC1 C-terminal domain. The recruited -catenin was glycoproteins with a number of O-glycans. thereafter transported to the nucleus, leading to cell We have been studying on the function of these mucins growth. These findings suggest that Siglec-9 expressed with respect to tumor progression. It is well-known that on immune cells may play a role as a potential most of tumor cells are derived from the epithelial cells. counterreceptor for MUC1 and that this signaling may be Since normal epithelial cells exhibit a clear polarity, another MUC1-mediated pathway and function in synthesized mucins are transported to be the apical cell parallel with a growth factor-dependent pathway. surface and become secretory or membrane-bound In addition, soluble lectins may be present in tumor glycoproteins. Upon malignant transformation, mucins microenvironment. We performed a similar experiment are transported to whole cell surface, and then some using MUC1-expressing 3T3 cells and recombinant mucins and/or galectin-3. It is revealed that galectin-3 binds to bloodstream of cancer patients because of loss of the cell MUC1-N-terminal domain and thereby initiates similar polarity of epithelial tissues. MUC1-mediaited signaling. are secreted into tumor tissues In tumor microenvironments, soluble lectins and mucins may be ligands for membrane-bound mucins and 2: Negative regulation of TLR-4 mediated signaling lectins, respectively. Membrane bound mucins may be through counter receptors for membrane-bound lectins. Binding monocyte-derived immature dendritic cells (imDCs) of lectins to membrane bound mucins expressed on were tumor cells is expected to start signaling and play a role anti-Siglec-3/CD33 mAb, the production of IL-12 and in tumor progression. In addition, binding of mucins to phosphorylation of NF-B decreased significantly. The siglec family expressed on immune cells may lead to cell down-modulation of immune cells because many siglecs cross-linked, and Siglec-3-linked proteins were analyzed possess by SDS-PAGE and immunoblotting. It was CD14 that immune-regulatory motif. These mutual ligation stimulated of CD14 with LPS with in Siglec-3. When the surface proteins of imDCs presence were of chemically was found to be cross-linked with Siglec-3. Sialic interactions may facilitate the tumor progression. acid-dependent binding of Siglec-3 to CD14 was 1: Biological function of membrane-bound mucin, confirmed by plate assay using recombinant Siglec-3 and MUC1, produced by epithelial cancer cells. Because CD14. Three types of cells: HEK293T cells expressing MUC1 carries a variety of sialoglycans that are possibly the LPS receptor complex (TLR cells), and the LPS recognized by the siglec family, we found that Siglec-9 receptor prominently bound to MUC1. An immunochemical study (TLR/SigWT cells) or mutated Siglec-3 without sialic showed acid-binding activity (TLR/SigRA cells) were prepared, that Siglec-9-positive immune cells were fibroblast cells and a human colon cancer cell line, revealed that wild-type Siglec-3 but not mutated Siglec-3 HCT116, stably transfected with MUC1cDNA were significantly reduced the phosphorylation of NF-B, due ligated with recombinant soluble Siglec-9, -catenin was to inhibitory effect on the presentation of LPS from recruited to the MUC1 C-terminal domain, which was CD14 to TLR4 through ligation of CD14 with Siglec-3. enhanced on stimulation with soluble Siglec-9 in dose- ĵ and time-dependent manners. A co-culture model of kh6g1YX9 MUC1-expressing cells and Siglec-9-expressing cells H. Yurugi, S. Tanida, K. Akita, A. Ishida, M. Toda, H. Nakada. mimicking the interaction between MUC1-expressing Prohibitins function as endogenous ligands for Siglec-9 and malignant cells, and Siglec-9-expressing immune cells in negatively regulate TCR signaling upon ligation. Biochem. a Biophys. Res. Commun. 434(2): 376-381 (2013) Brief uptake of Siglec-3 phosphorylation of NF-B were investigated. It is designed. and wild-type and was binding either pancreas, and breast tumor tissues. When mouse 3T3 microenvironment the plus associated with MUC1-positive cells in human colon, tumor then complex LPS and co-incubation of Siglec-9-expressing HEK293 cells, but Y. Matsumoto, Q. Zhang, K. Akita, H. Nakada, K. Hamamura, not mock HEK293 cells, with MUC1-expressing cells A. Tsuchida, T. Okajima, K. Furukawa, T. Urano. Trimeric similarly enhanced the recruitment of -catenin to the Tn antigen on syndecan 1 produced by ppGalNAc-T13 enhances cancer metastasis via a complex formation with § ĵ 2 ŬÞ Ì ĵ ü Ŭ% ³ C Ŭ¿ Ì Ĩ Ŭ p f v ñ Ŭ Ìĵ integrin alpha5beta1 and matrix metalloproteinase 9. J. Biol. 7ǚŐŗŇļ ÒÅèôƉŲŷƖ ŧœŅ ƊĎ_ǔã łĽ GÑZ Chem. 288(33): 24264-24276 (2013) ZĀîŬ®ºjŬĽĻļľĹļĻĹľĸŀĵ S. Tanida, K. Akita, A. Ishida, Y. Mori, M. Toda, M. Inoue, M. ĵ Ohta, M. Yashiro, T. Sawada, K. Hirakawa, H. Nakada. mhV[589 Binding of the sialic acid binding lectin, Siglec-9, to the ǕǒTģėħ membrane mucin, MUC1, induces recruitment of beta-catenin ßZÛâĖĂ1ħǏLÕÛâǑŇǒĵ and subsequent cell growth. J. Biol. Chem. 288(44): ďı?ǚīåNJƠǂƲƉŲŷƖƬƿƞǎƨƪǎ ļ NJǎĥnjƭǀư 31842-31852 (2013) ǐľǑŕōœľǒƊ Ûâ,ðǚÌĵ 7Ŭĵ :zquǚŌĽľĸĽŀ qǑľ qǒĵ N. Zamri, N. Masuda, F. Oura, K. Kabayama, Y. Yajima, H. Nakada, K. Yamamoto, Y. Fujita-Yamaguchi. Characterization of anti-Tn-antigen MLS128 binding proteins ŵĵ ĵ ZĀÛâ1Lħ1ħǏûÛâǑņǒĵ involved in inhibiting the growth of human colorectal cancer ďı?ǚæĩIJƊiÏƉLƃůƀYƊ8gÑþ½Ċ cells. Biosci. Trends. 7(5): 221-229 (2013) ǂǐƣǐƊøtÓ(ċĵ ÛâāðǚÞÌĵ üŬĵ :zquǚŌĽŀĸĽŁ qǑĽ qǒĵ K. Akita, M. Tanaka, S. Tanida, Y. Mori, M. Toda, H. Nakada. CA125/MUC16 interacts with Src family kinases, and ĵ over-expression of its C-terminal fragment in human ǖǒÙĕäĵ ƈŻĵ epithelial cancer cells reduces cell-cell adhesion. Eur. J. Cell ĵ Biol. 92(8-9): 257-263 (2013) ǗǒZT¸3ĵ S. Tanida, Y. Mori, A. Ishida, K. Akita, H. Nakada. Galectin-3 Ìĵ 7ǚĵ }dVZįn4đmĵ binds to MUC1-N-terminal domain and triggers recruitment Ìĵ 7ǚĵ ĤƺƟƢƿơǐljDŽr ĵ of beta-catenin in MUC1-expressing mouse 3T3 cells. Ìĵ 7ǚĵ ßZĀù±« ÎÓƟƹǁǐƪLjǎĠģƝ ƶƺƟƩǐĵ Biochim. Biophys. Acta. in press. ĵ Ìĵ 7ǚĵ őʼnňŒ ƾƝnjƽLJǐƝǐĵ lh%3YXĵ Ìĵ 7ǚĵ É5ZċĒDĵ Y. Yurugi, H. Nakada. Interaction between Siglec-9 and Ìĵ 7ǚĵ æęZċĒDĵ prohibitins down-regulates T cell receptor signaling. The 15 th ĵ International Congress ǘǒ;Ęäĵ ƈŻĵ of Immunology, Milan (Italy), ĵ 2013.8.22-27 Ìĵ 7ǚŐŗŇļ ÒÅèôƉŲŷƖƠǍƥƷǐƮƊÒÅĎ_ǔ ã ĽĽ G Ŵ ƛ ě à Z Z Ā Į Ǐ î Ŭ ¡ j Ŭ ǙǒſƊĵ ĵ òǚ ĵ Ĥ Ê ©V Z VZ ĭǏ x 7 Rď á ŬZ ǑhZ7Rǒ:z ĽĻļľĹłĹļļĸļĽ Ìĵ 7Ŭĵ òŬēÌApŬÚÌlXŬÞÌĵ üǚƪƧnj ƳƦĸń ƉƓƖǀǍƼƽƲǎƚŻƀ ŖŇŔ ƪƧƷNjĢƊ/ǔ Ûâ\DžǎƺǐƊ)×ĵ ã ľĽ GæęZqŬVĬjŬĽĻļľĹŃĹŀĸłĵ ĵ ĵ §ĵ 2ŬÞÌĵ üŬÌĵ 7ǚŐŗŇļ ÒÅƉƓƖ ŧœŅ ƊÒÅ Ď_ǔã ŃŁ GÉ5ZVŬ®ºjŬĽĻļľĹńĹļļĸļľĵ Ú Ì l XŬÞ Ì ĵ ü Ŭ Ìĵ 7ǚŇňļĿĵ Ɔĵ ŕŝŜşśŚĸľĵ Ɗë = ƉƓƖĵ ŖŢşşĸşŝŞśĵ ŤśŚśţŦŢŤĸĿĵ ƪƧƷNjĢƊ/ǔã ŃŁ G É5ZVŬ®ºjŬĽĻļľĹńĹļļĸļľĵ N. Zamri, F. Oura, N. Masuda, Y. Yajima, H. Nakada, K. Yamamoto, Y. Fujita-Yamaguchi: Characterization of anti-Tn-antigen MLS128 binding proteins involved in growth inhibitory effects on human colon cancer cells. ã ŃŁ G É5ZVŬ®ºjŬĽĻļľĹńĹļļĸļľĵ ศᏊ⣽⬊⏕≀Ꮫ◊✲ᐊ ᩍᤵ㻌 Ọ⏣㻌 ᏹ Laboratory of Molecular and Cellular BiologyProf. Kazuhiro Nagata, Ph.D ຓᩍ㻌 ₻⏣㻌 ு㻌 Assist. Prof. Ryo Ushioda, Ph.D 䠍䠊◊✲ᴫせ㻌 䠏䠅㻌 䝍䞁䝟䜽㉁ရ㉁⟶⌮䛻䛚䛡䜛ᑠ⬊య䝺䝗䝑䜽䝇䝛䝑䝖㻌 㻌 㻌 ศᏊ⣽⬊⏕≀Ꮫ◊✲ᐊ䛷䛿䚸䛂䝍䞁䝟䜽㉁䛾୍⏕䛃䜢䛝 䝽䞊䜽䛾ព⩏㻌 䛺◊✲䛾ᯟ䛸䛧䛶タᐃ䛧䚸䝍䞁䝟䜽㉁䛾ㄌ⏕䛛䜙Ṛ䜎䛷䛾䝯䜹 ᑠ⬊య䛻䛚䛡䜛䝆䝇䝹䝣䜱䝗⤖ྜ䛾ᙧᡂ䚸ゎ㞳䛿䚸䝍䞁䝟 䝙䝈䝮䜢୰ᚰ䛻䚸୰䛷䜒䚸≉䛻䛂ศᏊ䝅䝱䝨䝻䞁䛻䜘䜛䝣䜷䞊 䜽㉁ရ㉁⟶⌮䛻䛚䛔䛶䛝䜟䜑䛶㔜せ䛺ᛂ䛷䛒䜛䚹ᑠ⬊య 䝹䝕䜱䞁䜾䛸⣽⬊ᶵ⬟ไᚚ䛃䛚䜘䜃䛂䝍䞁䝟䜽㉁ရ㉁⟶⌮ᶵ 䛻䛚䛡䜛㓟㑏ඖ䛻㛵䜟䜛ศᏊ⩌䛾⥙⨶ⓗゎᯒ䛸䛸䜒䛻䚸䝃 ᵓ䛃䛻↔Ⅼ䜢䛒䛶䛶◊✲䜢㐍䜑䛶䛔䜛䚹ᖺᗘ䜒ᘬ䛝⥆䛝䚸䛣 䜲䝖䝌䝹䛛䜙ᑠ⬊యෆ⭍䜈䛾䝅䜾䝘䝹ఏ㐩䜢䛧䛯䛭䜜䛮䜜 䛾◊✲┠ᶆ䛻ἢ䛳䛯◊✲䜢᥎㐍䛧䛯䚹ᚑ᮶䛾◊✲┠ᶆ䛻ຍ 䛾ᜏᖖᛶ䛾䜽䝻䝇䝖䞊䜽䛻䛴䛔䛶ゎᯒ䛩䜛䚹㻌 㻌 䛘 䛶 䚸 ᮏ ◊✲ ᐊ䛷 䜽 䝻䞊 䝙 䞁䜾 䛧 䚸 ྡ 䛧 䛯 ᪂つ 㑇 ఏ Ꮚ 㼙㼥㼟㼠㼑㼞㼕㼚 䛻䛴䛔䛶䜒䚸᪂䛯䛺◊✲䠄䝔䞊䝬䠐䠅䛜䝇䝍䞊䝖䛧䛯䚹㻌 䠐䠅㻌 㻹㼛㼥㼍㼙㼛㼥㼍 ཎᅉ㑇ఏᏊ 㼙㼥㼟㼠㼑㼞㼕㼚㼚 䛾ᶵ⬟㻌 䝍䞁䝟䜽㉁䛿ṇ䛧䛟ྜᡂ䛥䜜䚸ṇ䛧䛔ᵓ㐀䜢䛸䛳䛶ึ䜑䛶ᮏ 㻌 0R\DPR\D ࡣ≉᪥ᮏேከ࠸ࠊ⬻⾑⟶㞀ᐖࢆక࠺ ᮶䛾ᶵ⬟䜢Ⓨ䛩䜛䛜䚸䛭䜜䛻䛿✀䚻䛾ศᏊ䝅䝱䝨䝻䞁䛜 Ẽ࡛࠶ࡿࡀࠊࡑࡢཎᅉ㑇ఏᏊࡢ᥈⣴ࢆඹྠ◊✲ࡋ࡚⾜ 㔜せ䛺ാ䛝䜢䛧䛶䛔䜛䚹䜎䛯䛔䛳䛯䜣ṇ䛧䛔ᶵ⬟䜢⋓ᚓ䛧䛯䝍 ࠸ࠊᕧ࡞㑇ఏᏊ P\VWHULQ ࢆࢡ࣮ࣟࢽࣥࢢࡋࡓࠋࡇࡢ㑇 䞁䝟䜽㉁䜒䚸⣽⬊䛻᩿䛻䛛䛛䜛✀䚻䛾䝇䝖䝺䝇䛻䜘䛳䛶ኚᛶ ఏᏊࡢࢥ࣮ࢻࡍࡿࢱࣥࣃࢡ㉁ P\VWHULQ ࡢᶵ⬟ࢆ᫂ࡽ 䛧䛯䜚䚸㑇ఏⓗኚ␗䛻䜘䛳䛶䛹䛖䛧䛶䜒ṇ䛧䛔ᵓ㐀䜢䛸䜜䛺䛔 ࡍࡿࠋ 䝍䞁䝟䜽㉁䜒Ꮡᅾ䛩䜛䚹䛣䛾䜘䛖䛺䛔䜟䜖䜛㻨Ⰻ䝍䞁䝟䜽㉁㻪 㻌 䛿䚸༢䛻ᶵ⬟䜢ᣢ䛯䛺䛔䛰䛡䛷䛺䛟䚸⣽⬊ẘᛶ䛻䜘䛳䛶⣽⬊ 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 Ṛ䜢ㄏᑟ䛧䚸䜰䝹䝒䝝䜲䝬䞊䜔䝟䞊䜻䞁䝋䞁䛾䜘䛖䛺 䠍䠅㻌 䝁䝷䞊䝀䞁≉␗ⓗศᏊ䝅䝱䝨䝻䞁 㻴㼟㼜㻠㻣 䛾ᶵ⬟ゎᯒ㻌 ✀䚻䛾⚄⤒ኚᛶᝈ䛾ཎᅉ䛸䜒䛺䛳䛶䛔䜛䚹ᚑ䛳䛶䚸䝍䞁䝟 ⫢◳ኚ䜢௦⾲䛸䛩䜛⥺⥔ᝈ䛾⒪䛻䛚䛔䛶䚸䝁䝷䞊 䜽㉁䜢ṇ䛧䛟ྜᡂ䛩䜛 㼜㼞㼛㼐㼡㼏㼠㼕㼢㼑㻌 㼒㼛㼘㼐㼕㼚㼓 䛸䚸䝭䝇䝣䜷䞊䝹䝗䛧 䝀䞁䛾⏕ྜᡂ䛻ᚲ㡲䛷䛒䜛 㻴㼟㼜㻠㻣 䛿㔜せ䛺⸆䝍䞊䝀䝑䝖䛸 䛯䝍䞁䝟䜽㉁䜢㐺ṇ䛻ฎ⌮䛩䜛䛯䜑䛾ရ㉁⟶⌮ᶵᵓ䜢䛸䜒䛹 䛺䛳䛶䛔䜛䚹⫢⮚䛜㞀ᐖ䜢ཷ䛡䜛䛸䚸⫢⣽⬊䛸㢮Ὕෆ⓶⣽⬊ 䜒䛻◊✲䛩䜛䛣䛸䛿䚸䝍䞁䝟䜽㉁ືែ䛾ᜏᖖᛶ䚸⣽⬊䝺䝧䝹 䛾㛫䛻Ꮡᅾ䛩䜛⫢ᫍ⣽⬊䛜άᛶ䛥䜜䚸ቑṪ䛧䚸䝃䜲䝖䜹䜲 䛷䛾⏕䝅䝇䝔䝮䛾ᜏᖖᛶ䛾⥔ᣢ䛸䛔䛖ほⅬ䛛䜙䛿䚸ᚲ㡲䛾 䞁䜔䝁䝷䞊䝀䞁䜢ศἪ䛩䜛䛣䛸䛷⫢⮚䛾ಟ䛻ᐤ䛩䜛䚹ಟ ◊✲㡿ᇦ䛷䛒䜛䚹㻌 ᚋ䚸ቑṪ䛧䛯⫢ᫍ⣽⬊䛿䜰䝫䝖䞊䝅䝇䛻䜘䜚䛭䛾ᩘ䜢ῶᑡ 㻌 ᮏ◊✲ศ㔝䛷䛿ලయⓗ䛻ḟ䛾ㅖⅬ䛻䛴䛔䛶◊✲䜢ᒎ㛤䛧 䛥䛫䚸⫢⮚䛿㏻ᖖ䛾≧ែ䛻ᡠ䜛䛣䛸䛜▱䜙䜜䛶䛔䜛䚹៏ᛶⓗ 䛶䛔䜛䚹㻌 䛺⥺⥔䛻䛚䛔䛶䛿䚸⫢ᫍ⣽⬊䛿䝁䝷䞊䝀䞁䜢㐣䛻⏘ฟ 㻌 䛧䚸⥺⥔䜢㐍⾜䛥䛫䜛䚹ᙜ◊✲ᐊ䛷䛿䚸㻴㼟㼜㻠㻣 䛸䝥䝻䝁䝷䞊 䠍䠅 䝁䝷䞊䝀䞁≉␗ⓗศᏊ䝅䝱䝨䝻䞁 㻴㼟㼜㻠㻣 䛾ᶵ⬟ゎᯒ㻌 䝀䞁䛸䛾┦స⏝䜢㜼ᐖ䛩䜛ྜ≀䜢⥺⥔ᝈ䛾⒪䛻 䝁䝷䞊䝀䞁ྜᡂ䛻䛚䛔䛶䝁䝷䞊䝀䞁≉␗ⓗศᏊ䝅䝱䝨䝻䞁 䛖䛣䛸䜢┠ⓗ䛸䛧䚸䛭䛾ྜ≀䛾᥈⣴䜢⾜䛔䚸᪤䛻ྜ≀䜢 㻴㼟㼜㻠㻣 䛿ᚲ㡲䛾ᙺ䜢ᯝ䛯䛧䛶䛔䜛䚹䝜䝑䜽䜰䜴䝖䝬䜴䝇䛺䛹䜢 ᚓ䛶䛔䜛㻔≉チฟ㢪῭䜏㻕䚹ᐇ㝿䛻 㻴㼟㼜㻠㻣 䛾ᶵ⬟䜢㜼ᐖ䛧䛯 㥑䛧䛶䚸ᮏ◊✲ᐊ䛷Ⓨぢ䛧䛯 㻴㼟㼜㻠㻣 䛾ᶵ⬟ゎᯒ䜢⾜䛖䚹㻌 䛾䚸⫢ᫍ⣽⬊䛾䝍䞊䞁䜸䞊䝞䞊䜢ㄪ䜉䜛䛿䚸⥺⥔ 㻌 ᝈ⒪ᡓ␎䜢⪃䛘䜛ୖ䛷ᴟ䜑䛶㔜せ䛷䛒䜛䚹㻌 䠎䠅 ᑠ⬊య䛻䛚䛡䜛䝍䞁䝟䜽㉁ရ㉁⟶⌮ᶵᵓ䛸ᑠ⬊యᜏᖖ ᛶ⥔ᣢᶵᵓ䛾ゎ᫂㻌 ᅇ䚸㻯㼞㼑㻙㻸㼛㼤㻼 䛾䝅䝇䝔䝮䜢⏝䛔䛶䚸䝬䜴䝇䜘䜚༢㞳䛧䛯 ⫢ᫍ⣽⬊䛻䛚䛔䛶䚸㻴㼟㼜㻠㻣 䛾䝜䝑䜽䜰䜴䝖䜢⾜䛳䛯䚹䛭䛾⤖ᯝ䚸 ᑠ⬊య䛷䝭䝇䝣䜷䞊䝹䝗䛧䛯䝍䞁䝟䜽㉁䛿䝃䜲䝖䝌䝹䜈㏫㍺ 㻴㼟㼜㻠㻣 䜢䝜䝑䜽䜰䜴䝖䛧䛯⫢ᫍ⣽⬊䛷䛿⣽⬊እ䝬䝖䝸䝑䜽䝇䛾䝁 ㏦䛥䜜䛶䛛䜙䝴䝡䜻䝏䞁䝥䝻䝔䜰䝋䞊䝮⣔䛻䜘䛳䛶ศゎ䛥䜜䜛 䝷䞊䝀䞁㔞䛜ⴭ䛧䛟ῶᑡ䛧䚸⣽⬊ෆ䛾䝁䝷䞊䝀䞁✚㔞䛜ቑ 䠄䠡䠮䠝䠠䠅䚹䛣䛾㐣⛬䛷㔜せ䛺ᙺ䜢ᯝ䛯䛩 㻱㻰㻱㻹 䛚䜘䜃 ຍ䛩䜛䛣䛸䛜☜ㄆ䛥䜜䛯䚹䛣䜜䛻䜘䜛ᑠ⬊య䝇䝖䝺䝇䛿☜ㄆ䛥 㻱㻾㼐㼖㻡 䛸䛔䛖ศᏊ䜢Ⓨぢ䛧䛯䚹䛣䜜䜙䛾ᶵ⬟ゎᯒ䜢⾜䛔䚸ᑠ⬊ 䜜䛺䛛䛳䛯䛜䚸䜰䝫䝖䞊䝅䝇䛾䝬䞊䜹䞊䛷䛒䜛䜹䝇䝟䞊䝊䠏䛾 య㛵㐃ศゎᶵᵓ䛾ㇺ䜢᫂䜙䛛䛻䛩䜛䚹㻌 ㄏᑟ䛜☜ㄆ䛥䜜䚸㻴㼟㼜㻠㻣 䛜↓䛔䛣䛸䛻䜘䛳䛶⫢ᫍ⣽⬊䛻䜰䝫 㻌 䝖 䞊 䝅 䝇 䛜 ㄏ ᑟ 䛥 䜜 䛶 䛔 䜛ྍ ⬟ ᛶ 䛜 ♧ ၀ 䛥 䜜 䛯 䚹 ᚋ 䚸 㻌 㻴㼟㼜㻠㻣 㜼ᐖ䜢⏝䛔䛯ゎᯒ䜢㐍䜑䛶䛔䛟ணᐃ䛷䛒䜛䚹㻌 䠎 䠅㻌 ᑠ⬊య䛻䛚䛡䜛䝍䞁䝟䜽㉁ရ㉁⟶⌮䚸䝺䝗䝑䜽䝇ไᚚ䚸 䠐䠅㻌 㻹㼛㼥㼍㼙㼛㼥㼍 ཎᅉ㑇ఏᏊ 㼙㼥㼟㼠㼑㼞㼕㼚㼚 䛾ᶵ⬟㻌 䜹䝹䝅䜴䝮ᜏᖖᛶ䛾䜽䝻䝇䝖䞊䜽䠖ᑠ⬊యᜏᖖᛶ⥔ᣢ䛾ゎ 㻹㼛㼥㼍㼙㼛㼥㼍 䛾ཎᅉ㑇ఏᏊ䛸䛧䛶䜽䝻䞊䝙䞁䜾䛧䛯 㼙㼥㼟㼠㼑㼞㼕㼚 ᫂ 䛿䚸ศᏊ㔞⣙ 㻡㻥㻝䡇㻰㼍 䛸䛔䛖ᕧ䛺ศᏊ䛷䛒䛳䛯䚹䛧䛛䜒䚸䛣 ⣽⬊ෆᑠჾᐁࡢ୍ࡘ࡛࠶ࡿᑠ⬊య࡛ࡣࠊࢱࣥࣃࢡ㉁ရ 䛾ศᏊ䛿䝸䝪䝋䞊䝮䛻㏆䛔䛝䛥䛾ᕧ䜸䝸䝂䝬䞊䜢స䜚䚸䝎 ㉁⟶⌮࣭ࣞࢻࢵࢡࢫไᚚ࣭࢝ࣝࢩ࣒࣓࢘࣍࢜ࢫࢱࢩࢫ 䜲䝙䞁䜔䝥䝻䝔䜰䝋䞊䝮䛻㢮ఝ䛾 㻭㼀㻼 䜰䞊䝊ᆺ䝯䜹䝜䜶䞁䝄 ࠸࠺୕ࡘࡢ⎔ቃせᅉࡀᙳ㡪ࢆཬࡰࡋ࠶࠸ࠊᜏᖖᛶࢆ⥔ᣢ 䜲䝮䛸䛧䛶⣽⬊ෆ䛾≀⌮ⓗ䛺㐣⛬䛻ᐤ䛧䛶䛔䜛䛷䛒䜝䛖䛣䛸 ࡋ࡚࠸ࡿࠋᡃࠎࡣᑠ⬊య࡛ࢪࢫࣝࣇࢻ㑏ඖάᛶ≉ 䜢᫂䜙䛛䛻䛧䛯䚹䜎䛯䚸㻹㼥㼟㼠㼑㼞㼕㼚 䜢䝊䝤䝷䝣䜱䝑䝅䝳䛷䝜䝑䜽䝎 ࡍࡿ㑏ඖ㓝⣲ (5GM ࢆⓎぢࡋࠊ(5GM ࡀᑠ⬊యࡢࣞࢡࢳ 䜴䞁䛩䜛䛸䚸 ࣥࢱࣥࣃࢡ㉁ ('(0 ࠾ࡼࡧศᏊࢩࣕ࣌ࣟࣥ %L3 」ྜయࢆ ⾑⟶䛾䜺䜲 ᙧᡂࡍࡿࡇࢆぢฟࡋࡓࠋ(5GM ࡣᑠ⬊య࡛ᮎᮇⓗ࣑ 䝎䞁䝇䛻␗ ࢫࣇ࢛࣮ࣝࢻࡋࡓศゎᇶ㉁ࡢࢪࢫࣝࣇࢻ⤖ྜࢆ⮬㌟ࡢ ᖖ䛜㉳䛣䜛 㑏ඖάᛶ࡛ษ᩿ࡋࠊᑠ⬊యࡽࢧࢺࢰࣝࡢฟࢆಁ 䛣䛸䛜᫂䜙 㐍ࡋࠊࢱࣥࣃࢡ㉁ရ㉁⟶⌮࠾࠸࡚㔜せ࡞ᙺࢆᯝࡓࡋ 䛛䛻䛺䜚䚸 ࡚࠸ࡿࡇࢆぢฟࡋࡓ㸦58VKLRGD HWDO 6FLHQFH ែ䛸䛾㛵 0+DJLZDUDHWDO0RO&HOO58VKLRGD 䜟䜚䛾ୖ䛷㔜せ䛺Ⓨぢ䛸䛺䛳䛯䚹⌧ᅾ䚸䛥䜙䛻⤖ྜ䝍䞁䝟䜽㉁ HWDO0RO%LRO&HOO㸧ࠋ 䛺䛹䜢ྵ䜑䛶䚸䛭䛾ᶵ⬟ゎᯒ䜢⾜䛳䛶䛔䜛䚹㻌 ࡉࡽ (5GM ࡀᑠ⬊య⭷ୖᏑᅾࡍࡿ࢝ࣝࢩ࣒࣏࢘ࣥ 㻌 ࣉ 6(5&$ ࡢࢪࢫࣝࣇࢻ⤖ྜࢆ⮬㌟ࡢ㑏ඖάᛶ࡛㛤 㸱㸬Research projects and annual reports ࡋࠊ」ྜయࢆᙧᡂࡍࡿࡇ࡛ᑠ⬊యࡢ࢝ࣝࢩ࣒࢘ὶධ We have been focusing our research on the productive folding ࢆㄪ⠇ࡋࠊᑠ⬊యࡢ࢝ࣝࢩ࣒࢘ືែᙳ㡪ࢆ࠼࡚࠸ࡿ of nascent polypeptides by molecular chaperones and protein ࠸࠺ணഛⓗ࡞ࢹ࣮ࢱࢆᚓ࡚࠸ࡿࠋࡇࡢࡇࡣ (5GM ࡢ quality control mechanism for misfolded proteins within the 㑏ඖຊࡀࢱࣥࣃࢡ㉁ရ㉁⟶⌮ࡢࡳ࡞ࡽࡎࠊᑠ⬊యࡢ࢝ࣝ cells. Particularly, we have been devoted our activity on the ࢩ࣒࣓࢘࣍࢜ࢫࢱࢩࢫࡶไᚚࡋࠊࡑࡢࢡࣟࢫࢺ࣮ࢡ㔜 following four major research projects: せ࡞ᙺࢆᯝࡓࡍࡇࢆពࡋ࡚࠸ࡿࠋᮏ◊✲ࡣࠊᑠ⬊ యෆ⭍ࡢᜏᖖᛶ⥔ᣢᶵᵓࢆ⌮ゎࡍࡿୖ࡛㔜せ࡛࠶ࡿࠋ 1: Functional analysis of collagen-specific molecular 㻌 chaperone Hsp47. 䠏䠅㻌 䝍䞁䝟䜽㉁ရ㉁⟶⌮䛻䛚䛡䜛ᑠ⬊య䝺䝗䝑䜽䝇䝛䝑䝖㻌 abnormal collagen accumulation in the extracellular matrix of 䝽䞊䜽䛾ព⩏㻌 Liver fibrosis is characterized by liver. Collagen specific molecular chaperone Hsp47 is 㻌 㻌 ᑠ⬊య䛻䛿䠎䠌✀㢮䜢㉺䛘䜛䜸䜻䝅䝗䝺䝎䜽䝍䞊䝊䠄㓟 essential for correct folding and secretion of procollagen. Thus, 㑏ඖ㓝⣲䠅䛜Ꮡᅾ䛩䜛䚹㓟㑏ඖᛂ䛿䚸୍㐃䛾㟁Ꮚఏ㐩 Hsp47 is thought to be potential therapeutic targets for fibrosis. ⤒㊰䛛䜙ᡂ䜛䛜䚸䝥䝻䝔䜸䝭䝑䜽ゎᯒ䠄≉䛻┦స⏝ゎᯒ䜢 In liver fibrosis, Hepatic Stellate Cells (HSCs) are activated 䛸䛧䛯䜲䞁䝍䞊䝷䜽䝖䞊䝮ゎᯒ䠅䛸㓟⣲㟁ᴟ䛻䜘䜛㓟ᛂ䛾 and transformed into myofibroblasts which produce collagen ゎᯒ䚸⾲㠃䝥䝷䝈䝰䞁䠄䠯䠬䠮䠅䜢⏝䛔䛯┦స⏝ゎᯒ䛺䛹䜢 actively. It is known that reversion of fibrosis is accompanied 㥑䛧䛶䚸ᑠ⬊య䛻䛚䛡䜛୍㐃䛾㓟ᛂ䛾䜹䝇䜿䞊䝗䜢᫂ by clearance of myofibroblasts by apoptosis. We have already 䜙䛛䛻䛧䛯䚹୰䛷䜒 㻱㼞㼛㻝㼍 䛚䜘䜃䠬䠠䠥䛸䛔䛖䠎䛴䛾㓟㓝⣲䛚 found that some of small molecule compounds inhibit the 䜘䜃㓟㑏ඖ㓝⣲䛜䝝䝤」ྜయ䜢స䛳䛶䚸ᑠ⬊య䛷䛾㓟 interaction between collagen and Hsp47. ᛂ䛻䛚䛡䜛᭱ୖὶ㉳Ⅼ䛻䛺䛳䛶䛔䜛䛸䛔䛖ᐇ䜢ぢฟ䛧䛯 For the therapeutic purpose it is important to investigate the 䠄㻷㻚㻌㻭㼞㼍㼗㼕㻌㼑㼠㻌㼍㼘㻚㻘㻌 㻶㻚㻌㻯㼑㼘㼘㻌㻮㼕㼛㼘㻚㻘㻌㻞㻜㻝㻟䠅䚹㻌 㻌 䜎䛯䛣䛾䜘䛖䛺㓟 turnover of HSCs under Hsp47 inhibition condition. Here, we 㓝⣲䝛䝑䝖䝽䞊䜽䛻䜘䛳䛶䚸ᑠ⬊యෆ⎔ቃ䛜㓟ⓗ䛻ಖ䛯䜜 succeeded in knocking out hsp47 gene by Cre-LoxP system in 䜛䛣䛸䛜䚸ṇᖖ䛺䝍䞁䝟䜽㉁ศἪ䛾䛯䜑䛻ᚲ㡲䛷䛒䜛䛜䚸䛣䛾 isolated HSCs from hsp47 floxed mice. In hsp47-KO HSCs, 䜘䛖䛺䝺䝗䝑䜽䝇ᜏᖖᛶ䛜䚸⚄⤒ኚᛶᝈ䜔⪁䛻䜘䜚పୗ䛩 we confirmed that immature type 1 collagen is accumulated in 䜛䛣䛸䜢ぢฟ䛧䛯䚹⚄⤒ኚᛶᝈ䜔⪁䛻䛚䛔䛶䛿⣽⬊㉁䝌 the ER. We also observed the induction of caspase 3, an 䝹䛾䝍䞁䝟䜽㉁ᜏᖖᛶ䛜పୗ䛩䜛䛣䛸䛜▱䜙䜜䛶䛔䜛䛜䚸䛣 apoptosis marker, while we didn’t observe induction of BiP, 䜜䛜⭷䜢㉺䛘䛶ᑠ⬊యෆ⭍䛻ᙳ㡪䜢ཬ䜌䛧䛶䛔䜛䛣䛸䛿㦫䛟 an ER stress inducible protein. 䜉䛝䛣䛸䛷䛒䜚䚸⌧ᅾ䛭䛾䝯䜹䝙䝈䝮䛾ゎ᫂䛻ྲྀ䜚⤌䜣䛷䛔 characterize the hsp47-KO HSCs in terms of the induction of 䜛䚹㻌 㻌 apoptosis. We are going to further 2: Maintenance of ER homeostasis through the crosstalk disease called as moyamoya disease. Mysterin with a size of 2+ 591kDa contains RING finger domain, which causes a flux. We identified ERdj5 as a disulfide-reductase in ER. polyubiquitination of misfolded proteins, and two AAA+ type ERdj5 forms the supramolecular complex with EDEM and ATPase domains. Mysterin forms a huge oligomer the size of BiP, and activates the degradation of proteins misfolded in the which is comparable to known macromolecules such as the ER by cleaving the disulfide bonds in terminally misfolded ribosome and is supposed to exhibit mechanical activity in the proteins and by facilitating the retrograde transport of these cell. Thus mysterin is a novel oligomeric AAA+ protein with proteins from the ER lumen into the cytosol, where they are RING finger. We preliminary found that knockdown of degraded by ubiquitin-proteasome system, which is called as mysterin in zebra fish caused an aberrantly oriented blood ERAD 䠄R. Ushioda et al., Science 2008; M. Hagiwara et al. vessels during the development, and would continue such Mol. Cell 2011; R.Ushioda et al. Mol. Biol. Cell 2013䠅. functional analysis. among Protein Quality Control, Redox regulation and Ca Furthermore, we found that ERdj5 cleaves the disulfide bond of SERCA2, a Ca2+ pump on ER membrane, and regulates its function. It suggests that redox activity of ERdj5 㸲㸬ㄽᩥࠊⴭ᭩࡞ is involved not only in protein quality control but also in Ca2+ D. Morito, K. Nishikawa, J. Hoseki, A Kitamura, Y. Kotani, K. Kiso, homeostasis in the ER. As the ERdj5 is an oxidoreductase in M. Kinjo, Y. Fujiyoshi & K. Nagata䠖Moyamoya disease-associated the ER, it is strongly suggested that three important protein mysterin/RNF213 is a novel AAA+ ATPase, which homeostasis in the ER, protein, redox and Ca homeostasis, are dynamically changes its oligomeric state.㻌 cross-talking each other. Scientific Reports in press T. Kakugawa, S. Yokota, Y. Ishimatsu, T. Hayashi, S. Nakashima, S. 3. Analysis of ER redox networks in the ER quality control Hara, N. Sakamoto, H. Kubota, M. Mine, Y. Matsuoka, H. Mukae, system. More than 20 oxidoreductases have been reported in K. Nagata & S. Kohno 㸸Serum heat shock protein 47 levels are the mammalian ER, most of which contain thioredoxin elevated in acute interstitial pneumonia domains with CXXC motifs for their enzymatic activity. We performed the interactome analysis by cloning all of them, BMC Pulmonary Medicine in press Y. Honzawa, H. Nakase, M. Shiokawa, T. Yoshino,H. Imaeda, M. making CXXA mutant of each proteins to stabilize the Matsuura, Y. Kodama, H. Ikeuchi, A. Andoh,Y. Sakai, K. Nagata, interaction with downstream proteins, transfecting them and T. Chiba䠖Involvement of interleukin-17A-induced expression of immunoprecipitating the associated proteins followed by heat shock protein 47 in intestinal fibrosis in Crohn’s disease䚹㻌 㻌 identification by mass spectroscopic analysis. We found that Gut in press Ero1a and PDI make a functional and regulatory hub complex, T. Ramming, H. G. Hansen, K. Nagata, L. Ellgaard, C.Appenzeller- and successively oxidize other ER-resident oxidoreductases. Herzog䠖GPx8 peroxidase prevents leakage of H2O2 from the Such a network consisting of several oxidoreductases, endoplasmic reticulum㻌 Free Radical Biol Med. In press so-called redox network in the ER, is essential for proper T. Olszak, J. F. Neves, C. M. Dowds, K. Baker, J. Glickman, N. O. secretion of secretory proteins. We recently revealed that such Davidson, C-S. Lin, C. Jobin, S. Brand, K. Sotlar, K. Wada, K. redox network and homeostasis are perturbed by aging and Katayama, A. Nakajima, H. Mizuguchi, K. Kawasaki, K. Nagata, abnormal proteins that cause neurodegenerative diseases. It is W. Müller, S.B. Snapper, S. Schreiber, A. Kaser, S. Zeissig & R. S. known that proteostasis in the cytosol is impaired by aging Blumberg䠖Protective mucosal immunity mediated by epithelial and neurodegenerative diseases. It is surprising that perturbation of proteostasis in the cytosol leads to impairment CD1d and IL-10.㻌 㻌 Nature in press A. Kitamura, N. Inada, H. Kubota, G. Matsumoto, M. Kinjo, R. I. of redox homeostasis in the ER. We are now elucidating how Morimoto & K. Nagata䠖Dysregulation of the Proteasome Increases cytosolic stress interferes the redox homeostasis in the ER the Toxicity of ALS-linked Mutant SOD1 over the ER membrane. Genes to Cells in press T. Kakugawa, S. Yokota, Y. Ishimatsu, T. Hayashi, S. Nakashima, S. 4. Functional analysis of a novel protein, mysterin. We Hara, N. Sakamoto, Y. Matsuoka, H. Kubota, M. Mine, H. Mukae, cloned a novel gene encoding a huge protein, and named it as K. Nagata & S. Kohno䠖Serum heat shock protein 47 levels in mysterin, which is a causative gene for human steno-occlusive patients with drug-induced lung disease. Respiratory Research 14:133(2013) Kazuhiro Nagata㸸Crosstalk among three different systems of ER homeostasis. Northwestern University Seminar, Evanston(USA), T. Kakihana, K. Araki, S. Vavassori, S. Iemura, M. Cortini, C. Fagioli, 2013.07.05 T. Natsume, R. Sitia & K. Nagata䠖'\QDPLFUHJXODWLRQRI(URĮ and Prx4 localization in the secretory pathway㻌 J. Biol. Chem. Kazuhiro Nagata㸸From proteostasis to organelle-stasis in the ER. 288(41):29586-29594(2013) (Plenary Lecture) Gordon Research Conferences ”Stress Proteins R.Ushioda, J.Hoseki & K. Nagata㸸Glycosylation-independent ERAD in Growth, Development & Disease”, West Dover(USA), pathway serves as a backup system under ER stress. Mol. Biol. Cell. 24(20):3155-3163(2013) 2013.07.07 Kazuhiro Nagata㸸Regulation of collagen synthesis by Hsp47 and K.Araki, S.Iemura, Y.Kamiya, D.Ron, K.Kato, T. Natsume & K. P4H in combination with specific inhibitors. Gordon Research Nagata㸸(URĮ and PDIs constitute a hierarchical electron transfer Conferences”Collagen”, New London(USA), 2013.07.17 network of endoplasmic reticulum oxidoreductases. J. Cell. Biol. 202(6):861-874(2013) Ọ⏣ᏹ㸸ࣉࣟࢸ࣓ࣥ࣍࢜ࢫࢱࢩࢫ࠾ࡅࡿᑠ⬊యࢧࢺ ࢰࣝࡢࢡࣟࢫࢺ࣮ࢡࠊ➨ 86 ᅇ᪥ᮏ⏕Ꮫࢩ࣏ࣥࢪ࢘ T. Kakugawa, S. Yokota, Y. Ishimatsu , T. Hayashi, S. Nakashima, S. ࣒ࠊᶓᕷࠊ2013.09.11 Hara, N. Sakamoto, H. Kubota, M. Mine, Y. Matsuoka, H. Mukae, K. Nagata & S. Kohno㸸Serum heat shock protein 47 levels are Kazuhiro Nagata㸸Crosstalk and regulation of ER homeostasis㸸 elevated in acute exacerbation of idiopathic pulmonary fibrosis. Protein, Redox and Calcium. International Mini Cell Stress and Chaperones Simposium”Protein Folding and Disease”, Akita(Japan), 18:581-590(2013) 2013.10.29 T. Fujimori, Y. Kamiya, K. Nagata, K. Kato & N. Hosokawa㸸 Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-DVVRFLDWHGGHJUDGDWLRQRIDPLVIROGHGĮ-antitrypsin variant. FEBS J. 280(6):1563-1575(2013) M. F. Abdul-Wahab, T. Homma, M. Wright, D. Olerenshaw,T. R. Dafforn, K. Nagata & A. D. Miller䠖The pH sensitivity of murine hsp47 binding to collagen is affected by mutations in the breach histidine cluster㻌 㻌 J. Biol. Chem. 288(6):4452-4461(2013) ᏛⓎ⾲ ఀ⸨㐍ஓࠊỌ⏣ᏹ㸸Development of therapeutic small compounds for fibrotic-diseases by preventing of collagen secretion. AUTM Asia 2013 Kyoto, Kyoto, 2013.3.20-22 ఀ⸨ 㐍ஓࠊᑠᕝ ᾈࠊ㧗ᮌ ᇶᶞࠊྜྷ⏣ ᑗேࠊᖹᒣ ᑦᚿ㑻ࠊ ᗈᕝ ㈗ḟࠊ᪂ᐙ ୍⏨ࠊᅵ 㝯⾜ࠊᓥ ┤ᶞࠊኟ┠ ᚭࠊỌ ⏣ ᏹ㸸⥺⥔ᝈ⒪ྥࡅࡓࢥ࣮ࣛࢤࣥศἪ㜼ᐖࡢྠ ᐃゎᯒ. ➨65ᅇ᪥ᮏ⣽⬊⏕≀Ꮫࠊྡྂᒇᕷࠊ 㸳㸬ᏛⓎ⾲࡞ ᣍᚅㅮ₇ࠊࢩ࣏ࣥࢪ࣒࢘➼ Ọ⏣ᏹ㸸⥺⥔ᝈ⒪ྥࡅࡓࢥ࣮ࣛࢤࣥศἪ㜼ᐖࡢ㛤 Ⓨࠊ᪂ᢏ⾡ㄝ᫂ࠊᮾிࠊ2036.3.1 Kazuhiro Nagata㸸Crosstalk of proteostasis and redox homeostasis in the ERࠊThe 1656th Biological Symposiumࠊ୕ᓥᕷࠊ2013.3.5 Kazuhiro Nagata㸸Crosstalk between proteostasis and redox 2013.06.19-21 ᒣᮏ ὒᖹࠊ᱈ཎ ῄࠊᯇᮏ ⨾㤶ࠊబ⸨ ோ⨾ࠊ㛛 ᗈࠊỌ⏣ ᏹࠊἙ㔝 ᠇㸸ᑠ⬊య⭷ᒁᅾࡍࡿ ERAD 」ྜయࡼࡿ p62 ไᚚᶵᵓࡢゎᯒ. ➨ 65 ᅇ᪥ᮏ⣽⬊⏕≀Ꮫࠊྡྂᒇᕷࠊ 2013.06.19-21 Ryo Ushioda, Kazuhiro Nagata㸸ERdj5, a disulfide reductase in the ER, regulates Ca2+ momeostasis through the activation of Ca2+ pump, homeostasis in the ER. Organella Homeostasis Research Center SERCA2b. Gordon Research Conferences”Stress Proteins in Kick-off Symposium, Fukuoka, 2013.3.22 Growth, Development & Disease”, West Dover(USA), Ọ⏣ᏹ㸸ᑠ⬊య࣓࣍࢜ࢫࢱࢩࢫࡢ⥔ᣢᶵᵓࠊࡉࡁࡀࡅࠕࣛ ࣇࢧ࢚ࣥࢫࡢ㠉᪂ࢆ┠ᣦࡋࡓᵓ㐀⏕⛉Ꮫඛ➃ⓗᇶ┙ᢏ ⾡ࠖ◊✲㡿ᇦ➨୍ᅇ㡿ᇦ㆟ࢻࣂࢨ࣮ㅮ₇ࠊ㜰ᕷࠊ 2013.4.9 2013.07.07-12 ᳃ᡞ㸸⬻⾑⟶ᝈࣔࣖࣔࣖ㛵ࡍࡿ ATP ࣮ࢮ㸭ࣘࣅ ࢟ࢳ࣮ࣥࣜ࢞ࢮࠊ࣑ࢫࢸࣜࣥࡢᵓ㐀ᶵ⬟. ᪥ᮏ⏕≀≀⌮Ꮫ ᾏ㐨ᨭ㒊ㅮ₇ࠊᮐᖠᕷࠊ2013.7.8 Kazuhiro Nagata㸸ER stress and protein quality control system in the Daisuke Morito, Yuri Kotani, Kouki Nishikawa, Jun Hoseki, Satoru ER. Symposium “The Art of Living with Stress: a Lesson from Yamazaki, Shun-ichiro Iemura, Toru Natsume, Seiji Takashima, Ferruccio Ritossa”, Roma(Itary), 2013.04.26 Yoshinori Fujiyoshi, Kazuhiro Nagata㸸Structure and function of Ọ⏣ᏹ㸸ࢱࣥࣃࢡ㉁ࡢᙧࡀቯࢀࡿẼ࡞ࡿࡗ࡚࣍ࣥࢺ㸽 ி㒔⏘ᴗᏛ ❧ 50 ࿘ᖺグᛕᴗࢩ࣏ࣥࢪ࣒࢘ࠗ⣽⬊ෆ ࡢሗࡽ་⒪࠾ࡅࡿಶேሗ࠘ࠊி㒔ᕷࠊ2013.6.29 moyamoya disease-associated AAA+ ATPase/ubiquitin ligase mysterin. The 35th Naito Conference ‘The Ubiquitin Proteasome System’, Sapporo(Japan), 2013.7.10㸦ཱྀ㢌࣭࣏ࢫࢱ࣮Ⓨ⾲㸧 Ishimatsu,Shota Nakashima,Shintaro Hara,Noriho Shoshiro Hirayama, Shun-ichiro Iemura, Kazutaka Araki, Daisuke Morito, Toru Natsume, Shigeo Murata, Kazuhiro Nagata㸸A new Sakamoto,Hiroshi Kubota,Yasuhiro Matsuoka,Kazuhiro Nagata and mechanism of nuclear export of ubiquitinated proteins by the Shigeru Kohno㸸 th UBIN-POST system. The 35 Naito Conference ‘The Ubiquitin Serum heat shock protein 47 levels are elevated in acute interstitial Proteasome System’, Sapporo(Japan), 2013.7.10㸦࣏ࢫࢱ࣮Ⓨ⾲㸧 pneumonia. 18th Congress of the Asian Pacific Society of Respirology, Yokohama, 2013.11.11-14 Kunito Kawasaki, Kazuo Ikeda, Ryo Ushioda, Kazuhiro Nagata㸸 ER-stress-mediated apoptotic cell death in Hepatic stellate cells: ᑠ㇂⌮ࠊ᳃ᡞࠊᒣᓮᝅࠊ㧗ᓥᡂࠊᖹ⏣ᬑ୕ࠊỌ⏣ᏹ㸸 Effect of deletion of collagen specific molecular chaperone Hsp47 ࡶࡸࡶࡸ㛵㐃ࢱࣥࣃࢡ㉁ Mysterin ࡼࡿ zebrafish ࡢⓎ⏕ไ gene in mice. Gordon Research Conferences”Collagen”, New ᚚ. ➨ 8 ᅇ⮫ᗋࢫࢺࣞࢫᛂ⟅Ꮫࠊᯇᮏᕷࠊ2013.11.15㸦ཱྀ 㢌Ⓨ⾲㸧㸦ⱝᡭ◊✲ዡບ㈹ೃ⿵㸧 London(USA), 2013.07.14-19 Shinya Ito, Koji Ogawa, Motoki Takagi, Akihito Yoshida, Takatsugu ᳃ᡞࠊすᕝᖾᕼࠊᐆ㛵῟ࠊᮧᮁࠊᑠ㇂⌮ࠊኟ┠ᚭࠊ㔠 Hirokawa, Shoshiro Hirayama, Kazuo Shin-ya, Takayuki Doi, ᇛᨻᏕࠊ⸨ྜྷዲ๎ࠊỌ⏣ᏹ㸸ࣔࣖࣔࣖࢱࣥࣃࢡ㉁࣑ࢫࢸ Naoki Goshima, Tohru Natsume, Kazuhiro Nagata㸸Inhibition of ࣜࣥࡢືⓗ」ྜయᙧᡂ⣽⬊ෆᶵ⬟. ➨ 36 ᅇ᪥ᮏศᏊ⏕≀Ꮫ ᖺ࣮࣡ࢡࢩࣙࢵࣉࠊ⚄ᡞᕷࠊ2013.12.3-6㸦ཱྀ㢌Ⓨ⾲㸧 collagen-specific molecular chaperone Hsp47 with small molecules. Gordon Research Conferences”Collagen”, New London(USA), ₻⏣ுࠊᐑᮏ❶ṓࠊ⚟⏣ὈᏊࠊ⸨ၐᖹࠊᚚᏊᰘඞᙪࠊỌ⏣ ᏹ㸸ERdj5, a disulfide reductase in the ER, regulates Ca2+ 2013.07.14-19 homeostasis through the activation of Ca2+ pump, SERCA2b. Tomoyuki Kakugawa, Shin-ichi Yokota, Yuji Ishimatsu, Tatsuhiko Harada, Shota Nakashima, Shintaro Hara, Noriho Sakamoto, CREST-ࡉࡁࡀࡅᵓ㐀⏕⛉Ꮫ㡿ᇦ࢟ࢵࢡ࢜ࣇ࣑࣮ࢸࣥࢢࠊ Hiroshi Kubota, Mariko Mine, Yasuhiro Matsuoka, Hiroshi Mukae, Ᏺཱྀᕷࠊ2013.12.26 Kazuhiro Nagata and Shigeru Kohno㸸Serum heat shock protein 47 ᳃ᡞࠊᑠ㇂⌮ࠊすᕝᖾᕼࠊᮧᮁࠊᒣᓮᝅࠊ㔠ᇛᨻᏕࠊ levels in patients with drug induced lung diseases. European 㧗ᓥᡂࠊᖹ⏣ᬑ୕ࠊ⸨ྜྷዲ๎ࠊỌ⏣ᏹ㸸ࣔࣖࣔࣖࢱࣥ Respiratory Society Annual Congress,Barcelona(Spain), ࣃࢡ㉁࣑ࢫࢸࣜࣥࡢᵓ㐀ᶵ⬟. CREST-ࡉࡁࡀࡅᵓ㐀⏕⛉ 2013.9.7-11 Ꮫ㡿ᇦ࢟ࢵࢡ࢜ࣇ࣑࣮ࢸࣥࢢࠊᏲཱྀᕷࠊ2013.12.26 Kazuhiro Nagata, Daisuke Morito (Speaker), Yuri Kotani㸸Mysterin, ᒣᮏὒᖹࠊỌ⏣ᏹ㸸᪂つ࣮࢜ࢺࣇࢪ࣮㛵㐃ᅉᏊ DNAJC16 ࡢᶵ⬟ゎᯒ. CREST-ࡉࡁࡀࡅᵓ㐀⏕⛉Ꮫ㡿ᇦ࢟ࢵࢡ࢜ࣇ࣑ the largest molecule of AAA+ ATPase family members with E3 ࣮ࢸࣥࢢࠊᏲཱྀᕷࠊ2013.12.26 ubiquitin ligase activity, is involved in development of zebrafish EMBO workshop”AAA+ proteins:from mechanism and disease to ఀ⸨㐍ஓࠊᑠᕝ ᾈࠊ➉ෆ ᜏࠊᓥ ┤ᶞࠊኟ┠ ᚭࠊỌ⏣ ᏹ㸸⥺⥔ᝈ⒪ࡴࡅࡓࢥ࣮ࣛࢤࣥ≉␗ⓗศᏊࢩࣕ࣌ࣟ targets”, Neuss( Germany), 2013.9.15-19㸦ཱྀ㢌Ⓨ⾲㸧 ࣥ Hsp47 ࡢ┦స⏝㜼ᐖࡢྠᐃ. CREST-ࡉࡁࡀࡅᵓ㐀⏕ Daisuke Morito, Kouki Nishikawa, Jun Hoseki, Akira Kitamura, Yuri ⛉Ꮫ㡿ᇦ࢟ࢵࢡ࢜ࣇ࣑࣮ࢸࣥࢢࠊᏲཱྀᕷࠊ2013.12.26 Kotani, Masataka Kinjo, Yoshinori Fujiyoshi and Kazuhiro Nagata㸸 Protential dynamic equilibrium of moyamoya disease-associated ᳃ᡞ㸸Structure and Function of Moyamoya Disease AAA+ ATPase mysterin. EMBO workshop”AAA+ proteins:from Susceptibility Protein Mysterin/RNF213. ➨ 1724 ᅇࣂ࢜ࣟࢪ࢝ mechanism and disease to targets”,Neuss( Germany),2013.9.15-19 ࣝࢩ࣏ࣥࢪ࣒࢘ࠊᅜ❧㑇ఏᏛ◊✲ᡤࠊ୕ᓥᕷࠊ2014.1.29 Daisuke Morito㸸Structure and function of moyamoya disease-associated AAA+ ATPase/ubiquitin ligase mysterin/RNF213. Max Plank Institute Seminar, Martinsried 㸴㸬ࡑࡢ≉グ㡯 (Germany), 2013.9.21㸦ཱྀ㢌Ⓨ⾲㸧 㸯㸧እ㒊㈨㔠 Ryo Ushioda and Kazuhiro Nagata㸸ER homeostatic mechanism through disulfide reductase ERdj5. ➨ 8 ᅇᑠ⬊యࢫࢺࣞࢫ◊✲ࠊ 㔠ἑᕷࠊ2013.10.25-26 ᇉⰼኴ୍ࠊ᪂ᮌᏕࠊ6WHIDQR9DYDVVRULࠊᐙᮧಇ୍㑻ࠊ0DUJKHULWD ⚾❧Ꮫᡓ␎ⓗ◊✲ᇶ┙ᙧᡂᨭᴗ◊✲ ㄢ㢟ྡ㸸ࢱࣥࣃࢡ㉁ࡢ⏕ᡂ⟶⌮ ◊✲ศᢸ⪅㸸Ọ⏣ᏹࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ &RUWLQLࠊ&ODXGLR)DJLROLࠊኟ┠ᚭࠊ5REHUWR6LWLDࠊỌ⏣ Human Frontier Science Program㸦㹆㹄㹑㹎㸧 ᏹ㸸'\QDPLFUHJXODWLRQRI(URȘDQG3HUR[LUHGR[LQ ㄢ㢟ྡ㸸Cell Stress and Proteostasis Dysfunction in Aging and ORFDOL]DWLRQLQWKHVHFUHWRU\SDWKZD\➨ ᅇᑠ⬊యࢫࢺ Diseaseࠊ◊✲ศᢸ⪅㸸Ọ⏣ᏹࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ༙ ࣞࢫ◊✲ࠊ㔠ἑᕷࠊ Yoshitsugu Higashi,Tomoyuki Kakugawa,Shin-ichi Yokota,Yuji ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭ᇶ┙◊✲㹑 ㄢ㢟ྡ㸸ࣞࢻࢵࢡࢫไᚚࡼࡿᑠ⬊యᜏᖖᛶ⥔ᣢᶵᵓࡢ◊✲ࠊ Ọ⏣ᏹ㸸᪥ᮏᏛ⾡㆟㸦⣽⬊⏕≀Ꮫ㸧㐃ᦠဨ ◊✲௦⾲⪅㸸Ọ⏣ᏹࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ Ọ⏣ᏹ㸸᪥ᮏᏛ⾡㆟ ≉ู᥎㐍◊✲ᑂᰝጤဨ Ọ⏣ᏹ㸸ᩥ㒊⛉Ꮫ┬ ⛉Ꮫ◊✲㈝⿵ຓ㔠ᑂᰝጤဨ㸦ᇶ┙㹑㸧 ⛉Ꮫᢏ⾡⯆ᶵᵓ㹁㹐㹃㹑㹒ࠕࣛࣇࢧ࢚ࣥࢫࡢ㠉᪂ࢆ┠ᣦ Ọ⏣ᏹ㸸ᡓ␎ⓗ㐀◊✲᥎㐍ᴗ㸦ࡉࡁࡀࡅ㸧◊✲㡿ᇦࠕࣛ ࡋࡓᵓ㐀⏕⛉Ꮫඛ➃ⓗᇶ┙ᢏ⾡ࠖ ㄢ㢟ྡ㸸ᑠ⬊యᜏᖖᛶ⥔ᣢᶵᵓ㸸5HGR[&D ࣇࢧ࢚ࣥࢫࡢ㠉᪂ࢆ┠ᣦࡋࡓᵓ㐀⏕⛉Ꮫ 㸰㸩 ඛ➃ⓗᇶ┙ᢏ⾡ࠖ㡿ᇦࢻࣂࢨ࣮ ࢱࣥࣃࢡ㉁ရ㉁ ⟶⌮ࡢࢡࣟࢫࢺ࣮ࢡࠊ◊✲௦⾲⪅㸸Ọ⏣ᏹࠊྲྀᚓᖺᗘ㸸+ Ọ⏣ᏹ㸸⛉◊㈝≉ᐃ㡿ᇦ◊✲ࠕࣘࣅ࢟ࢳࣥࢿ࢜ࣂ࢜ࣟࢪ ᖺ ᖺ༙ ࣮㸸ᣑࡍࡿࢱࣥࣃࢡ㉁ไᚚࢩࢫࢸ࣒ࠖ㸦ᒾ⌜㸧 እ㒊ホ౯ጤဨ ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭᪂Ꮫ⾡㡿ᇦࠕ㐣Ώⓗ」ྜయࡀ㛵ࢃࡿ⏕⌧㇟ࡢ Ọ⏣ᏹ㸸ࣟࣞࣝࣘࢿࢫࢥዪᛶ⛉Ꮫ⪅᪥ᮏዡບ㈹ ᑂᰝဨ ⤫ྜⓗ⌮ゎ⏕⌮ⓗ‽Ᏻᐃ≧ែࢆᤊ࠼ࡿ᪂ᢏ⾡ࠖ Ọ⏣ᏹ㸸Ᏻ⏣グᛕ་Ꮫ㈈ᅋ ⌮ ㄢ㢟ྡ㸸ᑠ⬊యᜏᖖᛶࢆ⥔ᣢࡍࡿࡓࡵࡢ」ྜయᙧᡂㄪ⠇ᶵᵓ Ọ⏣ᏹ㸸Coyote Pharmaceuticals,Inc. Ꮫ⾡㢳ၥ ࡢ◊✲ࠊ◊✲௦⾲⪅㸸₻⏣ுࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ Ọ⏣ᏹ㸸ᅜ㝿㧗➼◊✲ᡤ ◊✲᥎㐍㆟ጤဨ Ọ⏣ᏹ㸸ᇶ♏⏕≀Ꮫ◊✲ᡤ እ㒊Ⅼ᳨ホ౯ጤဨ ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭ⱝᡭ◊✲ % Ọ⏣ᏹ㸸ி㒔Ꮫ࢘ࣝࢫ◊✲ᡤ እ㒊ホ౯ጤဨጤဨ ㄢ㢟ྡ㸸᪂つ㑏ඖ㓝⣲ (5GM ࡼࡿᑠ⬊యᜏᖖᛶ⥔ᣢᶵᵓࡢゎ Ọ⏣ᏹ㸸⩌㤿Ꮫඛ➃⛉Ꮫ◊✲ᣦᑟࣘࢽࢵࢺࢸࢽࣗᑂᰝጤ ᫂ࠊ◊✲௦⾲⪅㸸₻⏣ுࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ ဨጤဨ Ọ⏣ᏹ㸸Cell Stress & Chaperones, Asia-Australian Regional ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭᪂Ꮫ⾡㡿ᇦࠕ⾑⟶̿⚄⤒࣡ࣖࣜࣥࢢ࠾ Editor ࡅࡿ┦౫Ꮡᛶࡢᡂ❧ᶵᵓࠖ Ọ⏣ᏹ㸸Genes to Cells, Associate Editor ㄢ㢟ྡ㸸ࣔࣖࣔࣖࢱࣥࣃࢡ㉁࣑ࢫࢸࣜࣥࡼࡿḞ㝗࣭⚄⤒ᙧ Ọ⏣ᏹ㸸Cell Structure and Function, Associate Editor ᡂࡢไᚚࠊ◊✲௦⾲⪅㸸᳃ᡞࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ Ọ⏣ᏹ㸸DNA and Cell Biology, Editor Ọ⏣ᏹ㸸᪥ᮏ⤖ྜ⤌⧊Ꮫ ホ㆟ဨ ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭ⱝᡭ◊✲ % Ọ⏣ᏹ㸸᪥ᮏ⣽⬊⏕≀Ꮫ 㐠Ⴀጤဨࠊホ㆟ဨࠊ⦅㞟ጤဨ ㄢ㢟ྡ㸸ࣔࣖࣔࣖࢱࣥࣃࢡ㉁࣑ࢫࢸࣜࣥࡢᵓ㐀ᶵ⬟ࠊ◊✲ Ọ⏣ᏹ㸸ி㒔ᗓ❧ᔢᓚ㔝㧗➼Ꮫᰯࠕࢫ࣮ࣃ࣮ࢧ࢚ࣥࢫࣁ ௦⾲⪅㸸᳃ᡞࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ ࢫࢡ࣮ࣝࠖᏛ⾡㢳ၥ࠾ࡼࡧ㐠Ⴀጤဨጤဨ㛗 Ọ⏣ᏹ㸸ி㒔Ꮫၥᡤ タ❧ጤဨ ᡤ㛗 ᅜ❧㑇ఏᏛ◊✲ᡤࠕඹྠ◊✲%ࠖ Ọ⏣ᏹ㸸ி㒔⏕ⓒேጤဨ ጤဨ ◊✲ㄢ㢟ྡ㸸ࣔࣖࣔࣖ㛵㐃㑇ఏᏊ࣑ࢫࢸࣜࣥࡢᶵ⬟ゎᯒࠊ◊ ✲௦⾲⪅㸸᳃ᡞࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ 㸲㸧ཷ㈹➼ ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭≉ู◊✲ဨዡບ㈝ 㸳㸧ࡑࡢ ◊✲ᐊ࣓ࣥࣂ࣮ࡢ┿ ㄢ㢟ྡ㸸ᑠ⬊యෆ㓟㑏ඖࣂࣛࣥࢫࡢࢲࢼ࣑ࢵࢡ࡞ไᚚᶵᵓ ࡢゎ᫂ࠊ◊✲௦⾲⪅㸸ᇉⰼኴ୍ࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭≉ู◊✲ဨዡບ㈝ ㄢ㢟ྡ㸸⬺ࣘࣅ࢟ࢳࣥ㓝⣲ 863 ࡼࡿ 0\VWHULQ ࡢᶵ⬟ไ ᚚࠊ◊✲௦⾲⪅㸸ᑠ㇂⌮ࠊྲྀᚓᖺᗘ㸸+ ᖺ ᖺ 㸰㸧▱㈈ᶒ➼ 㸱㸧Ꮫእάື Ọ⏣ᏹ㸸ᕞᏛ࢜ࣝ࢞ࢿ࣓ࣛ࣍࢜ࢫࢱࢩࢫ◊✲ࢭࣥࢱ࣮ ᐈဨᩍᤵ Ọ⏣ᏹ㸸ࠕ᭱ඛ➃࣭ḟୡ௦◊✲㛤Ⓨᨭࣉࣟࢢ࣒ࣛࠖ㐍ᤖ⟶ ⌮ጤဨጤဨ Prof. Nobuhiro Nakamura, PhDØ !"#,."/,.1,&%))"+$ %0%),-%*/")(,),'1 87 ŌŪŐIJļĿgŮÇŮ0mijJkhłw° Ø {xĻDPŲijÈĮĴĔĞgM ĥĿĢįł}įĤĭłÆĹĭęĿĕØ łTĪV*4Ļ²<*4ıİłijs7ij Ø îôßáÞ ĴŲaĞ ßææã @IJ{®.&ĤĩŌŪŐ£ IJËÂĥĿĢįĞKĮĘĿĕķĩŲÇijÑ ij»IJ=+ĥĿœŭśʼn»ŰŌŪŐŮŠŖũŔʼnőœ IJĴŲÆ ¨ [ % įG [ ijg M łu I ĥĿK ĞĘ ŭśʼn»űĮĘĿĕîôßáÞ ĴŲćßßã Ļ î÷èøöäã ıİij ĿĕĢij ijg M IJĴŲ n ¾ ł Ĥĩœŭśʼn "œŭśʼn»įįĺIJŌŪŐij>bhÅijTIJk »Ļ¡»ijgM¿ÂĞKÓijFłdĩĤĭęĿĕģĽ ĥĿØ ÙõÝØ õûĂûĄċĈûØ þĊØ ûăÝÛØ ñØ êþăăØ éāĆăÛØ ßáßÛØ ćßåßãÛØ IJŲgM¿ÂĞlĤĠ¨ŁŀĿĩĹIJĴŲn¾ij ßææãÚĕķĩŲĢŀĽijœŭśʼn»ĴIJÁĶĩ0 ĮĘĿŌŪŐijk įĨŀłWěĿŌŪŐijhÅĻ mĻÇŲgM¿ÂijµIJĺÌıFłdĩ ijĞÌĮĘĿĕØ ĤĭęĿĕÉĴŲîôßáÞ įĨij"œŭśʼn»ijk Ø [ Ų 0 m Ğo M ĥĿĩĹIJĴŲ n ¾ ij °cIJļľŲŌŪŐijhÅįk ijµkhĻŲŌ k ĺoMĥĿKĞĘĿĕ8ÑIJŲÉijĝĽŲ ŪŐIJļĿk Jkhłw°ĥĿĢįł}į ŌŪŐĞ0mpĻ'_µijŏŊŘŪÉij ĤĭłÆĹĭğĩĕØ j}įıľŲn¾ijk µij/įĤĭk Ĥĭę Ø sIJÀ@ĴŲĐîôßáÞ ijhÅ°cįŲđŒŝŨŜŅŔ ĿĢįĞ]ĽĝIJıīĭğĩĕŌŪŐĴŲì÷ò łĤĩ ŏťłyęĩ îôßáÞ ij{xxr5}k °cŲĒ 0mŏŊŘŪĻŲêëò IJļĿ'_JŏŊŘ ćï IJĜġĿŌŪŐXij4khŲēúðöí Ŝńšũů Ūł œŭśʼn»ijk °cIJÌq}IJľŃĮęĿĕØ ĤĭhÅĻł2ģħĿĕÃIJŲŌŪŐ Ğ0mŮ'_µijŏŊŘŪÉij½/į Ø ıĿĢįĮŲŌŪŐijk tOijN.ĞŲĢŀĽijŏŊ 975 ŘŪÉIJŜŅůŗŚŔʼnĤĭęĿ! MĞ(ģŀĿ Ø ćï ĮCğ¼ĢģŀĿŌŪŐijXĵijşőşũś ŰFig. 1: N. Nakamura, et al., Curr Opin Cell Biol, 24, ůŒ èà ijÏIJĬęĭ°cł¨īĩĕĢŀķĮIJŌŪ p.467, 2012űĕØ Ő ij h Å IJ E Ò ł ě Ŀ ĺ ij į Ĥ ĭ Ų ýöóèà č Cell growth signal ERK Cell cycle control signal cdk1/cyclinB Signal integration Signal feedback GM130/GRASP65/p115 ŰöóèàîâűŲāöóèàďŰöóèàîäűŲöèíèïðüŰöèíèïßéű ijŶ×ijşőşũśůŒ èà Ğ.&ģŀĭęĿĕýöóèà čŲāöóèàďĴ4ĝĽıľŲöèíèïðü ĴčßŰéáűŲ čàŰéàűŲĎŰéßűijŶĬij4ĝĽhPģŀĭęĿĕĢŀ ĽĴęĦŀĺŌŪŐ ĝĽ£ ł t IJ ģħŲŌŪŐ £#1ĻijŋŭśůŖŢŭŖįij§"łCğ¼ĢĥĢ įĞ.&ģŀĭęĿĕĢŀĽij öóèà ĞŌŪŐijhÅIJ ěĿEÒĴļĠŁĝīĭęıęĕØ Ø ïþóû ijŌŪŐĴ ćï wĥĿĢįIJļīĭÖ Cell polarization Directed cell movement Cell cycle progression Fig. 1. Golgi appoints as a platform of signal transduction The Golgi apparatus changes its structure and localization in response to the cell growth signal and the cell cycle control signal. Conversely, the information of the structure and the function of the Golgi apparatus feedback to the signal transduction pathway. Ø ĢijļĚIJŲŌŪŐ ijh Å įk Ĵ ijg M D P Ļ Ç ij J IJĺ g } ıF łd ĩĤĭęĿį ěĽŀĿĞŲĨij J k h Ĵ] ĽĝĮıęĕĨĢĮ ÉĴŲŌŪŐijhÅįk ijµkhł]ĽĝIJĤĭŲ ¥IJXĥĿĕöóèà Ð9łyęĩĝĽĢijÈ IJ öóèà ĞÏĥĿĢįĞ(ģŀĭęĩĕĨĢĮÉĴ öóèàîâ Ų öóèàîä Ų öèíèïßéß Ų öèíèïßéà Ų öèíèïßéá ij{vRIJļīĭ ćï wIJļĿŌŪŐ XĞRĞ®ĽŀĿĝİĚĝłf±ĤĩĕĨijdŲ öèíèïßéá ij{vRIJļīĭijĸÖ¥ıŌŪŐ X R Ğ ¯ : ģ ŀ ĩ Ű íāÿÝà ű ĕ L · ı Ģ į IJ Ų öèíèïðü ijijōŝŦřŔŖĮĴ#iijdĴ®Ľŀ ı ĝ ī ĩ ĕ H ī ĭ Ų ćï IJ ļ Ŀ Ō Ū Ő ij X Ĵ Ų öèíèïßéá ōŝŦřŔŖijk łĤĩ öèíèïðü ijk IJļīĭC ğ¼ ĢģŀĭęĿĢįĞ ( ģŀĩŰS the regulation of the cell polarization and cell growth. űĕØ However, the regulatory mechanism remains obscure. Under this circumstance, we are trying to elucidate the siControl siPAFAH1B3 regulatory mechanism of the structure and the function Cont pH of the Golgi apparatus to understand how Golgi apparatus control cellular polarization and movement. GM130 is a cytoplasmic peripheral membrane protein (a Golgi matrix protein) localized at the Golgi apparatus that was found and reported by Nakamura et al. on 1995 (N. Nakamura et al. J Cell Biol, 131, p1715 1995). It Low pH binds to p115 and GRASP65 and plays essential role for the cisternal stacking. It also plays an important role in the regulation of cell growth, motility and polarization. Under these circumstances, we have been analyzing the function of GM130 and its binding proteins to obtain key Fig. 2 Knockdown of PAFAH1B3 protect the Golgi apparatus from disassembly under low pH. information for understanding the regulatory mechanism of the Golgi structure and function and also the mechanism for the regulation of cellular functions by the Golgi apparatus. Research projects and annual reports During the development of embryo or tissues, and We are now focusing on (1) the structural analysis of cellular differentiation, the cell has to acquire polarity to GM130 molecule, (2) the developmental analysis of deliver cell adhesion molecules and inducing factors to GM130 functions using zebrafish as a model organism, specific directions. The cell also has to acquire front and (3) analysis of the molecular mechanism of the Golgi rear polarity when it moves to a proper direction. disassembly by low pH treatment and (4) analysis of the Secretory pathway plays important roles to enable the function of YIPF proteins. polarization of cells by regulating the delivery of This year, we have analyzed the role of phospholipase proteins and lipids. The Golgi apparatus is especially A2 in the Golgi disassembly by low pH treatment. It was important core organelle in the secretory pathway. Thus, reported that cPLA2α (PLA2G4), iPLA2γ (PLA2G6) and the structure, function and location of the Golgi PAFAHIb (PAFAH1B) were involved in the structural apparatus and functional maintenance of the Golgi apparatus. play essential roles to support proper polarization of the cells. PAFAHIb is composed of three subunits (B1, B2, B3) The secretory pathway has to be activated to support while other PLA2s are a single molecule. All of these active cell growth. In fact, we have shown that the Golgi PLA2s are reported to induce tubules from the Golgi apparatus functions as a platform of the growth signal apparatus and function to fuse with other Golgi transduction and cell cycle control and controls the fragments or with other secretary pathway organelles. activity of the secretory pathway in response to the We tried to knockdown these PLA2s and found that only growth signal. Golgi apparatus receives the growth PAFAH1B3 knockdown showed protection of the Golgi signal via ERK pathway and also the cell cycle control apparatus from fragmentation at the low pH (Fig. 2). signal via CDK pathway, and changes its shape and Surprisingly, knockdown of other subunit of PAFAHIb location in the cell. Conversely, the information of the did not protect the Golgi disassembly. Therefore, it was activity of the Golgi apparatus may provide feedback to suggested the signal transduction pathways (Fig. 1: N. Nakamura, fragmentation in a B3 subunit dependent manner. that et al., Curr. Opin. Cell Biol., 2012). As described above, the structure and the function of the Golgi apparatus are suggested to play active roles for :7643 Ø ıĤØ PAFAHIb induces the Golgi ;743Ø Jeerawat Soonthornsit, Ryuichi Ishida, Nobuhiro Nakamura. Yip1 domain family members localizing in the trans-Golgi/ transGolgi network. 2013 "Molecular Membrane Biology" Gordon Research Conference, Proctor Academy, Andover, NH, USA. 2013.7.14-19 Yoko Yamaguchi, Daisuke Tamura, Jeerawat Soonthornsit, Ryuichi Ishida, andØ Nobuhiro Nakamura. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus in a phospholipase A2 dependent manner. Golgi Symposium 2013, Bad Ischl, Austria. 2013.9.17-19 zŲa^6.Ø GM130¬"ijhÅ°cų36)\` 4xr5 @ Ų Q?Ų2013.12.3-6 Ø <725 ŴűØ 3ÊºÍ 5¹«ÍŮ-ŰêűØ ´Õ$ŹŌŪŐIJ=+ĥĿŸ)£¸Ä¦|» úðöí ijk °]Ø ªŹa^6ÛØ I@AŹïàãÜàå @Ø Ùá @ÚØ 5¹«ÍŮZ5©Ô,Ű~¢DPűØ ´Õ$Źn¾ijũţŕũŭŊĞ~¢DPIJdĩ ĥKÓijFØ ªŹa^6ÛØ I@AŹïàâÜàã @Ø Ùà @ÚØ ŵűØ ¶Ye³Ø Journal of Cell Science 1 Genes to CellsØ 1 Ŷű ¹;e Assessment of research proposal, Research Grants Council, Hong Kong, ChinaØ 1 \`5©U¤ Ø 70 ŷűØ ĨijØ Ø 36 )\`4xr5 @ ųŬůʼnŏŧŔŞĖk / IJĜġĿŞūņŤůij° c ĝĽ® ěĭĠĿk } šŔŏŭŊũŭ ʼnėųŇůňŘņŎůŲBÎØ Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø àÞßáÝßÞÝßàØçØîùóèéØëāąāąÿÛØôāĉĆąĆüûĉĀāØõāĉĀāČċĄþØ & Prof. Chihiro Hama, Ph.D Assist. Prof. Minoru Nakayama ë 54)*%- wQĄķĵķĵďĸ%ĎĕĄµČĄcËĸįğēĢď ġĐĴĦħĄ¹ĦÃãĔĦĥ9ĦËĸÐČěÊĢ2 ĩīĐďC9ėĴĎIJġĉĴąęĕĠĄęĦÊĸyIJ ĎĥėĴēĢġĢĕě¹ĥ_ĸ¢ėēĢďġĐĴą ¤Ħ¡¨GġħĄ¹ĦĆĦÌĦZĸBţř ŢġyIJĎĥėĴĢĥĄ¹Ħĸ²ZėĴØ ŘŤŀŠśĦÇyĸjĕĠĊĴąēĦıċĤ5çĥĺŘŤ ŦŊėĴěĮĥĄŪũĦ£°¯·ĎIJĤĴ\K¹ĸi ğŅşļņşļœĽĸŜŌŢ%ĢĕĠ¡¨ĥĊĠĊĴąë ë ¹Ħ¸ħĄ@sĦ£°6Òď(Éĥ%ėĴēĢ ĥıijĖĴąęĕĠĄıij\Æĥħ£°¯·àĦp³ ÙġĉĴŅŏŘŇďQĥđ^ÄďĉĴąķĵķĵħĄ 5 Hig 0 12 DG._}&k xI yrPn w /6<1Q{=G*G/6<1^{=G*Gs ~e"%$1+GC! ØB>ĦÇ}ĸįĢĥĄĥŅŏŘŇàâĸĕě ŅŏŘŇ&ĦZĥğĊĠ¡¨ĸ¿ĞĠĊĴąë 64#)*$ ŅŏŘŇàâħĄŅŏŘŇ ÙĢXÙĥlĬĵěs' ŪŨë øāÿ ʼnťŔĿÏďM9ėĴŅŏŘŇĦ_ë ăĂ ĦRĸįğ©àġĄęēĥrĔĵě£°×Ï øāÿ ʼnťŔĿÏħ£°®ĦŅŏŘŇæ;ĥTđ ď+Hĥ±/ėĴēĢĥıij£°×ď¿ķĵĴąŅ PėĴďĄęĦM9ėĴŅŏŘŇĦ¦èĥğĊĠħy ŏŘŇàâħ£°¸Ħ]V!ĸhċŅŏŘŇĦ ġĉĞěąęēġĄ¦ĆĦŅŏŘŇŚŦľŦĸĊĠ øāÿ ÙġĉĴďĄęēĥģĦıċĤBďC9ĕĠ£°Ħ ďM9ėĴŅŏŘŇĸÉīěĢēĶĄøāÿ ħłšť%_ ݸĥáĕĠĊĴĦĎyĤď@Ċąęē ŅŏŘŇĦàâĥM9ėĴēĢďyIJĎĢĤĞěąë ġĄēĦ5çĸyIJĎĥėĴěĮĥĄ{¡¨GġħĄŅ ïíëøāÿ ʼnťŔĿÏďłšť%_ŅŏŘŇĥM9ėĴë ŏŘŇàâĥC9ėĴ øāÿ ʼnťŔĿÏĸÇ}ĦĢ øāÿ ʼnťŔĿÏħłšť%_ŅŏŘŇĥM9ėĴďĄ ĕĠĄBĎIJĥĊěĴĆĤţřŢġĦ¡¨ĸ¿ åłšť%_£°ġįĕĠĊĴąęēġĄŀšĺ¯· ĞĠĊĴąë ġ øāÿ ĸĔĘěĢēĶĄ¯·?ĥĕě øāÿ ħĄłš üíëøāÿ ʼnťŔĿÏĦŅŏŘŇàâĥčĒĴ¸ĦÇyë ë ť%_ŅŏŘŇàâĥonĔĵĴēĢď¢ĔĵěąēĦ %_Ħĸ¢ė>Á:Ħ)7ØBĢĕĠ ēĢħĄēĦM9ĦěĮĥĤďĊĠĊĴēĢ 0EĔĵě ìí ØBĦġĉĴ øāÿ ʼn ĸ¢4ėĴąęēġĄĺňŊŢłšť+HŧõþĀûŨńŗ ťŔĿÏħĄ_ġŅŏŘŇàâĥM9ėĴŧ8ŪŨą ŞŐŋōĦ>čıĨ ûúõā ĸĊĠ øāÿ ĦŅŏŘŇM ēĦ øāÿ ʼnťŔĿÏĦŅŏŘŇàâĥčĒĴ¸čıĨ 9ÝĸÉīěĢēĶĄLĤđĢįŬ¦èĦńŗŞŐŋōď ĸBţřŢġÇyėĴēĢĸ¡¨ĦĢė øāÿ Ħłšť%_ŅŏŘŇàâĪĦM9ĥáĕĠĊ ĴąĔIJĥŕōġÅĊĜĔĵěèØBħćĠĹĎĹĈ ĴēĢďyIJĎĢĤĞěąë İ£ÖĄ¹ÔĦQ«ĦØ_aĦ)7Ø BĢĕĠ0EĔĵĠčijĄęĦĢ øāÿ ʼnťŔĿÏĢ Ħ¸áÕ_ĸÇ}ėĴąë ýíë ćŅŏŘŇàâĦDĈĦ¬ĸjĕĠë øāÿ Ħ ĥtěĤŅŏŘŇàâBĸ0EĕŅŏŘŇ àâĦ¬ĸyIJĎĥėĴąęĦĢĕĠĄöāÿ ʼn ťŔĿÏĸvĥ0EĕĠĐĠĊĴŧ8ū*ŨąēĵIJĦÇ }ĸÓĕĠćŅŏŘŇàâĦDĈĦæ;ĸ¬đąë ðíëøāÿ ʼnťŔĿÏĦŅŏŘŇàâĥčĒĴ¸ë øāÿ ʼnťŔĿÏĦ q>ħĄ%_ďĕĠčijĄ £°¸ďĕĠĊĴēĢďbĔĵĴąęēġęĦ> Ħ¹ĥčĒĴŅŏŘŇʼnťŔĿÏĦM9ĸÉīěĢ ēĶĄõþĀû ńŗŞŐŋōĦ öαó Ģ öαô ĦÝďLĕĄ uĄŅŏŘŇXÙĦÑ<ʼnťŔĿÏġĉĴ öù÷ ď=" ĕĠĊěąėĤķĝĄŅŏŘŇàâĥC9ėĴ øāÿ ʼnťŔ ĿÏħŅŏŘŇXÙʼnťŔĿÏĦ´dĥáķĴēĢď yĕěąë ñíë >ħ öαó ĺŃŐŇōġĉĴŇŖŒńŎĥIĕĠ ¶_ĸ¢ėë 1:8-5!öαó ńŗŞŐŋōĥĥ±/ėĴ ēĢĥıijĄõþĀû ŊŝőŢĸ`Qĥß,ĔĘĄx¾ĸ ĥºIJĕĮĴą >ħĄēĦŇŖŒńŎĥIĕĠ¶_ ĸ¢ėēĢĎIJĄöαó ĸĕě£°×ďĕĠĊĴē development, and also trying to understand a genetic program that globally organizes the circuit formation in the brain. To approach these problems, we employ a small brain of Drosophila, which comprises 105 neurons, only a millionth the size of a human brain. Our research, based on the analysis of the mutants that show either a behavioral or morphological phenotype, is currently focused on the mechanisms for synaptic differentiation. Ģď¢4ĔĵĴąēĦēĢħĄ >ĥčĊĠ öαó Ħ Research Project: M9ÝďLĕĠĊĴěĮĥĖĠĊĴ-¸_ďĉĴąë A role for Hig protein in the synaptic clefts. The hig (hikaru geneki) gene, identified by a mutant phenotype of reduced locomotor activity (Hoshino et al., Neuron 1993), encodes a protein localized to the synaptic clefts in the brain (Hoshino et al., Development 1996). The goal of this project is to reveal roles for Hig and other matrix proteins in the synaptic clefts. In addition, the absence of one of the human proteins resembling to Hig is known to cause epilepsy, mental retardation and brain malformation. One of our research aims is to reveal the functional relationships between Hig and the human protein. òíë >ĦńŘţŋńŦ>Ħäë >ħ%_ďĕĄJ3ď đĤĴďĄēĵIJ ĦÁ:ĸ6[ĔĘĴńŘţŋńŦ>ĦäĸÈĭěą ęĦ±~Ąū¦Ħ#_>ĸäĕěąēĵIJĦ>ħØ Ç}ĥıijĄ0ĖØBĥĖĠĊĴ-¸_ďê Ċą)7ØBĦ0EĥıijĄøāÿ ĢáÕĕětěĤ7B ĸ0EėĴēĢďzWĔĵĴą9ĄŪ¦èĦńŘţŋń Ŧ>ĥIĕĠŁŒśÚEĸ¿ĞĠĊĴąë ë MIK\]!øāÿ ďłšť%_ŅŏŘŇàâĥ ĥM9ĕĄŅŏŘŇXÙĥC9ėĴ õþĀû ńŗŞ Őŋō öαó Ģ öαô čıĨÑ<ʼnťŔĿÏ öù÷ ĦM9ĸ ZĕĠĊĴĢĊċĄøāÿ Ħ¸ĥğĊĠĦÛÄĤ±~ĸY ĴēĢďġĐěŧ8ūĄNIJë g§ŨąĦłšť %_ŅŏŘŇàâĥĥM9ėĴŚōšŋĿŇʼnť ŔĿÏĦ¡¨ħĄ{¡¨ďĮĠĦġĉijĄēĦÜ ĥĻťŔĿōĸįěIJėēĢďzWĔĵĴąë ĤčĄŇŖŒńŎĥIėĴ¶_FéčıĨńŘţŋńŦ >ĦäĥğĊĠħĄŭ6Ħ|.U1Ą| 1ďęĵĚĵAĐĤÍĸĕĠđĵěąë U Hig ,BFN Ra/6<1~[ V$#!Dig `t$Hig !/ 6<1^{$ DLG [V&d$H fAchR -;?724 [V&Oz$ ë 74Research projects and annual reports How the brain expresses a variety of neural function still remains enigmatic. We are studying molecular mechanisms underlying neuronal events that occur during nervous system Annual reports: A matrix protein Hikaru genki localizes to the cholinergic synaptic clefts and regulates the postsynaptic organization in the Drosophila brain The synaptic cleft is a crucial space for neurotransmission and serves as an interface that provides extracellular scaffolds and signals for the differentiation or maintenance of presynaptic and postsynaptic terminals. Albeit a number of molecules that constitute either terminals have been studied, little is known about the proteins that are present in the synaptic cleft matrix, especially in the central nervous system (CNS). We report that Hikaru genki (Hig), a secreted protein with an Ig motif and CCP (Complement Control Protein) domains, localizes specifically to the synaptic clefts of cholinergic synapses in the Drosophila CNS. Our data indicate that this specific localization of Hig is achieved by trapping of secreted and diffused Hig to the synaptic clefts even when it is ectopically expressed in non-cholinergic neurons and glia. Notably, in the absence of Hig, an intracellular scaffold protein DLG was abnormally accumulated in the cholinergic postsynapses, while the synaptic distribution of acetylcholine receptor (AchR) subunits Dα6 and Dα7 were significantly decreased. Consistently, the hig mutant flies showed resistance to an AchR agonist, spinosad, which causes lethality by activating specifically Dα6 among AchR subunits, suggesting that the loss of Hig compromises the synaptic activity mediated by Dα6. These results indicate that Hig is a specific component of synaptic cleft matrix for cholinergic synapses and regulates the postsynaptic organization in the CNS. 84/!+" 94(, Hikaru genki protein, localized to the synaptic clefts, is required for the normal function of cholinergic synapses. Minoru Nakayama and Chihiro Hama ª 36 6w{BDSîë £fOîë2013. 12.3 - 6 ë :4'.3 X{v| w{DÀm»¥D¡¨ÎÂ$Þë ke½¼¡¨ë ë ë ë ćEGAF5W''mlihug # /@(0@(9 )>3C NbĈŧÁŨ L jSYopcZTJqopT ⢾㉁⏕≀Ꮫ◊✲ᐊᩍᤵ ⚟ ᡂ⾜ Laboratory of Glycobiology Prof. Shigeyuki Fukui,Ph.D 㸯㸬◊✲ᴫせ ⢾㙐ࡣཎ᰾⣽⬊┿᰾⣽⬊ᗈࡃᏑᅾࡍࡿከᵝ࡞ ሗࢆᣢࡘศᏊ࡛ࠊ⢾ࢱࣥࣃࢡ㉁ࠊ⢾⬡㉁ࠊࣉࣟࢸ࢜ࢢࣜ ࢝ࣥࡋ࡚Ꮡᅾࡍࡿࠋ⢾㙐ࡢᢸ࠺⏕≀Ꮫⓗ࡞ᙺࡣࡇࢀ ࡲ࡛ࡢከࡃࡢ◊✲ࡽࠊࢱࣥࣃࢡ㉁㧗ḟᵓ㐀ࡢ┘ど ࡓࡵࠊ࣏ࣜࣛࢡࢺࢧ࣑ࣥ㙐ࡢⓎ⌧㔞ࡀᑡ࡞ࡗࡓࡇ ࡀ᫂ࡽ࡞ࡗࡓࠋ 㸦quality control㸧ࠊ⬇Ⓨ⏕ࡢึᮇࡢࢥࣥࣃࢡࢩࣙࣥ CD24 ࡣࡇࢀࡲ࡛ࡢከࡃࡢ◊✲ࡽࠊච⣔㸦≉ᮍศ ௦⾲ࡉࢀࡿ⣽⬊㛫ࡢ᥋╔ࠊච⣔⣽⬊ࡢ⾑⟶⣔ࡽࣜࣥ B-⣽⬊㸧ࠊ⚄⤒⣔⣽⬊ࡸ࠸ࡃࡘࡢ⒴⣽⬊࡞Ⓨ ࣃ⣔ࡢ⛣ື㛵ࢃࡿࢭࣞࢡࢳࣥࡀ⢾㙐ࢆ㆑ูࡍࡿࡇࠊ ⌧ࡉࢀࡿࡇࡀ▱ࡽࢀࠊࡲࡓࠊSDS-PAGE ୖࡢ≉␗࡞⾜ ከࡃࡢ࣍ࣝࣔࣥ㸦FGF ࡸ HGF ࡞㸧⣽⬊ቑṪᅉᏊࡀ ືࡘ࠸࡚ሗ࿌ࡉࢀ࡚࠸ࡓࡀࠊࡑࡢཎᅉࡢࡳ࡞ࡽࡎࠊ⏕ ࡑࢀࡽࡢཷᐜయ⤖ྜࡋ࡚⏕ࡌࡿࢩࢢࢼࣝఏ㐩ࢆ⢾㙐ࡀ ≀Ꮫⓗ࡞ᙺࡘ࠸࡚ࡶ᫂ࡉࢀ࡚࠸ࡿࠋ ㄪ⠇ࡋ࡚࠸ࡿࡇࠊච⣔⣽⬊ࡢࣜࢡ࣮ࣝࢺࡸάᛶ ᭱㏆ࠊ⢾㙐┦స⏝ࡍࡿࢱࣥࣃࢡ㉁ࡢࣜ࢞ࣥࢻ࡞ 㛵ࢃࡿࢣࣔ࢝ࣥࡸࢧࢺ࢝ࣥࡢᒁᡤ㒊ࡢ✚ࠊ ࡿ⢾㙐ᵓ㐀ࢆ᳨⣴ࡍࡿ᪉ἲࡋ࡚ࠊேᕤ⢾⬡㉁㸦ࢿ࢜ࢢ ឤᰁ࢘ࣝࢫࡢ docking site ࡢᙧᡂࠊ࡞⢾㙐ࡀ῝ࡃ ࣛࢥࣜࣆࢻ㸧ࢆᛂ⏝ࡋࡓ⢾㙐࣐ࢡࣟࣞἲࢆ⪃ 㛵ࢃࡿࡇࡀ᫂ࡽࡉࢀ࡚࠸ࡿࠋࡲࡓࠊ⣽⬊ࡢࡀࢇ ࡋࠊ㧗ឤᗘ࡛⤖ྜ⢾㙐ࡢᵓ㐀ࢆ᥎ᐃࡍࡿࡇࢆྍ⬟ࡋ కࡗ࡚Ⓨ⌧ࡉࢀࡿ≉␗⢾㙐ࡶ᫂ࡽࡉࢀࠊࡀࢇ⣽⬊ࡢ ࡓࠋ ቑṪ㌿⛣ࡢ㛵ࢃࡾࡘ࠸࡚ࡶὀ┠ࡉࢀ࡚࠸ࡿࠋࡋ ࡑࡇ࡛⌧ᅾࡣࠊ1㸧CD24 ࡀ⒴⣽⬊ࢆྵࡵ࡚ᮍศ⣽⬊ ࡋ࡞ࡀࡽࠊ⣽⬊᥋╔࣭ㄆ㆑ࡸ⣽⬊ቑṪ࡞㛵ࢃࡿከࡃ Ⓨ⌧ࡉࢀࡿࡇࡽࠊCD24 ࡢⓎ⌧ࢆᢚไࡋࡓࡢศ ࡢࢱࣥࣃࢡ㉁ࡀࡢࡼ࠺࡞≉␗⢾㙐ᵓ㐀┦స⏝ࡋ࡚ 㐣⛬ࡢᙳ㡪⯆ࡀᣢࡓࢀࡿࠋࡑࡇ࡛ࠊRNAi ἲࢆ ⏕⌮άᛶࡀㄪ⠇ࡉࢀ࡚࠸ࡿࡢࡘ࠸࡚ࡣ᫂࡞Ⅼࡀከ ⏝࠸࡚ PC12 ⣽⬊ࡢ CD24 Ⓨ⌧ࢆᢚไࡉࡏ࡚ NGF ่⃭ ࡃṧࡉࢀ࡚࠸ࡿࠋ ࡼࡿ PC12 ⣽⬊ࡢࢽ࣮ࣗࣟࣥࡢศࡢᙳ㡪ࢆほᐹࡍ ࡇࢀࡲ࡛⢾㙐ࡢព⩏㛵ࡍࡿ◊✲ࢆ⥆ࡅ࡚ࡁࡓࡀࠊ᭱ ࡿࠋࡲࡓࠊNGF ࡢཷᐜయ⤖ྜࡼࡿࢩࢢࢼࣝఏ㐩ཬࡰ ㏆ࡢᮎᲈ⚄⤒⣽⬊(PC12,PC12D ⣽⬊)ࡢࢽ࣮ࣗࣟࣥࡢ ࡍ CD24 ࡢᙺࡶ㏣ཬࡍࡿࠋ2㸧࣏ࣜࣛࢡࢺࢧ࣑ࣥ㙐௨እ ศ㛵ࢃࡿ⢾㙐ᵓ㐀ࡢẚ㍑◊✲ࡽࠊᮍศ㸦NGF ↓ ࠊCD24 ศᏊୖࡣᵝࠎ࡞⢾㙐ࡀ⤖ྜࡋ࡚࠸ࡿࠋࡑࢀ ่⃭㸧≧ែ࠶ࡿ PC12 ⣽⬊࠶ࡗ࡚ࡣࠊ⣽⬊⭷⾲㠃 ࡽ⢾㙐ࡢᙺࢆ㏣ཬࡍࡿࡓࡵࠊCD24 ࡽศ㞳ࡋࡓ⢾ ࠶ࡿ⢾ࢱࣥࣃࢡ㉁⤖ྜࡋ࡚࠸ࡿ࣏ࣜࣛࢡࢺࢧ࣑ࣥ㙐ࡢ 㙐ࢆࢿ࢜ࢢࣛࢥࣜࣆࢻࡋࠊ⢾㙐࣐ࢡࣟࣞἲ Ⓨ⌧㔞ࡀࢽ࣮ࣗࣟࣥศࡍࡿ㐣⛬࡛ᢚไࡉࢀࡿࡇࠋ ᛂ⏝⏝ࡋ࡚ࠊCD24 ศᏊୖࡢᵝࠎ࡞⢾㙐ࡢᵓ㐀ࢆ᫂ࡽ ࡲࡓࠊ⯆῝࠸ࡇࠊPC12 ⣽⬊ࡽኚ␗⣽⬊ࡋ࡚ ࡍࡿࡶࠊࡑࢀࡽ⢾㙐ࠊ≉࣏ࣜࣛࢡࢺࢧ࣑ࣥ⢾ ศ㞳ࡉࢀࡓ PC12D ⣽⬊࡛ࡣࠊNGF ᛂᛶࡀ㧗ࡃࠊ▷ 㙐┦స⏝ࡍࡿ⏕య≀㉁ࢆྠᐃࡍࡿࠋ3㸧ච⣔ࡢ B- 㛫࡛ࢽ࣮ࣗࣟࣥศࡍࡿ⬟ຊࢆഛ࠼࡚࠸ࡿࡇࠊ ⣽⬊㛵ࡋ࡚ࠊ㫽㢮࡛ࡣ㦵㧊࡛⏕ࡲࢀࡓᮍ⇍ B-⣽⬊ࡣ⥲ ࣏ࣜࣛࢡࢺࢧ࣑ࣥ㙐ࡢⓎ⌧㔞ࡢῶᑡࡀࡼࡃ୍⮴ࡋࡓࠋ ἥ⭍ࡢᮎ➃࠶ࡿࣇࣈࣜ࢟࢘ࢫᄞ࡛ศቑṪࡋ࡚ᡂ ࡑࡇ࡛ࠊ࣏ࣜࣛࢡࢺࢧ࣑ࣥ㙐ྵ᭷⢾ࢱࣥࣃࢡ㉁ࢆ PC12 ⇍ B-⣽⬊࡞ࡿࡇࡀ▱ࡽࢀ࡚࠸ࡿࠋ᪂ᆺ㫽ࣥࣇ࢚ࣝ ⣽⬊ࡢ⭷⏬ศࡽศ㞳⢭〇ࡋࠊࡑࡢせ࡞⢾ࢱࣥࣃࢡ㉁ ࣥࢨ◊✲ࡢ୍ࡘࡋ࡚ࠊࣥࣇ࢚ࣝࣥࢨ࢘ࣝࢫࡢឤᰁ ࡢ 1 ࡘࡘ࠸࡚ࠊ࣑ࣀ㓟㓄ิศᯒࡢỴᐃࠊ㑇ఏᏊࢹ࣮ ࡍࡿᐟ⣽⬊ࡢ 1 ࡘ࡛ࠊච⣔ᙳ㡪ࢆ࠼ࡿᶆⓗ⢾ࢱ ࢱ࣮࣮࣋ࢫࡢ᳨⣴ࠊ࣏ࣜࣛࢡࢺࢧ࣑ࣥศゎ㓝⣲ࡼࡿࢱ ࣥࣃࢡ㉁ࡋ࡚ࡶ CD24 ࡀ⪃࠼ࡽࢀࡓࠋࡑࡇ࡛ࠊࢽ࣡ࢺ ࣥࣃࢡ㉁ࡢᣲືࡢほᐹ࡞ࡽࠊせ࡞࣏ࣜࣛࢡࢺࢧ࣑ ࣜࡢࣇࣈࣜ࢟࢘ࢫᄞ࠶ࡿ B-⣽⬊ᑐࡋ࡚ࡢࣥࣇࣝ ࣥྵ᭷⢾ࢱࣥࣃࢡ㉁ࡢ 1 ࡘࡀ CD24 ࡛࠶ࡿࡇࡀ✺ࡁṆ ࢚ࣥࢨ࢘ࣝࢫࡢឤᰁࡢ᭷↓ࠊࢽ࣡ࢺࣜࡢ⬻ࡸ B-⣽⬊ ࡵࡽࢀࡓࠋ ࡽศ㞳⢭〇ࡋࡓ CD24 ࡢ⢾㙐ᵓ㐀ࢆ᫂ࡽࡍࡿࠋࡑࡢ ᚓࡽࢀࡓ⤖ᯝࡽࠊNGF ่⃭ࡼࡿ PC12 ⣽⬊ࡢࢽࣗ ➨୍ࡋ࡚ࠊࢽ࣡ࢺࣜ CD24 ᑐࡍࡿᢠయࢆ㑇ఏᏊࢹ࣮ ࣮ࣟࣥࡢศࡢ㐣⛬࡛ࠊఱࡽࡢᙳ㡪ࡼࡗ࡚⣽⬊⭷ ࢱ࣮࣮࣋ࢫࡽ CD24 㑇ఏᏊࢆ᥎ᐃࡋࠊࡑࡢ࣑ࣀ㓟㓄 ⾲㠃ࡢ CD24 ࡢⓎ⌧ࡀᢚไࡉࢀࠊࡑࡢ⤖ᯝ⭷⾲㠃Ⓨ⌧ ิࢆ⏝ࡋ࡚ᢠయࡢసᡂࢆヨࡳࡓࠋ⌧ᅾࠊࡑࡢᢠయࢆ⏝ ࡉࢀࡿ࣏ࣜࣛࢡࢺࢧ࣑ࣥ㙐ࡀῶᑡࡍࡿࡇࠋࡑࡋ࡚ࠊ⚄ ࠸ࠊࣇࣈࣜ࢟࢘ࢫᄞ࠾ࡅࡿ CD24 㝧ᛶ⣽⬊ࢆ᳨⣴ࡋ ⤒✺㉳ࢆ▷㛫࡛ᙧᡂࡍࡿኚ␗ᰴࡢ PC12D ⣽⬊࡛ࡣ ࡓࡇࢁࠊ㝧ᛶ⣽⬊ࢆほᐹࡍࡿࡇࡀ࡛ࡁࡓࠋࡋࡋ࡞ NGF ᮍ่⃭࡛࠶ࡗ࡚ࡶࠊCD24 Ⓨ⌧㔞ࡀᢚไࡉࢀ࡚࠸ࡓ ࡀࡽࠊCD24 㝧ᛶ⣽⬊ࡢྜࡀ┦ᑐⓗపࡃࠊࣇࣈࣜ ࢟࢘ࢫᄞࡽࡢ⢭〇ࡀᅔ㞴࡛࠶ࡗࡓࠋࡑࡇ࡛ࠊCD24 ࡢ effect on PC12D cells. The isolated PL-GPs were analyzed by Ⓨ⌧ࢆ☜ㄆࡋࡓࢽ࣡ࢺࣜⓑ⾑⏤᮶ࡢᰴ⣽⬊࡛࠶ࡿ SDS-PAGE and fluorography as well as the susceptibility to DT-40 ࡽ CD24 ࡢ⢭〇ࢆヨࡳ࡚࠸ࡿࠋ⌧ᅾࡲ࡛ࡢࡇ endo-E-galactosidase. The amino acid sequence analysis of ࢁࠊࢽ࣡ࢺࣜ CD24 ࡣࠊ࣐࢘ࢫࠊࣛࢵࢺ CD24 ྠᵝ 62kDa PL-GP quite resembled that of rat CD24. GPI ࣮ࣥ࢝ࢆࡶࡘ⭷ࢱࣥࣃࢡ㉁࡛࠶ࡿࡇࡀศࡗࡓ CD24 is a GPI-glycoprotein that is anchored to the ࡀࠊ࣐࢘ࢫࠊࣛࢵࢺ CD24 ࡢศ㞳ࡢሙྜ␗࡞ࡾࠊ᭷ᶵ surface of cell membrane. To characterize carbohydrate ⁐፹⁐࡛࠶ࡗࡓࠋ⢭〇ࡢ⛬ᗘࡣ࡛᫂࠶ࡿࡀࠊศ㞳 chains on 62kDa PL-GP (i.e. CD24), the nitrocellulose based ࡋࡓ CD24 ࢆ⏝ࡋ࡚ࠊ⢾㙐࣐ࢡࣟࣞࡢᢏ⾡ࢆ⏝ microarray system on which partially purified CD24 was ࠸࡚ࠊࣞࢡࢳࣥ MAA SNA ࡼࡿ⤖ྜࢩࢢࢼࣝࢆ᥈ࡾࠊ immobilized, were applied. This assay revealed that CD24 ࢩࣝ㓟ṧᇶࡢ⤖ྜᵝᘧࢆ᥈⣴ࡋ࡚࠸ࡿࠋ had not only poly-N-acetyllactosamine chains, but also the poly-N-acetyllactosamine chains were terminated with 㸰㸬ᮏᖺᗘࡢ◊✲ᡂᯝ O-blood type fucose residues, but not Lewis x and/or sialyl 1㸧CD24 ࡣ GPI ࣮ࣥ࢝ᆺ⢾ࢱࣥࣃࢡ㉁࡛࠶ࡾࠊ≀⌮ Lewis x structures, for example. This microarray assays also ⓗ࡞ᛶ≧ࡀ⢾⬡㉁ࡢࡑࢀ㢮ఝࡍࡿࡇࡽࠊ᭷ᶵ⁐፹ suggested that the reason for the less content and having ࢆ⏝࠸ࡓ⢭〇᪉ἲࢆ⏝࠸ࡿࡇ࡛ຠ⋡ࡼࡃศ㞳࡛ࡁࡿࡇ shorter poly-N-acetyllactosamine chains in PC12D cells ࢆ᫂ࡽࡋࡓࠋࡲࡓࠊࡇࡢᛶ㉁ࡽࠊCD24 ࡣ⢾㙐 might be originated in less expression of CD24 gene in ࣐ࢡࣟࣞἲ┤᥋ᛂ⏝࡛ࡁࡓࠋ⢾㙐࣐ࢡࣟࣞ addition to the less GnT-i activity. ࡢ⤖ᯝࡽ PC12 ⣽⬊⏤᮶ࡢ CD24 ࡣࠊ࣏ࣜࣛࢡࢺࢧ To explore the role of CD24 in an infection of A-type ࣑ࣥ⢾㙐௨እࠊǂ2,3 ⤖ྜࡸ ǂ2,6 ⤖ྜࡋࡓࢩࣝ㓟ࠊ influenza virus, anti-serum against chicken CD24 was fucose ྵ᭷⢾㙐࡞ࢆྵࡴከᵝᛶᐩࡴศᏊ࡛࠶ࡿࡇࡀ constructed using some polypeptides that were different from ᫂ࡽ࡞ࡗࡓࠋ⯆῝࠸ࡇࠊCD24 ࡣ⏤᮶ࡍࡿ⤌ amino acid sequence from those of mouse, rat CD24s. ⧊ࡼࡗ࡚࣏ࣜࣛࢡࢺࢧ࣑ࣥ⢾ࡢࡳ࡞ࡽࡎ⢾㙐ࡢᵓᡂࢆ anti-serum revealed the chick CD24, which was isolated from ␗ࡋ࡚࠸࡚࠸ࡓࠋ2㸧CD24 ศᏊ⤖ྜࡋ࡚࠸ࡿ࣏ࣜࣛ DT-40 cells, to be a membrane glycoprotein with GPI-anchor.㻌 ࢡࢺࢧ࣑ࣥ㙐ࡣ N-ࢢࣜࢥࢩࢻᆺ⢾㙐⤖ྜࡋ࡚࠸ࡿࡇ Recently I could develop the efficient method to conjugate ࠋ3)ᐇ㦂⏝࠸ࡓᢠ CD24 ࣔࣀࢡ࣮ࣟࢼࣝᢠయࡢᢠཎ oligosaccharides with AlexaFluor 350. Ỵᐃᇶࡣࠊࣛࢵࢺ࣐࢘ࢫࡢ CD24 ࡢ࣑ࣀ㓟㓄ิࡢ㐪 ࠸ࡽࠊN-ᮎ➃ 11㹼13 ␒┠ࡢ Asn-Gln-㸦N-glycan bearing㸧Asn ࡢ㡿ᇦ᥎ᐃࡉࢀ࡚࠸ࡓࡀࠊ13 ␒┠ࡢ Asn 㸲㸬ㄽᩥ ࣇࢥ࣮ࢫࡢ⤖ྜࡋࡓ࢟ࢺࣅ࣮࢜ࢫᵓ㐀ࡶྵࡲࢀࡿࡇ ࡞ࡋ ࡀศࡗࡓࠋ4) ࢽ࣡ࢺࣜⓑ⾑⏤᮶ࡢᰴ⣽⬊࡛࠶ࡿ DT-40 ࡽ CD24 ࡢ⢭〇࡛ࡁࡓࠋࢽ࣡ࢺࣜ CD24 ࡣࠊ࣐ ࢘ࢫࠊࣛࢵࢺ CD24 ྠᵝ GPI ࣮ࣥ࢝ࢆࡶࡘ⭷ࢱࣥ 䠑ᏛⓎ⾲ ࣃࢡ㉁࡛࠶ࡿࡇࡀศࡗࡓࠋ5) ⢾㙐⤖ྜࡢ≉␗ᛶࡢ᥈ ࡞ࡋ ⣴ࢆ┠ⓗࡋ࡚ࠊ⢾㙐ࡢ㑏ඖᮎ➃⺯ගヨ⸆ AlexaFluor ࢆຠ⋡ࡼࡃ⤖ྜࡉࡏࡿ᪉ἲࢆぢฟࡋࡓࠋ 䠒㸬䛭䛾≉グ㡯 㸱㸬Research projects and annual reports To explore the biological role of carbohydrate chains in the process of nerve cell differentiation, I have carried out characterization of the carbohydrate structure of glycoproteins by comparing conventional PC12 cells with variant cells (PC12D). Previously we showed that the length and content of poly-N-acetyllactosamine chains obtained from the membrane fraction differed significantly between PC12 and PC12D, and also that NGF stimulation decreased the content of poly-N-acetyllactosamine chains of PC12 cells, but had no ࡞ࡋ The ! '( '(57'957=5,+;+2563+49'2"=89+38 75,"'*'5&'8:-/ . ( 88/89 75,&'8:58.// . +* ǫKtgäǚbqǠbqơdvİƓƿħLĹŇRwAº !$ ŪƲƹĞagAǟŵéƗfƥƝȜƷeJOvAāěɃǣ ĜǠȷĊf¸ǛǫzºĜäǚȷĊeƶŴVvbAäǚ āɄfĹŇzáėƝƗęAdžǜƝƗęALJǑędcfş } fİƓƿħLĹŇRw[BPwtfljŲgAāěć ƈzƟG`ƲƹT`GvB¹dƲƹĢȊgA©Ǜ ŧfİƓƿħfĹŇLAYfȷĊf³ƧFvGgljõLJ fƏêāěAƬAƝƁǡA©ǛJsi|© ǑdcfƜĎǸăes^`ãĿRwvPbzƳÿT`G ¤ªfŀǣaFvB vB ɃɆɄƏêāěfİƓƿáêeȨVvƲƹ ɃɇɄƏêāěIJdžǜeȨVvƲƹ ŤıeķMNjMAƏêāěİƓƿfāěQbećŧf Ť ı A -7 Ȟ Ê ė f ¬ ° z Ï Ň T A 4 8/9: ȡǒzãĿVvŽŹfǼţeïuLJ{\B .=(7/*/>'9/54 es^`ĥǠfƥƝȜƷeJOv -7 Ȯ ɃɇɄƏêāěfIJdžǜeȨVvƲƹ łdžǜfĦĈzȇkAǛƥƝfĽŨɃĚí šÆĽɄe Əêāě³ƧfIJdžǜLƥƝȜƷacfsHeƝUv gANJƄfČȟeȮłdžǜLáêVvPbzƳT[BŪ KzţtKeVv[peAĥǠIJdžǜfƘơƦ£°° ıĵgAPwÆĒe 8)2 r 23 dcfAĥǠIJdžǜƘ ȞÊėaFv -7 YfÂfȞÊėfƥƚzAƥƝȜƷz ơƦeƥƚVvȞÊėe_G`öźeƥƝȜƷeJOv Ȕ^`ǺġT[B ƥƚzŶǾT[BYfljŲA-7 ÆĒfȞÊėgAǛƥ ɃɈɄ©ǛƝƁǡfƥƝeȨVvƲƹ ƝŨȧegNJƄf´ȟeijNƥƚLǹtwvPbLţt ɂȼfƝƁǡgAȴfíĩLôÖaȕêVvbGHȻ Ked^[ɃĆ ɄBPfPbKtňCgA8)2 r 23 ǬdƚȊzƳVBYfTNnzœvƲƹzDZ^[B gáêȖ³fNJƄ³ƧagŁWTqĥǠIJdžǜfƘơƦ ɃɉɄŀǣfƥƝeȨVvƲƹ £°°bgGIWA-7 zƥƚVvIJdžǜgƥƝĽŨ ßéǞf¹dȏƒaFvŀĒǢîČLŀǣeǯõVv ePwtfȞÊėzƥƚVvdžǜf¸KtAJYtNg TNnzœvbbqeAßéǞĹŇzÒșVvƐłăė ȭƻeĦĈVv %49 ƞƝdžǜdcfĺȵes^`áêV fœDžJsiǼűeŁǸd©°fŜØzDZ^[B vAbGHÇȅzŕĀT[B ɃɊɄƬfĹņĹŇeȨVvƲƹ ƬfČŪŹȘzƝnàVĹņĹŇțéeơįzƳV¼ ƸȼfɂȼǛ¥ªzƟGAYfdžǜęƦJsiáėƝ ƗęƦŽŹfœDžzDZ^[B ɃɋɄƬfnjǢfȷĊêeȨVvƲƹ ƬfnjǢgAÙzðĠVvƴLjłnjǢbYHadGnj ǢǨDŽ³ƧzŧVvLAYwtgbqeƴLjǀf±ȟa FvƬǜKtƝUvBƬǜfȷĊêeȨyvȐÞăėȞ ÊėǕfŽǝǼűzDZ^[B ,* ! ɃɆɄƏêāěfİƓƿáêeȨVvƲƹ Ć ƥƝȜƷfĥǠeJOvȞÊėƥƚfđê ƏêāěfİƓƿgAāěQbeYfȡǒLơd^` GvBÐIhɂȼfäǚagɇħfǂǢƿŰAɆħfȒ ɃɈɄ©ǛƝƁǡfƥƝeȨVvƲƹ ȎƿAɆħfǐȎƿKtdvLAĥǠagǂǢƿŰzž ɂȼfȴfôíĩLȕêVvîăLA|¢°e G`GvBPfsHdāěćŧfİƓƿħLĹŇRwv svfagdGKbGHÇȅzŶȁVv[peAǛƥƝ TNnzţtKeVv[peAȓǏf©b~¨ ŨȧeJOv©ƝƁǡe_G` #:4+2 ƈa|¢ zƟG`AâŨǛeJOvƶŴĝɀzDZ^[B~¨f °zŶàT[LAĪôfíĩîČaƘeȻǬdīg ºĜäǚȷĊf¸ǛǫɃĽeljõLJǑbİƓƿeáêɄ z©fºĜǠȷĊeƶŴVvbAƶŴRw[¸Ǜ ȃptwdK^[BPfPbKtAĪôaơdvƥƝf ŀĒǢîČfŀŊjfǯõLȃptw[Ć Bƚ TNng|¢°ÆĒesvPbLƳÿRw[B ĈAPfljŲfRtdvŶȁzșpvbbqeA$ zgUpbVvÂfÕǴăėfŽǝǼűzDZ^`GvB ɃɉɄŀǣfƥƝeȨVvƲƹ ßéǞfȎDZƆĜŽŹfǼţgAǮǰłŀƣńfŞ[ ŀǣfŀĒǢbßéǞgAŀĒǢîČbühwvŀǣ dºȩƈAƇƤƈfȦƥeq_dLvBßéǞfĹŇgA fĒeƝUvƺȏƙfäȿdžǜȳĄLAŎézȦĕT[ ŀĒǢîČfĹŇeĕmvśēNf KtdvB ŀǣeĽKtÃOçyvPbes^`ƝUvĆ B YwtfH]cwLßéǞfȎDZƆĜeƪŔȨ¶T`G YfTNneȨT`gũ\µţdƕLēGB vKƳÿzľv[pAßéǞzŐ[dG·Ɲȼ|© ¤ªĆ fǛŨJsiŇÎŀǣfǺġzDZ^ [BŀĒǢîČ£°°aFv #(< b %9 fƥƚLǛ ŨŀǣaŶàRwAǔǢȼfŀǣböźA|©¤ ªfǛŨŀǣaqAŀĒǢîČfŀǣjfǯõLȏ P^`GvPbLƳÿRw[BTKT|©¤ ªfŀǣgAŇÎaqŀĒǢ´fljõLJǑzlb{cŐ [dGPbLyK^[Ć BPwg|©¤ ªfŀǣagAßéǞfĹŇeŁǸdŀĒǢKtŀĐÜ ȟjfdžǜfƶéLëáeȏP^`GdGPbzƳÿT `JuAǔǢȼeJG`qAßéǞĹŇdžǜfƶézã ĿVvPbLAßéǞfȎDZzƆĜVvȤbd^`Gv ñǝłLǖItwvBňCgA/4;/975 LJǑċȽfǃe JG`A $#?#? bG^[Ɛł ªáėLA©ŀĒǢîČdžǜ fƶéFvGgȚȎzÒșVvPbzţtKeT`Gv 8.//+9'2BPwtfăėLAĝȱeǛÎÜ Ć ŀĒǢîČBŀŊfȓNeƝUv¸ǛǫłfƺȏbT`ȃpt eJG`AdžǜfƶéãĿzÀT`ǰǀĹŇzÒșVv wvBŀĒǢîČgAŀǣjfǯõzùoGN_qfƂȰzLj`A KcHKzţtKeVv[pA³ǿƐłáėzĸãƥƚ ŀĒǢbßéǞzĹŇVvBƶŴĝɀBŀĒǢîČfƶŴƖjf RXv[pf¨®¢®¡°zÏǶT[B ǯõgAŀŊzƟG[ťsuqŊĞŔõȟzƟG[ťeɁGȹ ĵaȏPvƯìB45;5 ©¢§®esuĤÚT[ Ć ɂȼ~¨ŀǣ ȞÊėfƥƚB fnzƥƚRX[®¬°ªǛagAŀ b|©¤ª ĒǢîČfǯõLŊĞŔõȟafnȏPvB6. zĸãƥƚRX ŀǣfƃȑB|© [ǛagŪŭȏPtdGŀŊjfǯõLǹtwvƯìB ¤ªfŀǣegAß éǞbŀĒǢ´fljõ ŀĒǢîČgŁWAŀŊbŀĞfȧeÌǒVvŊĞŔõ LJǑħLǹtwdGB ȟeǯõVvLAYfǯõgöUNȓ×eÌǒVvŀŊ agȏPtdGBPfPbKtAŊĞŔõȟKtfŔǽ ÑĘłf ªÊȝLAŀĒǢîČfǯõzķMȏP VñǝłLǖItw[BYfÇȅzŶȁVv[pƶŴĝ ɀzDZGĆ AŊĞŔõȟbŀŊfȧaAŀĒǢî ČfǯõzÒșFvGgȀĠVvǝæeīLFvPb zţtKeT[BPfsHdŀǣfȷĊƘơłeƪŔȨ yváėzöĜVv[pA£}¬|«}ƈJsi /4 ɃɊɄƬfĹņĹŇeȨVvƲƹ 8/9: }©}°§®ƈesvnjǓƦƥƚǼűz ǟŵéƗfƬgAƅŦÎzȗ^[ÙzŮƙfnjǢLð DZGAǢljõĉ ªÊȝáė 6. JsidžǜŔƭ ĠVvŹȘed^`GvBPfsHdƬfČŪŹȘgA áė $ LAŊĞŔõȟeɁ«¡ªeƥƚVvPbz ƬfĹŇȜƷaAnjǢîČaFvƬǜbƅŦÎîČaF ǹG\T[B45;5 ©¢§®ƈzřǧTA6. vºĜ«®ĒǛǫLAǛfÜÖeøK^`ȬÚVvP zŀǣfijGǁąaĸãƥƚRX[bPxA±ȟfǛa bes^`ÏtwvBƬfȬÚLȏPvƪäf© ǛȸȟzAÍƑ@FvGg !.5 ªÊȝȪğ °®ĹŇeȢǸdȞÊė°fŹŇ¤®°a å & fĘĈ´aċȽVvbAƬfȬÚLȪğRw FvPbLƳÿRw[B vĆ BňCgAPwtĹņơįǛeJOvȞÊėƥ Ć .< z ƚAdžǜďƁAdžǜƀAĹņĹŇãĿăėfáĭzǼű ºĜǨDŽ³Ƨ TAdžǜŸłãĿăė '7 Jsi ' AdžǜŔƭeȨ aĸãƥƚR ¶Vv )'*.+7/4 Jsi ?®fºĜ«®ĒǛ XvbAǨDŽ ǫeJOváĭeơįLǹtwvPbzţtKeT[B ³ƧfáêL PfsHdĦĈơįgƬǜÖegȃptwWAPwma ŌãRwvb FmuƉƩRw`PdK^[ƬfȬÚeJOv«®Ē qeAơ ǛǫfȢǸłzƳÿVvljŲbd^[B ŋƦdƴLjá ê L ȏ P v B -*Research projects and annual reports In the laboratory of Developmental Systems, the molecular biological, cell biological and histological aspects of organogenesis are being studied. The main targets of the study are digestive organs, heart and gonad of the chicken and Xenopus embryos. (1) Smooth muscle layers of the digestive organs Digestive organs in the vertebrates have specifically arranged smooth muscle layers important for the transport of food Ć !.5 ªÊȝȪğå & fĘĈ´JsiÍƑaȏPvƬf through the gut. We analyzed the effects of environmental ĹņĹŇơįb ' fĦĈBƬfȬÚLȏPvȗįfċȽŬÈagA« factors on the differentiation of muscle layers. ®ĒǛǫfȶƼeȓGbPxe ' fĸG ªLŶàRwvƯ ìB& zō¶T[ƬagAƬfȬÚLȪğRwvbbqeA' f¢ƙf ªL«®ĒǛǫfČĴÖeȓGȟáeŶàRw vƯUuBÍƑaƥƝRX[ȸȟagAƬLĒÖjbƺàTA' (2) Localization of stem cells in the developing digestive organs To analyze the derivation and localization of stem cells in the ªfţƮdĦĈgǹtwdGB intestine during the development we studied the expression of stem cell-specific markers, Lgr5, Sscl2 and Flm4 genes, ɃɋɄƬfnjǢfȷĊêeȨVvƲƹ during the intestinal development. njǢîČaFvƬǜKtgAÙðĠdžǜr¦°¬® (3) Degeneration of right ovary in female chick embryo zq_ƴLjłnjǢbYHadGnjǢǨDŽ³ƧzƝUvB Avian ovary provides an interesting example of left-right PfsHdƬǜfȷĊƘơƦáêgAûąfLJǑKtf asymmetric development of organs. We analyzed the ȄĤeÑĘT`ȏPvLAȄĤÏƟf´ƎadžǜǤļƦ occurence of apoptosis during the development of ovary. ețýƆĜeg[tNȞÊė°eȨVvŅč (4) Heart gAƚĈfbPxŸp`ȫtw`GvBňCgA An important origin of coronary vessels in the heart, which ©fºĜƴLjłnjǢeƘơƦeƥƚVv _fȐÞăė supply oxygen and nutrients to the entire myocardium, is an ȞÊė.<69<"/<!<eƭƩTAYwZw extracardiac rudiment called the proepicardium (PE). We z /45;5 «¬¢«°§®ƈzƟG`AºĜǨDŽ studied tissue interactions that control fusion of the PE to the ³ƧeĸãƦeƥƚRX[BljŲA.< LǨDŽ³Ƨf heart and molecular basis of these interactions. We also ƥƝțýzƴLjłnjǢjbđIvg[tMzq_PbL established techniques and molecular tools necessary to study yK^[BPfțýȐŖgAöźfg[tMLŠečú roles of soluble signaling molecules in coronary vessel Rw`Gv "5<8.//+9'2fƥƚ³ŢzË formation in the maturing heart. ^`JuA.< LA´Ǝf "5< bbqeAƬǜf (5) Eye morphogenesis A cup-like morphology of the eye is a feature shared by (4) Heart most vertebrate species. This basic structure is generated The epicardium and coronary vessels of the heart originate through coordinated invagination of the optic vesicle and the from an extracardiac rudiment called the proepicardium (PE). lens ectoderm. We explored molecular and cellular basis of Although the fusion of the PE to the heart is critical for this morphogenetic event, using two avian models that exhibit coronary vessel formation, its mechanisms remain unclear. The PE always fuses to the atrioventricular junction (AVJ) of failed invagination of the eye. the heart, but not to the sinoatrium (SA) despite its proximity (5) Patterning of the retinal primordium During eye development the multipotential primordium of to the PE. We therefore hypothesized that a short-range the retina, the optic vesicle, is patterned into the neural retina paracrine signal(s) from the AVJ triggers the fusion of the PE and the retinal pigmented epithelium. Using in ovo to this specific region of the heart. To test this hypothesis, we electroporation, we analyzed functions of transcription factor carried out in vivo implantation assay. An AVJ segment isolated from a donor quail embryo was implanted into a chick genes implicated in this patterning event. host carefully, so that the host-derived PE maintains a contact with the outer surface of implanted AVJ. Our histological analysis demonstrated that the fusion of the PE to the Results implanted heart segment occurs within two hours and that this fusion occurs preferentially to the AVJ (86%), rather than the (1) Smooth muscle layers of the digestive organs We analyzed the effect of the epithelium on the arrangements SA (17%), providing evidence that AVJ and SA differ in of smooth muscle layers by implanting mesodermal fragments capability to induce (or permit) the PE fusion. To gain insights into When into molecular basis of this regional difference, we carried out presumptive stomach mesoderm was transplanted into microarray analysis and in situ hybridization screening of presumptive intestinal area, mesoderm differentiated muscle candidate genes, and identified EphB3, which encodes a layers not identical to those of stomach or intestine. membrane-bound tyrosine kinase receptor, and Vcam1, which Presumptive intestinal mesoderm formed muscle layers very encodes a cell adhesion molecule, as genes expressed similar to those of stomach. Thus the developmental fate of preferentially in the AVJ. Using an improved protocol of in the mesoderm is thought to be affected by the environmental ovo lipofection, we are currently testing a potential role of factors. EphB3 in controlling the site of the PE fusion within the heart. heterologous presumptive digestive areas. (2) Localization of stem cells in the developing digestive organs Major branches of coronary arteries show a stereotype distribution within the heart. Understanding mechanisms Last year we cloned chicken Lgr5 and Hairy1 genes and underlying formation of this pattern will provide a foundation revealed that Lgr5-positive cells first appeared on day 15 of for rational therapeutics of coronary disorders, including incubation at the base of the villi. This year we further ischemic cardiac disease. Coronary vessels develop via investigated the expression of Ascl2 and Flm4 genes that are multiple steps, including induction and growth of the PE, the expressed in adult stem cells. These genes are expressed rather fusion of the PE to the heart, the epicardial coverage of the widely in the lower half of the villi during the development, heart and become restricted to the crypt after hatch. Thus the epicardial cells. To gain insights into key steps of coronary expression of these genes is not specific to the stem cells vessel formation, we examined development of Xenopus heart, expressing Lgr5 gene, at least in the course of development. which lacks coronary vessels. Expression of Tbx18 and (3) Degeneration of right ovary in female chick embryo Wilms' tumor-1 (Wt1), markers for the PE and epicardium, and epithelial-to-mesenchymal transformation of To assess whether apoptosis is responsible for the was detectable in or around the heart at stages when the PE degeneration of right ovary in chick embryo, we detected develops and fuses to the heart. However, we obtained no apoptosis by TUNEL method from day 5 to 20 of embryonic clear evidence for the presence of subepicardial connective development. However, apoptosis was very rare and there was tissue even in the adult heart, suggesting that reduced no difference in its occurrence between left and right ovaries. epicardial EMT correlates with lack of coronary vessels in the Therefore, we concluded that apoptosis is not the direct cause amphibian heart. of degeneration of right ovary. The above information led us to hypothesize that distribution pattern of coronary vessels in amniote hearts is affected by the .*&" epicardial EMT. We have previously shown that soluble signaling molecules, BMP2, FGF2, PDGF-BB, VEGF, ÛūȋȲɌzƛǼVv[pfƝƗęǵǪŊ TGF-ß1, TGF-ß2, promote migration of cultured PE-derived ÛūȋȲɌ°ƝƗęɃ"9'77;+78"9'77ǬɄ ů¾êęö¿ cells (Ishii et al., 2010). To test potential roles of these factors in promoting coronary vessels formation in vivo, we generated transposon-based expression vectors. /*# (5) Eye morphogenesis The eye in vertebrates has a cup-like retina and a vesicular ÛūȋȲƏêāěfƥƝŽŹƛêęƲƹŋƥƝɍÝ lens. This basic morphology is generated through coordinated ƝƵęǍõƲƹ®° ƥƝƝƗę©«®ȉĶƴʼn ĬɃŏĻȉƔɄ invagination of the optic vesicle and lens ectoderm. We found that the head of chick embryos isolated at embryonic day 2 ÛūȋȲéƗfĹÏufȈšŪéƗęÉȓƢŘȟȉ ƔɾȠƞŷĔęoViySȾɃŏĻȉƔɄ and cultured in vitro generates invaginating eyes but fails to do so if cultured at a low temperature (29-30@) or in the 8.//&:0/3595&'8:-/"<67+88/545, presence of a Rho-signaling inhibitor Y-27632. Although this ,'3/2=-+4+8/483559.3:8)2+5,9.++3(7=54/) abnormality was not associated with obvious changes in cell )./)1+4*/-+89/;+57-'48 9.44++9/4-,57'6"5) +;+256/52'98:+ proliferation, cell death and expression of developmental genes, cell polarity regulators, Par3 and aPKC, and Ʊ½ƊȲAǩƠǦAǭŪǘŃAÛūȋȲɌ©ǛƏêǀİ cell-adhesion related proteins, N-cadherin and ß-catenin, ƓƿLJǑeJOv ȞÊėfƥƚšÁƝƗęÉƽ exhibited abnormal distributions along the apicobasal axis of ĂÐÉAů¾A the lens ectoderm. Interestingly, such abnormality was not Ʊ½ƊȲAǻƠƋİAÛūȋȲɅ²ĨȯɌŀǣfƥƝȜƷeJ OvßéǞIJdžǜfșÚŽŹšÁƝƗęÉƽ ĂÐÉAÄ seen in the optic vesicle. The data highlight the significance of òA the lens ectoderm in generating cup-like eye as a whole. ÛūȋȲAǩƠǦAƱ½ƊȲɌ©ǛfƏêāěƘơƦd (6) Patterning of the retinal primordium İƓƿħĹŇšÁƝƗęÉƽ ĂÐÉAÄòA In vertebrates the retina develops from a part of the forebrain, the optic vesicle. The distal portion of the optic vesicle (OV) mainly gives rise to the light-sensitive neural retina (NR), 0* %) whereas its proximal part differentiates into the retinal pigmented epithelium (RPE). While it is well-established that Ēȟȍȣ the patterning of the OV into NR and RPE domains depends ƵęƲƹǴèȣ¯ČƨƲƹ on paracrine signals from the surrounding tissues, such as the ȆȺ÷ßéǞ¯ŀĒǢäȿdžǜféņbYfãĿ lens and cranial mesenchyme, little is known about the gene ƲƹÅdzǗƱ½ƊȲAïľıĵ ı regulatory networks underlying this patterning event. Transcription factor genes, Chx10, Optx2, Six3, Rx1, are all ưȌƞżƾ dT expressed in the presumptive NR but not in the RPE. We misexpressed these genes in the presumptive RPE ectopically, ęĒƍé using in ovo electroporation in combination with a ÛūȋȲɌƌǷɁƾęųŻŗŒŷ transposon-mediated gene transfer, and identified Chx10 as a ÛūȋȲAƱ½ƊȲDɁųƝƗŚǙþƲÔÉƥƝƝƗę© gene capable of inhibiting RPE pigmentation. This inhibition was associated with ectopic NR-like differentiation and ectopic expression of a neural stem cell marker Sox2. Our data «®ȉĶEȉĮAƴʼnĬA ÛūȋȲɌšŪéƗęÉȓƢŘȟȉƔÉDéƗfĹÏufȈz bNE°}° suggest that Chx10, as well as its downstream gene Sox2, is an ÛūȋȲšÁƝƗęÉIJ» important component of a gene regulatory network that ÛūȋȲɌšŪƥƝƝƗęÉŽȨȂǎȳĖþ regulate OV cell fate in a cell autonomous manner. ÛūȋȲɌšŪéƗęÉſóȍŝÓĘĖþÉĖþ ÛūȋȲɌšŪęDzőǥÉģȥĖþ ÛūȋȲɌšŪƝƗę©®Ėþ Yf dT ƲƹФ®°fÞƫ #+, ) &'47&947>4+2*2'7&3*'.4*3*7,*9.(8&3)2*9&'41.8274+*3%404>&2&- /. !& #!&8*eèƽƬøŎňeƫķ ūäeƋĨcf{~¤MĜƦ`GrCūäM{ ģDfBūÖûBūŦŦŪûǤǨÇùƪĂǥBňDžū ~¤»qÆV±ƇkvŸſVreMBūº{~¤ ŦûeĤŘvŭH_BūºÄ`ĻmǑƦ`ÎƜ¤ û.4*3*7,*9.(8`GrCūäe{~¤DŽƸ`G `mGr#!&8*eŎƖAňDžeƫķvLJl_HrC r!eõnjÇfBãácorǐÖŲ¢ǐÖcoqÑ èƽƬøŎňcor{~¤òĭnz|¢ǀǂŎňe ŨoO»psrCģDeº`fBƆƕÄçý`Gr ƫķB#!&8*vŊŲaTYÎƜc]bMrŷƧvęr ¢xcúìVrãáǕǏƄƐMXeĕÍvĦ\_ RaMŴŲ`GrC HrC!ÞĢǏƄfBãáǕǏƄƐco\_»psY ! v°TYūäũƷeűƧaŪƫ ¡¢šđÕǍaƗǛ¹Ǥ¡¢ǡÒÏǥvèƽÏc ŅǠŧġaąäaeǗdžMǁĐĩİSs_HrCŅǠ òĭTBèƽÏco\_v¢ǐÖT_!vÞ ÊǙcoqôOeūŦž`ąäMĒgrRamðâSs ĢVrǤêǨØŤǥC¥Ĵ`B#!&8*nôOe¥ŏǀ _HrC{~¤³ƵeƦamHJr!eŬūAŚ ǂºf!v¼\_z|¢nǀǂïƻvǀǂVrC! ƹaąäaeǗdžvƍƝ vľ ÇƫcorèƽÏűūe±ƇkfBňDžūŦûaǨÇù IJcT_ķpLcVrCjYBǣǎŎňa! šđòÖ ƪĂaHIĤŘcoqZHYHķpLcb\YCTLTB aeǗdžc]H_mŸſvLJl_HrC ¡¢ǡÒÏ`èƽVr±ƇknBèƽÏv¶NJVr Çùz¢corƗǀǂºŎňeŪƫ èƽŇnëþùM˺beLBÝñĞvĨ[èƽÏvd ĘŀeŸſfBƱirRacǑŢMƏLs_HYCı UsaT_ƛJpsreLBc]H_fƶƲMuLs_ »TDžrRa`#!&8*c³ơSsrƗǀǂºeÇù HrCģDfBňDžūŦûBǨÇùƪĂBūÖû eĤ ŎňƫķvLJlrCz¢ĭnNj¶ùÂÞĢcoqB ŘvŭH_Bèƽǀǂº`Gr#!&8*cor¡ ijƨeÇù¤¤nƗǀǂºv»ƣVrC ¢ǡÒÏcorèƽe±ƇkBKog{~¤v¼\ _z|¢nïƻvǀǂVrƗǀǂºe±ƇkeƫķcÚ 0. qƇw`HrC ǘāŎňeÇùïųeƫķ ! #!&8*cf! ÞĢíaz|¢¢íMúìVrC ÷ťƙ #!&8*fÞĢí`GqB ê èƽÇù¤¤e ŋēêCèƽLjÒv°T_ œƄz|¢eǀǂaÖû ÙĝvƉg]P_HrC ǘāícbrRa`! ÇƫMǘāSsrCz|¢ ¢íe#!&8*`f ǘāMƧpsbHC]j qB ǘāfB#!&8*eūŪŎƖvŕþVrǑƦb ÇùŎňaHJrCz¢ĭeĤŘcoqB ǘ āvŕlréùvīƅTYC |ƉÞnj¹v ĭTYZP`fB ǘāĠÛĞMŐrC ļǞîv ¥Ĵ`BūäM{~¤vòĭT_ÉŭVrljŽfB `ĭVra ǘāǝĠÛĞcb\YC! ÞĢÿ ƑÖnƑÖc·IůŰnBz¢ ¢ÇŗƁeǑƦb ǢcoqB ǘācǝĠÛĞe#!&8*`f¢ǐ ūäũƷaśHǗ½MGrCąävòÖSWrNj¶ùe cĄVrxyy¤M§ĶT_HrRaMuL\YC «cfB{~¤³ƵǗ½eǏƄMŖĈGqB{ ´§eÿǢLpB |ƉÞǞîa ļǞîMŵ ~¤įÚǓXemeMąävƨþVrRamðâSs_ ¬»ŭVrRacoqB¢ǐcĄVrxyy¤ HrCģDfB{~¤³Ƶe«ěŦƻ`Gr!e MòÖTB ǘāheĠÛĞMŕlpsrRaMuL ƆƕÄšđaąäaeǗ½vBÇùz¤¢aHI \YC ĤŘ`ƫķVrŸſcŶĤTYCūº{~¤ûeƩ ƾeƼşeīƅ ŢLp!aƑÖ£ąäKogBǣǎe»ŭŎňƁeæǟ #!&8*fB¥ŏǍÈnňDžőƿLpBßUOèƽÇù cÚqƇw`HrC ¤¤`Gr4niwŒƤÞºaßULJÖƃƊō ´§eŸſƔĸcï^NBĽŸſĀ`f¨ƮeŢc] §cGrRaMŷps_HrCiwŒƤÞºvňĢVr H_ŸſvćǖT_HrC `Gr1.McňDžM ¸_HrRacŶŴTB«ěèƽƾeLJÖŲbǗ½vķ pLcVrRavŴŲaTYC1.v ¢aÅ ňĢSWYaRtB¢e«öcSSqB}ƤÞ ºvĔĢTYCǨÇùƪĂ`fB1.fèƽʼneÒNv VrMBǨĴàeèƽfŹSbL\YCReRaLpB 1.fèƽƾaT_f©üÂ`GrRaMÇL\YCX R`Be¤ǞîvǚHY 1.1.0* vňƂTBǨÇùƪĂvƟ\YaRtBǨĴàeè ƽMƪĂSsYCRspeƉŃLpB1.eoIbǃª ƟezzňDžMèƽƾaT_ŎƖVrRaM ÇL\YC1.eoIbÃDŽeźÁLpB#e eo Ibǩ]eLpbrèƽƾcLJÖTBXe ėBNj¶ùƞÞVrRa`e?eoIbèƽƾcLJ anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F(1-γ) could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin. ÖT_H\YaƒJpsrC ! aǣǎ»ŭ 3. ATP sensing system in whole nematode ƍƝeëþc¼ŭVrǣǎÌcoqBƍƝǨ¿ºGY Adenosine 5′-triphosphate (ATP) is the major energy currency qe! ǓMŝĆVrRaMBÀţuL\YC²eǣǎ of all living organisms. Despite its important functions, the Ì`mßʼne! ŝĆMƼRrRavűƧTYCjYB spatiotemporal dynamics of ATP levels inside living Ɔƕ`mǣǎÌcoq! ǓMõďcŝĆVrRaMu multicellular organisms is unclear. In this study, we modified L\YCŻƈƆƕÄe! šđv¨QrRa`ǣǎÑŃ the genetically encoded Förster resonance energy transfer MűĮSsrÝƖĞMŹåSsYC (FRET)-based ATP biosensor ATeam to optimize its affinity at low temperatures. This new biosensor, AT1.03NL, detected Ǫ ǧResearch projects and annual reports 1. Molecular basis of ADP-inhibition of V type ATPase/synthase. Reduction of ATP hydrolysis activity of V type ATPase/synthase (VoV1) as a result of ADP-inhibition occurs as part of the normal mechanism of VoV1 of Thermus thermophilus, but not VoV1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated and their function analyzed. The data showed that the interaction between the nucleotide binding and C terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP-inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a different conformation in T. thermophilus V1 from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis. ATP changes inside Caenorhabditis elegans cells more sensitively than the original biosensor did, at 25 °C. By expressing AT1.03NL in Caenorhabditis elegans, we succeeded in imaging the in vivo ATP dynamics of these model animals at single-cell resolution.that ATeam is available for detection of ATP levels change in nematode cells. 1.($"* Corresponding author 1. Tani K., Arthur C., Tamakoshi M., Yokoyama K., Mitsuoka K., Fujiyoshi Y., *Gerle C., Visualization of Two distinct states of disassembly in the bacterial V-ATPase from Thermus thermophilus. Microscopy. Vol. 62(4) pp467-474 2. Kishikawa J., Ibuki T., Nakamura S., Nakanishi A., Minamino T., Miyata T., Namba K., Konno H., Ueno H., *Imada K., *Yokoyama K “Common evolutionary origin for the rotor domain of rotary ATPases and Flagellar 2. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F(1-γ) or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an protein export apparatus.” PLoS One Vol. 8(5) e64695 3. Tsuyama T., Kishikawa J., Han Y.W., Harada Y., Tsubouchi A., Noji H., Kakizuka A., Yokoyama K., Uemura T., *Imamura H.@In vivo fluorescent ATP imaging of Drosophila melanogaster and Caenorhabditis **9.3,4+9-*.45->8.(&1 4(.*9>4+&5&3>494 elegans by using a genetically encoded fluorescent ATP &5&3 biosensor optimized for low tempaeratures.” Anal. Chem. Vol. 85(16) pp7889-7896 &0&3.8-. .8-.0&<& %404>&2& .3).3, 4. Kishikawa J., Nakanishi A., Furuike S., Tamakoshi M., .39*7+&(*'*9<**3749478:':3.98<.9-14<'.3).3, *Yokoyama K. “Molecular basis of ADP-inhibition of V &++.3.9>.3#4#!-*9-33:&1**9.3,4+9-* type ATPase/synthase.” J. Biol. Chem. Vol. 289(1) .45->8.(&1 4(.*9> 4+ &5&3 >494 &5&3 pp403-412 ¢ ƻ ň Dž Ÿ ſ Ö û ß ® Ċ Ů ğ Ǝ ċČŜ¥«ƥŞù«Ŀ¾¥×ǒĚ¯ŮÓč -&59*755 ŌĈƳBÜŔĹBċČŜ¥ ŌĈƳèƽÇù¤¤e«ěèƽƾeÇùLJÖ ǤƌƯǥ ĵĽūº{~¤Ÿſµ ƀèƭƲµǦǜĉĎǦ *=:&1 *574):(9.43 .3 3.2&18 &3) 1&398 57.3,*7&5&3&79/.7.!$.8-.0&<& «ƥŞùǦċČŜ¥ǦŌĈƳ#!&8*e«ěèƽƾc KPr¶NJŎňǦĵĽūº{~¤Ÿſµ 2&2:7&<&4%%404>&2& &94Ǥƚĺǥ ƀèƭƲµǦǜĉĎǦ 2.%* 3. '- ċČŜ¥ŌĈƳ#íèƽÇù¤¤eÞĢíaÇ ónjƺǔeĪĥ ƫívuPrÇùïųƀ¦èÇù¤¤ƭƲµŁ żûŸſƢÐǔïųŸſEňDž£ŎƖƫłcorèƽ õǤħĖƴŠǥ Çù¤¤eƼşeƫķF Ÿſ³ơƓǫ ŌĈ Ƴ .8-.0&<&&0&3.8-. :7:.0*!&2&048-. %404>&2&41*(:1&7'&8.84+.3-.'.9.434+ ijûƠǞîĬņíĝÔưǟex¢Īĥ Ǟî³ơƓaT_ĝÔTYijûƠǞîĬņíĝÔưǟM #9>5*!&8*8>39-&8*ƀ èĵĽūÖûµõµǦ x¢cĪĥSsYCx¢ėeăńeƉŃB ŌřĎǦ ĪĥcfƘpbL\YC «ƥŞùǦċČŜ¥ǦŌĈƳ#!&8*e«ěèƽƾc KPr¶NJŎňǦƀ èĵĽūÖûµõµǦŌ řĎǦ .8-.0&<& *.34&0&3.8-.!.7942 4/.%404>&2&&>&8-.8:':3.97*.3+47(*8 9476:* ,*3*7&9.43 .3 #!&8* !-* 9- 33:&1 **9.3,4+9-*.45->8.(&1 4(.*9>4+&5&3>494 &5&3 !$/.7..8-.0&<&2&2:7& &0..* "*34 % <&4 %404>&2& &94 ! 6:&39.+.(&9.43&3)1.;*.2&,.3,.3 44(>9*!-*9-33:&1**9.3,4+9-*.45->8.(&1 4(.*9>4+&5&3>494&5&3 .8-.0&<&&0&3.8-. :7:.0*%404>&2& 3&1>8.84+9-*,.3-.'.9.432*(-&3.824+#4# '> )42&.3 8<&55.3, &5574&(- !-* 9- 33:&1 ᩍᤵ ྜྷ⏣ ㈼ྑ Prof. Masasuke Yoshida, Ph.D ࢱࣥࣃࢡ㉁ᶵ⬟◊✲ᐊ ຓᩍ ඖᓥ ྐᑜ Lab. Protein Function Assit. Prof. Fumihiro Motojima, Ph.D 㸯㸬◊✲ᴫせ 䛿䚸୍ᗘ✵Ὕෆ䛻㛢䛨㎸䜑䜙䜜䛯ኚᛶ䝍䞁䝟䜽㉁䛾䛒䜛ྜ 㻌 䛜⥅⥆ⓗ䛻✵Ὕእ䜈₃䜜ฟ䛧䛶䛟䜛䛣䛸䜢Ⓨぢ䛧䛯䚹⌧ᅾ䛾 ᮏ◊✲ᐊ䛷䛿䛂ศᏊ䝅䝱䝨䝻䞁䛃䛸䛂㻭㼀㻼 ྜᡂ㓝⣲䛃䛻䛴䛔䛶 䝅䝱䝨䝻䝙䞁䛾స⏝ᶵᵓ䛾ᩍ⛉᭩ⓗ䛺䝰䝕䝹䛷䛿ኚᛶ䝍䞁 ◊✲䛧䛶䛔䜛䚹㻌 䝟䜽㉁䛿䛻✵Ὕෆ䛻㛢䛨㎸䜑䜙䜜䛶䛔䜛䚹䛧䛛䛧䚸✵Ὕ ෆ䝣䜷䞊䝹䝕䜱䞁䜾䛾୰㛫≧ែ䛷䛿䚸✵Ὕෆ䛾ኚᛶ䝍䞁䝟䜽 ศᏊࢩࣕ࣌ࣟࣥ ㉁䛿䛭䛾䝫䝸䝨䝥䝏䝗䛾୍㒊䛜✵Ὕ䛾እ䜈䛿䜏䛰䛧䛶䛔䜛䜙 ⣽⬊ࡢ୰ࡢಶࠎࡢࢱࣥࣃࢡ㉁ࡣࡑࢀࡒࢀಶᛶⓗ࡛࠶ࡾࠊ 䛧䛔䚹ᐇ㝿䚸䛣䛾୰㛫≧ែ䛾Ꮡᅾ䛿䚸⁐ᾮ䛻ຍ䛘䛯ᢠᇶ㉁䝍 ࡑࡢㄌ⏕ࡽᾘ⁛ࡲ࡛ከᵝ࡞㐠ࢆࡓࡿࡶࢃࡽ 䞁䝟䜽㉁ᢠయ䛜✵Ὕෆ䛻ධ䛳䛶䛔䜛ኚᛶ䝍䞁䝟䜽㉁䛻⤖ྜ䛧 ࡎࠊ⣽⬊ࡣ⤫୍ⓗ࡞ᶵ⬟ࢆ⥔ᣢࡋ࡚࠸ࡿࠋࡉࡽࠊ⎔ቃ 䛶䚸✵Ὕෆ䛾䝣䜷䞊䝹䝕䜱䞁䜾䛾㐍⾜䜢Ṇ䛥䛫䜛䛣䛸䛷☜ ࡀኚࡍࢀࡤࡑࢀᛂࡌ࡚ࢱࣥࣃࢡ㉁ࡢࠕ♫ࠖࢆ⦅ 䛛䜑䜙䜜䛯䚹ኚᛶ䝍䞁䝟䜽㉁䛿✵Ὕෆ䛻䜟䛪䛛䛻㟢ฟ䛩䜛 ᡂ࡛ࡁࡿࠋࢱࣥࣃࢡ㉁ࡢಶᛶࡣ❧యᵓ㐀࡛つᐃࡉࢀ࡚࠸ Ỉᛶ䛾䝃䝤䝴䝙䝑䝖⏺㠃㏆ഐ䛾䝅䝇䝔䜲䞁䛸䝆䝇䝹䝣䜱䝗ᯫᶫ ࡿࠋࡑࡋ࡚ࠊ❧యᵓ㐀ࡢ⛣ࡾኚࢃࡾࢆไᚚࡍࡿศᏊࢩࣕ 䜢ᙧᡂ䛧䚸ኚᛶ䝍䞁䝟䜽㉁䛿䛣䛾㡿ᇦ䛸Ỉᛶ┦స⏝䛧䛶 ࣌ࣟࣥࡣࠊࢱࣥࣃࢡ㉁♫ࡢ⤫ᚚ㔜せ࡞ᙺࢆᯝࡓࡋ 䛔䜛䛸⪃䛘䜙䜜䛯䚹䜎䛯䚸Ỉᛶ䜢ῶᑡ䛥䛫䛯 㻳㼞㼛㻱㻸 ኚ␗య ࡚࠸ࡿࠋᮏ◊✲ศ㔝࡛ࡣศᏊࢩࣕ࣌ࣟࣥࡢస⏝ᶵᵓࡘ 䛿䝣䜷䞊䝹䝕䜱䞁䜾䛜㐜䛟䛺䜚䚸Ỉᛶ┦స⏝䛜䝣䜷䞊䝹 ࠸࡚◊✲ࡋ࡚࠸ࡿࠋ 䝕䜱䞁䜾䛾ಁ㐍䛻ാ䛟ྍ⬟ᛶ䛜♧၀䛥䜜䛯䚹ୖ䛾◊✲䛛䜙䚸 ᮏᙜ䛾✵Ὕෆ䝣䜷䞊䝹䝕䜱䞁䜾䜢ほᐹ䛩䜛䛻䛿䚸✵Ὕእ䛻₃ ATP ྜᡂ㓝⣲ 䜜ฟ䛯䝫䝸䝨䝥䝏䝗䛾⮬Ⓨⓗ䝣䜷䞊䝹䝕䜱䞁䜾䜢ᕪ䛧ᘬ䛟ᚲ ATP ࡣ⏕≀ࡢ࢚ࢿࣝࢠ࣮㏻㈌࡛࠶ࡾࠊATP ྜᡂ㓝⣲ せ䛜䛒䜛䛣䛸䜒♧䛥䜜䛯䚹䛘䜀䝬䝹䝖䞊䝇⤖ྜ䝍䞁䝟䜽㉁ኚ ࡀ ATP ྜᡂࡢ㒊ศࢆㄳࡅ࠾ࡗ࡚࠸ࡿࠋATP ྜᡂ㓝⣲ࡣࠊ ␗య 㻰㻹㻹㻮㻼 䛿䛶✵Ὕෆ䛷䝣䜷䞊䝹䝕䜱䞁䜾䛩䜛䛸䛥䜜䛶 2 ࡘࡢᅇ㌿࣮ࣔࢱ࣮ࡢ」ྜࡋࡓࡶࡢ࡛࠶ࡿࠋࡘࡲࡾࠊATP 䛔䛯䛜䚸ᐇ㝿䛿 㻥㻜㻑䜒✵Ὕእ䛷䝣䜷䞊䝹䝕䜱䞁䜾䛧䛶䛔䛯䚹✵ ຍỈศゎ࡛㥑ືࡉࢀࡿ F1 ࣮ࣔࢱ࣮ࠊࣉࣟࢺࣥ㸦ࡘࡲ Ὕෆ㈇㟁Ⲵ䛻䜘䜛ỈỈ䛾Ᏻᐃ䛜䝣䜷䞊䝹䝕䜱䞁䜾䜢ಁ ࡾỈ⣲࢜ࣥ㸧࡛㥑ືࡉࢀࡿ FO ࣮ࣔࢱ࣮࡛࠶ࡿࠋࡑࡋ 㐍䛩䜛䛸䛧䛯ㄝ䛿䛣䛾ㄗ䛳䛯ᐇ㦂⤖ᯝ䛻ᇶ䛵䛔䛶䛔䛶䛚䜚䚸 ࡚୧⪅ࡣࠊඹ㏻ࡢࢩࣕࣇࢺ㸦ᅇ㌿㍈㸧࡛㐃⤖ࡉࢀ࡚࠸ࡿࠋ ྰᐃ䛥䜜䛯䚹䜎䛯䚸㼏㼛㼚㼒㼕㼚㼑㼙㼑㼚㼠 䝰䝕䝹䜢䛡䜛䛸䛥䜜䛯⣙ FO ࣮ࣔࢱ࣮ࡀࣉࣟࢺ࡛ࣥᅇ㌿ࡍࢀࡤࠊF1 ࣮ࣔࢱ࣮ࡣ㏫ᅇ 㻝㻜 ಸ䛾䝣䜷䞊䝹䝕䜱䞁䜾㏿ᗘୖ᪼䛿䚸䝍䞁䝟䜽㉁ኚᛶ䛻⏝䛔 ㌿ࢆᙉ࠸ࡽࢀ࡚ࠊࡑࡢ⤖ᯝࠊATP ࡀྜᡂࡉࢀࡿࠋF1 ࣮ࣔ 䛯䜾䜰䝙䝆䞁ሷ㓟䛜⮬Ⓨⓗ䝣䜷䞊䝹䝕䜱䞁䜾䜢㐜䛟䛩䜛䛣䛸䛜 ࢱ࣮ࡢᅇ㌿ࡣ㢧ᚤ㙾࡛┤ど࡛ࡁࡿࡢ࡛ࠊ1 ศᏊほᐹࡼ ཎᅉ䛷䛒䜚䚸ᒀ⣲ኚᛶ䛾ሙྜ䚸㻞 ಸ⛬ᗘ䛧䛛ಁ㐍䛥䜜䛺䛔䛣䛸 ࡿᶵ⬟ゎᯒࡀ࡛ࡁࡿࠋࡲࡓࠊࡇࡢ࣮ࣔࢱ࣮ࡣไᚚ⨨ 䜢ぢฟ䛧䛯䚹 ࡀᚲせ࡛࠶ࡿࠋᮏ◊✲ศ㔝࡛ࡣ ATP ྜᡂ㓝⣲ࡢᵓ㐀ࠊᶵ ᵓࠊไᚚࡘ࠸࡚◊✲ࢆᒎ㛤ࡋ࡚࠸ࡿࠋ ATP ྜᡂ㓝⣲ 㸯㸧ࣄࢺ F1 ࣮ࣔࢱ࣮ࡢᅇ㌿ゐ፹ᶵᵓ 㸰㸬ᮏᖺᗘࡢ◊✲ᡂᯝ ࡲ࡛⣽⳦ࡢ $73 ྜᡂ㓝⣲࠾ࡼࡧࡑࡢ㒊ศ」ྜయ࡛࠶ ࡿ F1 ࣮ࣔࢱ࣮ࡢᅇ㌿≉ᛶࡘ࠸࡚ࡣࠊࡼࡃゎᯒࡉࢀ࡚ࡁ ศᏊࢩࣕ࣌ࣟࣥ ࡓࠋࡑࢀࡼࡿࠊATP ࡀ F1 ⤖ྜࡍࡿࠊ࣮ࣟࢱ࣮࡛ 㸯㸧⭠⳦ GroEL ࡢస⏝ᶵᵓ ࠶ࡿ γ ࢧࣈࣘࢽࢵࢺࡣ 80°ᅇ㌿ࡍࡿࠋ80°ࡢ⨨࡛ࠊATP 䠴⥺⤖ᬗᵓ㐀䜔⏕Ꮫⓗᐇ㦂䛛䜙䚸䝅䝱䝨䝻䝙䞁 ຍỈศゎࡀ㉳ࡇࡾࠊࣜࣥ㓟ࡢゎ㞳ࡀ㉳ࡇࡾࠊ40°ᅇ㌿ࡋࠊ 䠄㻳㼞㼛㻱㻸㻛㻳㼞㼛㻱㻿䠅䛿ኚᛶ䝍䞁䝟䜽㉁䜢䛭䛾ぶỈᛶ✵Ὕ䛻㛢䛨 120°ࡢᅇ㌿࡞ࡿࠋࡇࢀࡀ⏕≀ࡗ࡚ඹ㏻࡞ࡢࠊ ㎸䜑䛶䝣䜷䞊䝹䝕䜱䞁䜾䜢ຓ䛩䜛䛣䛸䛜᫂䜙䛛䛸䛺䛳䛶䛔䜛䚹 ࣑ࢺࢥࣥࢻࣜࡢ F1 ࣮ࣔࢱ࣮ࡢᅇ㌿ࢆゎᯒࡍࡿᚲせࡀ࠶ 䛭䛧䛶䝅䝱䝨䝻䝙䞁䛿ኚᛶ䝍䞁䝟䜽㉁䜢✵Ὕෆ䛻㝸㞳䛩䜛䛣 ࡿࠋࡋࡋࠊࡇࢀࡣࡇࡢ 15 ᖺ㛫ࠊୡ⏺ࡢㄡࡶ࡛ࡁ࡞ࡗ 䛸䛷ኚᛶ䝍䞁䝟䜽㉁ྠኈ䛾⤖ྜ䛻䜘䜛ྍ㏫䛺จ㞟యᙧᡂ ࡓࠋᅇࠊ⚾ࡓࡕࡣ 1 ศᏊほᐹࡼࡗ࡚ࠊࣄࢺࡢ F1 ࣮ࣔ 䜢㜼ᐖ䛧䚸㛢䛨㎸䜑䜙䜜䛯ኚᛶ䝍䞁䝟䜽㉁䛿⮬⏤䛻䝣䜷䞊䝹 ࢱ࣮ࡢᅇ㌿ࢆぢࡿࡇࡀ࡛ࡁࡓࠋࡑࡢ⤖ᯝࡣࠊ௨ୗࡢ㏻ 䝕䜱䞁䜾䛩䜛䛸⪃䛘䜙䜜䛶䛝䛯㻔㻭㼚㼒㼕㼚㼟㼑㼚㻌㼏㼍㼓㼑 䝰䝕䝹㻕䚹⚾䛯䛱 ࡾࡔࡗࡓࠋATP ࡀ F1 ⤖ྜࡍࡿࠊγ ࢧࣈࣘࢽࢵࢺࡣ 65° ᅇ㌿ࡍࡿࠋࡑࡋ࡚ඛຍỈศゎࡉࢀ࡚ F1 ୖṧࡗ࡚࠸ࡓ acceleration was proposed based on experiments using GroEL ࣜࣥ㓟ࡀゎ㞳ࡋ࡚ 65°ࡽ 90°ࡲ࡛ᅇ㌿ࡍࡿࠋ90°ࡢ⨨ single-ring (SR) mutants SR1 and SRKKK2. We revisited ࡛ࠊATP ຍỈศゎࡀ㉳ࡇࡾࠊ30°ᅇ㌿ࡋࠊ120°ࡢᅇ㌿࡞ these experiments and discovered several inconsistencies with ࡿࠋࡇࡢࡼ࠺ࠊ⣽⳦࣑ࢺࢥࣥࢻ࡛ࣜࡣࠊF1 ࡢṆ the previously reported conclusion. (i) SR1 was assumed to ゅᗘࡀ㐪ࡗ࡚࠸ࡿࠋࡲࡓࠊ㜼ᐖᅉᏊ࡛࠶ࡿ IF1 ࡣࠊᅇ㌿ bind to GroES stably and to mediate single-round folding in ࢆ 90°ࡢ⨨࡛Ṇࡉࡏࡿࡇࡀࢃࡗࡓࠋ the cage. However, we show that SR1 repeats multiple 㸰㸧⣽⳦ F1 ࣮ࣔࢱ࣮ࡢᏛ࣭ຊᏛඹᙺࡢ⤌ࡳ turnovers of GroES release/binding coupled with ATP ⣽⬊ࡢ୰ࡢ࢚ࢿࣝࢠ࣮≧ែ㸦ATP ⃰ᗘࠊࣉࣟࢺࣥ⃰ᗘ໙ hydrolysis. (ii) Although the slow folding by SRKKK2 was 㓄ࠊ࡞㸧ࡣ࠸ࢁ࠸ࢁኚࢃࡿࠋ࠸ࢁ࠸ࢁኚࢃࡗ࡚ࡶࠊ attributed to mutations that neutralize negative charges on the ATP ྜᡂ㓝⣲ࡣࠊATP ⃰ᗘяࣉࣟࢺࣥ⃰ᗘ໙㓄ࡢ࢚ࢿࣝ cage wall, we found that the majority of substrate polypeptides ࢠ࣮ኚຠ⋡ࢆ࠸ࡘ࡛ࡶ 100㸣㏆࠸ຠ⋡࡛࠾ࡇ࡞࠺ࡇ escape from SRKKK2 and undergo spontaneous folding in the ࡀồࡵࡽࢀ࡚࠸ࡿࡋࠊᐇ㝿ࡑ࠺ࡋ࡚࠸ࡿࠋ࠺ࡋ࡚ࡑ bulk medium. (iii) It was proposed that an osmolyte, ࢇ࡞ࡇࡀྍ⬟ࠋ⣽⳦ࡢ F1 ࡢ࣮ࣟࢱ࣮☢Ẽᚤ⢏Ꮚࢆ trimethylamine ╔ࡋࠊእ㒊☢ሙࡼࡗ࡚ࡺࡗࡃࡾᙉไⓗᅇࡍࠊ folding by mimicking the effect of cage wall negative charges ࡑࢀ㏫ࡽࡗ࡚ᑡࡋ㐜ࢀ࡞ࡀࡽࠊ࠶ࡿ࠸ࡣᑡࡋඛᅇ㌿ of WT GroEL and ordering the water structure to promote N-oxide, accelerated SRKKK2-mediated ࡍࡿࡢࡀほᐹࡉࢀࡿࠋࡇࢀࡣ F1 ࡢࢺࣝࢡࡼࡿࡶࡢ࡛࠶ protein compaction. However, our results demonstrate that ࡾࠊࡇࡢ᪉ἲ࡛ 360°ࡢࢺࣝࢡࡢࡁࡉࢆồࡵࡽࢀࡿࠋࡑ in-cage folding by SRKKK2 is unaffected by trimethylamine ࡢ⤖ᯝࠊATP ࡀᏑᅾࡍࡿࠊࢺࣝࢡࡣࠊ0°ࠊ40°ࠊ80°࡛ N-oxide. (iv) Finally, although it was reported that SRKKK2 ࢪࣕࣥࣉࡋ࡚ῶࡍࡿࡢࡇࡂࡾࡢลࡢࡼ࠺࡞ࣃࢱ࣮ࣥࢆ lost 120°ࡈ⧞ࡾ㏉ࡋ࡚࠸ࡓࠋATP ⃰ᗘࡀ㧗ࡅࢀࡤࠊ0°ࡢ ribulose-1,5-bisphosphate carboxylase/oxygenase, we found ࢪࣕࣥࣉࡢࢱ࣑ࣥࢢࡀ 0°ࡼࡾࡶ᪩ࡲࡾࠊࡢࡇࡂࡾࡢล that SRKKK2 retains this ability. Our results argue against the ࡣ㧗ࡃ࡞ࡾࠊᅇ㌿ࡢ࢚ࢿࣝࢠ࣮ࡣࡁࡃ࡞ࡿࠋࡇࡢࡼ࠺ role of the negative charges on the cage wall of GroEL in ࡋ࡚ࠊ㧗࠸ ATP ⃰ᗘ㸦ࡁ࡞'GATP㸧ࡣࣟࢫ࡞ࡃᅇ㌿ substrate protein folding. Thus, in chaperonin studies, folding ࡢᶵᲔⓗ࡞࢚ࢿࣝࢠ࣮ኚࡉࢀࡿࠋ kinetics need to be examined thoroughly to determine the 㸱㸧ATP ྜᡂ㓝⣲ࡢ㜼ᐖᅉᏊ IF1 ࡢᙺ fraction of the real in-cage folding. the ability to assist the folding of ࣑ࢺࢥࣥࢻࣜࡢ ATP ྜᡂ㓝⣲㸦࠾ࡼࡧ F1㸧ࡢ ATP ຍ Ỉศゎάᛶࢆ㜼ᐖࡍࡿㄪ⠇ᅉᏊࡋ࡚ IF1 ࡀ▱ࡽࢀ࡚࠸ ATP synthase ࡿࠋIF1 ࡀ࡞࠸ࠊ࣑ࢺࢥࣥࢻࣜࡢࢡࣜࢫࢸᵓ㐀ࡀ࡛ࡁ 1) Rotary mechanism of human mitochondrial F1 ࡃ࠸ࠊ࣏ࢺ࣮ࢩࢫࡀ㉳ࡁࡸࡍ࠸ࠊሗ࿌ࡀ࠶ The rotary motor enzyme F1-ATPase (F1) is a catalytic ࡿࠋ⚾ࡓࡕࡣ IF1 㑇ఏᏊࢆḞᦆࡋࡓ࣐࢘ࢫࢆసᡂ subcomplex of FoF1-ATP synthase that produces the majority ࡋࡓࠋணᮇࡋ࡚ࠊࡇࡢ࣐࢘ࢫࡣㄪࡓ㝈ࡾ࡛ࡣࡲࡗ of ATP in respiring cells. Chemo-mechanical coupling has ࡓࡃᗣ࡛࠶ࡾࠊṇᖖ࡞࣐࢘ࢫ༊ูࡀࡘ࡞࠸ࠋIF1 been studied extensively for bacterial F1 but very little for ௦ࢃࡿㄪ⠇ᅉᏊࡀᏑᅾࡍࡿࡢࠊ࠶ࡿ࠸ࡣࠊATP ྜᡂ mitochondrial F1. Here, we visualize and analyze ATP-driven 㓝⣲ࡣไᚚࡉࢀࡿᚲせࡀ࡞࠸ࡢࠊ᳨ウࡀᚲせ࡞ែ rotation of human mitochondrial F1. A rotor-shaft J-subunit in ࡞ࡗࡓࠋ the stator D3E3 ring rotates 120° per ATP accompanying three catalytic steps; ATP binding to one E-subunit at 0°, Pi release 㸱㸬Research projects and annual reports from another E-subunit at 65°, and ATP hydrolysis on the third E-subunit at 90°. Rotation is often interrupted at 90° by We are studying two independent projects; molecular persistent ADP binding and is stalled at 65° by a specific chaperones and ATP synthase. inhibitor azide. These features are different from those of the bacterial F1, in which all of the above events except ATP Molecular chaperones Chaperonin GroEL mediates the folding of protein binding occur at 80°. A mitochondrial endogenous inhibitor for FoF1-ATP synthase, IF1, blocks rotation at 90°. encapsulated in a large cavity that, when sealed by GroES, is 2) Chemo-mechanical coupling of bacterial F1 referred to as the central cage. Recently, a critical role of F1-ATPase (F1) is a motor enzyme, in which J subunit rotates negative charge clusters on the cage wall in folding 120q per ATP in the D3E3 cylinder. During the operation, the chemical energy of ATP hydrolysis ('GATP) is converted interactions ~100% into the mechanical energy of rotation. However, the between the bacterial chaperonin GroEL and unstructured proteins.. J Biosci Bioeng. 2013 Aug;116(2):160-4. mechanism for such efficient conversion is yet unknown. Here Nakamura J, Fujikawa M, Yoshida M. IF1, a natural inhibitor of we show the profiles of torque as a function of the rotary angle mitochondrial ATP synthase, is not essential for the normal growth under various 'GATP conditions. The profiles show three and breeding of mice. Biosci Rep. 2013 Sep 17;33(5). jumps of torque at about 0q 40qand 80q in a 120q rotation Sugawara K, Fujikawa M, Yoshida M. Screening of protein kinase each followed by a gradual descent, indicating that F1 inhibitors and knockdown experiments identified four kinases that generates torque by the transitions between three states. The affect mitochondrial ATP synthesis activity. FEBS Lett. 2013 Nov angular position of the transition makes a shift as the 29;587(23):3843-7. concentrations of ATP, ADP and P i vary. These results not Fujikawa M, Ohsakaya S, Sugawara K, Yoshida M. Population of only suggest how F1 rotates but also explain how F1 varies ATP synthase molecules in mitochondria is limited by available torque reflecting change of environmental 'GATP, thus 6.8-kDa providing a missing link between its rotation scheme and Feb;19(2):153-60. energetics. proteolipid protein (MLQ). Genes Cells. 2014 Kioka H, Kato H, Fujikawa M, Tsukamoto O, Suzuki T, Imamura H, 2) IF1 knock-out mice are as healthy as wild-type mice Nakano A, Higo S, Yamazaki S, Matsuzaki T, Takafuji K, Asanuma IF1 is an endogenous inhibitor protein of mitochondrial ATP H, Asakura M, Minamino T, Shintani Y, Yoshida M, Noji H, synthase. It is evolutionarily conserved throughout all Kitakaze M, Komuro I, Asano Y, Takashima S. Evaluation of eukaryotes and it has been proposed to play crucial roles in intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a prevention of the wasteful reverse reaction of ATP synthase, positive regulator of oxidative phosphorylation. Proc Natl Acad Sci in the metabolic shift from oxidative phosphorylation to U S A. 2014 Jan 7;111(1):273-8. glycolysis, in the suppression of reactive oxygen species Kang SJ, Todokoro Y, Yumen I, Shen B, Iwasaki I, Suzuki T, Miyagi generation, in mitochondria morphology and in haem A, Yoshida M, Fujiwara T, Akutsu H. Active-site structure of the biosynthesis in mitochondria, which leads to anemia. Here, we thermophilic foc-subunit ring in membranes elucidated by report the phenotype of a mouse strain in which IF1 gene was solid-state NMR. Biophys J. 2014 Jan 21;106(2):390-8 destroyed. Unexpectedly, individuals of this IF1-knockout Morino1 M, Suzuki T, Ito M, Krulwich T. E. (2014) Purification and mouse strain grew and bred without defect. The general functional reconstitution of a seven-subunit Mrp-type Na+/H+ behaviors, blood test results and responses to starvation of the antiporter, J Bacteriol, 196(1), 28-35. IF1-knockout mice were apparently normal. There were no . abnormalities in the tissue anatomy or the autophagy. 㸳㸬ⴭ᭩࠾ࡼࡧ⥲ㄝ࡞ࡋ Mitochondria of the IF1-knockout mice were normal in morphology, in the content of ATP synthase molecules and in 㸴㸬ᣍᚅㅮ₇ࠊࢩ࣏ࣥࢪ࣒࢘➼ ATP synthesis activity. Thus, IF1 is not an essential protein for mice despite its ubiquitous presence in eukaryotes. ྜྷ⏣㈼ྑ ⣽⬊྾ ATP ྜᡂ ⛉Ꮫᮍ᮶㤋 2013 ᖺ 5 ᭶ 16 ᪥ ྜྷ⏣㈼ྑ ⣽⬊྾ ATP ྜᡂ ᮾிᏛ་Ꮫ㒊 2013 ᖺ 10 ᭶ 㸲㸬Ⓨ⾲ㄽᩥ 10 ᪥ Yoshida M. Nojima T, Konno H, Kodera N, Seio K, Taguchi H, Yoshida M. Nano-scale alignment of proteins on a flexible DNA backbone. PLoS One. 2012;7(12):e52534. doi: 10.1371 Hara S, Nojima T, Seio K, Yoshida M, Hisabori T. DNA-maleimide: an improved maleimide compound for electrophoresis-based Mammalian ATP synthase; from single molecule to body ࢻࢶ Bochum.Univ. 2014. Jan. 10 Yoshida M. Motojima F. Renovation of chaperonin mechanism after 15 years; a tethering polypeptide in the "football" cage folds in-cage or escapes out Bochum.Univ. 2014. Jan. 10 Yoshida M., Motojima F. “Football” with tethered polypeptide: titration of reactive thiols in a specific protein. Biochim Biophys Renovation of chaperonin mechanism Protein folding, in and out Acta. 2013 Apr;1830(4):3077-81 of Anfinsen’s closet 2014. 1.14 Nishida N, Yagi-Utsumi M, Motojima F, Yoshida M, Shimada I, Kato K Nuclear magnetic resonance approaches for characterizing ࢫࢫ Arolla 㕥ᮌಇ ⏕ࡢ ATP ࢩࢫࢸ࣒ࢆసࡾฟࡍ FoF1-ATP ྜᡂ㓝⣲ࠊ 㜰Ꮫ ་Ꮫ㒊ㅮ₇ (㜰) ࠊ2014 ᖺ 1 ᭶ 23 ᪥ ◊✲௦⾲⪅㸸ྜྷ⏣㈼ྑ 㸦+㸧 㸵㸬ᏛⓎ⾲ 㸰㸬▱㈈ᶒ➼㸹 ⛯⏣ⱥ୍㑻ࠊᮌୗ୍ᙪࠊྜྷ⏣㈼ྑ0LFURVWUXFWXUHRIWKHWRUTXH JHQHUDWHGE\)$73DVH᪥ᮏ⏕≀≀⌮Ꮫᖺ ி㒔 ⸨ᕝㄔࠊⳢཎెዉᏊࠊྜྷ⏣㈼ྑࣄࢺ )R) ࡢ Gࢧࣈࣘࢽࢵࢺ ࡞ࡋ 㸱㸬Ꮫእάື㸸 ྜྷ⏣㈼ྑᮾிᏛ་Ꮫ㒊㠀ᖖㅮᖌ ࣀࢵࢡࢲ࢘ࣥᰴࢆ⏝࠸ࡓ )R) ࢭࣥࣈࣜᶵᵓࡢゎᯒ᪥ᮏ⏕ ྜྷ⏣㈼ྑ-67&5(67ࠕࣛࣇࢧ࢚ࣥࢫࡢ㠉᪂ࢆࡵࡊࡋࡓ య࢚ࢿࣝࢠ࣮◊✲➨ ᅇウㄽ࣭㟼ᒸ ᵓ㐀⏕⛉Ꮫඛ➃ⓗᇶ┙ᢏ⾡ࠖ㡿ᇦࢻࣂࢨ࣮ ඖᓥྐᑜࠊඖᓥ㸦ᐑᓮ㸧ඃᏊࠊྜྷ⏣㈼ྑ. ࢩࣕ࣌ࣟࢽࣥࡀࢱࣥ ࣃࢡ㉁ࣇ࢛࣮ࣝࢹࣥࢢࢆຓࡍࡿ⤌ࡳ. ᪥ᮏ⺮ⓑ㉁⛉Ꮫ ࠊ2013. 6. 11-13ࠊ㫽ྲྀ ඖᓥྐᑜ.ࢩࣕ࣌ࣟࢽࣥຓࣇ࢛࣮ࣝࢹࣥࢢ࠾ࡅࡿࢱࣥࣃ ࢡ㉁ࡢᦂࡽࡂᢚไࡢゎᯒ. ᅜ㝿㧗➼◊◊✲ࣉࣟࢪ࢙ࢡࢺ➨ ᅇ◊✲ࠊ2013. 8. 8-9. ி㒔 Kang S, Todokoro Y, Yumen I, Shen B, Iwasaki I, Suzuki T, Miyagi A, Yoshida M, Fujiwara T, Akutsu HࠊThe Active-Site Structure of Thermophilic FoF1-ATP Synthase c-Subunit Rings in Membranesࠊ ➨ 51 ᅇ᪥ᮏ⏕≀≀⌮Ꮫᖺࠊ2013 ᖺ 10 ᭶ࠊி㒔 Tasaki K, Kasuya Y, Soga N, Suzuki T, Yoshida M, Kazuhiko Kinosita JrࠊQuantitative assay of ATP-driven proton-pump activity of FoF1ࠊ➨ 51 ᅇ᪥ᮏ⏕≀≀⌮Ꮫᖺࠊ2013 ᖺ 10 ᭶ࠊி㒔 Suzuki T, Tanaka K, Wakabayashi C, Furuike S, Saita E, Kinosita K, Yoshida M ࠊ Single molecule analyses of human F1-ATPase revealed distinct rotation scheme of mitochondrial F1 motor.ࠊ➨ 51 ᅇ᪥ᮏ⏕≀≀⌮Ꮫᖺࠊ2013 ᖺ 10 ᭶ࠊி㒔 㕥ᮌಇࠊ⏣୰୍ᕭࠊⱝᯘ༓ࠊྂụ ᬗࠊ⛯⏣ⱥ୍㑻ࠊᮌୗ୍ ᙪࠊྜྷ⏣㈼ྑࠊࣄࢺ F1-ATPase ࡢ୍ศᏊゎᯒࡀ᫂ࡽࡋࡓࠊ ࣂࢡࢸࣜࡣ␗࡞ࡗࡓ࣑ࢺࢥࣥࢻࣜ F1 ࡢᅇ㌿ࢫ࣮࣒࢟ࠊ ᪥ᮏ⏕య࢚ࢿࣝࢠ࣮◊✲➨ 39 㛤ウㄽࠊ㟼ᒸࠊ2013 ᖺ 12 ᭶ 㸶㸬ࡑࡢ≉グ㡯 㸯㸬እ㒊㈨㔠㸹 ⚾❧Ꮫᡓ␎ⓗ◊✲ᇶ┙ᙧᡂᨭᴗ◊✲ ㄢ㢟ྡ㸸ࢱࣥࣃࢡ㉁ࡢ⏕ᡂ⟶⌮ ◊✲௦⾲⪅㸸ྜྷ⏣㈼ྑ 㸦+㸧 ⛉Ꮫ◊✲㈝⿵ຓ㔠࣭ᇶ┙◊✲㸦㹑㸧 ㄢ㢟ྡ㸸㸿㹒㹎ྜᡂ㓝⣲ࡢᵓ㐀ไᚚ⏕⌮ ◊✲௦⾲⪅㸸ྜྷ⏣㈼ྑ 㸦+㸧 ⛉Ꮫ◊✲㈝⿵ຓ㔠 ᪂Ꮫ⾡㡿ᇦ◊✲ࠕኳ↛ኚᛶࢱࣥࣃࢡ㉁ࠖ ㄢ㢟ྡ㸸ኳ↛ኚᛶࢱࣥࣃࢡ㉁ศᏊࢩࣕ࣌ࣟࣥࡢ┦స⏝ࡢ ゎ᫂ ྜྷ⏣㈼ྑ ᩥ㒊⛉Ꮫ┬ࠕ⸆➼ᨭᢏ⾡ᇶ┙ࣉࣛࢵࢺࣇ࢛࣮ ࣒ࠖ᥎㐍ጤဨጤဨ㛗 ÙßÐ|ùÆÏ Ý"(½%Ð|Ì÷8ÐÉ#Ï #'Ø^eÑ' ôÇ2¨Á!3Ùߣ¶8ÐÉùÆ'p¶Õ%ÄÑ&å) 4# 8.!4&Û1&Ùß÷(Č'RIVºÉ2eÉ, "8{-čàºÉOGKF%$'±ðÈċ%$'ÒqÉ#&7 3þĆgdãêv)mWMV'Ùß8ČÕ4(ÎöÕ ®Ã"¯!4Ð|ùÆÏ Ý(æxÐ|ÝĀ'`'Ý#À+ 13NBX%ôÇ8hÐÉ8«éZÙß'¸´&¦!4#6&Ê í3Ý"ñ75!4Ùß'(ÿcýsТºÉÐÎ Ï álÐ%$ÐÉ8Îõ4"'´úÕ%Ām&<=;Jç 5!4\®ûµ_ĉ×ć4"6ùÆ'·Å#ÍÏ ' s#%Ĉ'õ®Ã8¨4ÑÕ%ÚÙß/©ý5!3 ºÉZqÉ'}Þªì0ĆÿcK;?;YL>NH:BCÐdm ¾ë%$'mā'Ùß/ý.25!4"(%Ð|ùÆ'ăÔ #°'ùÆ'³poÑ'®â8¨4#"µ'ĊtÓÏ *'øË 8.!4 «énò(Ð|ùÆÏ Ý']&a«~¤4§»ÝÖ'UC J"4Ý~ z&! z'a«~«é&!3æ xÐ|ÝĀ'`'Ý#y½_¬«é¯5!4Ð ( 'ÜDQCE['ÚÊnÙß2Ùß*m '²DQCE[ 'ÑÊnÙß"´¹Õ%u»Ùß&w3ä-Ì(«~ zÐ z'u»Ùß8¥!4jdÕ%@UASTP'¼£(i&Ð És'Ú89 ¿"ÚĂÝÖ'&13Ă 'čÝÖ8f"41&%!4ą*'ý/©î5!3 u»(Ċ}óïK;?Ąüb»kr~«~%$*'è8¡ !4 FB @U:?4S E? @<WSg @<WSh WSg WSh E{ vw};M 'A{ vw};M @<` @<- @<KQ @<;M ;M EX E@) FPRi FPRii ` @U:?`s;Mi 3<@> @U:" xyxu~tz|] 3<1L7 13<V: FPRiii @U:?`s;Mii E=DH 3<NG <NG ^X 3< X @(F ?'I X @) @ 6O 'A=DHcsd Z&% c c c c c c c c c c c c c d d d d d d d d d d d e e e e e e e e e e e e f +&, \ja5qJrj[0 /5 .0j 8Yja5qJr /5 9 [0jqCr \ .0ja5qJrj/5j2!jb0jqr [0 8Y _$T# _$T# .0ja5qJr ja5qrjb0 8Yj2!jb0 9jb0j \j8Yj9jj[0j/ja5qrjb0 /5 9 \ \j2!ja5qr .0ja5qJrj/5j j2!ja5qrj2! .0ja5qJrj/5j j\j8Yj9jj[0 [0 8Y \ .0 [0 a5qJr 9 .0ja5qJrj/5j j\j8Yj9jj[0 qrl@mnopF*k, Assoc. Prof. Takakazu KanekoÖ !")*!,)*-)%$()'&#+ 43 4C*©ĜrĮS\ĚċĪĂđĉđ ôÞóó yf< Ö s ĝğā ¨Ħ ¨ÍÐĝX ĊA5ē Ěğ éýÜÝãÝ ĝrS\ĚċĜąĂŀıľr ĪĂX Ğ>ČğāÂMāFěĜĪs ĝEĮĥ Æ@ éïðèßÛ ěÖ ïíï ğāÊ6 Į ėĨēħĆĜŀőŚļĮćĪĎěĊĜąĎěĊĨīęą éýÜÝãÝ ĝeēĪěĊhēĪĊāôÞóó yf< ĪĂĎīĢĚĝāĖĞħĆĜYĮaĘX Ċā>uĜ ĞeĚğ<&đĜąĂĘĢĩ ĚğāôÞóó s ĉĨ Ò ďīęĈĩāĖĞąČĘĉğās Ğ ¦ Ğĝħĩ ïþù 2@³¹ĮňıʼnĽđāFĞrS - ā E Ħ ; ĽŃŖĽġĞ` _ Z - ďĕĪĎěĊ \ ĻĶŅŕ Å ¢ ½ Į Z ' ēĪĎěĊ* © ĚĄĪĂ 9 / ďīęċėĂĎĞs ġĞ Z ğÀ t ĝ ś+ŜÖ kĚĄĪĎěĉĨāĊÄĤĨīęąĪĂ]ăğā ×ßØÖ Ö õóèåÜÜÛ ĸŇŐĝğā ;bvěĜĪX āĝs Цĝ%pĮē ĸņĽłıŘĮ#đėVāgĝ´HďīĪ X ĞĸŇŐ² µ ĝ) ĩ¡ ģāX Ğ Ħ Ó 7 ×æûëÞÛØĊA 5 ēĪĂĖĞ ğĸņĽłıŘ R \ĝÎĭĪÆ@[9ěĖĞ>uZĮ9/đę AZĮēĂæûëÞÛ ğİıœŘńĉĨÒīėÓ7 ċėĂěĎĬĊāX ěs ĞZğX ĝA5đęĈĩāĖĞÇĝğ>!dŎŘōāôúĀò ŋ £ ĝ A ĕĔāÁ ¤ £ Í ĚďĢĐĢĚĄĩāĎЯ įŏŔŚ¾·2@āĈħĠŎŔŊńŗĴĻŌŁŖŚŃ 2 ěĜĪ2 @ Ċm ² i ĞÇ ĥ> ąĂĢėā ; ĸŇŐ ¸Æ@Ċ.ĢīĪĂ>!dŎŘōÆ@Įy?ē ²oĝħĪěām9/ĞX Ċā;ĝĈčĪX ĪěārS\Z©ĈħĠ4C©ĞĮĥėĨē Ñ3Ğ>gĮ(ĤĪķŚĽĥĄĪĂĎĞħĆĜ§jĉ ĎěĉĨāĎĞÆ@ĞĊĞl{ÏĚɯĜ Ĩās ěX ĞĸŇŐĉĨWĨīė[9Į U"ĮpėēĎěĊĭĉĪĂś+ŜÖ 8ěđęĻĽłŐĮđās Ğx©ĮħĩÕĤ Ö ĪđČģĮiĨĉĝēĪĎěĮvĝĮÄĤęąĪĂÖ Research projects and annual reports Ö Diversified microorganisms are able to colonize the 531 intercellular, and sometimes also intracellular, spaces of ×ÜØÖ ÖõóèåÜÝÝ ğ 6ŀıľ plant tissues, without causing apparent damage to the ×ì÷ÿùúúØĝrS\Į´HēĪĎěĊĚċĜąĂđĉđĜ host plant. Rhizobia and bacterial endophytes have been ĊĨā ĥđČğ Į<ďĕė õóèåÜÝÝ <ğ isolated from several tissues in numerous plant species. ì÷ÿùúú ĝrS\Į´HēĪĂĎīĨĞ<ğ ôÞóó Such many bacterial strains have beneficial effects on ĮS\ĚċĜąėĤāijŋIJĵĿŚĮs ġ~Ě plant growth and health. Some strains of them are ċĜąĂĘĢĩāõóèåÜÝÝ ĚğāijŋIJĵĿŚĞH Ċ studied in terms of the molecular mechanisms of ì÷ÿùúú ĞrS\Į^ establishment inside plants and their functions well. ēĪĎěĮđęąĪĂś+ ŜÖ We reported the full genome sequences of such bacteria, ×ÝØÖ ïöñÝÛÞâ qĞİıœŘńĞ: Mesorhizobiumi, Bradyrhizobium, and Azospirillum. The 8ÈĮ}CđėĂïöñÝÛÞâ qĞİıœŘńğŋIJ genomic information provided valuable insights into the ņŕİœņŘ Āòïå Æ@ĝcďīėVāÇĝĸŇ life ŐŔİŖŘļőŘŃĊĒęąėĂĎĞİıœŘńğ àÞÞÖ interactions with host plants. We examine the nucleotide üø ĞÌďĚĄĩāĖĞÓ7ĝğ àÛß Æ@ĊďīėĂ sequences of the other related endophytic bacterial +Ğ îåêêÞÛÞÛää qĈħĠ òâå qĞİıœŘń strains genomes and deduce the symbiotic functional ěÈ|¿ĮĈĎĜąāÜáà Æ@ĉĨĜĪĹİÓ7Į+ gene repertoire in their genomes. Comparative genomics CđėĂĢėāïöñÝÛÞâ ĜrS\ÎÃÆ@ of naturally occurring plant-associated bacteria have a ĥ°ĘĉĩāĎīĨĊn«qĞQ7FZĝGē potential for providing information that can be used to ĪěďīėĂś+ŜÖ develop enhanced plant-microbe interaction. ×ÞØÖ ğŀıľěĞĮ\ďĕ (1) A Rj2 soybean plant (Hardee) is symbiotically ĪĞĝāííí 6~śôÞóóŜĮēĪĎěĊĚċĪĂÊ incompatible with Bradyrhizobium japonicum USDA122. 6Ğ ğāïêò <ŀıľ éýÜÝãÝ Ğrĝ The rhizobial rhcJ and ttsI mutants fail to secrete typical of the bacteria, including information about effector proteins through the type III secretion system incompatibility with Rj2 soybean plants. Appl. Environ. (T3SS), and they gain the ability to nodulate Hardee. This suggests that some effectors secreted via the T3SS Microbiol. 2013, 79,1048-1051 H. Kasai-Maita, H. Hirakawa, Y. Nakamura, T. Kaneko, K. Miki, trigger incompatibility between these two partners. J. Maruya, S. Okazaki, S. Tabata, K. Saeki, S. Sato: (2) We determined the complete nucleotide sequence of Commonalities and differences among symbiosis islands of Mesorhizobium loti strain NZP2037 symbiosis island, three Mesorhizobium loti strains. Microbes Environ. 2013, 28, and we compared it with those of strain MAFF303099 275-278 and R7A. The determined 533 kb sequence of S. Okazaki, T. Kaneko, S. Sato, K. Saeki: Hijacking of NZP2037 symbiosis island, on which 504 genes were leguminous nodulation signaling by the rhizobial type III predicted, secretion system. Proc. Natl. Acad. Sci. U S A. 2013, 110, implied phenylalanine-tRNA its gene integration and into subsequent a genome rearrangement. The core regions of the three symbiosis 17131-17136 K. Takeshima, T. Hidaka, M. Wei, T. Yokoyama, K. Minamisawa, islands consisted of 165 genes. NZP2037 specific-genes H. Mitsui, M. Itakura, T. Kaneko, S. Tabata, K. Saeki, H. encoding functional proteins in nodulation-related events Oomori, S. Tajima, T. Uchiumi, M. Abe, Y. Tokuji, T. were found. They suggest that these specific genes Ohwada: Involvement of a novel genistein-inducible multidrug contribute to broaden the host range of NZP2037. efflux pump of Bradyrhizobium japonicum early in the (3) Bradyrhizobium elkanii uses the type III secretion interaction with Glycine max (L.) Merr. Microbes Environ. system (T3SS) to militate for symbiosis with soybean. 2013, 28, 414-421. The wild-type strain, but not the T3SS-deficient mutant, Ö is able to form nitrogen-fixing nodules on the root of the 730/Ö soybean nfr mutant En1282. Expression of the soybean DPw, ¬z, NKªw, IJ, 0T, Ë@º nodulation-specific genes ENOD40 and NIN is increased şŀıľr« Bradyrhizobium elkaniiĞ|¿ĸŇŐ²oÖ in the roots of En1282 inoculated with B. elkanii but not 231s X āIJLā2013.9.7-9 with its T3SS mutant. Therefore, T3SS could activate Ö host nodulation signaling by bypassing nod-factor 83.1 recognition. ŝŜÖ =Ç¼Ë (4) Bradyrhizobium japonicum occurs triggering their B»®$Ëř8śçŜÖ symbiotic interaction with soybean by the detection of ¶Ô,şŏŒĹĶĺ±0ZijŘńŋįıŃĝħĪĻĽłŐĞ genistein. A genomic locus (BjG30) that is separated [98S\Ö ¥şË@ºÙÖ )WORşìÝàÚÝâ OÖ ×Þ OØÖ from the symbiosis island is induced the expression within minutes after the addition of genistein. The ŞŜÖ Ö ĖĞÖ ĜđÖ Ö mRNA levels showed distinct concentration dependence. This locus contains genes for the multidrug efflux pump, Ö TetR Ö family transcriptional regulator, and polyhydroxybutyrate (PHB) metabolism. The deletion of genes encoding the multidrug efflux pump resulted in defective nodulation performance and lower nitrogen-fixing capability. These results indicate that BjG30 plays a key role in the early stage of symbiosis as a nod gene inducer. Ö 6320/ T. Tsukui, S. Eda, T. Kaneko, S. Sato, S. Okazaki, K. Kakizaki-Chiba, M. Itakura, H. Mitsui, A. Yamashita, K. Terasawa, K. Minamisawa: The type III Secretion System of Bradyrhizobium japonicum USDA122 mediates symbiotic ᩍᤵ㻌 Ἑ㑔 㞟ᅋ㑇ఏᏛ◊✲ᐊ Assoc㻚㻌Prof. KAWABE, Akira. 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻼㼛㼜㼡㼘㼍㼠㼕㼛㼚㻌㻳㼑㼚㼑㼠㼕㼏㼟㻌 䠍䠊◊✲ᴫせ㻌 㸰㸧 ㌿⛣ᅉᏊࡢ㐍ࣃࢱ࣮ࣥࡢゎᯒ 㻌 㞟ᅋ㑇ఏᏛศ㔝࡛ࡣࠊ᳜≀ࢆ⏝࠸࡚ '1$ ኚ␗ࡢ⥔ᣢ ㌿⛣ᅉᏊࡣከࡃࡢ⏕≀࡛ࢤࣀ࣒ࡢ㒊ศࢆ༨ࡵ ᶵᵓࡢゎ᫂ࢆࡁ࡞ㄢ㢟ࡋ࡚◊✲ࢆ࠾ࡇ࡞ࡗ࡚࠸ ࡿ࡞ᰁⰍయࡢᵓ㐀ࢆ⪃࠼ࡿୖ࡛㠀ᖖ㔜せ࡞せ ࡿࠋ'1$ ኚ␗ࡀࡢࡼ࠺ฟ⌧ࡋࠊୡ௦ࢆ⤒࡚㞟ᅋ ⣲࡛࠶ࡿࠋ㌿⛣ᅉᏊࡀ⏕Ꮡୖ㔜せ࡞㑇ఏᏊᤄධ ୰࡛ࡢ㢖ᗘࢆࡢࡼ࠺ኚࡉࡏ࡚࠸ࡃࡢࢆ᫂ࡽ ࡍࡿࡇ࡛⏕≀᭷ᐖ࡞ຠᯝࢆࡶࡓࡽࡍࡇࡶ᭷ ࡍࡿࡇࡣ㞟ᅋ㑇ఏᏛࡢせ࡞┠ⓗ࡛࠶ࡾࠊ㐣 ࡾࠊከࡃࡢ⏕≀࡛㌿⛣ᅉᏊࢆάࡍࡿᶵᵓࡀ㐍 ཤ㉳ࡇࡗࡓฟ᮶ࢆ᥎ ࡍࡿࡇ࡛⌧ᅾ㐍⾜୰ࡢ ࡋ࡚࠸ࡿࠋ⌧ᅾࠊࢩࣟࢾࢼࢬࢼ࡛᭱㏆᫂ࡽ 㐍ࡸᑗ᮶ⓗࡢࡼ࠺㐍ࡀ㉳ࡇࡿࡢࢆண ࡞ࡗࡓ㌿⛣άᛶࢆᣢࡘ㌿⛣ᅉᏊࡘ࠸࡚ࠊࣈ ࡍࡿࡇࡀ࡛ࡁࡿࠋ ࣛࢼ⛉ࡢ୰࡛ࡢ㐍ࣃࢱ࣮ࣥࢆゎᯒࡍࡿࡇ࡛ ᮏ◊✲ศ㔝࡛ࡣ≉ᰁⰍయᵓ㐀ࡢ㐪࠸ࡸࡑࢀࢆࡶ ࡢࡼ࠺ࢥࣆ࣮ᩘࢆቑࡸࡋάࢆࡲࡠࡀࢀ࡚࠸ ࡓࡽࡍᶵᵓࡀࡢࡼ࠺ '1$ ኚ␗ᙳ㡪ࢆ࠼ࡿ ࡿࡢ࡞ࡘ࠸࡚᫂ࡽࡋࡼ࠺ࡋ࡚࠸ࡿࠋ ࠸࠺Ⅼ↔Ⅼࢆ⤠ࡗ࡚◊✲ࢆ࠾ࡇ࡞ࡗ࡚࠸ࡿࠋࢤ 㸱㸧 ࣀ࣒ࡣከࡃࡢ㑇ఏᏊࡀᏑᅾࡋࠊࡑࢀࡒࢀࡀ⮬↛㑅 ࢚ ࣆ ࢪ ࢙ࢿ ࢸ ࢵ ࢡ࡞ ไ ᚚᶵ ᵓ ࡢ 㐍 ࠼ࡿᙳ㡪ࡢゎ᫂ ᢥࡢᑐ㇟࡞ࡗ࡚⏕≀ࡢ㐍ࡢせᅉ࡞ࡗ࡚࠸ࡿࠋ ࢚ࣆࢪ࢙ࢿࢸࢵࢡ࡞ไᚚᶵᵓࡼࡾ㑇ఏᏊⓎ ࡋࡋ࡚ࡢ㑇ఏᏊࡣྠᵝ⮬↛㑅ᢥࡢᙳ㡪ࢆཷࡅ ⌧ࡸࢡ࣐ࣟࢳࣥᵓ㐀ࡢኚࡀ㉳ࡇࡿࡇࡀ▱ࡽࢀ ࡿࢃࡅ࡛ࡣ࡞ࡃࠊ࿘㎶ࡢ㡿ᇦࡢᰁⰍయᵓ㐀ࡢ㐪࠸ ࡚࠸ࡿࠋ࢚ࣆࢪ࢙ࢿࢸࢵࢡ࡞ไᚚࡣ㓄ิࡢ㐪࠸ ࡼࡗ࡚⮬↛㑅ᢥࡢാࡃᗘྜ࠸ࡣ␗࡞ࡗ࡚ࡃࡿࠋ༢⣧ ࡼࡽࡎ⾲⌧ᙧᕪ␗ࢆࡶࡓࡽࡍࡇࡀྍ⬟࡛࠶ ࡞ࡶࡢ࡛ࡣࠊ㡿ᇦ㛫࡛⤌࠼⋡ࡀ㐪࠺㐃㙐ࡢᙉࡉ ࡿࡀࠊࢡ࣐ࣟࢳࣥᵓ㐀ࡢኚࡼࡾ㐍ࣃࢱ࣮ࣥ ᕪࡀ⏕ࡌࠊ⮬↛㑅ᢥࡢຠᯝࡀ㡿ᇦࡼࡗ࡚ࡁࡃ ᙳ㡪ࢆ࠼ࡿᛮࢃࢀࡿࠋᵝࠎ࡞࢚ࣆࢪ࢙ࢿࢸ ␗࡞ࡿࡇ࡞ࡿࠋᰁⰍయࢆᵓᡂࡍࡿせ⣲࡛࠶ࡿື ࢵࢡไᚚᶵᵓࡢ࠺ࡕ≉ࢤࣀ࣒ࣥࣉࣜࣥࢸ ཎయࡸࢸ࣓ࣟ࡞ࠊࡲࡓ࣊ࢸࣟࢡ࣐ࣟࢳࣥࢆᵓᡂ ࣥࢢὀ┠ࡋ࡚◊✲ࢆ㐍ࡵ࡚࠸ࡿࠋࣥࣉࣜࣥࢸ ࡍࡿ㌿⛣ᅉᏊ࡞ࠊ࢚ࣆࢪ࢙ࢿࢸࢵࢡ࡞ࢡ࣐ࣟࢳ ࣥࢢไᚚࣃࢱ࣮ࣥࡢኚࡸࣥࣉࣜࣥࢸࣥࢢ ࣥᵓ㐀ࡢኚ࡞ࠊࡣ࿘㎶㡿ᇦࡢ㐍ࣃࢱ࣮ࣥࢆỴ ࢆཷࡅࡿࡇࡼࡿ㐍ࡢᙳ㡪࡞ࢆㄪᰝࡋ࡚ ᐃࡍࡿୖ࡛㠀ᖖ㔜せ࡞ࡶࡢ࡛࠶ࡿࠋ༢⾲⌧ᙧࡢ ࠸ࡿࠋ ኚࢆࡶ⮬↛㑅ᢥࡢ᳨ฟࡸ㐺ᛂ㐍ࡢணࢆࡍ 㻌 ࡿࡢ࡛ࡣ࡞ࡃࠊࡑࡶࡑࡶ⮬↛㑅ᢥࡢᙳ㡪ࡀࡢࡼ࠺ 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 ࡞せᅉࡼࡗ࡚ኚࡍࡿࡢࢆ᫂ࡽࡍࡿࡇࡣࠊ ᮏᖺᗘࡣືཎయࡢ㐍ᶵᵓࡢゎ᫂ࡢࡓࡵࠊືཎ ㏆ᖺࡢࢤࣀ࣒ሗࢆࡶࡋࡓ⏕≀ᏛࡢⓎᒎࢆ㋃ࡲ యᵓᡂࡢ␗࡞ࡿ⣔⤫㛫࡛సฟࡋࡓ㹄㸯ࡢᰁⰍయࡢఏ ࠼࡚ከᵝᛶ◊✲ࢆࡍࡿ࠺࠼࡛ࡣḞࡏ࡞࠸ࡶࡢ࡞ 㐩⋡ࡢㄪᰝࢆ࠾ࡇ࡞ࡗ࡚࠸ࡿࠋ๓ᖺᗘ࠾ࡇ࡞ࡗࡓ ࡗ࡚ࡃࡿᛮࢃࢀࡿࠋ 㓄ࡼࡿḟୡ௦ࡢఏ㐩⋡ࡢㄪᰝຍ࠼࡚ῶᩘศ ᮏ◊✲ศ㔝࡛ࡣලయⓗḟࡢ㸱Ⅼࡘ࠸࡚◊✲ࢆ ࡢఏ㐩ᵝᘧࡢゎᯒࢆ࠾ࡇ࡞ࡗࡓࠋ 㐍ࡵ࡚࠸ࡿࠋ 㸯㸧 ືཎయ㡿ᇦࡢ㐍ᶵᵓ ㌿⛣ᅉᏊࡢゎᯒ㛵ࡋ࡚ࡣࠊࢩࣟࢾࢼࢬࢼ࡛㌿ ⛣ ά ᛶ ࡀ ☜ ㄆ ࡉ ࢀ ࡓ 㹒 㹇 㹐 7HUPLQDO ,QYHUWHG ືཎయࡣ⣽⬊ศࡢ㝿ᰁⰍయࢆṇ☜ፉ⣽⬊ 5HSHDWࡢ࡞࠸㹋㹓㹊㹃࡛࠶ࡿ㹔㸿㹌㹂㸿㹊ࣇ࣑ ศ㓄ࡍࡿࡓࡵᚲ㡲ࡢࡶࡢ࡛࠶ࡾࠊ㑇ఏሗࡢ ࣮ࣜࡢ㌿⛣ᶵᵓࡢゎ᫂ࢆ࠾ࡇ࡞ࡗࡓࠋ㹔㸿㹌㹂㸿㹊 ṇ☜࡞ఏ㐩ࡣྍḞࡢࡶࡢ࡛࠶ࡿࠋࡋࡋࠊࡑ ࣇ࣑࣮ࣜࡣᮎ➃ࡢ㓄ิࢆḞ࠸࡚࠸ࡿࡀษࡾฟ ࡢ㔜せᛶࡶࡼࡽࡎືཎయ㓄ิࡣࢤࣀ࣒୰࡛᭱ࡶ ࡋᤄධࡣṇᖖ㉳ࡇࡿࠋ㹔㸿㹌㹂㸿㹊ࣇ࣑࣮ࣜ ᪩ࡃ㐍ࡍࡿゝࢃࢀ࡚࠸ࡿࠋࢩࣟࢾࢼࢬࢼࡢ ࡀᣢࡘ㸱ࡘࡢ㑇ఏᏊࡢᙺࢆ᫂ࡽࡍࡿࡓࡵࡑ ㏆⦕✀ࢆ⏝࠸࡚ືཎయ㓄ิࡀࡢࡼ࠺⨨ࡋ࡚ ࢀࡒࢀࡢ㑇ఏᏊࡢᑟධಶయࢆసᡂࡋࡓࡇࢁࠊࡇࢀ ࠸ࡿࡢࠊືཎయ㓄ิࡢ㐪࠸ࡀᐇ㝿ᰁⰍయࡢศ ࡲ࡛ᶵ⬟ࡀᮍ▱࡛࠶ࡗࡓ㑇ఏᏊࡀ㹔㸿㹌㹂㸿㹊ࡢ࣓ 㞳ᙳ㡪ࢆ࠼ࡿࡢࢆゎᯒࡋ࡚࠸ࡿࠋ ࢳࣝࣞ࣋ࣝࢆపୗࡉࡏࡿࡇࡼࡾࡇࡢ㌿⛣ᅉᏊ ࡢάᛶ⬟ࢆᣢࡘࡇࡀ᫂ࡽ࡞ࡗࡓࠋάᛶ We focused on the maintenance mechanisms of DNA ⬟ࡣࡑࡢࢥࣆ࣮㓄ิࡢ┦ྠᛶࡀ㧗࠸ࡶࡢࢆ≉␗ variation in Plant species. We are interested in the ⓗㄆ㆑ࡋ࡚࠸ࡿྍ⬟ᛶࡀ᭷ࡾࠊࡇࢀࡲ࡛Ⰻࡃࢃ following four topics. ࡗ࡚࠸࡞ࡗࡓ㌿⛣ᅉᏊࡢᕫⓗ࡞ቑᖜᶵᵓࡸࠊ㌿ ⛣ᅉᏊࡢไᚚᶵᵓࡢ⌮ゎ㈉⊩ࡍࡿࡇࡀᮇᚅࡉࢀ 1) Evolutionary process of Centromere regions ࡿࠋࡇࡢࡼ࠺࡞άᛶ⬟ࡢ࠶ࡿ㑇ఏᏊࡢᏑᅾࡸࠊᐟ Centromere is an important area for accurate ࡢᢚไᶵᵓࡢࢱ࣮ࢤࢵࢺ࡞ࡾ࠺ࡿ㓄ิࡢḞ chromosome segregation but is also one of the fastest ዴࡣࠊࡢ㹋㹓㹊㹃ẚ࡚㹔㸿㹌㹂㸿㹊ࣇ࣑ࣜ evolving regions in the genome. By using Arabidopsis ࣮ࡀ㧗࠸ቑᖜ⬟ࢆᣢࡘࡇࡢ୍ᅉ࡞ࡗ࡚࠸ࡿྍ⬟ relatives, ᛶࡀ࠶ࡿ㸦ᅗ㸯㸧ࠋ centromeric sequences on the segregation ratio. We made we are analyzing effect of different F2 plants with different centromere organization patterns to analyse transmission rate of each chromosome. 2) Patterns of Transposable Element Evolution In Arabidopsis thaliana, several transposable element families were identified to have active transposability. We analysed evolution of ONSEN family transposons. We found wide distribution of ONSEN family and conservation of heat activation among Brassicaceae. 3) Effect of Epigenetic regulation on Evolution Epigenetic regulation can affect evolution patterns through change of chromatin structure. We focused on imprinting genes to analyse divergence patterns. We ᅗ䠍㻌 䠲䠝䠪䠠䠝䠨䝣䜯䝭䝸䞊䜢ྵ䜐䠩䠱䠨䠡䛾ศᏊ⣔⤫ᶞ detected 䠄㉥⥺䛿䠝䠊䡈䡕䡎䠽䡐䠽䚸㯮⥺䛿䝅䝻䜲䝚䝘䝈䝘⏤᮶䛾䜒䛾䠅㻌 conservation of gene structure between epigenetically 㻌 regulated and non-epigenetically regulated loci. differences in duplication numbers and 䝅䝻䜲䝚䝘䝈䝘䛷䜲䞁䝥䝸䞁䝔䜱䞁䜾䛜ሗ࿌䛥䜜䛶䛔䜛 㑇ఏᏊ⩌䛻䛴䛔䛶ศᏊ㐍Ꮫⓗゎᯒ䜢䛚䛣䛺䛔䚸๓ᖺ 4) Evolution of nuclear transferred cytoplasmic genome ᗘ䛻䜲䞁䝥䝸䞁䝔䜱䞁䜾䛸㑇ఏᏊ㔜」䛻㛵㐃䛜䛒䜛䛣䛸䜢 DNAs ♧၀䛧䚸䜎䛯䜲䞁䝥䝸䞁䝔䜱䞁䜾㑇ఏᏊ䛾㐍䛜䛾㑇ఏ We analysed patterns of nuclear plastid DNA-like Ꮚ䛸䛿␗䛺䜛䛣䛸䜢ぢฟ䛧䛯䚹ᮏᖺᗘ䛿䛣䛾⌧㇟ 䜢᳨ド sequences (NUPT) in several plant species. We found 䛩䜛䛯䜑䛻␗䛺䜛⏕≀䛷ᐇ㦂ゎᯒ䜢䛚䛣䛺䛔䚸䜲䞁䝥䝸䞁 age 䝔䜱䞁䜾䛥䜜䜛㑇ఏᏊ䛾㐍䝟䝍䞊䞁䛾୍⯡ᛶ䜢᫂䜙䛛 distribution of NUPTs among species. The findings will 䛻䛧䛯䚹䜎䛯᰾䝀䝜䝮䛻Ꮡᅾ䛩䜛䜸䝹䜺䝛䝷䝀䝜䝮⏤᮶㓄 contribute ิ䛾㐍䝟䝍䞊䞁䛾ゎᯒ䜢䛚䛣䛺䛔䚸䜸䝹䜺䝛䝷䛛䜙᰾ mechanisms about evolution of cytoplasmic genome 䜈䛾㌿⛣ᚋ䛻㉳䛣䜛✺↛ኚ␗䛻䛿ㄪᰝ䛧䛯᳜≀䛶䛷 fragment after transferred to nuclear genome. ඹ㏻䛩䜛೫䜚䛜ぢ䜙䜜䜛䛣䛸䜢᫂䜙䛛䛻䛧䛯䚹䛣䛾೫ 䜚䛿 㻌 ㌿⛣ᮇ䛻䜘䛳䛶␗䛺䛳䛶䛚䜚䚸᰾䛻Ꮡᅾ䛩䜛䜸䝹䜺䝛 䠐䠊ㄽᩥ䠈ⴭ᭩䛺䛹㻌 䝷䝀䝜䝮᩿∦䛿ఱ䜙䛛䛾ᙧ䛷ㄆ㆑䛥䜜䚸೫䛳䛯✺↛ኚ␗ H. Ito, T. Yoshida, S. Tsukahara, A. Kawabe: Evolution of the 䛜㉳䛣䜛䛣䛸䛜♧၀䛥䜜䛯䚹⌧ᅾ䚸䛣䛾೫䜚䛸㛫ⓗ䛺ኚ ONSEN retrotransposon family activated upon heat stress in 䜢㉳䛣䛩ཎᅉ䛻䛴䛔䛶ゎᯒ䜢㐍䜑䛶䛔䜛䚹㻌 㻌 㸱㸬Research projects and annual reports dependent degradation understanding of patterns general and biased maintenance Brassicaceae. Gene. 2013. 518, 256-261 Y. Fu, A. Kawabe, M. Etcheverry, T. Ito, A. Toyoda, A. Fujiyama, V. Colot, Y. Tarutani, T. Kakutani: Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO J. 2013. 32, 2407-2417 T. Yoshida, A. Kawabe: Importance of Gene Duplication in the 䠏䠅㻌 䛭䛾㻌 䛺䛧㻌 Evolution of Genomic Imprinting Revealed by Molecular 㻌 Evolutionary Analysis of the Type I MADS-Box Gene Family 㻌 in Arabidopsis Species. PLOS One. 2013. 2, e73588 T. Yoshida, HY. Furihata, A. Kawabe: Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Research, published online ahead of print 2013 Oct 29 Ἑ㑔䚸㧗㔝ᩄ⾜㻦㻌 ✺↛ኚ␗䠄䠏䠅㑇ఏⓗከᆺ㻚㻌 㑇ఏᏊᅗ㚷 䠄ᅜ❧㑇ఏᏛ◊✲ᡤ䛂㑇ఏᏊᅗ㚷䛃⦅㞟ጤဨ䠅㻌 㻞㻜㻝㻟 㻘㻌 㻝㻠㻢㻙㻝㻠㻣㻌 㻌 䠑䠊ᏛⓎ⾲䛺䛹㻌 ྜྷ⏣㈗ᚨ䚸Ἑ㑔: 䝀䝜䝮䜲䞁䝥䝸䞁䝔䜱䞁䜾䛥䜜䜛type I MADS-box㑇ఏᏊ䛾㑇ఏᏊ㔜」䛸ศᏊ㐍.᪥ᮏ㐍Ꮫ➨ 15ᅇ䛴䛟䜀䠈⟃Ἴᕷ䠈2013.8.28-31 ᑠᮡளᕼ䚸⏣₶䚸ᚋ⸨⨾䚸ΎỈ㢧ྐ䚸Ἑ㑔䚸ཎ⏣ⱥ⨾Ꮚ: ఀ྿ᒣ䛾▼⅊▼᥇᥀ሙ䛻⏕⫱䛩䜛Arabidopsis halleri ssp. gemmifera 䛾2䛴䛾⏕ែᆺ䛻䛚䛡䜛㔠ᒓ✚. ᪥ᮏ᳜≀Ꮫ ➨77ᅇ䠈ᮐᖠᕷ䠈2013.9.13-15 䜖䛖䚸Ἑ㑔䚸ఀ⸨䛯䛩䛟䚸㇏⏣ ᩔ䚸⸨ᒣ⛅బኵ䚸ᶡ㇂ⰾ᫂䚸 ゅ㇂ᚭோ: 䝅䝻䜲䝚䝘䝈䝘TE䛾ᢚไゎ㝖άᛶ.᪥ᮏ㑇ఏᏛ ➨85ᅇ䠈ᶓᕷ䠈2013.9.19-21 ྜྷ⏣㈗ᚨ䚸㝆ึె䚸ゅ㇂ᚭோ䚸Ἑ㑔: ᰾䛻⛣⾜䛧䛯ⴥ⥳య 䝀䝜䝮᩿∦䛾䜶䝢䝆䜵䝛䝔䜱䝑䜽䛺ಟ㣭䛸ศᏊ㐍. ᪥ᮏ㑇ఏ Ꮫ➨85ᅇ䠈ᶓᕷ䠈2013.9.19-21 㝆ึె䚸ྜྷ⏣㈗ᚨ䚸Ἑ㑔: 䝅䝻䜲䝚䝘䝈䝘ᒓ᳜≀䛻䛚䛡䜛ᰁ Ⰽయఏ㐩⋡䛾೫䜚䜈䛾ືཎయ㓄ิ䛾ᙳ㡪. ᪥ᮏ㑇ఏᏛ➨ 85ᅇ䠈ᶓᕷ䠈2013.9.19-21 Ἑ㑔䚸ゅ㇂ᚭோ: ືཎయ䜢䝍䞊䝀䝑䝖䛸䛩䜛LTRᆺ䝖䝷䞁䝇䝫䝌 䞁. ᅜ❧㑇ఏᏛ◊✲ᡤ◊✲㞟䛂㌿⛣ᅉᏊ䛸ᐟ䛾┦స⏝ 䛻䜘䜛⏕ᶵ⬟䛃䠈୕ᓥᕷ䠈2013.10.10-11 㻌 䠒䠊䛭䛾≉グ㡯㻌 䠍䠅㻌 እ㒊㈨㔠 ⛉Ꮫ◊✲㈝⿵ຓ㔠䞉᪂Ꮫ⾡㡿ᇦ◊✲䠄ィ⏬⌜䞉ศᢸ䠅㻌 ㄢ㢟ྡ䠖䜲䝛ᒓ⬇ங䛻䛚䛡䜛∗䞉ẕ䝀䝜䝮䛾䜶䝢䝆䜵䝛䝔䜱䝑䜽 䛺ㄪ䛸㌵㎚䛾ศᏊᶵᵓ㻌 ◊✲௦⾲⪅䠖ᮌୗဴ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻟㻙㻞㻣 ᖺ㻌 㻔䠑ᖺ㻕㻌 ᅜ❧㑇ఏᏛ◊✲ᡤඹྠ◊✲䠝㻌 ㄢ㢟ྡ䠖䝅䝻䜲䝚䝘䝈䝘㏆⦕✀䛻䛚䛡䜛㌿⛣ᅉᏊ䛾ไᚚᶵᵓ 䛾ゎ᫂㻌 ◊✲௦⾲⪅䠖Ἑ㑔㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻡 ᖺ㻌 㻔㻝 ᖺ㻕㻌 䠎䠅㻌 Ꮫእάື㻌 䠣䡁䡊䡁䡐䡅䠿䠽䠖⦅㞟ጤဨ㻌 㻌 ◊✲ᐊ㞟ྜ┿㻌 㻌 "#+-".+-0+%!("*.$/$(+,)$*."('+(+&0 Associate Prof. Seisuke Kimura, Ph. D.ƈ 76 įǑǺǽǼNjÀďėǨǮNJÌïǭÈȎȣȮǒǹǰȇȵȉȢ ƈ Ìï7tĂøøïvďė|ǨǮNJnjÌïǭǭoÓ¡Ǎ ȳȎȣȮǭń Ń " Ô Ò ǸNJĠ Ĵ T ½ ǭȚȆțȌȫȄȸȞ ǸnjÌïǩ÷kǭŹǍǬķUȀ¬ǣNJďėȀŢǶǧǏǼNj ÔÒȀʼn·ǝǼǘǩǨNJÌïǔğnĨǸ°ĨǓǺȎȣȮ 2ĄǬǮǭƑǥǭďėȀ ŷǛǧǏǼNjƈ ȀwǼǛǖǴȀ·ǺǓǬǛǹǐǩǛǧǏǼNjƈ ƉƏƊƈ Ľǭ£ǭŁõeMi¡ǭďėƈ ƈ ƈ CĝIùǭEÛøÌïȠȲȺȩȊȂƉ ! Ɗ 864 ǮNJøIJ÷kǬ ǜǧĂøǝǼĽǭ£ȀpǕǖmBǙǟ ƈ ƉƏƊƈ Ľǭ£ǭŁõeMi¡ǭďėƈ ǼNjǘǭÌïǮëýǬøIJǛǧǒǻNJżǨǮÎ4ǭF Əƍƈ Ì ï ȪȵȰȸǭĥ Ī Ą z Ų ʼn Æ Ƙƈ ȠȲȺȩȊȂǭø Ľ ȀĂ ø ǝǼ ´ NJë ǭÛ ǔ ¶ ǛǧÛ ß ǝǼǩĽ Ř IJ÷kǬuǛǡĽmBǬǮÌïȪȵȰȸǬǹǼ< ǔŴñǬǫǤǡĮñńĽȀĂøǛǧÛǭäǽǬª©ǨǕ ǔŹ ǛǧǏǼǩį ǑǺǽǼNjǠǘǨNJĽ ǔm B ǝǼ ǼǹǐǬǫǼȻ_ƏȼNjǘǭǹǐǬøïǔ÷kǬ ĜǛǧ£ ǨÊ f ǛǡȠȲȺȩȊȂǭĽ I g ǬR dzǽǼÌ ï Ȫȵ ǫǪǭŁõeȀmBǙǟǼǘǩȀŁõeMi¡ǩǏǐNjȠȲ ȰȸǭzŲʼnÆȀĿǤǡǩǘǾNJFĽȀǼÂǨǮȓȩ ȺȩȊȂǭđ ǝĽ ǭ £ ǭŁ õ e M i ¡ ǮNJÛ ǔm ȶȴȸǸȓȱȔȰȸŮǭŲǔ¶ǛǧǏǼǘǩǔǿǓǤǡNj @ǝǼ÷kDZǭŧ ǬǬęǤǧǏǼǩįǑǺǽǼNj-N {žȽȠȲȺȩȊȂǬȓȩȶȴȸȀç=ǝǼǩĽǔFĽǬ ¥ [ y ǨǎǼĽ ǭ £ Ǯ- ǫǪǭ Ƃ ȀK ǗNJo ǖǭÌ ǫǼǘǩǓǺNJǘǽǺǭȪȵȰȸǔĽǭ<ǬŰŅǨǎǼ ïǔøIJ÷kǬ ǜǧĽǭHǙǫǪȀmBǙǟǼNjǛǓǛ ǘǩǔđZǙǽǡNjƈ ǫǔǺNJȠȲȺȩȊȂǭǹǐǬpǕǖĽȀmBǙǟǼÌï ƐƍĠĴȐȄȕǭł,úǭʼnÆƘƈ ȒȷȄȡȟȕȟǨǮNJ ǮÐǶǧôǛǏNjǘǭÌïȀ³ǛǏȰȝȵǩǛǧďėȀŢ ǺǓǭŨ t ǭÿ ǬǹǻĽ ȀÒ ¥ ǝǼĠ Ĵ ǭ± ǔ ǶǼ ǨNJĽǭ£¥ÔÒǸ÷kǩǭŹǬǥǏǧ³ èǛǧǷNJĠĴȐȄȕǔşǹǻp ǕǖǫǼǘǩǬǹǻNJ ǡǫĎņǔǺǽǼǘǩǔ½ǙǽǼNjǠǘǨēťǮNJȠȲ Ľ ǭȐȄȕǔ½ ǙǽǼDzǪǬǮè ǛǫǏǩǏǐõ œ ȺȩȊȂǭŁõeMi¡ǭďėȀŢǶǧǏǼNjƈ ǔĎǺǽǧǒǻNJł,úǩVǯǽǧǏǼNjēťǮȽȠȲ ȺȩȊȂȀéǨøIJǙǟǼǩNJĠĴ±ǮèǝǼǔNJ ĠĴǔıpǝǼł,úǔǒǕǧǏǼǘǩȀĂņǛǡNj ǘǽǮNJ÷ k m B Ǭǹǻł , ú ǔŌ ǙǽǼǘǩȀņ ǥǗǡ:ǶǧǭǨǎǼNjõaNJł,úǩĽmBǭ ŹǬǥǏǧʼnÆȀŢǶǧǏǼNjƈ ƉƐƊƈ Ľǭ£ǭoÓ¡ǭŢBĂøvĄďėƈ 図1 ニューベキア(Rorippa aquatica) 左:陸上の形態 左:水中の形態 ƉƐƊƈ Ľǭ£ǭoÓ¡ǭŢBĂøvĄďėƈ ƈ ĶíüǬǮǙdzǚdzǫǭÌïǔǏǼNjǠǭǨǷĽǭ ǮpǕǫmBǬ~ǴNJÌïǭȀðǦǗǧǏǼǩǏǤ ǧǹǏNjÀďė|ǨǮNJǘǭǹǐǫĽǭ£ǭoÓ¡ǔŢ B ǭţ ĕ ǨǪǭǹǐǬø Ǵ6 ǙǽǧǏǼǭǓȀNJĂ ø ȯȈ ȠȕȮǭŦǏǬČĈǝǼǘǩǨ·ǺǓǬǛǹǐǩǛǧǏǼNjǩ ǖǬNJűĻǫǪǭÊfĖǔǷǥðǭǎǼ£ǬâĈǛNJ ĂøvĄǒǹǰŨvĄǫʼnÆȀŢǶǧǏǼNjƈ ƉƑƊƈ ÌïǔȎȣȮȀwǼǛǖǴǭďėƈ ƈ ƜƦƙ"ǸĠĴT½ǭȚȆțȌȫȄȸȞǮNJȎȣȮȀxz ǬĤ¬ǛNJÕǬ×ĐǬǑǼǡǶǬƃǭȨȷȖȔǨ ǎǼNjÌïǮ-N¥ǭǡǶǬğnĨȀRǵqŽ-Ȁåǰ Ǽ Ņ ǔǎǼǡǶNJǠǭȎȣȮǮ Ǭſ } ȀK ǗǧǏǼǩ ƈ ŶIJĖǙǽǧǕǡűĻƅǭǬǮNJmǿǤǡǭĽȀ ¬ǥǷǭǔuaǝǼNjǑǯȽƈ űĻǭȭȕȟȻÛĻȼǭ Ľ ǮȋȑȋȑǨNJȭȧȟȻl ø Ļ ȼǭĽ Ǯ ǏȻ_ ƐȼNjȭȕ ȟǩȭȧȟǮNJĽǭ£ǓǺǮdzǤǡǖŹǫǏÌïǭǹǐ ǬņǑǼǔNJƏƖƎƎǬȭȕȟǭmÿĖǩǛǧløb´Ǩ ÊfǙǽǮǜǶǡǷǭǔȭȧȟǢǩǏǿǽǧǏǼNjdzǡNJș ȄȏȸǭĽ ǬǷo Ó ¡ ǔǎǻNJń Ľ Ȼ8 Ľ ȼǭW Ė ǩF Ľ ȻÅĽȼǭWĖǔuaǝǼȻ_ƐȼNjǘǭǹǐǫűĻǬņǺǽ ǼĽǭoÓ¡ȀȰȝȵǬǝǼǘǩǨNJĽǭ£ȀÝzǛ ǧǏǼŨtǔFƁǨǕǼǩįǑNJďėȀŢǶǧǏǼNjƈ ƈ ȭȕȟǭȭȧȟǭƞ Ə ǭĽǮŸ£ȀđǛNJƞ Ɛ ǨǮŗ ǔ7ƁǟǞǬšģĄǬ7ǛǡNjǘǭǘǩǓǺNJȭȕȟǩȭ ȧȟǭĽǭÝzǬǮń±ǭŨtǔŹǛǧǏǼǩ įǑǺǽǡNjǠǘǨNJƩƬƤʼnÆǬǹǻĽǭ£ÝzŨt ȀP z ǝǼǘǩȀŋ ǴǡNjƻƪƦƙƌǁƳƿǬǹǻƫƦƨǁȀP z most of lake cress populations are found. Despite the ǛNJƏƐƎĖǭƛƙƨƫȬȺȈȺȀ¥ǛǡNjƗƒ$ǓǺǫǼƞ Ɛ significance 7 Ɓ ƀ ^ ǭȓȆȣȘȄȥȸȍǩĽ ǭz Ų ʼn Æ ȀĿ ǏȽ mechanisms of phenotypic plasticity and environmental ƩƬƤʼnÆȀǛǡǩǘǾNJƔþǩƏƎþǭÇĹȻšŵĬȼǬp responses in plants, the underlying mechanism hasn't been ǕǫȥȺȌǔņǺǽǡNjǘǽǺǭŨtȀʼnÆǝǼǘǩǨNJ investigated. We investigate the mechanism of the Ľǭ£ÝzŨtȀPzǨǕǼǩ½ǙǽǼNjƈ heterophylly of lake cress. of this plant to study fundamental We hypothesized that phytohormones have important roles in determination of leaf shape of lake cress. Thus, we quantified various phytohormones in leaf primordia by liquid chromatography-tandem mass spectrometry. We found that gibberellin and jasmonic acid were more abundant when they develop simple leaves than compound ミズナ ミズナとミブナのF1 ミブナ 打木源助 エベレスト leaves. We also found that application of gibberellin to ダイコン shoot apex can dramatically change leaf shape of lake 図2 野菜に観察される葉形の多様性 cress. These results suggested that gibberellin, at least, is ƈ ƉƑƊƈ ÌïǔȎȣȮȀwǼǛǖǴǭďėƈ ƈ ƜƦƙ¯) ĜǮNJƜƦƙſ}ǫǪǭÿȀĆŇǛǧĠĴ T½Ȁ&ÖǙǟǡǻNJĠĴÙȀŌǝǼÔÒǨǎǼNj@ï ǨǮȉȸ¨<ŨtǭƾƓƑǔȬȔȘȺȶȋȲȶȺȘȺǩǛǧ ŰŅǫ*ǕȀǛǧǏǼǔNJÌïǨƾƓƑǭȪȰȷȍǮņǥǓǤ ǧǒǺǞNJȚȆțȌȫȄȸȞÔÒǭ0+Ǯ·ǺǓǩǫǤǧ ǏǫǓǤǡNjē ť ǮNJƫƧƟƏǩǏǐÌ ï ò Ķ ǭȚȆțȌȫȄ ȸȞ]tǔNJÌïǭƜƦƙ¯) ĜǭȬȔȘȺȶȋȲȶȺȘ ȺǩǛǧ*ǏǧǏǼǘǩȀņǏǢǛȽƫƧƟƏǭÔĵʼnÆȀŢ ǶǧǏǼNjƫƧƟƏǮř5]tǨǎǼǔNJǭľăŗǩĉ úǛǫǔǺÔĵǛǧǏǼǩįǑǺǽǼǡǶȽ.āÞŻá ǩŗ Ų 7 Æ ǬǹǻNJĉ ú ] t ǭP z Ȁŋ ǴǡNjLjĨ î ǬǹǼƜƦƙ¯ ) Ō ǬƫƧƟƏǩĢ N ǝǼ] t ǸȽ ŞǬʼnƁǝǼ]tȀń±PzǝǼǘǩǔǨǕǡNjõaNJǘ ǽǺǭ]tǭÔĵʼnÆȀǒǘǫǤǧǏǼNjƈ interested in plant in leaves. This phenomenon is called ‘compensation’. We happened to notice that leaf cells of lake cress showed compensation reaction when they are grown at relatively low temperature. This is the first finding that compensation reaction is induced by environmental cue, and we are now investigating the mechanism of the reaction. (2) The evolutinary-developmental study on leaf shape Cultivated vegetables show remarkable variation in leaf morphology. For example, Mizuna (Brassia rapa var. nipponsinica) has deeply lobed leaves, while Mibuna (B. rapa var laciniifolia), which is developed from Mizuna by shape variation. Based on RNA-seq data of Mizuna and development and environmental interactions. Currently, we have been focusing on the following four major projects. Mibuna, we developed more than 120 CAPS markers. Then Ninety-four F 2 individuals from cross between Mizuna and Mibuna were analyzed for segregation at 120 (1) Analysis of Phenotypic Plasticity of Leaf shape of Lake cress CAPS loci and for variation in leaf shape. Two putative quantitative trait loci (QTL) were detected for the leaf Plant can alter their development, physiology and life history depending on environmental conditions. This fundamental property is called phenotypic plasticity. The North American lake cress, Rorippa aquatica, shows heterophylly, expansion margin. We are interested in genetic basis of this leaf Research projects and annual reports are A defect of cell proliferation often triggers enhanced cell breeding in 19th century, has entire leaves with smooth ƈ We involved in heterophylly of lake cress. phenotypic plasticity on leaf shape. Submerged leaves are usually deeply dissected and has needle-like blade, whereas emergent leaves are generally entire with serrated or smooth margins. This heterophylly is thought to be adaptive response to submergence and increase the fitness in water's edge environment where shape variation. (3) Analysis of genome maintenance mechanisms of plants Arabidopsis SOG1, which is unique to plants, is a master transcriptional regulator of the DNA damage response. To identify interacting proteins of SOG1, we performed co-immunoprecipitaion and mass-spectorometric analysis. We found multiples proteins which associate with or dissociate from SOG1 specifically after induction of DNA damages by gamma-irradiation. 96532 ² kdv¦¡w^~^TV6:P>I»` Kaoru O Yoshiyama, Junya Kobayashi, Nobuo Ogita, Minako Ueda, Seisuke Kimura, Hisaji Maki, Masaaki Umeda: ¿¾(8FLµ¬±+[mÉ^Ào Ë:UK;4LÌ ATM-mediated phosphorylation of SOG1 is essential for the Ľ ǭ £ Ǭ Ł õ e M i ¡ Ȁ đ ǝ Ƞ Ȳ Ⱥ ȩ Ȋ Ȃ Ȼ DNA damage response in Arabidopsis. EMBO Reports 14: ! ȼǔo Ó ǫĽ Ȁø Ǵ6 ǝȯȈȠȕȮǬǥǏǧǭö 817-822 (2013) ŏ Ą ǫJ ǻġ ǴNJ ą ¼ t NJ C ² NJ¿ Ä ! NJ¾ Á ¥ Ø3NJC²NJųĸGNJ3NJcLŐSNJ¾Á¥Ƙƈ Ì ï ǭƬƭơƦƣƤƝǮĽ ħ ƜƦƙń Ń ǬŹ ǿǼƜƦƙȨȳȄȬȺ ȗǓɂƈ ljȂȭȣŮ ŭ 9 ǭÚ Ś ǬǹǼÍ Ŋ ljƈ ƈ Ɩ Ƙ ƈƒƗƌƓƓƈƉƐƎƏƑƊƈ NJĚ ƑƔ \ µ À 7 t ø ï v NJĒ ¦ ` ž Œ h NJ ƐƎƏƑƍƏƐƍƑƌƔƈ 7¥ǭ¹ĘŸȤȘȺȸǭʼnÆǓǺ®êǙǽǼńĽǭ¥Ŷ ȨȷȦȁȄȵǬǥǏǧNJą¼tNJ¾Á¥NJ¿Ä Ƣ !NJĚ Daniel Koenig*, José M. Jiménez-Gómez*, Seisuke Kimura§, ƐƎ \µÀ¹ŸøïvvŀpȐȜȳȄȞȒȸȫȓȅȮnjø Daniel Fulop§, Daniel H. Chitwood, Lauren R. Headland, Ravi ïȴȕȮõœǭ±öȦȷȸȜȃȂǍNJŜĀpvÃpźȊȱȸȤ Kumar, Michael F. Covington, Upendra Kumar Devisetty, An ȔNJƐƎƏƑƍƏƏƍƏƏƈ Korbinian ƛƽƻƾƯǀƯǂƷDŽƳƈ ƯƼƯƺLJǁƷǁƈ ƽƼƈ ǂƶƳƈ ƪƦƙƈ ƳƲƷǂƷƼƵƈ ǁƷǂƳǁƈ ưƳǂDžƳƳƼƈ Schneeberger, Stephan Ossowski, Christa Lanz, Guangyan ƱƽƻƻƽƼƈ DžƶƳƯǂƈ ƯƼƲƈ ƙƳƵƷƺƽƾǁƈ ƵƳƼƷƱǃƺƯǂƳƈ ƻƷǂƽƱƶƽƼƲǀƷƯƺƈ Xiong, Mallorie Taylor-Teeples, Siobhan M Brady, Markus ƵƳƼƽƻƳƈ ưLJƈ ƪƦƙƌǁƳƿƈ ƲƯǂƯƋƈ ƟLJƯDžƯƺƷƈ ƮƯƲƯDŽƈ ƨǀƯǁƯƲƋƈ ƫƳƷǁǃƹƳƈ Pauly, Detlef Weigel, Björn Usadel, Alisdair R. Fernie, Jie ƣƷƻǃǀƯƋƈƫƯǂƽǁƷƈƣƷǂƯƵƯDžƯƋƈƣƽƸƷƈƥǃǀƯƷƋƈƬƽǀǃƈƬƳǀƯƱƶƷƋƈ µÀIJ V. Tat, Takayuki Tohge, Anthony Bolger, Peng, Neelima R. Sinha, and Julin N. Maloof (*§ These authors ĖvĚ ƏƐƒ \őìNJƇ/pvNJƐƎƏƑƍƏƎƍƏƏƌƏƒƈ contributed equally to this work): Comparative transcriptomics Ìïǭ ƜƦƙ ¯)ȚȆțȌȫȄȸȞ]t ƫƧƟƏ Ǯ@ïȉȸ¨<Ũ reveals patterns of selection in domesticated and wild tomato. t ƾƓƑ ǭȈȅȸȘȺȤȺȞǓɂNJ¢ũNJċ¾àNJËû Proc. Natl. Acad. Sci. USA 110: E2655-2662 (2013) ×·NJ¾Á¥NJµÀŨvĚ ƖƓ \pNJ¤ ĭjp Molly Sharlach, Douglas Dahlbeck, Lily Liu, Joshua Chiu, José vµOȊȱȸȤȔNJƐƎƏƑƍƗƍƏƗƌƐƏƈ M. Jiménez-Gómez, Seisuke Kimura, Daniel Koenig, Julin N. COVJ52+¼+©¦Ä¯*!$0½¢njp+M Maloof, Neelima Sinha, Gerald V. Minsavage, Jeffrey B. Jones, @RU7Xªv\a¡w Robert E. Stall, Brian J. Staskawicz: Fine genetic mapping of ^²kt^:UK;4L ¬±+')0< RXopJ4, a bacterial spot disease resistance locus from Solanum ?>I Æ_vE>ATV6".s´ºg ,i pennellii LA716. Theoretical and Applied Genetics 126: ÅtwË:UK;4LÌ ÿ Ľ ¡ Ȁđ ǝÌ ï ȠȲȺȩȊȂȻ ! ȼȀú Ǐ 601-609 (2013) Kaoru O Yoshiyama, Kengo Sakaguchi, Seisuke Kimura: DNA ǡĽmB<ÔÒǭʼnÆNJC²NJīĞtNJÑIdNJ damage response in plants: Conserved and variable response ¾ Á ¥ NJ µ À Ì ï v Ě ƕƕ \ p NJ C æ Ť p v NJ compared to animals. Biology 2: 1338-1356 (2013) (Review) ƐƎƏƑƍƗƍƏƑƌƏƓƈ ¾ Á ¥ Ƙƈ ń Ľ ǭ Ă ø ǩ Ţ B Ƌƈ " ƈ 67: 50-56 (2013) ȻĦōȼ űĻǭȭȕȟǩȭȧȟǬňǙǽǼĽǭoÓ¡ǭĂøvĄȹ ŨvĄijºǭʼn·NJANJȣļĩNJDƆůNJ ƈ C²NJ :632ƈ Ěƕƕ\pNJCæŤpvNJƐƎƏƑƍƗƍƏƑƍƏƓƈ ¦¹¥q*-/¼+ 1rh%&0¡COVJ52 Ë Ì1§ '½¢njp+¬±X rNJčű'qŪNJ¾Á¥NJµÀÌïv űĻǨǎǼȭȕȟȹȭȧȟǬņǺǽǼĽǭoÓ¡ǬǥǏǧNJ A NJ ȣ ļ ĩ NJ D Ɔ ů NJ C ² NJ r NJč ziXªvuȤ¸\²Wk¦ à ű ' q Ū NJ¾ Á ¥ NJµ À Ì ï £ v Ě ƐƓ\ Ħ NJC æ h©¦9S54LZtwÊo5NUG< ŤpvNJƐƎƏƑƍƗƍƏƐƈ Developmental and molecular mechanisms of the heterophylly ÷kǬ ǜǧĽǭ£ȀmǑǼÌïȠȲȺȩȊȂȀúǏǡȞȳ of lake cress, Hokuto Nakayama, Seisuke Kimura, The 31 st ȸȔȌȴȨȞȺȮʼnÆNJC²ȽcÀ»¸NJ#ûYNJ¾Á Plant Biotechnology Symposium Program, International Plant ¥ Ƚ ƦƟƫ õ h ǭ Ě Ƒ \ ď ė NJĒ ¦ ` ž Œ h NJ Meeting in Kyoto – Messages from young scientists -,Ŭù ƐƎƏƑƍƗƍƒƌƓƈ Ïpv, 2013.12Ë:UK;4LÌ ¡8FL+}µ*b#Áclv+fz Ë{ÌÇy³Y«x¨\ ȇȺȊȒȸÐ ¡ ś ŝ Ǭg ǦǖȤȘȺȸǭ¥ Ŷ h ǬǒǗǼ± % ʼn Æ Ȼ ƦǃƻƳǀƷƱƯƺƈ ƯƼƯƺLJǁƷǁƈ ƴƽǀƈ ưƳƶƯDŽƷƽǀƈ ƽƴƈ ƯǃdžƷƼƈ ǂǀƯƼǁƾƽǀǂƈ ƾƯǂǂƳǀƼƈ ƽƼƈ ƵǀƽDžƷƼƵƈ ƴƷƳƺƲǁȼNJą¼tNJ¾Á¥NJ¿Ä Ƣ ! NJĚ ƒƔ \µÀĂøøïvNJǖǬǰǕȯțȖȻÉĊÄÜ ɀȼƈ Ǡǭƈ ǫǛƈ ȼNJƐƎƏƑƍƓƍƐƖƌƑƏƈ ƈ ¦¹]*-/¼+ 1rh%&02HQB®¡C OVJ521§ '½¢njp+¬±\² k¡¦£w^~^:UK;4L:S3DB= BȦ(·°¬±e¶({ztw|5 NUG<Ë:UK;4LÌ ÷kǬ ĜǛǧĽȀmBǙǟǼÌïȠȲȺȩȊȂ Ȼ ! ȼȀú ǏǡÌ ï ȪȵȰȸǭĥ Ī Ą z Ų ʼnÆNJC²NJīĞtNJÑIdNJ¾Á¥NJĚ Ɠƒ \ µÀøövNJpvãȊȱȸȤȔNJ ƐƎƏƑƍƑƍƐƏƌƐƑƈ ÌïǔòĶǬóǛǡ ƜƦƙ ¯) ĜǭȬȔȘȺȶȋȲȶȺȘ ȺƫƧƟƏ ǭ<ȯȈȠȕȮNJ¾Á¥NJċ¾àNJËû×·NJ ¢ȻÀȼũNJĚ Ɠƒ \µÀøövNJpvã ȊȱȸȤȔNJƐƎƏƑƍƑƍƐƏƌƐƑƈ ƈ ;614 Ⱦȼƈ nūŕų ĔvďėŔ>¥ ÏȻĺ§ďėȻƚȼȼƈ ƈ ƈ ŎƄQɁĽǭ£ǭŁõeMi¡ǭ7tgćǭʼn·Ɂ÷kƈ ƈ ƈ ƈ Ǭ ǜǧĽȀmBǙǟǼÌïǭďėƈ ƈ ƈ ďėŁİƘƈ ¾Á¥NJJɁƠƐƒƌƐƔ ȻƑ ȼƈ ŬùÏpvðzŎƄďėƈ ƈ ƈ ŎƄQɁnjÌïǭ ƬƭơƦƣƤƝ ľăŗǮĽħ ƜƦƙ ńŃǬƈ ƈ ƈ ŹǿǼ ƜƦƙ ȨȳȄȬȺȗǓɂǍƈ ƈ ƈ ďėŁİɁ¾Á¥NJJɁƠƐƒƌƐƓ ȻƐ ȼƈ µÀēępvķȹ1( Ï^vŀďėķŕųƈ ƈ ƈ ŎƄQɁnjÌïǭ-N¥Ȁ<ǝǼȯȈȠȕȮǭʼn·Ǎƈ ƈ ƈ ďė7«İɁ¾Á¥NJJɁƠƐƓ ȻƏ ȼƈ ĔvďėŔ>¥ ÏȻð;ďėXs?Ŕȼƈ ƈ ƈ ŎƄQɁ÷kǬǹǻĽǔmBǝǼÌïȠȲȺȩȊȂȀúǏƈ ƈ ƈ ǡĽǭŁõeMi¡ȯȈȠȕȮǭʼn·ƈ ƈ ƈ ďėŁİƘƈ C²NJJɁƠƐƓƌƐƕ ȻƑ ȼƈ ĔvďėŔ>¥ ÏȻð;ďėXs?Ŕȼƈ ƈ ƈ ŎƄQɁÌïǔòĶǬóǛǡ ƜƦƙ ȚȆțȌȫȄȸȞÔÒǭƈ ƈ ƈ ʼn·ƈ ƈ ƈ ďėŁİƘƈ ÀũNJJɁƠƐƓƌƐƕ ȻƑ ȼƈ ĔvďėŔ>¥ ÏȻð;ďėXs?Ŕȼƈ ƈ ƈ ŎƄQɁȠȲȺȩȊȂǭńĽǬǒǗǼȦȳȌȘȵÒŠǭȰȝȴƈ ƈ ƈ ȸȍƈ ƈ ƈ ƈ ďėŁİƘą¼tNJJɁƠƐƒƌƐƔ ȻƑ ȼƈ ȿȼKŖěƈ µÀÌïvĺ§s?ŖȻC²ȼƋƈƐƎƏƑƋƈƔƍƏƒƈ ƈ ƈ ƈ ᩍᤵ㻌 㧗ᶫ㻌 ⣧୍ ື≀ศᏊ⏕ែᏛ◊✲ᐊ Associate Prof. Jun-ichi Takahashi Ph.D Laboratory of Animal Molecular Ecology 䠍䠊◊✲ᴫせ ⋓䛧䛯䚹ᤕ⋓䛧䛯ಶయ䛾యⰍ䛚䜘䜃እ㒊ᙧែ䛜᪥ᮏ䛻 ᪻䜔ື ≀䜢◊✲ᑐ ㇟䛸䛧䛶䚸ື≀䛾♫ 䛻䛚䛡䜛 ⏕ ᜥ 䛩 䜛 7 ✀ 䛾 䝇 䝈 䝯 䝞 䝏 䛾 䛹 䜜䛸 䜒 ␗ 䛺䛳 䛶䛚 䜚 䚸 ♫ᛶ㐍䚸᳜≀䛸䛾ඹ㐍䚸✀ศ䛾䝯䜹䝙䝈䝮䛾ゎ Archer (2012)䛜グ㏙䛧䛯䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾ᣢ䛴」ᩘ ᫂䜢┠ⓗ䛻ศᏊ⏕ែᏛⓗ◊✲䜢⾜䛳䛶䛔䜛䚹䛥䜙䛻䝭䝒 䛾ᙧែⓗ≉ᚩ䛜ほᐹ䛥䜜䛯䚹ᤕ⋓䛧䛯ಶయ䛿䚸㢌㒊䛛䜙 䝞䝏䜔䝬䝹䝝䝘䝞䝏䛾㎰ᴗ⏝䜢┠ⓗ䛸䛧䛯ᛂ⏝⏕ែ ⭡㒊๓➃ 㒊ศ䛷㯮Ⰽ䛜ᙉ䛟䚸⭡㒊୰䞉ᚋ➃䛚䜘䜃⬮䛾 Ꮫⓗ◊✲䚸⤯⁛䛜༴䛥䜜䛶䛔䜛᪻䞉ື≀㢮䛾ಖㆤ䜢 ᮎ➃㒊 ศ䛜㯤Ⰽ䛸䛔䛖≉ ᚩ䛜ほᐹ䛥䜜䛯䚹㢌 ᴙ䛾ᙧែ ┠ⓗ䛸䛧䛯ಖ㑇ఏᏛⓗ◊✲䜢⾜䛳䛶䛔䜛䚹 䛿䚸䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾≉ᚩ䛷䛒䜛ṑ≧✺㉳䛾㝯㉳䛜 䜋䛸䜣䛹䛺䛟䚸ഃṑ䛿䛟䛺䛳䛶䛔䛯䚹ゐゅ䛾⠇ᩘ䛿 12 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ 䛷䛒䜚䚸⭡㒊ᮎ➃䛻䛿㔪䛜☜ㄆ䛥䜜䛯䛯䜑㞤ಶయ䛷䛒䛳 䠍䠖ᅾ᮶䝬䝹䝝䝘䝞䝏䛾 DNA ⫱✀ 䛯䚹๓⬚⫼ᯈ䛾๓⬚⫼ഃ㠃ୗ㒊䛾๓⬚ᚋⴥ∦䛻䛒䜛⦭ እ᮶✀䛾䝉䜲䝶䜴䜸䜸䝬䝹䝝䝘䝞䝏䛻᭰䜟䜛䝖䝬䝖⏝ ྜ⥺䛸䛔䛟䛴䛛䛾㝯㉳⥺䛜䚸᫂░䛷䛒䛳䛯䛣䛸䛛䜙䜒ᮏ 䝫䝸䝛䞊䝍䞊䛸䛧䛶ᾏ㐨䛻ᗈ䛟ศᕸ䛩䜛䜶䝌䝖䝷䝬䝹䝝 ✀䛾≉ᚩ䜢♧䛧䛶䛔䛯䚹㡑ᅜ䛸ᑐ㤿䛾㛫䛻䛿䚸1993 ᖺ䛛 䝘䝞䝏䚸䜶䝌䝘䜺䝬䝹䝝䝘䝞䝏䚸䜶䝌䜸䜸䝬䝹䝝䝘䝞䝏 䜙㤿ᒣ 䛚䜘䜃㔩ᒣ 䛸ཝཎ 䛾㛫䛷ᐃᮇ⯟㊰䛜㛤タ 䛾 3 ✀䛻ᑐ䛧䛶䚸㑇ఏᏊሗ䛻ᇶ䛵䛟 DNA ⫱✀ἲ䜢㐺 䛥䜜䚸┤᥋≀㈨䛜ᣢ䛱㎸䜎䜜䛶䛔䜛䚹㡑ᅜ䛷䛿䚸㔩ᒣᕷ ⏝䛧䚸䝉䜲䝶䜴䜸䜸䝬䝹䝝䝘䝞䝏䛾௦᭰✀䛸䛧䛶⏝䛧ᚓ 䛷 ึ 䜑䛶 ᮏ ✀ 䛾 ධ 䞉 ᐃ ╔ 䛜 ☜ ㄆ 䛥 䜜䛶 䛔䜛 䛣䛸 䛛䜙 䜛✀䛚䜘䜃⣔⤫䜢᥈⣴ 䛩䜛䛯䜑䛻ᾏ㐨䛷䠏✀䛾ዪ⋤ 䠄Choi et al. 2012䠅䚸ᑐ㤿䛻䛿㔩ᒣᕷ䛾㤿ᒣ 䜎䛯䛿㔩 ⻏䜢᥇㞟䛧䚸◊✲タ䛷㑅ᢤ⫱✀䜢⾜䛳䛯䚹䠏✀䛾୰䛷 ᒣ 䛛䜙≀㈨䛻㝶䛧䛶䚸ධ䛧䛯ྍ⬟ᛶ䛜㧗䛔䛸⪃䛘 䜶䝌䜸䜸䝬䝹䝝䝘䝞䝏䛜᭱䜒᭷ᮃ䛷䛒䜛䛣䛸䛛䜙䚸ᮏ✀䛾 䜙䜜䛯䚹 ᡂ⇍䛧䛯ᕢ䛛䜙ୖ 20 ᕢ⛬ᗘ䜢 1䡚2 ୡ௦䛻䜟䛯䛳䛶㑅 ᢤ䛧䚸⣔⤫㐀ᡂ䛾䛯䜑䛾ᇶ♏㞟ᅋ䜢సฟ䛧䚸䛥䜙䛻㑇ఏ Ꮚᆺゎᯒ䛾䛯䜑䛾 DNA 䝬䞊䜹䞊䜢㛤Ⓨ䛧䛯䚹 䠎䠖䝭䝒䝞䝏䛸䝬䝹䝝䝘䝞䝏䛻䛚䛡䜛⫱✀䜈䛾 BLUP ἲ 䛻䜘䜛㑅ᢤ䛾ᑟධ 㻌 BLUP ἲ䛻䜘䜛ண ⫱✀౯䛻ᇶ䛵䛟㑅ᢤ䠄BLUP 㑅ᢤ䠅 䛿䚸ᐙ␆⫱ ✀䛻䛚䛔䛶ᗈ䛟⏝䛥䜜䚸⤒ ῭ᙧ㉁䛾㑇ఏ ⓗᨵⰋ䛻┠ぬ䜎䛧䛔ᡂᯝ䜢ୖ䛢䛶䛝䛯䚹䛧䛛䛧䛺䛜䜙䚸䝝 䝏㢮䛻䛚䛔䛶䛿㑇ఏ䛺䜙䜃䛻⦾Ṫୖ䛾 2 䛴䛾≉ᛶ䚸䛩 䛺䜟䛱༙ಸᩘᛶ䛾ᛶỴ ᐃᵝ ᘧ䛚䜘䜃୍ጔ ከኵ ไ 䛾⦾ Ṫᵝᘧ䛻䜘䛳䛶䚸BLUP 㑅ᢤ䛾㐺⏝䛜䛾ᐙ␆䛻ẚ䜉 䛶❧䛱㐜䜜䛶䛔䜛䚹ᮏ◊✲䛷䛿䚸䝝䝏㢮䛻ᅛ᭷䛾㑇ఏ䛺 䜙䜃䛻⦾Ṫୖ䛾≉ᛶ䜢⪃៖䛻ධ䜜䛶䚸䝝䝏㢮䛾⫱✀䛻 ┿䠊ᑐ㤿䛷ᤕ⋓䛧䛯䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾 2m 䜢㉸䛘䜛 䛚䛡䜛 BLUP ἲ䛾ィ⟬䜰䝹䝂䝸䝈䝮䜢㛤Ⓨ䛧䛯䚹䛥䜙䛻䚸 ᕧᕢ䠄ᕥ䠅䛸ാ䛝⻏ᡂ䠄ྑ䠅 BLUP 㑅ᢤ䛾䝝䝏㢮䛾⫱✀䜈䛾㐺⏝䜢䚸௬ⓗ䛺䝭 䝒䝞䝏㞟ᅋ䜢⏝䛔䛶♧䛧䛯䚹 䠐䠖䝭䝒䝞䝏䛸䝬䝹䝝䝘䝞䝏䛾ᚤ⬊Ꮚ䛾ᾐ₶≧ἣ 䠏䠖␎ⓗእ᮶✀䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾Ⓨぢ 䜔䝬䝹䝝䝘䝞䝏䛾䝁䝻䝙䞊䛜Ṛ⁛䛩䜛㔜⠜䛺Ẽ䛷䛒䜛䚹 ᚤ⬊Ꮚ䛾ᐤ⏕䛻䜘䜚Ⓨ䛩䜛䝜䝊䝬䛿䚸䝭䝒䝞䝏 䛣䜜䜎䛷᪥ᮏ䛷䛿䚸እ᮶ᛶ䝇䝈䝯䝞䝏㢮䛾ධ䛿☜ㄆ ᅜෆ䛻⏕ᜥ䛧䛶䛔䜛䝭䝒䝞䝏䛚䜘䜃䝬䝹䝝䝘䝞䝏䛻ᐤ⏕ 䛥䜜䛶䛔䛺䛛䛳䛯䛜䚸ᅇ㛗ᓮ┴ᑐ㤿䛻䛚䛔䛶᪥ᮏᮍ 䛩䜛ᚤ⬊Ꮚ䛾ᾐ₶≧ἣ䜢 PCR デ᩿ἲ䛻䜘䜚᳨ฟ䛧䚸 グ㘓䛾䝒䝬䜰䜹䝇䝈䝯䝞䝏䛸ㄆ䜑䜙䜜䜛ാ䛝⻏ಶయ䜢ᤕ 䝅䞊䜽䜶䞁䝇ゎᯒ䛻䜘䜚ྠᐃ䜢⾜䛳䛯䚹䝉䜲䝶䜴䝭䝒䝞䝏䚸 䝙䝩䞁䝭䝒䝞䝏䚸䝉䜲䝶䜴䜸䜸䝬䝹䝝䝘䝞䝏䛾 3 ✀䛻䛚䛔 䛶䚸Nosema apis 䛸 N. bombi 䛾ᐤ⏕䛜䛭䜜䛮䜜☜ㄆ䛥 manipulated and unmanipulated individuals revealed that 䜜䛯䚹䝉䜲䝶䜴䜸䜸䝬䝹䝝䝘䝞䝏䛿䚸᥇㞟䛧䛯ᆅᇦ䛾 the removal treatment did not have any negative effects ಶయ䛛䜙 N. bombi 䛜᳨ฟ䛥䜜䛯䚹rRNA 䛾䝅䞊䜽䜶䞁䝇 on female clutch size or egg hatchability for males. In ゎᯒ䛛䜙䛿䚸ᅜෆ䛷䝭䝒䝞䝏䛻ᐤ⏕䛧䛶䛔䜛 N. apis 䛿䚸 conclusion, stable isotope analysis of the middle leg ཎᛶ䛾ప䛔⣔⤫䛷䛒䜛䛣䛸䛜♧၀䛥䜜䛯䚹 tarsus of K. deyrolli is useful for estimating its trophic position without lethal or any negative fitness effects. 㸱㸬Research projects and annual reports 1: Discovery (Hymenoptera: of a worker Vespidae) of from Vespa velutina Tsushima Island, 3: Herbivore community promotes trait evolution in a leaf beetle via induced plant response. Several Japan. recent studies have emphasised that We captured one worker of Vespa velutina on community composition alters species trait evolution. Tsushima Island of Nagasaki Prefecture on 20 October Here, we demonstrate that differences in composition of 2012. This is the first collection record of V. velutina local herbivore communities lead to divergent trait from Japan. Since V. velutina is known for its great evolution of the leaf beetle Plagiodera versicolora capacity to adapt to environmental changes, it is through plant-mediated indirect interactions. Our field suggested that the spread of V. velutina is likely to affect surveys, genetic analyses and community-manipulation the unique ecosystem of Tsushima Island in the near experiments future. composition determines the degree of herbivore-induced show that herbivore community regrowth of willows (Salicaceae), which in turn, 2: A non-lethal sampling method for estimating the promotes the divergent evolution of feeding preference trophic position of an endangered giant water bug in the leaf beetle from exclusive preference for new using stable isotope analysis. leaves to a lack of preference among leaf-age types. We propose a non-lethal sampling method involving Regrowth intensity depends both on the differential stable isotopeanalysis for estimating the trophic position response of willows to different herbivore species and Kirkaldyia the integration of those herbivore species in the of the endangered giant water bug (=Lethocerus) deyrolli (Heteroptera: Belostomatidae) in community. the wild. Kirkaldyia deyrolli individuals were collected involves phenological changes in new leaf production, and their d15N and d13C values were measured. The leaf beetle populations develop divergent feeding d15N and d13C values of periphyton and particulate preferences according to local regrowth intensity. organic matter, the basal food sources in lentic Therefore, herbivore community composition shapes the ecosystems of rice fields, were also measured to estimate selection regime for leaf beetle evolution through the trophic position of K. deyrolli. When individual trait-mediated indirect interactions. Because herbivore-induced regrowth isotopic signatures of the whole body were compared with those of their middle leg tarsus, we found strong 䠐䠊ㄽᩥ䠈ⴭ᭩䛺䛹 correlations between them for both d15N and d13C. To Ꮫ ⾡ㄽᩥ estimate their trophic position without killing individuals, 1. Utsumi S, Ando Y, Roininen H, Takahashi J., Ohgushi T.: we constructed a regression model incorporating their middle leg tarsus’s isotopic signatures and their body Herbivore community promotes trait evolution in a leaf size as explanatory variables. This non-lethal method beetle via induced plant response. Ecology Letters. (2013) revealed that K. deyrolli showed great individual 16, 362- 370. variation in its d15N which is a proxy of trophic position, ranging from 5.60&to 8.11&. To evaluate the negative 2. Ohba S, Takahashi J, Okuda N: A non-lethal sampling effects of our non-lethal method on the fitness of K. method deyrolli, we examined how the removal of the middle leg endangered giant water bug using stable isotope analysis. tarsus Insect Conservation and Diversity. (2013) 6, 155-161 affected reproductive performance under laboratory conditions. A comparison between the for estimating the trophic position of an 3. ቃⰋᮁ䞉㧗ᶫ⣧୍ 䠖ᑐ㤿䛷Ⓨぢ䞉ᤕ⋓䛥䜜䛯䝒䝬䜰䜹䝇䝈䝯 䝞䝏䠄Vespa velutina)䛾ാ䛝䛻䛻䛴䛔䛶䠊 ᪻⽝䠊༳ๅ୰ 7䠊㧗ᶫ⣧୍䠖 䝭䝒䝞䝏䛚䜘䜃䝬䝹䝝䝘䝞䝏䛻䛚䛡䜛ཎᛶᚤ⏕ ≀䛾ᾐ₶≧ἣ䛻䛴䛔䛶䠊᪥ᮏ᪻Ꮫ➨73ᅇᮐᖠ䠊 2013ᖺ9᭶16᪥䠊ᮐᖠᕷ 4䠊Kiyoshi T, Fukui M, Fukunaga K, Takahashi J, Tsubaki Y. A Preliminary Report on the Genetic Diversity of a Highly Endangered dragonfly, Libellula angelina Selys, 1883, in the Okegaya-numa Pond, Iwata, Japan. Tombo. Inpress. 8䠊㧗ᶫ⣧୍䠖 DNAᢳฟ䛸PCRᐇ㦂䠊ᓥ᰿┴❧⏣㧗➼Ꮫᰯ䠊 2013ᖺ9᭶21᪥䠊⏣ᕷ 9䠊㧗ᶫ⣧୍䠖 䝭䝒䝞䝏䛸㣴⻏䠊㣴⻏ᢏ⾡ᣦᑟㅮ⩦䠊2013ᖺ9 ᭶26᪥䠊ྡྂᒇᕷ 10.㧗ᶫ⣧୍䠖 䝭䝒䝞䝏ཎᛶᚤ⏕≀䛾ᾐ₶≧ἣ䠊⇃ᮏ┴㣴⻏ ༠䠊2013ᖺ10᭶7᪥䠊⇃ᮏᕷ ⴭ᭩ 1䠊䜏䛴䜀䛱༠㆟⦅䠖 㣴⻏ᐙྥ䛡䟿㣴⻏䝬䝙䝳䜰䝹III䠊ዪ⋤ ⻏䛾స䜚᪉䠊䠄2013䠅ᮾி䠊pp99. http://www.beekeeping.or.jp/ 11䠊㧗ᶫ⣧୍䠖 䝭䝒䝞䝏䛸㣴⻏䠊㣴⻏ᢏ⾡ᣦᑟㅮ⩦䠊2013ᖺ 10᭶10᪥䠊⇃ᮏᕷ 12䠊㧗ᶫ⣧୍䞉㧗ᶫ⛸୍䞉ᒾཱྀኴ㑻䞉㔛ぢඃ䞉ཎ⏣䝺䜸䝘䞉ቃ Ⰻᮁ䞉ᒣᮧ㎮⨾䠖ᑐ㤿䛻䛚䛡䜛እ᮶✀䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾ᖐ 䛸⿕ᐖ䛻䛴䛔䛶䠊➨68ᅇ᪥ᮏ⾨⏕ື≀Ꮫす᪥ᮏᨭ㒊 ⣖せ 1䠊ᒸ⏣ᆅ䞉㮚㔝⏤㔛Ꮚ䞉⏣୰⨾Ꮚ䞉బ䚻ᮌ୍㤿䞉Ჴᶫ㟹⾜䞉 㧗ᶫ⣧୍䞉బṇ᫂䞉➉ෆᐇ䠖 ᪥ᮏᅜ⏘䝝䝏䝭䝒䛾䜘䜛⫵⬊ 䝬䜽䝻䝣䜯䞊䝆䛾චᶵ⬟䛻ཬ䜌䛩ᙳ㡪䠊 ி㒔⏘ᴗᏛඛ ➃⛉Ꮫᢏ⾡◊✲ᡤᡤሗ 䠊(2013) 12, 33-44 2䠊㔝ᮧဴ㑻䞉㧗ᶫ⣧୍䞉➉ෆ๛䠖 䝝䝏㢮䛾⫱✀䜈䛾BLUPἲ 䛻䜘䜛㑅ᢤ䛾ᑟධ䠊 ி㒔⏘ᴗᏛඛ➃⛉Ꮫᢏ⾡◊✲ᡤᡤ ሗ 䠊(2013) 12, 45-57 3䠊㧗ᶫ⣧୍䞉➉ෆᐇ䞉ᯇኼ⪔୕䞉㔝ᮧဴ㑻䠖 䝭䝒䝞䝏䛚䜘䜃䝬 䝹䝝䝘䝞䝏䛻䛚䛡䜛ᚤ⬊Ꮚ䛾ᾐ₶≧ἣ䠊 ி㒔⏘ᴗᏛඛ ➃⛉Ꮫᢏ⾡◊✲ᡤᡤሗ 䠊(2013) 12, 59-68 4䠊୰ᮧ⣧䞉ᮌᮧ䞉㧗ᶫ⣧୍䞉బ䚻ᮌṇᕫ䞉┾㘠᪼䠖 䝛䜸䝙䝁 䝏䝜䜲䝗䛻㛵䛩䜛ᒣ⏣ㄽᩥ䛾ၥ㢟Ⅼ䛻䛴䛔䛶䠊 ⌧௦Ꮫ 䠊༳ ๅ୰䠊 5䠊㧗ᶫ⣧୍䠖 ᪥ᮏ䛻䛚䛡䜛䝭䝒䝞䝏䛾ῶᑡཎᅉ䛻䛴䛔䛶̺ᮏ ᙜ䛻䝭䝒䝞䝏䛯䛱䛿ᾘ䛘䛯䛾䛛̺䝭䝒䝞䝏㊊䠊 ⎔ቃ䛸ᗣ 䠊 ༳ๅ୰䠊 䠑䠊ᏛⓎ⾲䛺䛹 1䠊㧗ᶫ⣧୍: 䝭䝒䝞䝏◊✲䛾᭱๓⥺̺♫ᛶ᪻䛾ᛮ㆟䜢 ᥈䜛̺䠊බ┈㈈ᅋἲேయ㉁◊✲䠊2013ᖺ4᭶20᪥䠊ி㒔ᕷ 2䠊㧗ᶫ⣧୍䠖 ➨2ᅇ㣴⻏䛾䛩䛩䜑䠊ி㒔⏘ᴗᏛᩍ㣴ㅮᗙ䠄๓ ᮇᅵ᭙ㅮᗙ䠅䠊2013ᖺ6᭶29᪥䠊ி㒔ᕷ 3䠊㧗ᶫ⣧୍䠖 䝙䝩䞁䝭䝒䝞䝏䛿Ẽ䛻䛛䛛䜙䛺䛔䠛-䛭䛾ཎᅉ䛸 ᑐ⟇-䠊᪥ᮏ䜏䛴䜀䛱ㅮ⩦䠊2013ᖺ6᭶20᪥䠊ㄶゼᕷ 4䠊㧗ᶫ⣧୍䠖㻌 䝭䝒䝞䝏䛾ᐖᑐ⟇䛸䝝䝏䝭䝒䛾ຠ⬟䠊➨40ᅇ ி㒔ᗓ䛿䛱䜏䛴ရホ䠊2013ᖺ8᭶2᪥䠊⯙㭯ᕷ 5䠊㧗ᶫ⣧୍䠖 䝭䝒䝞䝏䛾⏕ែ䛸⏕⏘≀䠊♫ᅋἲே䜅䛟䛔㎰ᯘỈ ⏘ᨭ䝉䞁䝍䞊䠊2013ᖺ8᭶20᪥䠊⚟ᕷ 6䠊㧗ᶫ⣧୍䠖 㣴⻏ᢏ⾡ᣦᑟㅮ⩦䠊䜏䛴䜀䛱༠㆟䠊2013ᖺ 9᭶5᪥䠊ᮐᖠᕷ 䠊2013ᖺ10᭶26᪥䠊⚟ᕷ 13䠊㧗ᶫ⣧୍䠖 䝭䝒䝞䝏䛾⏕ែ䠊ி㒔ᗓ⚾❧୰Ꮫᰯ㧗➼Ꮫᰯ⌮ ⛉◊✲䠊2013ᖺ11᭶16᪥䠊ி㒔ᕷ 14䠊㧗ᶫ⣧୍䠖䝭䝒䝞䝏䛾⏕ែ䛻䛴䛔䛶䠊ி㒔⏘ᴗᏛ䝭䝒䝞䝏 ⏘ᴗ⛉Ꮫ◊✲䝉䞁䝍䞊䠊㣴⻏䝉䝭䝘䞊䠊2013ᖺ12᭶1᪥䠊⟪㠃 ᕷ 15䠊㧗ᶫ⣧୍䠖 ᑐ㤿䛻ධ䛧䛯እ᮶✀䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾ศ ᕸ䛸⏕ែ䛻䛴䛔䛶᪥ᮏ᪻Ꮫ㛵すᨭ㒊䠊2013ᖺ12᭶8᪥䠊 㜰ᕷ 16䠊㧗ᶫ⣧୍䠖 䝙䝩䞁䝭䝒䝞䝏䛸䝒䝬䜰䜹䝇䝈䝯䝞䝏䛻䛴䛔䛶䠊ᑐ 㤿䝙䝩䞁䝭䝒䝞䝏㒊䠊2013ᖺ12᭶20᪥䠊ᑐ㤿ᕷ 䠒䠊䛭䛾≉グ㡯 䠍䠅㻌 እ㒊㈨㔠 1䠊⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ⱝᡭ䠄B䠅 ㄢ㢟ྡ䠖่䛥䛺䛔䝭䝒䝞䝏䛾㑇ఏᏛⓗゎᯒ ◊✲௦⾲⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H24-25 ᖺ (2 ᖺ) 2䠊⎔ቃ┬⎔ቃ⥲ྜ◊✲᥎㐍㈝䞉ⱝᡭ ㄢ 㢟ྡ 䠖ᅾ᮶ 䝬䝹䝝䝘䝞䝏䛻䜘䜛⎔ ቃㄪ ᆺ䝫䝸䝛䞊䝅䝵䞁 ᵝᘧ䛾☜❧䛻㛵䛩䜛◊✲ ◊✲௦⾲⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H24-26 ᖺ (3 ᖺ) 3䠊⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᇶ┙◊✲䠄B䠅 ㄢ 㢟ྡ 䠖ᒁ ᡤⓗ ㏆ ⦕ ✀䛾⏕ ᜥ ᆅศ 㞳 䛸ᙧ ㉁⨨ 䜢䜒䛯䜙䛩 ⏕ែᏛⓗせᅉ ◊✲ศᢸ⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H23-25 ᖺ (3 ᖺ) 4䠊⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᇶ┙◊✲䠄B䠅 ㄢ 㢟ྡ 䠖ᅾ᮶ 䝬䝹䝝䝘䝞䝏䛻䜘䜛⎔ ቃㄪ ᆺ䝫䝸䝛䞊䝅䝵䞁 ᵝᘧ䛾☜❧䛻㛵䛩䜛◊✲ ◊✲ศᢸ⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H24-26 ᖺ (3 ᖺ) 5䠊⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᇶ┙◊✲䠄B䠅 ㄢ㢟 ྡ䠖ཎ ጞⓗ ┿♫ ᛶ✀ 䛾⦾ Ṫไ ᚚ䠖㑇 ఏᏊ 䛛䜙⾜ື䜎 䛷 ◊✲ศᢸ⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H24-26 ᖺ (3 ᖺ) 6䠊ጤク◊✲䞉♫ᅋἲே᪥ᮏ㣴⻏䛿䛱䜏䛴༠ ➨ 1 ᅇ⏕㈨※⎔ቃᏛ⛉༞ᴗ◊✲Ⓨ⾲ 䝫䝇䝍䞊Ⓨ⾲ඃ⚽㈹㻌 ୰ℊዌ⤮㻌 2014 ᖺ 2 ᭶ 28 ᪥ ◊✲ศᢸ⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H25-26 ᖺ (2 ᖺ) 7䠊ጤク◊✲䞉♫ᅋἲே᪥ᮏ䝻䞊䝲䝹䝊䝸䞊ᰯṇྲྀᘬ༠㆟ ◊✲ศᢸ⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H25 ᖺ (1 ᖺ) 8䠊ጤク◊✲䞉ᰴᘧ♫䝇䝆䝵䞁䞉䝆䝱䝟䞁 ◊✲ศᢸ⪅䠖㧗ᶫ⣧୍, ྲྀᚓᖺᗘ䠖H25-26 ᖺ (2 ᖺ) 㻌 䐟 䐠 䐡 䐢 䠎䠅 Ꮫእάື㻌 ⻤⻏་⸆ရ㛤Ⓨ༠㆟㸸㛗 ⻤⻏་⸆ရ㛤Ⓨ༠㆟ᑓ㛛ᢏ⾡ጤဨ㸸ጤဨ㛗 ி㒔ᗓ㣴⻏⤌ྜ㸸㢳ၥ ḷᒣ┴㣴⻏⤌ྜ㸸㢳ၥ 䠏䠅㻌 䛭䛾 䝯䝕䜱䜰 1䠊ᮅ᪥᪂⪺䠖2013 ᖺ 1 ᭶ 14 ᪥ 2䠊ᅜ❧⎔ቃ◊✲ᡤ䞉⎔ቃᒎᮃྎ䠖 䐣 http://tenbou.nies.go.jp/news/jnews/detail.php?i=10085 䐤 3䠊䝬䜲䝘䝡䞉䝙䝳䞊䝇䠖 http://news.mynavi.jp/news/2012/12/27/126/index.html 4䠊yahoo 䝙䝳䞊䝇䠄䝬䜲䝘䝡䞉䝙䝳䞊䝇䛾㌿㍕䠅䠖 http://headlines.yahoo.co.jp/hl?a=20121227-00000058-myc omj-sci 䐥 5䠊NHK㻌 E 䝔䝺䠖䛄䝰䝸䝌䞊䞉䜻䝑䝁䝻᳃䜈⾜䛣䛖䜘䟿䛅⨾ዪ䛜䛴䛟 䐦 䜛䟿䠛䛒䜎䡚䛔䜟䛔㻌 ᳃䛾ᴟୖ䝇䜲䞊䝒䜢᥈䛫䟿5 ᭶ 4 ᪥䠖 ◊✲ᐊ䛾ᵝᏊ䠄䐟➨ 1 ᐇ㦂ᐊᲷඹྠᐇ㦂ᐊ䠄ᕥ䛛䜙 1 ᮇ⏕䛾 ┘ಟ㻌 ▼ ᶞ䚸୰℈ ዌ⤮䚸ྜྷ ᒸ㞞ே 䠅䠊䐠䜻䝱䞁䝟䝇䠄1 ᮇ⏕䠅䠊䐡 6䠊䝔䝺䝡ᮅ ᪥㻌 ⣲ ᩛ䛺Ᏹᐂ⯪ᆅ⌫ྕ䛄㙊䛒䛨䛥䛔䡚⏕ 䛾 Ⰽ 38 ൨ᖺ䡚䛅䠖2013 ᖺ 7 ᭶ 21 ᪥ᨺ㏦䠖ฟ₇ ி㒔ᗓ❧᳜≀ᅬ䛾䜲䝧䞁䝖ཧຍ䠄1 ᮇ⏕䠅䠊䐢⚄ᡞᕷ❧භ⏥ᒣ ∾ሙ䛾䜲䝧䞁䝖ཧຍ䠄1 ᮇ⏕䠅, 䐣䝭䝒䝞䝏䛾ᕢᯈ䛾᳨ᰝసᴗ䠄2 7䠊KTN 䝔䝺䝡㛗ᓮ䠖2013 ᖺ 9 ᭶ 20 ᪥ᨺ㏦䠖ฟ₇ ᮇ⏕㧗ᶫ⛸୍䠅䠊䐤Ꮫෆ㣴⻏ሙ䛷䛾ᕢ⟽ሬ䠄2 ᮇ⏕㔛ぢඃ䠅䠊 8䠊ㄞ᪂⪺䠖2013 ᖺ 9 ᭶ 16 ᪥ 䐥⌰⌫Ꮫ⇕ᖏ⏕≀ᅪ◊✲䝉䞁䝍䞊す⾲ᓥᐇ㦂Ჷ䛷䛾䝒䝬䜾 9䠊ㄞ᪂⪺䠖2013 ᖺ 9 ᭶ 19 ᪥ 䝻䝇䝈䝯䝞䝏䛾ᕢ䛾ㄪᰝ䠄2 ᮇ⏕ཎ⏣䝺䜸䝘䠅, 䐦➨ 1 ᐇ㦂ᐊᲷ 10䠊す᪥ᮏ᪂⪺䠖2013 ᖺ 9 ᭶ 19 ᪥ ඹྠᐇ㦂ᐊ䛷䝒䝬䜰䜹䝇䝈䝯䝞䝏䛾ᕢ䛾ㄪᰝ䠄䠎ᮇ⏕ᒾཱྀኴ 11䠊ி㒔୕᮲䝷䝆䜸䜹䝣䜵䠖2013 ᖺ 9 ᭶ 29 ᪥ᨺ㏦䠖䝀䝇䝖ฟ₇ 㑻䠅 12䠊ᮅ᪥᪂⪺䠖2013 ᖺ 9 ᭶ 30 ᪥ 13䠊ㄞ᪂⪺䠖2013 ᖺ 10 ᭶ 5 ᪥ 14䠊NHK ⥲ྜ㻌 㻌 䛚䛿䜘䛖᪥ᮏ䛄䝭䝒䝞䝏䜢く䛖እ᮶✀䝇䝈䝯䝞 䝏 㛗ᓮ㻌 ᑐ㤿䛅䠊2013 ᖺ 10 ᭶ 13 ᪥ᨺ㏦㻌 䜸䞁䝕䝬䞁䝗䠖 http://cgi4.nhk.or.jp/eco-channel/jp/movie/play.cgi?did=D 0013772562_00000 =D@<./" $% 4 4 ' Laboratory of Protein Structural Biology Prof. Hideaki Tsuge, Ph.D 4444 4 34 44444 444 Assit. Prof. Toshiharu Tsurumura 1. $%+ Û ĢŁĬęÆþ·*þuÌ<ņðüĎõĢŁĬęÆúĢ yuď[÷ÞìþĨĺēŁþ©huÌď cap þâČüïù»n ŁĬęÆèãçý©Ā÷êçý°-ď[õÝ¡ď´öøã ïÝĄùúÿüČ 7methyGTP þ©*yuďeĊçýïôÞ ČÞýQpýÔĎČ1;þuÌ<ďÍĆøãČÞ ĄôÝìþ»nïô©hþ N k¢ÏÿÜIJľĤęğď[÷ ĢŁĬęÆþuÌÿĈ.þ3»ýN¸)zü ćþúüċ÷÷âČÞTßÿ X ª©huÌ»nď¸üV| èÝcap þ©*ýĉċìþÏèăûëČPÆď[÷ÞìčĊ þ©oď PloS ONE ý4,ïôÞńFigure $ Ņ úïøÝĢŁĬęÆ·*ÝýQp1;úĴğħùâČĭħ þĢŁĬęÆþď¹ôãú«åøãČÞìþ3 ¡çĊCmýÿQpďÕĈ~ðČcôü³þ) ®PèĄčČÞ2þþ¡ĥłķďÉúïø¡ď ÍĆøãČÞ (1) ADP ľĵĝĿ"}§úóþĭħw;·*þuÌ <ņvßü#Mÿ ADP ľĵĝĿ"}§(ADPRT)ď ïøÝĴğħþĢŁĬęÆďØïÝĴğħþĝĚĩĿ ΦýJ×ďåČÞìþ&Oyuþ¾¨ďeĊçýðĂêÝ vßü&ORùþ©huÌ»nďÍĆøãČÞ (2) ēŁįĿĕŁĜĔĒĿğ RNA ĶľĺĽłġþuÌ<ņ ēŁįĿĕŁĜ A ĔĒĿğýĉöø 1918 Eýïôğijē Łçòÿ´ńĬŁĦĸĤęŅďHéÇìïÝ1000 þ{¬ďïôÞÚýQpïôĔĒĿğè6ïøĭħāþ QpèÇìČú«åĊčČÞìþI}PþLýēŁįĿĕŁ Ĝþ[÷ RNA ĶľĺĽłġþãê÷çþđĸīÑþ6èÒ ¸ùâČ èĎçöøéôÞRNA ĶľĺĽłġ·*ńPB2Ý PB1ÝPAŅþuÌþ»eďúïø¡ďÍĆøã 7 ČÞ Figure A) PB2 0>B;D-m GTP :* &5B) PB2 0>B;D 7 7 : m GTP :15C) PB2 0>B;D-m GTP :* / (3) óþþuÌ<¡Û Û 2. :$% (3) Ķľ ADP ľĵĝĿ3»Ð§þuÌúy®þ»n (1) gEGþE4ý¾ïê½ÊïôĉäýÝĆøþđĿĘĪ Ķľ ADP ľĵĝĿ"ÿÝÙ¤!ùÒ¸üĝĚĩĿÎþ Ł ADP ľĵĝĿ"&Oď]å,/8£¼æ*29L ôĆþØùâČÞĶľ ADP ľĵĝĿ"Ч PARP ÿ DNA ÎiV¿ÚÑ$µp'&*K1=L ADP J þ_ýãݯÈæĉĀĭğħŁďĶľ ADP ľĵĝĿ"ðČÞ D4Kb ºs·| ìčýAïøĶľ ADP ľĵĝĿ3»Ð§ńPARGŅÿĶľ f¢2 4 °^ Õ!kÞÓ ADP ľĵĝĿ3ď»ðČÞPARP ú+vý PARG ćÝXè Klaus Aktories #% Commentary ¾S' O Đþwú«åĊčÝóþuÌ»nèjKíčøãČÞĭħ Û PARG þPĨĺēŁþýSïÝ©hďLôÞ©h» *0;FN»Ïvm" ADP JD4KbÎiV ¿ÚÑ q Strain-alleviation modeläÀÁnH;Kå! £¼ Ù ADP JD4Kb [\t nùéČçÝs¼ùâČÞ ¬Ñ ADP JD4Kbܼ ]{f ¬Ñ&Q%¯²°Ð& (4) Aeromonas sobria mþĠľŁıŀĥđłġþuÌÿ 2008 Eý JBC ý4,ïøãČèÝ0Ýóþ external ĝĻij ŀŁþy®ú·*uÌďeĊçýïÝ2ÀbW ùâ (2) ēŁįĿĕŁĜĔĒĿğ RNA ĶľĺĽłġþ PB2 ěİļĪ ČÞĄôdl9;8<ÝDr8<úþ+¡ýĉċÝcº Ĥħÿ? mRNA þ cap uÌď¿Âï'ċËą cap snatching ijĿĖėĝģłġ DyP þ"<úuÌ¡ď´öøãČÞ 3. Research projects and annual reports 4. -(98 We have been focusing our research on the structural biology of E Tsurumura T, Qiu H. Tsumori Y, Oda M, Nagahama M, Sakurai J, infectious disease. Especially our target is macromolecular complex Tsuge H and we would like to reveal the interaction between the infectious Arginine ADP-ribosylation mechanism based on structural factor protein and human protein. snapshots of iota-toxin and actin complex. Proc Natl Acad Sci U.S.A. 110(11):4267-4272. (2013)4 (1) Actin ADP-ribosylating toxin (ADPRT) such as iota toxin from E Tsurumura T, Qiu H, Yoshida T, Tsumori Y, Hatakeyama D, C.perfringens ADP-ribosylates Arg-177 of α-Actin, inhibits actin Kuzuhara T, Tsuge H. polymerization and induce cell rounding. Recently we resolved the first crystal structure of Ia in complex with actin and the Conformational Polymorphism of m(7)GTP in Crystal Structure of the PB2 Middle Domain from Human Influenza A Virus non-hydrolyzable NAD+ analog βTAD; however, the structures of the PLoS One. 8(11):e82020 (2013) NAD+ bound form (NAD+-Ia-actin) and the ADP-ribosylated form E Tsuge H and Tsurumura T (Ia-ADP-ribosylated (ADPR)-actin) remain uncertain. We found that ethylene glycol as cryo-protectant inhibits ADP-ribosylation and then successfully captured NAD+-Ia-actin in crystal. We revealed Crystal structure analysis of ADP-ribosylating enzyme and substrate protein complex Photon Factory Activity Report4 2012 #30 (2013) high-resolution structures of NAD+-Ia-actin and Ia-ADPR-actin obtained by soaking apo-Ia-actin crystal with NAD+ under different + J. #)98 conditions. The structures of NAD -Ia-actin and Ia-ADPR-actin E ±e respectively represent the pre- and post-reaction states. Considering ĝŁĶĞĔĹàĆîñѨ²<þf2013á all the structures in each reaction step including βTAD-Ia-actin as a #²ďíĊý»ðČôĆþuÌ< transition state, the strain-alleviation model of ADP-ribosylation, dl¨²<Û 2013.3.19Û ńZKÁŅ which we proposed previously, is experimentally confirmed and MãX¦§}Åȶ §PÉ improved. Moreover, this reaction mechanism appears to be Ia-actinÎiV¿w&ADPJD4Kb applicable not only to Ia but also to other ADP-ribosyltransferases. ¹13r˱ط|UU%)bUáäâgå (2) Influenza pandemics with human-to-human transmission of the 2013.6.12-14 virus are of great public concern. It is now recognized that a number MToshiharu TsurumuraHideaki Tsuge of factors are necessary for human transmission and virulence, Substrate Selectivity of Monoacylglycerol Lipase based on the including several key mutations within the PB2 subunit of Crystal Structure RNA-dependent RNA polymerase. The structure of the middle Structural Life Science 7th International Conference on Structural 7 domain in PB2 has been revealed with or without m GTP, thus the GenomicsR«BI3C:Käå2013.7.29-8.1 middle domain is considered to be novel target for structure-based E§PÉ drug design. Here we report the crystal structure of the middle domain ATPase,GTPase(¡²½Ê£¼#&ÂÒYà of H1N1 PB2 with or without m7GTP at 1.7 and 2.0 resolution ©| (Figure B), respectively, which has two mutations (P453H, I471T) to z{x|¬|6F<Nz{x|äRå2013.10.2 increase electrostatic potential and solubility. Here we report the ńZKÁŅ 7 m GTP has unique conformation differ from the reported structure. M¤yj®§PÉ 7-methyl-guanine is fixed in the pocket, but particularly significant ]ÑÆ¥~&CChalfRZ change is seen in ribose and tri-phosphate region: the buried ¿|U¨x|ä¨å2013.10.12 7-methyl-guanine indeed binds in the pocket forming by H357, F404, MãX¦¶ j®§}ÅȧPÉ 7 ÝW Ú Ã E361 and K376 but other region of m GTP continues directed to the ,LAK.L3-+K5 RNA EJGIN7 CAP ¿i outer domain (Figure B, C). The presented conformation of m7GTP Ú may be a clue for the anti-influenza drug-design. @8FLB´¸c×Ulh-,L2älhå (3) We are currently going on the structural study of poly-ADP-ribose 2013.11.2 glycohydrolase, chaperone of Aeromonas sobria serineproteiase, and novel peroxidase DyP. K. 6:!,2 (1) 7ÏÄÓÛ <¡Ã¶ÓÛ |Ìßu´¸ ÎiVÚÑ#& ADP JD4Kb£¼ ¡²8L?2ØÔÖ¢ ´¸ ´¸TÍÄç§PÉgçH25-H26(2 å da[³<¡ÃÛ àèĐF¨ďwúïô"<%Āa Bªþ PARG Ö>ýĉČ o5Iþ="¡áÛ ´ ¸]Äç§PÉgçH24-H25(2 å bÏ<Û U¡3¡`^ tÛ àĢŁĬęÆþSú ¥áÛ ´¸]Äç§PÉgçH23-H27(5 å (2) x¤ üï (3) <7! dl<µ\° ¡/¤@q:/Û 2012-2013ń7 iĄùŅ dl<µ\°Û 0YuÌ£ 169 :/Û :/ ĮĢĸŁ B ¡:/Û :/ Journal of Crystallography (Hindawi) Editorial board Advances in Biology (Hindawi) Editorial board (4) (Ť üï (5) óþ |ÌÇUMª_´¸oj®)Rx| $IDGL>Ne`" CABD?F7GIIH Prof. Toru Terachi, Dr. Agr. Ɗ "%&-.%0-.2 -) $+%,0 #-+('1+%. !(,(0*'/ Assist. Prof. Kiyoshi Takahashi, Dr. Sci. 98 ȟǸȐȅȞǮ8¡õǚýĈljǕƽǪƹŹąǗǝƸ Ɗ ýĈkǖǝƸƺƇċÈçǜǷȣǹȑȡǾȒȞƻǚĭH ÈçǝÐ~ǚîħNJǪǂƸÎĪǮ¢ǒǏįĐǂ Ǯ¢ǑƸ\óǦś9ÎÉǜŀ²ǮǤLjljǏXÿõýĈ LJǫǙƽë ō ǖƸ^ DŽǜƇ ċ È ç ǚľ + LJǫǕƽǪƹdž ǁǨƸŠ d ĕ ¨ ƿǚǧǪ¸ ð È ç ǜ + Ǚǘǜ ð ǜőǝ Ɲ Ɠ JĆħǚðƽǨǫǪǞǁǩǖǝǙDŽƸŹ õ ý Ĉ ǚƽǏǪǢǖƸÈ ç ǷȣǹȑȡŠ e , Ũ ǜ ąǜ=PŠdǂȝȍǿȦȎȢǰǚƸǢǏǍǜ!ǃǮ ĎǙýĈǚ@ǩĕǯǖƽǪƹǍǜǖƸdždžªǝƸ ƿǪąOŠdȩ ŠdȪǂÅǚľǓǁǪdžǗǁ ǜȮǓǜȘȥȃǴǼȍǮŧãõǚśǤǕǃǏƹƊ ǨƸÈçǚǀDžǪȝȍǿȦȎȢǰǗÅǜùðǜȠȌȣǗ ȬȪǷȣǹȑȡǾȒȞǜýĈÃǮXöǗNJǪ¸ðÈçǜ ljǕĭ H ǂ¢ ǏǫǕƽǪƹë T ý Ĉ k ǖǝƸ± ½ B ħƊ UǜȓȜȈDzǿȦǮ¥ŻljƸȝȍǿȦȎȢǰǾȒȞǜ\óǮ ȭȪȈDzǿȦǜŹąȧąOȂȄȋȞǜ,dÎÉǗ ʼnÄNJǪǗǗǥǚƸ°ü?ǟ¼üǜ ŠdǚǓƽǕƸ Ǎǜ^ÊȟǸȐȅȞǜŀ²Ɗ Še?ǟ,dîçeǜžǁǨjƆǮśǤǕƽǪƹƊ ȮȪēĩőШǿȞǻǮȠȌȣǗljǏÅǗȝȍǿȦȎȢǰǾȒ Ɗ ¶ǜȮȪǜȘȥȃǴǼȍǖǝƸēĩőШǿȞǻǗƽƾ ȞǜùðǚŲNJǪýĈƊ | ¸ Ǚ¾ ¬ Ǯð ƽǕƸǿȞǻǜŖ Ĝ Ć ǖƼǪǵǻȥȘȄ Ɗ džǜ ǖƸȬȪǗȭȪǝƸdžǫǢǖD E ǜȘȥȃǴǼȍǂ] tÈçǜȝȍǿȦȎȢǰǾȒȞǜÉǮƸÏȂȨǼǵȦ ŢŐŪǖj¯LJǫǕǃǏǂƸ ƔƗ ƕ ·ǚdžǫǨǜȘ ȀȨǜȌȨȇǮǥǗǚŀÁljǕƽǪƹdžǫǚǧǩȕȦǿȞǻ ȥȃǴǼȍǂĔljǏdžǗǚƽƸýĈǜŢǮe(ǜÈ ǜĹëVǚƀǮƿǪȝȍǿȦȎȢǰǜŠdǮèiNJ çǾȒȞĂeýĈȆȦȇȨǚǃęƽǐƹƊ ǪǗǗǥǚƸǿȞǻǗŖĜĆǜđĘś9ǚŲNJǪüľǮ Ɗ džǜƾǑȬȪǜȘȥȃǴǼȍǝƸÈçǷȣǹȑȡǾȒȞǜ© ǧƾǗģƿǕƽǪƹƊ \ ǚǧǩƸ Ƃ ǚ¸ ð ǙÈ ç Ǯħ NJǪdžǗǮ_ ǃǙ÷ Ɗ Ë ǗNJǪƹǍǜǏǤƸē ĩ ő Ğ ¨ Ƹē ĩ ĵ C ƸǙǨǟǚ :8 6 ĴěǜŠdĕ¨ƿǙǘǜjƆǮĶǒǕƽǪƹǖǥ Ɗ ȬȪǜȘȥȃǴǼȍǖǝƸ1ǜýĈǗǜŲřǖƸēĩ( ĴěǜŠdĕ¨ƿǝŧãõǚjƆǮśǤǕǀǩƸ ǜš"3ǜėǚŧĽǙ!ǃǮNJǪǞǁǩǖǝǙDŽƸŧ %ǜýĈòǗljǕƸǢNjÆWȇȔǿǜĴěǠş- Ū t ǮǺȤȨȍNJǪȗDZȍǺȤȨȉȦǜ1 ƅ ç ő ǗljǕǥ ǙŠdǮr$ljƸĕ¨ƿǜȕȨȗǶȨȜȦȄǮʼnÄ ü ǨǫǕƽǪƸǽȣȇȉǷȦǜâ ǮƇ ǤǪj Ɔ ǮĶ ǒ ljǏƸȕȦǿȞǻƸȤȇȄƸȍȜȍǙǘǜÈçĆȩçȪ Ǐƹ³ƸĴě(ǖǽȣȇȉǷȦCǮŁcNJǪťĒ ǠðljǧƾǗljǕƽǪƹdžǫǢǖŽîçõȄȍȤȄǚƽ ƞƥƟƓ ?ǟ ƞƥ ǜŠdǮĴěǾȒȞǚ¢Ǔĕ¨ƿȇ ÈçǮħNJǪǏǤƸĴěǜǰȄǿȣȖȦŦƑǽȣȇȉ ȔǿǮƸǍǫǎǫ ƕ Ǘ Ɨ ǪdžǗǚ4ljǏǂƸ ǷȦȀDzǼȣǮÉNJǪťĒȩƞƤƎƊƥƢƜƎƊƙƣƨƎƊơƜƙƤ ? ½ ǝdžǫǨǜĕ ¨ ƿ ǮĬ Ñ ljǕ^ ª ǜĆ d Ǯ ǟ ƜƟƙƤȪǜŠdǮ;éƸƼǪƽǝǷȚȥȦǗljǕĴě Ǖ Ʀ Ɠ đĘǗljǕþĉljǏƹdžǫǨǜđĘǜĴǚGǢǫ ǾȒȞǚr $ ljƸ¸ l ǙÚ Ŧ Ē , d Ć ȩƤƢƥȪǮ7 ǪǽȣȇȉǷȦũǮßiljǏǗdžǬƸƞƥƟƓ đĘǖǝŨî êõǚÛ>ǖǃǪÈçǜħǮĶǒǏƹdžǜjƆǖǝƸ VǗÓǡǕǽȣȇȉǷȦǜŦ9VƑš"VǜƽNjǫǥǂ džǫǢǖǚƸłťĒǜŠdǮ;éƸƼǪƽǝļª¢ _ǚ[5ljǕƽǏƹ®Ƹƞƥ đĘǖǝŨîVǗÓǡ Ǔ Ɠƒ ĆƂǜĕ¨ƿȩƔƗ đĘȪǮǪdžǗǂǖǃǕƽǪƹ Ǖ_ǃǙŞƽǝĿnLJǫǙǁǒǏƹdžǜdžǗǁǨĴěǚ ǍǜĖÃƸr$ŠdǜĆƂǚǧǒǕĄǜzǝƼǪǥ ǀDžǪǽȣȇȉǷȦCǝ ƞƥƟƓ ǂŗǚǙǒǕƽǪdžǗ ǜǜƸdžǜ® × ǖ ł ť Ē ǜÚ ǮƇ ǤǪdžǗǂǖǃƸ ǂĀLLJǫǏƹ®Ƹŵı2ǮðƽǏjƆǖǝƸƽNjǫ ĕ¨ƿǝ ƤƢƥ ǮôîLJnjǪŵı2ǠǜĥǂƇǢǪ ǜĕ¨ƿđĘǥƸƤƢƥ ǜÛ>Ī3ǂƇǢǒǕƽǏƹƊ džǗǂĀ LJǫǏƹů ŭ đ Þ k ǖ ǚÆ W ǖǃǪȇȔǿ Ɗ dždžªƸÆWȇȔǿ]ǜÈçǖĴěǜőŔ¨ ǜªǚǝųǩǂƼǪǜǖƸĕ¨ƿǜŢǝëTǥ Ǯ ǪdžǗǚÙ 3 ljǕƽǪƹÈ ç ǜĆ Ƃ ǂó ǙǫǞƸ ĬÑǚǧǪµǮśǤǕƽǪǗdžǬǖƼǪƹƊ Šdr$ǚĽǙ]ÈæǜWƃ®×ǦǠǜ) Ɗ ǢǏƸȭȪǜȘȥȃǴǼȍǖǝƸȈDzǿȦǮ¾¬ǚƸŹ ,9ÀǝóǙǪƹǢǏƸțȦȔȨȎȟȦȍǜÀǥ_ǃDŽ ą Ǘą O ȂȄȋȞǜ, d Î É ǙǨǟǚǍǜ^ Ê óǙǪƹLJǨǚfiljǕÈ羬ǮjƆǚNJǪǏǤǚ ǝƸÈçĬǜÆWȧčìǥ¶ş9njǛǞǙǨǙƽƹǍ ƣƛƤ ǗȀȦǹȨ×ǚǧǪŸ¦ǿȦȋDZǽǜþņǙǘǜȗDZ ǜǏǤ ƔƗ ǥS(ǜ&D/ðȧ&DýĈ ãǖ& ȐȊȂȦǽǮgljƸȝȍǿȦȎȢǰǾȒȞǜȜȄȇȨȀȨǼ D ý Ĉ Ǯj ¯ ljƸÆ W ¯ Ń Ǯ ȣǮ§MǖǃǪÒŶǚŝljǕƽǪƹ1 Ɣ ĆǝƸƽNjǫǥȕ ð ljǏǩȩȕȦǿȞǻȪƸ ŠŐàǦWƃȧ),9ǜȒdzȓdzǮăÈljǏǩȩȍȜȍȪ ȦǿȞǻǜđĘ,9ģnǜŷǚŬǗǙǪÈçǖƼǩƸ ljǏƹ'õǚȕȦǿȞǻǝƈ@_eåUýĈȆȦȇ ǜēĩőǝǿȞǻǚ+ćŜǮǃŒdžNJĭHÜ ȨǖǰǸȈȣȜ?ǟ ƚƲƩƊƧƮƯƵƬ JĆǮÆWljǕǥǨƽƸ ƽÈçǖƼǪƹȝȍǿȦȎȢǰǜǾȒȞŀŇǂdžǫǨǜNƁ őŔ¨jƆǚðNJǪ]ÈæȩŰį Ɣ Śűǜ¼ä ǮŀÖNJǪǜǚmNJǪǥǜǗģƿǕƽǪƹƊ ĨȪǮ ƓƓ ·ƓƔ ·ǚ$ǖǃǪ0ǮÉďljǏƹǢǏȍ ǙǀƸłȭȪǜȘȥȃǴǼȍǚǓƽǕǝƸƸdžǜȘ ȜȍǝƸČ Ø _ e ǜ ő Ŕ ¨ È ç ȌȁDzȦý Ĉ ã ǁ ȥȃǴǼȍǚŲřNJǪňƁǮýĈȋȨȜǗljǕ@ǩĕǯǐ Ǩ ơƯƪƳƲƦƲư ǗƽƾjƆđĘǮ$ljƸdĴǮ+ô¾¬ _ e Ŵ î Ƹe Ţ î ǂƽǙǁǒǏǜǖƸś s LJnjǪdžǗǂ ǗNJǪ7êǜĮƽWƃȧ),9đǮăÈljǏƹLJǨǚƸÆ ǖǃǙǁǒǏƹƊ WȇȔǿǜŖĜĆǖÈç,dîçeǜȠȌȣÈçǗǙ Ɗ ǪșȦȀȝǰȏȇȔǿǗƸȤȇȄǚǓƽǕƸ]ÈæǜWƃ Research projects and annual reports ǁǨƸ),9ǜÆWǗ¥ĆǢǖƸȡDzȗȀDzǼȣǮg We have performed the following three major research ĖLJnjǪȂȄȋȞǮgLJnjǏƹǍǜǖƸdžǫǨ Ɩ Ćǜ projects relating to the organellar genomes in higher ÈçǮqōǚƸĴěǜŠdĕ¨ƿjƆǮj¯ljǏƹ plants: ǍǜĖÃƸȕȦǿȞǻǗȍȜȍǚǓƽǕǝĕ¨ƿǂǨ 1: Production of transplastomic plants that are useful for ǫǙǁǒǏǥǜǜƸșȦȀȝǰȏȇȔǿǚǓƽǕǝ ? human beings. ǟ ŠdƸȤȇȄǚǓƽǕǝȗǴȢȉȦŠdǮĴ 2: Comprehensive studies on the molecular mechanism ěǾȒȞǚ¢Ǔĕ¨ƿǮǪdžǗǂǖǃǏȩR ƓȪƹƊ of the male-sterility/fertility restoration system in radish. 3: Comparative mitochondrial genome analysis of Triticum and Aegilops using alloplasmic lines of common wheat. The first project aims at producing various transplastomic plants that will be useful for human beings. Currently several transplastomic lines (containing genes like apx, ferritin, etc...) have been produced using tobacco as a model plant and R ƓƐƊ ĴěǾȒȞǚȈDzȅǜȗǴȢȉȦŠdǂr$LJ experiments producing transplastomic crops such as ǫǏĕ¨ƿȤȇȄ tomato, wheat and lettuce have been conducted. yȯŨîVȩƠƯƱƭƊƪƳƲƶƱȪƸƸAȯĕ¨ƿƊ The second project tries to reveal interaction between èǚȤȇȄǜYCƸǨǫǏ Ʀ ƒ ǝȬǜǣǖƼǒǏǂƸ mitochondrial džǫǮÔ Ħ Æ W ǖŰ į Ė j NJǪǢǖħ ǕǪdžǗǂǖǃƸ male-sterility and fertility restoration system found in ÏȩƦ Ɠ ȪǜĆdǮ_ũǚǪdžǗǂǖǃǏƹƦ Ɠ Ǯðƽ radish. ǏjƆǖƸƦ ƒ ǚr$LJǫǏȗǴȢȉȦŠdǂÐþǚ and nuclear Rf genes have been examined to reveal ¢LJǫǕǀǩƸŔ*ƸĢńLJǫǕƽǪdžǗǂĀLJǫǏƹǢǏ evolutionary aspect of the system. Ĵǜū,ǂŨîVǗÓǡǕȭǚǙǒǕƽǪdžǗǥǭǁǒ The third project concerns the mitochondrial genome of ǏƹȤȇȄǝ¸ðçőîïđǜþĉǚaţCǙ¾¬ǖ Triticum and Aegilops species. ƼǩƸǍǫĬ œ ƸĴ ç Ũ IJ ǜÎ Ī F ǜj Ņ j Ɔ ǚ mitochondrial genome of some species in the genera ð ǖǃǪǜǖƸ ǜj Ɔ ǜś s ǂ_ ƽǚº LJǫ influences on the phenotype of alloplasmic lines of ǪƹƊ common wheat. łȮȪǜȘȥȃǴǼȍǚǓƽǕǝƸ³ǚǃĚǃ and nuclear genomes using a Genetic variations in both mitochondrial orf138 gene(s) It is known that the In order to reveal a mitochondrial responsible for the phenotypic difference ƎƊ ƎƊ ƎƊ between alloplasmic and euplasmic lines of common ƎƊ ?ǟ ǜēĩőǮ¢ǓШǿ wheat, their complete mitochondrial genome sequences Ȟǻ Ƙ đĘǚǓƽǕƸǾȒȞŀŇǮśǤǕƽǪƹdžǜƾǑƸ have Ƹ ?ǟ ǜ ƕ Ćǚ sequencer. ǓƽǕǝƸÏȂȨǼǵȦȂȦǽǚǧǪȌȨȇ@Ƹ been determined using the next-generation ;8754 _û Ŏ , pU : ǽȣȇȝȦŦ īÔĒťĒŠd (gdh1) ǮĴěǾȒȞǚ¢Ǔĕ¨ƿȇȔǿǜèǔDž. Ċ 124 M. Tsujimura, N. Mori, H. Yamagishi, T. Terachi: A possible O±½ħĆeŋáȫƉ#x{ȫ2013.10.12-13 breakage of linkage disequilibrium between mitochondrial and chloroplast genomes during Emmer and Dinkel wheat evolution. ìd, È¿ Ƅĝ, pU : ȗǴȢȉȦǮĴěǖƇ ôëNJǪŠdĕ¨ƿȤȇȄǜŀÁ. Ċ 124 O±½ħ Genome 56(4), 187-193 ĆeŋáȫƉ#x{ȫ2013.10.12-13 M. Yoshimi, Y. Kitamura, S. Isshiki, T. Saito, K. Yasumoto, T. Terachi, H. Yamagishi: Variations in the structure and È¿ Ƅĝ, ŕ ź ,  Ýſ, u½ ĺĎ, pU : Ȅȍȥ transcription of the mitochondrial atp and cox genes in wild ȜV APX ǮĴěǖôëNJǪĕ¨ƿȇȔǿǜđĘǖĿ Solanum species that induce male sterility in eggplant (S. nLJǫǏ«$ǩǚŲNJǪýĈ. Ċ 124 O±½ħĆeŋá ȫƉ#x{ȫ2013.10.12-13 melongena). Theor. Appl. Genet. DOI:10.1007/s00122-013-2097-6 vŢ ú, ñ ġĶ, uw <, pU : ÏȂȨǼǵ Ɗ ȦȀȨǮð ƽǏȈDzǿȦǜȝȍǿȦȎȢǰǾȒȞǜŤ . ŀ Á 3: <854Ɗ żŮȈDzǿȦǜ%ȝȍǿȦȎȢǰǾȒȞŤ.ǜÖi. Ċ 124 O ±½ħĆeŋáȫƉ#x{ȫ2013.10.12-13 Y. P. Gyawali, T. Terachi: Mitochondrial genome comparison of wheat alloplasmic lines by next-generation sequencing. The 8th ŕ¿ úĸ, Ç øÌ, uw <, pU : ÅǾȒȞÉǚǧǩ International Conference for Plant Mitochondrial Biology ŞƽǮĀNJ Emmer-Dinkel ǿȞǻǜȝȍǿȦȎȢǰǜ^V. Ċ ICPMB 2013ȫRosario, Argentina, 2013.5.12-16 124 O±½ħĆeŋáȫƉ#x{ȫ2013.10.12-13 M. Tsujimura, H. Yamagishi, T. Terachi: Mitochondrial genome Ɗ analysis of Triticum and Aegilops species relevant to polyploid =836 wheat evolution. The 8th International Conference for Plant ȬȪƊ ]ŢŐŪ Mitochondrial Biology ICPMB 2013ȫRosario, Argentina, ĂeýĈŏĻ6Ūȧ£õijİýĈƊ ňƁEȯĴěǜŠdĕ¨ƿǚǧǪȄȍȤȄĥȕȦǿȞǻ 2013.5.12-16 Gyawali Yadav Prasad, pU : Complete sequence of ǜħƊ ýĈĹĤȯpUƊ ƎƊ @ȯƟƔƖƏƔƘ Ɗ ƌƕ ƍƊ mitochondrial genome of an alloplasmic line of common wheat with Aegilops geniculata cytoplasm. Ċ123O±½ħĆeŋ vu_eƊ ŐàÈçĂeýĈƊ &DýĈƊ áȫñŌ:ȫ2013.3.27-28 ňƁEȯĴěǜŠdĕ¨ƿķǮ/ðljǏȄȍȤȄĥ f½ ´`, Ƈ» hÌ, p( Į, pU : ǷǽȡVŹ ÈçǜħƊ ąȈDzǿȦǜąO ǚŲǭǪ Rft Šd ǜÉŘŀÁ. Ċ123O±½ħĆeŋáȫñŌ:ȫ2013.3.27-28 ýĈĹĤȯpUƊ ƎƊ @ȯƟƔƖƏƔƗ Ɗ ƌƔ ƍƊ ƈ@_eƊ åUýĈȆȦȇȨƊ &DýĈƊ ŕ¿ úĸ, Ç øÌ, uw <, pU : ǵǻȥȘȄt ňƁEȯĴěǜőŔ¨ķǮðƽǏȄȍȤȄĥǿȞǻ ǜ+Ɗ ÈçǜȝȍǿȦȎȢǰǾȒȞǜŀÁ 2. Aegilops speltoides ǜē ýĈĹĤȯpUƊ ƎƊ @ȯƟƔƖƏƔƗ Ɗ ƌƔ ƍƊ ĩőǮ¢ǓШđĘǜȝȍǿȦȎȢǰǾȒȞ. Ċ123O±½ħĆ eŋáȫñŌ:ȫ2013.3.27-28 ČØ_eƊ ŠdjƆȆȦȇȨƊ őŔ¨ÈçȌȁDzȦ ãƊ &DýĈňƁEȯȜDzǼȥȍȞǮðƽǏȍȜȍǜĴěőŔ āÕ ²±ğ, ŕ¿ ¹, È¿ Ƅĝ, pU : ĴěǜŠ ¨ķǜþĉƊ dĕ¨ƿǮðƽǏƇâǽȣȇȉǷȦG¸Èçǜħ. Ċ ýĈĹĤȯpUƊ ƎƊ @ȯƟƔƗ Ɗ ƌƓ ƍƊ 123O±½ħĆeŋáȫñŌ:ȫ2013.3.27-28 ìd, È¿ Ƅĝ, pU : ȈDzȅǜȗǴȢȉȦŠd ȭȪƊ ǍǜƊ Ɗ ǮĴěǾȒȞǚ¢Ǔĕ¨ƿȤȇȄǜ+. Ċ123O±½ħĆ ±½eķ¤ĭƊ ĂýŏoÄbKȩpUȪƊ eŋáȫñŌ:ȫ2013.3.27-28 ƞƬƱƬƊƋƊƞƬƱƬƵƯƪƊƥƷƴƵƬưƴƊƬƫƯƵƲƳȩpUƸƇÍȪƊ _û Ŏ, pU : ǽȣȇȝȦŦīÔĒťĒŠd(gdh1)Ǯ ĴěǾȒȞǚ¢Ǔĕ¨ƿȇȔǿǜ+. Ċ123O±½ħĆ ƚƳƬƬƫƯƱƭƊƥƪƯƬƱƪƬƊƬƫƯƵƲƳȩpUȪƊ _eŋ}ȯţĉ_e_eŴƺÈçȔDzǷȋǼȒȥȃȨè ŊƻȩpUȪƸČØ_eîIíZeĠîçeƂƺìŊŻQŠ eŋáȫñŌ:ȫ2013.3.27-28 eƻȩƇÍȪƊ āÕ ²±ğ, È¿ Ƅĝ, pU : ĴěǜŠdĕ¨ƿ ǚǧǩ + LJǫǏǽȣȇȉǷȦƇ G ¸ ȇȔǿǜè ǔDž. Ċ Ɗ 124 O±½ħĆeŋáȫƉ#x{ȫ2013.10.12-13 Ɗ 教授 野村哲郎 動物遺伝育種学研究室 Prof. Tetsuro Nomura, Ph. D. Laboratory of Animal Genetics and Breeding 1.研究概要 生物集団内に保有される遺伝的多様性は、進化や動 系統に割り振るものである。方法の有効性を、実際の黒 毛和種の血統および SNP 情報を用いて検証した。 植物の品種改良(育種)にとって不可欠な素材である。 たとえば、生物種が様々な環境に適応し進化していくた 2)ミツバチおよびマルハナバチの育種へのBLUP 法に めには、それぞれの環境に適した多様な遺伝子が集団 よる選抜の導入 内に存在する必要がある。また、動植物の育種において BLUP 法による予測育種価に基づく選抜(BLUP 選抜) も、育種家が改良しようとする集団内に保有される遺伝 は、家 畜育 種 において広く利 用され、経 済 形質 の遺 伝 的多様性に働きかけ、望ましい遺伝子を人為選択によっ 的改良に目覚ましい成果を上げてきた。しかしながら、ハ て集積することが基本となる。 チ類においては遺伝ならびに繁殖上の2つの特性、すな 動物遺伝育種学研究室では、動物集団の遺伝的多様 わち半倍数性の性決定様式および一妻多夫制の繁殖 性の維持と利用について、保全遺伝学および育種学の 様式によって、BLUP 選抜の適用が他の家畜に比べて 観点から研 究 を進めている。具体的には、つぎのような 立ち遅れている。そこで、ハチ類に固有の遺伝ならびに 研究テーマで研究を展開している。 繁殖上の特性を考慮に入れて、ハチ類の育種における 1)動物集団の遺伝的多様性の評価方法の開発 BLUP 法の計算アルゴリズムを開発した。さらに、BLUP 野生動物や家畜について血統記録や DNA 情報を 用いて集団内の遺伝的多様性を評価するための方法 選抜のハチ類の育種への適用例を、仮想的なミツバチ 集団を用いて示した。 について、理論的研究を行っている。 2)絶滅が危惧される野生動物の維持集団および家畜希 少系統における遺伝的多様性の維持方法の確立 3.Research projects and annual reports Genetic diversity retained in populations is an essential 動物園や自然公園などで動物を維持するときに、ど material for adaptive evolution and breeding of plants のような個体を親として残し、どのような交配を採用す and animals; species can adapt through natural selection れば遺伝的多様性が効率的に維持できるかについて to changing environment, if they have sufficient genetic 研究を進めている。 diversity. 3)動物および昆虫集団における遺伝的多様性の調査 日本で普通に見られるナミテントウやその近縁 種 の Breeders of domesticated plants and animals can genetically improve their materials by artificial selection on genetic variability. Our laboratory is 鞘翅斑紋を支配する遺伝子の地理的分布に関する調 researching the methodology for evaluation, maintenance 査、家畜の血統記録を用いた遺伝的多様性の調査を and utilization of genetic diversity in wild and 行っている。 domesticated animal populations. Our main research projects and the annual reports are as following: 2.本年度の研究成果 1)血統および DNA 情報を用いた黒毛和種の系統再 構築法の開発 黒毛和種においては、少数の人気種雄牛に繁殖供用 1: Development of method for re-establishing strains in the Japanese Black cattle population, using pedigree and DNA information が集中することによって、品種内の遺伝的多様性が激減 In the Japanese Black cattle population, intensive use していることが指摘されている。遺伝的多様性を維持・回 of popular sires for reproduction has led to a drastic 復させるためには、品種内 に遺伝的に分 化した系 統 を decline of genetic diversity within the breed. 再構築することが有効であると言われている。そこで、血 been 統および SNP 情報を用いて品種内に系統を再構築する divergent ための手法を開発した。開発した手法は、まず血統情報 maintaining the genetic diversity in the Japanese Black に基づいて各系統のコアとなる個体群を設定し、新たな cattle. 候補個体は SNP 情報を用いた判別分析によって適切な in the breed, using pedigree and SNP information. proven that strains re-establishment is effective for of It has genetically recovering and We developed a method for establishing strains In the method, animals representative of a strain are first selected as a ‘core’ group of the strain. Assignment of 農林水産省独立行政法人評価委員会委員 a candidate animal to the group is judged by a 全国和牛登録協会 discriminant Asian-Australasian Journal of Animal Sciences, editor function with SNP markers. The effectiveness was verified with actual pedigree and SNP 育種推進委員 3) その他 なし data of the Japanese Black cattle. 2: Application of BLUP selection to honeybee and bumblebee breeding Selection on predicted breeding values by BLUP methodology (BLUP selection) has been widely practiced in animal breeding, leading to a remarkable genetic improvement in economic traits. However, the application of BLUP selection to bee breeding has not been as advanced as in other agricultural species due to two distinctive genetic and reproductive peculiarities in bees, i.e., polyandrous haplodiploid breeding sex determination system. Taking the and two peculiarities into account, we developed a computing algorithm for BLUP in bee breeding. Application of BLUP selection was illustrated with a hypothetical honey bee population. 4.論文,著書など 野 村 哲 郎 ・ 高 橋 俊 一 ・ 竹 内 剛 (2013). ハ チ 類 の 育 種 へ の BLUP 法による選抜の導入.京都産業大学先端科学技術研 究所所報. 第 12 号. 45-57. 高橋純一・竹内 実・松本耕三・野村哲郎 (2013). ミツバチお よびマルハナバチにおける微胞子虫の浸潤調査. 京都産業 大学先端科学技術研究所所報. 第 12 号. 59-67. 野村哲郎(2013).遺伝的多様性の確保. 牛疫学(第 3 版) 近代出版. 野村哲郎(2013), 牛の育種 牛の科学 pp.141-159. 朝倉 書店. 5.学会発表など 野村哲郎(2013)京都産業大学ミツバチ産業科学研究セン ターの概要. 第25回ミツバチ科学研究会. 玉川大学. 2013.1.13. 6.その他特記事項 1) 外部資金 科学研究費補助金 基盤研究(B) 課題名:選抜育種による北海道産マルハナバチの高受粉系 統の作出 研究代表者:野村哲郎, 取得年度:H24-26 年 (3 年) 2) 学外活動 食料・農業・農村政策審議会委員 ハウス栽培の受粉用昆として導入され、北海道で分布域を 拡大している外来種のセイヨウオオマルハナバチ(左)と セ イ ヨ ウ オ オマ ル ハ ナ バ チに 代 わ る 新 たな 受 粉 昆 虫 と し て注目される在来種のエゾオオマルハナバチ(右) 選 抜 育 種 に より エ ゾ オ オ マル ハ ナ バ チ の高 受 粉 能 力 系 統 の作出を目指しています。 ᩍᤵ㻌 ᮏᶫ㻌 ᳜≀⏕⌮Ꮫ◊✲ᐊ Assoc. Prof. Ken MOTOHASHI, Ph. D.㻌 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻼㼘㼍㼚㼠㻌㻼㼔㼥㼟㼕㼛㼘㼛㼓㼥㻌㼍㼚㼐㻌㻮㼕㼛㼏㼔㼑㼙㼕㼟㼠㼞㼥㻌 ຓᩍ㻌 ᱩᕝ㻌 Ꮨ㻌 Assist. Prof. Yuki OKEGAWA, Ph. D. 䠍䠊◊✲ᴫせ㻌 䛻䛚䛔䛶ᶵ⬟ 䛧䛶䛔䜛䚹䛣䜜䜙䛾ᵓ㐀䛾␗䛺䜛ከ䛟䛾ᶆ ᳜≀⏕⌮Ꮫ◊✲ᐊ䛷䛿䚸᳜≀ⴥ⥳య䛻䛚䛡䜛ᶵ⬟ไ ⓗ䝍䞁䝟䜽㉁䜢䚸䝏䜸䝺䝗䜻䝅䞁䛿䛹䛾䜘䛖䛻ぢศ䛡䚸ⴥ ᚚ䛻⯆䜢ᣢ䛱䚸䛝䛺䝔䞊䝬タᐃ䜢⾜䛳䛶䛔䜛䚹㻌 ⥳యෆ䛷ΰ䛩䜛䛣䛸䛺䛟┦ ᡭ䝍䞁䝟䜽㉁ 䜢ㄆ㆑ 䛧䚸ᚲ ᳜≀䛾 䛝䛺≉ᚩ 䛾䜂䛸䛴䛻ගྜᡂ䛜䛒䜛䚹㧗➼᳜ せ䛺㑏ඖຊ䠄䛴䜎䜚㟁Ꮚ䠅䜢౪⤥䛧䛶䛔䜛䛾䛛䚸᫂䜙䛛䛻 ≀䛾ගྜᡂ䛿ⴥ⥳య䛸䜀䜜䜛」ᩘ䛾⭷⣔䛛䜙䛺䜛ᙧ 䛩䜛䚹䜎䛯䚸ⴥ⥳య୰䛻」ᩘ䛾䜰䜲䝋䝣䜷䞊䝮䜢ᣢ䛴䝏䜸 ែⓗ䛻䜒」㞧䛺䜸䝹䜺䝛䝷䛷㐍⾜䛧䚸㻯㻻㻞 ᅛᐃ䛜⾜䜟䜜 䝺䝗䜻䝅䞁䝣䜯䝭䝸䞊䝍䞁䝟䜽㉁䛜᳜≀ⴥ⥳యෆ䛷䛹䛾䜘䛖 䜛䚹᳜≀䛻䛸䛳䛶ගྜᡂ䛿㠀ᖖ䛻㔜せ䛺ᶵ⬟䛷䛒䜛䛯䜑䚸 䛻䛔ศ䛡䜙䜜䛶䛔䜛䛾䛛䚸䛭䛾ศᏊᶵᵓ䚸⏕⌮Ꮫⓗព ᵝ䚻䛺ไᚚᶵᵓ䜢ഛ䛘䛶䛔䜛䚹⚾䛯䛱䛿䛣䛾୰䛷䜒㧗➼ ⩏䜢᫂䜙䛛䛻䛩䜛䚹㻌 ᳜≀ⴥ⥳య䛻䛚䛡䜛䝺䝗䝑䜽䝇ไᚚᶵᵓ䛻䛴䛔䛶䚸䛭䛾 䠎䠅ⴥ⥳య䝏䝷䝁䜲䝗⭷䜢䛧䛯㑏ඖຊఏ㐩ᶵᵓ䛾ゎ᫂㻌 ⏕⌮ᶵ⬟䛸ศᏊ䝯䜹䝙䝈䝮䛾ゎ᫂䜢┠ᣦ䛧䚸◊✲䜢⾜䛳 ⴥ⥳య䛿䚸እໟ⭷䚸ෆໟ⭷䛸䛔䛖ᯛ䛾⭷䛻ᅖ䜎䜜䛯 䛶䛔䜛䚹㻌 䜸䝹䜺䝛䝷䛷䛒䜛䚹ⴥ⥳య䛿䚸䛥䜙䛻䝏䝷䝁䜲䝗⭷䛸䜀 㻌 ⴥ⥳య䛾䝺䝗䝑䜽䝇ไᚚᶵᵓ䛷䛿䚸䝏䜸䝺䝗䜻䝅䞁䛸 䜜䜛⭷䜢ᣢ䛳䛶䛚䜚䚸ᙧែୖ䜒」㞧䛺䜸䝹䜺䝛䝷䛷䛒䜛䚹 䜀䜜䜛䝍䞁䝟䜽㉁䛜䛭䛾ไᚚ䛻୰ᚰⓗ䛺ᙺ䜢ᯝ䛯䛩䚹 䛸ኪ䛸䛷䛝䛟䝺䝗䝑䜽䝇⎔ቃ䛜ኚ䛩䜛ⴥ⥳య䝇䝖䝻 ᮏ◊✲ᐊ䛜Ⓨ㊊ 䛧䛶䛛䜙䚸䝏䜸䝺䝗䜻䝅䞁䝣䜯䝭䝸䞊䝍䞁 䝬⏬ศ䛸䛿ᑐ↷ⓗ䛻䚸䝏䝷䝁䜲䝗⭷䜢㝸䛶䛯䝏䝷䝁䜲䝗䛾 䝟䜽㉁䛾⏕⌮Ꮫ ⓗᶵ⬟䛾ゎ ᯒ䜢୰ᚰ䛸䛧䛶䚸௨ୗ䛾ල ෆഃ䠄䝏䝷䝁䜲䝗ෆ⭍䠅䛾䝺䝗䝑䜽䝇≧ែኚ䛿䜋䛸䜣䛹▱ యⓗ䛺◊✲㡯┠䜢タᐃ䛧䚸◊✲䜢㐍䜑䛶䛔䜛䚹㻌 䜙䜜䛶䛔䛺䛔䚹⚾䛯䛱䛿䚸䝏䝷䝁䜲䝗ෆ⭍䛻䜒䝏䜸䝺䝗䜻䝅 㻌 䞁ᵝ䝍䞁䝟䜽㉁䛜ᒁᅾ䛩䜛䛣䛸䜢ド᫂䛧䚸䛣䜜䛜䝏䝷䝁䜲䝗 ෆ⭍䛷ᶵ⬟䛧䛶䛔䜛䛣䛸䜒᫂䜙䛛䛻䛧䛯䚹㑏ඖຊ䛾✚ 䛾䛺䛔䝏䝷䝁䜲䝗ෆ⭍䛷䚸䝏䜸䝺䝗䜻䝅䞁䛾䜘䛖䛺㓟㑏 ඖ䝍䞁䝟䜽㉁䛜ᶵ⬟䛩䜛䛯䜑䛻䛿㑏ඖຊ䛾౪⤥䛜ᚲせ 䛷䛒䜛䚹䝏䝷䝁䜲䝗ෆ⭍䛷ᚲせ䛸䛺䜛㑏ඖຊ䜢䝇䝖䝻䝬䛛䜙 ఏ㐩䛩䜛ศᏊ䝯䜹䝙䝈䝮䚸䛚䜘䜃䛭䛾⏕⌮Ꮫⓗ䛺ព⩏䜢 ᫂䜙䛛䛻䛩䜛䚹㻌 㻌 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 㻌 䠍䠅ⴥ⥳య䝇䝖䝻䝬䛻䛚䛡䜛䝏䜸䝺䝗䜻䝅䞁䝣䜯䝭䝸䞊䝍䞁 䝟䜽㉁䛾ᶵ⬟ไᚚᶵᵓ䛾ゎ᫂㻌 㧗➼᳜≀䛾䝰䝕䝹᳜≀䛷䛒䜛 㻭㼞㼍㼎㼕㼐㼛㼜㼟㼕㼟㻌㼠㼔㼍㼘㼕㼍㼚㼍 䛷 䛿䚸䠑䜾䝹䞊䝥 㻝㻜 ✀㢮䛻䛚䜘䜆䝏䜸䝺䝗䜻䝅䞁䜰䜲䝋䝣䜷 㻌 䞊䝮䛾Ꮡᅾ䛜᫂䜙䛛䛸䛺䛳䛶䛔䜛䚹䛣䜜䜙ከ䛟䛾䜰䜲䝋䝣䜷 䠍䠅ⴥ⥳య䝇䝖䝻䝬䛻䛚䛡䜛䝏䜸䝺䝗䜻䝅䞁䝣䜯䝭䝸䞊䝍䞁䝟 䞊䝮䛾ᶵ⬟ศᢸ䛜䚸ⴥ⥳యෆ䛷䛾ྛ✀⤒㊰䜈䛾㑏ඖຊ 䜽㉁䛾ᶵ⬟ไᚚᶵᵓ䛾ゎ᫂㻌 ౪⤥䛾䛔ศ䛡䜢ྍ⬟䛻䛧䛶䛔䜛䛸⪃䛘䛶䚸䛣䜜䜙䛾䝍䞁 ⴥ⥳య䝇䝖䝻䝬䛷䛿䚸ගྜᡂ䛾⾜䜟䜜䜛䛸ኪ䛸䛷 䝟䜽㉁䛾ᶵ⬟ゎᯒ䜢㐍䜑䛯䚹 㼙 ᆺ䝏䜸䝺䝗䜻䝅䞁䛻㛵䛧 䛝䛟䝺䝗䝑䜽䝇≧ែ䛜ኚ䛩䜛䚹ගྜᡂ䛾⾜䜟䜜䜛䛻䛿䚸 䛶䛿䚸䝅䝻䜲䝚䝘䝈䝘䛷 㼙 㻝㻘㻌㼙 㻌㻞㻘㻌㼙 㻌㻟㻘㻌㼙 㻌㻠 䛾䠐✀㢮䛾䜰䜲 ගྜᡂ㟁Ꮚఏ㐩⤒㊰䛛䜙⏕䛨䜛㟁Ꮚ䛷 㻺㻭㻰㻼㻴 䜢⏘⏕ 䝋䝣䜷䞊䝮䛖䛱 㼙 㻝㻘㻌 㼙 㻞㻘㻌 㼙㻠 䛻ኚ␗䜢ᣢ䛴䝅䝻䜲䝚䝘䝈䝘 䛩䜛䛯䜑䚸䝇䝖䝻䝬⏬ศ䛿㑏ඖ ⓗ䛺≧ែ䛻䛒䜛䚹 䛾㑏 ኚ␗య䜢ྲྀᚓ䛧䚸䛣䜜䜙䛾ゎᯒ䜢㐍䜑䛶䛔䜛䚹䛣䛾 ඖⓗ≧ែ䛾䛸䛝䛻ⴥ⥳య䝇䝖䝻䝬䛻ᒁᅾ䛩䜛䝏䜸䝺䝗䜻 㼠㼞㼤㼙㻝㻞㻠 ኚ␗య䛿ಶయ䛜ᑠ䛥䛟䚸ගྜᡂ㟁Ꮚఏ㐩㏿ᗘ 䝅䞁䛿䚸䜹䝹䝡䞁䝃䜲䜽䝹䛺䛹䛾㓝⣲䜢㑏ඖ䛧άᛶ䛩 䜔Ⅳ㓟ᅛᐃᛂ䛻䜒ᙳ㡪䛜ぢ䜙䜜䛯䚹⌧ᅾ䚸䛣䜜䜙䛾⌧ 䜛䚸䝨䝹䜸䜻䝅䝺䝗䜻䝅䞁䜢䛿䛨䜑䛸䛩䜛άᛶ㓟⣲✀ᾘཤ ㇟䛜ほᐹ䛥䜜䜛⌮⏤䜢䚸ศᏊ䝯䜹䝙䝈䝮䛾ほⅬ䛛䜙᫂䜙 ⣔㓝⣲䜈ᛂ䛻ᚲせ䛺㟁Ꮚ䜢౪⤥䛩䜛䚸䝏䝷䝁䜲䝗ෆ⭍ 䛛䛻䛩䜛䛣䛸䜢┠ᣦ䛧䛶◊✲䜢㐍䜑䛶䛔䜛䚹䜎䛯䚸㼀㻙㻰㻺㻭 䜈䛾㑏ඖຊ౪⤥⤒㊰䜈㟁Ꮚ䜢Ώ䛩䚸䛺䛹䛥䜎䛦䜎䛺ሙ㠃 ᤄධኚ␗ᰴ䛾ゎᯒ䛻ຍ䛘䛶䚸㻾㻺㻭㼕 ἲ䛻䜘䜛 䡉 ᆺ䝏䜸䝺 䝗䜻 䝅䞁䛾ኚ ␗ య 䜒ྲྀ ᚓ 䛧䚸 ゎ ᯒ 䜢 ⾜ 䛳 䛯䚹䛣䛱 䜙䛿䚸 reducing equivalents are produced from photosystem and 㼀㻙㻰㻺㻭 ᤄධኚ␗ᰴ䛻ẚ䜉䚸 䡉 ᆺ䝏䜸䝺䝗䜻䝅䞁䛾✚ used to produce the reductant NADPH. NADPH is 䝍䞁䝟䜽㉁㔞䛜䜘䜚ᑡ䛺䛟䚸⾲ ⌧ᆺ䛜䛿䛳䛝䜚䛸⌧䜜䚸ಶ further used for the reduction of CO2 in the chloroplast య䜒㠀ᖖ䛻ᑠ䛥䛟䚸ᙅග᮲௳䛷䛺䛟䛶䛿⏕⫱䛜䛷䛝䛺䛔䛣 stroma. A portion of the reducing equivalents is also 䛸䛜䜟䛛䛳䛯䚹㻌 utilized for reduction of stroma thioredoxins. Thioredoxins transfer reducing equivalents for regulation of thiol-enzymes, scavenging for reactive oxygen species, or reducing equivalents transfer system across thylakoid membranes. How stromal thioredoxins recognize various target proteins in stroma, without being confused? Arabidopsis thaliana have five groups of stromal thioredoxins. We have focused m-type thioredoxin, a member of stromal thioredoxin family proteins. T-DNA insertion lines of m-type thioredoxin in A. thaliana were screened. The trxm124 mutant showed the growth defect and the decreased chlorophyll content, compared with the wild type. We also made m-type thioredoxins deficient line by RNAi method. These RNAi lines have showed severe phenotype in growth. 䠎䠅ⴥ⥳య䝏䝷䝁䜲䝗⭷䜢䛧䛯㑏ඖຊఏ㐩ᶵᵓ䛾ゎ᫂㻌 㻌 ⚾䛯䛱䛾䛣䜜䜎䛷䛾◊✲䛛䜙䚸㑏ඖຊ䛾✚䛾䛺䛔䝏 2: Physiological role and molecular mechanism of 䝷䝁䜲䝗ෆ⭍䛻㑏ඖຊ䜢౪⤥䛩䜛䝅䝇䝔䝮䛾Ꮡᅾ䛜♧၀ reducing 䛥䜜䛶䛔䜛䚹⏕Ꮫⓗ䛺ゎᯒ䛺䛹䛛䜙䚸䝏䝷䝁䜲䝗⭷䝍䞁 membranes in chloroplasts. 䝟䜽㉁䛷䛒䜛 㻯㼏㼐㻭 䛜䝏䝷䝁䜲䝗⭷䜢㉸䛘䜛㑏ඖຊཷ䛡Ώ In contrast to redox state control in stroma side, 䛧䛾ೃ⿵ᅉᏊ䛷䛒䜛䛣䛸䛜᫂䜙䛛䛸䛺䛳䛶䛝䛯䚹ᮏᖺᗘ䛿䚸 knowledge pertaining to redox regulation on the lumenal 䝅䝻䜲䝚䝘䝈䝘䛾 㻯㼏㼐㻭 Ḟኻኚ␗య䛻䛚䛡䜛᳜≀య䛾⾲ side of the thylakoid membrane remains very limited. We ⌧ᆺ䛾ほᐹ䜢⾜䛳䛯䚹䛭䛾⤖ᯝ䚸㻯㼏㼐㻭 Ḟኻኚ␗ᰴ䛷䛿䚸 previously demonstrated that a thioredoxin-like protein ᡂ㛗䛜㐜䛟䚸ⴥ䛻䛿ග㜼ᐖ䛾ᙳ㡪䛜ほᐹ䛥䜜䛯䚹㻌 is located in the thylakoid lumen and can function as a 㻌 reducing equivalent carrier to protein targets located in 㸱㸬Research projects and annual reports the lumen. In order to function as a carrier of reducing We have been setting our research theme on the equivalents in the thylakoid lumen, a thioredoxin-like functional regulation of higher plant chloroplast. protein in thylakoid lumen side in turn must receive equivalent transfer system on thylakoid Plants have photosynthetic ability to convert carbon reducing equivalents. These results suggest that higher dioxide into organic compounds, especially sugars, as plant chloroplasts possess a reducing equivalent transfer unique feature. The photosynthesis in higher plants system which operates across the thylakoid membrane occurs in chloroplasts which are comprised of from the stroma to the lumenal side. We analyze the multilayered membranes, and pushes forward carbon physiological role and molecular mechanism of the dioxide fixation. Chloroplasts have various regulation reducing mechanisms of photosynthesis that is an important membrane. equivalent transfer system across the function for plants. Particularly, we focus on redox CcdA, which is a candidate for this system, was regulation in modulation system of higher plant examined a contribution for reducing equivalent transfer chloroplast, and have major two research projects as assay in vitro, using isolated thylakoid membranes. If follows: both a lumenal thioredoxin-like protein and CcdA 1: Functional analysis of stromal thioredoxin family protein function in the same reducing equivalent transfer proteins in redox regulation system. pathway, reduction of a disulfide bond in the CcdA The redox state of higher plant chloroplasts fluctuates molecule should be promoted by stromal thioredoxin. We widely under light and dark conditions. In the light, demonstrated CcdA could be reduced, in which a ㄢ㢟ྡ䠖ⴥ⥳య䝇䝖䝻䝬䛛䜙䝏䝷䝁䜲䝗ෆ⭍䜈䛾㑏ඖຊఏ㐩ᶵ lumenal thioredoxin-like protein was reduced. In this ᵓ䛾ゎ᫂㻌 year, we screened the ccdA deficient T-DNA insertion ◊✲௦⾲⪅䠖ᱩᕝᏘ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻞㻙㻞㻠 ᖺᗘ㻌 㻔㻟 ᖺ㻕㻌 㻌 lines in Arabidopsis thaliana and observed the ccda mutant phenotype. 䠎䠅㻌 䛭䛾㻌 ◊✲ᐊ䝯䞁䝞䞊䛾┿㻌 㻌 䠐䠊ㄽᩥ䠈ⴭ᭩䛺䛹㻌 K. Yoshida, K. Noguchi, K. Motohashi, T. Hisabori: Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. Plant Cell Physiol. 54, 875-892 (2013) Y. Taira, Y. Okegawa, K. Sugimoto, M. Abe, H. Miyoshi, T. Shikanai: Antimycin A-like molecules inhibit cyclic electron transport around photosystem I in ruptured chloroplasts. FEBS Open Bio 3, 406-410 (2013) K. Sugimoto, Y. Okegawa, A. Tohri, T. A. Long, S. F. Covert, T. Hisabori, T. Shikanai: A single amino acid alteration in PGR5 confers resistance to Antimycin A in cyclic electron transport around PSI. Plant Cell Physiol. 54, 1525-1534 (2013) 㻌 㻌 㻌 䠑䠊ᏛⓎ⾲䛺䛹㻌 㻌 ᱩᕝᏘ䚸ᮏᶫ: 䝅䝻䜲䝚䝘䝈䝘䛾䝺䝗䝑䜽䝇ไᚚ䛻䛚䛡䜛䡉 ᆺ 㻌 Trx䛾ᙺ ➨55ᅇ᪥ᮏ᳜≀⏕⌮Ꮫᖺ䠈ᐩᒣᕷ䠈2014. 㻌 3.18-20 ᱩᕝᏘ䚸ᮏᶫ: 䝅䝻䜲䝚䝘䝈䝘䛻䛚䛡䜛ⴥ⥳య䝏䜸䝺䝗䜻䝅 䞁䛾⏕⌮Ꮫⓗゎᯒ ➨85ᅇ᪥ᮏ⏕Ꮫ䠈ᶓᕷ䠈2013. 9.11-13 ᱩᕝᏘ䚸ᮏᶫ:㻌 䝅䝻䜲䝚䝘䝈䝘䛾mᆺ䝏䜸䝺䝗䜻䝅䞁ኚ␗ᰴ 䛾ゎᯒ ➨䠐ᅇ᪥ᮏගྜᡂᏛᖺ䠈ྡྂᒇᕷ䠈2013. 5.31- 6. 1 ᱩᕝᏘ䚸ᮏᶫ: ⴥ⥳య䝇䝖䝻䝬䛻䛚䛡䜛m-type 䝏䜸䝺䝗䜻䝅 䞁䛾⏕⌮ᶵ⬟䛾ゎᯒ➨54ᅇ᪥ᮏ᳜≀⏕⌮Ꮫᖺ䠈ᒸᒣᕷ䠈 2013. 3.21-23 㻌 䠒䠊䛭䛾≉グ㡯㻌 䠍䠅㻌 እ㒊㈨㔠 ⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᣮᡓⓗⴌⱆ◊✲㻌 ㄢ㢟ྡ䠖ගྜᡂ⏘≀ྍど䛾䛯䜑䛾⺯ග䝥䝻䞊䝤㛤Ⓨ㻌 ◊✲௦⾲⪅䠖ᮏᶫ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞䠑㻙㻞㻢 ᖺᗘ㻌 㻔㻞 ᖺ㻕㻌 Ꮫ⾡◊✲⯆㈨㔠䠄᪥ᮏ⚾❧Ꮫᰯ⯆䞉ඹ῭ᴗᅋ䠅㻌 ㄢ㢟ྡ䠖᳜≀䛾ගྜᡂ䜢ไᚚ䛩䜛䝯䜹䝙䝈䝮䛾ゎ᫂㻌 ◊✲௦⾲⪅䠖ᮏᶫ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞䠑ᖺᗘ㻌 㻔䠍ᖺ㻕㻌 ⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᇶ┙◊✲䠄㻯䠅㻌 ㄢ㢟ྡ䠖㧗➼᳜≀ⴥ⥳య䛻䛚䛡䜛䝏䜸䝺䝗䜻䝅䞁䝣䜯䝭䝸䞊䝍 䞁䝟䜽㉁䛾ᶵ⬟ศᢸゎᯒ㻌 ◊✲௦⾲⪅䠖ᮏᶫ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻞㻙㻞㻠 ᖺᗘ㻌 㻔㻟 ᖺ㻕㻌 㻌 ⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ⱝᡭ◊✲䠄㻮䠅㻌 Prof. Hiroshi Yamagishi, Agr. Dĸ &'(&')&!$%(' #%" 0/ ± ůå Î ŮŕŒũŰŌĖ f ŌĶ Œ¶ · t ūF t >oĞTŶŌģ¶ŌIƔƀƌƯŮŕŒũQ Ů!+ ŝũŒźśūŗËŜŻŧŧőźōµDŌŢŻŸÍt>oĞ žŝŤ Ņ Ƶ =ÎåÎůĢøtŗsėŮNRŝũŒźō Tů-ĮūÃĩůþžĚŵũŒźōĸ ŤūŔű ļĺ Öm,ů»¿ŭŏßůı<ŐžĚŝŤ ƶƳƏƮƀƛƙƒƙž¸ŒŤØçò6ŮŷźŝŒØçč /)&ůƵŧŰŌƗƁƧƮƌƏŮ় Ņ Ƶ =Îůsėŭ ītÍůħ¾ĸ 0ŪőŦŤōśůŷœŭĶŒåÎ(žşź Ņ Ƶ åÎ ÿƄƊƪGītÍŰĶŒZ¸tžŧŤŵŌſ ŮŕŒũŰŌÊZŖŧ(´¿Ů Ņ Ƶ ÎTžÎşźśū Ơƪƙ̱ůåÎŮŕŒũŰśůĞTŮ$¸ŗĬ ŗŵũĢøŭv;žŧō(´¿ŭ Ņ Ƶ Ξ3èŮ ŝũŒźōśůŷœŭĞ ¿ é j t ž{ É şźŤŵŮ şź±ůĞ¿²tūŝũØçčītÍtŗőŹŌ ŰŌŝŒītÍžħ¾şźśūŗs*ŪőźōŢśŪŌ ZĪŮśů²tŗQřů±ů Ņ Ƶ åÎŪ$¸ŜŻũŒ ƏƮƀƛƙƒƙūƇƨƢƖūůĨŪØçĭΞ źōØçčītÍtŰƤƗƌƯƘƫſƋƜƥůĞT Ɠƀơů½ ŭźī t Í Õ Þ žƶÕ Þ n ŤōśŻŸž¸ ŮŷŦũĄĎŜŻźōŢůŪŌQřůL6Ůśů ŒũƇƨƢƖĵůZ¸¿ŭītÍÕÞůħ¾žĚŵ ītÍŮ_şźÍt>oĞTŗUDŝŌītÍ źūūŶŮŌØçĭÎůƤƗƌƯƘƫſƋƜƥůĘžþ ŗöµGūŝũÙ¿Ů¾µşźŖŬœŖŰŌƤƗƌƯƘƫ şźśūŮŷŹŌītÍůƦƅƚƒƥžŸŖŮŝŷœ ſůĞTūůÍt>oĞTůøŮŷŦũ ūŝũŒźōĸ ªYŜŻźōĸ ƷƳØ ç č á ŮŷźƔƀƌƯŕŷŲƙƑůī t Í ů śůŤŵŌØçčītÍtž±ů Ņ Ƶ åÎŮZĪ ŝŌ ħ¾ĸ Ůĝ¸şźŤŵŮŰŌƤƗƌƯƘƫſƋƜƥŕŷŲƋƜƥ WĠ[RVŌĊRVŕŷŲģðïÈÐzūů ůĞTů¥èž§ŝř}şźqøŗőźōŢŻū7 7ÈÐŪŌƔƀƌƯūſƠƪƙÌģ¶Îūů`ĨĭÎ ŮŌśůītÍŊÍt>oůÕŰŌ±Ů় ŲŮƙƑū5ÎůƙƑ`ģ¶±ūůÎĨĭÎŮº ūƤƗƌƯƘƫſůƉƮƑƗƱƉůĚ+žÌV¿Ůþşź şźītÍÕÞŮŧŒũŌØçčáŮŷźīt ŤŵůŻŤë4ūŭźōĸ Í+ůƦƅƚƒƥžþŝũŒźōŢŻţŻůītÍ śůŷœŭû¯ŖŸŌxŎŰ»ůIưģ¶ƔƀƌƯ Ū²½¿Ů¾µşźƤƗƌƯƘƫſĞTžŸŖŮ ŮŧŒũŌƤƗƌƯƘƫſůītÍĞTūŢŻŮ_ş ŝŌöµGūů_ržĆşźśūŮŷŹŌītÍů/ źůÍt>oĞTů!eūĞ¿O½žĆŝũ ?ĞTž²YŝŷœūŝũŒźōŜŸŮØçčáŮŷ ŘŤōŢůÜŌųŪŮ»ůIƔƀƌƯŗŒřŧ źØçčītÍŮ_şźÍt>oĞTž-Įşź Ŗůģ¶ƔƀƌƯŖŸQ¿ŮwÑŝĚ+ŝũŘŤśūž ūūŶŮŌŢůĞTů¸¥žŸŖŮşźśūžÁ ŸŖŮŝŤōųŤƔƀƌƯ`ģ¶ÎŮ¶ŞŤƄƊƪGī ¿ŮÈОĚŵũŒźōĸ t Í Ğ T ŗŌx B ůƝƣƔƀƌƯŮŕŒũO ½ ž ĸ ñÏŝũŘŤśūžÊŮŝŤōŜŸŮŌƝƣƔƀƌƯů 1/- ğŗxBŮŕŒũIƔƀƌƯūŝũwÑŝŤśūžĞ ƵƳƄƊƪGītÍūŢŻŮ_şźÍt>oĞTĸ V¿ŮJŨŒũŸŖŮŝŤōĸ ĸ ƔƀƌƯůƄƊƪGØçčītÍŮ_şźÍt>o śůŷœŭÈÐwžďųŔũŌŜŸŮītÍŋÍt ĞTŰŌQřůIưģ¶ƔƀƌƯŮ!eşźśūŗ >oÕŮ়ĞTů!+ūĚ+ŌØçčáŕŷ ŸŖŮŭŦũŒźōŢůœťŌBůIƔƀƌƯŖŸ ŲØçò6ŮŷźŝŒītÍtůZ¸¿ħ¾ů ŗƉƮƱƚƯƊŜŻŤŗŌśŻūŰ½ŭźÍt>o İŪÈОĚŵũŒźōĸ ĞTŗŮê¶şźƝƣƔƀƌƯŮUDşźśūŗ ƵƳƔƀƌƯŮ়ƄƊƪG ī t Í Ğ T ūÍ t > ŸŖŮŭŹŌ ū8ŨŚŸŻŤōŌśŻŸƶŧůĞ oĞTů!+ĸ TžŤŭŒŮŶŖŖŽŸŠŌÍt>o¥èžşź x Ŏů ę ůÈ Ð ŮŷŦũŌſƠƪƙÌ ± ůå Î ƔƀƌƯŗ÷ ¾ ù ŜŻŤōśůœťŌƩƱƮƕƟů I ŮŕŒũĶŒZ¸tžŧƄƊƪGītÍĞTů ƔƀƌƯŪőźŏƉƮƔƀƌƯŐŗ ŧÍ t > o Ğ T ů Ďū!+ŗŸŖŮŜŻŤōŌśŻŮ_şźÍt ĘŮŧŒũĂØŭþŗŭŜŻŤōŢůÜŌśůĞ T ŰĐ ƭƢƬŪŭřŌã Ā ƭƢƬŪī t Í Ğ ĸ ŌµDųŪůÈÐŪŌƙƑůIÎŕŷŲģ¶Î Tů¾µž~%şźśūŗËŜŻŤōųŤŌƉƮƔƀƌƯů ŮŕŒũŰŌƤƗƌƯƘƫſĞ T ůƍƎƯþ ŕŷŲ Ít>oĞTŰŌ Ĺĸ Ĺĸ ŗUDşźIJ ĞT:ēůMJġ"ůþŮŷŦũŌƷƓƀơů HŮ়÷ĭŭĞ¿ÚŴŔŗijàŮĎśŦŤÜ ØçčŗĈ#ŜŻŤōŜŸŮŌ ĞTů¬ŮŰŌ Ō¶ŞŤŶůŪőźśūŗŸŖŮŭŦŤōĸ ŢŻţŻůØçčŮ²ů ŗUDşźśūŗÊăŜ ĸ ŌIưģ¶ƔƀƌƯŮŕŒũŰŌƄƊƪGØçč ŻŤōśŻŸůœťŌíÔlwGůītÍžĄĎ ž9ŵũŌQ ŭØçčů!+ŗUDşźśūŗăŵŸ şźØçčŮŧŒũŌ ů¾µūíÔÍtůöµGū ŻũŒźōśůØçčů!+ūŢůĎžŸŖŮşź ů_ržý]ŝŤōŢůÜŮŶūŨŘŌíÔlw śūžÁ¿ūŝũŌƤƗƌƯƘƫſƋƜƥůMJġ"ůþ GītÍů/?ĞTŗŌ ů¬ŮUDşź² žĚŵŤōŢůœťŌÿůŏƉƮƔƀƌƯŐůƤƗƌƯƘƫ ů ŪőźśūŗYŜŻŤōĸ ſŕŷŲŏįĦƔƀƌƯŐůƤƗƌƯƘƫſŮŧŒũƋƜƥ ĸ śŻŸŌƙƑůītÍtŮĩşźęůÈÐwž ůM J ġ " u K žn ŤōŢŻŸůÜ ŖŸŌƔƀƌƯŮ æūŝũŌŝřƙƑůíÔÍt>oĞTů-Įž ়½ŭźØçčůĨůĚ+ůÃĩžþŝ Á ¡ ūşźÈ Ð žħ S ŝŤōÍ t > o Ğ T ů ° Ů ŷœūŝũŒźōĸ ŷŦũíÔÍtŗ!ĮşźRú¢ŭĬ@žāşźūū ƶƳƏƮƀƛƙƒƙūƇƨƢƖůØ ç ò 6 Ůŷź ŝŒī ŶŮŌƙƑůĶ\gęĥEAů ńŇŁ ƣƱƅƱžĆ tÍůħ¾ĸ ĸ ƏƮƀƛƙƒƙūƇƨƢƖůĨ Ū ŝŤōŢůÜŌÍt>oĞTŗhşźƙƑůì ŝŤī t Í t ŗŸŖŮŭŹŌŖŧìůIJHŗÝŹĕųŻŧ ůØçĭΞ¸ŒũŌyŝ ĭÒƹƲłŃ ľ ƳųŪž ŧőźōĸ ³nŝŤōØçĭÎūŢůmůƤƗƌƯƘƫſůĞ ĸ TŮŧŒũƍƎƯþžóŦŤūśżŌŀ ĞTŗü ĸ Î ůƞƯƘžőŽš ŧƟƓƱƯžË ŝŌƺĞ T ŗ Research projects and annual reports ØçĭβůƞƯƘƟƓƱƯžËŝũŒŤōŜŸŮśů In the field of plant breeding, F 1 hybrids have many ŷœŭƤƗƌƯƘƫſĞTůĘŰyŝ ĭžÛũŶŌX genetic advantages and contribute to the increase of YŝũmŮěŜŻũŒźśūŗŸŖŮŭŦŤōŢů worldwide crop production. ŪŌłŃ Ľ ŮŧŒũíÔÍtžý]ŝŤūśżŌ F 1 hybrid production, cytoplasmic male sterility (CMS) XYŝũīt͞˺ūŌğ!¿ŮÍtž>o is the most useful genetic characteristic. şźūŗăŵŸŻŤōśůŷœŭŌğ!3Í+ů/? practical importance of the CMS, it is useful to study the žĆşźūūŶŮŌŜŸŮyŝ ĭžĚŵũŌZ¸¿ŭ interactions between nuclear genes and mitochondrial ītÍÕÞžħ¾ŝŷœūŝũŒźōĸ ones ĸ ųŤŌÿůØçĭÎūŢůmŮ²ůƤƗƌƯƘ molecular and evolutional genetics. ƫſƋƜƥůĘžŌůſƠƪƙ̱ůƤƗƌƯƘƫſ been studying the CMS of various plants both in order to ū¨đşźŤŵŮŌQřůſƠƪƙ̱ŪƤƗƌƯƘƫſ know the evolutional processes and to exploit new ƋƜƥůMJġ"žªYŝŤōşŭŽťŌØçĭÎ breeding materials. ů ůü ŪőźƇƨƢƖŮ' ŔũŌƝƉƍƀŌƉƮƆƪ sterile materials, we are utilizing organelle genome ƏŮŧŒũƤƗƌƯƘƫſůƋƜƥþžóŦŤōĸ engineering methods such as cell fusion, and cytoplasm ƷƳØ ç č á ŮŷźƔƀƌƯŕŷŲƙƑůī t Í ů substitution. ħ¾ĸ ĸ ƙƑůØ ç č ī t Í ůœťŌí Ô l w G ůī from scientific For the efficient and stable view points, Besides the especially for Thus, we have For the establishments of new male 1) Ogura CMS and its fertility restoring genes. Ogura CMS found in a Japanese radish is the most tÍŮ_şźÍt>oĞTů ńŇŁ ƣƱƅƱžħ important ¾ ŝŤōşŪŮn ŸŻũŒźƣƱƅƱŰŌ ´ ŭŗŸÚ worldwide. Ŕ ž¶ ŞźŶůŪőŦŤōŢśŪŌśŻŸůƣƱƅ and differentiations of Ogura CMS gene, orf138. ƱŷŹŜŸŮÍt>oĞTūkřęĥŝŤ ńŇŁ ƣƱƅ Whereas, we found that various wild and cultivated Ʊž×ŝŤūśżŌĆ ĻĿľ ŮŕŒũřÚ radishes possess fertility restoring genes for Ogura CMS. Ŕŗý]ŜŻŭŒ ńŇŁ ƣƱƅƱŗ¾ùŜŻŤōŢś Hitherto, two fertility restoring genes were known. ŪśůƣƱƅƱů ňʼnň +žĚŵŤōĸ One is orf687 in a Chinese variety, and another is Rft one in Cruciferous plants, being used We have been studying the distributions distributed in Japanese wild radishes. We observed that a European radish cultivar, ‘Kurodaikon’, has a fertility H. Yamagishi, S. R. Bhat: Cytoplasmic male sterility in restoring gene different from both of orf687 and Rft. Brassicaceae crops. Breeding Science. 64(No.1), in press We, thus, determined the DNA sequence of this new gene. From the results we estimated the genetic ĸ processes in which the fertility restoring gene of 3/,+ĸ ‘Kurodaikon’ was produced. ĔÆõŌ¤Ōac.Ō^EpƻƋƜƥwŮŷŹĜŒž ËşEmmer-DinkelƌƥƈůƤƗƌƯƘƫſůQGōåÎV 2) New male sterile plants derived from the cell fusion. Ò124>ć®ƴķdÅƴ2014.10.12-13 We obtained somatic hybrids showing male sterility between Arabidopsis thaliana and cabbage varieties (Brassica oleracea). bğÆiŌ¹âóŌac.Ō^Epƻ¦ƏƱƉƃƯƍƱž ¸ŒŤƔƀƌƯůƤƗƌƯƘƫſƋƜƥůġ"þƷƻįĦƔƀƌƯ It was found by the molecular ůƤƗƌƯƘƫſƋƜƥġ"ůªYōåÎVÒ124>ć analyses of their mitochondrial genomes that the male ®ƴķdÅƴ2014.10.12-13 sterile hybrids contain the various novel genome structures of mitochondria. Progenies of the somatic NO : 0=x^`c1x hybrids were obtained by successive back-crosses with B. tZ5{fn$!#),-Ak1 oleracea. dNqg9Juy[ |@6m2hlP So far, the pollen fertility was investigated in the BC 4 progenies. ]Tm The BC 4 progenies were segregated into completely male sterile plants and partially fertile plants. However, all the BC 4 progeny plants had the identical structure of mitochondrial genome. Further 4/*- ƵƳĸ PğċĤ back-crosses and observation of pollen fertility are now Ē©·ÄưƋƜƥuKž«¸ŝŤĒ¼·±ů¦¶·J undertaken. À|ôůħ¾ơƮƐƂƉƗƲCî±ů¸ĞTů7Yūƽ 3) CMS of radish and eggplant by cytoplasm ƾƼƣƱƅƱůħ¾Ƴĸ ąĴ8ƻƙƑŮ়íÔÍt>oĞTů-Įĸ substitutions. ÈÐöäƻac.ƴ1nfgƻņļľƲĻ fƳĸĸ With the purpose to enlarge the numbers of CMS material plants, we are analyzing the ĸ molecular characteristics of alloplasmic radishes and eggplants ƶƳĸ Çĉ£Óĸ ŭŝĸ under the collaborative projects with other institutions. ƷƳĸ VP«)ĸ ƻejqsH&)"uy i4E We found unique orfs in male sterile alloplasmic lines 8MXVoC_pq}vz\ both in radishes and eggplants. r?H> By the studies of their expressions, it was suggested that they are promising `cxJ2R/ candidates of causal genes of CMS. ƸƳĸ 2ČÓĸ ŭŝĸ Furthermore, we exploited DNA markers of fertility restorer genes of eggplants. ƹƳĸ Ţůĸ ĸ 7J Q b The markers would be useful to identify the restorer genes and to clarify the mechanisms of CMS and ĸ fertility restoration. ĸ ĸ ĸ 2/ .,+ M. Yoshimi, Y. Kitamura, S. Isshiki, T. Saito, K. Yasumoto, T. Terachi, H Yamagishi: Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongena). Theoretical and Applied Genetics. 126, 1851-1859 KcaG+LB W+NO :*(CY. w~M wY@U3IS' %* 0 qgFJ<J uy[[D |; ື≀⏕་⛉Ꮫ⛉ ࠙◊✲ࠚ ື≀⏕་⛉Ꮫ⛉࡛ࡣࠊື≀㛵ࡋ࡚㑇ఏᏊࡽಶయࣞ࣋ࣝࡲ࡛⌮ゎࡋࠊẼ ࡢゎ᫂ࡢࡓࡵࡢࣔࢹࣝື≀ࡢ㛤Ⓨࠊឤᰁࡢゎ᫂ࠊᐇ㦂་Ꮫࡢᛂ⏝ࡼࡿ㣗ရ࣭ 〇⸆࡞ࡢᏳᛶ☜ಖᙺ❧ࡘ◊✲ࢆ⾜ࡗ࡚࠸ࡲࡍࠋ◊✲ෆᐜࡣࠊᅗ♧ࡍࡼ ࠺ᖜᗈࡃࠊ✀ࠎࡢ◊✲ࢸ࣮࣐ࡘ࠸࡚ᒎ㛤ࡋ࡚࠸ࡲࡍࠋ࢘ࣝࢫࠊ⣽⳦ឤ ᰁࡢศᏊ࡛ࣞ࣋ࣝࡢゎ᫂ࠊ⚄⤒⣔ᝈࡸ⢾ᒀࡢែࡢゎ᫂ࠊච⣔ࠊᾘ ⟶㐠ືࡢศᏊᶵᵓࡢゎ᫂ࠊᏛ≀㉁ࡢ㣗ရࡢᏳᛶࠊែࣔࢹࣝື≀ࡢ㛤Ⓨ ࡞ࡘ࠸࡚ࠊศᏊࣞ࣋ࣝࡽಶయࣞ࣋ࣝࡲ࡛◊✲ࢆ㐍ࡵ࡚࠸ࡲࡍࠋࡑࡋ࡚ࠊ ே㢮ࡢ⏕ᗣᙺ❧ࡘ⏕་Ꮫࡢᛂ⏝ࢆ┠ᣦࡋ࡚ࠊୡ⏺ࣞ࣋ࣝࡢᅜෆ᭷ ᩘࡢᐇ㦂タࡢࡶ࡛◊✲ࢆᒎ㛤ࡋ࡚࠸ࡲࡍࠋࡲࡓࠊி㒔ᗓࠊி㒔ᕷࠊ㜰ᗓ ❧ᏛࡢᏛ⾡ὶ༠ᐃࢆ⤖ࡧࠊ≉ឤᰁ㛵ࡍࡿ◊✲ࢆ✚ᴟⓗ㐍ࡵࠊࢢ ࣮ࣟ࢝ࣝࡽࢢ࣮ࣟࣂࣝࡲ࡛ࡢ◊✲ࢆᒎ㛤ࡋ࡚࠸ࡲࡍࠋ ࠙ᩍ⫱ࠚ ୗ⾲ࡣࠊື≀⏕་⛉Ꮫ⛉ࡢᩍဨࡀᢸᙜࡍࡿᤵᴗ⛉┠࡛ࡍࠋᮏᏛ⛉ࡣࠊᐃဨ 35 ྡᑐࡋ࡚ 12 ྡࡢᩍဨࡀㅮ⩏ࠊᐇ⩦ࢆᢸᙜࡋࠊධᏛࡽ༞ᴗࡲ࡛ᚭᗏࡋ࡚ᑡᩘ ⢭㗦ᩍ⫱ࢆᐇࡋ࡚࠸ࡲࡍࠋ≉ࠊᏛ⛉ࡢ≉ᛶୖࠊᐇ⩦㔜ࡁࢆ࠾ࡁࠊ1 ᖺ⏕ ࡽᐇ⩦ࢆጞࡵࠊᏛᖺࡀ㐍ࡴࡘࢀ࡚ࡼࡾᑓ㛛ⓗ࡛㧗ᗘ࡞ᐇ⩦ࢆ⾜࠸ࡲࡍࠋ3ࠊ4 ᖺ⏕ࡢᇶ♏ࠊᛂ⏝≉ู◊✲࡛ࡣࠊᩍဨ 1 ྡ 3㹼4 ྡࡢᏛ⏕ࢆᑐ㇟ࡋ࡚⣽ࡸ ࡛⾜ࡁᒆ࠸ࡓᣦᑟࢆࡋ࡚࠸ࡲࡍࠋࡲࡓࠊ≉➹ࡍࡁᩍ⫱ࡋ࡚ࠊ㫽ྲྀᏛࠊᒱ 㜧Ꮫ㐃ᦠᩍ⫱ࢆ⾜ࡗ࡚࠸ࡲࡍࠋ࣒࢝ࣜ࢟ࣗࣛᵓᡂࡣࠊึᖺᗘࡣ⏕≀Ꮫࠊ Ꮫ㏻ㄽࠊ⏕Ꮫᐇ⩦࡞ࡢᇶ♏ࢆᏛࢇࡔࡢࡕࠊ2 ᖺ⏕ࡽゎ๗Ꮫࠊ⏕⌮Ꮫࠊᚤ⏕ ≀Ꮫࠊື≀⦾ṪᏛᐇ⩦࡞ࡢᇶ♏ᑓ㛛⛉┠ࢆᏛࡧࡲࡍࠋࡑࡢᚋࠊࡼࡾᑓ㛛ᛶࡢ 㧗࠸ࠊ⾨⏕ᏛࠊឤᰁᏛࢆᏛࡧࠊ3 ᖺ⏕ࡢ⛅Ꮫᮇࡽྛ◊✲ᐊศᒓࡋࠊᇶ♏≉ ู◊✲ࢆᏛ⩦ࡋࠊ4 ᖺ⏕ࡽࡼࡾᑓ㛛ᛶࡢ㧗࠸ᛂ⏝≉ู◊✲ྲྀࡾ⤌ࡳࡲࡍࠋࡲ ࡓࠊ3 ᖺ⏕ࡢ⛅Ꮫᮇࡣᐇ㦂ື≀୍⣭ᢏ⾡⪅㈨᱁ヨ㦂ࢆཷ㦂ࡍࡿࡇࡀฟ᮶ࠊᖹ ᡂ 25 ᖺᗘࡣ 17 ྡࡶࡢྜ᱁⪅ࢆฟࡋ࡚࠸ࡲࡍࠋᏛ㝔ࡢ㐍Ꮫ⪅ࡶከࡃࠊ♫ ࡢᏳᚰ࣭Ᏻ㈉⊩ࡍࡿࠊື≀㛵㐃ࡋࡓ㧗ᗘᢏ⾡⪅࣭◊✲⪅ࡸ㣗ࡢᏳࡢᑓ 㛛ⓗ▱㆑࣭ᢏ⾡ࢆවࡡഛ࠼ࡓேᮦࢆ⫱ᡂࡋ࡚࠸ࡲࡍࠋ ⛉┠ ື≀་⛉Ꮫ㏻ㄽ Ꮫ㏻ㄽ㻭䞉㻮 ᐇ㦂ື≀Ꮫ ⏕≀Ꮫ㏻ㄽ㻭 ⏕≀Ꮫ㏻ㄽ㻮 ⏕⌮ ື≀㑇ఏᏛ ⏕Ꮫᐇ⩦ ື≀㑇ఏᏛᐇ⩦ ་ື≀Ꮫ ゎ๗Ꮫ ゎ๗Ꮫᐇ⩦ ⛉Ꮫⱥㄒ䊠 ⛉Ꮫⱥㄒ䊡 ᇶ♏⌮Ꮫ ⏕⌮Ꮫ ື≀⦾ṪᏛ ᚤ⏕≀Ꮫ䊠 ᚤ⏕≀Ꮫ䊡 චᏛ䊠䞉䊡 ⸆⌮Ꮫ䞉ẘᛶᏛ ⏕⌮Ꮫᐇ⩦ ᐇ㦂ື≀Ꮫ䞉ẘᛶᏛᐇ⩦ ື≀⦾ṪᏛᐇ⩦ ᰤ㣴⾨⏕Ꮫ ⛉Ꮫⱥㄒ䊢 ே⋇ඹ㏻ឤᰁᏛ ື≀ឤᰁᏛ䊠 ື≀ឤᰁᏛ䊡 ື≀䛸ἲ䞉⤒Ⴀᴫㄽ ື≀Ⓨ⏕ᕤᏛ ື≀⌮Ꮫ ື≀ឤᰁண㜵Ꮫᐇ⩦ ື≀Ⓨ⏕ᕤᏛᐇ⩦ ᇶ♏≉ู◊✲ ⏕≀⅏ᐖ㜵Ṇㄽ ື≀⚟♴Ꮫ ᛂ⏝≉ู◊✲㻝䡡㻞 ᑐ㇟Ꮫᖺ 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻝 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻞 㻟 㻟 㻟 㻟 㻟 㻟 㻟 㻟 㻟 㻟 㻟 㻠 㻠 㻠 ᢸᙜᩍဨ ᵳ䞉ຍ⸨䞉㔝䞉㰻⸨㻔ᩄ㻕䞉㧗᱓䞉➉ෆ㻔ᐇ䠅䞉す㔝䞉๓⏣䠄⛅䠅䞉ᯇᮏ䠄⪔䠅䞉ᮧ⏣䠄ⱥ䠅䞉Ჴᶫ䞉ᰁ㇂ Ჴᶫ ᯇᮏ䠄⪔䠅 す㔝 ๓⏣䠄⛅䠅䞉ᮧ⏣䠄ⱥ䠅 ๓⏣䠄⛅䠅 ᯇᮏ䠄⪔䠅 す㔝䞉ᰁ㇂ ຍ⸨䞉㰻⸨䠄ᩄ䠅 㔝 ຍ⸨ ຍ⸨ ᰁ㇂ ᵳ ➉ෆ䠄ᐇ䠅 㰻⸨䠄ᩄ䠅 㔝 ᰁ㇂ す㔝 ➉ෆ䠄ᐇ䠅 Ჴᶫ 㰻⸨䠄ᩄ䠅 ᯇᮏ䠄⪔䠅䞉➉ෆ䠄ᐇ䠅䞉Ჴᶫ 㔝 ᮧ⏣䠄ⱥ䠅 㧗᱓ ๓⏣䠄⛅䠅 ᵳ 㧗᱓ ᵳ䞉➉ෆ䠄ᐇ䠅䞉 ᯇᮏ䠄⪔䠅 ᮧ⏣䠄ⱥ䠅 ᵳ䞉㧗᱓ 㔝䞉ᯇᮏ䠄⪔䠅 ᵳ䞉ຍ⸨䞉㔝䞉㰻⸨㻔ᩄ㻕䞉㧗᱓䞉➉ෆ㻔ᐇ䠅䞉す㔝䞉๓⏣䠄⛅䠅䞉ᯇᮏ䠄⪔䠅䞉ᮧ⏣䠄ⱥ䠅䞉Ჴᶫ䞉ᰁ㇂ ๓⏣䠄⛅䠅 ᮧ⏣䠄ⱥ䠅 ᵳ䞉ຍ⸨䞉㔝䞉㰻⸨㻔ᩄ㻕䞉㧗᱓䞉➉ෆ㻔ᐇ䠅䞉す㔝䞉๓⏣䠄⛅䠅䞉ᯇᮏ䠄⪔䠅䞉ᮧ⏣䠄ⱥ䠅䞉Ჴᶫ䞉ᰁ㇂ #+"&( Professor Koichi Otsuki, DVM, Ph D ĦħĨİıħIJİıijĜİĪĜĤįĬĮħĭĜĥijīĬĩįĩ 1:&(- this virus. Our research base is the overseas research station 1970 §](o#ŃÏ*q$á)ņ$ņ.PDM1 “Friendship Laboratory” opened by Nagasaki University in the P7/.M:éÝ"(%#sŁņ.PDM1P7/.M:$ National Institute of Hygiene and Epidemiology in Ha Noi. ąµé,ĦÓ* ŋʼn ĜÈÍ#ŃÏĬq*á)ņ$ņ.PDM1P7 >:*/ /.M:eËéÝ$ĦÓ =Ĝ CňĖ2Ŋ#RãüŊłŎŊŧřŨşŝŗŬƆĜ Ōʼn G@AJwij,ÛÒ*ņ.PDM1P7/.M:$ Ĝ ƉƆGµŊ¸Ŋď¼Ŕ8ËĜ ĖŊCÁÇÔÜĜ ï¹ĦÓ Ĝ Êçĵ ƆğĝĞĠƃÜ|ƄĜ ōʼn_Õĺü¿.PDM1P7/.M:ċÎ$ģc K. Hotta, H. Takakuwa, T. Yabuta, T. T. Ung, T. Usui, H. L. Nguyen, T. T. Le, M. Q. Le, T. Yamaguchi, K. Otsuki, T. Ito, T. Murase, T. 2. &( äxʼnĻľŒĚŗƀŴžŚƀšñŔĵ®£ Mņßň ŃŅĺŒĶ¢őĚĽĕŁŒ ĞĞ ~ļŐ&WßŔDŁŒ ġ ~ō ņ~nŔßňŃŅĺŒĶōłĵN¿CTÿ;ŊØÕZ ĂʼnĻĺŅĵŠŰşŧżŘŊÏŔ<tnŀŅĺŒĶŘŗžŤŔ !ĎņĹŒĶĜ Ĝ ŵūŭŹņŊĚŗƀŴžŚƀšŊ·B»ÁÇŋĵğĝĝĢ []ļ ŐÑÒŀŅEwŀŅĺŒĶĚ+=BøBĀĊJĚ³¬û f¹·BÁÇťƀŦƂQ=B'BĀEĘ$¨BsFĵĄ O=B§V'BÁÇhŇ/ņEwŀŅĺŒĶŵūŭŹŋŘŗ žŤŋX7%ŀŅĻőĵq¤ōņĄćdåņĹŒĶgŊ Āŋ-ØňŏŊļŐIąîʼnĐâŀŅĺŒĶĜ Ĝ Ĝ jŗƀŴžŚƀšŘŗžŤÐŊĆºŋĵęsmĵݲ ÁÇ3ŐŇ/ÁÇŔEwŀŅĺŒĶļŐoĿœŒķ ňÆĔŊÐŊjŘŗžŤ±ʼnńĺŅëŔEwŀŅĺŒĶ ÁÇgŊĀŋĵŇ/ņ©í ēŏßňŃŅĺŒĶĜ Yamashiro. Antibody survey on avian influenza viruses using egg yolks of ducks in Hanoi between 2010 and 2012. Veterinary Microbiology. 2013. 166, 179-183ƃòuƄ H. Takakuwa, T. Yamashiro, M. Q. Le, L. S. Phuong, H. Ozaki, R. Tsunekuni, T. Usui, H. Ito,T. Yamaguchi, T. Ito, T. Murase, E. Ono, K . Otsuki. The characterization of low pathogenic avian influenza viruses isolated from wild birds in northern Vietnam from 2006 to 2009. ƃComparative Immunology, Microbiology and Infectious Diseases. 2013. 36, 581-590ƆƃòuƄ Y. Fujimoto, K. Ozaki, M. Maeda, K. Nishijima, H. Takakuwa, K. Otsuki, H. Kida, E. Ono. Resistance to influenza A virus infection in transformed cell lines expressing an anti-PB2 monoclonal antibody. Veterinary Journal. 2013. 198, 487-493ƆƃòuƄ =Ɔ5ņųūʼnº¯ŀŅĺŒ¸)eĚŗƀŴžŚƀš Ĝ ěŊÁÇ, 88, 14-17, 2013.ƃéïƄ =:Research projects and annual reports =Ɔ5ņº¯ŀł¸)eĚŗƀŴžŚƀšƆ Our research is focussed mainly epizootiology on avian Ĝ ėěŊ*, No. 616, 46-49, 2013.ƃéïƄ influenza (AI). We are analysing some properties of AI viruses =ƆĚŗƀŴžŚƀšŊċŊ-ØeĜ ųūļŐųūŌŊ isolated from a few kinds of migratory waterfowls flying from Ĝ ŲƀŪŸŨşŋöŒŊļƋõŇ¯,Ĝ No. 312,Ĝ 2013Ɔ Siberia or northern China and staying in the Kansai region, Ĝ ƃéïƄ particularly Lake Biwa during winter to clarify these isolates from =Ɔ¬ûf¹Ŋ4ő ĉÍƆCICORN űŗś an ecological point of view. Ĝ ťŞŻŽũŖŮŻƂŤſŦƂƆűŗśťŞŻŽũŖ!ĂŊ5čý We are also collaborating with few companies to develop Ĝ p("ʼnĈŁŒÁÇñ91|ƃZg 24 []uĀÄB¾Á anti-viral activity-having useful products, that is, we evaluate Ĝ ÇAìƄƅĄO=B§V'BÁÇh,Ĝ 41-43, 2013ƆƃÓïƄ materials those were experimentally produced by them, analyse =Ɔęaĵݲ ĵ\.yUĵKLrƆ5ņ mechanisms of this activity and search their applications. Ĝ º¯ŀł¸)eĚŗƀŴžŚƀšƃH7N9ƄƆā°=B We are also collaborating with the Avian Zoonoses Research Ĝ ÉÄBiàÁÇhh9, No. 12, -, 2013.ƃÓïƄ Centre, Faculty of Agriculture, Tottori University to investigate AI =ƆĚŗƀŴžŚƀšĸŊŀĺÀóŇŽŤşƁŷůţźƀ incidence in Viet Nam. We are collecting many foeces and throat Ĝ ūƆs×Á, No. 492, 83-86, 2013ƆƃéïƄ swabs from few species of domestic fowls reared in that country to =Ɔ5ņº¯ŀŅĺŒĚŗƀŴžŚƀšƃH7N9Ƅņ} isolate AI viruses, and serum samples from them to calculate Ĝ ùzŐļʼnňŃłĵĈcĽkłœŒÀæƃƄ.Ĝ ěŊÁÇƅ88, antibody titre to these viruses. We expect to get some useful datum Ĝ 14-18, 2013.ƃéïƄ about not only contaminating situation of AI virus in Vietnamese =Ɔ5ņº¯ŀŅĺŒĚŗƀŴžŚƀšƃH7N9Ƅņ} poultry industry but also threatening level of human infection with Ĝ ùzŐļʼnňŃłĵĈcĽkłœŒÀæƃƄ.Ĝ ěŊÁÇƅ88, Ĝ 14-18, 2013.ƃéïƄ [ĴªįÑÚðij¨Ľøĉ<P=R#d*Ĺ>RJ =Ɔè¥Ĝ ¬ûf¹HÍʼnô«ŁŒ¬'BƆÞ ň §ʼn Ĝ á¯ƅ77, 944-945, 2013.ƃSđêƄ İ÷EN?4õùµķC?@OR4}Ĩ` =ƆŜŝşŌŊè¥Ĝ Ù¦´ŋ@ ĺĴĚŗƀŴžŚƀ ňH23 §ʼn Ĝ šŔʼnƆ%Bƅ68, 11, 2013.ƃSđêƄ [ĴªõÄėØĨ`ňH23 §ʼn ?:$, øĈĉĹij`ij`ĸňH24 §ʼn ×kSŏņ.PDM1P7ŐĶņ(Ň&ŐÌÈÇĐāW >94 i ÌÈìîD2RLJ ŊÐ[Ĵz]ñx " ĻĜ¨Ľåğóĉ` ņ.PDM1P7QĮ § Ê Èň8PI9/Jʼn ?9'2!809 ×kSŏņ.PDM1P7/.M:$ï¹Ç.P ×kSŏņ.PDM1P7 ňʼn#Ŋ[Ĵªh DM1P7/.M:&$öK3B;Jį(ń|' ®ăĂijh®ĉĥWi V#*ņ.PDM1P7 ňʼn#d*yûĻdďĀf` [Ĵ¥ § Ê $jĊíŊć ÈÍń ²ïç`ęč` Ð[Ĵܼ£x § Ê ÈňÆēħãʼn È H. Takakuwa, K. Hotta, T. Yamashiro, M. Q. Le, L. S. Phuong, T. Usui, H. ×kSŏņ.PDM1P7$ÉÇÿĞ!Ľøĉ#Ŋ Ozaki, H. Ito, T. Murase, T. Yamaguchi, T. Ito, E. Ono, K. Otsuki: ĭõehĚï½Wi ĭõehĚï½ĺġĠ´ Distribution of antibodies to Influenza Virus in Wild Birds in Northern ¯n mþĭ¥ § 4 Ê 26 È Vietnam in 2011. Asia-Africa Research Forum on Emerging and ×kSŏņ.PDM1P7#ŊāÞ\ÇäþH: Reemerging Infections 2013, Tokyo, 2013.1.23-24ƆƃŢƀŶţŘŹƄ @6P@NRM}`Wi ćŎþÙkĺħ¬ ¸ÒúYĽĚïħĎ` Çä¥ § Ê È @: .7 ×kSŏń Õô#*ņ.PDM1P7&$³Ŋ ;9536 ÈÍń ¤ÕgÖijWi ń $ īeĢºĤ` ¸ÒúĀĆŀC?@OR4ÂIJFN5LJ ¦» § Êb` ļ¥ § Ê È ĀĆĥłŏÇĖQpĖ¸Òúĕ©øĀĆÀæ ×kSŏV#rëņ.PDM1P7ňH7N9ʼn$Ĕ G@AJ#*ĸ¢¸ÒúĀĆFN904@ !ĽøŊTĘ[ĴùĿWiŊ¸ÒĉđħĎ`Ŋ[Ĵ¥ ĀĆ]ěďŏÔñkS±§«ŏH2226 §ň5 §ʼn ¦» § Ê È įÑÚðÕQń ðÕĄ¾ęĀĆÂIJZÕ ×kSŏUô#*ņ.PDM1P7$üïéÝ!Ët Ĝ ÁÇðĒƊGµ¸º¯{ʼnĻľŒōŕ_ĉŊ "ĽøĉâĪþõðĥWi ¦» §«Ņù~µņ. Ĝ łŎŊ!GµÌ÷úiàŊÂÈ PDM1P7ĽøĉĀf` âĪþߥ Ĝ ÁÇâĈƊ>ČR`à § Ê È Ĝ +b[]ƊH24H25ƃƇ[Ƅ ×kSŏİq#·+*ņ.PDM1P7üï$u! xBàlÚ5ćƃŦŗƄŇŊ/ÁÇ ĉİ÷įÅWi ¦» §«İ÷įÅĵĝõ Ĝ ÁÇðĒƊ:¶ŔŀłjŗƀŴžŚƀšeŔ aÒùĽøvãĎ[Ĵ¥ § Ê È Ĝ kń RNAi(RNA Y¡)ŢŤũŹŊÎ ×kSŏņ.PDM1P7#ŊjàĽĸ`Wi Ĝ ÁÇâÖƊă^?ĵ+b[]ƊH24H26ƃƈ[Ƅ ¦» §«jàĽĸ`àĽĸĀf` [Ĵ¥ <9%1) § Ê È ĆxƊğĝĞĠ [ ģ ~ ĞĞ x0ÅƊĚŗƀŴžŚƀšŘŗžŤHŁ ×kSŏ-9- üïČ*ņ.PDM1P7$Ĕ ŒŁŒvĜ Ŋ¨¡ŀWi {°ÆēĀf` ¨¡þ¥ ºzÖƊ=ĵęaĵX6Û>ĵP,½^ĵ)þ?ĵĜ § Ê È Ĝ =ª?ĵĜ =9 ×kSŏõĚï$ÉÇ$ÿĞ#Ŋ[ĴªįÑÚð ņè^ÆÁ įijľņòÏ\êlı¸ÒúøĀ § Ê È Ć<P=RňH18 §ʼn ×kSŏņ.PDM1P7#Ļ*ÉǶ# kýĩÞ\ņþńņĒĚï}`íZňH4 §ʼn ŇùĀĆ`ĸ¢ÃijWi Ňù¾ęĀf` ĸ¢¥ [ĴªQ[Ĵ¥Ç.PDM1P7ĉĹ`ĨŊ ň § Ê È §ʼn ijWi [ĴªõaÒùĽøĀf` [ĴªX ¥ $'.#%9 9 9 9 9 9 9 9 9 9 9 9 9 9 *9 9 DIJUVIWUVY9UM9ATPSIR9ATIWUSY9ITK9FLXVUJPURUNY9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 GVUM;9CLPQU9CIWU:9B;H;E;9GO;B9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 po#%-9 ĉDŽ JŜőĴıWǝŠdžƶăŲǝ6\Y¯ (ŨżJÃ×ŝÚ¹)FKǝĒſŝH²ŊIXZǝ áIX[D`/`ŜŚĴıJƙĢ_Şē8D+[& ŨżÎƯ_BH3ŨżŰƭǛƳŹWijŎŰƭǜJ¯ð WƅÜǝ7YIKğ>Hĕſ0Ŕ9[6FEǝŨż ƻŌƬJƬ¿Nǃ0Ú¹:[&R>haźƇJŃă ¹ŲVťY\D+[&8/8H0Yǝ+R?¯á} JƖ4IÖC2ewlJ©ê_ť[>UJ ŦůƤǓKïŮE*ZǝőÑJŦů}Kknt Òŋ/Yí8³IƷ`?ŎĿE*[&Ċ'KǝŅǘ% ČĮ_ÿF:[ć¸ƛĈ0GJX,IŔ9[J /_ÿIǝƴƁŷI.4[ŨżÃ×ăJŐýƺū_ ť[6F_ŞŝIŦů_ƷUD+[&7YIKǝe wlJƙĢ_VFIǝD`/`Ǣ,BřäNJé Iƌ[ŨżŵŨŘĆJƝĞŁWľśƐJDžŜIBH 5D+26F_Şē8D+[& ĪŦů¯ǂEK«ŝIĶJƧŋIB+DŦů_ îDž8D+[& ǍľD`/`ŜŚĴıJƙĢ ǍľD`/`J ǚ_¼U[¦ǒƎD`/`J sckE*[ČĮfhck_Ŗ+ [6FEǝǞBJD`/`¾Ï¯á_ƘB4>&=J BE*[ĉDŽ KǝÓEŜő8>ü©ư IƹL\ǝĉDŽ£Ʒ ŖI¶-Dǝ>`M2ƬǝƉƬǝ ŶǝĻǎƙƬJƩ ŖJ*[6F0ťY\D+[0ǝ ƊEJşĕŝH ŖKťY\D+H/A>&Ċ'Kǝ 6JĉDŽ 0ƊEŜő8ǝD`/`ŜŚJLJ ¥_ļæ:[6F_ŜƘ8D+>&R>ǝD`/`Ƣ ì²Ŋ_ì¨8>ČĮKǝć¸ĭJŨżǑÕE* [6F/YǝĉDŽ ihvŷ0ǝć¸Ɠ¸I úǐ:[Ãƈă0Ƃ-Y\[&=6EǝĉDŽ WĉDŽ ÁêđďƐ_ŅǘIĎ8ǝşĕǝ Ð ÜŜ ģJD`/`üŜë& ǂŔÔÅƋáckKǝ¬ÔŝHD`/`üŜ ëǛƊłǜ_ÇTÜŜ _ŧ8>&iaǁƲŪǀŸ ƽáĵĘckǛǜJƊłIǝD`/`üŜëK ơUY\;ǝckKÜŜ _ŧ7H/A>&ǛŤ½ KǝD`/`Ƣì²Ŋǜ iaǁ¤Ǘ0±þ:[ć¸ŷŨżÎƯJĀųĴ ıJƙĢ ztJD`/`ĆƃKǝţŢNJéǝ,BǝäŚǝ žÄÝƥŚŲJŨżŵŨŘĆ_¡Ŝ:[6F0Û+& ĠEǝiaǁƲŪǀŸǛ ǜ_ĵĘ8> ckKǝD`/`_ŜŚ8H+VJJǝ,Bä NJéǝœØƼĀ©ǝţŢNJéǝ7YIKǝ ąôăNJéǛĉDŽljéWăƓ¸©ǜ_ŜŚ:[c kE*A>&:H^@6JckKǝD`/`J¡â Ś*[+KǝľśIX[´ Ŗ·Ĭ_ŧ8D+[FƂ -Y\ǝiaǁƲŪǀŸ0D`/`WǝäŚ_Ç TŨżŵŨŘĆJÿFH[¯áĴı_Ėƭ8D+ [FƂ-Y\[&JťƘ_ƦĜIRFUD+[ ĠEǝiaǁ¤Ǘ_Á4[ÖƬ_ĔŹ8ǝiaǁ ¹0GJX,ID`/`Wǝ=J¡âŚW´ ŖǛ ć¸ŷNJéǜIdž^[J/IB+DŦů_ƷUD+[& ĉDŽ ihvŷJŜ¸Fć¸ŷƓ¸OJ· +54 ĬJŠ Ŗ_įƚ8>&7YIV,BJD`/` ¾Ï¯áE*[iaǁƲŪǀŸǛ ǜIB +DKǝ=JƽáĵĘck_ ĉ8ǝ=Jck 0D`/`_ŜŚ:[/G,/IB+Dįƚ8>&Å ƋáJǂŔÔck:PD0D`/`_ŜŚ:[ī EǝQF`GJ ƽáĵĘckKǝD `/`_ŜŚ8H/A>&6J6F/Yǝ 0D`/`¾Ï¯áE*[6F0ĢY/FHA>& ü7YIǝD`/`ŜŚIdž^[iaǁƲŪǀŸF KO WT ÐǞĄāī4ƠǙIX[äŚJįæ& ÐǞƙƣǏ²ŊJĦüI{ptipg_-> iaǁƲŪǀŸǛ ǜ_ĵĘ8>c ǞġüǝÅ9Ǐ_Ƅ/<>F1ǝiaǁƲŪǀŸƽ kKǝ,BäNJéǝœØƼĀ©ǝţŢNJéǝ áĵĘckǛǜKǝĸƓƱƮXZǝ:2`E¸ ąôăNJéǛĉDŽljéWăƓ¸©ǜI¶-ǝ /H2HA>6F0^/[&Å9œØEǝǂŔÔ ğ>IǝžÄÝƥŚIJŚŎVŧ:6F0^/AD1>& ÅƋáckKǝX2¸+D.Zǝ:2SJū R>ǝiaǁƲŪǀŸ_ĵĘ8>ckKǝƒJ öJ+6F0^/[& ĉDŽ JIXZĉDŽƸø_ŧ:&R>ǝ¯ àģI|jdkrJ0ljé7\ǝ=JŽĬ ktkăć¸ŷNJéOJǖĝęÀ·ĬJįƚ ¯àƸøIX[ńŕ_ŧ:&7YIKǝ J¯ŀ iaǁ¤ǗǀŸƽáĵĘIX[ǝktkă ©IX[ăÈĩ©Wǝ¯àüŜć©_ŧ:& ć¸ŷNJé sIǝ+2B/ōĹǖĝ_ĉDŽĩI J6F/YǝiaǁƲŪǀŸǛ ǜ_ĵĘ ->F6]ǝ,BŚŎǝäNJéǝžÄÝƥŚIúǐ 8>ckKǝ ąôăŗô_ŧ:6F0ĢY _-[ĉ¯_ƘB4>&ǕÉęÀ0-[ƊƩO /FHZǝőÑƦĜĎŭIÆ4>ň§_.6HAD+ Júǐ_ƙĢ:[& [& qxkĺŸIX[D`/`Ŝ č±ĴıJƙ ktkăć¸ŷNJéOJǖĝęÀ·ĬJįƚ Ģ ,BäNJé_ŧ: ƽáĵĘc qxkĺŸIX[ǍľD`/`Jľś·Ĭ kIǝƉƆǁJŗH[ǟŬJĽƉ_ÇTōĹǖĝ_nj _įƚ8>F6]ǝD`/`Ŝ _ŧ:ckJ ü-ſ4[Fǝ,BŚŎǝäNJéǝžÄÝƥŚ ǚ0ÜŜ _å©IņÝ8>&qxkĺŸ0V IJŚŎIúǐ_-[6F0^/A>&ŗH[ĽƉJ >Y:ǝŗôHŨżÃ×ăJč±0GJX,Hew ęǕIX[ƩJó0ǝckJƓ¸Iúǐ:[6F lEŔ9[J/_ĢY/I8ǝ7YIKztǍľD 0ŧË7\ǝǠħIōƜ_®ǔ8>&R>őÑƦĜĎ `/`ľśIBH36FJE1[ĨµHľśƐE* ŭIÆ4>ň§_.6HAD+[& [6FJƞĢIBH5[& qxkĺŸIX[D`/`Ŝ č±ĴıJƙ qo`#%9 Ģ ǍľD`/`ŜŚĴıJƙĢ qxkĺŸIX[ǍľD`/`Jľś·Ĭ ĉDŽ FÁêđďƐ_ŅǘIĎ:[ _įƚ8>F6]ǝD`/`Ŝ _ŧ:ckJ 6FEǝĉDŽ ihvŷJńJƽáŕŌ ǚ0ÜŜ _å©IņÝ8>&ĪõöKD`/` JŜőÚ¸Fć¸ŷJƓ¸OJ·Ĭ_įƚ8>&c ľśIĨ·E*[ťƘ_ "$"! IŜƕ8>& kKƍÞJÙùWǝѸǃJ_ŧ8>&6JƓ¸ Ú¹KǝD`/`Āųă_ŧ:ƽá## JŜőÚ¸FŠdžă_ŧ8>&őÑǝƦĜJybk IÆ4DçǙ_Ƶ¶8D+[&iaǁƲŪǀŸƽ áĵĘck0ǝD`/`_Ŝ¸8H+6F/Yǝ6 JiaǁƲŪǀŸ0D`/`¾Ï¯áE*[6F 0^/A>&R>ǝD`/`JŜŚģIƊEƏ82 Ŝő0Ĥğ:[ĉDŽ 0ǝiaǁƲŪǀŸƽ áĵĘckƊEŜő_Ə82Ňí8D+[6 F0^/A>&6J6F/YǝiaǁƲŪǀŸF= Research projects and annual reports We investigate the mechanisms of developing emotional memory in the hippocampus-amygdala connections and the acquisition of neural plasticity in the limbic system. Furthermore, we aim to develop diagnostic methods and therapeutic drugs for the relief of epilepsy, anxiety, and mood disorders based on the clarification of the mechanism. JĚƿI*[ĉDŽ 0»ƥ:[6FEǝ¦ǒ ƎD`/`0ŜŚ:[FŧË7\>&őÑǝĪƽá Epileptic model mice and stress-sensitive model ĵĘckJŦůŽĬIB+DǝƦĜĎŭE*[& mice showing the anxiety, sleep disorder, and hormonal homeostatic change were used. iaǁ¤Ǘ0±þ:[ć¸ŷŨżÎƯJĀųĴ check the symptoms of the models by behavioral and ıJƙĢ physiological analyses and to clarify causal molecules by Our approach was to histological and biochemical analyses. research and the content were as follows. The topics of 3: Effect of food intake on stress-sensitive model mice. 1: Clarification of mechanism of epilepsy progression. Amygdala-kindling model mice are analogous to The stress-sensitive model mice showed growth secondarily generalized complex partial seizures and a inhibition according with decreases of growth hormone model of temporal lobe epilepsy in humans, showing and IGF1 within the plasma. abnormal neural plasticity. that a specific dietary oil affected depression, anxiety, Using kindled mice, we have In this year, we evaluated found two molecules responsible for epileptogenesis, a environmental adjustment disorder, and activity. growth hormone and a sialyltransferase. we applied for a patent in August, 2013. First, we found Then, We aim to there is a growth hormone signal system in the brain, and investigate brain lipid metabolic mechanisms that were this signal system is deeply related to the development of generated from food and correlation of the metabolism neuropsychiatric disorders other than epilepsy. with emotional behaviors. We aim to clarify the whole mechanism of growth hormone signaling in the brain. Now we prepare a revised paper. Second, a sialyltransferase ST3Gal IV deletion failed to 4: Clarification of inhibitory mechanism of epileptic seizures with botulinum neurotoxin. develop temporal lobe epilepsy using the ST3Gal IV gene-deficient mice. It indicates that ST3Gal IV is an effective target for treating epilepsy. Presently, we aim We investigated the delivery of botulinum neurotoxins directly into the seizure focus of the brain to prevent epileptic seizures using a model of temporal lobe to investigate involvement of the sialyltransferase with epilepsy. expression of growth hormone in the brain showing into the hippocampus make seizures disappear in 50% of epilepsy progression. mice with kindled seizures. 2: Clarification of the neural network function based on As a result, administration of the neurotoxin We aim to investigate the mechanisms about how the neurotoxin abolishes the abnormal neural plasticity of epilepsy. emotions that sialylation controls. In this year, we published several data in Toxicon. Epilepsy patients are at a greater risk for developing anxiety, depression, psychosis, and learning disorders. On the other hand, the sialyltransferase gene-deficient mice showed emotional symptoms including an anxiety disorder, an environmental adjustment disorder, sleep disturbance, and hormonal homeostatic disorder. aim to find the acceptor substrate of We alpha 2,3-sialyltransferase and to investigate the effects of sialylation on the development of epileptogenesis and emotional symptoms. We identified that growth hormone and Igf1 mRNAs were down-regulated in the brain of the deficient mice, in contrast with tremendous up-regulation of growth hormone following epileptic seizures. These data was summarized and submitted to a Journal. On the other hand, the deficient mice showed decrease of plasma growth hormone and Igf1 according to growth delay. Furthermore, failures of post-partum estrous cycle depending on decrease of FSH, and of parturition by sustaining plasma progesterone levels on gestation 19 day were observed. It proposed that ST3Gal IV regulates hormonal metastasis on growth hormon-Igf1 axis and progesterone-GnRH system. preparing a manuscript. Now we are Kato K, Akaike N, Kohda T, Torii Y, Goto Y, Harakawa T, Ginnaga A, Kaji R, Kozaki S. Botulinum neurotoxin A2 reduces incidence of seizures in mouse models of temporal lobe epilepsy. Toxicon 74:109-15 (2013 11 )9 m2014 1 31 166 6 fckjlgn ro)\ba(09 _][ so1Zdkheci&9 1. Srimontri P, Nakayama Y, Kurosaka A, Endo S, Sakamoto T, Itohara S, Hirabayashi Y, and Kato K. Sialyltransferase ST3Gal IV is involved in temporal lobe epilepsy and its associated disorders. International Symposium on Glyco-Neuroscience in Awaji Yumebutai International Conference Center 2014õ1ħ 9-11ġ (ijckn ) 2. ¶ƑÌá ŨżÃ×ăJĂƪFŨżŵŨŘĆFJdžƶ ă ķ÷òßáÜã S?8J(ßăŦůƃŦůѸĚė İǛĜƾũãšǜ ǜ ) õ ħ ġǛĐûƨʼnǜ 9 to!,9 1. ¶ƑÌáǝƗñÜƫ ć¸Ɠ¸OJĽƉęǕ·ĬIB+ D ű156ÎġĪŏºããƔNj 2013õ9ħ21ġ ð LjÜãǛÂǒǜ uo^` <; /89 6279 ªÅŦů(( ÇĨƉƬJĴƈƟ¢)ǛŦůƕƃǡ ¶ƑÌáǜ =; "&9 ktkăć¸ŷNJé_ěÍ:[ºƐŖĽƉŻĉŌ ōǔ õ ħ ġ >; 9 ġĪŶƬãƟƪÊ ġĪŨż¹ãƟƪÊ džƗçǙ¸ŌŦůƟƪÊ Œ¹ãŦůċ ƊũãƀÄŦůmn èÊŦůÊ ?; 3&9 H8& @; ^`9 ĥŴǡKato. K. Underlying Mechanisms of Epilepsy, Edited by: Fatima Shad Kaneez ISBN 978-953-307-765-9, Publisher: InTech Ǜ2011 õ 9 ħŜ° 2014 õ 3 ħ 11 ġ 1512 ƾocu&ǜ ~j http://www.cc.kyoto-su.ac.jp/~kato/Home_J.html/Welcome.html "#,-".,-/,' "#,-".,-/+(*")!&%($(+& Assist. Prof. Kenjiro Konno, ○D. V. M., Ph. D., DJCLAMŁ 65 ŲƛŭżƏĂƟ½3ümƍƗ°ŷƂƜ>ö{Ÿ4'ƍŲ Ł ÓÜ]ƏÓÜƳǏǃƐŭæ3ÉǐŚũśŦŪŤśūţŧŦśŤŁ ƛƔƀŮŁ ŘşŪşśũŝŢǙŚŘǑƉƀŮŚŘƊƐŭOÖÓÜƏƟümƍ\ Ł ƃžƈŭżƝƔƉƏÒĐƘêľŭĂƌƋƟ°ŷžƈŭ Ã1ƀƜŭĊųŵƔƀƊŭ§´žƀƜƟÏËƊžƄÓ YƉƐǃƤƮƘLjƲƵƌƋƏ\ľÃd0ºŭ»ƍĢX ÜƉŭ0º\ľƟāŴƄƖƍŭ*ümÓÜƊƗBƑƝƔ SǃƤƮƟÃųƈŭĀáĵ^ƍįžƈÓÜƟĠƖƈųƔƀŮ ƀŮŁ ûHÛ¡Ƙ%Á3Éƍ"ĜƀƜƨǏnjǏƶƏňƇŸŰĀáű ƉƀŮDŽƷǀưƟÃųƄ3ÉƴƻƣƮƏĮÊƗŭĀá$Ʈ ƳǍƵƏĮÊƉžƄŮƽƵƏƟĦhƍŵƜƊŭĀáƐŰġ ėűƊĊŵƔƀŸŭ¶^ŭġėŸ¨öžƌźƌƜƊŭ ů ƏÁ°ƏƕƌƚƁpƟƗ÷ŷžŭªƟƗŹŷƎƔƂƠŮ ƃƝƊ@¥ŭĀáƐƽƵƘ0ºŸpƌÁ°ƟěƜƄƖƍŭ ĸjƍĩĆƌs-ƟƄžƈŶƛŭżƝŸÔíƀƜƊ5ƍ pƏƕƌƚƁŭÁªƍƗîŸƛŷƎƔƂƠŮ\Ĵŭyà RƘù RƟWƖŭĀáĵ^Ÿ8JƉªƀƜ ƏƐŭªJƏňņŊƟ6ƖƔƀŮƔƄŭĪŸvžƈŹ ƄûHÛ¡Ƙ%Á3ÉƏÓÜƉƐTÚËŸĸjƍ ĩĆƉƀŸŭtƐƃƏ»ƘêľŭƃžƈÒĐƟ°ŷžƈŭ Ç|džƴlj0ºƟTÚËƍ&žŭĀáĵ^Ə8JÜ Ł ƍvžƈųƔƀŮ¾NƐŭĀáĵ^ƊƽơljNjǍĨƏ Ł EƉŲƜĪƐŭ\ľ0ºYƟbĭƊƀƜ½3iƉ įƍ¯ÏžƈŭÓÜƟĠƖƈųƔƀŮŁ Ųƛŭ\ľ0º3Ybĭ3ǐŐţŨŤŧťśūşŁŧŠŁūŢşŁ Ł ŽƚƍƐƃƏÀƊžƈŭǃƤƮƘLjƲƵƏA œśŨśŦşŪşŁŏŧŤŤşšşŁŧŠŁŔśŜŧũśūŧũŬŁŎŦţťśŤŁŕşŞţŝţŦşǑƉƀŮ ƀƜÓÜƗĠƖƈųƔƀŮŀħƐƃƝƟŽƝƄƽƵƘ0 YƍÛâƀƜƔƉŭňŇkŭ3YĥƍŶųƈǀưŭ» ºƏôƍVŹƌrĹƟ:ƓžƔƀŸŭƃƏëŭŀħ ƍ\ľ0ºƊžƈƏDŽƷǀưƟÃųƄŚŘƍƞƆƈŹƔž ®Ÿ\ľƴǏưƍƗVŹźrĹƟŵŭƴǏưƏĺ{ ƄŮĪƐŭ3iƘ¿gYǎÿYäƏÓÜóƘ¢Ɗ" ƍƔƉVŹźrĹƟ:ƓžƔƀŮžŷžƌŸƚŭ\ľd0º ƍŭDŽƷǀưƟÃųƄÇ|džƴljƏąƘûHÛ¡ŭ%Á ƒƏŀħ®ƐŭƽƵƊƐVŹźÆƌƆƈųƜƏŸ¾¼ƉƀŮ 3Éŭ3ÉƴƻƣƮƏĮÊƟāƆƈŹƔžƄŮ¾NƐMÝ lųŭÙƐǀưƘƬljŭƣƸƌƋŭƽƵ@¥ƏŀħƍU xÀHÈÓÜƯǍưǏÓÜƍƗâƟïŹŭDŽƷǀưŷƚ ƞƆƈƔžƄƏƉŭƃŴĊƆƄÒĐƘêľŭĂƟ°ŷ wƚƝƄŕŘŒƏÄ}PƟƍžƈŭDŽƷǀưƏǖŐĉ+L žŭ\ľd0ºƏŀħ®ƟGƀƜÓÜƍƗvžƈ ƟąžƈųƔƀŮŁ ųƔƀŮżƏÓÜƗŭ0º~ĒƏãØƍVŹź_ž Ł ǖŐĉ+LƏąƍƐŭý0ĘƌƋƏg¢ąDƟã`ƍ ƔƀŮŁ LƀƜƄƖƏƫǍƾLJǏưƪLjƿƢƲƩĂƟzÞƈų Ł ŸÓÜ]ƍŶŻƜÓÜ£ÅƉƀŮÙƐ\ľ0 ƔƀŸŭżƏÓÜƟĠƖƜƍƙƛŭ0ºƏÍƌ}PƟ ºYƟbĭƊžƔƀŸŭ\ľ0ºYƐ0º\ľŷƚwƚ ×ƍƀƜƉŭuŭţŗřçõƌƋƟÃųƄŚŘŸÎ ƝƄƟƽƵƍT ǐģǑƀƜƟÏËƊžƄYFƉ ƠƍāƞƝƜƊòŵƚƝƔƀŸŭƃŴĊƆƄÓÜƍŶųƈ ƀŮƹǏǂljĖƟ=ĖŽƝƄfqÁƗŭjů0º VųƍsÝƇƊòŵƚƝƔƀŮƔƄŭżƏƍƙƆƈ0 \ľƏĩĆ{ƟČųƈŶƚƝƔƀŸŭĚžƄĀá$Ʈ ºƟ¸ļƍ¬ƀǐĉ+ƀƜǑ¨Ɵ³ƚƀŸ&ƜƌƋŭ ƳǍƊƏÓÜƐŭVY3YĥıeÈijƍŶų 0º~ĒƏãØǐ\ľ0ºƏǖŘǑƍƗîŸƛƔƀŮƃžƈŭ ƈƽƵƒƏümÓÜƍĽƟĠƖŭk$ƍ)ƏåM ƽƵƉƐŭÞĂƊžƈĥƏVYÈijƉƏüm¾Q ÂĀá$ƮƳǍƊžƈąD1ŽƝƜ[ƉƀŮżƝƐŭ ƍŶųƈc ê²Â¢ÑƘ7Á/ÑƏƟ=ŻƄÓÜƉŲƛŭ WƔƛƔžƄŸŭ½3ümNJǂljƉƐƔƅƉ ŀħƍį ƊųŴMƏZ!ĵƍƗVŹź_žƔƀŮżƏƙŴ ƍŭÓÜƏƄƖƏÓÜƍèƞƜ¸źŭ>öƌIJƛ× ųƔƂƠƉžƄŮƃżƉŭ¢ƊƏ"@ÓÜƊžƈŭ$ĈĬ ƍÓÜƟģ&Ɯ¥ŭ'eYÁƘ"@ÓÜóƊ ĂƟzÞƄĄïƟÃųƈęĝŷƇZ!ŭƃžƈÕ\ "ƍŭůÓÜƍ<ƛéƠƉųƔƀŮŁ ƌ®ƟÕÝžƔžƄŮƃƏƐŭĎƍƔƊƖƜƊ"ƍŭ Ł 2VYƏĿoŀħÓÜƏďiƊžƈŭŲƜųƐ 753 ½3YƉĮŽƝƄƿƧǏLjDžƉƏµóƊžƈŭÊăž Ł Ł żƝƔƉĀáĵ^ƍ¯ÏžƈÓÜƟĠƖƈŹƔžƄŮ» ƔžƄŮŁ ƍŭǃƤƮƟÃųƄĀáĵ^džƴljƟąžŭĀáĵ^ƍ Ł ŽƚƍƐŭMÝxÀHÈÓÜƯǍưǏÓÜƍŶųƈŭ ŶŻƜ$ÌçõƏĩĆ{ŭ»ƍƽơljNjǍĨƊƏÐį DŽƷǀưƟÃųƈ Ŋ ƳƮLjƏ ŕŘŒ ƍƙƆƈ ŐŒŏŖŕ ƴǏư ƍ¹·ƟìƛŭÓÜƟĠƖƈŹƔžƄŮřśūśdžƴljǐ Mouse ƟI;žŭ¾NƐƃƏƴǏưƟǖŐ ƫǍƾLJǏưƪLjƿƢƲ femoral artery injury model ǑƟ9òƍžƌŸƚŭƍþ ƩĂƟÃųƈDŽƷǀưƏǖŐ ĉ+LƟąžƈųƔƀŮŁ Ɵ.ŵŭĀá¤ĞƟƀƜ¸źŭĀá$ÌçõƏƕ Ɵ,ĶƀƜǃƤƮVú0ø$Ìçõ,ĶdžƴljƏąƟ āƆƈŹƔžƄŮ¾NƐŭżƏÍƌdžƴljąŸZ[ž ƈ&Ɯ¥ƍƌƛŭ¾NƐŭƃƏdžƴljŷƚI;žƄƬǍ ǁljƟĉƉƀŮŁ Ł Research projects and annual reports 3.Research projects and annual reports Laboratory animal medicine is the new specialty field within laboratory animal science, and Ł Ł ƔƄŭƃƏÇ|džƴljąƍŭŀħá¿ŸVSĩĆ also is one of veterinary medicine that is concerned ƉŲƛŭdžƴljąƊ@ƍŭǃƤƮƘLjƲƵƏŀħá¿Ə with the diagnosis, treatment, and prevention of GƗÓÜaēƊžƈŹƔžƄŮƽƵƘd0ºƏümƉƐŭ diseases in animals used in research, testing, and UźƏQ?ŭáƱLJǏǀƟ ážƄuŭ gBAHƟà ųƈA ŀħƟžƔƀŸŭżƝƔƉǃƤƮƘLjƲƵƒƏ á áŭ»ƍǃƤƮƉƐKķƊĊƞƝŭ«Ƌ\Ã1ŽƝƈ teaching. And it includes methods to minimize and prevent pain, discomfort, and distress in research animals and ways to identify factors that may affect animal research. The results of these researches contribute to both the improvement in reliability of laboratory experiments, and animal welfare. Assist. Prof. Konno is a diplomate of the Japanese College of Laboratory Animal Medicine (JCLAM) and a member of the Japanese Association of Laboratory Animal Medicine (JALAM). He has been engaging in the researches of translational research including regenerative medicine, organ transplantation, investigation of diseases using endoscope system “TESALA AE-C1” and laboratory animals. inhalational anesthesia using a ventilator. A main theme of the research in this Endotracheal intubation was successfully performed laboratory is a translational research. Translational on all 10 C57BL/6 mice injected with M/M/B: research is one of the scientific researches, and its 0.3/4/5 comprised of medetomidine, midazoram and purpose is practical applications to make findings butorphanol, at a dose of 0.3 mg/kg + 4.0 mg/kg + from basic science applicable for human, that is, for 5.0 mg/kg body weight/mouse, respectively. After our society. the intubated mice were connected with the (1) Relationships between blood vessel injury and inhalational anesthesia circuit and the ventilator, hyaluronic acid - mouse model of vascular injury - vital signs were measured until 15 min after the Although it is thought that hyaluronan connection. The data with M/M/B: 0.3/4/5 showed synthase is a very important for the repair of the stable and normal values, which indicated that this inner surface of the artery, it has not yet been proved new endotracheal intubation method was simple, in detail. Therefore, in order to prove the hypothesis, reliable and safe, which means that this anesthesia is with the mouse model of the vascular injury, we are favorable in regard to the animal’s welfare. promoting the analysis. Because only arterial (3) 3D anatomical figures using computer graphical endothelial cells of the model mouse are curetted technology surgically, the making of the rodent model is needed Interactive visualization is a branch of for the advanced techniques, knowledges and graphics in computer science that involves the experiences. But we have completed the production creation of graphic illustrations using computers. of the disease model, and now the process of the And many animals are used for the purpose of repair are being analyzing. education or research, and especially miniature pigs (2) Anesthesia are used for translational research. Therefore, by - endotracheal intubation and inhalation anesthesia for mice and rats Appropriate and effective anesthesia is critical, the fusion laboratory animal science and computer science, we have been preparing 3D anatomical because it has a strong influence on laboratory figures of miniature pigs. These results give both animals, and its affect greatly impacts the useful information for education and research, and experimental data. Inhalational anesthesia by benefits also useful for animal welfare. endotracheal intubation is currently prevailing in Ł general anesthesia and is prefered over injection 85421 A. Hirao, T. Kawarasaki, K. Konno, S. Enya, M. Shibata, anesthesia, especially for large laboratory animals, A. Kangawa and E. Kobayashi. Green fluorescent protein because it is a safe and easy control agent. However, (GFP) expression patterns in the olfactory epithelium of it is not common for small laboratory animals, GFP transgenic cloned Jinhua pigs. Acta Zoologica. 94, because of the high degree of technical skills 1-11 required. We assessed the capability of use for Y. Hirono, Y. Tanahashi, K. Sasaki, K. Konno, Y. Shirai, mice of the endotracheal intubation by using the K. Kobayashi, A. Someya, S. Inaga, M. Sakura, E. K. Pinkerton and M. Takeuchi. Alveolar macrophage 日本実験動物協同組合関西支部会での学術講演 functions and DNA damage in cigarette smoke-exposed 2013年11月29日(金)にキャンパスプラザ京都で開催され mice. 4, 1-7 た日本実験動物協同組合関西支部会の研修会において、 !_'G]f5709fM6TbfE_NF(Z` 「実験動物としてのブタ」と題して学術講演を行った。 LHS@S/&e^gh)?XAWh %RP3>YOQ<<1. Ł 9521Ł 今野兼次郎, 畠山美香, 小川哲平, 塩谷恭子 内視鏡プロー ブを用いたマウスへの安定・安全な気管チューブ挿管と吸 入麻酔の検討. 第60回日本日本実験動物学会総会,つくば 市,2013.5.15-17 今野兼次郎 実験動物医学専門医協会主催 The 2nd JCLAM Forum ۱TƍŶŻƜ0º~Ēįğ®ćƊ RefinementƒƏDJCLAMƏ<ƛéƕűŁ 2) 導入麻酔として の三種混合麻酔(げっ歯類の気管挿管) . 第156回日本獣医 学会学術集会,岐阜市,2013.9.20-22 Ł :503 ǔǑŁ Tĥĕī »[čĻÓÜŁ ŏňŊŇňŇŁ Ű幹細胞ニッチの形成機構解明と血管再生療法への応用űǙŁ ÓÜ'óǙĪ#©ĤńŁ <wkoǙőʼnŋŅʼnŌkŁ łŊkŃŁ Ł ǕǑŁ ÒĔ¦ßŁ Ł ƌžŁ Ł ǖǑŁ YT°0Ł ½3YǙċđEŁ Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł Ł ラボのメンバー似顔絵Ł Ł Ł ǗǑŁ =Ėߣ Ł ƌžŁ Ł Ł Ł ǘǑŁ ƃƏŁ ƌžŁ D,23*K4c 4c*Kd;-=>YO# " d;e^I :CBD,23*K4c D,23 $a$[O#"\8 +\U4Vを行った。 Ł VİnÝÁĪĿßYƮǏƼǏƬƣƦǍƮƺƣƮƩǏljǐřřőǑ ǁNjƭƥƩƵ ʼnŇňŊkŌʼnōł J ŃǚŊňłīŃƍVİVY3YĥƉĮŽ ƝƄǁNjƭƥƩƵƍďiƊžƈ9.Ǔ9.žƄĿňkÁƍ ažƈǒďðƘ\ñƟĜſƈCƏV(ŽƟŵƄǓ Ł Ł Ł Ł ື≀⏕⌮Ꮫ◊✲ᐊ ᩍᤵ /DERUDWRU\ RI $QLPDO 3K\VLRORJ\ DQG 1HXURELRORJ\ 3URI 7RVKL\XNL 6DLWR '90 3K' 㸯㸬◊✲ᴫせ 㰻⸨ ᩄஅ 㡿ᇦࡣᾏ㤿ࡸ๓㢌๓㔝➼ࠊࢫࢺࣞࢫࡼࡗ࡚⚄⤒ኚ ື≀⏕యᶵ⬟Ꮫศ㔝䞉⏕⌮Ꮫ䛷䛿䚸䝇䝖䝺䝇䛜⬻䛻䛘 ᛶࡸⴎ⦰ࡀ࠾ࡇࡿ㒊ศࡀྵࡲࢀ࡚࠸ࡿࠋள㖄ࡢᙺ 䜛ᙳ㡪䛸㞀ᐖ䜢ཷ䛡䛯⬻䛾⚄⤒ᶵ⬟ᅇ䛻䛴䛔䛶◊✲䜢 ࡘ࠸࡚ࡣࠊࢢࣝࢱ࣑ࣥ㓟➼ࡢ⚄⤒ఏ㐩≀㈨ࡢ㈓ⶶ࣭ᨺ 㐍䜑䛶䛔䜛䚹 ฟ㛵ࡋ࡚࠸ࡿ⪃࠼ࡽࢀ࡚࠸ࡿࠋ୍᪉ࠊ㐣㔞ࡢ ே䜔ື≀䛜እ⏺䛛䜙䛺่⃭䜢ཷ䛡䜛䛸䚸䛔䜟䜖䜛䝇䝖䝺䝇 ள㖄ࡣ࢝ࣝࢩ࣒࢘ྠᵝࠊ⚄⤒ẘᛶࢆ᭷ࡍࡿྍ⬟ᛶࡀ ᛂ䛜⏕䛨䜛䚹䛣䛾䚸యෆ䛷䛿ឤ⚄⤒⣔䛾άື䛜ά ᣦࡉࢀ࡚࠾ࡾࠊࢫࢺࣞࢫࡼࡿ⬻⚄⤒ኚᛶࡸⴎ⦰ Ⓨ䛻䛺䜛䛸䛸䜒䛻䚸⭈䛛䜙䜾䝹䝁䝁䝹䝏䝁䜲䝗䚸䜹䝔䝁䞊䝹 ఱࡽࡢᙧ࡛㛵ࡋ࡚࠸ࡿ⪃࠼ࡽࢀࡿࠋ⚄⤒⣽⬊ࢩ 䜰䝭䞁➼䛾䝩䝹䝰䞁ศἪ䛜ቑຍ䛩䜛䚹䝇䝖䝺䝇ᛂ⮬య䛿 ࢼࣉࢫᑠ⬊ෆࡢள㖄ࡣ7LPP ᰁⰍἲࡼࡾྍどࡍࡿ ኚ䛻ᑐ䛧䛶య䜢㐺ᛂ䛥䛫䜛ᛂ䛷䛒䜛䛜䚸㛗ᮇ䛻䝇䝖䝺 ࡇࡀྍ⬟࡛࠶ࡿࡀࠊ⡆౽࡞ᰁⰍࣉࣟࢺࢥ࣮ࣝࡀࡳ࠶ 䝇ᛂ䛜⥆䛟䛸䚸⬻䛾ᡥ᱈య䛜䛝䛟䛺䜛୍᪉䛷䚸๓㢌๓ ࡓࡽ࡞࠸ࠋࡑࡇ࡛ࠊᰁⰍἲࢆ᳨ウࡋࠊ࣐࢘ࢫࡢ⬻ࢆ 㔝䜔ᾏ㤿䛜ᑠ䛥䛟䛺䜛䛣䛸䜔⚄⤒⣽⬊䛜ኚᛶ䛩䜛➼䛾ኚ ᑐ㇟ࡋࡓ⡆౽࡞7LPP ᰁⰍἲࢆ☜ㄆࡍࡿࡇࡀ࡛ࡁࡓ 䛜⏕䛨䜛䚹◊✲䛾୰䛷䛿䚸䝇䝖䝺䝇䛻䜘䜛⬻䛾⚄⤒ኚᛶ䛾ཎ 㸦ᅗ㸯㸹7LPP 㝧ᛶᛂࡣ&$㹼&$ 㡿ᇦࡣ␗࡞ࡿ ᅉ䜢᫂䜙䛛䛻䛩䜛䛯䜑䚸⬻䛾⾑ὶㄪ⠇䚸䝰䝜䜰䝭䞁⚄⤒⣔ ࡇࢁぢࡽࢀࡿ㸧ࠋᚋࠊࢫࢺࣞࢫࡼࡿ7LPP 㝧 䛺䛹䛾ᶵ⬟ኚ䚸⭈⓶㉁䝩䝹䝰䞁䛾⬻䛻䛘䜛ᙳ㡪䛺 ᛶᛂࡢኚࠊ⚄⤒⣽⬊ࡢኚᛶࡸⴎ⦰ࡢ㛵ࢃࡾࡘ 䛹䛾ゎᯒ䚸ᣦᶆ䛸䛺䜛䝬䞊䜹䞊᥈⣴䜢ᰕ䛸䛧䛶䛔䜛䚹䜎䛯䚸 ࠸᳨࡚ドࡋ࡚࠸ࡃணᐃ࡛࠶ࡿࠋ 䛣䜜䜙䛾◊✲䛷ᚓ䜙䜜䜛ᡂᯝ䜢䜒䛸䛻䚸䝇䝖䝺䝇䛷㞀ᐖ䜢ཷ 䛡䛯⬻⚄⤒⣔䛾⏕䛸ᶵ⬟ᅇἲ䜢㛤Ⓨ䛧䛯䛔䛸⪃䛘䛶 䛔䜛䚹 ᅗ㸯㸬࣐࢘ࢫᾏ㤿ࡢ7LPP ᰁⰍീࠋͤ༳㸹㝧ᛶᛂ㒊㸦 ࡋ࡚ⱏ≧⧄⥔㸧 ᅗ 㻝䠊ᮏ◊✲䛾ᴫ␎ 㸰㸬 ᮏᖺᗘࡢ◊✲ᡂᯝ 䠍䠅 ⬻⤌⧊䛻䛚䛡䜛7LPP䛾ヨ䜏 ⬻ࡢ୰ࡣள㖄㝧ᛶᛂࢆ♧ࡍ㡿ᇦࡀᏑᅾࡍࡿࡇ ࡀ⤌⧊Ꮫⓗ◊✲࡛᫂ࡽࡉࢀ࡚࠸ࡿࡀࠊࡇࢀࡽࡢ⬻ 䠎䠅 ᇵ㣴⣽⬊࡛ࣞ࣋ࣝࡢ◊✲ྥࡅࡓᒎ㛤 ⭈⓶㉁࣍ࣝࣔࣥ࡞ࡢࢫࢺࣞࢫ࣍ࣝࣔࣥࡀ⚄⤒⣽ ⬊ཬࡰࡍᙳ㡪ࢆ⣽⬊࡛ࣞ࣋ࣝゎᯒࡍࡿࡓࡵࠊᇵ㣴⣽ ⬊ࢆ⏝ࡋࡓᐇ㦂⣔ࢆ᳨ドࡋࡓࠋࡑࡢ⤖ᯝࠊ⬻⏤᮶ ࡢ⣽⬊ࢆศ㞳࣭ᇵ㣴ࡍࡿࡇࡀྍ⬟࡞ࡗࡓࠋ⌧ᅾࠊ ⚄⤒⣽⬊ࠊࢢࣜ⣽⬊ࡢྠᐃࢆ㐍ࡵࡿࡶࠊᾏ㤿 ࡽࡢ⚄⤒⣽⬊ࡢศ㞳࣭ᇵ㣴ἲࡘ࠸᳨࡚ウࢆ⾜ࡗ࡚ GDPDJH LQ ]LQFFRQWDLQLQJ QHXURQV RI WKH EUDLQ HVSHFLDOO\ ࠸ࡿࠋ WKH KLSSRFDPSXV 7R YLVXDOL]H WKH ]LQFFRQWDLQLQJ QHXURSLO 7LPPVWDLQLQJ 䠏䠅 ᆺᐇ㦂ື≀䠄䝭䝙䝤䝍䠅䜢⏝䛔䛯⬻⾑ὶኚ ᐃᢏ PHWKRG LV RIWHQ XVHG 7KHUH DUH PDQ\ YDULDQWV LQ WKLV ⾡䛾㛤Ⓨ WHFKQLTXH VR WKDW LW LV PXFK OHVV FRPSUHKHQVLYH IRU 㯞㓉≧ែ䛷䚸䝭䝙䝤䝍䛾㰯䛾␗䛺䜛⨨䛛䜙ồᚰᛶ่⃭ H[SHULPHQWHUV 䜢ຍ䛘䚸่⃭㒊䛾㐪䛔䛻䜘䛳䛶⬻⓶㉁䛾୍ḟయᛶឤ ,Q WKLV VWXG\ ZH UHH[DPLQHG WKH 7LPPVWDLQLQJ SURWRFRO ぬ㔝䛾␗䛺䜛⨨䛷ㄏⓎ㟁䜢グ㘓䛷䛝䛯䚹䜎䛯䚸ྠᵝ䛻 XVLQJ PRXVH LQ DGGLWLRQ WR SHUIXVLRQ DQG IL[DWLRQ PHWKRG 䛧䛶䝭䝙䝤䝍䛾㰯䛾␗䛺䜛⨨䛛䜙่⃭䜢ຍ䛘䚸୍ḟయᛶ ZLWK VRGLXP VXOILGH DQG SDUDIRUPDOGHK\GH 7KURXJK WKH ឤぬ㔝䛾⾲㠃䛛䜙┤᥋⾑ὶኚ䜢 ᐃ䛧䛯䛸䛣䜝䚸㰯䛾่ VWXG\ ZH REWDLQHG WKH VLPSOH DQG FRPSUHKHQVLYH SURWRFRO ⃭⨨䛾㐪䛔䛻ᛂ䛨䛯యᛶឤぬ㔝䛾⨨䛷䚸⬻䛾⾑ὶ IRU XVH ᛂ䛜㉳䛣䜛䛣䛸䜢ᐇド䛧䛯䠄⾲⣬ཧ↷䠗⮬་⛉Ꮫ䚸୰ኸ (VWLPD WLRQ RI QHXU D O GHJHQHU D WLRQ LQ LQ YLWU R Ꮫ䛸䛾ඹྠ◊✲䠅䚹 H[SHU LPHQWV 5 HVHDUFK SURMHFWV DQG DQQXDO UHSRUWV 㸱㸬5 :H H[DPLQHG WHFKQLTXHV IRU LVRODWLRQ DQG SULPDU\ %D FNJU RXQG D QG SXU SRVH RI U HVHD U FK 7KH SK\VLRORJLFDO UHDFWLRQ WR VWUHVVRUV FXOWXUH RI QHXURQDO FHOOV IURP WKH IHWDO EUDLQ RI PRXVH LQ LQYROYHV RUGHU WR LQYHVWLJDWH DQ\ HDUO\ VLJQ RI QHXURQDO GHJHQHUDWLRQ DFWLYDWLRQ RI WKH K\SRWKDODPLF SLWXLWDU\ DGUHQDO +3$ D[LV E\ H[SRVXUH WR VWUHVV KRUPRQHV DW WKH FHOOXODU OHYHO $W DQG WKH V\PSDWKHWLF QHUYRXV V\VWHP &KURQLF DFWLYDWLRQ RI SUHVHQW ZH KDYH WULHG WR ILQG WKH QHXURQDO PDUNHU ERWK V\VWHPV PD\ LQFUHDVH D ULVN IRU DQ[LHW\ DQG VWUHVV UHSUHVHQWLQJ WKH QHXURQDO GDPDJH E\ JOXFRFRUWLFRLG GLVRUGHUV ,Q WKH ODERUDWRU\ ZH DUH H[DPLQLQJ QHXURQDO WUHDWPHQW VLJQDOV ZKLFK UHIOHFW DFXWH DQG FKURQLF VWUHVV LQ WKH EUDLQ DQG KRZ QHXURQV DUH GDPDJHG E\ VWUHVV DQG DUH UHJHQHUDWHG 'LU HFW FRU WLFD O KHPRG\QD PLFV PHD VXU HPHQW XVLQJ D 5HVHD U FK WRSLFV 'HYHORSPHQW RI GHWHFWLRQ PHWKRGV RI QHXURQDO VLJQDOV IXQFWLRQD O 1HD U LQIU D U HG &RU WLFD O ,PD JLQJ WHFKQLTXH :H GHYHORSHG IXQFWLRQDO 1HDULQIUDUHG &RUWLFDO ,PDJLQJ UHODWHG WR GHJHQHUDWLRQ RI QHXURQV E\ VWUHVVRUV LQ WKH EUDLQ I1&, ZKLFK HQDEOHV XV WKH GLUHFW PHDVXUHPHQW RI FRUWLFDO 1HXURPRGXODWRUV WR G\VUHJXODWH QHXUDO FRPPXQLFDWLRQ KHPRG\QDPLFV 8VLQJ PLQLDWXUH SLJV 0H[LFDQ KDLUOHVV E\ H[SRVXUH WR VWUHVVRUV DQG WR SURPRWH UHJHQHUDWLRQ RI WKH SLJV ZH YDOLGDWHG WKH I1&, V\VWHP LQ D GLUHFW FRUWLFDO GDPDJHG QHXURQV LQ WKH EUDLQ PHDVXUHPHQW %\ FRPSDULQJ IXQFWLRQDO PDSSLQJ ZLWK VRPDWRVHQVRU\HYRNHG SRWHQWLDO 6(3 PHDVXUHPHQWV LQ WKH $QQXD O U HSRU WV SLJ EUDLQ FRUWH[ RXU VWXG\ SURYLGHV H[SHULPHQWDO HYLGHQFH 7LPPVWD LQLQJ PHWKRG WR YLVXD OL]H ]LQFFRQWD LQLQJ IRU WKH DSSOLFDELOLW\ RI GLUHFW IXQFWLRQDO PHDVXUHPHQW RI QHXU RSLOV FRUWLFDO KHPRG\QDPLFV ZLWK WKH I1&, V\VWHP 6HH ILJXUHV LQ 7KH SXUSRVH RI WKLV VWXG\ LV WR H[DPLQH DQG WR HYDOXDWH ZKHWKHU VXFK VWUHVV KRUPRQH DV JOXFRFRUWLFRLG PD\ FDXVH WKH FRYHU -RLQW UHVHDUFK ZLWK -LFKL 0HGLFDO 8QLYHUVLW\ DQG &KXR 8QLYHUVLW\ 㸲㸬 Ⓨ⾲ㄽᩥࠊⴭ᭩࡞ 㸰㸧▱㈈ᶒ➼ ࡞ࡋ 7RVKL\XNL 6DLWR 0LQDNR 8JD 'DLVXNH 7VX]XNL +LGHQRUL <RNRWD .HLML 2JXUR 7VX\RVKL <DPDPRWR ,SSHLWD 'DQ (LMX :DWDQDEH (YRNHG SRWHQWLDO PDSSLQJ RI WKH URVWUDO UHJLRQ E\ 㸱㸧Ꮫእάື 㰻⸨ᩄஅ㸸⮬་⛉Ꮫඛ➃་⒪ᢏ⾡㛤Ⓨࢭࣥࢱ࣮࣭ 㠀ᖖㅮᖌ IUDPHOHVV QDYLJDWLRQ V\VWHP LQ 0H[LFDQ KDLUOHVV SLJ - RXUQDO RI 1HXURVFLHQFH 0HWKRGV 㰻⸨ᩄஅ㸸Ⲉᇛ┴❧་⒪ᏛᏛእඹྠ◊✲ဨ 㰻⸨ᩄஅ㸸᪥ᮏ⏕⌮Ꮫホ㆟ဨ 3RQQLUXO 3RQPDQLFNDP *RYLQGDUDMX $UFKXQDQ 6KDQPXJDP 㰻⸨ᩄஅ㸸᪥ᮏ⋇་Ꮫホ㆟ဨ $FKLUDPDQ 5DMDQDUD\DQDQ 6DQNDU 7RVKL\XNL 6DLWR <RVKLDNL +DEDUD 3UHSXWLDO JODQG DFWLYDWHV ROIDFWRU\ UHFHSWRU 㸲㸧ཷ㈹➼ ࡞ࡋ QHXURQV LQ UDW &DOFLXP LPDJLQJ VWXG\ XVLQJ ODVHU VFDQQLQJ FRQIRFDO PLFURVFRS\ , QGLDQ -RXUQDO RI %LRFKHPLVWU\ DQG 㸳㸧ࡑࡢ %LRSK\VLFV ≉ᐃㄢ㢟◊✲ ㄢ㢟ྡ㸸ࢫࢺࣞࢫᛶ⬻ᶵ⬟㞀ᐖ࠾ࡅࡿ࢘ࣝࢫᣢ⥆ឤᰁ 0LQDNR 8JD 7RVKL\XNL 6DLWR 7RVKLIXPL 6DQR +LGHQRUL <RNRWD .HLML 2JXUR (GPL (GLVRQ 5L]NL 7VXWRPX 0L]XWDQL 7DNXVLJH ࡢᙳ㡪 ◊✲௦⾲⪅ 㰻⸨ᩄஅࠊྲྀᚓᖺᗘ㸸+㻙 ᖺ㸦㸰ᖺ㸧 .DWXUD ,SSHLWD 'DQ (LMX:DWDQDEH 'LUHFW FRUWLFDO KHPRG\QDPLFV PDSSLQJ RI VRPDWRWRS\ RI SLJ QRVWULO VHQVDWLRQ E\ IXQFWLRQDO 㸦Ꮫෆ㸧ᅗ᭩㤋ጤဨ࣭ጤဨ 1HDULQIUDUHG &RUWLFDO ,PDJLQJ I1&, 1HXURLPDJH LQ SUHVV 㸦Ꮫ⛉㸧㫽ྲྀᏛ⋇་Ꮫ⛉ࡢ㐃ᦠࡼࡿ㐲㝸ㅮ⩏㸦⋇་⏕ Ꮫ࣭⏕⌮Ꮫᶍᨃㅮ⩏䠅䛾ᐇ 㸳㸬ᏛⓎ⾲࡞ 㰻⸨ᩄஅࠊᕷᕝࡳ࡞ࡳࠊᑠ㔝㝯♸ࠊす㔝ె௨㸸⬻࠾ࡅࡿ 7LPP ᰁⰍἲࡢ᳨ウࠋ➨ ᅇ᪥ᮏ⋇་ᏛᏛ⾡㞟ࠊᒱ 㜧Ꮫࠊᒱ㜧ᕷࠊ 㸴㸬 ࡑࡢࡢ≉グ㡯 㸯㸧እ㒊㈨㔠 ⛉Ꮫ◊✲㈝ຓᡂ㔠 ᇶ┙◊✲ &㸦୍⯡㸧 ㄢ㢟ྡ㸸⏬ീᨭᐃ⬻ᡭ⾡ࡢ᪂つࣔࢹࣝ☜⋡ྥࡅࡓ࣑ ࢽࣈࢱࡢ⬻ᆅᅗస〇 ◊✲௦⾲⪅ 㰻⸨ᩄஅࠊྲྀᚓᖺᗘ㸸+㻙 ᖺ㸦㸱ᖺ㸧 ◊✲ᐊ䝯䞁䝞䞊䠄䠐ᖺ⏕䠅䛸䛾㞟ྜ┿ ⛉Ꮫ◊✲㈝ຓᡂ㔠 ᇶ┙◊✲ &㸦୍⯡㸧 ㄢ㢟ྡ㸸࢘ࣝࢫᛶ⚄⤒ᝈᙳ㡪ࢆཬࡰࡍᐟせᅉ⎔ ቃせᅉ ◊✲௦⾲⪅ す㔝ె௨ࠊྲྀᚓᖺᗘ㸸+㻙 ᖺ㸦㸱ᖺ㸧 ຓᩍ㻌 ᰁ㇂㻌 ᱻ ⣽⳦Ꮫ◊✲ᐊ Assist. Prof. Azusa SOMEYA, D.V.M., Ph.D.㻌 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻮㼍㼏㼠㼑㼞㼕㼛㼘㼛㼓㼥㻌 The prevalence of Bartonella in cattle was also 㻌 䠍䠊◊✲ᴫせ㻌 investigated. 㻌 ᚤ⏕≀䛿䛒䜙䜖䜛䛸䛣䜝䛻Ꮡᅾ䛧䛶䛚䜚䚸䛻ື≀䜔ே 㻌 䛾ᗣ䜢⬣䛛䛩䛣䛸䜒䛒䜛䚹䛺䛛䛷䜒ື≀䛸ே䛾᪉䛻ឤ 䠐䠊ㄽᩥ䠈ⴭ᭩䛺䛹㻌 ᰁ䛩䜛ᚤ⏕≀䛿䚸ே䛸ື≀䛸䛾㛵䜟䜚᪉䛜ከᵝ䛩䜛⌧ Hirono, Y., Tanahashi, Y., Sasaki, K., Konno, K., Shirai, Y., ௦♫ 䛻䛚䛔䛶䚸ே ⋇ඹ ㏻ឤ ᰁ䜔㣗ရ⾨ ⏕ୖ 䛾ၥ Kobayashi, K., Someya, A., Inaga, S., Sakura, M., Pinkerton, K. 㢟䜢ᘬ䛝㉳䛣䛩ྍ⬟ᛶ䛜䛒䜛䛯䜑䚸䛝䛺ὀ┠䜢㞟䜑䛶 E., Takeuchi, M.: Alveolar macrophage functions and DNA 䛔䜛䚹ᮏ◊✲ᐊ䛷䛿䚸䝬䝎䝙፹ᛶឤᰁ䛾Ꮫㄪᰝ䚸 damage in cigarette smoke-exposed mice. Adv. Biosci. and 㣗⫗䛾ὶ㏻⌧ሙ䛻䛚䛡䜛⭠⳦䛾ᢠ⳦⸆⪏ᛶ䚸䜴䝅䛾 Biotechnol. 4:1-7 (2013) ⾑ᾮ䛻ឤᰁ䛩䜛䝞䝹䝖䝛䝷䛻䛴䛔䛶◊✲䛧䛶䛔䜛䚹㻌 ᰁ㇂ᱻ䚸ụỌᏹ䚸すಟ䚸Igor Velado Fernandez䚸す㔝ె௨䚸 㻌 ๓⏣⛅ᙪ䠖ி㒔ᕷᒣ⛉༊䛷㥑㝖䛥䜜䛯䜲䝜䝅䝅䛻ᐤ⏕䛧䛶䛔䛯 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 䝬䝎䝙㢮䛾ゎᯒ䠊ி㒔⏘ᴗᏛ⥲ྜᏛ⾡◊✲ᡤᡤሗ 㻌 䝬䝎䝙䜔䝜䝭䛺䛹䛾྾⾑ᛶ䛾⠇㊊ື≀䛿䚸䝠䝖䛸ື≀䛾 8:57-62 ᪉䛻ᐤ⏕䛩䜛䛣䛸䛛䜙䚸䛥䜎䛦䜎䛺ே⋇ඹ㏻ឤᰁ䜢 ᰁ㇂ᱻ䠖䝸䜿䝑䝏䜰䚸䜽䝷䝭䝆䜰䠊 ື≀ᚤ⏕≀Ꮫ᳨ᰝᏛ㻌 䠄༳ๅ୰䠅 ፹䛩䜛ྍ⬟ᛶ䛜䛒䜛䚹ᖺᗘ䛿䚸ி㒔ᕷ䛻䛚䛡䜛䝬䝎 㻌 䝙䛾ศᕸ䜢䜘䜚ヲ⣽䛻᫂䜙䛛䛻䛩䜛䛯䜑䚸ẖ㐌 㻝 ᅇ䝬䝎 䠑䠊ᏛⓎ⾲䛺䛹㻌 䝙䛾᥇㞟䜢⾜䛔䚸䝬䝎䝙䛾Ꮨ⠇ᾘ㛗䜢᫂䜙䛛䛻䛧䛯䚹䜎 ఀ⸨ளᕼ䚸⡿ᓥ᭷Ꮚ䚸Igor Velado Fernandez䚸⚟⏣⨾ᶞ䚸ᰁ 䛯䚸䝬䝎䝙䛻ឤᰁ䛧䚸᪥ᮏ⣚ᩬ⇕䜢ᘬ䛝㉳䛣䛩 㻾㼕㼏㼗㼑㼠㼠㼟㼕㼍㻌 ㇂ᱻ䚸๓⏣⛅ᙪ䠖ி㒔ᕷ䛻䛚䛡䜛⺅፹ᛶ䝣䝷䝡䜴䜲䝹䝇፹ 㼖㼍㼜㼛㼚㼕㼏㼍 䛾ಖ᭷≧ἣ䜢ㄪᰝ䛧䛯䚹䛭䛾⤖ᯝ䚸䝬䝎䝙䛾✀ ⺅䛾ㄪᰝ䠊➨48ᅇ᪥ᮏ⬻⅖䜴䜲䝹䝇⏕ែᏛ◊✲䠈⇕ᾏᕷ䠈 䛻䜘䜚䚸䝸䜿䝑䝏䜰䛾ಖ᭷⋡䛜␗䛺䜛䛣䛸䛜᫂䜙䛛䛻䛺䛳䛯䚹 2013.5.24-25 䛥䜙䛻䚸㣗⫗䛾ὶ㏻⌧ሙ䜘䜚⭠⳦䜢ศ㞳䛧䚸⸆ឤཷ ᛶ䛾ㄪᰝ䜢⾜䛳䛯䚹䜎䛯䚸䜴䝅䛾⾑ᾮ䜢᥇ྲྀ䛧䚸䝞䝹䝖䝛 䠒䠊䛭䛾≉グ㡯㻌 䝷䛾ឤᰁ≧ἣ䜢ㄪᰝ䛧䛯䚹 㻌 䠍䠅㻌 እ㒊㈨㔠 㻌 ி㒔⏘ᴗᏛ䞉≉ᐃㄢ㢟◊✲㻌 㸱㸬Research projects and annual reports ㄢ㢟ྡ䠖䛂ி㒔ᕷ䛾ឤᰁ䛾Ꮫⓗゎᯒ䛸ឤᰁ䝬䝑䝥䛾స 〇䛃䛻㛵䛩䜛ᇶ┙◊✲㻌 The microorganism exists in all places, and might ◊✲ศᢸ⪅䠖ᰁ㇂ᱻ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻠㻙㻞㻡 ᖺ㻌 㻔㻞 ᖺ㻕㻌 threaten human and animal health. Zoonotic and food poisoning microorganism which can infect both animals 䠎䠅▱㈈ᶒ➼㻌 and humans cause concern for public health. ᰁ㇂ᱻ䠖䜴䜲䝹䝇ά䚸ᢠ⳦䚸䜴䜲䝹䝇ά᪉ἲ䚸୪ 䜃䛻䚸ᢠ⳦᪉ἲ䠊≉㢪 㻞㻜㻝㻟㻙㻝㻝㻜㻤㻠㻥㻌 Arthropods can transmit zoonotic pathogens such as spotted fever group rickettsiae. Rickettsia japonica, the 䠏䠅Ꮫእάື㻌 㻌 etiological agent of Japanese spotted fever is also ᰁ㇂ᱻ䠖ி㒔ᕷ⾨⏕⎔ቃ◊✲ᡤ䛸䛾ඹྠ◊✲㻌 associated with arthropod vector, mainly ticks. Therefore, ᰁ㇂ᱻ䠖㜰ᗓ❧Ꮫᐈဨ◊✲ဨ㻌 the prevalence of ticks in Kyoto was investigated. Ticks 䠐䠅䛭䛾㻌 䛺䛧㻌 were collected weekly by flagging method and rickettsial 㻌 DNA was detected by PCR. The rate of rickettsial infection depended on tick species. The drug resistant bacterium in food processing can spread the drug resistance to commensal microflora in human. Therefore, susceptibility to antimicrobials in Escherichia coli isolated from slaughterhouse was investigated. Assoc. Prof. Hiroki Takakuwa, D.V.M., Ph.D.Ď !"#)*",)*.)& (&%$,')-+'+%"+% 54 3: Development of strategies for the prevention and Ď ©:ğ®IJČʼnŲŢŮŌŲŔŊʼnŮŗĵĴķxÕų control of the infections. Õ g ² ķ´ ª ĨB v ? 1 īńıĦłğ ņ0 ļ# Due to concerns that wild birds could possibly spread ¤ĶÛKņľįŁĬıĦłğg²ķ'6IJģѱ' H5N1 viruses, surveillance was conducted to monitor the ķªhņß{ĬğœŲśŰŴŮĭŃĪijĸöÞĵáćIJģ types of avian influenza viruses circulating among the ŃĠĎ wild birds migrating to or inhabiting in northern Vietnam. ŸŶČʼnŲŢŮŌŲŔŊʼnŮŗĵĴķ±'ķÔ£®IJķ An H5N2 virus isolated from a Eurasian woodcock had a GÍijñ$ĦŀĹsņß{ĭŃĠĎ close phylogenetic relationship to H5 viruses recently ŹŶMij±'ķ¸¬ņßĬğ±'ķM= isolated in South Korea and Japan, suggesting that H5N2 ņJĭŃ6Fğ±'dķ´©ğMķ°cÆ has been shared between Vietnam, South Korea, and ķß{ņØĥĠĎ Japan. An H9N2 virus isolated from a Chinese Hwamei źŶg²ķàwğĀij³ķû´ņØĤğ#¤ijŠ was closely related to two H9N2 viruses that were śķg²ņĀų isolated from humans in Hong Kong, suggesting that an 9ĭŃĠĎ Ď H9N2 strain relevant to the human isolates had been 642 transmitted to and maintained among the wild bird Ď ĝĘĞĔ <ċ±'dČʼnŲŢŮŌŲŔķ´ª;=IJģ population in Vietnam and South China. The results ŃťśŜũĶĦĤığªeĦŀĹĈĭŃ,Á÷ČüIJ support the idea that wild bird species play a significant Î o īńıĤŃČ ʼnŲŢŮŌŲŔŊʼnŮŗķ â ņ role in the spread. ØİįĠĮķËğūŨŕŐħŁąīńį ĝĘĞĕ < Ď ČʼnŲŢŮŌŲŔŊʼnŮŗĨî[ňŖňķąijî 74310 ÐIJģłğĝĘĞĕ <ŊʼnŮŗĸĪńŁķ;=Îoīńı K. Hotta, H. Takakuwa, T. Yabuta, T. T. Ung, T. Usui, H. L. ĤŃ+ÓdĨģŃĠĻįğŎšřŬŊħŁąīńį ĝěĞĕ Nguyen, T. T. Le, M. Q. Le, T. Yamaguchi, K. Otsuki, T. Ito, T. <ČʼnŲŢŮŌŲŔŊʼnŮŗĸğĮķağĊ ķŠśħ Murase, T. Yamashiro. Antibody survey on avian influenza ŁąīńįijòFd¥ĨĆYĶîÐIJģİįĪij viruses using egg yolks of ducks in Hanoi between 2010 and ħŁğťśŜũĿ7ĶĦĤığ÷ČķüIJŊʼnŮŗĨÎ o īńğŠśķü IJķx įĵČ ʼnŲŢŮŌŲŔŊʼnŮŗķ 2012. Veterinary microbiology. 2013. 166, 179-183 H. Takakuwa, T. Yamashiro, M. Q. Le, L. S. Phuong, H. Ozaki, R. ØĶ÷ČĨýŅİıĤŃ+Ódņ½3ĬıĤįĠĎ Tsunekuni, T. Usui, H. Ito,T. Yamaguchi, T. Ito, T. Murase, E. Ď Ono, K . Otsuki. The characterization of low pathogenic avian Research projects and annual reports Currently, outbreaks of highly pathogenic influenza viruses isolated from wild birds in northern Vietnam avian from 2006 to 2009. Comparative immunology, microbiology influenza and other emerging and re-emerging diseases have caused serious economical and social disturbances and infectious diseases. 2013. 36, 581-590 Y. Fujimoto, K. Ozaki, M. Maeda, K. Nishijima, H. Takakuwa, K. worldwide. To control these infections is the most Otsuki, H. Kida, E. Ono. Resistance to influenza A virus important. Our research is focused on: infection in transformed cell lines expressing an anti-PB2 1: The evolution and spread mechanism of pathogens monoclonal antibody. Veterinary journal. 2013. 198, 487-493 such as avian influenza virus in nature. Ď 2: Studies on the host range determinant in pathogens, 8410Ď mechanisms of pathogenesis and immune response of the H. Takakuwa, K. Hotta, T. Yamashiro, M. Q. Le, L. S. Phuong, T. hosts through in vivo and in vitro analyses of the Usui, H. Ozaki, H. Ito, T. Murase, T. Yamaguchi, T. Ito, E. host-parasite interactions. Ono, K. Otsuki: Distribution of antibodies to Influenza Virus in Wild Birds in Northern Vietnam in 2011. Asia-Africa Research Forum on Emerging and Reemerging Infections 2013, Tokyo, 2013.1.23-24 K. Hotta, H. Takakuwa, T. Yabuta, T. T. H. Ung, N. L. K. Hang, ċ`Žì«¹ų rñä ġ yķû´ĢAõOúLĎ L. T. Thanh, L. Q. Mai, K. Otsuki, T. Ito, T. Murase, T. ŻŶĎ )éÅĎ ĵĬĎ Yamashiro: Antibody Survey on Avian Influenza Viruses using żŶĎ ĮķĎ ĵĬĎ Duck’s Egg Yolk in Hanoi, during 2010 to 2012. Asia-Africa Research Forum on Emerging and Reemerging Infections 2013, Tokyo, 2013.1.23-24 ċ`:ťśŜũĶĦĩŃČʼnŲŢŮŌŲŔŊʼnŮŗ¢¥. Zi24[]z§%X§%HÙH[Cųz« #¤§%HŕŲŧŖŊũġČʼnŲŢŮŌŲŔŊʼnŮŗķ}î ķ#/Ģ, CÿW, 2013.2.9-11. ×ğQUÌğ!ă`ğÝTãğċ`ğC ğ4IğP÷fô: lPB2ÉÒ´©&őŰŴŲlķ A<ʼnŲŢŮŌŲŔŊʼnŮŗĶNĭŃgmld. Ä1565z §%HHÙĄ, SþW, 2013,9,20-22 ×ğQUÌğċ`ğP÷fô: +¡<şőřŲ2Ķ ŀŃ&ÈŤŮŦŗŊʼnŮŗ2< ĶNĭŃüqµgmldķ . Ä615zŊʼnŮŗHHÙĄŷ¾jWŷ 2013.11.10-12 Ď 94/2 ŸŶĎ Aõèø ¿H»ÂçÜ"øų>¶»ÂŵĜŶĎ á ć . ŽČ ʼnŲŢŮŌŲŔŊʼnŮŗķč ĺķg d ¨ b Ūō ŝŘũķßĎ »ÂÚÑŽċ`đĎ (b[]ŽĝĕĖĒĕĘ [Ď ďĖ [ĐĎ g²»Â7āşŚśűŴőrñţŰŒŭũĎ áć.ŽťśŜũĶĦĩŃùUCHg²»ÂţŰŖŋőśĎ »ÂÚÑŽđĎ (b[]ŽĝĕĕĒĕę [Ď ďĘ [ĐĎ ì«ųĉ2«¿HkÙ»Ârñ Ď áć.ŽL¯±´ª|ĶĦĩŃĻŇ_Ā ķįĽķ L¯ÅëïkÙķ¼ÃĎ »ÂÏnÑŽR÷íuđĎ (b[]ŽĝĕėĒĕĘ [Ď ďĕ [ĐĎ zHÙpÕų7ü -»ÂĎ áć.ŽŏŞůŝŲÊêýðòFt@ŨŊŗĶŀŃ ¾ ÊÇĂKij¾Êå¬\ķßĎ »ÂÚÑŽP÷fôđĎ (b[]ŽĝĕĘĒĕę [Ď ďĕ [ĐĎ ŹŶĎ ºæÅĎ Ď ûzŽĕēĔĖ [ Ě ~ ĔĔ zĎ .ÀŽČʼnŲŢŮŌŲŔŊʼnŮŗĶNĭŃyĎ ´{ÑŽCğċ`ğY8ÖDğV*·^ğ'óEğ C¦EğĎ źŶĎ HA#Ď Ď ᩍᤵ㻌 ➉ෆ㻌 ᐇ ච⌮Ꮫ◊✲ᐊ Prof. Minoru Takeuchi, Ph.D., D.V.M., M.Sci.D.㻌 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻵㼙㼙㼡㼚㼛㼜㼍㼠㼔㼛㼘㼛㼓㼥 㻌 䠍 䠊◊✲ᴫせ㻌 㻸㻼㻿 䛻䜘䜛⫵ච⣽⬊䜈䛾ᙳ㡪䛻䛴䛔䛶◊✲䛧䛶䛔䜛䚹 㻌 ⎔ቃศ㔝䛷㔜せ䛺ၥ㢟䛸䛧䛶ྲྀ䜚ୖ䛢䜙䜜䛶䛔䜛䝍䝞 䜎䛯䚸⫵䛻ᙳ㡪䜢䛘䚸䜰䝺䝹䜼䞊䜢Ⓨ䛥䛫䜛䛣䛸䛷▱ 䝁ႚ↮䛻╔┠䛧䚸ႚ↮䛾ච䚸⒴ቑṪ䞉㌿⛣䚸㻰㻺㻭 ᦆയ 䜙䜜䛶䛔䜛䝇䜼ⰼ⢊䛜䛒䜛䚹᪥ᮏ䝇䜼ⰼ⢊䠄 㻯㼞㼥㼜㼠㼛㼙㼑㼞㼕㼍㻌 䜈䛾ᙳ㡪䛻䛴䛔䛶䚸䝬䜴䝇䜢⏝䛔䛶◊✲䛧䛶䛔䜛䚹ႚ↮䛸 㼖㼍㼜㼛㼚㼕㼏㼍㻌 㼜㼛㼘㼘㼑㼚䠅䛿䚸䜹䜼≧䛾✺㉳䠄䝟䝢䝷䠅䜢᭷䛩䜛༢⢏ ච䛸⒴䛿䚸䛭䜜䛮䜜ᐦ᥋䛻㛵ಀ䛧䛶䛚䜚䚸䛣䜜䜙䛾㛵 ⌫ᙧ䛾ᙧ≧䛷䚸㻵 ᆺ䛾㐣ᩄ䜢ᘬ䛝㉳䛣䛩䛣䛸䛷▱䜙䜜䛶 ಀ䜢ゎ᫂䛩䜛䛣䛸䛿ኚព⩏䛜䛒䜛䚹䛣䜜䜎䛷䛾◊✲䛷䚸 䛔䜛䚹䛧䛛䛧䚸䝇䜼ⰼ⢊䛸䛭䛾ᡂศ䛜⏕య䛻྾ධ䛥䜜䛶䛛 䝍䝞䝁ႚ↮ 䛻䜘䜚⫵ ⬊䝬䜽䝻䝣䜯䞊䝆䛾㈎㣗⬟䚸ᢠཎᥦ 䜙䛾⫵ච⣔䛻ཬ䜌䛩ᙳ㡪䛻䛴䛔䛶䛿༑ศ䛺ゎ᫂䛿䛥 ♧⬟䚸⣽⬊⾲㠃ᢠཎ䚸䝃䜲䝖䜹䜲䞁 㼙㻾㻺㻭 Ⓨ⌧䛺䛹䛾ච 䜜䛶䛔䛺䛔䛯䜑䚸䝇䜼ⰼ⢊䛻䜘䜛⫵䛾ึᮇචᛂ⟅ᛂ ᶵ⬟䛿ᢚไ䛥䜜䛶䛔䜛䛜䚸㏫䛻άᛶ㓟⣲䛾⏘⏕⬟䛿 䛻䛴䛔䛶䜒◊✲䜢䛧䛶䛔䜛䚹㻌 ቑຍ䛩䜛䚹䛭䛣䛷⌧ᅾ䛿䚸ႚ↮䛻䜘䜚ቑຍ䛧䛯άᛶ㓟⣲ 䠏䠅ኳ↛ᡂศ䛾චస⏝䛸䛭䛾ᛂ⏝䛻䛴䛔䛶㻌 䛻䜘䜚䚸⫵⬊䝬䜽䝻䝣䜯䞊䝆䛚䜘䜃⫵⤌⧊䛾 㻰㻺㻭 ᦆയ䛜 䐟⻏⻤㻌 ㄏᑟ䛥䜜䚸䛭䛾⤖ᯝ␗ᖖ 㻰㻺㻭 䛜ᙧᡂ䛥䜜䚸⫵⒴䛾Ⓨ⏕ ኳ↛ᡂศ䛻䛿ᵝ䚻䛺⏕⌮άᛶ䛜▱䜙䜜䛶䛚䜚䚸⻏⻤ 䛻䛣䜜䜙䛾せᅉ䛸పୗ䛧䛯චᶵᵓ䛜㛵ಀ䛧䛶䛔䜛ྍ⬟ 䛿䚸ᰤ㣴䛜㇏ᐩ䛺ኳ↛䛾㣗ရ䛸䛧䛶ぶ䛧䜎䜜䛶䛔䜛䚹⻏ ᛶ䛻䛴䛔䛶◊✲䛧䛶䛔䜛䚹䜎䛯ᢚไ䛥䜜䛯චᶵ⬟䜢ᅇ ⻤䛾䜂䛸䛴䛷䛒䜛䝆䝱䞁䜾䝹䝝䝙䞊䛿䚸䜰䝣䝸䜹䞉䝘䜲䝆䜵 䛩䜛䛯䜑䛻䚸ኳ↛ᡂศ䠄䜰䜺䝸䜽䝇Ⲗ䚸⻏⻤䠅䛾චቑ 䝸䜰䛾⇕ᖏ㞵ᯘ䛻⏕ᜥ䛩䜛㔝 ⏕䛾⻤⻏䛜㛗ᮇ䛻䜟䛯䜚 ᙉస⏝䛻䛴䛔䛶◊✲䛧䚸᪂⸆䛾㛤Ⓨ䜢┠ᣦ䛧䚸䛂ႚ↮䛸 ᶞᮌ䜔ⰼ䛛䜙㞟䜑䛶䛷䛝䛯⻏⻤䛷䛒䜛䚹䝘䜲䝆䜵䝸䜰䛷䛿䚸 ච䛸⒴䛸ኳ↛ᡂศ䜢⛉Ꮫ䛃䛧䚸௨ୗ䛾◊✲䝔䞊䝬䛻䛴 䛣䛾⻏⻤䛜㢼㑧䚸⓶⅖䚸ⅆയ䛾⒪⸆䚸ᝈண㜵⸆ 䛔䛶◊✲䜢㐍䜑䛶䛔䜛䚹㻌 䛸䛧䛶ఏ⤫ⓗ䛺་⒪䛻⏝䛥䜜䛶䛝䛯䚹䛭䛾䛯䜑㣗⏝䛷 䠍䠅䝍䝞䝁↮䛻䜘䜛⫵⬊䝬䜽䝻䝣䜯䞊䝆䜈䛾ᙳ㡪䛸㑇ఏᏊ 䛿䛺䛟䚸䜐䛧䜝⒪⸆䛸䛧䛶⏝䛥䜜䛶䛔䜛䛣䛸䛛䜙䚸⏕య ᦆയ䛻䛴䛔䛶㻌 䜈䛾స⏝䚸≉䛻චస⏝䛻ᑐ䛩䜛ຠᯝ䛜⪃䛘䜙䜜䜛䚹䛭 䝍䝞䝁ႚ↮ 䛻䜘䜚䚸䝍䝞䝁 䛣䛷䚸䝆䝱䞁䜾䝹䝝䝙䞊䛾චᶵ⬟䜈䛾ᙳ㡪䛸䛭䛾స⏝ ↮䛿┤᥋⫵䛻྾ධ䛥䜜䜛䛯 ᶵᵓ䚸ᢠ⭘⒆స⏝䛻䛴䛔䛶◊✲䜢䛧䛶䛔䜛䚹䜎䛯䚸᪥ᮏ 䜑䚸⫵䛻Ꮡᅾ䛩䜛ච⣽⬊ ᅜ䛛䜙⻤※䛾㐪䛖᪥ᮏᅜ⏘䝝䝏䝭䝒䛾චᶵ⬟䜈䛾 䜔⫵⤌ ⧊䜈䛾ᙳ㡪 䛜䛒䜛䛸 ᙳ㡪䛸᭷ຠᡂศ䛻䛴䛔䛶䜒◊✲䜢㛤ጞ䛧䛶䛔䜛䚹㻌 ⪃ 䛘 䜙䜜䜛䚹 ≉ 䛻⫵ 䛾ච 䐠䜰䜺䝸䜽䝇Ⲗ㻌 ⣔䛷୰ᚰⓗ䛺ᙺ䜢ᢸ䛳䛶 䜰䜺䝸䜽䝇䛿䚸Ꮫྡ䛂䜰䜺䝸䜽䝇䝤䝷䝊䜲䝮䝸䝹䠄㻭㼓㼍㼞㼕㼏㼡㼟㻌 䛔䜛⫵⬊䝬䜽䝻䝣䜯䞊䝆䛾ᶵ 㼎㼘㼍㼦㼑㼕㻌 㻹㼡㼞㼕㼘㼘䠅䛃䚸ྡ䜢䛂䜹䝽䝸䝝䝷䝍䜿䛃䛸䛔䛖㣗⏝䜻䝜䝁 ⬟䛻ᑐ 䛩䜛䝍䝞䝁ႚ↮ 䛾ᙳ 䛷䚸䝤䝷䝆䝹䛾䝢䜶䝎䞊 㡪䜢ㄪ䜉䜛䛣䛸䛿䚸⫵䛾ච 䝔ᆅ᪉䛸䜀䜜䜛㧗ᆅ䛻 ⣔䚸䜂䛔䛶䛿⏕య㜵ᚚ䜢⪃ ၏ ୍ ⮬ ⏕ 䛧 䛶 䛔 䜛䚹 䛣 䛾 䛘䜛ୖ䛷㔜せ䛷䛒䜛䚹䛭䛣䛷䚸⮬ືႚ↮⨨䜢⏝䛔䛶䚸 ᆅ䛷ᬽ䜙䛩ே䚻䛜᫇䛛䜙 䝬䜴䝇䛻୍ᐃ㔞䚸୍ᐃᮇ㛫䚸ᆒ୍䛻䝍䝞䝁↮䜢ႚ↮䛥䛫 㣗⏝䛻䛧䛶䛝䛯䜻䝜䝁䛷䛒 䛯ᚋ䚸Ẽ⟶ᨭ⫵⬊Ὑί䛻䜘䜚⫵⬊䝬䜽䝻䝣䜯䞊䝆䜢᥇ྲྀ 䜛䚹䝢䜶䝎䞊䝔ᆅ ᪉ 䛾ཎ 䛧䚸⫵⬊䝬䜽䝻䝣䜯䞊䝆䛾චᶵ⬟䛸㑇ఏᏊ䜈䛾ᙳ㡪䛚 ఫ Ẹ 䛻 䛿⏕ ά ⩦ ័ 䛾 䜘䜃ႚ↮䛾 㻸㻼㻿 ⫵⅖䜈䛾ᙳ㡪䚸䝇䜼ⰼ⢊䛻䜘䜛⫵䜈 ᝈ⪅䛜ᑡ䛺䛟㛗ᑑ⪅䛜ከ䛔䛣䛸䛛䜙◊✲䛜㐍䜑䜙䜜䚸䜰 䛾ᙳ㡪䛻䛴䛔䛶䜒◊✲䛧䛶䛔䜛䚹㻌 䜺䝸䜽䝇䛻䛿චάᛶ䛜▱䜙䜜䛶䛔䜛䚹䛧䛛䛧䚸චస⏝ 䠎䠅㻸㻼㻿 䛚䜘䜃䝇䜼ⰼ⢊䛾ึᮇචᛂ⟅䛻䛴䛔䛶㻌 䛾ᶵᵓ䛻䛴䛔䛶䛿༑ศ䛻ゎ᫂䛥䜜䛶䛔䛺䛔䛯䜑䚸䛭䛾䝯 䜾 䝷 䝮 㝜 ᛶ ⳦ ⏤ ᮶ 䛾 ෆ ẘ ⣲ 䛷 䛒 䜛 䜹䝙䝈䝮䛸᭷ຠᡂศ䛻䛴䛔䛶◊✲䛧䛶䛔䜛䚹㻌 㻸㼕㼜㼛㼜㼛㼘㼥㼟㼟㼍㼏㼏㼔㼍㼞㼕㼐㼑㻌 㻔㻸㻼㻿㻕䛿䚸ᵝ䚻䛺චάᛶ䜢᭷䛧䚸 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 䝍䝞䝁↮䜔⎔ቃ୰䛻ྵ䜎䜜䛶䛚䜚䚸྾䜔ႚ↮䛻䜘䜚⫵ 㻌 ႚ↮䛾⫵ච⣔䜈䛾ᙳ㡪䛻䛴䛔䛶䛿䚸⫵⬊䝬䜽䝻䝣䜯 䛻྾ධ䛩䜛䛣䛸䛻䜘䜚⫵⬊㡿ᇦ䛻ྲྀ䜚㎸䜎䜜䜛䚹䛭䛣䛷䚸 䞊䝆䛾ᢠཎᥦ♧ᶵ⬟䛾ᢚไ䛜ㄆ䜑䜙䜜䛯䚹䛣䛾ᢚไᶵ ᵓ䛻䛴䛔䛶䛿䚸㻭㻹 䛜䝍䝞䝁⢏Ꮚ䜢⣽⬊㉁ෆ䛻ྲྀ䜚㎸䜏䚸 smoking.” Since the fact that immune functions are ⣽⬊ෆ㒊ᵓ㐀䜢」㞧䛥䛫䚸⣽⬊⬊య䛾䝃䜲䝈䜒ቑຍ suppressed by smoking and tumor growth, we are also 䛧䚸✵⬊ኚᛶ䛜ㄆ䜑䜙䜜䚸䛭䛾⤖ᯝ䚸⣽⬊ෆ䛻ᑒධయ䜢 investigating ᙧᡂ䛧䛶䛔䜛䛣䛸䛜㟁Ꮚ㢧ᚤ㙾䛻䜘䜚☜ㄆ䛥䜜䚸䛣䛾 㻭㻹 restoration of suppressed immune functions by natural 䛾⣽⬊ෆኚ䛜䚸㻭㻹 䛾චᶵ⬟䛾ᢚไ䛻㛵ಀ䛧䛶䛔 products. 䜛䛣䛸䛜♧䛥䜜䛯䚹㻌 1: Study for tobacco smoke the mechanisms of inhibition and ኳ↛ᡂศ䛻㛵䛧䛶䛿䚸᪥ᮏᅜ⏘䝝䝏䝭䝒䛻䛿⫵⬊䝬䜽 Cigarette smoke is a major risk factor for pulmonary 䝻䝣䜯䞊䝆䜢άᛶ䛥䛫䚸ዲ୰⌫䛻ᑐ䛩䜛⛣ືᛶ䞉㉮ diseases. Cigarette tobacco smoke particles are inhaled άᛶ䛜᪂䛧䛟ㄆ䜑䜙䜜䚸䜎䛯䝆䝱䞁䜾䝹䝝䝙䞊䛻ᢠయ ⏘ into the lung and reach alveolar space, and then directly ⏕ᶵ⬟䜢ቑᙉ䛩䜛䛣䛸䛜᪂䛧䛟ㄆ䜑䜙䜜䚸⣽⳦ឤᰁ䛻᭷ encounter Alveolar Macrophages (AM). Smoking has ຠ䛷䛒䜛䛣䛸䛜♧၀䛥䜜䛯䚹䜎䛯䚸䜰䜺䝸䜽䝇Ⲗ⇕Ỉᢳฟ been shown to increase production of reactive oxygen by ᾮ䜒ዲ୰⌫䛾㐠ືᛶ䜢ஹ㐍䛧䚸⛣ື᪉ྥᛶ䜢㧗䜑䚸⛣ alveolar macrophages, which induce DNA damage in ື㏿ᗘ䜢㏿䜑䜛䛣䛸䛜ド᫂䛥䜜䛯䚹䛥䜙䛻䚸䜰䜺䝸䜽䝇䛿䚸 these cells, and it has also been demonstrated that their ᶵ⬟పୗ䛧䛯ዲ୰⌫䛾㈎㣗ᶵ⬟䜢ᅇ䛥䛫䜛䛣䛸䜒ド᫂ immune functions such as antigen presentation and 䛥䜜䚸䛣䜜䜙䛾ኳ↛ᡂศ≀㉁䛿䚸⣽⳦䜈䛾⛣ືᛶ䜢᪩䜑䚸 cytokine production are impaired. Inclusion bodies of ㈎㣗స⏝䜢㧗䜑䚸ዲ୰⌫ᶵ⬟䜢άᛶ䛧䚸⣽⳦ឤᰁ䜢 high density appeared in the cytoplasm of AM by 㜵ᚚ䛩䜛ྍ⬟ᛶ䛜♧၀䛥䜜䛯䚹㻌 cigarette smoke.. 䝇䜼ⰼ⢊㻔㻯㻶㼜㻕䛻䜘䜛⫵䛾ึᮇචᛂ⟅䛻㛵䛧䛶䛿䚸 2: Study for Natural products 䝇䜼ⰼ⢊䛾Ẽ⟶ᨭෆ ᢞ䛻䜘䜚䚸⫵ẟ⣽⾑⟶ 䛛䜙ዲ ୰ (1) Honey ⌫䛾⫵㛫㉁䚸⫵⬊⭍ 䜈䛾ὶ ධ䛜 Natural products are known to have biological activity, ㄆ䜑䜙䜜䚸ᛴᛶ⫵⅖䛜ᘬ䛝㉳䛣 and we have previously investigated the effect of natural 䛥䜜䛯䚹ዲ ୰ ⌫ 䛾⫵ 䜈 䛾ㄏ ᑟ ᶵ products on immune function. Honey contains various ᵓ䛸䛧䛶䛿䚸䝇䜼ⰼ⢊䛾 㻯㼞㼥㼖㻝 䛻 vitamins, minerals and amino acids as well as glucose ዲ ୰ ⌫ 䛻ᑐ 䛩䜛㉮ ά ᛶ 䛜䛒䜛 and fructose and is popular as a natural food. There is a 䛣䛸䛜ㄆ䜑䜙䜜䚸䜎䛯 㻯㻶㼜 䛜⫵⬊ wide variety of honey and the varieties are due to 䝬䜽䝻䝣䜯䞊䝆䛾 㼀㻸㻾㻠 䛷䛿䛺䛟 components of flower sources. Jungle honey is used as 㼀㻸㻾㻞 䜢 䛧 䛶 ่ ⃭ ᚋ 䚸 ዲ ୰ ⌫ 䛾 䜿 䝰 䜹 䜲 䞁 䛷 䛒 䜛 traditional medicine for cold, skin inflammation and 㻯㼄㻯㻸㻞 䛾⏘⏕ቑᙉ䛻䜘䜛䛣䛸䛜ゎ᫂䛥䜜䛯䚹㻌 burn wound but not only health care. JH enhanced 㻌 antibody production through the increase of CD19 㸱 㸬Research projects and annual reports positive cells and proliferation of spleen cells by We are focusing on cigarette smoke, which is currently augmentation of IL-1β and IL-6 mRNA expressions. mRNA expressions in attracting attentions as an environmental problem. The Japanese honey enhanced IL-1β World Health Organization (WHO) reports that mortality alveolar macrophage. from pulmonary diseases associated with exposure to (2) Agaricus Blazei Murill cigarette smoke including respiratory infections, chronic Agaricus blazei Murill has been traditionally used as obstructive pulmonary disease (COPD) and lung cancers, medicine in Brazil. Agaricus blazei Murill has been has increased. It has been suggested that these diseases reported for anti-tumor activity and immune activity. It is may cigarette unclear how Agaricus blazei Murill hot water extract smoke-induced impairment of the pulmonary immune be at least partially related to activates the immune system and anti-tumor activity. system. Cigarette smoke is a major risk factor for Therefore, we are focusing on the mechanism of activity pulmonary diseases. Cigarette tobacco smoke particles of immune functions in immune cells associated with are inhaled into the lung and reach alveolar space, and anti-tumor activity by Agaricus blazei Murill hot water then directly encounter Alveolar Macrophages (AM). extract and its characterization of effective component. AM plays an important role as the first line of defense in We have demonstrated that extract of Agaricus blazei immunological surveillance for the lung. In the aim of Murill activated immune functions neutrophils and our study, we are investigating macrophages in mice. “making a science for 䠐 䠊ㄽᩥ䠈ⴭ᭩䛺䛹㻌 M. Takeuchi, Y. Hirono, M. Nose, S. Inoue, K. Sasaki, K.E. 㔜ྜྷ⍛㔛,➉ෆᐇ:ࢪࣕࣥࢢࣝࣁࢽ࣮ࡼࡿᢠయ⏘⏕ᶵ⬟ Pinkerton: Cigarette smoke as environmental factor induce ࡢᙳ㡪ࡑࡢᶵᵓࡘ࠸࡚. ி㒔⏘ᴗᏛㄽ㞟 ⮬↛⛉Ꮫ inhibition of immune functions and DNA damage in alveolar ⣔ิ , 42, 21-52 macrophages. EAACI-WAO Congress, Milan, 2013.06.22-26 M. Miyagawa, Y. Hirono, A. Kawazoe, E. Shigeyoshi, M. Nose, ➉ ෆ ᐇ : 䝝䝏 䝭 䝒 䛸ච . ி 㒔 ⏘ ᴗ Ꮫ ᩍ 㣴 ㅮ ᗙ , ி 㒔 ᕷ , 2013.7.6 䠄ᣍᚅㅮ₇䠅 M. Sakura, K.E. Pinkerton, M. Takeuchi: Effect of hot water extract from agaricus blazei murill on chemotaxis of ➉ෆᐇ: 䝝䝏䝭䝒䛸ච. ி㒔⏘ᴗᏛ䝭䝒䝞䝏ㅮᗙ, ⟪㠃ᕷ, neutrophils. Journal of Cosmetics, Dermatological Sciences and Applications, 3, 12-17 2013.9.14 䠄ᣍᚅㅮ₇䠅 M. Takeuchi, Y. Hirono, M. Sakura: Cigarette smoke induces M. Sakura, Y. Chiba, E. Kamiya, A. Furukawa, N. Kawamura, M. DNA damage and inhibition of function in alveolar macrophage. Niwa, M. Takeuchi, M. Hosokawa: Spontaneous occurrence of 44th Union World Conference on Lung Health, Paris, 2013.10.30- 11.3 photoaging-like phenotypes in the dorsal skin of old SAMP1 mice, an oxidative stress model. Experimental Dermatology, 22, ➉ෆᐇ: 䝝䝏䝭䝒䛸ච. ி㒔ᗓ⚾❧୰㧗➼Ꮫᰯ⌮⛉◊ಟ, ி㒔ᕷ, 2013.11.16 䠄ᣍᚅㅮ₇䠅 62-64 Y. Hirono, A. Kawazoe, M. Nose, M. Sakura, M. Takeuchi: ➉ෆᐇ: 䝝䝏䝭䝒䛸ච. ி㒔ᗓ⋇་ᖌ⥲ྜ㒊◊ಟ, ி 㒔ᕷ, 2013.11.27 䠄ᣍᚅㅮ₇䠅 Cigarette smoke induce alteration of structure and function in alveolar macrophages. International Journal of Bioscience, ➉ෆᐇ: WOX䛾ච㈿ά䛻㛵䛩䜛ຠᯝ. QOL䝃䝫䞊䝖◊✲, Biochemistry and Bioinformatics, 3, 125-128 ᕝᓮᕷ, 2013.11.28 䠄ᣍᚅㅮ₇䠅 Y. Hirono, Y. Tanahashi, K. Sasaki, K. Konno, Y. Shirai, K. Y. Hirono, K. Sasaki, Y. Tanahashi, M. Sakura, T. Ishida, S. Inaga, Kobayashi, A. Someya, S. Inaga, M. Sakura, K.E. Pinkerton, M. M. Takeuchi: The mechanism of inhibition of apoptosis in Takeuchi: Alveolar macrophages functions and DNA damage in alveolar macrophages by cigarette smoke. ➨42ᅇ᪥ᮏචᏛ cigarette smoke-exposed mice. Journal of Advances in Bioscience and Biotechnology, 4, 1-7 Ꮫ⾡㞟, ༓ⴥᕷ, 2013.12.11-13 K. Sasaki, Y. Hirono, Y. Tanahashi, M. Sakura, T. Ishida, M. 㻌 Takeuchi: Effect of cigarette smoking on infiltration of 䠑䠊ᏛⓎ⾲䛺䛹㻌 neutrophils in LPS-induced lung inflammation. ➨42ᅇ᪥ᮏච ➉ ෆ ᐇ : ⻏ ⻤ 䛾ຠ ⬟ . ᮾ ᾏ ᆅ ༊㣴 ⻏ ◊ ✲ ⥲ , ྡ ྂ ᒇ ᕷ , 2013.1.28 䠄ᣍᚅㅮ₇䠅 ᏛᏛ⾡㞟, ༓ⴥᕷ, 2013.12.11-13 㻌 ➉ෆᐇ: 䛿䛱䜏䛴䛻䜘䜛⏕య䛾චᶵ⬟䛻ཬ䜌䛩ຠᯝ. ᒱ㜧┴ 䠒䠊䛭䛾≉グ㡯㻌 㣴 ⻏ ⤌ ྜ 㐃 ྜ タ ❧ 60 ࿘ ᖺ グ ᛕ ᘧ , ᒱ 㜧 ᕷ , 2013.2.1 䠍䠅㻌 እ㒊㈨㔠 䠄ᣍᚅㅮ₇䠅 ⛉Ꮫ◊✲㈝⿵ຓ㔠䞉ᇶ┙◊✲䠄㻯䠅㻌 ➉ෆᐇ: 䝝䝏䝭䝒䛜චᶵᵓ䛻ཬ䜌䛩ຠᯝ䛻䛴䛔䛶. ி㒔ᗓ㣴 ㄢ㢟ྡ䠖ཷືႚ↮䛻䜘䜛⫵⬊䝬䜽䝻䝣䜯䞊䝆䛾ᰁⰍయ␗ᖖ䛸 ⻏⤌ྜ⥲, ⥤㒊ᕷ, 2013.2.12 䠄ᣍᚅㅮ₇䠅 㑇ఏᏊᦆയ䜈䛾ᙳ㡪㻌 ◊✲௦⾲⪅䠖➉ෆᐇ㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻟㻙㻞㻡 ᖺ㻌 㻔㻟 ᖺ㻕㻌 Y. Hirono, A. Kawazoe, M. Nose, M. Sakura, M. Takeuchi: Cigarette smoke induce alteration of structure and function in 䠎䠅㻌 Ꮫእάື㻌 alveolar ➉ෆᐇ䠖ி㒔ᗓ⋇་ᖌி㒔ᨭ㒊㛗,㻌 ி㒔ᗓᗓẸබ㛤ᴗ macrophages. 3rd International Conference on ᥎㐍ጤဨ,㻌Pulmonology㻌 ⦅㞟ጤဨ,㻌WJR㻌 ⦅㞟ጤဨ,㻌 䛺䛹㻌 Bioscience, Biochemistry and Bioinformatics (ICBBB 2013), Rome, 2013.2.24-25 X. Li, M. Xue, H. Aaron, M. Tagmount, M. Takeuchi, E. Eisen, C. 䠏䠅㻌 䛭䛾㻌 NHK㻌 䜖䛖䛹䛝䝛䝑䝖䝽䞊䜽㻌 ㅮᖌ䛸䛧䛶ฟ₇,㻌2013.6.12 Vulpe, J. Zink, Risbud, K.E. Pinkerton: Highly mechanized 䝩䞊䝮䝨䞊䝆䜰䝗䝺䝇㻌 http://www.cc.kyoto-su.ac.jp/~mtakex/㻌 nano-structures with controlled-release targeting technology is 㻌 safe and compatible in an aerosol model for enhancing delivery. ◊✲ᐊ䝯䞁䝞䞊㻌 ATS 2013 International Conference, Philadelphia, 2013.5.17-22 M. Takeuchi, A. Kawazoe, Y. Hirono, M. Nose, S. Inaga, K.E. Pinkerton: Effect of cigarette smoke exposure on LPS-induced lung inflammation in mice. ATS 2013 International Conference, Philadelphia, 2013.5.17-22 㻌㻌 ⸆⌮Ꮫ◊✲ᐊ ຓᩍ㻌 Ჴᶫ㻌 㟹⾜㻌 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻼㼔㼍㼞㼙㼍㼏㼛㼘㼛㼓㼥㻌 Assist Prof. Yasuyuki Tanahashi, D.V.M., Ph. D.㻌 㻌 㻌 䠍䠊◊✲ᴫせ㻌 ↮䛻䜘䜚Ẽ⟶ᨭᖹ➽䛾⦰㐣ᩄ䛜ច㉳䛥䜜䚸䛭䛾⤖ 㻌 ᙜ◊✲ᐊ䛷䛿䚸䛻௨ୗ䛾䝔䞊䝬䛻䛴䛔䛶◊✲䜢⾜ ᯝ㉳䛣䜛Ẽ㐨䛾⊃✽䛜ཎᅉ䛾୍䛴䛸䛧䛶ᥦၐ䛥䜜䛶䛔䜛䚹 䛳䛶䛔䜛䚹㻌 䛧䛛䛧䚸ႚ↮䛜䛹䛾䜘䛖䛺䝯䜹䝙䝈䝮䛻䜘䜚Ẽ⟶ᨭᖹ➽ 䠄䠍䠅⭠⟶䛾㐠ືㄪ⠇ᶵᵓ㻌 䛾⦰㐣ᩄ䜢ᘬ䛝㉳䛣䛩䛾䛛䛻䛴䛔䛶䛿䚸䛔䜎䛰༑ศ䛻 㻌 ⭠⟶䛾㐠ື䛿䝁䝸䞁సືᛶ⚄⤒䛛䜙ᨺฟ䛥䜜䜛䜰䝉䝏 ᫂䜙䛛䛻䛥䜜䛶䛔䛺䛔䚹䛭䛣䛷䚸ᮏ◊✲䛷䛿䚸⮬ືႚ↮ 䝹䝁䝸䞁䛸䛭䛾ཷᐜయ䛷䛒䜛䝮䝇䜹䝸䞁ཷᐜయ䛻䜘䛳䛶⯆ ⨨䠄㻲㼕㼓㼡㼞㼑㻌 㻞䠅䜢⏝䛔䚸䝬䜴䝇䛻䝍䝞䝁↮䜢ᭀ㟢䛩䜛䛣䛸 ዧᛶ䛻ㄪ⠇䛥䜜䛶䛔䜛䚹䝮䝇䜹䝸䞁ཷᐜయ䛻䛿䚸䛣䜜䜎䛷 䛻䜘䜚స〇䛧䛯ႚ↮䝰䝕䝹䝬䜴 䛻䠩 䠍 䛛䜙䠩 䠑 䜎䛷䛾䠑䛴䛾䝃䝤䝍䜲䝥䛜ྠᐃ䛥䜜䛶䛚䜚䚸 䝇䜢⏝ 䛔䚸ୖ グ 䛾ᮍ ゎ Ỵ ၥ 㢟 䛣䛾䛖䛱䚸⭠⟶ᖹ➽⣽⬊䛻䛿䠩 䠎 䛸䠩 䠏 䝃䝤䝍䜲䝥䛜Ꮡ 䛻ྲྀ䜚⤌䜣䛷䛔䜛䚹ᮏ◊✲䛻䜘 ᅾ䛧䛶䛔䜛䚹䝁䝸䞁సືᛶ⚄⤒䛛䜙ᨺฟ䛥䜜䛯䜰䝉䝏䝹䝁 䜚ᚓ䜙䜜䜛ሗ䛿䚸ႚ↮ 䛻䜘䛳 䝸䞁䛜䛣䜜䜙䛾䝮䝇䜹䝸䞁ཷᐜయ䜢่⃭䛩䜛䛸䚸ᖹ➽⣽ 䛶ᘬ䛝㉳䛣䛥䜜䜛 㻯㻻㻼㻰 䛚䜘䜃 㻞㻗 ⬊ෆ䛾 㻯㼍 ⃰ᗘ䛜ቑຍ䛧䚸᭱⤊ⓗ䛻➽䛿⦰䛩䜛䚹䜎䛯䚸 ႍᜥ䛾ែゎ᫂䜔⒪⸆䛾 ㏆ᖺ䚸⭠⟶䛾⚄⤒ྀ䛻Ꮡᅾ䛩䜛䜹䝝䞊䝹⣽⬊䠄㻵㻯㻯䠅䛸 㛤Ⓨ䛻䛚䛔䛶ከ䛟䛾ᇶ♏ ሗ 䜀䜜䜛㛫㉁⣽⬊䛻䜒䝮䝇䜹䝸䞁ཷᐜయ䛜Ꮡᅾ䛧䛶䛚䜚䚸 䜢ᥦ౪䛩䜛䛣䛸䛜䛷䛝䜛䚹䛣䛾◊ ⭠⟶ 䛾㐠ື ㄪ⠇ 䛻㔜せ 䛺ᙺ 䜢ᯝ䛯䛧䛶䛔䜛䛣䛸䛜♧ ✲䛿䚸ி㒔⏘ᴗᏛච⌮ ၀䛥䜜䛶䛔䜛䠄㻲㼕㼓㼡㼞㼑㻌 䠍䠅䚹䛧䛛䛧䚸䝁䝸䞁సືᛶ⚄⤒䛻䜘 Ꮫ ◊ ✲ ᐊ 䛸䛾ඹ ྠ ◊ ✲ 䛸 䛧䛶 䜛⭠⟶䛾㐠ືㄪ⠇䛻䛚䛔䛶䚸䠩 䠎 䚸䠩 䠏 䝃䝤䝍䜲䝥䜔䜹䝝 ⾜䛳䛶䛔䜛䚹㻌 䞊䝹⣽⬊䛜䛭䜜䛮䜜䛹䛾䜘䛖䛺ᙺ䜢ᯝ䛯䛧䛶䛔䜛䛾䛛 㻌 ➼䛾ヲ⣽䛺䝯䜹䝙䝈䝮䛻䛴䛔䛶䛿᫂䜙䛛䛻䛥䜜䛶䛔䛺䛔䚹 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 Figure 2. Hamburg II smoking machine 䛭䛣䛷䚸ᮏ◊✲䛷䛿䚸䠩䠎 䜎䛯䛿䠩 䠏 䝃䝤䝍䜲䝥䜢Ḟᦆ䛧䛯 㻌 䠄䠍䠅⭠⟶䛾㐠ືㄪ⠇ᶵᵓ㻌 䝬䜴䝇䜔䜹䝝䞊䝹⣽⬊䜢Ḟᦆ䛧䛯䝬䜴䝇䜢⏝䛔䛶䚸ୖグ 㻌 㻌 䝁䝸䞁సືᛶ⚄⤒䛻䜘䜛ᑠ⭠⽸ື㐠ື䛾Ⓨ⌧䛻䛿䚸 䛾ᮍゎỴၥ㢟䛻ྲྀ䜚⤌䜣䛷䛔䜛䚹㻌 㻹 䠎 䝃䝤䝍䜲䝥䛜㔜せ䛷䛒䜚䚸㻹 䠏 䝃䝤䝍䜲䝥䛚䜘䜃䜹䝝䞊 䝹⣽⬊䛿䚸䜐䛧䜝Ⓨ⏕䛧䛯⽸ື㐠ື䛾つ๎ᛶ䜢ㄪ⠇䛩 䜛ᙺ䜢ᢸ䛳䛶䛔䜛䛣䛸䜢᫂䜙䛛䛻䛧䛯䚹䜎䛯䚸ᑠ⭠䛻䛚 䛡䜛䝁䝸䞁సືᛶ⚄⤒䛸⦪㉮ᖹ➽⣽⬊㛫䛾⚄⤒➽ఏ 㐩䛻䛿䚸㻹䠎 䛸 㻹䠏 ୧䝃䝤䝍䜲䝥䛾่⃭䛜㔜せ䛷䛒䜚䚸᭦䛻 㻵㻯㻯 䛜㛵䛧䛶䛔䜛䛣䛸䜢᫂䜙䛛䛻䛧䛯䚹䜎䛯䚸ᑠ⭠ᖹ ➽䛻Ⓨ⌧䛩䜛 㻭㼀㻼 ឤཷᛶ 㻷㻗 䝏䝱䝛䝹䠄㻷㻭㼀㻼 䝏䝱䝛䝹䠅䛾 ⸆⌮Ꮫⓗᛶ㉁䜢᫂䜙䛛䛻䛩䜛୍⎔䛸䛧䛶䚸㔝⏕ᆺ䝬䜴䝇 䛾ᑠ⭠ᖹ➽⣽⬊ᶆᮏ䛻䛚䛔䛶䚸ྛ✀ 㻷㻭㼀㻼 䝏䝱䝛䝹㛤 ཱྀ⸆䛻䜘䜚ㄏⓎ䛥䜜䜛 㻷㻭㼀㻼 䝏䝱䝛䝹㟁ὶ䜢グ㘓䛧䚸ྛ㛤 ཱྀ⸆䛾䠑䠌䠂᭷ຠ⃰ᗘ䠄㻱㻯㻡㻜 ್䠅䜢Ỵᐃ䛧䛯䚹㻌 䠄䠎䠅ႚ↮䛻䜘䜛Ẽ⟶ᨭᖹ➽⦰ᶵ⬟䜈䛾ᙳ㡪㻌 Figure 1. Regulation of gut motility by cholinergic nerves 㻌 䝍䝞䝁↮䜢ᭀ㟢䛧䛯䝬䜴䝇䛛䜙స〇䛧䛯Ẽ⟶ᨭᖹ➽䝸 䞁䜾ᶆᮏ䛻䛚䛔䛶䚸㧗⃰ᗘ 㻷㻗 ⁐ᾮ䜢㐺⏝䛧䛯䛻⏕䛪 䠄䠎䠅ႚ↮䛻䜘䜛Ẽ⟶ᨭᖹ➽⦰ᶵ⬟䜈䛾ᙳ㡪㻌 䜛⦰ᛂ䜢グ㘓䛧䚸㠀ႚ↮䝬䜴䝇䛾䜒䛾䛸ẚ㍑䞉ゎᯒ䛧 㻌 ୡ⏺ಖᶵ㛵䠄㼃㻴㻻䠅䛾ሗ࿌䛻䜘䜛䛸䚸ୡ⏺䛻䛚䛡 䛯䚹ႚ↮䝬䜴䝇䛾ᶆᮏ䛷䛿䚸㠀ႚ↮䝬䜴䝇䛸ྠᵝ䚸㧗⃰ 䜛ႚ↮⪅䛾ྜ䛿⥲ேཱྀ䛾䠎䠎䠂䛻䜒ཬ䜃䚸ẖᖺ䚸⣙䠒䠌 ᗘ 㻷㻗 ⁐ᾮ䛻䜘䜚୍㐣ᛶ䛾⦰ᛂ䛜⏕䛨䛯䚹⦰ᛂ 䠌ே䜒䛾ே䛜䝍䝞䝁↮䛾ᭀ㟢䛻㛵㐃䛧䛯ཎᅉ䛻䜘䜚Ṛ 䛾䛝䛥䛻䛴䛔䛶䛿䚸୧⩌㛫䛻䛚䛔䛶ᕪ䛿ㄆ䜑䜙䜜䛺䛛 ஸ䛧䛶䛔䜛䚹ႚ↮䛿៏ᛶ㛢ሰ ᛶ⫵ᝈ䠄㻯㻻㻼㻰䠅䛚䜘䜃 䛳䛯䛜䚸ႚ↮䝬䜴䝇䛷䛿䚸⸆≀䜢㐺⏝䛧䛶䛛䜙᭱ᛂ ႍᜥ䛺䛹䛾䝸䝇䜽ᅉᏊ䛸䛧䛶ᗈ䛟▱䜙䜜䛶䛔䜛䚹䛣䜜䛿䚸ႚ 䛻⮳䜛䜎䛷䛾㛫䛜᭷ព䛻ῶᑡ䛧䛶䛔䛯䚹䛣䜜䜙䛾⤖ᯝ 䛿䚸ႚ↮䛻䜘䜚Ẽ⟶ᨭᖹ➽䛾⬺ศᴟ䛻ᑐ䛩䜛ឤཷᛶ The World Health Organization (WHO) reported that 䛜ቑᙉ䛥䜜䜛䛣䛸䜢♧၀䛧䛶䛔䜛䚹㻌 22 % of the world's population aged over 15 are smokers, 㻌 and nearly 6 million people die from exposure to 㸱㸬Research projects and annual reports cigarette smoke each year. It is well known that cigarette It is well known that the motility of gastrointestinal smoke is an important factor for chronic obstructive tract is regulated by acetylcholine (ACh) released from pulmonary disease (COPD) and asthma. It has been cholinergic nerves, act on the muscarinic suggested that cigarette smoke exposure can cause receptors. The receptors have been classified into five airway hyperreactivity, which is involved in airway subtypes including M1, M 2, M 3, M 4 and M 5. In narrowing in patients with the diseases. However, little is gastrointestinal known which smooth muscles, two subtypes of about underlying mechanisms of the muscarinic receptor, M2 and M 3, are found with no hyperreactivity induced by cigarette smoke. Therefore, measurable quantities of other subtypes. As shown in we are addressing the above issue using the mice which Figure 1, stimulation of M2 and M 3 receptors by ACh are exposed to cigarette smoke. Our studies may provide 2+ increases in the intracellular concentration of Ca , useful information to elucidate the pathophysiological resulting in the smooth muscle contractions. Recently, it conditions of COPD and asthma induced by cigarette has been suggested that interstitial cells of Cajal (ICC), smoking, leading to development of a novel effective which exist in the myenteric and deep muscular plexus medicine for the diseases. In this study, we collaborated and express muscarinic receptors, are involved in the with Laboratory of Immunopathology in Kyoto Sangyo regulation of gut motility. However, roles of M2 and M 3 University. receptors and ICC in regulating the gut motility by ACh In this year, we recorded High K+-induced contractions remain to be elucidated in detail. Therefore, we are in bronchial muscle ring preparations from the mice addressing the above issue using the M2 and/or M3 which were exposed to cigarette smoke (CS mice) and muscarinic receptor knockout (KO) mice and ICC compared data from the CS mice with data from the deficient mice. control mice which were exposed to the air instead of (1) Mechanisms of gastrointestinal motility. cigarette We investigated roles of M2 and M 3 muscarinic receptor smoke. In preparations application of high K + from CS mice, solution induced a phasic subtypes and ICC in the regulation of the peristalsis in contraction as seen in control mice. Although the small intestine. Our results show that M 2 receptors play magnitude of the contractions was not obviously an essential role in the generation of the peristalsis, and different from that in preparations from control mice, the that M 3 receptors have rather a modulatory role in contractions reached a peak more quickly in CS controlling periodicity of the peristaltic activity together preparations than those in control preparations. These with the ICC. We also investigated roles of M2 and M 3 results suggested that exposure to cigarette smoke can muscarinic receptor subtypes and ICC in cholinergic induce hyperresponsiveness to depolarization in neuromuscular transmission in ileal longitudinal smooth bronchial smooth muscles. muscles. Our results suggested that both M 2 and M 3 㻌 receptors are involved in cholinergic neuromuscular 䠐䠊ㄽᩥ䠈ⴭ᭩䛺䛹㻌 transmission H. Matsuyama, Y. Tanahashi, T. Kitazawa, M. Yamada, S. together with ICC. In addition, to characterize pharmacological properties of ATP sensitive Komori, T. Unno: Evidence for M 2 and M 3 muscarinic receptor K+ (K ATP) channels expressed in the intestinal smooth involvement in cholinergic excitatory junction potentials muscles, we recorded the current through K ATP channels through synergistic activation of cation channels in the induced by several selective K ATP channel openers in longitudinal muscle of mouse ileum. J. Pharmacol. Sci. 121(3), small intestinal smooth muscle cells from wild type mice and determined the 50 % effective concentration values 227-236 Y. Hirono, Y. Tanahashi, K. Sasaki, K. Konno, Y. Shirai, K. (EC50) of the openers. Kobayashi, A. Someya, S. Inaga, M. Sakura, K. E. Pinkerton, (2) Effects of cigarette smoke exposure on contractility M. Takeuchi: Alveolar macrophage functions and DNA damage of bronchial smooth muscles in cigarette smoke-exposed mice. Adv. Biosci. Biotechnol. 4, alveolar macrophages by cigarette smoke. ➨42ᅇ᪥ᮏචᏛ 1-7 Ꮫ⾡㞟䠈༓ⴥᕷ䠈2013.12.11-13 Y. Tanahashi, N. Waki, T. Unno, H. Matsuyama, S. Iino, T. Kitazawa, M. Yamada, S. Komori: Roles of M 2 and M3 䠒䠊䛭䛾≉グ㡯㻌 muscarinic receptors in the generation of rhythmic motor 䠍䠅㻌 እ㒊㈨㔠 activity in mouse small intestine. Neurogastroenterol. Motil. 25, Ꮫ⾡◊✲ຓᡂᇶ㔠䞉ⱝᡭ◊✲䠄㻮䠅㻌 ㄢ㢟ྡ䠖䝮䝇䜹䝸䞁ཷᐜయ䛾⭠⟶㐠ືไᚚ䛻䛚䛡䜛 㻭㼀㻼 ឤཷ e687–e697 ᛶ䠧䝏䝱䝛䝹䛾ᙺ䛸䛭䛾ศᏊᐇែ㻌 Y. Tanahashi, Y. Ichimura, K. Kimura, H. Matsuyama, S. Iino, S. ◊✲௦⾲⪅䠖Ჴᶫ㟹⾜㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻡㻙㻞㻣 ᖺ㻌 㻔㻟 ᖺ㻕㻌 Komori, T. Unno: Cholinergic neuromuscular transmission mediated by interstitial cells of Cajal in the myenteric layer in mouse ileal longitudinal smooth ி㒔⏘ᴗᏛ㻌 ≉ᐃㄢ㢟◊✲㻌 ㄢ㢟ྡ䠖ႚ↮䛻䜘䜛Ẽ⟶ᨭᖹ➽䛾⦰㐣ᩄᛶ䛻ᑐ䛩䜛⸆ muscles. Naunyn-Schmiedeberg's Arch. Pharmacol. in press DOI ⌮䞉චᏛⓗ◊✲㻌 10.1007/s00210-013-0944-2 ◊✲௦⾲⪅䠖Ჴᶫ㟹⾜㻘㻌 ྲྀᚓᖺᗘ䠖㻴㻞㻠㻙㻞㻡 ᖺ㻌 㻔㻞 ᖺ㻕㻌 Ჴᶫ㟹⾜䚸ᾏ㔝ᖺᘯ䚸ᯇᒣຬே䚸⃝ከ႐㞝䚸ᑠ᳃ᡂ୍: 䝬䜴 䝇ᑠ⭠ᖹ➽䛾䝮䝇䜹䝸䞁సືᛶ ⦰ㄪ⠇ᶵᵓ䛻䛚䛡䜛ATP 䠎䠅㻌 䛭䛾㻌 㻌 ᢸᙜㅮ⩏䠖ື≀་⛉Ꮫᴫㄽ䚸Ꮫ㏻ㄽ 㻭䚸Ꮫ㏻ㄽ 㻮䚸ᇶ♏ + ឤ ཷ ᛶ K 䝏䝱䝛䝹䛾ᙺ 䛸䛭䛾 ሗ ఏ㐩 ᶵ ᵓ. ᪥ ᮏ ែ ⏕ Ꮫ䊠䚸ᇶ♏Ꮫ䊡䚸⸆⌮Ꮫ䞉ẘᛶᏛ䚸ᐇ㦂ື≀Ꮫ䞉ẘᛶ ⌮Ꮫ㞧ㄅ䚸22䠄䠄 3䠅䚸36-38 Ꮫᐇ⩦䚸ᇶ♏≉ู◊✲㻌 Ჴᶫ㟹⾜䚸➉ෆᐇ: 䝬䜴䝇Ẽ⟶ᖹ➽ᶆᮏ䛻䛚䛡䜛ᙇຊ ᐃἲ 㻌 䛾㛤Ⓨ. ி㒔⏘ᴗᏛ⥲ྜᏛ⾡◊✲ᡤᡤሗ䚸8䚸131-136 ᒸ⏣ᆅ䚸ᘅ㔝⏤㔛Ꮚ䚸⏣୰⨾Ꮚ䚸బ䚻ᮌ୍㤿䚸Ჴᶫ㟹⾜䚸㧗 ᶫ⣧୍䚸బṇ᫂䚸➉ෆᐇ䠖㻌 ᪥ᮏᅜ⏘䝝䝏䝭䝒䛻䜘䜛⫵⬊䝬䜽 䝻䝣䜯䞊䝆䛾චᶵ ⬟䛻ཬ䜌䛩ᙳ 㡪 㻚 ி㒔 ⏘ᴗ Ꮫඛ➃ ⛉ Ꮫᢏ⾡ᡤᡤሗ䚸㻝㻞䚸㻟㻟㻙㻠㻠㻌 㻌 䠑䠊ᏛⓎ⾲䛺䛹㻌 Y. Tanahashi, T Unno, H. Matsuyama, T. Kitazawa, M. Yamada, J. Wess, S. Komori䠖 Muscarinic regulation of ATP sensitive K+ channels in mouse ileal smooth muscles. ➨86ᅇ᪥ᮏ⸆⌮Ꮫ ᖺ䠈⚟ᒸᕷ䠈2013.3.21-23 T. Unno, T. Katsurada, H. Matsuyama, Y. Tanahashi, T. Kitazawa, M. Yamada, J. Wess, S. Komori: Involvement of M 2 or M 3 muscarinic receptor-coupled signalling molecules in the activation of muscarinic cation channels in mouse ileal smooth muscle cells. ➨ 86 ᅇ ᪥ ᮏ ⸆ ⌮ Ꮫ ᖺ 䠈 ⚟ ᒸ ᕷ 䠈 2013.3.21-23 Ჴᶫ㟹⾜䚸ᾏ㔝ᖺᘯ䚸ᯇᒣຬே䚸⃝ከ႐㞝䚸ᑠ᳃ᡂ୍䠖䝬䜴䝇 ᑠ⭠ᖹ➽䛾䝮䝇䜹䝸䞁సືᛶ⦰ㄪ⠇ᶵᵓ䛻䛚䛡䜛ATPឤ ཷᛶ K+ 䝏䝱䝛䝹䛾ᙺ䛸䛭䛾ሗఏ㐩ᶵᵓ 䚸➨䠎䠏ᅇ᪥ᮏ ែ ⏕ ⌮ Ꮫ 䝃䝔䝷䜲䝖䝉䝭䝘䞊䠃䝕䜱䝇䜹䝑䝅䝵䞁䠈ᮾ ி 䠈 2013.8.2-4䠄ᣍᚅㅮ₇䠅 K. Sasaki, Y. Hirono, Y. Tanahashi, M. Sakura, T. Ishida, M. Takeuchi: Effect of cigarette smoking on infiltration of neutrophils in LPS-induced lung inflammation. ➨42ᅇ᪥ᮏච ᏛᏛ⾡㞟䠈༓ⴥᕷ䠈2013.12.11-13 Y. Hirono, K. Sasaki, Y. Tanahashi, M. Sakura, T. Ishida, S. Inaga, M. Takeuchi: The mechanism of inhibition of apoptosis in ⸆⌮Ꮫ◊✲ᐊ䝯䞁䝞䞊㻌 ಎᢎ㩷 ㊁㩷 ૫એ ∛ේᓸ↢‛ቇ⎇ⓥቶ㩷 Laboratory of Virology㩷 Associate Prof. Yoshii Nishino, DVM, Ph.D 䋱䋮⎇ⓥⷐ㩷 㩷 ⑳㆐䈲ᄙ䈒䈱ᓸ↢‛䈮࿐䉁䉏䈩↢䈐䈩䈇䉎䇯䉡䉟䊦䉴 㪋䋩䊗䊦䊅∛⊒∝䈮㑐ਈ䈜䉎ኋਥ࿃ሶ䈫ⅣႺ࿃ሶ䈮䈧䈇 䈲ᓸ↢‛䈱৻ຬ䈪䈅䉎䈏䇮⥄Ꮖⶄ䈱䈢䉄䈮ᔅⷐ䈭ᦨ ዊ㒢ᐲ䈱ㆮવሶ䈚䈎ᜬ䈢䈭䈇䈢䉄䇮േ‛䉇ᬀ‛䈮ነ↢ 䈩㩷 㪌䋩䉡䉟䊦䉴Ⱞ⊕⾰䈱⚦⢩ౝዪᯏ᭴䈫∛ේᕈ䈫䈱㑐ㅪ 䈚䇮ኋਥ⚦⢩ౝ䈱ዊེቭ䉕୫䈚䈩Ⴧᱺ䈜䉎䇯䈠䈱⚿ᨐ䇮 ᕈ䈮䈧䈇䈩㩷 ነ↢䈚䈢⚦⢩䈱⎕უ䇮⚦⢩ᯏ⢻䈱㓚ኂ䈫䈇䈦䈢⋥ធ⊛ 㪍䋩ኅ⇓䊶䊕䉾䊃䈮䈍䈔䉎䊗䊦䊅∛䉡䉟䊦䉴ᗵᨴ∉ቇ⺞ᩏ㩷 䈭㓚ኂ䇮䈅䉎䈇䈲䉡䉟䊦䉴᛫ේ䉕⊒䈚䈢ᗵᨴ⚦⢩䈏ኋ 㪎䋩᛫䉡䉟䊦䉴ᵴᕈ‛⾰䈱⸃ᨆ㩷 ਥ∉ᔕ╵䈎䉌䇸⇣‛䇹䈫⼂䈘䉏䈩ឃ㒰䈘䉏䉰䉟䊃䉦䉟 㩷 䊮╬䈱ᶧᕈ࿃ሶ䈱↥↢䈏⺃ ዉ䈘䉏䉎䈫䈇䈦䈢㑆ធ⊛䈭 䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ㩷 㓚ኂ䉕ᒁ䈐䈖䈜䇯䈖䈱䉋䈉䈭ᗵᨴ䈮䈍䈔䉎᭽䇱䈭 㩷 䇸᧲੩ㄭ㇠䈱䉟䉣䊈䉮䈮䈍䈔䉎䊗䊦䊅∛䉡䉟䊦䉴ᗵᨴ∉ ᓇ㗀䇮䈇䉒䉉䉎∛᳇䉕䈖䈜䈱䈪䈅䉎䇯⑳㆐䈱⎇ⓥቶ䈪 ቇ⺞ᩏ䇹 䈲䇮േ‛䈅䉎䈇䈲ੱㅢ䈱䉡䉟䊦䉴ᗵᨴ∝䇮․䈮⚻ 䊗䊦䊅∛ 䉡䉟䊦䉴䋨BDV䋩䈲䊈䉮䈮ᗵ ᨴ 䈜䉎䈫 ⚻ ∝ 䉡䉟䊦䉴∝䈮⥝䈏䈅䉎䇯䈭䈟䈭䉌䇮ਛᨔ⚻♽䉕ᅢ䉃 ⁁䉕ᒁ䈐䈖䈜䇯⑳㆐䈲䇮᧲੩ㄭ㇠ၞ䈱ⶄᢙ䈱േ‛ 䉡䉟䊦䉴䈲∉ᔕ╵䉕⺃ዉ 䈚䈮䈒䈒䇮䉁䈢ⴊᶧ⣖㑐㐷䈱 ∛㒮䈮᧪㒮䈚䈢 199 䈱䉟䉣䊈䉮䈮䈍䈇䈩 BDV ᗵᨴ⺞ ሽ䈮䉋䉍ઁ䈱⤳ེ䈮Ყ䈼ലᨐ⊛䈭ൻቇ≮ᴺ䈏㒢䉌 ᩏ䉕ⴕ䈦䈢䇯 䉏䉎䈖䈫䈎䉌ᴦ≮ᴺ䈏࿎㔍䈭႐ว䈏ᄙ䈒䇮␠ળ⊛䈮䈠䈱 GST-BDVp24 䈅䉎䈇䈲㵥p40 ᛫ේ䈮ኻ䈜䉎ⴊẏ᛫䈏 ⸃䈏ᦸ䉁䉏䈩䈇䉎䈎䉌䈪䈅䉎䇯㩷 䉡䉣䉴䉺䊮䊑䊨䉾䊃ᴺ䈮䉋䉍ᬌ䈘䉏䈢႐ว䉕᛫㓁ᕈ䈫 㩷 ⑳㆐䈲䇮䇸䉡䉟䊦䉴ᕈ⚻䊶♖⚻∔ᖚ䇹䉕⎇ⓥ䈜䉎 ⸻ᢿ䈚䇮BDV 䈮ᗵᨴ䈚䈢䋨ጁᱧ䈏䈅䉎䋩䈫್ቯ䈚䈢䇯 䈢䉄䈮䇮䊗䊦䊅∛䉡䉟䊦䉴䋨BDV䋩ᗵᨴ䈮䉋䉍ᒁ䈐䈖䈘䉏 䉎䊗䊦䊅∛䈮ὶὐ䉕⛉䉍⎇ⓥ䉕ⴕ䈦䈩䈐䈢䇯䊗䊦䊅∛䈲 䉡䊙䉇䊍䉿䉳䈮ᜬ⛯⊛䈮ᗵᨴ䈚䇮ᤨ䈮⥌ᱫ⊛䈭⚻∔ᖚ 䉕ᒁ䈐䈖䈜∛᳇䈫䈚䈩 100 ᐕએ೨䈎䉌⍮䉌䉏䈩䈇䈢䇯 ᦨㄭ䈪䈲䇮䊈䉮䇮䉟䊇䇮䉝䊤䉟䉫䊙䇮㠽㘃䇮䊆䊖䊮䉱䊦䇮䈘䉌 䈮䊍䊃䉕 䉃ᐢ 䈇᷷ ⴊ േ ‛ 䈮ᗵ ᨴ 䈏 䉄䉌䉏䉎ᣂ⥝ ᗵᨴ∝䈫䈚䈩⼂䈘䉏䈩䈇䉎䇯䈚䈎䈚䈭䈏䉌䇮䈇䉁䈣∛᳇ 䈱⊒∝䊜䉦䊆䉵䊛䈲లಽ䈮⸃䈘䉏䈩䈇䈭䈇䇯䉁䈢䇮䊍䊃 䉕䉃䈾䈫䉖䈬䈱േ‛䈮䈍䈇䈩ਥ䈢䉎વ⚻〝䈲䉌䈎 䈪䈲䈭䈇䇯․䈮䊍䊃䈪䈲∛ේᕈ䈜䉌䉌䈎䈮䈘䉏䈩䈇䈭䈇䇯 ⑳㆐䈲䇮BDV 䈱ᜬ⛯ᗵᨴᕈ䈫∛ේᕈ䉕ᄙⷺ⊛䈮⸃ᨆ䈜 䉎⋡⊛䈪䇮䊤䉾䊃䉇䊙䉡䉴╬䈱ᗵᨴ䊝䊂䊦േ‛䈮䈍䈔䉎 ∛ᘒ䋨ㆇേ㓚ኂ䈫ⴕേቇ⊛⇣Ᏹ䋩䈱⸃ᨆ䈫䇮㊁ᄖ䈱േ‛ 䈮䈍䈔䉎ᗵᨴ∉ቇ⺞ᩏ䉕ਛᔃ䈮એਅ䈱䉋䈉䈭ὐ䈮䈧䈇 䈩⎇ⓥ䉕ⴕ䈦䈩䈇䉎䇯 1䋩䉡䉟䊦䉴䉭䊉䊛䈮䈍䈔䉎∛ේᕈ㑐ㅪㆮવሶ䈱หቯ䈫䇮 䊤䉾䊃䈍䉋䈶䊙䉡䉴䈮䈍䈔䉎∛ᘒ䈱䉡䉟䊦䉴ቇ⊛䇮∛ℂ ቇ⊛䇮ⴕേቇ⊛⸃ᨆ 2䋩⣖䊶⚻♽⚦⢩䈮䈍䈔䉎 TGF-β 㑐ㅪㆮવሶ䈱⊒䈫 䉡䉟䊦䉴∛ේᕈ䈫䈱㑐ㅪᕈ䈮䈧䈇䈩 3䋩䉡䉟䊦䉴䈏ኋਥേ‛䈮㚔ൻ䈜䉎㓙䈱䉡䉟䊦䉴䉭䊉䊛䈱 ᄌ⇣ᯏ᭴䈮䈧䈇䈩 䈠䈱⚿ᨐ䇮53 䋨27.1䋦䋩䈱䉟䉣䊈䉮䈮䈍䈇䈩䇮BDV 㥲⮮ᢅਯ䇮㊁૫એ䋮䉴䊃䊧䉴ᕈ⣖ᯏ⢻㓚ኂ䈮䈍䈔䉎䉡䉟䊦䉴 ․⇣᛫䈏ᬌ䈘䉏䈢䇯⥝ᷓ䈇䈖䈫䈮䇮᛫㓁ᕈ䈫⸻ ᜬ⛯ᗵᨴ䈱ᓇ㗀䋮੩ ੩ ㇺ↥ᬺᄢቇ✚วቇⴚ⎇ⓥᚲᚲႎ䋮 ᢿ䈘䉏䈢䉟䉣䊈䉮䈱ഀว䈲䇮ஜᐽ⟲䋨29.8䋦䋩䇮⚻∝⁁ 12:93-99. 2013 䉕䉒䈭䈇∔ᖚ⟲(22.2䋦)䇮⚻∔ᖚ⟲䋨33.3䋦䋩䈱 3 ⟲ 㑆䈪ᗧᏅ䈏䈭䈎䈦䈢䇯䉁䈢䇮BDV ․⇣᛫䈲 1 ᱦᧂ 㩷 ḩ䈱䉟䉣䊈䉮䈮䈍䈇䈩䉅䉄䉌䉏䈢䇯᛫㓁ᕈ₸䈲䇮ᕈ 䋵䋮ቇળ⊒䈭䈬㩷 䇮ᐕ㦂⟲䇮䈠䈚䈩ណ᧚䈚䈢ቄ▵㑆䈪ᗧᏅ䈲䉄䉌䉏 㥲⮮㩷 ᢅਯ䇮ᏒᎹ㩷 䉂䈭䉂䇮ዊ㊁㩷 㓉䇮㊁㩷 ૫એ䋺⣖䈮䈍䈔䉎 䈭䈎䈦䈢䇯 Timmᨴ⦡ᴺ䈱ౣᬌ⸛䇯╙156࿁ᣣᧄකቇળ㩷 2013.9.20䋨ጘ 㒂Ꮢ䋩 એ䈱⚿ᨐ䈎䉌䇮BDV 䈏⥄ὼᗵᨴ䈚䈢䊈䉮䈏䊗䊦䊅 ∛䉕⊒∝䈜䉎䈮䈲䇮䈘䉌䈮䉌䈎䈱ⷐ࿃䈏ᔅⷐ䈪䈅䉐䈉䈖 㩷 䈫䇮䈠䈚䈩 BDV 䈲䊈䉮䈮䈍䈇䈩ု⋥વ䈚䈩䈇䉎น⢻ᕈ 䋶䋮䈠䈱ઁ․⸥㗄㩷 䈏␜ໂ䈘䉏䈢䇯 䋱䋩㩷 ᄖㇱ⾗㊄ 㩷 ⑼ቇ⎇ⓥ⾌ഥ㊄䊶ၮ⋚⎇ⓥ䋨C䋩 ⺖㗴ฬ䋺䉡䉟䊦䉴ᕈ⚻∔ᖚ䈮ᓇ㗀䉕䈿䈜ኋਥⷐ࿃䈫Ⅳ 㧟㧚Research projects and annual reports Borna disease virus (BDV) infection Ⴚⷐ࿃ causes ⎇ⓥઍ⠪䋺㊁૫એ㪃㩷 ขᓧᐕᐲ䋺㪟㪉㪌㪄㪉㪎 ᐕ㩷 㩿㪊 ᐕ㪀㩷 neurological disease in cats. Here we report BDV infection on 199 hospitalized domestic cats in Tokyo ੩ㇺ↥ᬺᄢቇ㩷 䇸․ቯ⺖㗴⎇ⓥ䇹㩷 㩷 area. BDV infection was evaluated by detection of ⺖㗴ฬ㩷 䋺䉴䊃䊧䉴ᕈ⣖ᯏ⢻㓚ኂ䈮䈍䈔䉎䉡䉟䊦䉴ᜬ⛯ᗵᨴ䈱 plasma antibody against BDV-p24 or -p40. BDV-specific ᓇ㗀㩷 㩷 antibodies ⎇ⓥಽᜂ⠪㧦㊁૫એ㧔⎇ⓥઍ⠪䋺㩷 㥲⮮ᢅਯ䋩䇮ขᓧᐕ were detected in 54 cats (27.1%). ᐲ㧦* ᐕ 㧞ᐕ Interestingly, the percentage of seropositive cats was not significantly different among three clinical groups, i.e., 䋲䋩㩷 ⍮⽷ᮭ╬㩷 㩷 healthy (29.8%), neurologically asymptomatic disease ․ޣ㗿⇟ภ䇽㩷 ․㗿 㪉㪇㪈㪊㪄㪈㪈㪇㪏㪋㪐㩷 䇼ฬ⒓䇽㩷 䉡䉟䊦䉴ਇᵴൻ䇮᛫⩶䇮䉡䉟䊦䉴ਇᵴൻᣇᴺ䇮ਗ (22.2%) and neurological disease (33.3%). The specific 䈶䈮䇮᛫⩶ᣇᴺ㩷 antibodies were present even in cats aged below one year. 䇼㗿ੱ䇽㩷 ቇᩞᴺੱ੩ㇺ↥ᬺᄢቇ䇮ᩣᑼળ␠䉴䉳䊢䊮䊶䉳䊞 The seropositive ratio was constant, irrespective of age 䊌䊮㩷 and sampling season. The present study suggests that additional factors are required for onset of Borna disease 䋳䋩㩷 ቇᄖᵴേ㩷 㩷 on naturally infected cats, and that BDV is transmitted ᣣᧄ䊗䊦䊅䉡䉟䊦䉴⎇ⓥળ㪑䋺ળ㐳㩷 through vertical routes in cats. ⑼ቇ⎇ⓥ⾌ᆔຬળኾ㐷ᆔຬ㩷 䋴䋩㩷 ฃ⾨╬㩷 㩷 㩷 䈭䈚㩷 䋴䋮⺰ᢥ䋬⪺ᦠ䈭䈬㩷 Murakami, M., Shirai, M., Ooishi, R., Tsuburaya, A., Asai, K., Hashimoto, O., Ogawa, K., Nishino, Y., and Funaba, M. 㩷 䋵䋩㩷 䈠䈱ઁ㩷 㩷 ੩ㇺ↥ᬺᄢቇ䊶੩ㇺᏒቇⴚᵹᬺ䈮䈍䈔䉎ห⎇ⓥ䇮㩷 Expression of activin receptor-like kinase 7 in adipose tissues. Biochemical Genetics, 51: 202-210. 2013. ㊁૫એ䋺䊗䊦䊅∛䉡䉟䊦䉴ᗵᨴ∝䇮ᗵᨴ∝∝⟲䋨╙䋲 䋩㩷 㩷 㩷 䈭䉌䈶䈮ⴡ↢ⅣႺ⎇ⓥᚲ㘩⡺ᬌᩏㇱ㐷䈫䈱วหળ⼏㩷 㩷 㩷 䋨⸘ 㪌 ࿁䋩㩷 ↢ ℂቇ ㆙㓒ᮨ ᡆ⻠ ⟵䋨㠽ข ᄢቇ䇮ᵻ ㊁ᷕ ಎ ᢎ䈮䉋䉎䇸ⴊ ∛ේᗵᨴ∝✬.㩷 IV.䉡䉟䊦䉴ᗵᨴ∝㩷 RNA䉡䉟䊦䉴ᗵᨴ∝.㩷 ♧⺞▵䈫♧ዩ∛䇹䇮㪉㪇㪈㪊㪅㪎㪅㪈䋩䈱䉮䊷䊂䉞䊈䊷䊃㩷 ౠᣣᧄ⥃ᐥ㩷 pp.506-509 ᣂ㗔ၞ∝⟲䉲䊥䊷䉵㩷 No.24.㩷 䉥䊷䊒䊮䉨䊞䊮䊌䉴䈮䈍䈔䉎ᮨᡆታ㛎䋨㪉㪇㪈㪊㪅㪏㪅㪈㪎䋩㩷 ੩ㇺᏒ┙⚡㊁㜞╬ቇᩞߣߩ㜞ᄢㅪ៤ᬺ ↢‛ޟㆮવሶ⸻ ᢿᴺߩታ㓙ޠ㧔㧕 2013.䋨✚⺑䋩 ᨴ⼱ᪧ䇮ᳰ᳗లብ䇮ᄢୃ䇮Velado Fernandez, Igor䇮㊁૫ એ䇮೨↰⑺ᒾ䋮੩ㇺᏒጊ⑼䈪㚟㒰䈘䉏䈢䉟䊉䉲䉲䈮ነ↢䈚 ੩ ㇺ↥ᬺᄢቇ✚วቇⴚ⎇ⓥᚲᚲႎ䋮 䈩䈇䈢䊙䉻䊆㘃䈱⸃ᨆ䋮੩ 㩷 8:57-62. 2013. 㩷 㩷 㩷 㩷 ⑺䈱䈍⺀↢ળ䇯㪊䋬㪋 ࿁↢䈏ឥ䈇⾟䉇䈎䈮䋣㩷 㩷 㩷 㩷 㪋 ࿁↢䈫࿑ᦠ㙚ⵣ䈪⸥ᔨᓇ䇯䈤䉊䈦䈫䉝䊷䊃䋿㩷 㩷 㩷 㩷 ᢎ㩷 ೨↰㩷 ⑺ᒾ ⅣႺⴡ↢ቇ⎇ⓥቶ Prof. Akihiko Maeda, D.V.M.. Ph D㩷 㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐㩷㫆㪽㩷㪜㫅㫍㫀㫉㫆㫅㫄㪼㫅㫋㪸㫃㩷㪟㫐㪾㫀㪼㫅㪼㩷 㩷 . 䋱䋮⎇ⓥⷐ㩷 ⑳䈢䈤䈱࿐䈮䈲䇮ᢙ䈋ಾ䉏䈭䈇⒟䇮᭽䇱䈭ᓸ↢ ‛ 䈏ሽ䈜䉎䇯䈠䈱ਛ䈮䈲䇮േᬀ‛䉇䊍䊃䈮ᗵᨴ䈚䈩∛᳇ 䉕ᒁ䈐䈖䈜䉅䈱䉅䈅䉏䈳䇮䈠䈉䈪䈭䈇䉅䈱䉅䈅䉎䇯䉁䈢䇮 ⣺ౝ⚦⩶䈱䉋䈉䈮േ‛䈱⣺ౝ䈪㘩‛䈱ᶖൻ䉕ഥ䈔䉎䉅 䈱䉇䇮േᬀ‛䈱ㅴൻ䈱ㆊ⒟䈪㊀ⷐ䈭ᓎഀ䉕ᜂ䈦䈩䈇䉎䈫 ⠨䈋䉌䉏䈩䈇䉎䉅䈱䉁䈪䇮᭽䇱䈭䉅䈱䈏ሽ䈜䉎䇯䈖䈱᭽ 䈮䇮⑳䈢䈤䈱䉍䈮ሽ䈜䉎ᓸ↢‛䈲䇮᭽䇱䈮േ‛䉇ᬀ ‛䈫⋧䈮ᓇ㗀䈚ว䈇䇮↢ᘒቇ⊛䈭䊚䉪䊨䉮䉴䊝䉴䈫䊙䉪 䊨䉮䉴䊝䉴䉕ᒻᚑ䈚䈩䈇䉎䇯㩷 ᧄ⎇ⓥಽ㊁䈪䈲䇮ᓸ↢‛䈱ਛ䈪䉅․䈮䇸േ‛䈎䉌䊍䊃䇹 䈮ᗵᨴ䈜䉎ੱㅢᗵᨴ∝䋨㪱㫆㫆㫅㫆㫊㫀㫊䋩䉕ᒁ䈐䈖䈜∛ ේᓸ↢‛䈮䈧䈇䈩䇮∛ේᕈ⊒䊜䉦䊆䉵䊛䉇ⅣႺਛ䈪 䈱ሽ᭽ᑼ䉕⸃䈜䉎䈢䉄䈱ၮ␆⊛䈭⎇ⓥ䉕ⴕ䈦䈩䈇 䉎䇯ౕ⊛䈭⎇ⓥኻ⽎䈲䇮Ⰶ䉇䉻䊆╬䈱▵⿷േ‛䈏ᇦ 䈜䉎ੱㅢᗵᨴ∝䈪䈅䉎㩿࿑ 㪈㪀䇯ㄭᐕ䈱᷷ᥦൻ 䈮䈉ᇦⰆ䈱↢ᕷၞ䈱ᄢ䈫䇮䈠䉏䈮䈉ᒰᗵᨴ∝ 䈱ᵹⴕၞ䈱ᄢ䈏ෂᗋ䈘䉏䈩ਭ䈚䈇䇯ᣣᧄ䈮䈍䈇䈩䉅䇮 ᶏᄖ䈪ᵹⴕ䈚䈩䈇䉎䉡䉟䊦䉴䉇⚦⩶╬䈱∛ේ䈱ଚ䈫䇮 ࿖ౝ䈪䈱ᵹⴕ䈻䈱ኻ╷䈏ᕆോ䈫䈭䈦䈩䈇䉎䇯䈠䈖䈪ᧄ⎇ ⓥቶ䈪䈲䇮ਥ䈮એਅ䈱⎇ⓥ䊁䊷䊙䈮䈧䈇䈩⎇ⓥ䈚䈩䈇 䉎䇯㩷 (1) Ⰶ䈍䉋䈶䉻䊆ᇦ ᕈ ੱ ㅢᗵ ᨴ ∝䈱੩ ㇺᏒ 䈮 䈍䈔䉎ᗵᨴ∉ቇ⊛⸃ᨆ䈫䇮ᣂⷙᬌᩏᴺ䉇䊪䉪䉼䊮䉕 㐿⊒䈜䉎䇯㩷 (2) Ⰶ䈍䉋䈶䉻䊆ᇦᕈੱㅢᗵᨴ∝䉕ᒁ䈐䈖䈜 ∛ේᓸ↢‛䈱ಽሶ↢‛ቇ⊛⸃ᨆ䉕ⴕ䈉䇯㩷 㩷 䈍䉋䈶┙㙚ᄢቇ䈱ਛ⼱㩷 ಎᢎ䈫หᄢᄢቇ㒮 㪊 ᐕ↢ 䈱☨ፉ 䈘䉖䇮㤗↢ᄢቇ 䈱ੑ ↉㩷 ቴຬ ⎇ⓥ ຬ䈫䈱ห ⎇ ⓥ䈫䈚䈩ⴕ䈦䈢䇯Ⰶ䉇䉻䊆╬䈱ๆⴊᕈ▵⿷േ‛䈲䇮᭽䇱 䈭ᗵᨴ∝䉕േ‛䈎䉌ੱ䈮ᇦ䈜䉎䇯ᇦ䈘䉏䉎વᨴ∛䈲 Ⰶ䉇䉻䊆䈱⒳㘃䈮䉋䉍⇣䈭䉎䇯䈚䈢䈏䈦䈩䇮ੱ䈏ዬ䈜䉎 ⅣႺਛ䈮↢ᕷ䈜䉎Ⰶ䉇䉻䊆䈱⒳㘃䈮䉋䈦䈩䇮ᒰၞ 䈪ᵹⴕ䈜䉎ᗵᨴ∝䈏⇣䈭䉎䉅䈱䈫⠨䈋䉌䉏䉎䇯䈠䈖䈪䇮ᧄ ᐕᐲ䈪䈲䇮䉁䈝䇮੩ㇺᏒౝ䈪Ⰶ䉇䉻䊆䉕ណข䈚䇮⒳䉕ฎ ౖ⊛䈭ᒻᘒ㗵 ⊛㐓ᴺ䈮ᓥ 䈦䈩หቯ䈚䈢䇯䉁䈢䇮ᒻ ᘒ ቇ⊛䈮㐓䈏࿎㔍䈪䈅䉎䉝䉦䉟䉣䉦䈫䉼䉦䉟䉣䉦䈮䈧䈇 䈩䈲䇮㪧㪚㪩 ᴺ䉕↪䈇䈩㐓䈚䈢䇯䈘䉌䈮䇮Ⰶ䉇䉻䊆䈏 䈜䉎∛ ේ ᓸ ↢ ‛ 䋨ฦ ⒳ 䈱䊐 䊤 䊎 䉡䉟 䊦䉴䉇䊥䉬䉾䉼 䉝 䇮 㪪㪟㪝㪪㪭䇮㠽䊙䊤䊥䉝䇮䉟䊇䊐䉞䊤䊥䉝╬䋩䉕䇮∛ේ䉕․⇣ ⊛䈮ᬌ䈜䉎 㪧㪚㪩 䈅䉎䈇䈲 㪩㪫㪄㪧㪚㪩 ᴺ䉕↪䈇䈩䇮䈠䈱 ᬌ䉕⹜䉂䈢䈫䈖䉐䇮䊐䊤䊎䉡䉟䊦䉴䈱৻⒳䈍䉋䈶䊥䉬䉾䉼 䉝䈏ᬌ䈘䉏䈢䇯䉁䈢䇮∛ේಽ㔌䉕⹜䉂䈢䈫䈖䉐䇮䈖䉏 䉁䈪䈮ᣣᧄ䈪ႎ๔䈱䈭䈇䉡䉟䊦䉴⒳䈏ಽ㔌䈘䉏䈢䇯㩷 㩷 㩿㪉㪀 Ⰶ ᇦ ᕈ ੱ ㅢ ᗵ ᨴ ∝ 䈪䈅䉎䊐䊤䊎䉡䉟䊦䉴䈱 ಽሶ↢‛ቇ⊛⸃ᨆ㩷 㩷 䊐䊤䊎䉡䉟䊦䉴ᗵᨴ䈲䇮䉡䉟䊦䉴☸ሶ䈱㕙䈮ሽ䈜䉎 ⤑Ⱞ⊕⾰䈱৻⒳䈪䈅䉎 㪜 Ⱞ⊕⾰䈫䇮⚦⢩㕙Ⱞ⊕⾰ 䋨䈣⛔৻䈚䈢⸃䈲䈭䈇䋩䈫䈱⚿ว䈮䉋䉍ᆎ䉁䉎䈫䈘䉏䈩 䈇䉎䇯䈚䈎䈚䇮䈠䈱⚦䈭䊜䉦䊆䉵䊛䈲ਇ䈭ὐ䈏ᄙ䈇䇯 ⊕⾰䈫⋧↪䈜䉎ኋਥ䉺䊮䊌䉪⾰䈱ᬌ⚝䊶หቯ䉕ⴕ䈇䇮 㩷 ᐞ䈧䈎䈱 Ⱞ⊕⾰䈫䈭䉎ኋਥⰮ⊕⾰䉕หቯ䈚䈢䇯 㩷 㩷 㩷 ੩ㇺᏒⅣႺⴡ↢⎇ⓥᚲ䈱ᳰ᳗䇮ㄭ㊁䇮᧖ᳯ㩷 ⎇ⓥຬ 䈠䈖䈪ᧄ⎇ⓥቶ䈱ᄢቇ㒮↢䈱䉟䉯䊷䊦ำ䈫䈫䉅䈮䇮㪜 Ⱞ 㩷 㩷 䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ㩷 㩿㪈㪀 Ⰶ 䈍䉋䈶䉻䊆ᇦ ᕈੱ ㅢ ᗵ ᨴ∝ 䈱੩ㇺ Ꮢ 䈮 䈍䈔䉎ᗵᨴ∉ቇ⊛⸃ᨆ㩷 䇮ਔⰮ⊕⾰䈱⋧↪䉕⏕䈜䉎䈫䈫䉅䈮䇮䉡䉟䊦䉴 ᐯမ 㩷 ᗵᨴ䈮䈍䈔䉎ᒰⰮ⊕⾰䈱ᓎഀ䈮䈧䈇䈩ᬌ⸛䈚䈩䈇䉎䇯 䉁䈢䇮䊐䊤䊎䉡䉟䊦䉴⎇ⓥ䈱䈢䉄䈱ౕ䈫䈚䈩䇮䊧䊘䊷䉺䊷 Ⱞ⊕⾰ㆮવሶ䉕䉭䊉䊛ㆮવሶ䈫䈚䈩䉃䊐䊤䊎䉡䉟䊦䉴 㩷 ᭽☸ሶ䈱◲ଢ䈪ో䈭ᴺ䉕㐿⊒䈚䈢䇯㩷 㩷 㩷 ࿑ 㪈㪅㩷 ▵⿷േ‛ᇦᕈੱㅢᗵᨴ∝䈱ᗵᨴⅣ䈱㩷 㧟㧚Research projects and annual reports 㩷 ▵⿷േ‛ᇦᕈੱㅢᗵᨴ∝䈱䈫䈚䈩䇮Ⰶ䈏ᇦ䈜䉎 䉡䉣䉴䊃䊅䉟䊦䉡䉟䊦䉴ᗵ ᨴ∝ 䈱ᗵᨴ Ⅳ䉕␜䈜䇯⥄ὼ ⇇ 䈪䈲䇮 Ⰶ䈏ᇦ⠪㩿䊔䉪䉺䊷㪀䈫䈭䈦䈩䊃䊥䈱㑆䈪↢ᵴⅣ䈏⛽ᜬ䈘䉏䈩䈇 䉎䇯䈚䈎䈚䇮⓭⊒⊛䈮䉡䊙䉇䊑䉺䇮䊍䊃䈮ᗵᨴ䈚⣖Ἳ╬㊀◊䈭∝ ⁁䉕ᒁ䈐䈖䈜䇯㩷 Research projects Many micro-organisms exist in natural environment. Some of them infect to plants, and some do to animals including human. They cause unique diseases to their host plants and animals. However, the others do not. Some are alive in animal intestine and help (2) Molecular biology of the infection mechanisms of mosquito- and tich-borne pathogens food-digestion of host animals. Some are thought to play important roles for host evolution. Microbes interact Flavivirus is one of etiological agents of tick- and with their host and establish micro- and macro-cosmos in mosquito-borne diseases. The infection of the viruses nature. starts by attachment to cell surface receptor. However We are now studying on pathology, ecology, and the detail mechanisms of virus infection are still unclear. other basic researches of zoonoses, especially, mosquito- To study the first event of virus infection, we tried to and tick-borne diseases. Recently, arthropod vectors are identify the interaction partners against virus envelope spreading their living places due to global warming. protein, E, which is thought to be a virus-factor for Therefore, the diseases become one of big concerns in infection. We identified several candidates of host world-wide public health. In Japan, it is also urgent to factors for flavivirus infection. Now, we are confirming establish a detection and prevention system for these the actual interaction between viral E protein and diseases. candidate cellular proteins using molecular techniques. Now, we are doing research on; Mr. Igor and I are now doing research on this (1) Epidemiological study on mosquito- and tick-borne project. diseases in Kyoto-City, and development of new 㩷 diagnostic and vaccine protocols for vector-borne 䋴䋮⺰ᢥ䋬⪺ᦠ䈭䈬㩷 diseases Y. Makino, T. Suzuki, R. Hasebe, T. Kimura, A. Maeda, H. (2) Molecular biology of the infection mechanisms of Takahashi, H. Sawa: Establishment of tracking system for West mosquito- and tick-borne pathogens Nile virus entry and evidence of microtubule involvement in particle transport. J. Vorol. Methods. 195, 250-257 Annual reports A. Maeda, J. Maeda: Review of diagnostic plaque reduction (1) Epidemiological study on mosquito- and neutralization tests for flavivirus infection. Vet. J. 195, 33-40 tick-borne diseases in Kyoto-City, and (review) development of new diagnostic and vaccine ᨴ⼱㩷 ᪧ, ᳰ᳗లብ, ᄢ㩷 ୃ, Velado Fernandez Igor, ㊁૫ એ, ೨↰⑺ᒾ: ੩ㇺᏒጊ⑼䈪㚟㒰䈘䉏䈢䉟䊉䉲䉲䈮ነ↢䈚䈩 protocols for vector-borne diseases 䈇䈢䊙䉻䊆㘃䈱⸃ᨆ. ੩ㇺ↥ᬺᄢቇ✚วቇⴚ⎇ⓥᚲᚲႎ . 8, We collected mosquitoes, which are vectors of many mosquito-borne diseases, at several fixed 57-62 observation points in Kyorto-City. We then tried to ೨↰⑺ᒾ: ╙4┨㩷 േ‛ᗵᨴ∝⸻ᢿ䈱䈢䉄䈱ᓸ↢‛ᬌᩏ䋬䋱䋮↥ detect pathogens within mosquitoes by molecular ᬺേ‛䋬4)⚻♽ᗵᨴ∝.䋨✬䋩ᚲ⑺㓶䋬೨↰⑺ᒾ䉌 േ‛ᓸ diagnostic protocol. As the result, we did not get any ↢‛ᬌᩏቇ 㩷 ㄭઍ . pp.155-157 signs of infection of the pathogens within mosquitoes 㩷 captured in Kyoto City. 䋵䋮ቇળ⊒䈭䈬㩷 We also conducted a tick-surveillance at north part M. Yonejima, T. Nakaya, N. Nihei, Y. Tsuda, M. Kobayashi, M. of Kyoto City. We collected many species of ticks, and Watanabe, A. Maeda: Effects of land use pattern on spatial tried to detect pathogens within ticks. We detected distribution of host-seeking mosquitoes within urban areas in several viruses by reverse transcription-polymerase Kyoto, Japan. International Geographic Union䋬Kyoto Regional reaction. Now, we would identify tick species and Conference䋬kyoto, 2013.8.4-9 phylogenic analysis. ☨ፉਁሶ, ೨↰⑺ᒾ, ↰⟤᮸, દ⮮Ꮧ, Velado We collaborated with Mr. Ikenaga, Mr. Ito, Miss Fernandez Igor, ᵤ↰⦟ᄦ, ᷰㄝ㩷 ⼔, ਛ⼱᮸: ੩ㇺᏒ䈮䈍 Konno, and Miss Sugie in the㩷Kyoto City Institute of 䈔䉎䉝䉦䉟䉣䉦䈫䉼䉦䉟䉣䉦䈱㓸ᢙ䈍䉋䈶᭴ᚑᲧ䈱ⓨ㑆Ꮕ⇣. Health and environmental Sciences, Dr. Nakaya and ╙65࿁ᣣᧄⴡ↢േ‛ቇળᄢળ䋬ᳯᏒ䋬2013.4.5-7 Miss Yoneshima in Ritsumeikan Universit䌹, and Dr. Nihei in Asabu University. દ⮮Ꮧ, ☨ፉਁሶ, Velado Fernandez Igor, ↰⟤᮸, ᨴ ⼱㩷 ᪧ, ೨↰⑺ᒾ: ੩ㇺᏒ䈮䈍䈔䉎Ⰶᇦᕈ䊐䊤䊎䉡䉟䊦䉴ᇦ Ⰶ䈱⺞ᩏ. ╙48࿁ᣣᧄ⣖Ἳ䉡䉟䊦䉴↢ᘒቇ⎇ⓥળ䋬ᾲᶏᏒ䋬 2013.5.24-25 㩷 䋶䋮䈠䈱ઁ․⸥㗄㩷 䋱䋩㩷 ᄖㇱ⾗㊄ ⑼ቇ⎇ⓥ⾌ഥ㊄䊶ᚢ⊛⪚⧘㩷 ⺖㗴ฬ䋺䊐䊤䊎䉡䉟䊦䉴䈱ᗵᨴ⤳ེ․⇣ᕈ䈮㑐䈜䉎⎇ⓥ㩷 ⎇ⓥઍ⠪䋺೨↰⑺ᒾ㪃㩷 ขᓧᐕᐲ䋺㪟㪉㪋㪄㪉㪌 ᐕ㩷 㩿㪉 ᐕ㪀㩷 ෘ↢ഭ⑼ቇ⎇ⓥ⾌ഥ㊄䋨ᣂဳ䉟䊮䊐䊦䉣䊮䉱╬ᣂ⥝䊶ౣ ⥝ᗵᨴ∝⎇ⓥᬺ䋩㩷 ⺖㗴ฬ䋺∛ේ䈶Ქ⚛䈱▤ℂ䉲䉴䊁䊛䈍䉋䈶⹏ଔ䈮㑐䈜䉎 ✚⊛䈭⎇ⓥ䋨㪟㪉㪋㪄ᣂ⥝㪄৻⥸㪄㪇㪈㪊䋩㩷 ⎇ⓥಽᜂ⠪䋺೨↰⑺ᒾ㪃㩷 ขᓧᐕᐲ䋺㪟㪉㪋㪄㪉㪍 ᐕ㩷 㩿㪊 ᐕ㪀㩷 㩷 䋲䋩㩷 䈠䈱ઁ㩷 䈭䈚㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 ⎇ⓥቶ䊜䊮䊋䊷䈱㕙䇱㩷 㩷 㩷 㩷 㩷 㩷 㩷 ?+<*,@ @ @ @ @ @ @ @ @ @ @ @ "@ 2 Lab. Genetics in Experimental Medicine Prof. Kozo Matsumoto, DVM, Ph.D @ |{*,$6@ KƀņI05]Ǭašŧ;]7F2¾WDÑƂFH Ƣā(ƀņKéìI¨-LJåūúŗXRSŀ®9Dé ]1[E,]) ì9D-])ėâEŭdžÊ¡Ƣ-ūúŗĐŽ2-]F @ ġò8^D0\(Ť¦ƻÿIì3HÜƿFHBD-]) }{!`*,#@ ƀņaƴ6^MZ-2(Ő¤Ť¦LƣIƀņaŒVŤ¦ HOLLFCQMTU 3%.(<kqwgyieomf/0 ĻƤFHBD0\(ƀņéìaĜ8/]KL1H\áƺ `'^3%_Z}.( <7@ HŎńI,])?KZ.HŎńIƮU(H>ƀņ2LJå ¢āăL """ KÒūúŗÍßƨ§ï ūúŗaƘŚ;]1aī[1F9(ƀņIHBDXLJå Ą÷¹lnf{ujŬŶFƀņlnf{ujŬŶF ūúŗaƴ6]Z.HƴƊ(ŃřƊKƱŚ2Z\čƐ K a¬ĖIĆ3ŷ3( ÔĎa ƪ9D a¬Ėa HŎńI,]Fż/[^])ŋ]IƀņI¨-H>LJå ƍB@)ŒT^D4]ï¯L;QDūúŗƨ§ïƾæK ūúŗaŚŘ;]K1(?KŚŘh{pIƳ9DL ƨ§ï h(H[NIƀņƨ§ï haÁœ9 RFbG½1BD-H-)ÃƊK@WIL?KƀņI¨ D(ƨ§ïåałò9(?Kƨ§ïĄƾæ»EKŲĢ/ - åūúŗaŚŘ=9W](ŞKÍßƨ§ïKōò2 KŒ:D-H-7FaŢƗ9@)ôƷI¬ĖǍÁœ;]s čƽE,]) lnf{ujŬŶLòKūúŗƨ§ïĄºƾæ 919~yLƨ§śIì-H]wƸàE,\(ő 2¹BD0\(1Cƀņƨ§ï2ÅďIHBD-] èƐßXļ*E(·ćF-/GXĖ¡ĊKŒŅŻĔLº ²ª2ƧÀ8^@) 4ŕHBD-]7F2ë-)ċBD(~yEKŜĠśH ?^[slnf{ujŬŶKƌū´Kĺĸa ƨ§ƒĵ2İT9-KE,]2(¢ÞKw KZ.H( IDƍB@)ƀņlyuyL( u ƀņI¨. åūúŗKŚŘĽĻF-.(ƨ§FőèK yIŀơ9D %! Ŧăǂ-ƌū´aţ9(ƀņIZ ƏƹI¹\ :B@šŧaƍ.IL(Z\ËůÈ9@ô ]ĉƼaŢƗ9@)ħ(?KƀņuyI "" ǁŬ(ƨ§śIäHƸàaĞB@ôǁÇŌaÁœ;] " KÒūúŗƨ§ïa÷¹9@slnf{u 91ħŪ2H-)T@(ôǁÇŌE,^M(őèij¥X juyK ŴĶL( ½´E("$ &' ŝĈHŦă(äF;]7F2ÑƂFH\(T8Iƨ§ uyLƀņlyuyZ\8[I %! X FőèƐßKƏƹŬaƒĵ;]IL.BDC5HKE, ǂ-ǂƌū´aţ9(8[I ½EKƌū´L ])T@ƀņI¨- åūúŗaŚŘ;] uy %! aƠ/D0\(ī[1HūúŗŎēaţ9@) 2ƱŚ8^D(?Kšŧ2ÑƂFHB@) 7K7F1[(" ƨ§ïĄƾæILƀņI¨-ƌū 919( uyKZ.H(@F/äHƨ§ï ´aŕÿIĪ8=]ƨ§ï2ðã;]7F2ŢƗ8^ ƁĭaĞCôǁÇŌaÁœ9DX(7FL?.ËůEL @)ħ("$ &' uyLƀņ uyFRS Ŋ-KE,])H>H[7^TEKƨ§ƒĵKŴĶ( Ô:ƌū´E,\(" ƨ§ïĄLǂƌūIƳ9D uyKƌū´aĪ8=]ūúŗÍßƨ§ïĄ -H-7F2¿ī9@)T@("$ &' uyEK LôI hĘXķƆªI u8^@KE,])ċB ŴĶL("$ &' F "$ &' FKƲŦăK D(GKƨ§ïĄ2ƀņFƳ°9D-]K1(T<?K ƌū´aţ9@)"$ &' ŦELH-2(919ƀņ ʼn1[KƒīaîWJMH[H-KE,])?K@W hĘKƨ§ïƾæKCCa²ÀI(ľÿuyE, ] P÷¹9@ŬŶǃ77KZ.HŬŶalnf{ ujŬŶFØODŽa¬Ė;]čƐ2,])ÔĬI uyXƀņoK uyF;]@W(ƀņƨ§ï a÷¹9@lnf{ujŬŶa¬Ė;])7^EҶ LĤB@7FIH]) IJšŧI0-DL(ūúŗlnf{ujŬŶFƀņ lnf{ujŬŶFa ƪ9@slnf{uj ŬŶa¬Ė;])?^IZ\(²*KūúŗÍßƨ§ï I¨-ƌū´aĪ8=]ƨ§ï2?Kƾæ»I,]7 eoKƀņI ě2ƈĀia15@F/ F2¿ī9@) ]) IJāăL " ƨ§ïĄƾæ»I,]ƀņI¨-ūú LJDžƌū´IÎS;ĉƼ ŗaŚŘ;]Íßƨ§ïKŢòaƍB@) $"% ħ(ƌū´KħLG.1FU]F(7^2T@ÝK ID " lnf{ujŬŶK÷¹ƨ§ïĄƾæIÖ Z.H3^-HŴĶ2¼D-])T<ŨƃĬƌū´IƳ T^]ƨ§ïaxroEĝ¼9(?^[ƨ§ïǍ 9DLqěŹLlyŹZ\Xį ŭ ƨ§ïIC-DKd ƕƓIC-DĺƔ9( ĒI©-KE,])8[IųÐśkloƝƉƖǁ ?KƩa¬Ė9(ƀņ uyalyF9 ǃDŽEL %! qěŹL ½ DÒƨ§ïŚŐKŀơaƍB@)?KŴĶ(" ´( ½´ElyŹIŀơ9Dǂ-įĒþaX KRSj£ƢIǂ-įĒþK,]ƨ§ï2CƑ- BD©-KE,])IJĈIÝKZ.HyKŴĶE, A8^@&)ŚŐƭLŭLJ³E,B@)?Kƨ ]) ½´LįĒþ2đ9-F7_EƗW[^H §ïKŚŐƭéìIZ\(ſƄKūĦŒĚÂ2ƒƶ8^Ǎ 1B@2(®ģ2ë5^MįĒþ2¼@E,_.)?K ǂƌūIHB@XKFż/[^]ŴĶaČ@) ƌū´IÎS;qKĉƼa?KTTűŜI @ ƒƫ;^M(qLŨƃĬNIūƝƉƖǁ .(_b\plsn`=@ I0-D(ƌū´aĜ96]¬œ2,]F/Z.) |tv2µąǀÚKCF9DĂ4Áœ8^D-] ċBD(Őã(7KxrK8[H]ƒĵaƦWD-] 7F1[(ūúŗĐŽ8bIX|tv2ƅ-ÆĶaX F7_E,]) @[;F(ƩEL±:[^D-])919(ūúŗK @ öưÉK¸ŒL?K7FIƳ9DLĕŖśE,])H> ~ {IMVMJUKN@TUSPMKWV@JRL@JRRXJQ@UMTSUWV@ H[(|tvLF9DzeūFĶū1[ĻĖ8^ Diabetes mellitus is considered one of the main threats to D0\(ª»I¹^MŠūHGFÔ:7FIH]Fż/ human health in both developed and developing world. ]1[E,])@A(ŽFXôǁxrKŊ-ƜƚF Common diseases such as type 2 diabetes mellitus result HBD-]) from complex interplay among multiple genes, signaling ċBD¢āăLT<|tvKūúŗPKÆƂIC- pathways and environmental factors. There are genetic D(ƨ§śIäƟHƀņďūúŗ eoaœ9(|t analyses in human on genes extrapolated from the vKƯıěIZ]ĉƼaƙQ(|tvKƯıœ functional studies in vitro or in rodents in order to confirm EƀņYƌū´IGKZ.HĉƼ2¼]1aĺƔ9@) the significance in the development of human diseases. Yet ?KŴĶ(ËƇƋE,]chmc|tv(j|t causative polymorphisms were still largely elusive. An vIƳ9DLūúŗ eoIõ9DXƌū´a¾ı´F alternative to the gene knockout model is the use of RSÔ:E(ŠūKZ.IǂƌūIH[H-7F2¿ī spontaneous animal models. The OLETF rat is such a 9@) model of obesity-based type 2 diabetes. Subsequently @ produced congenic strains showed that most of the loci .(_b\xzuwjvz`=@ examined were shown to contribute to the increased glucose qFūúŗIƳ;]ĥŏE,]2(7^ levels in 30 week-old males. Interestingly, the phenotypic LƻÿIùH-)ūúŗKŚŘ9D-]ŎēEK features observed in single congenic strain, low fat weight qœKç×LƙQ@Ƶ\EL7^TEŊ-Z. and low leptin levels for Nidd1/of and high fat weight for E,])IJšŧLūúŗFKŵUHKEƌū´Iõ9( Nidd2/of, were masked in the double congenic, yet q2«[1KĉƼa/H-F?X?X2 hyperglycemia were further aggravated than either single îT[H-) congenic strain. In order to investigate an affect of obesity džDžªƬƀņIÎS;ĉƼ to these loci, we have also generated a congenic strain T<(džƥƲF-.şıƲKqěE introgressed obesity gene (lpr deficiency). We have LªƬYƌū´IƳ9DLº4êÈ2Ƒ[^H-)91 produced a double congenic line with a hyperglycemic gene 9(ŷ5DLJƥƲ(yrELjƥƲě;]F(ě (Nidd2, Nidd4, and Nidd6) under obesity condition by ŹLlyŹIŀơ9Dù9ªƬ2©WFH\( crossing both strains, so that it would be possible to define a ōI %!#! qěŹFlyŹ gene specifically affecting hyperglycemia under obesity ILªƬ?KXKIįĒþ2ƗW[^@)ƀņďūúŗ condition. @ {)5:AFDEG B@ 1. High Expression of Atp7b mRNA in the Peripheral Blood Mononuclear Cells of the Long-Evans Cinnamon Rats: an Animal Model of Wilson’s Disease. Kenji Nakayama, Yoshinobu Katoh, Norikazu Shimizu, Toyo Okui, Kozo Matsumoto, Yukiharu Sawada, Tsugutoshi Aoki. Hereditary Genetics 2, 1-5, 2013 2. Animal Models of Diabetes and Metabolic Disease. Tomohiko Sasase, Marcus G. Pezzolesi, Norihide Yokoi, Takahisa Yamada, and Kozo Matsumoto. J. Diabetes Res. ID 281928, 1-2, 2013 {4 [ca19AFDEF B@ Ŋ9 {;&Yhyridt-AFDEF B@ Ŋ9 {)5AFDEFB@ uyFmene}gaœ-@LJåūúŗƨ§ƒ ĵnj%&L uyKūúŗÍßƨ§ïKdžCE, ])øňÌ(ûŔøÙÄ(ýüŮ(ûŔóŁ(Ĵíž (ũNJNjÞĩIJôǁÇŌñ¦ @ {]`'8>@ ôǁÇŌdžŰęƎŽƞĹÏČK@W(Lj(ljÞŒPō ÀƛźaģÞƍ.) Õ2ñťÓĹ)T@(ôęŸŻ aĿƥLJ+LjÞ(RSLJĮI`@BDôĨǍğ÷;]) ÕºÛ2ƺƳKôęIXÓĹ9@) ᰤ㣴⾨⏕Ꮫ◊✲ᐊ㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 z 㻌 㻸㼍㼎㼛㼞㼍㼠㼛㼞㼥㻌㼛㼒㻌㻺㼡㼠㼞㼕㼠㼕㼛㼚㻙㼞㼑㼘㼍㼠㼑㼐㻌㻴㼥㼓㼕㼑㼚㼑㻌 ᩍᤵ ᮧ⏣ ⱥ㞝㻌 Prof. Hideo Murata, D.V.M., Ph.D.㻌 㻌 䠍䠊◊✲ᴫせ㻌 ㉁䛜Ꮡᅾ䛩䜛䛛ྰ䛛䛻䜘䛳䛶⏕䛨䛯䚹䛣䛾▱ぢ䛿ᖺᗘ䛾◊ Ᏻ䛺㣗ᩱ䠄ື≀䛷䛿㣫ᩱ䠅䜢ᚓ䜙䜜䜛⏕ά⎔ቃ䛜䚸ᗣ ✲ሗ࿌䠄㼀㼍㼗㼟㼕㼚㼛㼞㼛㼟㻌㻒㻌㻹㼡㼞㼍㼠㼍䚸㻞㻜㻝㻞䠅䛸୍⮴䛧䛯䚹୍᪉䚸୧ΰ 䜢⥔ᣢ䛩䜛䛯䜑䛾᭱ప㝈ྍḞ䛺せ⣲䛷䛒䜛䛣䛸䛿ே䜒ື≀ ≀䛜 㻞㻜㻜䃛㼓㻛㼙㼘 ௨ୗ䛾⃰ᗘ䛷䛿䚸䝯䝷䝭䞁䝅䜰䝚䝺䞊䝖䛿㔪 䜒ྠ䛨䛷䛒䜛䚹䛭䛣䛷䚸ື≀་⛉Ꮫ䛾❧ሙ䛛䜙䚸㣫ᩱ䛾ෆᐜ ≧䚸⌫≧䛔䛪䜜䜒⏕ᡂ䛧䛺䛔䛣䛸䛜☜ㄆ䛥䜜䛯䚹䝯䝷䝭䞁ཬ䜃 䜔䛘᪉䚸䛩䛺䜟䛱ᰤ㣴⟶⌮䛜ዴఱ䛻ື≀䛯䛱䛾ᗣ䜢Ᏺ 䝅䜰䝚䝹㓟䛾⾑୰⃰ᗘ䛿䚸ື≀䜈䛾ᢞᐇ㦂䛷䛿 㻞㻜䃛㼓㻛㼙㼘 䜚䚸䜎䛯䜢Ᏺ䜛䠄䛩䛺䜟䛱⾨⏕䠅⤌䜏䛻ᑐ䛧䛶䛹䛾䜘䛖䛻 ⛬ᗘ䛸ሗ࿌䛥䜜䛶䛔䜛䛣䛸䛛䜙䚸䛚䛭䜙䛟ᚠ⎔⾑୰䜔⭈⮚௨ ᙳ㡪䛩䜛䛛䛻䛴䛔䛶䚸⏕యㄪ⠇ᶵᵓ䠄௦ㅰ䜔ච䠅䛾ື䛝䜢 እ䛾ㅖ⮚ჾ䛷䛿䚸䝯䝷䝭䞁䛸䝅䜰䝚䝹㓟䛜ྜ䛧䛶䜒⏕ᡂ≀䛿 ┠༳䛸䛧䛶⛉Ꮫⓗ䛻䛡䜛䛣䛸䜢◊✲┠ⓗ䛸䛩䜛䚹㻌 ⏕䛨ᚓ䛪䚸⭈⮚䛾⃰⦰㐣⛬䛷༑ศ㔞䛾⃰ᗘ䛻㐩䛧䛯୧⪅䛜 ୖグ䛾୍⎔䛸䛧䛶䚸ᡃ䚻䛿䚸㐣ཤᩘᖺ㛫䛻ர䜚䚸㣫ᩱ䛻ΰ ධ䛩䜛䜹䝡ẘ䛾ᙳ㡪䜔㝖ཤἲ䛻䛴䛔䛶◊✲䛧䚸ᡂᯝ䜢ㄽᩥ ᛂ䛧䛶ึ䜑䛶⤖ᬗ䠄䛩䛺䜟䛱⤖▼䛾せᡂศ䠅䜢⏕ᡂ䛩䜛 䛾䛷䛿䛺䛔䛛䛸♧၀䛥䜜䛯䚹㻌 㻌 ➼䛷㐺ᐅබ㛤䛧䛶䛝䛯䚹⌧ᅾ䛿䛭䛾◊✲᪉ྥ䜢Ⓨᒎ䛥䛫䚸᪂ 䛯䛻㣗䞉㣫ᩱ୰䛾䝯䝷䝭䞁ởᰁ䛾ᙳ㡪䛻䛴䛔䛶◊✲䜢㐍䜑䛶 㻌 䛔䜛䚹ලయⓗ䛻䛿䚸㏆ᖺ䚸ங〇ရ䜔䝨䝑䝖䝣䞊䝗䜈䛾ΰධở 㻌 ᰁ䛻䜘䛳䛶䛝䛺♫ⓗᙳ㡪䜔Ᏻ䜢䛘䛯䝯䝷䝭䞁㢮䜢ᑐ 㻌 ㇟䛻䛧䛶䚸ḟ䛾ㅖⅬ䛻䛴䛔䛶◊✲䜢ᒎ㛤䛩䜛䚹㻌 㻌 䠍䠅䝯䝷䝭䞁㞀ᐖస⏝䛾⤌䜏䛾ゎ᫂㻌 㻌 㻵㼚㻌 㼢㼕㼢㼛 ཬ䜃 㼕㼚㻌 㼢㼕㼠㼞㼛 ᐇ㦂䜢㏻䛧䛶䚸䝯䝷䝭䞁䛻䜘䜛䚸⭈⤌ 㻌 ⧊䜔ᶵ⬟䜢ᑐ㇟䛻䛧䛯ᶵ⬟㞀ᐖᶵᗎ䜢ゎ᫂䛩䜛䚹㻌 ᅗ䠖䝯䝷䝭䞁䝅䜰䝚䝺䞊䝖䠄ᕥ䠖㔪≧䛸ྑ䠖⌫≧⤖ᬗ䠅䛾ගᏛ㢧ᚤ㙾ീ㻌 䠎䠅⡆༢㻛Ᏻ౯㻛㎿㏿䛺䝯䝷䝭䞁㻙䝇䜽䝸䞊䝙䞁䜾ἲ䛾☜❧㻌 ⾲ᒙ䛻㟷Ⰽ 㻳㻺㻼 䝬䞊䜹䞊䛜╔䛧䛶䛔䜛䠄ⓑ▮༳䠅㻌 ⏕⏘䞉ὶ㏻䛒䜛䛔䛿ᾘ㈝⌧ሙ䛷䜒⡆༢䞉Ᏻ౯䛛䛴⣲᪩ 䛟⾜䛘䜛䝇䜽䝸䞊䝙䞁䜾᳨ฟἲ䛾☜❧䜢┠ᣦ䛩䚹㻌 䠄䝇䜿䞊䝹䝞䞊䛿 㻞㻚㻡䃛㼙䠅㻌 㻌 㻌 䠎䠅⡆᫆䞉㎿㏿䛺䝯䝷䝭䞁䝇䜽䝸䞊䝙䞁䜾ἲ䛾☜❧㻌 䠎䠊ᮏᖺᗘ䛾◊✲ᡂᯝ㻌 㻌 ᮏᖺᗘ䛿ᐇ䛧䛺䛛䛳䛯䚹ḟᖺᗘ௨㝆䛻ㄢ㢟䜢⥅⥆䛩䜛䚹㻌 䠍䠅䝯䝷䝭䞁㞀ᐖస⏝䛾⤌䜏㻌 㻌 㣗ရ䜔㣫ᩱ୰䛻ΰධ䛧䛯䝯䝷䝭䞁䛜䚸ᾘ⟶䛛䜙యෆ䛻྾ 㸱㸬Research projects and annual reports 䛥䜜ᚠ⎔⣔䜢⤒⏤䛧䛶ἥ䛻⮳䜛㐣⛬䛷䚸㢮ఝᵓ㐀య䛾 As well as humans, all human-associated animals, including ୍䛴䛷䛒䜛䝅䜰䝚䝹㓟䛸ᛂ䛧䚸⭈⮚䛷⤖▼䛧䚸㔜⠜䛺⭈ livestock, companion and experimental animals, have the 㞀ᐖ䜢䜒䛯䜙䛩䛣䛸䛜᪤䛻ሗ࿌䛥䜜䛶䛔䜛䚹䛭䛾せᵓᡂ≀ same right to acquire safe aliment to maintain their healthy 䝯䝷䝭䞁䝅䜰䝚䝺䞊䝖䛾⏕ᡂ䛿 㼕㼚㻌 㼢㼕㼠㼞㼛 ୗ䛷䜒ᐜ᫆䛻⌧䛷䛝 conditions, thereby contributing to humans. As researchers in 䜛䛜䚸ᐇ㝿䛾⤖▼Ⓨ䠄㼕㼚㻌 㼢㼕㼢㼛䠅䛷䛿䚸⭈⮚䛾䝛䝣䝻䞁㒊 veterinary medical science, we have been interested in ௨እ䛷䛾Ꮡᅾ䛿☜ㄆ䛥䜜䛶䛔䛺䛔䚹䛭䛾⌮⏤䛿䜎䛰᫂䜙䛛 detecting and reducing feed contaminants that could harm 䛷䛿䛺䛔䛜䚸ᛂ䛾䝯䝷䝭䞁䛸䝅䜰䝚䝹㓟䛾⃰ᗘせᅉ䛜㛵 animal health. Our present research purpose is to (1) elucidate 䛧䛶䛔䜛ྍ⬟ᛶ䛜䛒䜛䚹ᖺᗘ䛿䚸䛭䛾ྍ⬟ᛶ䜢 㼕㼚㻌 㼢㼕㼠㼞㼛 the adverse effects of melamine, a toxic chemical that could ᐇ㦂䛷᳨ド䛧䛯䚹㻌 cause kidney stones and kidney failure when ingested, through 㻞㻜䡚㻝㻜㻜㻜䃛㼓㻛㼙㼘 䛻ㄪᩚ䛧䛯䝯䝷䝭䞁䛸䝅䜰䝚䝹㓟䜢ΰ 䠄ྠ୍⃰ᗘ䛷➼㔞䠅䛧䚸䛭䛾⏕ᡂ≀䛾Ꮡᅾ䜔ᙧ≧䜢 㼓㼛㼘㼐㻌 㼚㼍㼚㼛㼜㼍㼞㼠㼕㼏㼘㼑㻔㻳㻺㻼㻕㻌 ྠᐃᡭἲ䠄㻸㼕 䜙䚸㻞㻜㻝㻜䠅䜢⏝䛔䛶䚸ගᏛ㢧 ᚤ㙾䛷ほᐹ䛧䛯䚹䝯䝷䝭䞁䝅䜰䝚䝺䞊䝖䛿䚸䛭䛾⾲ᒙ䛜㟷Ⰽ䜢 ࿊䛩䜛 㻳㻺㻼 䛷そ䜟䜜䛯㔪≧䛒䜛䛔䛿⌫≧⏕ᡂ≀䛸䛧䛶ほᐹ 䛥䜜䛯䠄ᅗ䠅䚹䛣䛾ᙧ≧䛾㐪䛔䛿䚸ΰ⎔ቃෆ䛻⾑Ύ䝍䞁䝟䜽 in vivo and in vitro studies, and (2) establish a rapid, easy and cheap melamine screening method. The results obtained this year are summarized as follows: 1: On the threshold concentrations of melamine and cyanuric acid for formation of melamine-cyanurate crystals: The crystals accumulate as urolites but are not found outside ᰤ㣴⾨⏕Ꮫ◊✲ᐊ䛾ᵓᡂ䠄䠎䠌䠍䠐ᖺ䠏᭶⌧ᅾ䠅 the urinary system. In this in vitro experiment we found that Ꮫ㝔༤ኈᚋᮇㄢ⛬Ꮫ⏕㻌 䠍ྡ M-C crystals were not formed in a mixture of melamine and Ꮫ㒊䠐ᖺ⏕㻌 䠐ྡ cyanuric acid at low concentrations (< 200 μg/ml). The results Ꮫ㒊䠏ᖺ⏕㻌 䠏ྡ suggest that the plasma melamine and cyanuric acid concentrations reported in clinical cases would be too low to form and/or accumulate M-C crystals in the bloodstream, thus S. Taksinoros 䠄Ꮫ㝔⏕䠅 䛸ᮧ⏣ explaining why the crystals are not detected outside the urinary organs in affected humans and animals. 2: Development of a melamine screening method No substantial experiments on this theme have been carried out this year. 䠐䠊ㄽᩥ䚸ⴭ᭩䛺䛹㻌 S. Taksinoros, H. Murata,: Effects of polyvinylpyrrolidone on in vitro melamine cyanurate crystal formation: An electron microscopy study. 2013. J. Vet. Med. Sci., 75, 653-655 㻡䠊ᏛⓎ⾲䛺䛹㻌 㻌 䛺䛧㻌 䠒䠊䛭䛾≉グ㡯㻌 㸯㸧እ㒊㈨㔠 䛺䛧㻌 㸰㸧Ꮫእάື㻌 㻌 㻌 㻌 The Veterinary Journal ㄅ䛾 Editorial Advisory ጤဨ 㻌 㻌 ி㒔ື≀ឡㆤ䝉䞁䝍䞊䠄௬⛠䠅㐠Ⴀጤဨ 䠏䠅㻌 䛭䛾㻌 㻌 ி㒔⏘ᴗᏛ 㻰㻭㼅㻌㼕㼚 బ㈡㻌 䛷䛾ㅮ₇㻌 㻌 䛂ື≀䛯䛱䜈䛾㓄៖䠄ឡㆤ䛸⚟♴䠅䛃䠄㻞㻜㻝㻟㻚㻜㻤㻚㻞㻠䠅㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 ᛂ⏝≉ู◊✲䠄䠐ᖺ⏕䠅䛾୍㢼ᬒ ᾁ ᾀ ᾂ ࠰ᴾ ዮӳဃԡᅹܖᢿᴾ ᄂ ᆮ Ἒ ἦ ἕ ἁ Ἃᴾ 研究トピックス(1):バイオフォーラムなどのセミナー開催状況 Ų%¶® ŴmĐ Ŏéĭȯy'Ȱ DzțȬȎIȭŎéȇDzȎȨȯŊNj«đúȰ ƑƏƐƒƎƏƐƎƐƐ öLœçõ^ ŬƆŮ°ȯǺȡƆȭȁȥȬȠȥȬȰ@`Ɖó<mĉēƆÈíĐm ȓDzǷȗǶȮȦȡnjÈíǤǵȖȁǴȑȌDZǻȂĉēǠǑǝYòǯĩǣǠǕǭǓƇȳǍȯŊ ĉēȄȬȇȮƊ ȲØŤ²Ȱ ƑƏƐƒƎƏƐƎƑƐ öLȀȂȌȡ ƠDŽƾƾƱǁƆDžƿƾƆơƵƹƺƾƵƆ@`ƉȂȎȊǻȜȨȡcmNJö<mȭöí ȓDzǷȗǶȮȦȡnjƭǁƱƾǂƼƿƳƿƾƍƽƵƴƹƱǃƵƴƆƱǂǂƵƽƲƼLjƆƿƶƆƽƵƽƲǁƱƾƵƆǀǁƿǃƵƹƾǂƙƆƞƾƵǁƷƹƵǂƆƱƾƴ íómŦŰNJķĉēȄȬȇȮƊ ƶƿǁƳƵǂǍȯŊȲľĦ²Ȱ ƑƏƐƒƌƏƑƌƏƖ öLȀȂȌȡ ƫƹƳƸƱǁƴƆƢƆƦƿǁƹƽƿǃƿ@`ƉȒȮȂdzǵȂȇȬcmƆȦDzȂöí ȓDzǷȗǶȮȦȡnjƚƆƬLjǂǃƵƽǂƆƚǀǀǁƿƱƳƸƆǃƿƆƜƵƼƼƆƬǃǁƵǂǂƆƱƾƴƆƩǁƿǃƵƿǂǃƱǂƹǂƆƧƵǃdžƿǁƻǂȯģıȂ >mĉēȭůƆƆöímŎȭ©¥Ɗ ȎȩȂǡșȪȌǷȂȇȀȂȑȊȎȫȮǻǦǤȀȂȌȡǰșȪȮȉȰǍȯŊȲÖùMnȰ ƑƏƐƒƎƏƑƎƑƑ öLȀȂȌȡ ÃùcŘƆ@`ƉǓǚǘƝƧƚĉēNJ÷Ê\ąŲĂĉēŦƊ ƑƏƐƒƎƏƑƎƑƔ öLȀȂȌȡ ƑƏƐƒƌƏƒƌƏƗ öLœçõ^ ƑƏƐƒƎƏƒƎƑƕ öLȀȂȌȡ Ļ{(ÒƆ@`NJȯ?ĽcmȰ ȓDzǷȗǶȮȦȡnjȢȇȝȪȮȡňÁƍƆ\ċĉēNjøĉēǤøǣǞǑǟƍǍȯŊȲ ŬkŒȭsYȰ öLĐmȄȠȏȮnjƑƓ³ųȧȃȡǯöǨ0Ǚŗ.ŋĜȀȂȌȡǍȯŊȲzĎRȰ ŰĴƆ(@`ƆȯȯïȰŚÊȭſN÷Ê ŁĨGĉēÑË íĉēƆůȰNjƆC@`ȯ=ãšcmcmŸȰNj ĘƒUƆŨ÷ÊcmƆĨGöLĐmŦȀȬȞȁdzȡnjÈíȓDzǷȌǻȒȪȁȮǡģıŕǽȒ ÉIƆŹ@`ȯŨĕcmcmŸȰNjz|Ɔ@@`ȯŨ ȡĉēǤº¾ǍȯŊȲsYȰ ÷ÊcmȰNjsYƆ@`ȯŨ÷ÊcmȰ c,tHƆ@`ȯÊcmȰ öLĐmȄȠȏȮnjȓDzǷ ŁǦǤȟDzǻȪÛ9ìǤ4øǍȯŊȲzĎRȰ ƑƏƐƒƎƏƓƎƐƗ ;íöL>Đ ½ƆĪ×NJ@`ȯcŵĕÕk$ĨG>ÿȄȬȇȮĉ öLĐmȄȠȏȮnjgiĕǣǩǗǟȈDzȏȠȊǻǣa<Ǚǭko,ķȴșȪȌǰȮȅŋ ēȰ ĜǓǫŇǭko,ķĵļķ<ȴǍȯŊȲņūȰ ƑƏƐƒƎƏƓƎƑƔ öLœçõ^ ÐƆÜĝƆm¤î3ĉēP ȯǸȧȗǶȨȐǰcmȍȮȕȂÄȭó<mĉēȰ ƑƏƐƒƎƏƓƎƑƕ öLȀȂȌȡ ľêO@`ȯƄ cmð>mŦȰ ƑƏƐƒƌƏƔƎƏƑ öLȀȂȌȡ ±ūź@`ȯWĕğČȭČĤ>ÿȄȬȇȮȭČĤĉē ȭŦůȰ öLĐmȄȠȏȮnjĽǤŅŻǯbÌ<ǘǛǝţk5ȑȊȎȫȮǻǍȯŊȲ¹½ Ȱ öLĐmȄȠȏȮnjğk,Aß<VkǤÑIJňÁǡöÔŃ:>ÿ ŁǦǤøǍȯ ŊȲľŔȰ öLĐmȄȠȏȮnjvĶČĤ6ƁģıǤ³ĔųŕǤ5ǣǪǭČĤģıbÌ<Ǥ1 kúǍȯŊȲá?uȰ ƑƏƐƒƎƏƕƎƏƓ öLȀȂȌȡ ľƆÏNJ@`ȯ¿=cmcmŸȭöLĐmĉēĐȰ öLĐmȄȠȏȮnjȀȥdzȁȥdzȓǵĶǤǯŋĜǙǭǻȪȟȉȬVkǤøÑËǍȯŊ Ȳá?uȰ ƑƏƐƒƎƏƕƎƏƔ öLȀȂȌȡ ćƆ¯r@`ƆȯȟǿȉȤȮȄȊȋ>ĐcmdzȮȂȇȮÄƊ öLĐmȄȠȏȮnjȅȘȦȗDZȊȀȤǤĿěöǣǒǑǟƯƵƷƶƆȀǼȏȨlăƆƞƫƤƆȀǼȏ ȨǤß<ǔĿěģıǤïĸǯ5ǙǭǍȯŊȲ*¼őźȰ ƑƏƐƒƎƏƕƎƑƐ öLȀȂȌȡ ƩǁƿƶƵǂǂƿǁƆƝǁƎƆƣƿƸƱƾƾƵǂƆƛDŽƳƸƾƵǁƉȠȤȬȚȬĐcmƊ ȓDzǷȗǶȮȦȡnjƦƿƼƵƳDŽƼƱǁƆƳƸƱǀƵǁƿƾƵǂƆƍƳƵƼƼDŽƼƱǁƆƽƱƳƸƹƾƵǂƆƶƿǁƆǀǁƿǃƵƹƾƆƶƿƼƴƹƾƷǍȯŊȲ ÖùMnȰ ƑƏƐƒƎƏƕƎƑƕ ;íöL>Đ ùBƆźť@`ƉƉÅƊȗȁõ^ǿȮȕȂƆmŁžQƊ ȓDzǷȗǶȮȦȡnjĞŌWǤȀȣȮǹȂýŶXǍȯŊȲcÍ+Ȱ ƑƏƐƒƎƏƖƎƏƐ öLȀȂȌȡ ùƆ´Ɔ@` ȯWĕţmĉēƆ1ū8ŝȄȬȇȮ/©¥Ȱ öLĐmȄȠȏȮȭģıöímȄȠȏȮnjş;ȀȂȌȡǤĂŢǡǼȧȀȬ;ȀȏșȂǤ ǍȯŊȲÖùMnȰ ƑƏƐƒƎƏƖƎƐƘ öLȀȂȌȡ àūƆS@`ƆȯŨ÷ÊcmƆîĢŎƊNjľ»Ɔ}n@ `ȯŨĕ>ĐcmcmŸNJŎȰ ȓDzǷȗǶȮȦȡnjǎĘƐŦǏȟdzȂcĶĄŕĂŢŠĒǣǒǗǭĸűþŴŞ1kƬƸƱƾƻƒǤ ȓȧǰȬȎĂñňÁNjǎĘƑŦǏİæȭĠxýȭĀÎă1kǠǐǬǓǞƜƱƑƋȀǼȏȨ51 kǠǐǭƤƫƚƩǍȯŊȲù@NjëwīŭȰ ƑƏƐƒƎƏƖƎƑƑ öLȀȂȌȡ ·"@`ȯȠȑȆȇcm>mŦȭģıĉēȭęȁȂȎ öLĐmȄȠȏȮnjƂÆęģıǤĸŅńǤ1kÑËǡĿěȐȊȉǍȯŊȲá?uȰ ȪȗDZȮȄȬȇȮ/©¥Ȱ ƑƏƐƒƎƏƖƎƑƕ öLœçõ^ ėƆêƆ@`ȯŨcm<mĉēöʼnj<mĉēż öLĐmȄȠȏȮƆnjǼȨȇȉǷȬŏǤ5ǡ¡ũ<ȂȎȩȂĚƍƠƠƭƆŷp7ǤŲĂǡ [©¥Ȱ ǜǤøƍǍȯŊȲsYȰ ƑƏƐƒƎƏƖƎƒƏ ƑƏƐƒƎƏƗƎƏƐ öLȀȂȌȡ ƬƸƿǂƸƱƾƱƆƛƱǁƍƧDŽƾ@`ȯƭƵƼƆƚDžƹDžƆƮƾƹDžƵǁǂƹǃLjƌƆƢǂǁƱƵƼƆȰ ȭƏƑ ƑƏƐƒƎƏƘƎƏƕ öLȀȂȌȡ öLĐmȄȠȏȮȭģıöímȀȧȮȃȄȠȏȮnjƪDŽƱƼƹǃLjƆƜƿƾǃǁƿƼƆƶǁƿƽƆưƵƱǂǃƆǃƿ ƦƵƾƙƩǁƿǃƵƹƾǂƆƚƷƷǁƵƷƱǃƹƿƾƆƱƾƴƆƝƵƷǁƱƴƱǃƹƿƾǍȯŊȲÖùMnȰ ȓDzǷȗǶȮȦȡnjǎĘƐŦǏȢȈǸĮĈaûǓǫȓDzǷȠȑȦȨǤōǣśǭNjǎĘƑ ÓùƆÝ@`ȯ¿cmcmŸómġĉēĐȰNjBƆª ŦǏijŕȢȍDZǵȮȇȮȭȂȗDZȬǾȀȬƍƐƍȧȬũƉƬƐƩƊǤ2¸ĂöǣǒǗǭÑIJǍȯŊȲ ź@`Ɖó<mĉēƊ ƅZ(NjzR°Ȱ ƑƏƐƒƎƏƘƎƒƏ öLȀȂȌȡ Çâč@`ȯfĹ'ĖĐm ŁcmŸcmȰ öLĐmȄȠȏȮnjģı,)öóÑIJȑȊȎȫȮǻň°ǣJǗǟǍȯŊȲľĦ²Ȱ ƑƏƐƒƌƏƗƌƏƑ öLȀȂȌȡ ƬƸƿǂƸƱƾƱƆƛƱǁƍƧDŽƾ@`ȯƭƵƼƆƚDžƹDžƆƮƾƹDžƵǁǂƹǃLjƌƆƢǂǁƱƵƼƆȰ öLĐmȄȠȏȮȭȭģıöímȀȧȮȃȄȠȏȮnjƪDŽƱƼƹǃLjƆƜƿƾǃǁƿƼƆƶǁƿƽƆưƵƱǂǃƆǃƿ ƦƵƾƙƩǁƿǃƵƹƾǂƆƚƷƷǁƵƷƱǃƹƿƾƆƱƾƴƆƝƵƷǁƱƴƱǃƹƿƾǍȯŊȲÖùMnȰ 研究トピックス(1):バイオフォーラムなどのセミナー開催状況 Ų%¶® ŴmĐ Ŏéĭȯy'Ȱ ƑƏƐƒƎƐƏƎƑƐ öLȀȂȌȡ ],~@`ȯ\ċöímĉēȰ ƑƏƐƒƎƐƏƎƑƗ öLȀȂȌȡ ƮƼǁƹƳƸƆơƱǁǃƼ@`ȯƦƱLJƆƩƼƱƾƳƻƆƢƾǂǃƹǃDŽǃƵȰNjƦƱƾƱƺƹǃƆơƱLjƵǁƍ ơƱǁǃƼ@`ȯƦƱLJƆƩƼƱƾƳƻƆƢƾǂǃƹǃDŽǃƵȰ DzțȬȎIȭŎéȇDzȎȨȯŊNj«đúȰ öLĐmȄȠȏȮnjţk_ȯƷƵƾƵƆƱƽǀƼƹƶƹƳƱǃƹƿƾȰǤŊǍȯŊȲľĦ²Ȱ ȓDzǷȗǶȮȦȡȭģıöímȀȧȮȃȄȠȏȮnjƦƿƼƵƳDŽƼƱǁƆƳƸƱǀƵǁƿƾƵǂƆƹƾƆǀǁƿǃƵƹƾƆƶƿƼƴƹƾƷ ƱƾƴƆǀǁƿǃƵƿǂǃƱǂƹǂƆƳƿƾǃǁƿƼǒǪǥƜƸƱǀƵǁƿƾƵǂƆƶƿǁƆǃƸƵƆƟƿƼƴƹƾƷƌƆƚǂǂƵƽƲƼLjƌƆƱƾƴƆƚƳǃƹDžƱǃƹƿƾ ƦƱƹƾǃƵƾƱƾƳƵƆƿƶƆƫDŽƛƹǂƜƨǍȯŊȲÖùMnȰ ƑƏƐƒƎƐƏƎƑƘ öLȀȂȌȡ åŐƆÒE@`ƉÓcmmůNj>möómĉēůƊ ȓDzǷȗǶȮȦȡnjƯƞƠƟǡǜǤDqǣǪǭĿěöÑËǡNjüǡǤŴǮǬǍȯŊȲ ëwīŭȰ ƑƏƐƒƎƐƐƎƐƔ öLȀȂȌȡ ù½NJnÙ@`Ɖ¿=cmcmŸöLĐmĉēĐƊ ȓDzǷȗǶȮȦȡnjöŽǡǧ ŽǣǒǗǭTį-öǡ8&ÙāǤŴǍȯŊȲ*¼ő źȰ ƑƏƐƒƎƐƐƎƑƏ öLȀȂȌȡ ƦƹƳƸƵƼƱƾƷƵƼƿƆƜƱƽǀƱƾƵƼƼƱ@`ȯƮƾƹDžƵǁǂƹǃLjƆƿƶƆƥƿƾƴƿƾȰ öLĐmȄȠȏȮȭďĕcmúăĉē\ą§¦ÊnjȇȬȔǻŕǤöǡěóǍȄ ȠȏȮnjƢƾǂƹƴƵƆƨDŽǃƆƦƹǃƿƳƸƿƾƴǁƹƱƼƆƛƹƿƼƿƷLjƙƆƫƿƼƵƆǃƸƵƆƟƐƍƟƿƚƭƩǂLjƾǃƸƱǂƵƆƈƞƾƴƿƷƵƾƿDŽǂ ƫƵƷDŽƼƱǃƿǁƈƆƚǃǀƹƶƐǍȯŊȲHùŔFȰ ƑƏƐƒƎƐƑƎƏƔ öLȀȂȌȡ hūƆ!dƆ@`ȯ6cmŚmöLĐmŦȰ öLĐmȄȠȏȮnjǃƽƫƧƚȭƬƽǀƛǣǪǭȇȬȔǻŕGǤ#èňäȀȂȌȡǍȯŊȲ »źȰ ƑƏƐƒƎƐƑƎƏƕ öLȀȂȌȡ ơƱƾƾƱƆƞƾƷƵƼƲƵǁƷƍƤDŽƼƻƱ@`ȯȚȘȦDzcm>mŦȰ ȓDzǷȗǶȮȦȡnjȓǻȌȧǰǤƑǞǤƩǁƿƷǁƱƽƽƵƴƆƜƵƼƼƆƝƵƱǃƸƆġǡǜǤöímăĬ ƭdžƿƆƛƱƳǃƵǁƹƱƼƆƩǁƿƷǁƱƽƽƵƴƆƜƵƼƼƆƝƵƱǃƸƆƬLjǂǃƵƽǂƆƱƾƴƆǃƸƵƹǁƆƛƹƿƼƿƷƹƳƱƼƆƫƵƼƵDžƱƾƳƵǍȯŊȲ ÖùMnȰ ƑƏƐƒƎƐƑƎƐƏ öLœçõ^ ėƆôÏ@`ƉdzȨȡcmÈí1köím1ūƊ ȓDzǷȗǶȮȦȡnjƜƿƽǀƼƵLJƆƳƿƽǀƿǂƹǃƹƿƾƆƿƶƆǃƸƵƆƫƧƚƆƵƴƹǃƿǂƿƽƵǂƆƹƾƆǀƼƱƾǃƆƿǁƷƱƾƵƼƼƵǂǍȯŊ ȲsYȰ ƜƸǁƹǂǃƹƱƾƆƛǁƵDŽƵǁ@`ƆƉƜƬƫƬƌƆƫƢƤƞƧƊNjƝƹƱƾƱƆƛDŽljƱǂ@` ƑƏƐƒƎƐƑƎƐƒ öLœçõ^ ƉfĹ'Ė ŁcmŸcmƊNjưƱƴƱDžƆƩƎƆƠLjƱdžƱƼƹ@`ƆƉŨ ĘƒƐUÈíȓDzȌǻȀȬȞȁdzȡŲ%ȯŊȲ¹½ȭsYȰ ÷ÊcmƊNjơƿƻDŽǃƿƆƧƱƻƱLjƱƽƱ@`ƉŨ÷ÊcmƊNjȱI ƑƏƐƒƎƐƑƎƐƕ öLȀȂȌȡ Ćƀk@`ȯ?Ľcmȭ:©Ȱ öLĐmȄȠȏȮnjŜŗǒǪǥƃ1¬<ƆǃƫƧƚţkǤňÁǍŲ%ȯŊȲ?Ľ Ȱ ƑƏƐƒƎƐƑƎƑƔ öLœçõ^ KŧƆ®0e@`Ɖïĕŀ¨Úó<mĉēƊ ȓDzǷȗǶȮȦȡnjǝǢŖƃř(çǔ¢ǖķȇȬȔǻŕĥµËŝňÁǤȗȪȬȌDZǰǍ ȯŊȲÞĺ°Ȱ ƑƏƐƒƎƐƑƎƑƕ öLȀȂȌȡ ½ÀŪłk@`ȯcŵcmcmŸ>mĉēĐȰ ģıöímȄȠȏȮȭöLĐmȄȠȏȮnjÂČĤġǤǤĊħȭĦ£ǯ5Ǚǭ1 kģıȢǸȐȃȡǍȯŊȲÖùMnȰ 研究トピックス(2):その他の大学ホームページ(HP)に掲載されたトピックス ĩİ{õ ĈS¶ ĈË ƅƉƁŵ+Z Ě +¢9Oƙ6¢úPS6«§JƊŮƗƓƆ¶Sżƕ žƗƚŌTÊ9OƙāPS«qS²ºżƕžƗƚŌ 6¢úPS6«§JƊŮƗƓƆ¶SżƕžƗ+¢ĕ,yşÇ=«A¶SĀĕĒ, «Añ£ªN ĩĹĽľľĽĕıłĽŁĽŁĹŁ9OƙƊŮƕƑƕƆPS«§S¶ƚŌĒ yŨš²ºŔ¶SĎåħķłĿłĻŊĕĭĹņņĹńŅŠ{õ Á,yƙā¬PSÇ=«A¶SĀƚŌPČ 9OƙāPS«qS²ºżƕžƗƚ Ě «AŸźƃƏ _ĕìy _²ºYš°ÙêŔŌijļĹĕīłŇńŁĵĿĕłĺĕĤĽłĿłĻĽķĵĿĕĥļĹŀĽŅņńŊĕåšīĤĥėŅĕĤĹŅņĕŃĵŃĹńŅ łĺĕěęĚěĕŠûţūťŘŚ Ě «Añ£ªN Ċ ĕ.Ōýŋ,y Ç=«A¶SĀý²ºYĕĊ .ĕ¨V²ºDš°ÙŔbPSŞć#ŗūŚ üS¼ġĝGPŞĤĹŅņĕİĵŃĹńŅòŬ;ò Ě «Añ£ªN `ƙp_ƚĕþŌĕt,y Ç=«A¶SĀ²ºYĕ`ĕþŋSxxΨ/²ºDĘıİĦš°ÙŔb PSŞć#ŗūŚüS¼ġĝGPŞĤĹŅņĕİĵŃĹńŅòŬ;ò ě «Añ£ªN ē2ƙ ²ºYƚŌ Ðy Ç=«A¶SĀŌ÷«§S²ºżƕžƗš yşēƋƔŹűŵƅ2½š°Ü Ŕ¾I¶SŭŴƄƎƗÀÛƙİįģIJƚšųƕƑůƕ¦Š{õ Ĝ «Añ£ªN ē2ƙ ²ºYƚŌ Ðy ÷«§S²ºżƕžƗĕ yşēƋƔŹűŵƅ2½šêŠ[Řŝ¾I¶S ŭŴƄƎƗÀÛƙİįģIJƚŞĥłŀŀĹŁņĵńŊŔ{õŗūáŗūťŘŚ Ĝ «AŸźƃƏ «AŸźƃƏS¶ĕÔyŌ]2Ũš)ÓêŔŎĨĿłĶĵĿĕĮĹĸĽķĵĿĕĦĽŅķłňĹńŊŏŷů ƅšŎĬĹŊĕIJķĽĹŁņĽĺĽķĕģńņĽķĿĹŅŏşŘŝÅŗūťŘŚ Ğ SĀ' dtěĞegĕÇ=«A¶SĀQ3ăyiŬw×؝، ğ SĀ' ŶƔƗƈƓÌtzùżƎƇƗć# ğ «AŸźƃƏ Ġ ÔĕóyŌ]ð 2ƙÔ²ºYƚ BUyŌ>ó<y «AŸźƃƏŌ ĔKĕ%SĀąŌ¡ĕ8\yŌĕt,yŌĕ" ĬIJĴŷůŲƕźíhć# «Añ£ªNŌ ,yŌ1ÔĕFRyŌĂĕ*ÿ2 4§«A7¶ Ġ «AŸźƃƏ ġ «Añ£ªN ĒÁ²ºYŋS« Ģ Ģ ƒŲŽƕųƊŮź#ŸƕƌŹŰƏŎÄÍ+šoLœŨ7¯ŠŒŖŪ!oLŤŏć# BUy SĀ' «Añ£ªN _ĕ6Ōĕt,y Ç=«A¶SĀĕ«AŸźƃƏS¶ĕBUyŔŎíé³ŲƁżůòŏşŎ× ãPòŏŬ;òƘ Ç=«A¶SĀĕĒÁ²ºYŞć°šC¹ƎƂƈƀšÕÖŔŎ¼ĝęGāf ŢśŦŜCáŏ޼Ĝ&òƘ ěęĚĝƙdtěğƚeĝĕPSċĕ«A¶S²º¶ƙ Oè·ƚćàĕV Ç=«A¶SĀĕ²ºYš_6ƙSØxΨ/²ºDĘĘIJİĦŔěęĚĜe g§SÏuQ3òŬ;ò Ģ SĀ' ¼Gŋā¬PSŋƎƂƈƀ¬¶S²ºżƕžƗŋƎƂƈƀíh Ģ SĀ' ŶƔƗƈƓÌtzùĕŷƍƗżƎƇƗć# Ěę «Añ£ªN ăRĕð,y Ç=«A¶SĀĕăRĕð,yŨŔ)?²ºŠŧũ¿ÒšſůŻŤšÝ)«Æ ôŬ°Ü 研究トピックス(2):その他の大学ホームページ(HP)に掲載されたトピックス ĩİ{õ ĈS¶ ĈË ƅƉƁŵ+Z Ěę 4§«A7¶ ÚĂŋ,y āc»ÃĂĒ½Sşšø|íhW Ěę «Añ£ªN ŋ",yŌ ŋÐy ? Ěę «AŸźƃƏ _ŋìy ? Ěę «AŸźƃƏ ¥^ÉĄy `_±»`_}_Sŋ«mŔÇ=«A¶SĀŬßE ĚĚ «AŸźƃƏ (ïčy 4§Sö®~Āí¤Ő4§šjũšëŬÞŕőć#ƙäƝ(ïčƚ ĚĚ SĀ' Ŏ¼ěGŋā¬PSƖPĉf»PSÌø|ŋ¨/íÊŏć# Ěě SĀ' ¼Gŋā¬PSŋƎƂƈƀ¬¶S²ºżƕžƗŋƎƂƈƀíh Ěě 4§«A7¶ 0ŋµkĕyŌîŋĕ2 āf»6¸Ē½Sşø|yŬW Ěě SĀ' ¼ĢGŎā¬PSHĐáPòŏŞSĀšĝe«ě@ŔPòş$´òŬ;ò Ěě 4§«A7¶ ďĈƘWđ4§ÂvØËšñæVâđŠ4§«A7¶S¶šS«ĚĠ@Ŕ=ĖĖ ŗŨŠŌS«ĀĆšƛœŨƜŬ©:ŘŌtÈ$´ËşŘŝÙlŗūťŘŚō Ěě «AŸźƃƏ Ñînd9OƙÔ²ºYƚ Ç=«A¶SĀÔ²ºYĕÑîndĕXD²ºDš°ÙŔrsÊMPŞć#ŗūŚ üS¼ġĞGPŞĤĹŅņĕİĵŃĹńŅòŬ;ò Ěě «AŸźƃƏ ačy Ç=«A¶SĀĕačĕyšÇçŔŭƐƒŴ5SŔ-¦řŪƅƁƋƑƕŵšĎå ĥļĹŀĽķĵĿĕıĹňĽĹʼnŅƙĪŀŃĵķņĕĺĵķņłńĕĝĚƚŠ{õŗūťŘŚƘ ࢟ࣕࣥࣃࢫ࣐ࢵࣉ ᅜ㝿ὶ㤋 ㏣ศᑅ 㻣ྕ㤋 ⚄ᒣ⌫ᢏሙ 㞝㣕㤋 㻝ྕ㤋 ṇ㛛 ᭷㤋 ᮏ㤋 㻝㻜ྕ㤋 Ᏺ⾨ᡤ 㻟ྕ㤋 ⚄ᒣኳᩥྎ 㻝㻞ྕ㤋 䜶䝇䜹䝺䞊䝍 䜶䝇䜹䝺䞊䝍 䜶䝇䜹䝺䞊䝍 㻠ྕ㤋 ➨㻝 ◊✲ᐊᲷ 㻝㻟ྕ㤋 㥔㍯ሙ ୪ᴦ㤋 ⚄ᒣ䝩䞊䝹 㻢ྕ㤋 㻡ྕ㤋 ➨㻞ᐇ㦂ᐊᲷ 䝞䝇ሙ ⥲ྜయ⫱㤋 ୰ኸᅗ᭩㤋 ➨㻞 ➨㻞 ◊✲ᐊᲷ ➨㻝 ᐇ㦂ᐊᲷ 㥔㍯ሙ 㻝㻢ྕ㤋 ㄢእάືᲷ ➨㻡 ◊✲ᐊᲷ 㻝㻝ྕ㤋 Ⳮⵦụ Ⲕᐊ ➨㻟 ◊✲ᐊᲷ ➨㻠 ◊✲ᐊᲷ 㻥ྕ㤋 㻝㻡ྕ㤋 ⚄ᒣ 䝔䝙䝇䝁䞊䝖 㻝㻠ྕ㤋 ⥲ྜ⏕⛉Ꮫ㒊㛵㐃ᰯ⯋➼ ྡࠉ⛠ 㓄ࠉ⨨ ➨㸯ᐇ㦂ᐊᲷ 㸯㸴ྕ㤋 ⏕㈨※⎔ቃᏛ⛉ ⥲ྜ⏕⛉Ꮫ㒊ົᐊ㸦㸯㹄㸧 ື≀⏕་⛉Ꮫ⛉㸦㹀㸯㹄㸧 㸷ྕ㤋 ⏕㈨※⎔ቃᏛ⛉㸦㸰㹄࣭㸱㹄㸧 㸯㸳ྕ㤋 ⏕ࢩࢫࢸ࣒Ꮫ⛉࣭ື≀⏕་⛉Ꮫ⛉ ʮᣃငಅܖٻዮӳဃԡᅹܖᢿų࠰إ ᇹᲮӭųᲬᲪᲫᲭᲢᲬᲯ࠰Უ ࠉࠉࠉࠉⓎࠉ⾜ࠉ᪥ࠉ㸰㸮㸯㸲㸦ᖹᡂ㸰㸴㸧ᖺ㸴᭶㸯᪥ ࠉࠉࠉࠉⓎࠉ⾜ࠉ⪅ࠉி㒔⏘ᴗᏛ⥲ྜ⏕⛉Ꮫ㒊 ࠉࠉࠉࠉࠉࠉࠉࠉࠉࠉࠛࠉி㒔ᕷ༊ୖ㈡ⱱᮏᒣ ࠉࠉࠉࠉࠉࠉࠉࠉࠉࠉ7(/ࠉࠉ)$; ࠉࠉࠉࠉࠉࠉࠉࠉࠉࠉKWWSZZZN\RWRVXDFMSGHSDUWPHQWQOV