Comments
Description
Transcript
無線LAN環境における結合振動子の 同期現象に基づくメディアアクセス
1 ! IEEE802.11 LAN : CSMA/CA ! LAN " – CSMA/CA 2 3 ! ! [0, CW(Contention Window)] ! AP LAN SP-MAC # # ! CW " 2 SP-MAC 1. 2. CSMA/CA 4 ! 5 ! ! Ex: ! , dθ i K = ωi + dt N ! ! N ∑ sin(θ j − θ i ) (i =1,2,… N) j =1 Ex: i K i ( ( ) ) N SP-MAC 6 N ! ! SP-MAC 7 ! CSMA/CA Backoff = Random() × SlotTime [0,CW] 1 ! 1 dθi K N = ωi + ∑ sin(θ j − θi ) dt N j =1 ! ! ! ! ! RTS/CTS ( IEEE802.11g CW=15) N ! SP-MAC Backoff = ((| cosθi (t) | ×α)mod N) × SlotTime N: α = 100 cos 8 SP-MAC 1 9 cos cos 1. 2. N cosθ1(t) cosθ3(t’) AP ωi,' θi(0) cosθ2(t’) cosθ2(t) cosθ1(t’) cosθ3(t) t SP-MAC N 1 3 2 t’ 2 10 SP-MAC 3 3. 11 4. ' AP K, AP Δt θi(t) ' N=3 ' θ1(t), θ2(t), θ3(t) dθi K N = ω + ∑ sin(θ j − θi ) i ' dt N j =1 1 3 2 1 N,' ωi,' 3 ' θi(0),' K,' ID i,' Δt 2 SP-MAC 4 12 5. AP ID SP-MAC 5 SP6MAC θi(t) AP 3 N=3 1 ' ' ' Backoff = ((| cosθ3 (t) | ×α)mod 3) ×SlotTime ' Ack ' ' • • ' Data 13 Collision Data Data 3 2 1 IFS ACK CSMA/CA 3 6. ' ' ' 2 ' ' ' 14 15 ! SP-MAC CSMA/CA ! ! UDP or TCP ! SP-MAC CSMA/CA IEEE802.11g (54Mbit/s) 100Mbps 10ms – 100Mbps 10ms Receivers Router ! Wired Senders AP WLAN 1 1 16 SP-MAC K Δt ns2 (ver.2.34) 1000 [byte] AP 17 θi(0) ω 250 [packet] UDP(Rate:30Mbit/s), TCP(CUBIC) 5 10 [ms] (0, 1) [0, 2] [rad] [rad/s] 60 [s] 5, 10, 20 10 UDP UDP20 18 Original CSMA/CA ! SP-MAC 1.0 3.2 10.2 10 The number of collisions 55234.9 94796.6 135802.5 The number of collisions The number of flows Original CSMA/CA SP-MAC 5 10 20 SP-MAC 3000 ! 19 2500 2000 1500 1000 500 8 6 4 2 0 0 0 20 40 Time [s] 60 0 20 40 Time [s] 60 UDP ! SP-MAC 40 35 30 25 20 15 10 5 0 Original CSMA/CA 10 The number of flows 20 CUBIC-TCP Total throughput [Mbit/s] UDP The number of flows Original CSMA/CA SP-MAC 5 18446.9 0 10 56168.3 0 20 75248.9 1.4 5 40 35 30 25 20 15 10 5 0 21 UDP ! SP-MAC UDP TCP Original CSMA/CA SP-MAC CUBIC-TCP 22 ! SP-MAC CSMA/CA ! 5 10 The number of flows 20 0.25 Standard deviation [Mbit/s] Total throughput [Mbit/s] ! SP-MAC ! SP-MAC CUBIC-TCP 20 Original CSMA/CA SP-MAC 0.2 0.15 0.1 0.05 0 5 10 The number of flows 20 23 CUBIC-TCP 24 ! CSMA/CA ! SP-MAC Total throughput [Mbit/s] 35 30 20 25 ! SP-MAC CSMA/CA SP-MAC ! SP-MAC – CSMA/CA 25 # # 20 15 – CSMA/CA # CSMA/CA 10 5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Number of CSMA/CA terminals ( 22 (C) ( 26 ) 24500091, 26420367) 26 1. IEEE Standard, “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” ANSI/IEEE Std 802.11, 1999. 2. J. Zheng and E. Regentova, “I-Poll: Improved polling scheme for augmenting voice support in IEEE 802.11 PCF,” IEICE Trans. Commun., E89-B, 6, pp.1964-1967, 2006. 3. D. D. Falconer, F. Adachi, and B. Gudmundson, “Time division multiple access methods for wireless personal communications,” IEEE Commun. Mag., 33, 1, pp.50-57, 1995. 4. P. Cheng, F. Zhang, J. Chen, Y. Sun, and X. Shen, “A distributed TDMA scheduling algorithm for target tracking in ultrasonic sensor networks,” IEEE Trans. Industrial Electronics, 60, 9, pp.3836-3845, 2012. 5. M. F. Tuysuz, H. A. Mantar, G. Celik, and M. R. Celenlioglu, “An uninterrupted collisionfree channel access scheme over IEEE 802.11 WLANs,” Proc. IEEE WCNC2013, pp.386-391, 2013. 6. K. Sekiyama, Y. Kubo, S. Fukunaga, and M. Date, “Phase diffusion time division method for wireless communication network,” Proc. IEEE IECON 2004, 3, pp.2748-2753, 2004. 7. Y. Kubo and K. Sekiyama, “Communication timing control with interference detection for wireless sensor networks,” EURASIP Journal on Wireless Communication and Networking 2007, 1, 10pages, 2007. 8. J.A.Acebr'on, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler, “The Kuramoto model: A simple paradigm for synchronization phenomena,” Rev. Mod. Phys. 77, pp.137-185, 2005. 27 9. J. Buck, “Synchronous rhythmic flashing of fireflies. II.,” Q. Rev. Biol., 63, 3, pp. 265-289, 1988. 10. J. Pantaleone, “Synchronization of metronomes,” Am. J. Phys. 70, 10, pp. 992-1000, 2002. 11. A. T. Winfree, The Geometry of Biological Time, Springer, 1980. 12. S.H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,” Physica D, 143, pp.1-20, 2000. 13. K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, “Clustering and synchronization of n Huygens' clocks,” Physica A, 388, pp.5013-5023, 2009. 14. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, 1984. 15. Network Simulator - ns (version 2), available from http://www.isi.edu/nsnam/ns/ 2014. 16. , , , , ,“ LAN ,” IN2013-157, 2014. ,