Comments
Description
Transcript
アトミックGS 12
場の理論と物性論における トポロジカル量子現象 ~スカーミオンを中心に ~ 2012/8/23 Muneto Nitta (新田宗土) Keio U. (慶應義塾大学) ① スピノールBEC 共同研究者 cond-mat. 川口由紀,小林信吾,上田正仁(東大本郷), 小林未知数(東大駒場), 内野瞬(スイス) ② 多成分BEC 笠松健一 (近畿大),竹内宏光(広島大), 坪田誠(大阪市大),衛藤稔(山形大) ③ BECにおける人工ゲージ場 川上巧人, 水島健, 町田一成(岡山大) ④ フェルミ気体・超伝導 高橋大介(東大駒場),土屋俊二(東京理大), 吉井涼輔(京大基研), Giacomo Marmorini(理研) ⑤ 非可換統計 安井繁宏, 板倉 数記(KEK),広野雄士(東大/理研) ボゾン系 フェルミオン系 Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) 1924 Bose Einstein Condensation(BEC), Bose & Einstein BEC occurs when de Broglie wave length λ of particles is comparable with the mean distance. E= 2 λT−2 ≈ k BT 2m λT = h2 2πmk BT Transition temperature T0 = 3.31 N mk B V 2 Number of condensates T N0 = 1− T N 0 3/ 2 2/3 ``Pure” BEC (99% is BEC) Cold atomic gases 1995 cold atomic bose gas 87Rb, 23Na, 7Li Cornell (Colorado), Ketterle(MIT) & Wieman (Colorado) 2003 cold atomic fermion gas JILA(Colorado), MIT doppler laser cooling magneto-optical trap evaporative cooling Temperature ~ 10- 6,10- 7 K Number ~ 106, Size ~ 10- 3cm trapping potential 1 V = Mω 2 r 2 2 ω : frequency M : mass of atoms Mω 2 R 2 p2 3 ≅ ≅ k BT 2 2M 2 R ≅ ≈ 1/ 3 λT = p MωR N de Broglie wave length transition temperature Ψ R R≅ N 1/ 6 Mω mean particle distance ωN 1 / 3 3 6 T ≅ ≈ 10 −6 [ K ] for ω ≈ 10 [ Hz ], N ≈ 10 kB Scalar BEC, 4He superfluid Bogoliubov theory for weakly interactive Bose gas (with point interaction) g V ( r ) = gδ ( r ) point interaction mean field approximation ψ ( x ) = Ψ( x ) + φ ( x ) wave function for condensation fluctuation (phonon) : non-condensed component Scalar BEC, 4He superfluid Gross-Pitaevskii (nonlinear Schrödinger) Equation ∂ψ 2 2 i = − ∇ + Vext − µ + g ψ ∂t 2 M µ 2 δE ψ = δψ * 4π 2 a S g≡ M M : mass of atoms a S : s-wave scattering length 1 Vext(r) : trapping potential Vext = Mω 2 r 2 2 : chemical potential Gross-Pitaevskii energy functional 2 g 4 2 2 ∇ψ + (Vext − µ )ψ + ψ E [ψ ] = ∫ d r 2 2M 3 For d=1 with Vext=0, it is integrable. [Zakharov-Manakov (‘74)] It is used in optics and water waves. Examples are bright soliton and dark soliton. vortex y real Order Parameter Space(OPS) space = U(1) Superconductors under magnetic field Flux quantization k ∈ π [U (1)] ≅ Z 1 hc hc Φ = k = Φ 0k Φ 0 = = 2.07 × 10−15 [ weber ] 2e 2e x U. Essmann and H. Trauble Max-Planck Institute, Stuttgart @ Oslo Superconductivity Lab http://www.fys.uio.no/super/vortex/ Physics Letters 24A, 526 (1967) Gallery of Abrikosov Lattices in Superconductors quantization of circulation k ∈ π 1[U (1)] ≅ Z ∫ dr ⋅ v ψ = f ( r )e eff = k M v eff 1 = 2i Ψ ∗∇Ψ − Ψ∇Ψ ∗ Ψ ∗Ψ ikθ energy k2 1− 2 2 mφ r system size Λ T = 2πv 2 k 2 log Λ 2 4 π v Inter-vortex F = distance R R force tension Vortex nucleation under rotation M Rotation in rotating frame ∇ → ∇ − i Ω × r 2 2 M g 2 3 E [ψ ] = ∫ d r Ω × r ψ + (V − µ )ψ + ψ ∇ − i 2 2M 4 Abo-Shaeer, Raman, Vogels, Ketterle, Science 292, 476-479 (2001) A proof of superfluidity BEC/BCS Crossover Fermions with pseudo spin Zwierlein, Abo-Shaeer, Schirotzek, Schunck & Ketterle Nature 435, 1047-1051 (23 June 2005) A proof of superfluidity in all range of BES/BCS Artificial Gauge Field A review: J.Dalibard et.al., Rev. Mod. Phys. 83, 1523–1543 (2011) Two-state model e Two states { g , e } Hamiltonian g coupling Eigenstates of U = Dressed states eigenvalues Full state Born-Oppenheimer approximation Gauge A jl = i χ j ∇χ l field Neglecting ψ 2 , EOM of ψ 1 Gauge fields as Berry phase Synthetic magnetic fields for ultracold neutral atoms Lin, Compton, Jimenez-Garcia, Porto & Spielman, Nature 462, 628-632 (3 December 2009) 3 states interaction 1 dark state 2 bright states Adiabatic approx Synthetic magnetic fields for ultracold neutral atoms Lin, Compton, Jimenez-Garcia, Porto & Spielman, Nature 462, 628-632 (3 December 2009) A proof of artificial magnetic field Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) What is a Skyrmion? 1D Skyrmion =Sine-Gordon kink 1 1 π (S ) = Z 2D Skyrmion Model of nucleon in HEP π 2 (S 2 ) = Z 3D Skyrmion π 3(S 3 ) = Z T.H.R. Skyrme 3dim hedgehog A Nonlinear theory of strong interactions Proc.Roy.Soc.Lond. A247 (1958) 260-278 A Unified Field Theory of Mesons and Baryons Nucl.Phys. 31 (1962) 556-569 1D Skyrmion O(2) model (=sine-Gordon model) Bogomol’nyi completion 2E = [ ] ∫ dx (∂ θ ) ∫ dx (∂ xθ ) + cos θ = 2 2 x θ + sin 2 − 1 2 2 θ θ = ∫ dx ∂ xθ sin ± 2∂ xθ sin − 1 ≥ T1D 2 2 Bogomol’nyi-Prasad-Sommerfield (BPS) equation SG Topological charge Sine-Gordon T1D = ± ∫ dx∂ xθ sin (θ / 2 ) θ ∂ xθ sin = 0 kink = 2 ∫ dx∂ x cos(θ / 2 ) 2 k ∈π1(S1) = Z = 2[cos(θ / 2 )]x = −∞ x = +∞ O(3) sigma model 1. (Truncated model of) 2component BECs 2. Ferromagnet 1 2 E = (∇S ) S(x)=(S1,S2,S3) S 3 = +1 N 2 2 S =1 u=∞ 2 Target space = S2 S Stereographic S − iS2 u= 1 coordinate u 1 − S3 equivalent to CP1 model E= ∫ dr ∑α ∂αu (1 + u ) 2 2 2 u S S 3 = −1 u=0 (=lump, sigma model instanton) 2D Skyrmion Bogomol’nyi completion 2 ∂ ∑α α u 2 E= ∫d x (1 + u ) 2 2 ∂ u i∂ u 2 i (∂ u *∂ u − ∂ u *∂ u ) x y x y y x 2 ≥ TL = ∫d x ± 2 2 2 2 1+ u u 1 + ( ) BPS equation ∂ x u i∂ y u = 0 ∂ zu = 0 z ≡ x + iy ( ) 2D Skyrme topological charge TL = ± ∫ d 2 x = 2πk i (∂ x u *∂ y u − ∂ y u *∂ x u ) (1 + u ) 2 2 k ∈π 2 (S 2 ) = Z 2D Skyrmion BPS equation ∂ z u = 0 z ≡ x + iy u −1 k λi i =1 z − zi =∑ ∂ x u i∂ y u = 0 N S 3 = +1 u=∞ S u → ∞ (| z |→ ∞ ) u → 0 ( z → zi ) k =1 TL = 2πk k ∈π 2 (S ) = Z 2 S S 3 = −1 u=0 2 2D Skyrmion Cond-mat examples: Ferromagnet, quantum Hall systems Spin 1 BEC, Polar phase G U (1)Φ × SO (3) F ≅ H P ( Ζ 2 )Φ + Fx × U (1) Fz S 1Φ × S 2 F ≅ ( Ζ 2 )Φ + F G ≅ Ζ π 2 HP Choi, Kwon, and Shin, PRL 108, 035301 (2012) 3D Skyrmion φ1 ( x ) 2 ∈ C φ ( x) 2 S ≅ SU ( 2) 3 O(4) sigma model~Skyrme model π 3(S ) = Z 3 | φ1 |2 + | φ2 |2 = 1 S 3 U†U = 1, det U =| φ1 |2 + | φ2 |2 = 1 N: φ1 − φ2* U ≡ φ φ * ∈ SU ( 2) 2 1 Skyrmion ansatz f ( r )r ⋅ σ U ( x ) = exp i r → +12 , f ( r ) → 0 ( r → ∞ ) → −12 , f ( r ) → 1 ( r → 0) U = 12 (φ1 , φ2 ) = (1,0) 3 S S2 S: U = −12 (φ1 , φ2 ) = ( −1,0) Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) 2 component BEC/superfluid Gross-Pitaevskii energy functional in rotating frame 2 gij 2 2 2 2 ∇ψ i + (Vext − µi )ψ i + ∑ ψ i ψ j E [ψ ] = ∫ d r ∑ i, j 2 i 2mi 2 ∂ψ i 2 2 2 Ω i = − ∇ + Vext − µi + gii ψ i + gij ψ j − Ω ⋅ Lψ i ∂t Ψ2 2mi Ψ1 3 Atomic interaction g11 = g 22 ≡ g Trapping potential aij: s-wave scattering length - 87Rb S. B. Papp et al., Phys. Rev. Lett. 101, 040402 (2008) 85Rb - 87Rb 174Yb - 176Yb T. Fukuhara et al., Phys. Rev. A. 79, 021601 (2009) G.Modugno et al., Phys. Rev. Lett. 89, 190404 (2002) 41K Sigma model representation K.Kasamatsu., M.Tsubota, M. Ueda, Phys. Rev. A 71, 043611 (2005) Ψ1 = Ψ 2 φ1 nT φ 2 | φ1 |2 + | φ2 |2 = 1 S3 ( S 2 = 1 S2 † pseudo-spin: S = φ σφ = S x , S y , S z ) T σ : Pauli matrix E= ( ) [nT (g11 + g 22 + 2 g12 ) − 4(µ1 + µ2 )], 8 nT nT2 [nT (g11 − g 22 ) − 2(µ1 − µ2 )], c2 = (g11 + g 22 − 2 g12 ) c1 = 4 8 c0 = Ψ1 ≠ 0, Ψ2 = 0 2 nT 2 ( ) ∇ + ∇ + V j nT d r n S ∑ T α ∫ 2m 4 α mnT (v eff − Ω × r )2 + c0 + c1S z + c2 S z2 + 2 n 2 arg Ψ1 / Ψ2 T Ψ1 = 0, Ψ2 ≠ 0 phase structure g>g12 g=g12 g<g12 Anti-ferromagnetic SU(2) symmetric Ferromagnetic Ψ1 ≠ 0, Ψ2 = 0 | Ψ1 |=| Ψ2 |≠ 0 Sz Sy Sx 2 comp coexist Ψ1 = 0, Ψ2 ≠ 0 2 comp are separated 0.01 0.02 0.008 0.015 0.006 0.01 0.004 0.002 0.005 0 -12 -8 -4 0 4 8 12 0 |Ψ1|2 |Ψ2|2 SU(2)symmetric g=g12 SU(2) symmetric Massless O(3) model Coreless vortex = lump,2D Skyrmion π 2 (S ) = Z 2 Kasamatsu, Tsubota, Ueda Integer vortex 1 U(1) winding (Ψ1 , Ψ2 ) = ( f (r )eiθ , f (r )eiθ ) ~ eiθ (1,1) g12<0 attraction singular vortex(~1comp) g12>0 repulsion -> splitting Vortex molecule Repulsion balanced with internal coherent coupling (Rabi frequency) ∆E = − ( Ψ2 Ψ1e − i∆t + c . c .) (0,1) (1,0) * SineGordon kink Son-Stephanov(‘02) Kasamatsu-Tsubota-Ueda(‘05) 3D Skyrmion = vorton in two comonent BECs π 3(S ) = Z 3 Ψ1 = Ψ 2 φ1 nT φ 2 Khawaja & Stoof, Nature (‘01) Ruostekoski & Anglin (‘01) Battye, Cooper & Sutcliffe (‘02) | φ1 |2 + | φ2 |2 = 1 Herbut & Oshikawa (‘06) S 3 ≅ SU ( 2) φ1 − φ2* f ( r )r ⋅ σ = U ≡ exp i ∈ SU ( 2) φ φ * r 2 1 U†U = 1, det U =| φ1 |2 + | φ2 |2 = 1 Topological equivalence to 3D skyrmion Phase of Ψ1 Ψ1 1 0 = Ψ 2 @boundary Vorton 3D skyrmion 3 component BEC/superfluid Eto-MN, Gross-Pitaevskii energy functional Phys.Rev. A85 (2012) 053645 2 gij 2 2 2 2 ∇ψ i + (Vext − µi )ψ i + ∑ ψ i ψ j 3 ∑ E [ψ ] = ∫ d r i 2mi i, j 2 * − ω ψ ij i ψ j Vortex internal coherent coupling (Rabi frequency) trimer = CP2 Skyrmion (1,0,0) (0,1,0) (0,0,1) enegy density (ω12 , ω23 , ω31 ) = (0.01,0.05,0.05) asymmetric (ω12 , ω23 , ω31 ) = (0.05,0.05,0.05) symmetric (ω12 , ω23 , ω31 ) = (0.2,0.05,0.05) asymmetric BEC Vortex trimer Y-junction of domain walls Eto-MN, PRA85 (2012) 053645 Baryon = q-q-q QCD Y-junction of fluxes (not Δ) Ichie-Suganuma et.al (‘03) Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) §4-1 Brane annihilation Creating vortons and three-dimensional skyrmions from domain wall annihilation with stretched vortices in Bose-Einstein condensates Phys. Rev. A85 (2012) 053639 e-Print: arXiv:1203.4896 [cond-mat.quant-gas] Hiromitsu Takeuchi (Hiroshima U.) Kenichi Kasamatsu(Kinki U.), Makoto Tsubota (Osaka City U.) Related papers: ①Tachyon Condensation in Bose-Einstein Condensates e-Print: arXiv:1205.2330 [cond-mat.quant-gas] ②Analogues of D-branes in Bose-Einstein condensates JHEP 1011 (2010) 068 e-Print: arXiv:1002.4265 [cond-mat.quant-gas] Brane-anti-brane annihilation in BEC closed string production by brane pair annihilation Simulation by Takeuchi brane anti-brane 2nd component inside vortex -π π Experiments Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate B. P. Anderson et.al., Phys. Rev. Lett. 86, 2926–2929 (2001) (JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado) removing decay Dark soliton Untwisted vortex ring Our proposal Experiments Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate B. P. Anderson et.al., Phys. Rev. Lett. 86, 2926–2929 (2001) (JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado) removing decay Dark soliton Twisted vortex ring Vorton!! Brane annihilation with stretched string Ψ2has superfluid flow inside a vortex ring of Ψ1 stable vortex ring(vorton) brane Ψ1 Simulation by Takeuchi Fundamental string Ψ2 Ψ1 Pair anihilation anti-brane Phase of Ψ2 -π π g<g12 Massive O(3) sigma model ferromagnetic 1 2 E = (∇S ) + m 2 (1 − S32 ) 2 S(x)=(S1,S2,S3) equivalent to CP1 model E= ∫ dr G.S. N n3 = +1 u=∞ S2=1 Target space = S2 ∑α ∂ α u + m2 u 2 (1 + u ) 2 2 S − iS2 Stereographic u= 1 coordinate u 1 − S3 domain wall 2 V = m 2 (1 − S32 ) u G.S. S n3 = −1 u=0 Single domain wall n3 = +1, u=∞ Arrows viewed from N Phase separation n3 = −1, Wall solution U(1) phase u = 0 Bogomol’nyi completion for domain wall 2 2 2 ∂ u m u + α 1 ∑α E= ∫ dx (1 + u ) 2 2 ∂ u 2mu 2 * * ( ) ∂ ∂ 2 m u u u u + 1 1 = ∫ dx1 1 ± 2 2 2 1+ u 2 1+ u ≥ TW ( ) ( ) Topological charge BPS equation ∂ 1u mu = 0 TW = ± ∫ dx1 2m (u *∂ z u + u∂ z u * ) (1 + u ) 2 2 uw = e ± mx 1 + iϕ x1 = +∞ 1 − u 1− u = ±m = ± m ∫ dx ∂1 2 1+ u 2 1 + u x1 = −∞ 2 1 2 A pair of a domain wall and an anti-domain wall Ψ1 Ψ2 Ψ1 π phase (dark soliton) Fix π n3 = +1, u=∞ phase n3 = −1, u=0 Approximate solution A pair of a domain wall and an anti-domain wall Ψ1 Ψ2 π Ψ1 phase (dark soliton) Fix π n3 = +1, u=∞ phase Unwinding Approximate solution n3 = −1, u=0 A pair of a domain wall and an anti-domain wall Ψ1 Ψ2 π Ψ1 phase (dark soliton) Fix π n3 = +1, u=∞ phase Unwinding Approximate solution n3 = −1, u=0 ? ? 4 possibilities of domain wall ring Domain wall rings Ψ1 Ψ2 Unstable to decay Ψ1 Ψ2 Domain wall rings Ψ1 Ψ2 + 1∈π 2 (S 2 ) = Z Topologically Stable 2D Skyrmion Ψ1 Ψ2 − 1∈π 2 (S 2 ) = Z Wall annihilations in 3 dimensions Vortex-loops formed Brane-anti-brane with stretched string ψ1 ψ2 ψ1 Phase & amplitude Spin structure Exact analytic solutions All exact(analytic) solutions of ¼ BPS wall-vortex states Y.Isozumi, MN, K.Ohashi, N.Sakai Phys.Rev. D71 (2005) 065018 Bogomol’nyi-Prasad-Sommerfield (BPS) bound for vortex-domain wall E = ∫ dr ∑α ∂αu 2 2 (1 + u ) u 2 2 2 ∂ u i∂ u x y = ∫ dr 1+ u 2 2 ( + +M 2 ) ∂ z u 2 Mu ≥ TW + TV (1 + u ) 2 2 ± 2 ( i ∂ xu ∂ yu − ∂ yu ∂ xu * * (1 + u ) ) 2 2 ( ) 2 M u * ∂ z u + u∂ z u * ± 2 2 1+ u ( ) TV = 2 π ΝV vortex (2d Skyrmion) charge TW = ± M, 0 domain wall charge D-brane in a laboratory Kasamatsu-Takeuchi-MN-Tsubota JHEP 1011:068,2010[arXiv:1002.4265] Ψ1 (z > 0) z Wall position (log bending) Sz 1 sigma model 0.5 0 domain wall (z = 0) -0.5 Ψ2 (z<0) vorte x -1.5 Sz z x vorte x BEC -1 monopol e domai (boojum n wall ) y =0 Sz -2 0 2 4 r 6 8 Analytic (approximate) solution Untwisted loop B C A Twisted loop Vorton (n=1) Twisted loop Vorton (n=2) Untwisted loop Unstable to decay Twisted loop Phase of Ψ1 Phase of Ψ2 Twisted loop Vorton Phase of Ψ1 Phase of Ψ2 Twisted loop Knot soliton (Hopfion) Linking number = 1 Vorton Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) §4-2 Non-Abelian gauge field Artificial “SU(2) gauge field” stabilizes 3D Skyrmion Kawakami,Mizushima,MN & Machida Phys. Rev. Lett. 109, 015301 (2012) Non-Abelian gauge fields Non-Abelian gauge fields is induced on degenerate states by Berry phase. N+1 states N-1 dark states { DA } + 2 bright states Juzeliūnas, Ruseckas & Dalibard Phys. Rev. A 81, 053403 (2010) (N-1)x(N-1) gauge fields SU(2) gauge fields Ai = ∑ a ,i Aiaσ a We use A i = ∑ a ,i ˆσ x + y ˆ σ x ) + κ zz ˆσ x Aiaσ a = κ ⊥ (x Crossover of Skyrmions Crossover of Skyrmions 3D 2D 1D Plan of my talk §1 Introduction(BEC and Vortices) (13p) §2 Skyrmions (7p) §3 Multi-component BECs (7p+3p) §4 3D Skyrmions in BECs §4-1 Brane annihilation (4p+22p) §4-2 Non-Abelian gauge field (7p) §5 Conclusion (1p) §5 Conclusion • 位相的励起、特に渦やスカーミオンは、物性物理で広 く現れ、系の相やダイナミクスを支配する重要な自由 度である。 • 位相的励起を観測することで、系の自由度、対称性、 超流動性、超伝導性などがわかる(こともある)。 • 基礎物理(素粒子物理、ハドロン物理(QCD)、宇宙論) でも現れ重要。 渦やスカーミオンの物理学の構築に向けて 両分野の交流が不可欠