...

`é“H`ê\‰à‚®−w›ï”`\2002-09\p861-02\hon.txt [WYSIWYG]

by user

on
Category: Documents
4

views

Report

Comments

Transcript

`é“H`ê\‰à‚®−w›ï”`\2002-09\p861-02\hon.txt [WYSIWYG]
ú{à®wï æ 66 ª æ 9 †(2002)861_864
e‹~bgvZXÉæé V n‚«\Š`E€
ñŸdr‰ÉÞ¿ÌJ­Þ
g i p Y1
£
­ u1
ì [ Í v1
«
N j2
1¾zzH”®ïÐÔ䤆Š
2YÆZp‡¤†ŠÖ¼Z“^[
J. Japan Inst. Metals, Vol. 66, No. 9 (2002), pp. 861_864
Ý 2002 The Japan Institute of Metals
V_
Based Alloy Prepared by Thermic Process as New Anode Materials for
Lithium Rechargeable Batteries
Hideo Yoshinaga1, Seiji Dan1, Akio Kawabata1 and Tetsuo Sakai2
1Ako
Laboratory, Taiyo Koko Co., Ltd., Ako 678_0232
2Kansai
Collaborative Center, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563_
8577
Tin_based alloys are receiving much attention as new anode materials with high energy density for Li_
ion secondary batte­
ries. However, these alloys still show very poor cycle life because charge_discharge processes cause cracking and crumbling of
the anode by large volume changes in the alloys.
In order to overcome the problem, we have proposed vanadium_
based alloys which had very good ductility. Tin_vanadium
alloys were successfully prepared by thermic process in which vanadium_oxide was reduced by Al_metal to vanadium_
metal. The
obtained Sn_V alloys are mainly composed of Sn3V2 phase containing tin impurity. Cycle life of the alloy anode was significantly
improved by annealing it at 750‹
C because the amount of impurity tin was decreased greatly. The Sn3V2 alloy anode showed an in­
itial rechargeable capacity of 500 Ah/kg, keeping 400 Ah/kg even after 50 charge_
discharge cycles.
(Received April 22, 2002; Accepted June 3, 2002)
Keywords: lithium ion batteries, negative electrode material, vanadium alloy, thermic reduction, tin alloy electrode
oiWE€ÍCÊíCA‹~jE€ðÒ³ÜƵ½e‹~
1.

¾
bgvZXÉæèe‡àªì»³êéªC±ÌeoiWE
€‡à†ÉÍA‹~jE€â_f™Ìsƒ¨ª‚ZxÉÜL
sÌ̊`E€CI“ñŸdr̉ÉÞ¿ÉÍCŠ`E€
µÄ¢é½ßdqr[€nðÉæè±êçÌsƒ¨ð‚xÉ
ðÂtIÉz Eúo·é•”Þ¿ªp¢çêÄ¢éDµ©
ö­œŽµÄ‚ƒx»ðsÁÄ¢éD±êçÌvZXðo
µC•”Þ¿ÌGl‹M[§xÍ 370 Ah/kg Ɲ_lÉß
Ä컳ê邃xoiWE€Í kg –½è 10 œ~öxÆ
­C±êÉÖíéVK‚eʉÉ޿Ƶćàn޿̤
ñíɂ¿ÈÞ¿Å é½ßCdr»¢RXĝ«»ÉÂ
†ªsíêÄ¢éD»Ì†Åààn‡àÞ¿ªÚðWßÄ
ȪéDܽC²–Ä‹@Å͎¿ì»É·žÔ(40`100
¢éD±ÌànÞ¿ÍC_eʪ 997 Ah/kg ƕ”Þ¿
h)L·é±ÆCêxÉì»Å«é‡àÊÉÀEª èCå
Æä×ĂeÊÅ éªCŠ`E€z úoɺ¤‡àÌÌ
ʶYÉü©È¢‡_ª éD
ÏÏ»ªå«¢½ß[údTCN‹ðJèԷƇàÍ÷²
{¤†ÅÍCoiWE€_àn‡àÌ»¢RXgðḳ
»µC\ªÈdrõ½ð¾é±ÆªÅ«È©Á½D±êðÉ
¹é±ÆðÚIƵCÀ¿ÈoiWE€_»¨ðA‹~jE
a³¹é½ßÉ Sn_Fe1,2), Sn_Cu3_5), Sn_Ni6) ™Ì‡àÞ¿
€ÅÒ³·ée‹~bgvZXÌz‡´¿Éà®àðÁ
ªŸ¢³êÄ¢éªC‚eÊÆTCN‹õ½ð¼§·éÞ¿
¦CoiWE€ÆàÆ̇à»ðŽÝ½Æ±ëC¢½žÌà
ª¾çêĢȢD»±ÅC…fz ‡à̪ìɨ¢Ä…
®àÆoiWE€ªc¯·éàÌÌà®Ô»‡¨Å é
fÌz EúoÉÛµÄDê½Ï÷²»Á«ÆCÕ«ðÂ
V2Sn3 ª¾çê½D±Ìe‹~bgvZXÉæè컵½
oiWE€ÆCàÆð²–Ä‹@ðp¢Ä‡à»µCà®Ô
C ÅAj[‹·
‡àð 0.7 MPa ÌA‹S“KXÁ³º 750‹
»‡¨ V2Sn3 ð`¬·é±ÆÉæèC•”n‰ÉÌeÊÆ
é±ÆÉæèC‡àªÏ¿»³êC‚ƒxoiWE€ð´¿
ärµÄCdʖ½è 1.5 {CÌϖ½è 4 {̂eÊ»
Ép¢Ä²–Ä‹@Éæè컵½‡àƯ™Ì‚eÊðL
ÆCTCN‹õ½ðüã·é±ÆªÅ«½7)D
µC©Â[údTCN‹õ½Á«ÉDê½Þ¿ð¾é±Æª
Å«½ÌÅñ·éD
Þ2002 N 3 Ž 30 úú{à®wïtúåïɨ¢Ä­\
862
2.
ú { à ® w ï (2002)
À
±
2.2
û @
æ
66
ª
e‹~bg‡àeÞÌÏ¿»ˆ
e‹~bgvZXÉæè컵½oiWE€_à‡àe
oiWE€ÆàÌóÔ}ð Fig.
18)
ɦ·D±Ì‡ànÉ
Þðí³ÌA‹S“KXµÍCºÅA[Nnð@ÉæèÄn
¨¯éà®Ô»‡¨ÆC±êçà®Ô»‡¨†Ìઊ`E
ððsÁ½DܽCe‹~bg‡àeÞð²ÓµCyŒbg
€Æ½žµÄÅIIÉ Li4.4Sn ð`¬·éê‡Ì_eÊÍC
CÅ
óɬ^µ½ãC0.7 MPa ÌA‹S“KXÁ³º 750‹
V2Sn3 ª 600 Ah/kg, V3Sn ª 340 Ah/kg ÆÈéD]ÁÄC
ŠèžÔAj[‹ˆðsÁ½D
•”n‰ÉÞ¿æè‚eÊ»ªÂ\È V2Sn3 ðÚWg¬Æ
µ½D
2.1
2.3
dC»wªè
]¿pdÉÍC25 mm Ⱥɱx²®µ½‡à²–C±
e‹~bg‡àeÞÌì»
d•ÜÌPb`F“u‰bNÆC‹…ÜÌ|Štb»rjŠ
ƒx 99.7 mass÷ÌÜ_»oiWE€²–(¾zzH»jC
f“(PVDF)ÆðdÊäÅ 85F5F10 ɬ‡µCNMP nt
ƒx 99.5 mass÷̱óà®à(OÃa»wòi»)ð஬
Ƭûµ½ãCº“ãÉhzCvŒXµC^󣇷é±Æ
ªª V2Sn3 Ìg¬ÉÈéæ¤É‰Êµ½DÒ³ÜƵă
Éæè컵½D±ÌŽ±dÉãÉCZpŒ[^ƵÄ|Š
x 99.9 mass÷Ìà®A‹~jE€²–(OÃa»wòi»)
vsŒ“½E¿tB‹€ðCÎÉÉஊ`E€ðp¢C
ðgpµ½D»Ìz‡äÍCÜ_»oiWE€ÆÌ»w½ž
G`Œ“J[{l[g(EC)FW`‹J[{l[g(DMC)
®( 1 )Éî⽖ÊÌ 97÷Ƶ½D
1F2 É 1 mol Ì LiPF6 ðnð³¹½dðtðp¢Ä 2 É
3V2O5{10Al¨6V{5Al2O3
(1)
±êçÌ´¿¨æÑÒ³Ü𬇵CA‹~i®ÄÉüê
®Z‹ð컵½D±ÌZ‹ðd¬§xª 2.5 A/m2 Å 0`
1.5 V vs Li/Li{ ÌdÊÍÍÅèd¬[údŽ±ðsÁ½D
½D±Ì¬‡¨ÌãÉ}OlVE€Š{“ðu«CjN€
üÅdM…εÄe‹~bg½žðsÁ½D¶¬µ½à®ò
Ìã”ɶ¬µ½_»¨X‰Oð¤íCœŽµC±êðe‹
~bg‡àeÞƵ½D
3.
‹Ê¨æÑl@
3.1
e‹~bg‡àeÞÌì»ÆdÉÁ«]¿
¾ç꽇àeÞÍC5 mm pöxÉeÓµ½ãCfBX
e‹~bgvZXÉæè¾çê½oiWE€_à‡à²
N^U®~‹(ìèdHÆ» T_250)ðp¢Ä²Óµ½DÈ
–Ì X üñÜp^[“ð Fig. 2 ɦ·D±Ì X üñÜp
¨C±aÌש¢²–ð¾é½ßÉC‚¬ñ]n®T“v‹
^[“©çC¢½žÌà®àÉRˆ·éñÜs[Nªc¯µ
~‹(åãP~J‹» WB_1)Éæè÷²Óµ½D
Ä¢éàÌÌà®Ô»‡¨ V2Sn3 ÉA®³êéñÜs[N
¾çê½‡à²–Ì X üñÜp^[“ÍC²– X üñÜ
ª m F ³ ê ½ D Ü ½ C ‡ à ¬ ª ª Í Ì ‹ Ê C V F 20.7
•u ( w» RINT2000)ð p ¢Ä ªè µ ½D ‡à ² –Ì
mass÷, SnF76.8 mass÷, AlF1.16 mass÷C_fF0.466
BET \ÊÏ̪èÍCä\ÊϪè•u(SHIMADZU »
mass÷ÆÈÁĨèCV2Sn3 ̝_lÆär·éÆá±à
FlowsorbÜ2300)ðp¢C±xªÍÍCŒ[U[ñÜU®
Zxª‚­ÈÁÄ¢éàÌ̝_ÊÆÙڙµ¢¬ªÅ Á
± xª Í v( ú@ • » MICROTRAC HRA ) ðp ¢ ½D Ü
½DȨCÒ³ÜÌA‹~jE€Êð_ÊÌ 97÷Ƶ½
½ C ‡ à ¬ ª ª Í Í C ICP _AES ( Z C R [ d q » SPS _
Éà©©íç¸C‡à†ÉA‹~jE€¬ªª 1.16 mass÷
1500VR)ðp¢ÄªèµC‡àÌ_fZxÉ¢ÄÍC_
ÜÜêÄ¢½D
f‚f¯žªÍ•u(LECO » TC436)ðp¢Äèʵ½D
²–Ä‹@Éæé‡à»ÅÍC0.7 MPa ÌA‹S“KX
Á³ºÉ¨¢ÄÍ V2Sn3 ̇à»É¬÷µ½ªCí³ºÅ
͇à»Å«È©Á½D]ÁÄC‡à»É¨¢ÄµÍC̳
Fig. 1
Vanadium_tin phase diagram8).
Fig. 2 Powder X_
ray diffraction patterns of V_
Sn alloy pre­
pared by thermic process.
9
æ
†
Fig. 3
e‹~bgvZXÉæé V n‚«\Š`E€ñŸdr‰ÉÞ¿ÌJ­
863
Cycle behavior of Li/V_
Sn thermic alloy cells.
ͪe¿µÄ¢éàÌÆvíêéDe‹~bgvZXÉæ
é‡à»ÅÍC¶¬¨ªnZóÔÆÈéÙǂ·É˜³êÄ
¢éªCá·Å µ©¶¬µÈ¢ V2Sn3 ̇¬ªÅ«½Ì
ÍCe‹~bg½žãÌúâiKŁ^‹¬ªæèàZ_ª
‚¢_»¨X‰OªÜ¸ÃŵCàÌö­ª}§³êéÆÆ
àɁ^‹”ªª‚³óÔÉÈÁ½½ßƄª³êéD
oiWE€_à‡àÍS«ª‚¢½ßCU®~‹™ÌՂ
Fig. 4 Powder X_ray diffraction patterns of V_
Sn thermic al­
loy after various treatments. (B) arc_
remelting, (C) annealed
at 750‹
C for 40 h, (D) annealed at 750‹
C for 100 h.
Éæé²ÓÅÍ÷²Ìûʪ­È©Á½ªC‚¬ñ]n®T
“v‹~‹™ÌØfÍðÂ²Óíðgp·é±ÆÉæÁÄ
eÕÉ÷²»µ½DU®~‹Å²Óµ 25 mm Ⱥɱx²
®µ½‡à ²–̽ϱaÍ 14.53 mm, BET ä\ÊÏÍ
450 m2/kg Å éÌÉεC‚¬ñ]n®T“v‹~‹Å²
Óµ½²–̽ϱaÍ 5.56 mm, BET ä\ÊÏÍ 770 m2 /
kg ÆÈÁĨèCS«Ì‚¢oiWE€_à‡àÍC‚¬ñ
]n™ÌØfÍÉæé²ÓÌûª×©¢²–ª¾çêCä\
ÊÏɨ¢ÄàU®~‹Å²Óµ½‡à²–ÆärµÄ 1.7
{öxÉÈÁ½D±êç‡à²–̱xªdÉÁ«ÉyÚ·
e¿ð²×C[údTCN‹Á«}ð Fig. 3 ɦµ½D‡
ಖ̱qaª¬³¢öCܽCä\ÊϪ嫢²–Ù
ÇdÉeʪüãµC¯¶g¬Ì‡à²–Å ÁÄàä\Ê
Ïâ½Ï±aÌá¢Éæè 100 Ah/kg öxÌdÉeÊÌ·
ª¶¶é±Æªí©Á½DæÁÄCÈãÌÀ±ÉÍC‚¬ñ
]n®T“v‹~‹Éæè÷²Óµ½‡à²–ðgpµ½D
3.2
Fig. 5 Cycle behavior of Li/V_
Sn thermic alloy after various
treatments.
e‹~bg‡àeÞÌÏ¿»ˆÆdÉÁ«]¿
e‹~bg‡àeÞðí³ÌA‹S“KXµÍCºÅA[
­xªá¸µCˆžÔð 40 h ©ç 100 h Æ·ú»·é±
Nn𵽇ಖ(B)Ì XRD p^[“C¨æÑe‹~b
ÆÉæèCà®àÉRˆ·éñÜs[N­xªáºµC‡à
g‡àeÞ²–ðyŒbg»µ 0.7 MPa ÌA‹S“KXÁ
àg¬ÌÏ¿»ªiޱƪí©Á½D
C ÅAj[‹ˆð 40 h(CjCÜ½Í 100 h(D)s
³º 750‹
e‹~bg‡àeÞ²–(as_cast)(A)ÆCe‹~bg‡à
Á½‡à²–Ì XRD p^[“ð Fig. 4 ɦµ½De‹~b
eÞðí³ÌA‹S“KXµÍCºÅA[NÄn𵽇à
g‡àeÞðA[NÄn𵽇àÍCà®Ô»‡¨Å é
²–(BjC¨æÑCe‹~bg‡àeÞ²–ð 0.7 MPa ÌA
V2Sn3 ÉA®³êés[NªÁ¸µCoiWE€ÆàÌPà
C ÅAj[‹ˆð 40 h(CjCܽÍ
‹S“KXÁ³º 750‹
®ÉRˆ·és[NÌÝÆÈÁ½DÄnð·é±ÆÉæÁÄ
100 h(D)sÁ½‡à²–Ì[údTCN‹Á«ð Fig. 5 É
à®Ô»‡¨ªªðµCí³ÌA‹S“KXµÍC†ÈÌÅ
¦µ½DܽCe‹~bg‡àeÞ²–(as_cast)(A)ÆCe
‡à»µÈ©Á½àÌÆl¦çêéDêûCe‹~bg‡à
C Å 100 h Aj[‹ˆµ½‡
‹~bg‡àeÞ²–ð 750‹
eÞðAj[‹ˆ·é±ÆÉæèà®àÉRˆ·és[N
ಖ(D)Ì[údJ[uð Fig. 6 ɦµ½De‹~bg‡
864
æ
ú { à ® w ï (2002)
66
ª
õ½ª·­ÈÁ½D
4.
Ü
Æ
ß
oiWE€ÆàÍCZ_·ªå«­A[Nnð@™Ì¼Ú
nðC¨æÑCJjJ‹AC“OÅ͇໪¢ïÅ Á½ªCà®àÆoiWE€_»¨ð´¿ÆµC_»¨ðA
‹~jE€ÅÒ³·ée‹~bgvZXðp¢½‡à»É
æèC¢½žÌà®àªc¯·éàÌÌà®Ô»‡¨ V2Sn3
ª¾çê½D±Ìe‹~bg‡àeÞðÄnð·éÆCoi
WE€ÆàɪŠ·é½ßÉà®àdÉƯlÉTCN‹Á
C ÅAj[‹ˆ
«ª«»µ½ªCA‹S“KXÁ³º 750‹
ðs¢‡ààgDðÏ¿»·é±ÆÅC‰úeÊ 500 Ah/
kg, 50 TCN‹ÅÌeʪ 385 Ah/kg Æ 77÷ÌeÊ۝¦
ÅTCN‹õ½ªüãµ½D
e‹~bgvZXžç꽇àÍC‚ƒxoiWE€
©ç²–Ä‹@Å컵½‡àÆär·éÆCTCN‹õ½
Á«ªá±òéàÌÌCÙÚ¯™ÌdÉÁ«ð¦µ½DÜ
½C²–Ä‹@ÅÍC‚¿È‚ƒxoiWE€ðgp·é½
ßC‡à»¢RXgÍñíɂ­ÈéªCe‹~bgvZ
XÉæè_»oiWE€ð´¿ÆµÄ‡à»·é±ÆÅ
1/10 ȺÌáRXg»É¬÷µ½D
¶
Fig. 6 Charge/discharge curves of V_Sn thermic alloys.
C for 100 h.
(A) as_cast, (D) annealed at 750‹
àeÞðA[NÄn𵽇ಖÍCà®Ô»‡¨ V2Sn3
ÌÁ¸ÉæèPêàdÉƯlÉeÊÌò»ª˜µ­CTC
N‹õ½ªZ¢DêûCe‹~bg‡àeÞ²–ðAj[‹
ˆÏ¿»·é±ÆÉæÁÄCdÉeʪ 2 {ß­üãµ
‰úÅñ 500 Ah/kg ̂eʪ¾çê½DܽCAj[‹
ˆžÔª 40 h ©ç 100 h Æ·ú»·éÉÂêÄTCN‹
£
1) O. Mao, R. A. Dunlap and J. R. Dahn: J. Electrochem. Society
146(1999) 405_422.
2) D. Larcher, L. Y. Beaulieu, O. Mao, A. E. George and J. R. Dahn:
1708.
J. Electrochem. Society 147(2000) 1703_
3) D. Larcher, L. Y. Beaulieu, D. D. MacNeil and J. R. Dahn: J.
Electrochem. Society 147(2000) 1658_1662.
4) Y. Xia, T. Sakai, T. Fujieda, M. Wada and H. Yoshinaga: J. Elec­
trochem. Society 148(2001) A471_A481.
5) Y. Xia, T. Sakai, T. Fujieda, M. Wada and H. Yoshinaga: Elec­
trochem. Solid_State Letter 4(2001) A9_A11.
6) G. M. Ehrlich, C. Durand, X. Chen, T. A. Hugener, F. Spiess and
S. L. Suib: J. Electrochem. Society 147(2000) 886_891.
7) H. Yoshinaga, A. Kawabata, Y. Xia and T. Sakai: J. Japan Pow­
der and Powder Metallurgy 49(2002) 37_43.
8) J. F. Smith: Phase Diagrams of Binary Vanadium (1989) pp. 270_
274.
Fly UP