Comments
Transcript
`é“H`ê\‰à‚®−w›ï”`\2002-09\p861-02\hon.txt [WYSIWYG]
ú{à®wï æ 66 ª æ 9 (2002)861_864 e~bgvZXÉæé V n«\`E ñdrÉÞ¿ÌJÞ g i p Y1 £ u1 ì [ Í v1 « N j2 1¾zzH®ïÐÔä¤ 2YÆZp¤Ö¼Z^[ J. Japan Inst. Metals, Vol. 66, No. 9 (2002), pp. 861_864 Ý 2002 The Japan Institute of Metals V_ Based Alloy Prepared by Thermic Process as New Anode Materials for Lithium Rechargeable Batteries Hideo Yoshinaga1, Seiji Dan1, Akio Kawabata1 and Tetsuo Sakai2 1Ako Laboratory, Taiyo Koko Co., Ltd., Ako 678_0232 2Kansai Collaborative Center, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563_ 8577 Tin_based alloys are receiving much attention as new anode materials with high energy density for Li_ ion secondary batte ries. However, these alloys still show very poor cycle life because charge_discharge processes cause cracking and crumbling of the anode by large volume changes in the alloys. In order to overcome the problem, we have proposed vanadium_ based alloys which had very good ductility. Tin_vanadium alloys were successfully prepared by thermic process in which vanadium_oxide was reduced by Al_metal to vanadium_ metal. The obtained Sn_V alloys are mainly composed of Sn3V2 phase containing tin impurity. Cycle life of the alloy anode was significantly improved by annealing it at 750 C because the amount of impurity tin was decreased greatly. The Sn3V2 alloy anode showed an in itial rechargeable capacity of 500 Ah/kg, keeping 400 Ah/kg even after 50 charge_ discharge cycles. (Received April 22, 2002; Accepted June 3, 2002) Keywords: lithium ion batteries, negative electrode material, vanadium alloy, thermic reduction, tin alloy electrode oiWEÍCÊíCA~jEðÒ³ÜƵ½e~ 1. ¾ bgvZXÉæèeàªì»³êéªC±ÌeoiWE àÉÍA~jEâ_fÌs¨ªZxÉÜL sÌÌ`ECIñdrÌÉÞ¿ÉÍC`E µÄ¢é½ßdqr[nðÉæè±êçÌs¨ðxÉ ðÂtIÉz Eúo·éÞ¿ªp¢çêÄ¢éDµ© öµÄx»ðsÁÄ¢éD±êçÌvZXðo µCÞ¿ÌGlM[§xÍ 370 Ah/kg Æ_lÉß Ä컳êéxoiWEÍ kg ½è 10 ~öxÆ C±êÉÖíéVKeÊÉ޿ƵÄàn޿̤ ñíÉ¿ÈÞ¿Å é½ßCdr»¢RXgÌ«»É ªsíêÄ¢éD»ÌÅàànàÞ¿ªÚðWßÄ ÈªéDܽC²Ä@ÅÍ¿ì»É·Ô(40`100 ¢éD±ÌànÞ¿ÍC_eʪ 997 Ah/kg ÆÞ¿ h)L·é±ÆCêxÉì»Å«éàÊÉÀEª èCå Æä×ÄeÊÅ éªC`Ez úoɺ¤àÌÌ Ê¶YÉü©È¢_ª éD ÏÏ»ªå«¢½ß[údTCNðJèÔ·ÆàÍ÷² {¤ÅÍCoiWE_ànàÌ»¢RXgðḳ »µC\ªÈdrõ½ð¾é±ÆªÅ«È©Á½D±êðÉ ¹é±ÆðÚIƵCÀ¿ÈoiWE_»¨ðA~jE a³¹é½ßÉ Sn_Fe1,2), Sn_Cu3_5), Sn_Ni6) ÌàÞ¿ ÅÒ³·ée~bgvZXÌz´¿Éà®àðÁ ª¢³êÄ¢éªCeÊÆTCNõ½ð¼§·éÞ¿ ¦CoiWEÆàÆÌà»ðݽƱëC¢½Ìà ª¾çêĢȢD»±ÅC fz à̪ìɨ¢Ä ®àÆoiWEªc¯·éàÌÌà®Ô»¨Å é fÌz EúoÉÛµÄDê½Ï÷²»Á«ÆCÕ«ð V2Sn3 ª¾çê½D±Ìe~bgvZXÉæè컵½ oiWEÆCàÆð²Ä@ðp¢Ä໵Cà®Ô C ÅAj[· àð 0.7 MPa ÌASKXÁ³º 750 »¨ V2Sn3 ð`¬·é±ÆÉæèCnÉÌeÊÆ é±ÆÉæèCàªÏ¿»³êCxoiWEð´¿ ärµÄCdʽè 1.5 {CÌϽè 4 {ÌeÊ» Ép¢Ä²Ä@Éæè컵½àƯÌeÊðL ÆCTCNõ½ðüã·é±ÆªÅ«½7)D µC©Â[údTCNõ½Á«ÉDê½Þ¿ð¾é±Æª Å«½ÌÅñ·éD Þ2002 N 3 30 úú{à®wïtúåïɨ¢Ä\ 862 2. ú { à ® w ï (2002) À ± 2.2 û @ æ 66 ª e~bgàeÞÌÏ¿» e~bgvZXÉæè컵½oiWE_ààe oiWEÆàÌóÔ}ð Fig. 18) ɦ·D±ÌànÉ Þðí³ÌASKXµÍCºÅA[Nnð@ÉæèÄn ¨¯éà®Ô»¨ÆC±êçà®Ô»¨Ìàª`E ððsÁ½DܽCe~bgàeÞð²ÓµCybg ƽµÄÅIIÉ Li4.4Sn ð`¬·éêÌ_eÊÍC CÅ óɬ^µ½ãC0.7 MPa ÌASKXÁ³º 750 V2Sn3 ª 600 Ah/kg, V3Sn ª 340 Ah/kg ÆÈéD]ÁÄC èÔAj[ðsÁ½D nÉÞ¿æèeÊ»ªÂ\È V2Sn3 ðÚWg¬Æ µ½D 2.1 2.3 dC»wªè ]¿pdÉÍC25 mm Ⱥɱx²®µ½à²C± e~bgàeÞÌì» dÜÌPb`FubNÆC ÜÌ|tb»rj x 99.7 mass÷ÌÜ_»oiWE²(¾zzH»jC f(PVDF)ÆðdÊäÅ 85F5F10 ɬµCNMP nt x 99.5 mass÷̱óà®à(OÃa»wòi»)ð஬ Ƭûµ½ãCºãÉhzCvXµC^ó£·é±Æ ªª V2Sn3 Ìg¬ÉÈéæ¤Éʵ½DÒ³ÜÆµÄ Éæè컵½D±Ì±dÉãÉCZp[^ƵÄ| x 99.9 mass÷Ìà®A~jE²(OÃa»wòi») vs½E¿tBðCÎÉÉà®`Eðp¢C ðgpµ½D»ÌzäÍCÜ_»oiWEÆÌ»w½ G`J[{l[g(EC)FW`J[{l[g(DMC) ®( 1 )Éîâ½ÊÌ 97÷Ƶ½D 1F2 É 1 mol Ì LiPF6 ðnð³¹½dðtðp¢Ä 2 É 3V2O5{10Al¨6V{5Al2O3 (1) ±êçÌ´¿¨æÑÒ³Üð¬µCA~i®ÄÉüê ®Zð컵½D±ÌZðd¬§xª 2.5 A/m2 Å 0` 1.5 V vs Li/Li{ ÌdÊÍÍÅèd¬[úd±ðsÁ½D ½D±Ì¬¨ÌãÉ}OlVE{ðu«CjN üÅdM εÄe~bg½ðsÁ½D¶¬µ½à®ò Ìãɶ¬µ½_»¨XOð¤íCµC±êðe ~bgàeÞƵ½D 3. ʨæÑl@ 3.1 e~bgàeÞÌì»ÆdÉÁ«]¿ ¾çê½àeÞÍC5 mm pöxÉeÓµ½ãCfBX e~bgvZXÉæè¾çê½oiWE_àಠN^U®~(ìèdHÆ» T_250)ðp¢Ä²Óµ½DÈ Ì X üñÜp^[ð Fig. 2 ɦ·D±Ì X üñÜp ¨C±aÌש¢²ð¾é½ßÉC¬ñ]n®Tv ^[©çC¢½Ìà®àÉR·éñÜs[Nªc¯µ ~(åãP~J» WB_1)Éæè÷²Óµ½D Ä¢éàÌÌà®Ô»¨ V2Sn3 ÉA®³êéñÜs[N ¾çê½à²Ì X üñÜp^[ÍC² X üñÜ ª m F ³ ê ½ D Ü ½ C à ¬ ª ª Í Ì Ê C V F 20.7 u ( w» RINT2000)ð p ¢Ä ªè µ ½D à ² Ì mass÷, SnF76.8 mass÷, AlF1.16 mass÷C_fF0.466 BET \ÊÏ̪èÍCä\ÊϪèu(SHIMADZU » mass÷ÆÈÁĨèCV2Sn3 Ì_lÆär·éÆá±à FlowsorbÜ2300)ðp¢C±xªÍÍC[U[ñÜU® ZxªÈÁÄ¢éàÌÌ_ÊÆÙÚµ¢¬ªÅ Á ± xª Í v( ú@ » MICROTRAC HRA ) ðp ¢ ½D Ü ½DȨCÒ³ÜÌA~jEÊð_ÊÌ 97÷Ƶ½ ½ C à ¬ ª ª Í Í C ICP _AES ( Z C R [ d q » SPS _ Éà©©íç¸CàÉA~jE¬ªª 1.16 mass÷ 1500VR)ðp¢ÄªèµCàÌ_fZxÉ¢ÄÍC_ ÜÜêÄ¢½D ff¯ªÍu(LECO » TC436)ðp¢Äèʵ½D ²Ä@Éæéà»ÅÍC0.7 MPa ÌASKX Á³ºÉ¨¢ÄÍ V2Sn3 Ìà»É¬÷µ½ªCí³ºÅ Íà»Å«È©Á½D]ÁÄCà»É¨¢ÄµÍC̳ Fig. 1 Vanadium_tin phase diagram8). Fig. 2 Powder X_ ray diffraction patterns of V_ Sn alloy pre pared by thermic process. 9 æ Fig. 3 e~bgvZXÉæé V n«\`EñdrÉÞ¿ÌJ 863 Cycle behavior of Li/V_ Sn thermic alloy cells. ͪe¿µÄ¢éàÌÆvíêéDe~bgvZXÉæ éà»ÅÍC¶¬¨ªnZóÔÆÈéÙǷɳêÄ ¢éªCá·Å µ©¶¬µÈ¢ V2Sn3 ̬ªÅ«½Ì ÍCe~bg½ãÌúâiKÅ^¬ªæèàZ_ª ¢_»¨XOªÜ¸ÃŵCàÌöª}§³êéÆÆ àÉ^ªª³óÔÉÈÁ½½ßƪ³êéD oiWE_ààÍS«ª¢½ßCU®~ÌÕ Fig. 4 Powder X_ray diffraction patterns of V_ Sn thermic al loy after various treatments. (B) arc_ remelting, (C) annealed at 750 C for 40 h, (D) annealed at 750 C for 100 h. Éæé²ÓÅÍ÷²ÌûʪȩÁ½ªC¬ñ]n®T v~ÌØfÍð²Óíðgp·é±ÆÉæÁÄ eÕÉ÷²»µ½DU®~Ųӵ 25 mm Ⱥɱx² ®µ½à ²Ì½Ï±aÍ 14.53 mm, BET ä\ÊÏÍ 450 m2/kg Å éÌÉεC¬ñ]n®Tv~Ų Óµ½²Ì½Ï±aÍ 5.56 mm, BET ä\ÊÏÍ 770 m2 / kg ÆÈÁĨèCS«Ì¢oiWE_ààÍC¬ñ ]nÌØfÍÉæé²ÓÌûª×©¢²ª¾çêCä\ ÊÏɨ¢ÄàU®~Ųӵ½à²ÆärµÄ 1.7 {öxÉÈÁ½D±êçà²Ì±xªdÉÁ«ÉyÚ· e¿ð²×C[údTCNÁ«}ð Fig. 3 ɦµ½D à²Ì±qaª¬³¢öCܽCä\ÊϪ嫢²Ù ÇdÉeʪüãµC¯¶g¬Ìà²Å ÁÄàä\Ê Ïâ½Ï±aÌá¢Éæè 100 Ah/kg öxÌdÉeÊÌ· ª¶¶é±Æªí©Á½DæÁÄCÈãÌÀ±ÉÍC¬ñ ]n®Tv~Éæè÷²Óµ½à²ðgpµ½D 3.2 Fig. 5 Cycle behavior of Li/V_ Sn thermic alloy after various treatments. e~bgàeÞÌÏ¿»ÆdÉÁ«]¿ e~bgàeÞðí³ÌASKXµÍCºÅA[ xªá¸µCÔð 40 h ©ç 100 h Æ·ú»·é± Nnðµ½à²(B)Ì XRD p^[C¨æÑe~b ÆÉæèCà®àÉR·éñÜs[NxªáºµCà gàeÞ²ðybg»µ 0.7 MPa ÌASKXÁ àg¬ÌÏ¿»ªiޱƪí©Á½D C ÅAj[ð 40 h(CjCÜ½Í 100 h(D)s ³º 750 e~bgàeÞ²(as_cast)(A)ÆCe~bgà Á½à²Ì XRD p^[ð Fig. 4 ɦµ½De~b eÞðí³ÌASKXµÍCºÅA[NÄnðµ½à gàeÞðA[NÄnðµ½àÍCà®Ô»¨Å é ²(BjC¨æÑCe~bgàeÞ²ð 0.7 MPa ÌA V2Sn3 ÉA®³êés[NªÁ¸µCoiWEÆàÌPà C ÅAj[ð 40 h(CjCÜ½Í SKXÁ³º 750 ®ÉR·és[NÌÝÆÈÁ½DÄnð·é±ÆÉæÁÄ 100 h(D)sÁ½à²Ì[údTCNÁ«ð Fig. 5 É à®Ô»¨ªªðµCí³ÌASKXµÍCÈÌÅ ¦µ½DܽCe~bgàeÞ²(as_cast)(A)ÆCe ໵ȩÁ½àÌÆl¦çêéDêûCe~bgà C Å 100 h Aj[µ½ ~bgàeÞ²ð 750 eÞðAj[·é±ÆÉæèà®àÉR·és[N à²(D)Ì[údJ[uð Fig. 6 ɦµ½De~bg 864 æ ú { à ® w ï (2002) 66 ª õ½ª·ÈÁ½D 4. Ü Æ ß oiWEÆàÍCZ_·ªå«A[Nnð@Ì¼Ú nðC¨æÑCJjJACOÅÍ໪¢ïÅ Á½ªCà®àÆoiWE_»¨ð´¿ÆµC_»¨ðA ~jEÅÒ³·ée~bgvZXðp¢½à»É æèC¢½Ìà®àªc¯·éàÌÌà®Ô»¨ V2Sn3 ª¾çê½D±Ìe~bgàeÞðÄnð·éÆCoi WEÆàɪ·é½ßÉà®àdÉƯlÉTCNÁ C ÅAj[ «ª«»µ½ªCASKXÁ³º 750 ðs¢ààgDðÏ¿»·é±ÆÅCúeÊ 500 Ah/ kg, 50 TCNÅÌeʪ 385 Ah/kg Æ 77÷ÌeÊÛ¦ ÅTCNõ½ªüãµ½D e~bgvZXžçê½àÍCxoiWE ©ç²Ä@Å컵½àÆär·éÆCTCNõ½ Á«ªá±òéàÌÌCÙÚ¯ÌdÉÁ«ð¦µ½DÜ ½C²Ä@ÅÍC¿ÈxoiWEðgp·é½ ßC໢RXgÍñíÉÈéªCe~bgvZ XÉæè_»oiWEð´¿ÆµÄà»·é±ÆÅ 1/10 ȺÌáRXg»É¬÷µ½D ¶ Fig. 6 Charge/discharge curves of V_Sn thermic alloys. C for 100 h. (A) as_cast, (D) annealed at 750 àeÞðA[NÄnðµ½à²ÍCà®Ô»¨ V2Sn3 ÌÁ¸ÉæèPêàdÉƯlÉeÊÌò»ªµCTC Nõ½ªZ¢DêûCe~bgàeÞ²ðAj[ Ï¿»·é±ÆÉæÁÄCdÉeʪ 2 {ßüãµ úÅñ 500 Ah/kg Ìeʪ¾çê½DܽCAj[ Ôª 40 h ©ç 100 h Æ·ú»·éÉÂêÄTCN £ 1) O. Mao, R. A. Dunlap and J. R. Dahn: J. Electrochem. Society 146(1999) 405_422. 2) D. Larcher, L. Y. Beaulieu, O. Mao, A. E. George and J. R. Dahn: 1708. J. Electrochem. Society 147(2000) 1703_ 3) D. Larcher, L. Y. Beaulieu, D. D. MacNeil and J. R. Dahn: J. Electrochem. Society 147(2000) 1658_1662. 4) Y. Xia, T. Sakai, T. Fujieda, M. Wada and H. Yoshinaga: J. Elec trochem. Society 148(2001) A471_A481. 5) Y. Xia, T. Sakai, T. Fujieda, M. Wada and H. Yoshinaga: Elec trochem. Solid_State Letter 4(2001) A9_A11. 6) G. M. Ehrlich, C. Durand, X. Chen, T. A. Hugener, F. Spiess and S. L. Suib: J. Electrochem. Society 147(2000) 886_891. 7) H. Yoshinaga, A. Kawabata, Y. Xia and T. Sakai: J. Japan Pow der and Powder Metallurgy 49(2002) 37_43. 8) J. F. Smith: Phase Diagrams of Binary Vanadium (1989) pp. 270_ 274.