...

§16. 光子気体とプランクの空洞輻射公式

by user

on
Category: Documents
13

views

Report

Comments

Transcript

§16. 光子気体とプランクの空洞輻射公式
!16! "#$%&'()*+,-./01
! 22345
6"#$%7+89:;,-./+01<=>52+01:; Wien
+?@A5Stefan-Boltzmann AB&5!11 3CDE6Planck +FG7&4H+I
J<EKLMNOP"#4QR)3SOT5UHe +$%V#3SOQR)&4
WXYZ[4\]^_P"#46"`a+V#7b:;5cdefghB+i
jTkl&^OPmE5
6"#$%7+nV#o45pq[YO"#+rstu
vTw2O+35xyz{E|y}&4^;^_P~+pq&"#$%&+•
+€•‚ƒ„[Y…5†;‡<ˆ‰|y}&^O&G]OPUHe +$%V#o
+YZ[5Š];{EV#oT‹Œz{O•34^_P 2+Ž+••345
6"
#$%7+€•‚‘<’“”•–&Q—˜•–:;G]OP
16-1™"#+$%
! š[!11 3CDEYZ[5Planck +EK…›_E,-./œ•%./™žŸ
¡—¢a+0145
! ! ! ! ! ! ! u(" ,T) =
8#" 2
h"
! ! ! ! ! ! ! ! !11-(3-5)
3
c exp(h" /kB T) $ 1
3SOP u(" ,T ) +£¤4 [J]" [m#3 ]" [(1/s)#1 ] 3S…5 u(" ,T ) 45(" + d" , " ) +¥¦
!
o§•+./"<G]E9¨+6©@%ª«…7
56©@¥¦o§•«E…7+
./žŸ
!
!
¡—<j¬-OP,-./œ•%./™46"#$%7:;G]O
2&T3>OP! ®¯$‚+°Aœ±²*³´µ
+¶J1™34·¸+¹º
¨»¼+½¾T¿8-O+35"#•[4eÀÁÂ4^Ã5
6"#$%74¾Ä
QR)$%&Å^-2&TvÆO 26,76)P
! Ç:Ç5V#&ÇM+6"#7<G]O2&45
6"`a+V#7<G]O2
493
&b:;5cdefgh[ij-OklTSOP2{m3+Èh45ÉÊ+Z
Ë[Ìefgh<ÍÎ[ÇM_O+356"#$%7+Èh42+Ï3Ð^OP
cdefh+£+щ+1<ÒÓÔ{OPÕ|4V#+Ö¦`a[׌-Oq
‘[Ø-O135c <"`a5m0 <V#+ÙÚq‘&-O&5ÙÚÛ[fÇM V
+`a3Ö¦-OV#+q‘45
!
! ! ! ! ! ! ! ! m=
m0
1" (V /c) 2
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! (18)
3SOPˆZ|‰+14cdefh3+V#+ÜžŸ
¡—<Š]O1
2
! ! ! ! !! ! ! " 2 = c 2 ( p 2 + m0 c 2 ) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! (19)
3SOP2+Ñ1[ij-O&5 (18):;5 VÝ c +Þ5 m0 " 0 ^;ß m 4à
!
á’&^LMÇmZ+35"#+ÙÚq‘4âã m0 = 0 &Ç^Ó{ß^;^_P
!
äLM5(19)[ m0 = 0 <åÔÇM5
!
! ! ! ! ! " = c p ! ! mE4! ! p = " /c ! ! !
(20)
!
3SOPÌefh3+q‘T m 3SOæçèV#+Ö¦žŸ
!
! ! ! !
"=
¡—&Ö¦‘4
1
1!2
mV 2 =
p ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
2
2m
(21)
+Øé[SO:;5(21)4(20)&4ÜÃÐ^OP"#+YZ[6 m0 = 0 +V#7
!
2
:;^O$%5SO_45(19)3 p 2 >> m0 c 2 3SO9¨+$%45
6êefhè
!
$%7&ëß{Oìí5îï™P
!
c <"`a&-O&5"+¥¦o( " )5ð¥¦o( " )5ñò( " )[4
! ! !
" = c p = h# ,
" = 2#$ ,
c = " # $ ! ! ! ! ! ! ! ! ! ! ! (22)
!
!
!
+ØéTSOP!11-4 3ÈhÇE6óôñ+óô¶õ&~+’>z7<öy!
!
!
Oño÷*ø k 45¶õ4ñ+óô¶õ[|ùÇ5~+’>z45
494
!
k = 2"# /c = 2" / $
! ! ! ! ! ! !11-4 (4-3)
!
&yúÇEP2{&(22)[YO p = h" /c <ûZ&5
!
!
!
h !
# k = "# k
! ! ! ! p=
(23)
2"
!
&^OPüýþ45ƒÿóôñ[!"‰Ã6ñ¦è^Ö¦‘7<#-T52{
!
<6V#+Ö¦‘7&N^-P
! ˆZ|‰5"#T$%+QR)V#&Ð^O2&TSOP~ {46"#+n
o7T%[Š];{E|y+}[4^_2&3SOP&]ß5QR)V#+UHe
+9¨5|',-[(Ôz{{ß5~+V#+no4‹Œz{O&G]O2&
T3>OPÇ:ÇP"#+9¨45,-+)<*-pq[rsz{E…5):
;uvz{E…-O:;5~+no4+,Š];{Eyo34^_P"#+n
o4‹Œz{-5,-+)+pq&+•3+"#+.…/…50Ë5)+pq
&"#1³&+•+€ƒ„[YLM2mO&G]ºß^;^_PŠ];{EœT5
V™+335$%+4
! ! ! ! ! ! (
56
7+89žŸ
¡—F T:;&^O<=,
"F
)T ,V # µ = 0
"N
(24)
T>?-O&G]Oœ2+Ï4!16@4 3ˆAh-O™P (24)+Bý46"#7
!
+C‚DE)FG
+yú3ˆSO:;5
6"#7+C‚DE)FG
Tï3S
O2&j¬-OP!14-3 3CDEYZ[5
6QR)V#T”@ "r <HI-OƒJ
V#o n r 745|K[5
nr =
!
e"(# r " µ )/ kB T
1
= (# r " µ )/ kB T
! !
"(# r " µ )/ kB T
1" e
e
"1
!
!14-3 (26)
&Q—˜•–Øo3Š];{OPÇ:Ç5(24)Y…5"#1³34 µ = 0 b:;5
!
!
495
!
6”@ "r <HI-OƒJV#o n r 745
! ! ! nr =
!
1
" r / kB T
e
#1
Ý! ! ! n k =
!
1
" k / kB T
e
#1
! ! ! ! ! ! ! ! ! (25)
&^OP2234”@ r <5
œ22™5(23)+óôñ<§L-Oño÷*ø
!
!
jÇM5‘#MN k &O,EP (25)+ÕÑ145Ö¦‘T ! k 3žŸ
k [i
¡—T "k
3SO"#+ƒJHIoT n k 3SO2&<j¬-OP
!
!
16-2™Q—˜•–:;P;{O,-./žŸ
!
¡—¢a
! š[§11-4 3ÈhÇEYZ[5 (" + d" , " ) +¥¦o§•<G]E9¨5
!
8#" 2
n(" )d" = 3 d" ! ! ! ! ! ! ! ! ! ! ! ! §11-4 (4-9)
c
!
T5©@%ª«…+®¯ñœ"#™+Qo5“R[45©@%ª«…+®¯ñ
!
3SO"#+‘#MNo
<Š]OP®¯ñ4Sñ3SO:;5óô¶õ[TU
^ÿV+Ѷõ[•WÇEñ<G]O2&T3>OP2+X# 2 4§11-4 (4-9)[
š[Ym{M_OP n(" ) 8%45©@¥¦o§•«E…5©@%ª«…+®¯
ñœ"#™+‘#MNo<#-P2+YZ[5§11-4 (4-9)4©%ª«E…+}3
!
SO:;5,-+%ª< V &-O&5§11-4 (4-9) +Zý[ V <[ÓEˆ+T5
(" + d" , " ) +¥¦o§•[Ym{O®¯ñœ"#™+‘#MNo3SOP
n(" ) # V # d" = V #
!
8$" 2
d"
c3
(26)
2{[(25)+"#+ƒJHIo<[Ó{ß5 (" + d" , " ) +¥¦o§•[Ym{O
!
>\]+"#o
dN" &^OP
! ! ! ! ! ! !
!
!
!
8$" 2
d"
dN" = V # 3 # h" / kB T
c
e
%1
496
(27)
22345Q—˜•–Øo[YO(25)+"#+ƒJHIo45
! ! ! ! ! ! !
nk =
1
" k / kB T
e
#1
Ý
1
e
h" / kB T
&ÇEPz;[5"#ìQ+žŸ
!
!
¦o§•[Ym{O./žŸ
#1
¡— h" (= !# ) <[Ó{ß5 (" + d" , " ) +¥
¡— dE " &^OP
!
8$" 2
h"d"
! ! ! ! ! ! ! ! dE " = V # 3 # h" / kB T
c
e
%1
!
!
(28)
2+Zý< V " d# 3^LE!_45 6©@%ª«…75
6©@¥¦o§•«E…7
!
+./žŸ
¡—50Ë5(" + d" , " ) +¥¦o§•3+./žŸ
¡—¢a5&
!
^…5
! dE
8#" 2
h"
"
u(" ,T) =
= 3
! ! ! ! ! ! ! ! (29)
Vd"
c exp(h" /k B T) $ 1
3SOP2{45!11-(3-5)+ Planck +,-./žŸ
¡—¢a1[|ù-OP
!
2+YZ[ÇM5Q—˜•–1&"#$%+G]¶:;5,-./žŸ
¡—
¢a[Ø-O Planck +01TP;{OP
! !11 3CDEYZ[5 h" << k B T +9¨45exp(h" /kB T) = 1+ (h" /k B T) + # # +
`a:;, (29)4
!
!
dE " 8$" 2
# 3 kB T
! ! ! ! ! ! u(" ,T) =
Vd"
c
(30)
&5Rayleigh-Jeans +1&^OP2234 Planck yo h T?{^_P 8"# 2 /c 3 4
!
6©@%ª«E…+¥¦ob+®¯ñ+Qo73S…5
kB T 4|‰+æçhè¥
¦#œñ¦™+ƒJžŸ
!
¡—b:;5Zc+ª4©@%ª«E…5©@¥¦
o«…+¥¦ob+®¯ñ+ÜžŸ
!
¡—<j¬-OT5Planck yo h T^_
2&452{Tæçh3+ñ¦žŸ
¡—3SO2&<j¬-OP
497
! |¶5 h" >> k B T +9¨45exp(h" /kB T) >> 1, exp(h" /k B T) # 1 $ exp(h" /k B T) [
Y…5(29)4
!
! dE
8$h" 3
"
#
% exp(&h" /kB T)
! ! ! ! ! ! ! u(" ,T) =
Vd"
c3
(31)
&^OPWien +13SOP(31)[4'()*yo h 4Ym{M_Oˆ++5Planck
!
+,-./1TÎdz{OeÍ[5Wien
45 u(" ,T ) = b" 3 # exp($a" /T ) +Øo¸
3,-./+>fg—h<`a3>O2&<öiÇM_Eœ!11™P! (31)45
! ! ! ! ! ! ! ! u(" ,T) #
8$" 2
% (h" )e(& h" / kB T )
c3
! ! ! ! ! ! ! !
&j_Mˆk_P (h" )e(# h" / kB T ) = $ % e(#$ / kB T ) b:;5(32)4Q
!
z¼OP!14@3@(28)3ÈhÇEYZ[5Q
(32)
7±)•–<Äw
7±)•–3+6”@ "r <HI-
!
OƒJV#o n r 745
!
! ! ! ! ! ! ! ! ! !14!3!(28)
1
! ! ! ! n r = e"(# r " µ )/ kB T = (# r " µ )/ kB T
e
!
3SLE:;5lmï&ÇMG]{ß5(h" )e(# h" / kB T ) = $ % e(#$ / kB T ) 45
6ìV#žŸ
!
!
¡—7&6”@n<HI-OƒJV#o7+ª<j¬Ç5Q 7±)•–3
+V#žŸ
!
¡ — & Å ^ - 2 & T v Æ O P Ç : Ç 5 ¤ o45 (29) 3
exp(h" /kB T) >> 1&ÇE2&5 0Ë5 h" /kB T >> 1! [×OP2{45p 14@1 +
Sq3 " = h# , µ = 0 &ÇMG]{ß5(" # µ) /kB T >> 1+<=&^O:;5r«45
!
Q—˜•–3ˆQ
!
•–3SOP
! ˆÇ5Q
$e
(" nh# / kB T )
!
7±)•–3ˆWX!_[^O&_Zj¬3+Q
!
7±)X#+nsœ•tØou™Tvs¥¦#+9¨+YZ[
3Š];{O&-O&52+žŸ
n
!
7±)
498
¡—wx}4
! ! < " >= % " j # e
($" j / kB T )
j
! ! ! ! =
!
/% e
($" j / kB T )
j
= % (nh& )e($ nh& / kB T ) / % e($ nh& / kB T )
n
n
(h" )e(# h" / kB T )
h"
= h" / kB T
! ! ! ! ! ! ! ! ! ! ! ! ! ! (32’)
(# h" / kB T )
1# e
e
#1
&^…5(32) 4Q
7±)•–<yM“R[ Planck +./¢a1(29)&^OP
!
223vs¥¦#TvMÃO2&[4¾9TSOP
Maxwell ¶J13zCz{O
®{<Ym^_|,®¯945ào+|£¤vs¥¦#+}¨&6•‚è[4
~•73SO2&T€•z{O:;3SOœ‚ƒ 11™P " = nh#
<G]O2&45®¯9žŸ
(n = 0,1,2,3,.....)
¡—+‘#C[«OPEbÇ5!11!5 3CDE
YZ[5vs¥¦#+„ÏžŸ
!
!
¡—4à…Ç^Ó{ß^;^_P
! Rayleigh-Jeans +15Wien +15Planck +./¢a15+†c+‡_45(32)
üý+ÕÑX#T5
! ! kB T
"
(h# )e($ h# / kB T ) = % & e($% / kB T )
"
(h# )e($ h# / kB T )
h#
= h# / kB T
($ h# / kB T )
1$ e
e
$1
&Ð^O2&[fˆÇM_OPkB T 4|‰¥¦#+žŸ
!
ñ¦+žŸ
¡—3S…5æçhè
¡—+ƒJ}<#-P|¶5 (h" )e(# h" / kB T ) +9¨45 (" + d" , " ) +
!
¥¦o§•3+ìV#žŸ
¡—[Q
7±)X#œQ
!
JV#HIo™<[ÓEˆ+352{<6ìV#žŸ
&Å^¼ß5
6V#7+žŸ
7±)•–[×Oƒ
!
¡—wx}7+`a}
¡—&‰ŠvÆOP~+j¬35"œ./™4ñ
¦&V#+Z¶+gq<‹¼Œ‰&•LMˆk_P:•+
˜tŽ•)F•h•)•–3+ìV#žŸ
h"
e
h" / kB T
45Q—
¡—wx}3S…52{T>f}
!
<A?-O./¢a1<Š]OPÇ:Ç5 (32’)[‘-YZ[5Q
+nsœ•tØou™<vs¥¦#+YZ[G]{ß5
Q
499
#1
7±)X#
7±)•–3ˆ Planck
+./¢a1TP;{OP
! Planck 45,-+)<6§LvÆOvs¥¦#7:;^OÛ&G]5)&,
-./+€ƒ„34¥¦#+žŸ
¡—4 h" (= !# ) <©@&ÇMrstuvz
{Oˆ+&’yÇœžŸ ¡—+‘#C™5Q
žŸ
7±)•–<Â_M5,-./
!
¡—¢a+1<=_EP2+1T5]zщWá3 Rayleigh-Jeans +1&
Wien +1+Z¶<=>5:‰5,-./+“y}Ü%<“R[A?-O2&<
Planck 4R”ÇEP6žŸ
¡—+•–Cm‘#C7<G]O—m…&^LEP
1900 ˜+2&3SOœ!11™P! |¶5‘#™š+Q—˜•–1<6V#<eÀ
[§L3>^_7"#$%[›Â-O2&3ˆ5WX!h[œO2&TR”z
{O+4 1924 ˜e•+2&3SOœ!16ž657™P
! ,-+)<6§LvÆOvs¥¦#ÝQ
7±)•–7&G]Mˆ5
6V#<
eÀ[§L3>^_"#$%ÝQ—˜•–7<G]Mˆ5W|+!_TP;{
O + 4 | Å - O & ŸFÈ3SOPÇ:Ç5,-+)&"#$%+€ƒ„
("F /"N)T ,V # µ = 0 (24) TÈh+ÍÎ[SO2&:;-O&5¨¾è^!h3S
Oœ!16@45@5™P2+"#$%[f-O€ƒ„<=:;5’“”•–+•tØ
!
o "(T, µ,V ) 45!
45“”•–+•tØo Z(T,V ) [¡O+35]3ÅEYZ
[5'()*+./¢a14Q
!
¢£4!16@45@5 3Ah-O.
7±)•–<ûLMˆ=vz{Oî5ìï™P2+
!
500
16!3!"#$%&'()*+,-Wein ./01& Stefan-Boltzmann 1
! §11-(3-5).2345.'()*+,6
! ! ! ! ! ! ! ! u(" ,T) =
8#h
"3
$
! ! ! ! ! ! ! ! §11-(3-5)
c 3 exp(h" /kB T) % 1
76T83000K 9: 6000K .;<=6'(".>[email protected]@&CDEF&6
!
G 16-1 .HIJKLMNO*=PQ.'()*7RSL".>?@T!
max!U
!"""#$
%"""#$
&"""#$
'"""#$
15.00
3
u(!,T) (Js/m ) /1E-16
20.00
10.00
5.00
0.00
0
2
4
6
8
10
!(1/s)/1E14
G 16-_M >?@AJ`YL Planck +,.ab'(cdefg)* u(A,T)
/hMPQ^*.>?@T!max!UO* T .iQJj[iQYLM
O*VWXYLJZ[6!max U\>?@]J/0YLMPQ^*.>?@T!max!
501
!"#$%&' u(" ,T) !()*+,-' "u(# ,T) /"# = 0 ./01234
! !
!
"u(# ,T) 8$h
3# 2
(&1)# 3
h
= ( 3 ) % { h# / kB T
+ h# / kB T
% e h# / kB T % (
)}
2
"#
c
e
& 1 (e
& 1)
kB T
!
!
2
8"h
$
$
h h$ / k B T
= ( 3 ) # ( h$ / kB T
) # {3 % ( h$ / kB T )(
)e
} = 0! ! !
c
e
%1
e
% 1 kB T
}9:56);<1234 x " (
(33)56.7$8%&'{
(33)
h#
) ! .=$.'>9
kB T
!
?@&' A9BCDEF
! ! ! ! ! !
!
(3 " x)e x = 3
(34)
.7$4>9G&HIG.,-A9JK%LM$4
!
h"
! ! ! ! ! ! x = 2.821 = max !
kB T
(35)
NOPQRS9TUHV!maxW&XS%YZ,-[\=$4
!
! ! " max = 2.821(
kB
)T ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! (36)
h
><&TUH]^_`ab9 Wein 9cde%fg=$4A%_$JK%'
!
" = c / # 9hi]^'NOPQRS9jk&XS9lH%YZ=$4
! §11-2 )&'TUH.jk9mn9cH)op,`PQqrstuvSF!f
!
w%cx=$y%&z!
! ! ! ! ! ! ! ! ! ! ! ! u(" ,T) d" = u( #,T) d# ! ! ! ! ! ! ! §11-2(2-2)!
.{/,-' " = c /# ]^9|}$?@'!
!
! ! ! ! ! ! ! ! ! ! ! ! ! d" = #(c /$ 2 )d$ ! ! ! ! ! ! ! ! §11-2(2-3)!
!
!~K.•€`4,],'§11-2(2-3)& " = c / # .,-!
!
d" = #(c / $2 )d$
§11-2(2-3)’
!
.•‚-ƒ„}>.);$4! §11-2(2-2)9…†&‡TUHˆ‰9PQqrst
!
502
!"#$%&'()*+,-./0123!"#45678$9:;<=>(?
./0123!"#@,ABC-DE=FG6HIJ-K=>(4L §11-2(2-3)
MN@ (2-3)’ OCL d" PJ$'($ d" < 0 L d" PQ$'($ d" > 0 =>(?R
OCLSTM=UV d" PJ$'($L§11-2(2-2)@!
!
!
!
!
! ! ! ! ! ! ! ! u(" ,T)d" = u( #,T) d# = $u( #,T)d# !
!
STWVL !
!
! ! ! ! ! ! !
u( ",T)d" = #u($ ,T)d$ ! ! ! ! ! ! ! ! ! ! !
(37)
=>(?XYZ[-\]!
!
8#" 2
h"
! ! ! ! ! ! ! u(" ,T) = 3
!
c exp(h" /kB T) $ 1
-^_` " = c / # Pab6NI-PcV, d` d" = #(c / $2 )d$ PefTgL./h
!
-)*PDE$'(./0123!"#-FG(6)4iCT(?!
!
! ! ! ! !
!8"hc
d#
u( ",T)d" = #u($ ,T)d$ = 5 $
#
exp(hc / #k B T) % 1
(38)!
!./0123!"#Pjk`'(./h-)* ( "max ) @L(38)-lmPjn`'
!
!
()*=>(OCL
! ! ! ! ! !
!
" 5
{# $ [exp(hc / #kB T) % 1]} = 0 ! ! ! ! ! ! ! ! ! ! ! ! (39)
"#
$6Hop(S$4qr(? y " hc /( #k B T) $'($Ls-tuvw]
! ! !! ! ! ! y = 5 " [1# exp(# y)]
!
-xy y = 4.96 z4L./0123!"#Pjk`'(./h-)* ( "max ) P{
!
|(?}~HL
!
! ! ! ! ! ! ! ! ! ! "max =
!
!
1
hc
(
) ! ! ! ! ! ! ! ! ! ! ! ! ! (40)
4.96 k B T
503
!"#$%&'()*+,-./01234&567)8#-.9:;< ( "max )
=>?@#$;<!ABC Wein :DEF!"#$
!
! G 16-1 )HIC T=6000K :-./0234&JK=,LMNOPQR)S.
IT+#-./0123JK)UVWI+$! XC,1964 Y) Penzias, A.Z
Wilson, R. A. P[\]^IC_`a:bc-.d=,T=3K :efghij-.
)k#$
_3K :`a:bc-.d:]^=,
_lmnop`aqd5rs8#t
u@vwxyZ@zC$
! {|,}~pn:-.4&•€,
! ! ! ! ! ! ! ! u(" ,T) =
8#h
"3
$
! ! ! ! ! ! ! ! §11-(3-5)
c 3 exp(h" /kB T) % 1
5,•‚ƒ„…R!†J8‡ˆ,-./01234&$‰Š,‹Ei†kCŒ
!
:-./0123Z@#$•‡PŽ•%&:•‘)’“8#•Z=,Planck
P
-.4&•€5]^8#”), Stefan-Boltzmann FZIT•–‡T+C(—11)$
§11-(3-5)5•‚ƒ„…R!†JIC˜™5 u*=(U/V)Zš8Z,U =i†P V !
"#9›œi:•/01235•ž8#$
! ! ! ! ! !
U 8"h %
#3
u* = = 3 &
d# ! ! ! ! ! ! ! ! ! (41)
V
c # = 0exp(h# /k B T) $ 1
••!, x " h# /(kB T) ZŸ?Z " 3 d" = (k B T /h) 4 x 3 dx !Z@#¡–!
!
U 8" (kB ) 4 T 4 $ x 3
! ! ! ! ! ! ! ! u* = =
% x dx
V
c 3h 3
x= 0 e # 1
!
!
#
x3
%4
dx =
Z@#$¢†J= $ x
!"#¡–,Stefan-Boltzmann FZ@#$
15
x= 0 e " 1
!
U 8" 5 (kB ) 4 4
T
! ! ! ! ! ! ! u* = =
(42)
V
15c 3 h 3
!
£zT,9›œi:•/0123U =,
!
504
! ! ! ! ! ! U=
8" 5 (k B ) 4 V 4
T
15c 3 h 3
(43)!
!"#$!
!
!
! 16-4) %&'()*+,-./012345!
%&'()23456789:;<#:=>*+,-./0 "(T, µ,V ) 6?@
A#1BC$(43))DE=F)GHIJKLMF1N!O#$FF!=>*+,
!
-./0 "(T, µ,V ) 6@CP>%&'()23456789:LQA#$
! R9-3 !=>*+,-./0 "(T, µ,V ) N>ST9/U1VP>
!
! ! ! ! kB T ln"(T, µ,V ) = pV ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! R9W3 (58)
!
!"X>YZ>
!
! ! ! ! pV = G " F = Nµ " F = Nµ " E + ST ! ! ! ! ! ! ! ! ! R9W3(56)!
N[GA#F1K\]Z^E = U )_`!@CPC#a$FbJ)cdeX
!
! ! ! ! ! kB T ln"(T, µ,V ) = pV = Nµ " F ! ! ! ! ! ! ! ! ! ! ! ! (44)
!"#$1FfN>%&'()g4hijklmn=o!"#IJ>N )p:
!
eJq
!
! ! ! ! ! F = "k B T ln# ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! (45)
1r#$ n=o!, N NstubrCF1)_`=R16W5 !uJ:vwA#$
!
! Sx>R14W2 !=>yz{|&:}A#*+,-./0=>
! !
"=#
r
1
1$ e
$(% r $ µ )/ kB T
! ! ! ! ! ! ! ! ! ! ! ! ! R14W2 (14)
!"~Z$%&'(:Fb6•@Ab€>%&'()g4hijklmn•o
!
!"#IJ
505
! ! ! ! ! "=#
r
1
1$ e
$(% r $ µ )/ kB T
=#
k
1
1$ e
$% k / kB T
! ! ! ! ! ! ! ! ! (46)
!"#$%"#&'()*+,-# . / 0 12345$67897:;<=*
!
!>?(45)! 1@A-BC?!
F = "k B T ln# = k B T % ln(1" e"$ k / kB T ) ! ! ! ! ! ! ! ! ! ! (47)
! ! !
k
!"#$
!
! (47)1DE#FG7&'() k 1H-#IJK"LM/?NO=P1H-#(0?
Q)7RS1T-6!UVW#$! X1§16-2 VYZ45[\1?]R V 7^'
_]V/? (" + d" , " ) 7NO=`a1bcB#defg^'h7&'()=/
n(" ) # V # d" = V #
!
8$" 2
d"
c3
! ! §16-2 (26)
Vi#jk?(47)l9m7LM/?NO=P1H-#(0?Q)7n7RS!"#$
!
F = kB T $ ln(1" e"# k / kB T ) = kB T "
k
&
8#$ 2
' {V " c 3 " ln(1% e% h$ / kBT )}d$
$=0
8# & 2
= kB T " V " 3 ' {$ " ln(1% e% h$ / kB T )}d$ ! ! ! ! ! ! ! ! ! ! ! g48h
c $=0
!
!
RS/? x = h" /(kB T) !DoG?pSRS*q\!?
!
!
%
& {" 2 # ln(1$ e$ h" / kBT )}d" = (
"=0
=(
!
kB T 3 % 2
) & x # ln(1$ e$ x )dx
h x= 0
kB T 3 # x 3
) $ ( )'ln(1" e" x )dx
h x= 0 3
#
!
#
k T
x3
x3
e" x
= ( B ) 3 {( )ln(1" e" x ) " $ ( )
dx}
"x
h
3
3
(1"
e
)
x=
0
x= 0
1 k T # x3
%4 k T
= "( )( B ) 3 $ ( x )dx = "( )( B ) 3
3 h x= 0 e " 1
45 h
!
! !"#grs7tu/v12w4(20)VxX1qyGo#h$
g48h/?z{?
!
506
! ! !
F="
8# 5
(k T) 4
$V $ B 3
45
(hc)
!49"
#$%&'()*+,-./0123456789:S ; F <=>?%&
!
#F 32$ 5
(k B ) 4 3
! ! ! ! ! S="
=
%V %
%T
#T
45
(hc) 3
!50"
#$%&?@/A5BCD:U ;/ F = U " TS 4*+<=/!
!
8" 5
(k ) 4
! ! ! ! ! U = F + TS =
# V # B 3 # T4
15!
(hc)
!51"!
EF%&
!51";/Stefan-Boltzmann GEHIJ@(43)KLMN%&01234'
!
!
OPEQ(;/RSTS/U
4UVWXE F 43YWX<=Z[4-\K>?
%]!
"U 32# 5
(k B ) 4 3
! ! ! ! ! CV =
=
$V $
$T
"T
15
(hc) 3
#F
8$ 5 (k B T) 4
P = "( )T =
%
#V
45 (hc) 3
!52"
!53"
!
#$%&! ^=K/!51"E!53"<= PV _`%E/0123#;
!
1
! ! ! ! ! ! PV = U
3
!54"
EF%&La/bcdef1gh#;! PV = nRT,
U = (3/2)nRT !-./!
!
2
! ! ! ! ! ! PV = U ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !55"!
3
!
#$%&
!55";/i1-2(16')#jk23KlN% Bernoulli!mCn:o"4,E
!
pq@r4#$%&!54"4*+;/0123stlud23#$%vE_w
HIx%&La/
!55"4*+;ytlu23#$%vEK-%&
!54"E!55"
;tlud23Eytlud23_z{N%|}F,#$%&
!54";~•Q!0
Q"K*€H@|}F*+,#$%&
507
16!5"#$%&' N ()*+,-./0
! (44), (45)1234567=89, #$%&' N (:;9)*+,-.<=>?
1+@1ABCD=EFGH<%IJ1K.5LMDH#$%&' N NO;C
DPQ(-.<=>6R14-S9TU4GVWXYZ2'( " )N[\]^(-.<
=1_(DHWXYZ2'`Z"9abcdDHGe46fg$h%i$jk1
!
aCDg$'lm%LMn>o%ppqr+,DH!
! st%/0uvw56R14-1) xi$jk%g$'lm=WXYZ2'y
1z{5LM|\H}4~•4G€EN•‚CD=6!
ƒ„„„…†g$r@‡Dfg$h9>6ˆ‰%g$>Š‹9Œ-.•6Žg
$(•%|\-i$jk1•DrNABCD<=>/0(-.H4r46Sg
$%i$jk%n>‘‹’“=LMD%96o%|\-Sg$i$jk1”• r
N–—6r ”˜%Sg$i$jkN™w5.Dg$'N nr =456™šg$'
nr N r %›”1œ1•FGžK%'Ÿ6
! ! ! ! ! {i} = (n 0 , n1, n 2 , . ., n r , . .)
NLM6<,N
R14 (1)
.5g$h¡¢%i$jk{i}N£;CDH<,>fg$h¡
!
¢%žK%i$jk{i}%g$'lm(number representation)9•DH¤¥¦§g
$9>6…ž%Sg$i$jkN™wDg$'1>6
! ! ! ! ! n r = 0, 1! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! R14`2"
%¨©(•DHžn6ª«¬g$>6
!
! ! ! ! ! n r = 0, 1, 2, . . . ., "
! !
R14 (3)
%¡5%-®¯'N°D<=(cdDHg$h%¡g$'N N =46g$'l
!
mN[\=6
508
! ! ! ! ! N = n 0 + n1 + n 2 + n 3 + .... + n r + .... = " n r
! ! ! !14 (4)
r
"#$%&'()*+,-./0.1*23{i}.456789(r :;.<)*
!
1*23.45678= "r >?$>(
! ! ! ! E i = "0 n 0 + "1n1 + "2 n 2 + "3 n 3 + .... + "r n r + .... = # "r n r
!14 (5)
r
!
"#$%/@(A.B)*+CD?$EFGH Z 9(IJEK.LMCNO(
!
! ! ! ! Z = # exp(" E i /k B T)
! !
!14 (6)
i
"#$%A.P9(QR"S$)*+,-.1*23{i}.45678 E i .,T
!
CUVWX$%AXC)*HYZ.!14 (5)=V[$>(\.N]CY^WX$_
..
! ! ! Z = # exp(" E i /k B T) =
i
!
%
%
n0
n1
(n 0 + n1 + n 2 +....= N )
!
1
% " " " " exp(# k T % $r nr )
B
n2
r
!14 (7)
A.B`P"9(abH n r .cd$e (n 0 , n1, n 2 , . ., n r , . .) .,TCf'gTP=
!
h$%ijT(B`P.kl.mCn['op! n 0 + n1 + n 2 + .... = N ! 9(,)
!
!
*Hq N "#$A>=ZjTrO(i.B`PqstWX$u.vwop"#
!
$%!14 (7)9IJEK.xy@Cz]EFGH"#$q(n 0 + n1 + n 2 + .... = N .
vwopq#$'{(cd$abH (n 0 , n1, n 2 , . ., n r , . .) ! C0[T.P9(|}
!
C~•"9d[%€•(‚ƒdq„(!14 (7).…†9(
&
) &
)
!) &
#$ 0 / kB T n 0
#$ 1 / kB T n1
#$ 2 / kB T n 2
(
+
(
+
(
) + , ( % (e
) + , ( % (e
) ++ , , , ! ! ! !14 (8)
! ! ! ! ! ! " ( % (e
' n0
* ' n1
* ' n2
*
"#O(!14 (8)…†.N]d~•dP.‡.ˆC9‰Šd[%‹‹‹! Œ•=
!
Žf•C!14
(7).B`P=suC•{$C9‘’=“?$%i.”.‘’>9(
•–—B)*+CD?$)*HYZ˜>§9!2, 3, 4 "™š'•›IJ (grand!
509
canonical) !"#$%&'()*+,-.*/012!"#$3456&78)
*/9
! ,+:3;<=>?5@(A, n 0 + n1 + n 2 + .... = N 5BCDEAFG/HIH
I N J#)*K&L*MNAFG/+5O5BCDEAFG5-;i PQ52R
!
"r 5ST$ n r A4UVUWXJYZ~[\0],^_)*,`abcG/deb;
f14 (7)gh,f14 (8)ih&jk-'l+,3-m*/
!
!
%
( %
( %
(
!
n0
n1
n2
! Z = # exp(" E i /k B T) = '' $ (e"# 0 / kB T ) ** + '' $ (e"# 1 / kB T ) ** + '' $ (e"# 2 / kB T ) ** + + +
i
& n0
) & n1
) & n2
)
%
( %
( %
(
! ! ! ! ! ! ! ! ! ! = '' $ (e" n 0# 0 / kB T )** + '' $ (e" n1# 1 / kB T )** + '' $ (e" n 2# 2 / kB T )** + + +
& n0
) & n1
) & n2
)
!
$
' $
' $
'
1
1
1
=&
*
*
***
"# 0 / kB T ) &
"# 1 / kB T ) &
"# 2 / kB T )
% 1" e
( % 1" e
( % 1" e
(
!
%
(
1
(56)
= "'
#$ i / kB T *
)
i & 1# e
!
,F*/+5'nA;012!"#$&oebpq(46)5ih,rs-.*/
!
! ! ! ! "=#
r
1
1$ e
$(% r $ µ )/ kB T
=#
k
1
1$ e
$% k / kB T
! ! ! ! ! ! ! ! ! ! ! !
(46)
! deb;(46)tu5vw-5012!"#$( " )A;12!"#$(Z) Jxm
!
ya*+,3-m*/(56)3pzUq+,A;${|-`aq@(A (32’)-}
!
~q•K€•=,rs‚ƒ„512!"#$(Z),F…;Boltzmann !†‡zˆ
Planck 5‰Š‹Œ•JŽ*+,&••)*/
! +UAt‘5’“J”•–—˜™*/(46)tu5vw-A;‰Š‹Œ u(" ,T) &
" = 0 ~ # -š!›qœ3oHUbG*5-;Y51]5#•
!
!
8# 5 (k B ) 4 4
! ! ! ! ! u* " U /V =
$
$T
15 (hc) 3
!
510
#
!"#$(41),(42)%&'()*"
$
x= 0
x3
%4
dx
=
" x = h" /(kB T) ! !+,-./
ex " 1
15
0$123"!
!
8!
# 5 (k B ) 4 4 8"h k B T 4 % x 3 dx
) # & x
! ! ! ! ! u* " U /V =
$
$T = 3 #(
c
h
15 (hc) 3
x= 0 e $ 1
&
&
8"h
$3
= ' ( 3 # % h$ / kB T )d$ = ' u($ ,T)d$
e
%1
$=0 c
$=0
!
!
456788%9:./);< Planck 9=>?@AB%C67
!
! DEFGHIJ6KFGL%M"NO9FGMPQ%R5,7SHS"TF
GUGVW9XMYQZ[4\]"^TFGUGVW$_N9FG<C6H%
KFGLUGVW!`ab64c;`de"89fg5KFGLUGVWMhi
$PQ%R6UGVWjHI"Boltzmann /kclm/ke%\]67nFG;
N <opqr6stM"89 Boltzmann /kclm/ke$ Nuvw49xy<
z{b69%"|9}}%MK~•<l€$•‚ƒ„5,7|9…$"n-9 N
9†4‡ˆ‰Š‹Œ•Ž•!+,-•lm/k!&g7SHS"‘G’“%M"
‡ˆ‰Š‹Œ•Ž•u”%•FG; N 9op–<J—S5,9%"KFGLU
GVW$˜b6lm/kcBoltzmann /ke9™š%›Mœ•4567! Bose
FG%C6‘G’“$"Boltzmann /k<ar6žŸ%C67 16¡2 %¢£(¤¥
¦§¨©ªŽX«B%¬¢qr6c-®!¯}5,e°±-²sM"³;9v
´µ¶•·¸G9¹}º4»ˆ¼$M½¾%C684cz¿ 11eÀ4ÁÂtb67
511
16-6)! Bose !"#$%&'%()*'+,-.
! /01234/0156%7894()*%+,-. Satyendra Nath Bose
(1894-1974)! :;<=>?S?N?Bose 9 1924 @:4AB%/0123%CD
E:FGHIJ)KLMNOPQ?R%ST9UVW$XYZQ([\]%^_ Philosophical Magazine _:`abcQd4ef9ghbcQ?RiX4S?
N?Bose 9R%jaN Einstein :kl4
mnopqdY>!rstc>ut-^
_:efbc>v#wxoyzoP{!|}:~o4Einstein %•€N•sQ 78‚?
Bose ST%ƒ„…†‡ˆN,‰oQ Einstein 94R%Š‹jaNŒt*(•‹
:Žo4Zeitschrift für Physik :k•o4Bose ST9•‘R%*(•%-^_:
’“bcQ?”11•6 X–—oQv#:4Einstein˜1917‚94™6˜š™›6‚
œ•%žŸ
t4Œ¡¢£!¤O¢£N¥¦o4/§•¨)LMN©Py Planck
LMª%O«oyP>?Einstein 9 Langivin N¬-y®ZQ*¯°((de Broglié,
1924)%+„±%CD:²³N´µyPQ¶·‚? Bose ST9 Einstein %¸C%¹
º»:YZQ?Einstein Œ¼n S?N?Bose %E½N,¾¿À%23Á-:©
=>STN 192441925 @:ÃÄo4/01ÅÆ()ÇÈÉ()ÊËNÌ"=>
i!:u>¶·4Í΂?i%v#uÏÐ
t4Bose 239 Bose-Einstein 23!n7
Ñc>?J)ÒÓÅ\ÔÇÕ•%Ö×Ø 17) X94“Bose statistics or Bose-Einstein
statistics was introduced by S. N. Bose (1924) for light quanta, and generalised by
Einstein.”!%ÙÚd~bcyP>?/01dIJ)KLMNOPQ23…ÛÜ
%ÝDE94Þß56%23ˆNàC=>áâ!uZQ?Pauli %ãäj,%å
æ9 1925 @4 Fermi 23d Fermi :vZyåçbc>%9 1926 @XY>?è
E41925 @:9 Heisenberg %éêÁ-d41926 @:9 Schrödinger Eëªd4
512
!"#"$%&"'()*+,-+./012345 Bose 6789:;
Bose-Einstein 67;'Pauli ,<=>?@()*+,-+./012ABC9D
EFGH&"I:95
! S. N. Bose ;'JKLMN,OPOQRSTU"VWXYZOPOQR Calcutta
;'2001 [\]^POR Kolkata F_`&"V2'aaS;b,Zcde4f5
!gI'h;OPOQR,ijklKmnoOjQkSpqdrsVtuf5ij
klKmn@;'vw,JKL6xyz,{|}WBengal, Bombay, Madrasf,
~cS895 1857 [F;'v•F€9•‚pqƒ„2a,{|},XYOPO
QR'…K†J'‡Lˆ‰FŠ‹&"V5a"],•‚pqƒ„2ijklK
mnoOjQk@Œ•"'vw6xyz,JKLS,ZŽ•‚pqƒ„@••
V5‘’“+@,”•2e•"9a@–89]g:tuf5! S. N. Bose ;'ij
klKmnoOjQk—˜™'OPOQR?š“+,›œ@••V2'•y,
žŸ
¡S8•V¢£¤,¥+¦§;•\•Vtuf5g\g' h;OPOQR
¨©QOWBª;«K¬ˆl-m®f,|S¯°F±g:²?+d+³' Einstein
–´µC9¶·.•¸¹dº9F»•V5š+,$¼F@•I'½.o².¾
¿;À\FÁÂS892'!"€Ã–žŸÄŽ,Æ°@Ç*2ÈÉFÁÂ\
dÊCËÌS8Í45¢£¥+,¦§;•\•V2'1935 [F
Î)ÏdGÐ
gVÑÒÓÔ,ÕÖ–!4S895
! JKLF;'JKLš+,×@Œ•"9–4ؽ,ÙZ•²?+ÄoT?+
Ä Jagadis Chandra Bose(1858-1937) 2:95…!Ú67, Satyendra Nath Bose
(1894-1974)@ÛÜgI;:s•:5Ý2ÞbF‹:I:9“American Heritage
DictionaryW1979 ßf”S;'…àKá),âãF Jagadis Chandra Bose 2äÕC
513
!"#$%& Satyendra Nath Bose '()*+,-!"Jagadis Chandra Bose &.
/!01234567 2009 8&9:*+;2<=>?@AB$2 Bose 2CD&E
-,FG-H!A'7<I!"Jagadis Chandra Bose JKLMNO2P'QR+
,-!STUV@W%W%XYZ-[\<U!"
! ]^_`a&b!cKLM2NOdefg?'h/!ij7 2009 8 10 k&9:
*+;"]^aJ@lmnopq%$rst<2@u'v,wxNO@yO, z
O2{|<2q}~WKLM2NOd•€•v@KLM2‚ƒ„'…2†‡&
E-,ˆ‰,-!"A2j<F@Jagadis Chandra Bose JŠ‹&ŒV^•$+,
-!" J. C. Bose &Ž-,@•O'•OzC2P'*+! P. C. Ray (1861-1944),
•‘yOd S. Ramanujan (1887-1920), 1930 8’“’”2•–—˜\™Oš›š
d'W!cœ•LžŸe ¡d C. V. Raman (1888!1970), c¢£2¤¥¦e<H
$+! M. Saha (1893-1956),
§–¨n©2 S. N. Bose (1894-1974), ª2«¬-®
&./!c¯°LMœ±²–˜³´e2µ¶d< 1983 8•–—˜\™Oš›š
d S. Chandrasekhar (1910-1995)@·0¸¹º2»¼< 1968 8•–—˜š›šd
'W! H"G. Khorana (1922- )@2007 8•–—˜½¾š•›šv;c¿ÀÁÂ&
./!ÃÄÅÆǘ(IPCC)e2ÈÉ•ÊË! R"Pachauri (1940-)@…v,@Ìm
•ÍÎ&©ÏÐNO@·0¸zOWÑ2{|<ÒÓ/!KLM[NOd;B2
1Ô7U!"
! ;Sv@IPCC '…2ÈÉ R"Pachauri a&E-,J@ÕÖ2סFØ1v,
ÙI;-"]^a2ij9:2‹ÚkÛ2 2009 8 11 k@
cÜœKÝ–Þß–Þ
àáef>e7âã;"A2àá<J@‹ä2 IPCC åæd$7@¿çÁÂè–é
•cêëìíîïev@
cðñò¨&b!óôçõ•öe2÷øè–é&ùúv
514
!"#$%&'()*+#,-./0123456789:;<%=>%?@A
BCD+#$EIPCC FG% R;Pachauri HBI"!JE C. V. Raman K S.
Chandrasekhar L%MNO$PQBRSTUVJW"$XJYS;
! Z[%\]^% M. Saha $ _/`ab% S. N. Bose JcBEd0def%g
hijkl/mdheiVno(pqErsJtuvwtxyBz{$|{(
}q~•:€•WP‚ƒV„•:$…†HJ3‡!"#;ˆ‰EJagadis Chandra
Bose JEŠk‹ŒeiCN•LŽ•‡: 1884 •BEd0def%ghijkl
/mdheiB‘(’:“”NOV„#; 1897 •BJ•–Œ`%—˜™š›m
œ•žŸB
•9E\¡BI"!¢£¤¥$ž¦(§•:w%NOV„•:¨©E
ª«¬
;! -0® (Hertz, H. R., 1857-1894) B¯•!\°¡5±²89:%J 1888
•V„#•LEJagadis Chandra Bose 5³y%\°´N%µ¶·(¸•!":<
$5¹#;G•º:•!d0def%ghijkl/mdhei%n»(¼½E
¾¿%ÀÁ%oÂBÃć:;ÅÆJ 1915 •VE<% 2 •ÀBÇÈ%™š›(
ɘ‡EsƒÀÊ%™švË$‡:ƒ”NKƒ“N%™šBÌÍΨ©¬;
! M. Saha $ S. N. Bose %rsJEJ; C;Bose 5ÅÆ+#ÏÐ%Ñ%d0de
f%ghijkl/mdheiBÒÓ‡:<$BW#;<%³yEP. C. Ray $
C. V. Raman JEÔ9Õ9EÖN׳n»E“”N׳n»V„•:ª«¬;S.
Chandrasekhar JEC. V. Raman %ØV„#<$JÙ›•VÚÍÎ<$5„#5E
M. Saha $ S. N. Bose 5P‚ƒV„•:<$J…†H%ÛÜVݽ!Þ•:;
Bose $ßSà%rs%•kás“”NOEJagadis Chandra Bose $ Satyendra Nath
Bose JE1900~1920 •Ñ%d0def%ghijkl/mdhei(âãB‡
:ä•káMNåæ%Sçèé%êVEë•Bì5•!"#;
515
!16"7#S. N. Bose $%&$'(
! S. N. Bose )*+,-.$/01233456789,:;<=>?@ABC
?D1E*)=FDGH7@:;IJ+KL=A,B Das and SenguptaMN#12
S. N. Bose $OPIQRS+,TUV2WXYZ[\]^_`\]ab$cd1
ef$ serendipity (!"#$%&'()*+,-./0)Vg,+,hdIij>k
A,BC$lK$mn1\]o$pqrnVg,s2tu%v$:;=C?)
wAB 1924 x)yz{?| S. N. Bose $ 2 }$TUD Einstein $~ 1 TUIR
S>k=2S. N. Bose %vs•€ab$•‚Vg,ƒ„f…€$†‡ˆ‰Š‹$
qŒ)•>kA|D1Ž•@AD0•kA,B
ƒ„f…€$†‡ˆ‰Š‹s0•
u?,$12Einstein $~lTUVg‘2’“ 78#=2ƒ„f…€$†‡ˆ‰Š‹
1 Einstein $~lTUV1”•k'–{?,D/>kA,B—˜™š mƒ•€
›rœ•‹Mž#$!252p.319 )12Bose ab)Ÿ+,
$/0sg,¡
!¢Planck 1£¤¥¦D§¨©ª>kA,p«$¬I-®€$¯°‘Dd@>2
±$²®I•€³+,CD)´Fk2C$µ¶Planck .123#)·•>|B
¸¶Bose#$´¹)¥¦º%vI»¼•€³+,CD12•€›r$y½¾)¿) Debye sÀÁ2¶Planck .1234563#¶žÂZÃÂ#IÄÅ+,C
D)ÆÇ>kA,BÈÉÊË$ÌÍUÎ1ϪnsÐÑ>|B
! Das and SenguptaMN#=—˜sÒÓ>| Debye TUMÃ#)ÔAk'–>2 $´
¹)0•kA,¡! S. N. Bose sƒ„f…€$†‡ˆ‰Š‹IÕ†+,CDÖ>
)ƒWXYab$cd‹)×F|$12ØÙ2S. N. Bose 1¢Planck $¥¦ÚÛ
µ12Planck $-®€ÜÝÞV=2Einstein $…€ÜÝ޶ߕ€#V=2àr
7)1„”Vg,)áA@AÈD»â7)ãä>2{u)2±$»âI Debye
516
!"#$%&'(%)*+,-./*0!Debye !"#123456789:;
<=>?@ABCDEFGAHI-JKL8M2&N567OPQ)A,-.
/*07RS%&/5TU%&; S. N. Bose AVW,AXYZ[\],A^A
_`#a$%&/5T
“ I had no idea that what I had done was really novel . . . . Instead of thinking of the
light quantum just as particles, I talked about these states.
Somehow, this was the
same question which Einstein asked when I met him (in October or November 1925),
how had I arrived at this method of deriving Planck’s formula.”
<b]cdeG,-.f;g-:<b]chiXYj\ZXYdeG.A,k
57/lAO;Das and SenguptamnoAJ!A9l,k5T
! 76p,;6AqrAst-;S. N. Bose O<=>?@ABCDEFG8u/
&vw.xB%*.*y)7z{%&/5T%*%;|16-2;16-4 ,}~)9
l8;•€7•‚ƒ8k5„…†‡-;bˆ‰ŠY‹Œ,•Ž&•b]c‹Œ
,•Ž&•=•JK7.5A,;64-ggL‘4Az{,k57’-“lT
”•A'(A–—8˜y&•Ž4™.š›+A67,kplmœoT•žŸ
žtA¡¢£
g•
-;UA•žt#¤¥%¦/T§¨;=§‹©Aª«A¬-t
-;®¯A°±A²³#´%fµ¶,·5¸¹8k5Tª«Aº»7-;6A
9l.¼½¾5quAF¿#À8ÁÂ7’-“lT%*%;)7Ž;S. N. Bose
A!"O<ÃÄL“•GAÅ•,ky&•;Einstein #Æ·Ç*¾678.y)T
È);UAJK;
<b]chiXYj\ZXYÉÊGAË_8Ìy)T64Í2
,;S. N. Bose -΋8ÏЛ458Ѿ57’-“lTXYÒ•žAÓ/Ô-;
ÕÖ,×Ø#12)Ù§«Ú (J. C. Bose)*+;Ù§«Ú89y&XYÒ,ØÈ
4)Ùq«Ú(S. N. Bise) Û7;ÜÝ8ÞßYhàá]›4)A,k5T!
517
Fly UP