Comments
Transcript
repulsion - Nuclear Theory Group @ Univ. of Tokyo
YN・YY interaction models and neutron-star matter Y. Yamamoto NYT計算はNHC-Dmを用いてなされた その後のNijmegen modelsの発展を いかに踏まえるべきか??? たとえばESC07を用いた計算の意味は? 意欲がわくモチベーションがほしい! QCD-based YN-YY interactions and neutron-star matter Interests ΛN interactions: hard cores, p-state components ∑N interactions: Pauli-forbidden states Λ、Σ、のmixing rate in neutron-star matter Development of Nijmegen models Big ban Bando ~1980 NHC-D 1977 NHC-F 1979 ΛN G-matrix calculations in nuclear matter Bando & Nagata 1982 Collaboration with Japanese group NSC89 NSC97 Rijken & Yamamoto ESC04 ESC99 ,ESC00, ESC02, ESC03 ESC07 Hard-core radii in NHC-D/F 1S ND NF NDm 0 (I=1/2 & 3/2) 0.563 0.530 0.55 > ~ 3S 1 (I=1/2 & 3/2) 0.449 0.524 (in fm) 0.48 Spin-spin part in ND Vσσ=[V(3S1)-V(1S0)]/4 Hard-core radii (fm) 1S 0 3S 1 ND .56 .45 NF .53 .52 Strongly-repulsive Vσσ Is forced into attractive one by large value of rc(1S0) Spin-Spin part of ND is exceptional (strange) in Nijmegen models due to unnatural assumption for core parts If taking rc=0.5 fm for 1S0 & 3S1 Uσσ= - 0.2 +5.2 (MeV) Spin-Spin part of ND is abnormal conceptually !!! Exp -30 当時NDに固執した理由 コードがそのまま使える 個々の問題はさておき全体的に悪くない (T=3/2 3S1 repulsion, attractive ΛΛ) NSC89/97における”致命的”問題 JA/JBは論外 ESCは未完成 結果的(偶然的)に問題点が回避されている Baldo et al. arXiv:astro-ph/0312446 4ρ0 LOBT(C.C.) は高密度まで信頼できる !!! G行列理論に基づくnuclear saturation LOBT with continuous choice is reliable up to high density Role of Three-Body Interaction (TBA+TBR) is essential for saturation problem For nuclear saturation, role of TBF is indispensable ! ●Attraction at low densities Typically Fujita-Miyazawa diagram ●Repulsion at high densities Phenomenological TBR by Illinois group for instance universal TBRは実在する! Saturation curve (incompressibility)に不可欠 中性子星の最大質量 ・・・ その起源は? Pure phenomenological Meson exchange diagrams Relativistic (Z-diagram) ・・・ Phenomenological modeling of Three-Body Repulsion in ESC04 Necessary for maximum mass of neutron star Universal among NNN, NNY, NYY… Three-body force due to triple-meson correlation Reduction of meson mass in medium MV(ρ)=MV exp(-αρ) for vector mesons Medium-Induced Repulsion TBA Baldo TBR Similar curve is obtained Maximum-mass problem of neutron stars Importance of universal TBR From CEG83 to CEG07 Modern NN interaction model ESC Continuous choice for intermediate spectra Including TBA (Fujita-Miyazawa) + TBR Up to higher partial waves on the basis of saturation mechanism 16O + 16O elastic scattering E/A = 70 MeV Effect of three-body force U DFM VDFM iNWWDFM T.Furumoto, Y. Sakuragi and Y. Yamamoto, (Submitted to Phys.Rev.C rapid communication) 2001年 ΛΛ phase shifts (ESC04d) Old data Pair Nagara diagonal coupling Total OBE Total (repulsion) Pair Pair OBE Strong ΛΛ-ΞN coupling from meson-pair exchange terms Exp ~ 1.0 ESC04 models are consistent with NAGARA data ΞN interaction ??? UΞ ~ -14 MeV (WS depth) 理論的にはまったく indefinite おそらくT=1 S-state interactions は repulsive or wealy attractive Partial-wave contributions to UΞ (G-matrix calculation) α is an parameter for three-body repulsive effect adjusting the attraction suitably Main contributions to attractive values of UΞ ESC04d : NHC-D : 13S 1-state attraction P-state attraction Large conversion width ΓΞ in ESC04d ESC models (ESC04 & ESC07) は ΛN、ΣN、ΛΛ に関しては、極めてreasonable Hyperonic matter calculationに適用する 意味は十分あると思われる しかしneutron-star matterにおける新しい Physics (NDmによる計算を越えて)に リンクするかどうか・・・ Hyperonic nuclear matter calculation with ESC model <内的要求> Continuous choice でやりたい n+ Y treatment からの一般化 r-表示は必要か? <相当しんどい計算> 若手の馬力、もしくは、老後の趣味?