Comments
Transcript
ON NECESSARY AND SUFFICIENT CONDITIONS FOR L2
Title Author(s) Citation Issue Date ON NECESSARY AND SUFFICIENT CONDITIONS FOR L2-WELL-POSEDNESS OF MIXED PROBLEMS FOR HYPERBOLIC EQUATIONS Rentaro AGEMI; Taira SHIROTA Journal of the Faculty of Science, Hokkaido University. Ser. 1, Mathematics = 北海道大学理学部紀要, 21(2): 133-151 1971 DOI Doc URL http://hdl.handle.net/2115/58101 Right Type bulletin (article) Additional Information File Information JFS_HU_v21n2-133.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP O NNECESSARYANDSUFFICIENTCONDITIONS FORV..WE L L POSEDNESSOFMlXED PROBLEMSFORHYPERBOLIC EQUA'τ10NS By Rentaro AGEMIandTairaSHIROTA 1 . Introduction. Le tR~ bet h eopenh a l fs p a c e {(x , y); x >0 , y ε B"-1}. W e c o n s i d e r t h emixedproblems (P, Bj;j= 1,… , 1), d e n o t es i m p l yi tby (P, Bj) , f o r hyュ p e r b o l i ce q u a t i o n so fo r d e rm : (p(a t , Dx, D y )u )(t, x , y )= f(t , x , y ) i n(0 , T)xR ' ; " y )u )(t, 0, y )= 0 (Bj(a t , D" , D i n(0 , T)xR"- I, ( a : u )(0 , x , y )= 0 ( j= 1,… , 1) (h=O, I , --vm-1) 。( • a i nR ' ; " .a ¥ wherea t= ~~, Dx=-i':Jv~ , D,, =(-i一… -i~l a ax' ~y 一 \ "aY1'--' "aYn-1) nd i=~ -1 Thepurposeo ft h i spaperi st o determine t h en e c e s s a r y and su伍cient c o n d i t i o n sf o rw e l l p o s e d n e s si nt h ef o l l o w i n gs e n s e : j )i sL2-wellてposed withd e c r e a s i n g Dennition. Themixedproblem(P, B nonn e g a t i v ei n t e g e r )i fandonlyi fthereexistpositiveconstanお T' 三三 T w hichsati.めI t h efollo叩ing c o n d i t i o n: Fore v e r yfiεH川, O( (一∞ , T)x .R';, )1) 叩ith f=O( t < O )t h emixedproblem (P, B j )h a sa u n i q u es o l u t i o n u εH禍 ((0, T')x .R';,) s u c ht h a t order ν(ν ; C, T andT'回ith ( 1 .1 ) J~' lilu(ム, )111L1 必 CJ~ Illf(t, ". )Ili: ,odt2) Whenν=0 wec a l li tD-wellアosedness ( w i t hd e c r e a s i n go r d e r0 ) . Thec o n t e n t so ft h i spapera r ea sf o l l o w s . InS e c t i o n2weg i v ea sumュ mary onboundaryv a l u eproblems f o re l l i p t i co r d i n a r yd i f f e r e n t i a le q u a t i o n s dependingonp a r a m e t e r s . InS e c t i o n3 wei n v e s t i g a t et h ez e r o so fL o p a t i n ュ s k i i ' sd e t e r m i n a n tundert h eL2四well-posedness with d e c r e a s i n go r d e r ν. In 1), 2 ) F o rt h ede五nitions s e eS e c t i o n2. H e r e a f t e rwed e n o t ev a r i o u sp o s i t i v ec o n s t a n t s b yC a n dC' , w h i c ha r ei n d e p e n d e n to fv a r i a b l e si ne a c hi n e q u a l i t yc o n s i d e r e db e l o wr e s p e c ュ t i v e l y 1 3 4 R .Agemiand T .S h i r o t a S e c t i o n4 wed e s c r i b eac e r t a i nn e c e s s a r yand su伍cient c o n d i t i o nf o rD-wellュ h etermo ft h ecompensatingfunction , p o s e d n e s swithd e c r e a s i n go r d e rνby t and moreover we d e s c r i b ei t by t h e terms o ft h er e f l e c t i o n coe伍cients i n . I nT .S h i r o t aandK .Asano[ 9 ]i thasbeenshownbysemi-group S e c t i o n5 methodt h a tt h emixedproblem(P,D~j-!) (m=2 l )i sw e l lposedi nt h es t r o n g e r y ) does not contaヘn the odd order terms i nD x . s e n s ei f P(D)= P(孔, Dx , D Asone o ft h ea p p l i c a t i o n so ft h er e s u l t si nS e c t i o n 5 we show that , i nt h e c a s eo fc o n s t a n tcoe国cients, t h ep r o p e r t yo fP(D)mentionedabove i s essen田 t i a lt o be D-well-posed ( w i t hd e c r e a s i n go r d e r0 )f o rt h e mixed problem j-1 ) . (P, Y x Thisa s s e r t i o ni sa c h i e v e di nS e c t i o n6 . F i n a l l ywep r e s e n tsome . examples i nS e c t i o n7 Thispaperc o n t a i n st h ed e t a i l so f ourp r e v i o u s paper [ 8 ] . 2 . Preliminaries. F i r s to fa l l we s t a t efundamentala s s u m p t i o n s . LetP(D)andB j ( D ) be homogeneousdi丘erential operators o fo r d e rm andmj(mj<m) with c o n s t a n t coe伍cients r e s p e c t i v e l y . W e assume t h a t P(D) i ss t r i c t l yh~ρerbolic with 何学ect t ot d i r e c t i o nandt h ehypeゆlane x=0 i sn o n c h a r a c t e r i s t i cforP ( D ) . Theni ti se a s i l ys e e nt h a tt h e number l(m-l)o ft h er o o t s À;(-r, σ) ( タ j(7", σ) ), l o c a t e di nt h eupper( l o w e r )h a l f À-plane , i nタ o ft h ec h a r a c t e r i s t i ce q u a t i o n P (7", À, σ) = 0 i sc o n s t a n tf o r any (7", σ) E0 , xR n-l respectively , where C+= {-r ε C; Rer> O } . Furthermoreweassumet h a tt h ehypeゅlane x=0i sn o n ュ c h a r a c t e r i s t i cforB j ( D )andmJ>mk ザ j>k. Throughoutt h i s paperweuset h ef o l l o w i n gF o u r i e r L a p l a c et r a n s f o r m s and norms: 山, σ)=j:dtfkjrj t 仰 iaYu(t, x , y )dy , û( -r, x, σ) = ¥ d t¥. . e- ,t 的 u(t, x , y )dy, JO ! ' ]u(t, ・ γ)1:~ = u(t, ".)引川川川 山i1吟|li企吟i 日l 川川川川川附 1川d似附(ケ仇-r, 判川 JR “ L :II(ò; 叫(ム・ γ)1 1 ~ , Z= j 広ムh i!トム ~Oo il!~ = 主 fnn ,(1-rI 2 +1σ12)k 吋: |(α 帆 れWdx , ". ) 2 lldh , )1112z= 詰:fnn- , 1 (r1 + 1σ 12)k-h) daf~ I(D~ û) 川川ム ( rE(工) whereσγ=σ1 y1 + … +σn-1 Yn-!> 1σ1 2 =σî+ … +σ;'-1 and 1 卜 11 j i st h enormi n OnNeωsary andS u f f i c i e n tConditiolls 舟-L叫Vell-Posednω 01 MixedP r o b l e m s 1 3 5 S o b o l e vspaβe HJ(l杭) ( j ;anon n e g a t i v ei n t e g e r ) _ By H k •l ((一∞ , T)x R~) (え l; n onn e g a t i v ei n t e g e r )weu n d e r s t a n dt h ec o m p l e t i o no fC;'(( 一∞ , T)xRて) , A I r r 、 1 \官 byt h enorm( ¥ 1 I 1u(t, ・,・ )lilL dtr. W edef フ neL o p a t i n s k i i ' sd e t e r m i n a n tR(" σ) a sf o l l o w s : B(" σ) = d e t(B1 (" 訂(ヂ, σ), σ),… , Bl (" タ . ;("σLσ) ;j ↓ 1 ,…,め, R(" σ) =B(" σ) / T T (À.;(" σ) 一花 ("σ)). l~J く k~l ThenR(" σ) i sa n a l y t i ci nC+xRn-landcanb econtinuouslyextendedt o + xæ- 1• L e tV bet h ez e r o so fR(" σ) i nC十 x Rn-l andf o re v e r y,吋Y十 let S( ,) b et h ea n a l y t i cv a r i e t y {σε Rn-l; ( "a )EV} i n Rn ー 1 Then we have aV=V andaS( )=S(a-r) f o re v e r ya>O. Applyingnowt h eF o u r i e r L a p l a c et r a n s f o r mt oe q u a t i o n si nt h e mixed )f problem (P, B j ) we o b t a i nt h e boundary v a l u e problem C? , ヘ 3 o re l l i p t i c j o r d i n a r yd i f f e r e n t i a le q u a t i o n sdependingonp a r a m e t e r s ("σ)ε C+ xRn-l: , ( P ( "Dæ, σ)Û)("X, σ)=f("x, σ) ( B ) j(" Dæ, a (,, 0, σ) = 0 i nR~ , (j =1, …, l ). L e tRj(', ふ σ) bet h ed e t e r m i n a tr e p l a c i n gj-columni n R(" σ) by t h et r a n s ュ p o s e dv e c t o ro f(exp(ixÀ.t(" σ)),…, exp(ixÀ.i("σ)) andr=r(" σ) ac l o s e dJordan c u r v ei nt h el o w e rh a l fタ .p l a n ee n c l o s i n ga l lt h er o o t s訂 ("σ) (ん =1 ,… , m-l). I fR(" σ) キ o f o rsome("σ)ε C+ xRn- I, i ti sw e l lknownt h a tf o re v e r yj(" ・, σ) ε Cö(R~) t h eboundaryv a l u eproblemC? , ヘ 3j) hasauniquesolution Û(" ・, σ) εC担 (R~), w hichi sw r i t t e ni nt h ef o l l o w i n gform: ( 2 .1 ) Û("X, σ) = 2~7r 1 L =~ P(,:-~, σ)dHE示。 G(X, …) f(日 σ)ds , [∞ eilæf(" λσ) 7" f∞ ! . . _ R i(', x, σ)_ ホBi_(', ん σ)_ _-i81 whereG(x, s, "σ)=-21 j=1 R(T, σ-) )r子広工五了 e 3 . ZerosofL o p a t i n s k i i ' sdeterminant. I nt h i ss e c t i o nwei n v e s t i g a t et h ez e r o so fLo p a t i n s k i i ' sd e t e r m i n a n tR(" σ) under D w e l l p o s e d n e s s with d e c r e a s i n go r d e r ).l. The f o l l o w i n g theorem shows出 t ha 叫t 証 if t h emixedproblem(P, B j )お is D -well-posedwithd e c r e a s i n go r d e r νthen t h ez e r o sV o fRケ ( "σ 吋) h a st h ep r o d u c tr e p r e s e n t a t i o nC+xS, whereS iおs t h e∞ c one s u r f a c e羽 wit出 h 刊 v er 此te 位 x 抗 at t h eo r i g i ni nRn-l. Theorem3.1. Ift h emixedproblem(P, B j )i sD-ωellアosed withd e ュ h e nt h ea n a l y t i cv a r i e t i e sS( ,) d o n ' tdφend on , EC+ ・ c r e a s i n gorder ν, t R .Agemiand T .S h i r o t a 1 3 6 Proof I t su伍ces t o prove t h a ti f R(T , σ。) i si d e n t i c a l l yn o tz e r of o r then R(T, σ。)キ o f o ranyTEC+. UsingW e i e r s t r a s sp r e p e r a t i o ntheorem, i fR(To, σ。)=0 f o rsomeToEC+then nCn-1 anda c o n t i n u o u s( a n a l y t i c )f u n c t i o n t h e r ea r eaneighbourhood U(σ。) i r(σ) i n an open s e t D cU(σ。) such t h a t R(r(σ), σ) = 0 and r(σ)εCγin D. j=1,…, l )i nD sucht h a tf o r Hencewecanf i n dc o n t i n u o u sf u n c t i o n s a j (σ) ( someσ。 ε Rn-l anyσεD (~). 1 ) ( a1(σ),… , a z (σ) )キ 0 , ( 3 .2 ) L :a j (σ) ß" , j(τ(σ) , σ) = 0 where ß" ,1 (T, σ) = B ,, (T , タ1(T, σ), σ) , : 1 d8 ん (r, a)= σj(ケ T‘ σ; 1 ( h= 1 ,・'., l ), 必 j --2よ かド:〉〉〉 ):80街8{-2 十ド一 昨-2 θ鳥j上 μ の恥←」川 2 f (T, σ)-Àt (T, σ)) 8+・ 8 )=訂 (T, σ) +( タ 2 1 …+(む (T, σ)-).;-I(T, σ)) 8 1 … θj ー 1 (j=2, …ヲ l) . Note t h a twecandeterminebranches ) . ; such that え;(τ(σ), σ) i sc o n t i n u o u s h eh y p e r p l a n e x= 0 i sn o n c h a r a c t e r i s t i cf o r ( a n a l y t i c )i nD'c D , becauset P ( D ) . F i r s twec o n s t r u c tsmooth s o l u t i o n so ft h ee q u a t i o n s (P(D)u )(ムふ ν)=0 and (Bj(D)u) (ム 0, y)=O , which d o n ' ts a t i s f yt h ef o l l o w i n ge s t i m a t e ( 3 . 3 ) I "T ¥ u(t,., .)!II;"_ldt ζCII (a:u)(0、., . )II~ , wherenon n e g a t i v ei n t e g e r s hand ka r e arbitrarily Fo rt h i s purposewe d e f i n et h ef u n c t i o n u(t, x , y )= . z :¥ 五xed. aj(σ) 九 (T(σ), X, σ) exp(r(σ)t+iσγ)d,σ , j- -, l .J D " whereD"=D'nRn-lwhichmaybe assumed t o be n o t empty, 1'1 (r, exp( i x ) . t(T, σ)) and x, σ)= 山ぷ μMσ 削)=引 叩収 =h 州 (ix i臼Z判3)ぺ Fo re v e r y pos討 sit 江ti討 ve i n t e g e rp l e t us s e t up 付 ( t, x , νω)=U(1ρh吋tム, 1ρりI)X, ρ 1台勾 νω). Then, by t h e homogeneityo fP(D)andBj( D ) and( 3 .2) , Up i s as o l u t i o no ft h ee q u a ュ t i o n sa b o v e . FromP l a n c h e r e ltheoremweo b t a i n ( 3 .4 ) 1 1 ( a ;u p) (0, ・,・) II~::三 C L: ρ2k+2j-n OnN e c e s s a r yandS u f f i c i e n tC o n d i t i o n sforL 2 -Well-PosednessofA1ixedProblcms 137 Ont h eo t h e rhand, s i n c ef o reach h (D;rj) (7"(σ), x, σ) ( j= 1,… , l) a r el i n e a r l y i n d e p e n d e n ta sf u n c t i o n si nx , i tf o l l o w sfrom ( 3 .1 )t h a tL :aj(σ) (D;rj)(7"(σ) , x, σ) 主 o f o r anyσE D". Hencechoosing su伍ciently s m a l l D"we have , by o ranyp o s i t i v e T andp P l a n c h e r e l theorem , f ( 3 .5 ) 1~lilUp(t,., .)lli;"-ldぱ円 zpzkn By( 3 .4 )and( 3 .5 )Up d o e sn o ts a t i s f yt h ee s t i m a t e( 3 .3 )f o rasu伍ciently l a r g ep . Nextwec o n s t r u c ta s o l u t i o no ft h emixedproblem (P, B j ) which d o e s 1 .1 ) . Usingt h eabovef u n c t i o nup l e tu sd e f i n ef o r n o ts a t i s f yt h ee s t i m a t e( al a r g eK (3.6) 円 (t, x, y )= S e t t i n g 'Lι (t, x , y )= that 叩~ ( 3 . 7 ) x L :tk(:up)(0, x , y)/長, L L :xqfp ,q(t, y )(L= max mル we d e t e r m i n et h eι , q such i sa s o l u t i o no ft h ef o l l o w i n ge q u a t i o n s: (Bj(D) (日~-Vp)) (t , 0 , y )= 0 (メ;(W;)-Vp+Up ) )(0 , x , y )= 0 ( j= 1,… , l ) i n (0 , T)xRηl (k=O , 1,… , m-1) i n Rn _ . , Thisi sp o s s i b l ei fK> m +L . Infact , s u b s t i t u t i n gw~ i n t othe 五rst e q u a t i o n i n( 3 .7) , t h efp ,q a r ei n d u c t i v e l ydeterminedby t h ef o l l o w i n gforms: j二 , q(t, ( 3 .8 ) y )= 0 i f q キ mj (j=1,… , l ), fp ,m ,(t , y )= (B1( D )V r,) (ム 0, y)/m1 ! , ん問 ι 凡 mj川川(付仇川川 tム川 ,仰川 νω)={ y X:〉 主 川 μ 叫叫h!A m 必4らj 明町ゐ (仇a孔ι 叫 t, ムb)ι D'}J んん九川Lゐ (伊ω 川 , 伊州)+川十刊(団 νyω B 具jバル川(仰倒 叩 D)川U叫 州刈山)川巾以(伊仇 ω p)山tム, 仰川) (υj~ミミ 2 勾) whereBj(D)=D;:j+L :Afz(t> Dy)D;:r d • , Note that 叩~ satie五es then t h e seconde q u a t i o ni n( 3 . 7 ) . Letus s e t wp(t, x , y ) = c p ( x )w~(t, x , y) , where c p ( x ) ( ) and c p( x )= 0(x ミ 1). 1¥ ε C;'(R~) w ith c p ( x )= 1 ¥O::;;x 壬 2 Then wp-vp+u p ε T)xR " ; . )i sa s o l u t i o no ft h emixedproblem (P, B j )( s e t t i n gf=P(D) (Wp-V p 十 U p )) a nd s a t i s f i e sP(D)(w p 一円 +U p ) (0, x , y)=Oi n R, n. H叫 ((0, I fthemixedproblem (P, Bj) i s D-well-posed with d e c r e a s i n go r d e r ν, thena s o l u t i o nwp-vp+u a t i s f yt h ee s t i m a t e( 1 .1), t h a t is , pmusts j T ol||(叩p 一円切) (t ,', ')lii;"-ldt::;;CI~T III(Pの) (w p 一 Vp+U p )) (t ,', ')ill: odt , UsingP(D) 叫 =0 weo b t a i n R .Llgcmiand T .S h i r o t a 1 3 8 ( 3 .9 ) J: 目的 (t,',') d t : : : ; ; C ( j : W (t ,., . ) ';,+, dt+ j:li:V/) は ,.);,;", dt) ]l S i n c ewe havefrom( 3 .8 ) ilw ]J弘・,・ )ν 三三 CI:' 7)1)(t, ・, . )111;n+L 寸 1 →リ i tf o l l o w s from ( 3 .6 ) and ( 3 .9 )t h a t (3 川 [', U]J (t,., .)I!!二 l dt :::;;C戸。 II(a; u 1J 似, . )11;,か 1 Ther i g h thandi n( 3 . 1 0 )i sp o l y n o m i a lo r d e ri npandt h el e f thand i n( 3 . 1 0 ) . Then , f o ra su伍ciently l a r g ep , U i s ar e q u i r e d i se x p o n e n t i a lo r d e ri np f u n c t i o n . Thus t h ep r o o fi sc o m p l e t e . ] J Remark. Thec o n s t r u c t i o no ft h ef u n c t i o nw -v i s used i nS e c t i o n4 . ] J ] l h a tBj(D)d o n ' tc o n t a i nt h et e r m si n a,. If Corollary 3 . 2 . Sゅpose t t h emixedρroblem (P, B j )i sV-wellアosed withd e c r e a s i n gorder ν, t h e nS ( r l lS emjうty f oranyrEC ,. Proof Assume t h a tR(ro, σ。)=0 f o r some (ro, σ点灯+ X IC- 1• ByTheo・ rem 3 .1and t h e homogeneity o f R(r, σ) we o b t a i nt h a t R(r, O)=O f o r any TεC. On t h eo t h e r hand , R(r, 0 )i sw r i t t e ni nt h ef o l l o w i n gform: d e t( ( i a "r ) m " ・・・ , ( i a k't) l n1 ; ん↓ 1 , ・・・ , l ) R(r, 0 )=函( (ia戸)仁 -i ihh)Z17云「↓ 1子三 l) where t h ei a "r(τε り) a r er o o t so fP(τ, Æ, 0 )=0with p o s i t i v eimaginaryp a r t . o r By t h et h e o r yo fc h a r a c t e r so fu n i t a r yg r o u p s 3 )weob t a i nt h a tR(r , 0) キ o f e v e r y r キ 0, h e r ewe u s et h eassumption t h a t m1< … <mz. ( s e e[ 1 0 ] ) . Thus t h ep r o o fi sc o m p l e t e . By t h efr s tp a r to ft h ep r o o fo fC o r o l l a r y3 .2 we have Corollary3.3ゐ Suppose t h a tR(ro , 0) キ o forsomeroEC+ ・ Ifthe mixed problem(P, B j )i sV-well-jうosed ω ith d e c r e a s i n g order ν, t h e nV i sen,ψty. 4 . A c e r t a i nnecessaryandsu伍 cient condition for V-well-posedness ( 1 ) . o n d i t i o n 1 nt h i ss e c t i o n we d e s c r i b ea c e r t a i nn e c e s s a r y and su伍cient c f o rV w e l l p o s e d n e s swithd e c r e a s i n go r d e rνby t h etermo ft h ecompensating f u n c t i o n G(x, s, r, σ). L e t ~ bet h es e t {(r' , a')EC~ xRn-l; j T 1 '2 +1σ'12=1} and ~+ i t sc l o s u r e . 3 1 This method i s suggested by Prof .L .G蚌ding OnNeces叫γy andSuffi正問 nt Conditionsfo γ v- W e l l P o s e d n e s sofl ' v lixedPγohle 111s L e tV '=Vn1 . 'l' where V i st h ez e r o so f R("σ) i n ~\ xR ,n-1. . ' + wed e n o t et h ecomplemento fA i n 1.'ト by Aヘ as u b s e ti n1 Thenweo b t a i nt h ef o l l o w i n gmain 13! 、 When A i s , . L et S(,)キ Rn-1 andS( )=S b e ind,φendent of日 C_. Theorem 4 .1 Themixedproblem(P, B j )i sD-wellア osed withdecr,ω sing order レグ ωld only ザ the folloω ing c o n d i t i o n( 1 )i ssati,ポed: ( 1 ) . Fore v e r y(,~, σ~)ε(2+ -1.'+ ) UV 't h e r ee x i s taneighbourhoodU(τJ, σ~) and α constant C(,~, σ~) s u c ht h a tforany(,', a') ε U(,~, σ~) パ1.'"什 V'c ( 4 . 1 ) I I ( D ; G )(x , s, ,', a')II~(L2(s>0) , L'(X>0)) 三三 C(,~, σ~) (Re,') ν 1 (h=O, l , --v m-1) where 1 1 .11 .tl (L'(S>O) , L'(X>O)) i st h e。ρera初 r normfromD(s>O) t oD(x>O). Toprove Theorem 4 .1we need t h ef o l l o w i n g lemmas. I n particular, 4 .3 i se s s e n t i a L F i r s t we s t a t e an elementary lemma on s t r i c t l y h y p e r b o l i cp o l y n o m i a lwithout p r o o f . Lεmma (" ofdegl官 m i ss t r i c t l y Lemma4 .2 . 1fahomogeneous ρolynomial P o" t h e n wehaveforany( "ç)ε C+ xI l n h y p e r b o l i cwith re学ect t IP(" ごw 二三 C(Re ,? (1 , 12+l 蹣 2 ) m 1. Lemma4 .3 . 1 ft h ea s s u m p t i o ni n Theorem 4 .1andt h ec o n d i t i o n( 1 ) a r esatisfied, t h e nfore v e r y(T, σ)EC+ xRn-1with σ 伝 S andfEHνI " , 1," ((∞, ∞ )xB';) (ん , a n on n e g a t i v einteger) ω ith f=O( t < O )t h e boundarツ value ρroblem CF , ハ j )h a sa u n i q u es o l u t i o n û(". , a) ε Hm ," (R\) , which s a t i s f i e s t h efollowinge s t i m a t e f ) lL 1 三三 Clil f(T , v-)!lii ,o , (Re,?(川 )ill d(T, - ( 4 .2 ) ( 1 2 eT)2(Ul1)|10(T, v・) k 三二 CiLf(". , .)2 k11 , k I (ん =0 , 1,… ,h ) , f o rany EC • Proof Note t h a tt h en o t a t i o no ft h e norms has no ambiguity , b e c a u s e t h emeasureofS i sz e r o . Usingt h el i m i tp r o c e s sandt h er e l a t i o nP("Dx, σ) û(-r, x, σ)=f(" x, σ), i tsu缶ces t oprovet h ef i r s te s t i m a t eo f( 4 .2 )f o rjiεC;((O , ∞) xB " t )and d e f i n e di n( 2 .1 ) . F i r s tl e t 1 bethe 五rst termi nt h er i g h thando f( 2 . 1 ) . Then i tf o l l o w s from Lemma 4 .2 and P l a n c h e r e l theorem t h a t (Re,)Z I:i\(". , ・ kllL 1 三二 Clilf(". , . ) i l ! L which i m p l i e s the 五rst e s t i m a t eo f( 4 . 2 )f o r Z{ 1 ・ Let U 'bethes e to fa l lp o i n t s(,', a ' )f o rwhich ( 4 . 1 )i sv a l i dand U t h e s e t {("σ); (τ" a') ε U'} where ,'=,ρl, d=σρ1 and ρ=( 1r 1 2 +1σ| ポ. We d e - 1 4 0 R .Ag四ni and 7 ' . Shi:γot品 compose û= ム+ゐ + Û3 , whereロ3i st h ef u n c t i o nm u l t i p l y i n gt h ec h a r a c t e r i s t i c f u n c t i o no f U 句 the s e c o n dtermi nt h er i g h t hando f( 2 .1 ) . 4 .2 )f o rロ2 weremarkt h ef o l l o w i n g Nextt op r o v et h ef i r s testimat疋 of ( o re v e r yi n t e g e r f a c t s . By t h ehomogeneity o f P(D)andBj(D) we have, f hミo a nd(!', σ) ミ U, ( 4 . 3 ) (00122'~Rj) (!', x, σH À~ ~2k-2幅一 J∞ 1 (D~R;) (!", x , a ')1 0 ) I \--XR3(!,:'~)~' ~/ I d x= p 2 k 2 m r 1 ) 0I \~X~R(れ~'U ' 1 2 _ I fK=K(!" , a ' )i st h e∞nvex h u l lo ft h er o o t s1 ;(!", σ') (j=1,… , l) , t h e nwe have ( 4 .4 ) I(D~Rj) (!", x, σ') 1 三三 1 L : _s~_p ID~(lkéXl)ljh!f \h~O l忌K njL :s u pI(D~ Bp)(!", 1, a ' ) j hf ! lEK J )p キ j\h~O Byt h ef a c tt h a tR(!" , a') ミ Cand B例訂(!", σ') 三 C f o rony(!", σ') ミ U', i tf o l l o w s 4 . 3 )and( 4 . 4 )t h a t from( ( 4 . 5 ) [ 0 0 1(D~Rj) (!', x, σ) ¥ \.L/X .L~j/_\':t' , 1 J O1 S i n c e IP(!', ( 4 . 6 ) R(!', σ) u ん σ)J2:2::C( 1!'1 2 + flBjMσ) 2À~./ 1 1 1 r" ~2k-2,,,, -1 f o rany(r, dx~C ρ;-1 一 1 1 12 +1σ12)地 1似 2加均片叫町咋 r一 α p伊 ω 壬C 伊 μ a 一一|い 2 ∞ P(什!', ん1, σ 司) for any(!', σ) 主 U f o rany(!', σ)ξ U. andた R}, wehave σ) 怪 U. ByP l a n c h e r e ltheoremandSchwarzi n e q u a l i t yi tf o l l o w sfrom( 4 . 5 )and( 4 . 6 ) t h a t 1tÎ 2 (!', ・ γ) !I! ;,云 Clllf(!', ・, -)liii , whichi m p l i e s the 五rst e s t i m a t eo f( 4 . 2 )f o rÛ2・ F i n a l l yn o t et h a t( t +-.E + ) UV 'i scompactand ( 4 . 7 ) (D!G)(x, ふれ σ)= 〆一冊 +1(D!G) (ρx, ps , !", σ') ( k= 0 , 1,… , m-1). Usingt h er e l a t i o n(4.7) , t h ec o n d i t i o n( 1 )andt h echangeo fv a r i a b l e sweo b t a i n ! ltÎ 3 (!' , ".)川 目I広li弘Lι いい-寸 仏 -1弘い =戸= Z 剖乱 L肋州 JJ(hω ノ y)y/p 〆 r吋y 〆2 =玄剖1D(r)P 吋:k ベ11ぽ r 仰) (伊x, 刊川(仇乙叩 S伊p戸1\川, 豆 C慣れt 2 (針。 1D(r) p"u凶rl 1 仇 SP1σ)J2 ds 豆 C(Re!'t 2 ( 叶川: whereD(!')={σε Rn-1; (!', σ)ε V). 1(!', "・) 111~ , 0 , h ep r o o fi o m p l e t e . Thust sc OnN e c e s s a r yandSu J f i ci e n tC o n d i t i o n sforv -Well-PosednessofMixedProblems 141 By Lemma4.3 and Paley-Wiener theorem ( e .g . Theorem 7.1 i n[ 2 ] ) weo b t a i nt h ef o l l o w i n g Lemma4 . 4 . 1ft h eωsumption i n Theorem4 . 1 andt h ec o n d i t i o n( 1 ) i ssati,ゆd, t h e nfore v e r ya>O andf withe~atfiε H' 山 , h ((一∞,∞ )xR,:-) ( h ;anonn々gative i n t e g e r )andf=O( t < O )t h emixedproblem(P, B j )( w i t h T= ∞ ) hω a u n i q u es o l u t i o nu withe~at u ε Hm 叶 ((0,∞) xR ' : )s u c ht h a t 子-2Ml iu(ム ( 4 . 8 ) ,. )川川il肱1 ル|広ル い一→ Lι 此ル~ldt 子r:〉〉 ef一叫 u叫(仇tム,', ')III~+kdt 豆(仰い)) f~ e~2at li!f仇, . )日11 11:+k+ (偵 k=O , 1,… , h) . Thef o l l o w i n glemmau s e di np r o o fo ft h en e c e s s i t yo fTheorem4 .1 i s duet oT . Okubo. Thep r o o fi se a s y . etfb eaf u n c t i o ni nH"o( (一∞,∞ )xR,:-) ωith 佑 sup Lemma4 . 5 . L p o r ti n(0, T)xR ' : -andu af u n c t i o n sati,めling e一山ぽ Hm((o, ∞ )xRて ) for somea'>Oand( a : u )(0, x , y)=O(k=O , 1, …, m-1). Thent h ee s t i m a t e ( 4 . 9 ) r 子一川 u(ム, )lllL1 似 C Illf(t , ". )111: ,odt i m p l i e st h a t ( 4 . 1 0 ) II;û(r,', .)!I;~~l~CoCf二 lilj(a+ 祢, )1I110拘 foranyrwithRer=a(α >a'), ωhere ac o n s t a n tCodφends o n l yona , a ' andt h es u p p o r tC!.日 Remark. I fthemixedproblem(P, B j )i sD明ell-posed w i t hd e c r e a s i n g o r d e rν, t h e nf o re v e r yfEH叶 1 ,0 ((一∞,∞ )xR!) withf=O( t < O )t h emixed j )( w i t h T= ∞) h a sau n i q u es o l u t i o nu s a t i s f y i n g e~at ぽ H明 problem(P, B ((0,∞) xR !)f o rsomea>Oandt h ee s t i m a t e( 4 . 9 ) . This f o l l o w s from t h e f a c tt h a tP(D)andB j ( D )a r ehomogeneousando fc o n s t a n tcoe伍cients. Nowwer e a d yf o rt h ep r o o fo fTheorem4 .1 . Ourp r o o fo ft h en e c e s s i t y i si n s p i r e dbyM. Ikawa [ 4 ] . ProofofTheorem4 .1 . 1 ) . Su伍ciency. The e x i s t e n c ef o l l o w s immeュ d i a t e l yfromLe m m4 . 4 . Top r o v et h eu n i q u e n e s sweu s eanextension 沼 of ut o (0,∞) xR! whichs a t i s f i e se~at UEH禍( (0,∞) xR!) f o r some a>O and (Bj(D) 辺) (ム 0, y )=Oi n(0,∞) xRn~ t. ( F o rt h ee x i s t e n c eo f such an e x t e n ュ s i o ns e eRemarka f t e rt h ep r o o fo fTheorem3 .1 . Hereweu s et h ef a c tt h a t umaybec o n s i d e r e da sasu伍ciently smoothf u n c t i o ni n(t, y )byt h emethod o fc o n v o l u t i o n ) . Thent h eu n i q u e n e s sf o l l o w sfrom Lemma4 .4andP a l e y - 1 4 2 R .Agemiand T .S h i r o t a < G, 訂, qι 的, rI α 1de + nsE ‘‘, ∞∞ <一 明 , 2 τ 十 A u 《的 ( 4 .1 1 ) c Wienert h e o r e m . 2 ) .N e c e s s i t y . Supposet h a tt h emixed problem (P, B j )i s V-well-posed e tfbe a smooth f u n c t i o n with i t ss u p p o r ti n with d e c r e a s i n go r d e r li. L (0 , T)xR~. Theni tf o l l o w sfromt h eRemarkabovet h a tt h ee s t i m a t e( 4 . 1 0 ) i sv a l i df o rt h e Fourier田Laplace t r a n s f o r mロ o f aunique s o l u t i o nU o ft h e mixedproblem(P, B j )( w i t hT= ∞).羽Teu s en o t a t i o n si nt h ep r o o fo fLemma 4 . 3 . S i n c et h ei n v e r s eF o u r i e r L a p l a c et r a n s f o r m U1 o f ロ1 i s as o l u t i o nf o r Cauchy problem , byLemma 4.5 , t h ee s t i m a t e( 4 .1 0 )i sv a l i df o r û 1 ・ Hence ロ2+ 3 m usta l s os a t i s f y( 4 .10), t h a tis , , f o rany with Re =a. I ft h ec o n d i t i o n( 1 )i sn o t satis五ed, t h e nt h e r ee x i s tap o i n t (,~, σ~)ε(主 ι -l'+ ) UV' , an i n t e g e r ko(O -::;, k。壬 m-1) and a s e q u e n c e {r~, σ~} (ρ=1 , 2, 3,…) i nl ',. nV ' cwhich converges t o (,~, σ~) such t h a t ( 4 .1 2 ) Cp= (Re ,~)川 II(D~o G)(x, s, ,~, σ~) Ils(L'(S>O) , L'(X>O)) t e n d st oi n .fn i t yi fpd o e ss o . F i r s twe t a k e 9 μ cppEC;'(R~) whicha r ei d e n t i c a l l yn o tz e r o and s a t i s f y I[ι 而扇 k 吋r 似 G)(同 Zぷ叩川,バ5ふ, M )ω 州) 三 ;ipplldllgJlultii(DM)(ぷ川叫) IIB(L'(S>山>的 Si附 1~ 予而而示而j 吋刊 dx r(α0心 G) 川 〆μ 川 刈 , σ〆a'叫Fり) ι ω(伊(s) d 似 s iおs ( } p > O sucht h a t I[而)dxr 叫 G) 川,', a')gp(s) ゐ| ( 4 .1 3 ) 叫 R叫 三寸; 川 l1lゆ仇仇刷川¢引れ引川 川1)11 どL 2ベ川川川 官唱叫叫(川叫叫叫 川叫 ppllIIL'( tわ1叶)リIlgσιω いL ル f o rany(,', a ' )with 1σ' 一 σ~I < ( } p and I ,'-, ~I < ( } p . o i n t( a jRe,~) (,~, a~) andJpa s e t{(α jRe ,~) (σ ;)+8); l L e t('m σp) beap l m a l lαp sucht h a tifσε Jp t h e n 1ρ 戸 σ -a~l< θw <α p<(}p}. Takeasu伍 ciently s |ρ ;1'p_ , ;)1 <(}pandC 壬 (Re ι)ρJ 云 C' , whereρp=( ]-r pI2+1σ12)ff. Nextt a k eιε C;'(Jp ) which i si d e n t i c a l l yn o tz e r o . W e choosefεC~ 4 ) Regarding t o n t i n u i t yo h ef o l l o w i n gc l a s s i c a lf a c t : h ec ft h er o o t s I. j( 7:, σ) we use t ) such t h e r ei a b e l l i n go ft o o t s I. j( 7:, a h a t Àj(T , σis c o n ュ sa l h er o i n t \7: 0 , σ0) t For a 五 xed p t i n u o u sa t(1' 0 , σ 。). O l l Necessary 肌d S u f f i c i e n tC O l l d i t i o l l Sjó γ L2- ~Vell-Posedness ( (げ)) such that 1九)= )~ e'"万川キ o ofI v I i xedProhlems 1総 , 迂i f we 配 Then we have L:I 阿川附句Wd百五 IIm'1' 12"J~ e2"'I(alγ) ( t ) l 2d t R e p l a c i n g , and f(α 十句, X, σ) i n( 4 .1 1 ) by ' p and fp(α +i行)σ}) (ρ ]J X) ψJ) (σ) r e s p e c t i v e l yand multiplyi昭 r ¥ d,σ\ ¥J J_ 、~ p . 10 ~" 1ψp(σ) れ (ρ1) xWdx) t o( 4 .11), i tf o l l o w s from Schwarz i n e q u a l i t yt h a t r (L:d~ L ,)da t,μ +i可 1 2 + 1σ1 2 )jl 九川行) 01'(ρpX) 州 1 2 dx)亘 × (jfflι(σ) 叫んxWdx/ ミ c I L ) )ψ p ( a )p7, r ( ×イ x α 1 吋:〉〉¢仇}) (情 川 w ρ凡ん〆川 川 M 1))x 刈 x羽) G)(μz 川,,sム山,パ τ which i m p l i e sby t h er e l a t i o n(円4. 列7) and t h e change o fv a r i a b l e s白 t ha 計t )119 ,, 1 L'(RD(tJ二吋JF1(lG+ 均 1 2 1 1 01) 1 1J . ' ( n ¥ 22)j 11 可叩 川 )j3 十 l同σ 叫川川川附 げ川附 門 注斗 clドF九九仏川 山ι pバJ 川Jベhω 叶叶 川川 庁(ケ ω T九 ,イ p)1)IIL 再1 2 ψ附 p From t h i s and t h ec h o i c eo fJ "we have ( 4 . 1 4 ) IlopIIL'(削除1)IIL'(u1)II1'})II~'(Rn ')(えに(Ia+ i~12 +(恥;,t 2 )jlλ(a+ めWd~r ,~向、Jν 二三C( Re , ;')I\ 向目 1 1'1'(σWd,σ \ 91'( X )dx¥ Byt h ec h o i c eo f1 ; )and Ilrt e s t i m a t e dby 三三 C( Re ,;)) , ( D ! "G )(x , s, '1)ρpl, σρ/) σ1' (s) d s l =( a1仰心) /. l l e,;, t h el e f t hand i n( 4 .1 4 )i s l ' つ1 0 } ) 1 1L)(R~)II 9 p l lL'(R~)II ψJ) ll~2(Rn 1 ) ・ Byt h ec h o i c eo f 0"and9" t h ei n t e g r a n di nt h er i g h t hand o f( 4 . 1 4 )i sn o t z e r oa t (,~, σ;,). Hence i ft h ed i a m e t e ro f Jp i s su伍ciently s m a l lt h er i g h t hando f( 4 .1 4 )i se s t i m a t e dby R .A g e m ia n dT .S h i r o t a 1 4 4 二三 (C/l'X)(Re ι) ¥I CÞバσ)l2d.σ 1\ JJ p IJO ¥ Op ( x )dx¥ (D~o G)(x , s, r pp; l, σρ戸)σ p(s)dsl , JO I wheret h ec o n s t a n tC i s same i n( 4 .1 4 ) . Therefore i tf o l l o w s from them, ( 4 .1 2 )and( 4 .1 3 )t h a t 1 二三 C Cp • Butt h i si n e q u a l i t yi sn o tv a l i df o ra su伍. c i e n t l yl a r g eρThus t h ep r o o fi sc o m p l e t e . 5 . A c e r t a i nnecessary and su伍 cient condition for V'well'posedness( I I ) . o n d i t i o nf o r I nt h i ss e c t i o nwed e c r i b eac e r t a i nn e c e s s a r yandsu伍cient c withd e c r e a s i n go r d e rνby t h etermso ft h er e f l e c t i o ncoe伍. c i e n t s . Toa c h i e v et h i spurposewefr s ts t a t et h ef o l l o w i n gc o n d i t i o ni n t r o ュ ducedbyS . Agmon [ 1 ] . Lにwell-posedness u l t i p l i c i t yofar e a lr o o tÀ(r, σ) in え of t h ec h a r ュ Condition(骨). Them a c t e r i s t i ceqωtion P(r , À, σ)=0 ゐ at most doublefor e v e r y non z e r o (r, σ) withRer=OandaER'" 1 T0 def net h er e f l e c t i o n coe伍cients, f o re v e r y (τJ, σ~)ε (Ë ト-l' +)U V ' we a r r a n g et h er o o t sタ j(r', σ') i n t oqgroups {λ;.h(r', a'); h=1 , ..., k'} (k=1 , …, q) i n as u f f i c i e n t l ys m a l l neighbourhood U(r~, σ~)n l'ト such t h a t P;, h(1'~, a~); ん= L ・", k ' }i sk ' m u l t i p l er o o t . LetRj , k(r' , x, σ') be t h ed e t e r m i n a n tr e p l a c i n g h et r a n s p o s e dv e c t o ro f(0 ,…, 0 , exp(ixÀi , l(r',σ')) , t h ej-columi nRj(r' , x, σ') byt ー, exp (iXÀ; , Æ' (1", σ')), 0,…, 0). S i n c e Rj(r' , x, σ') = L :Rj , k(r' , x, σ'), we can def ne t h eg e n e r a l i z e drポection c o e f fc i e n t sCk, h(r' , À, σ') (k=1 , … , q; ん =1 ,…, k ' ) by t h ef o l l o w i n ge q u a l i t y Z R (T, z, σ')q y Z 一一一:, ~~,~ , À, a ' )= L : L : f " ; : 1 R(τ , a ' )IBj(r' j\"' , ^, v ) - ; : 1; : : 1Ck , h(r' , À, ( 5 . 1 ) .LJ where σ') 九バT', z, d) , 7k, l(r' , x, σ') = exp(iXÀI, I(τ', σ'), ん山, σ') 口 (ixy 1r:必l' ..d8j_2):θf2 θ仇h-2バe位x吋 れkム,刈 g , hバ(r 〆,, σ 〆'; 的 8 )=Àk'ι, バ 1 (τ 〆,, σ 〆')+(υÀ;, バ 2 (r 〆,, σ 〆')えk , バ 1 (r 〆,, σ 〆')リ)8 仇1+'一…. .一 …+ (À; , h(r' , a')-À;, ト I(r' , σ')) 81 …8h- 1 (h 二三 2) . I n particular, i fタ j(r', σ') i ss i m p l ei n U(1'~, σ~)n l'什 for example タ j(r~ , σ~) (Rer~=O) i sr e a landt h ec o n d i t i o n (枠) i s satisfìed5l, thent h eg e n e r a l i z e d re刷 f l e c t i o n coe伍cient i sw r i t t e ni nt h ef o l l o w i n gform: ( 5 . 2 ) Cj (τヘ λσ') = 5 ) SeeLemma6 .1 . Bj(r' , À, σ')fB(r', σ') , OnNecessaJツ and S u f f i c i e n tC o n d i t i o n sf o rv -W e l l P o s e d n e s so fM i x e dP r o b l e m s 145 where B j ( 7:', À, a ' )i st h ed e t e r m i n a n tr e p l a c i n gむ(,', FromTheorem 4 .1weo b t a i nt h ef o l l o w i n g σ') i nB(,,', σ') byλ . S uppose t h a tt h ec o n d i t i o n (枠 ) i s satis.fied , S(7:) キ Rn-l Theorem5 .1 andS=S(7 : )i sind,φendent of7:・ The mixedproblem(P, B j )i sD-wellてþosed ωith d e c r e a s i n go r d e rl! i fando n l yi ft h efollowingc o n d i t i o n( 1 1 )i ss a t i s . f i e d : ( 1 1 ) . For・ everッ (T~, σ~)ε(工-1.' +)U V 't h e r ee x i s taneighbourhoodU(,,~, σ~) anda c o n s t a n tC(τ0, σ~) s u c ht h a t ( 5 .3 ) l CAh(TFMF)l )r-耳,:~e 臼削吋明刈刈 1守d心叫刈刈 刊叶 'ÀII川 幻 豆αC( ω “川川(ケ凶同 ω(T~,(]~)ふ, forany (τ" a') ε U(7:~, σi)nLn (k=l , 一. ….一", q;h=l ,'一….一勺.、, ν ん ,り) 灼 v c . Proof 1 ) . ( I I )i m p l i e s( 1 ) . By(5.1), ( 5 . 3 )andt h ed e fn i t i o n o fG(x, s , 7:, we obtain , f o re v e r yfED(R~), ii(D~ G)(x , ( 5 .4 ) σ) s, 7:', σ')f(s) dslk(R~) 三 Ilfll L '( R ; )C(7:~, σ~) (Re τ') 一 ν l L; L ;II(D~rk , h)(7:', x, σ)Ii L'(R~)(bn À; ,h(,,', a'))" l na su伍ciently s m a l l neighbourhood U(τi, σ~)n 1.' ~ nVIc. 1 n U(7:~, σ~) n1 . '~ nV'c , i f B例えん (T~, σ~) =0 , by t h ec o n d i t i o n (持), À~ , 1 (7:', a ' ) i ss i m p l e and hence we have 1\(D~rk , l) (7:', x, σ') Il L'(R~) 三二 C Lω 訂,1 (,,', σ') )久 andf u r t h e r m o r ei f I..飢え;,,,(,,', a ' ) > Owehave Il (D~rk , h) (7:', x, σ ') Il L'(R~) 三 C and ~IJn À; , h (7:', σ') 三二C. T hereforet h ec o n d i t i o n( 1 )f o l l o w s from ( 5 .4 ) . 2 ) . ( 1 )i m p l i e s( I I ) . Byt h ec o n d i t i o n(1) , t h ed e fn i t i o n o fG(x, s, ", a )and Schwarz i n e q u a l i t yweobtain, f o re v e r y g , soε D(R~), 191L '(R~) 1 1L '( I l ; ) s o ( 5 . 5 ) C(7:~, σ~) (Re τ') →ー 1 r ( k cu(叫ん σ') e似) r (7:',, 11.À,, a ' )S O ( x )dx) ~Il I:q L;1f l\jr d タ ) ( \ん(山川村) k lh ¥ o引吋r l A ^ ) ¥ J o' P(T'J, σ') L- -;81 k ,h k ,1t ¥ " V ) " f "¥ . A . -j ' " ' . . A -) l na 叩 s u伍clen 叫lÌ叫 tly s m a l l neighbourhood 【U(“ T4;, σ 吋~)n 1.'一 η V'c I f the condition (但II町) i sn o t satis五ed, then t h e r ee x i s tap o i n t ("ム σ~)ε ( 2+- 1 . ') UV' , ap a i ro fi n t e g e r s (ん ho) (1 壬長。壬 q; 1 三九三三 k') and a sequence { (7:~, ι)} i n1.'• n V ' cwhichconvergest o(7:~, σ~) sucht h a tC~o , ho t e n d st oi n fn i t y i fP d o e ss o and ( 5 .6 ) C~o , lto/C~ , h 二三 C>O l I CM(TL,ん σL) f o re v e r y(k , h) キ (ko, h o ), 州 11 h e r eCM=││l e a||(Zω À;,1t("; σ~)r"(Re 7:~)肘 1 1J r P(7:~, À, σL)|lf(叫) F i r s twechoose g ]J ECo(R~) which i si d e n t i c a l l yn o tz e r oands a t i s fe s R .Agemiand T .S h i r o t a 1 4 6 I~∞ogp(s)ds~rr~KP(Tふん 山σふ)11;) ( 5 . 7 ) . c n f kA(TLId) _-i8l J , II ミ玄 IIgpIIL2(R~)IDr -P(心, σゴ e一句 R e p l a c i n g1:', σ, andgi n( 5 .5 )by1:~, ( 5 .7 )andt h ed e f i n i t i o no f C~ , h ιand g prespectively, we o b t a i n from 1 1 o s 1 1('l~)三 c{ ~ C~.,h. (E肌huι市 rk.,h. (い ι) タ L' ( 5 . 8 ) 一 (k ふ h)qh(b叫ん同 ι))ま Ir rk,h(い ι) 州 dxl} Nexti fE例えい。(九 σ'~)=o wetake れ(x)=exp (iXrk川。(T~, σ~)). Thenwehave |怜 l険ω 叫 仇凶川¢仇 川 pll11 ~oreover t h es e c o n d匂t 疋町rm i nt h er i g h thando f(恒5.8町) 5 .6 )and( 5川a叫t f o l l o w sfromthem, ( お i s bou 山 mdeβd. 1紅 Hencei t 1 註 C ααv 。川h'(位 t一 C'(ぽ I制叫訂払ん À%.,h.品 0 Byt h ec h o i c eo f(悼 ん伽 ho心) t h h i si n e q u a l i t yi sn o tv a l i df o ra su伍clen 凶 ltl匂 y l a r g e1ρ1.1. If L例 Àk山(1:~, σ~)>O wec anf i n dSOEV(R~) whichh a sacompacts u p p o r t and sa帥s ev町y r r rko,h.(1:~, X, 11~) so(x) ゐ= 1 and rk, h(古川)タ (x)dx= 0 for (k , h) キ(丸, h o) , because the rk , h(1:~, X, σ。) V(引). By t h econtin向 of a町 linearly i n d e p e n d e n ti n t h efunctiorイrk,h(以内 (x)dx a t(制), weobtain, f o rasu伍ciently l a r g ep , ( 5 . 9 ) ~~ rko,h.(1:~, r 九ル ιι) 少 (x) dX":;;'S~,h i f(k , h) キ(んん) , whereS~ , h i ssu伍ciently s m a l l . T h e r e f o r ei tf o l l o w sfrom( 5 .8 )and( 5 .9 )t h a t Ilso11L2(叫)ミ C C;,'h.{ ~ (Inût,, d1:~, σ~))ま 1 官 L: (k , h) キ(~,~) εア (E削!,h (T~, (]~))ヰJ Byt h ec h o i c eo f(ん ho) t h i si n e q u a l i t yi sn o tv a l i df o ra su伍ciently l a r g ep . Thust h ep r o o fi sc o m p l e t e . 6 . A p p l i c a t i o n s . I nt h i ss e c t i o nwep r o v eS . Agmon'sr e s u l t si n[ 1 ] and t h ei n t e r e s t i n g r e s u l t ss t a t e di nI n t r o d u c t i o n . F i r s tt op r o v eS . Agmon's r e s u l t s we need OnN e c e s s a r yandS u f f i c i e n tC o n d i t i o n sforL 2 -W e l l P o s e d n e s sofMixedProblems 1 4 7 t h ef o l l o w i n glemma which i si m p l i c i t l yc o n t a i n e di n[ 7 ] . Lemma6 .1 . L ett h ec o n d i t i o n(詩) b es a t i s f i e d . Thenforevelツ non z e r o (-ro, σ。)ω ith Re τ。 =0 andσoERη1 t h e r ee x i s t saneighbourhoodU(-ro, σ。) s u c h t h a t 1). ザ α real r o o ti nタofP( -ro, À, σ。)=0 i ssim.ρle t h e nt h e r e ぬ ω1 a n a ュ n U( -ro, ao) 叫んich s a t i s j: sP(-r, À(-r, σ), σ)=0 and l y t i cf u n c t i o n À(-r, σ) i ( 6 .1 ) [1飢え(-r, σ)[ 2). ザ α real "?_C(Ber ) i n U (-ro, σ。) . r o o tin えザ P( -r o, À, σ。)=0 i ss t r i c t l ydoωle t h e nt h e r e αre Xt(-r, σ) i n U(-ro, σ。)n l'ト Z叫 ω vl hωi ωlyt i cf u n c t i o n s αωnd (6.2) 日Jn Xt(-r, σ)[ ~三 C(Be ( 6 . 3 ) [Iln ぇ(-r, σ) I mr(-r, -r), σ)[ [À+(-r, σ)-À- (-r, aW"?_ C( l訟 で)Z i n U(-r o , σ。) nl '+・ Thenweo b t a i nt h ef o l l o w i n g h a tt h ec o n d i t i o n (時) i ss a t i s f i e d . Theorem 6 . 2 .( 5 . Agmon) 5u1ゆose t 1fR(-r, σ) キ o foreveゥ non z e r o (-r, σ) EC, xRn t, t h e nt h e mixedproblem (P, B j )i sD-well-posed( w i t hd e c r e a s i n go r d e r0 ) . Proof Bythe s i m i l a rc o n s i d e r a t i o ni nt h ep r o o fo f Theorem 5 .1 and u s i n gt h a t R(-r, σ) キ o f o reverynonz e r o (7', σ)εC xRn-t, we can show t h a t j )i s D-wellてposed i f and o n l yi ft h ef o l l o w i n g t h e mixed problem (P, B c o n d i t i o ni s satis五ed: Forevery (τi, σ~)ε(1\- l',) t h e r ee x i s t a neighbourhood U(-r~, σ~) and a o r any (-r', σ')E U(-r~, σ~) パ Zγ , c o n s t a n t C(-r~, σ~) such that , f ( 6 . 4 ) [Cj( -r', タ k(-r', σ'), σ'W 三二 C(-r~, σ~)[Im む (r', σ') I mタ k(-r', σ')[ [(a ,p) (-r', タ k(-r', σ'), a'W(Rer ' )2 wheret h ejandks a t i s f yt h ec o n d i t i o n s Itnタ j(-r~, σ~)=O andIJn ι (T~, σ~)=O r e s p e c t i v e ly . F i r s t ifι (T~, σ~) i ss i m p l e then ( 6 . 4 )i sv a l i dby ( 6 . 1 ) and ( 6 . 2 ) . When タ k(-r~, σ~) i ss t r i c t l ydoublewedenote anotherbranchbyタ k( c .f . Lemma 6 . 1 ) . Next ifι( -r~, σ~) i ss t r i c t l y double and k キj, by t h ef a c tt h a t [Cj (〆 , タ k(〆, a'), σ')[ 豆c[み(-r', a')-Àk(-r', a ' ) [ and [(D,P) (-r', タ k(-r', σ'), a')[ 迂c[えよ(-r', r ' ) ぷ (τ', σ') [, ( 6 .4 )i sv a l i d . F i n a l l y ifι (r~, σ~) i ns t r i c t l y doubleandj=kthen( 6 .4 ) i sv a l i dby ( 6 .3 ) . Thus t h ep r o o fi sc o m p l e t e . Nextweprove t h ef o l l o w i n g Theorem 6 .3 . L etQ( D )b eahomogeneousdi.tたrential operator, which r d e r m-1 ω ith c o n s t a n t d o e sn o tc o n t a i nt h eoddo r d e rt e r m si n Dx , ofo R .Agemiand T . 5hiγota 1 4 8 l e t Bj(D)=D;H(j=1, …, l; m=2l). lfP(D) s a t i s f i ? st h e o e sn o tc o n t a i nt h e odd o r d e rt e r m si n Dx , t h e nt h e c o n d i t i o n (非 ) andd mixedproblem( P ( D )+ εDxQ(D), B j ( D ) )i sn o tV-ωellでposed ( w i t hd e c r e a s i n g )foras u f f i c i e n t l ysmall εωith c e r t a i nf i x e ds i g n . o r d e r0 coζffìcients ωzd Proo f . W e mayassume that , for a su伍ciently small s, Lε (D)=P(D) 十 sDxQ( D )i ss t r i c t l yh y p e r b o l i cands a t i s f i e st h ec o n d i t i o n(特). Furthermore t h e sa c o n s t a n t lf o rany numbero ft h er o o t s ÀHr, σ) (ん, (-r, a))ofLε(-r, À, σ) =0 i (-r, σ) EC+xRn' S i n c eL o p a t i n s k i i ' sd e t e r m i n a n tw r i t t e ni nt h ef o l l o w i n g form: R(" σ)= 訂 ("σ) …訂 ("σ) I I ( タ j("σ)+ 瓦 ("σ) ), 1 三3くk 三E , S( ,) i s emptyf o rany ECc • S i n c e P(D) i ss t r i c t l yh y p e r b o l i c and deg, Q< deg , P , t h e r ei sap o i n t (r~, σ~)ε(S 卜-].'十) s ucht h a tP(,~, 0, σ~)=o and Q(,~, 0, σ~) キ o. Byt h eassumpュ t i o no f P(D) wehave (Jぇ L ,) (九, 0, σ~)=εQ(,~, 0, σ~) キ O. Hence t h e r ee x i s ta neighbourhood U(,~, σ~) and a s i m p l e root, d e n o t e} . t(,', a') , i n U(,~, σ~) such t h a t} . :(,~, σ~) ==O . Herewemayassumet h a tIm 訂(,', a ' )>0i nU(,~, σ~) n1 . 'I, b e c a u s e onecan change εinto -s. F i r s twec o n s i d e rt h ec a s ewhent h e r ee x i s t saroot, d e n o t eタi(,', σ'), such t h a t} . i(,~, σ~) キ o and Im}.j(,~, σ~) = O . Assume t h a t I.仰 }.k (,~, σ~)=O(ん= L--vh).SInce ι(r', σ') (長 =1 ,… , h) a r es i m p l ei n as m a l l neighbourhood U(,~, σ~) n1.'~, we o b t a i n jC1(TCA, d) ,~ e -is)d タ ( 6 .5 ) r L ,(,',}., σj ょ C, (,', タk(, 'σ'), σ') ,.,_, , . "• [ c(,', )., a ' ) +¥ ;1)" ,' '~' I~ e '., Jr , L ,(,', ん σ/ ーや 一一一一ァ戸内(,', 11') 台1 (aλ L,) (,',えれ, , σ), σ) t : _...",. ,- wherer v' 臼'd}. , ,i sac l o s e dJordanc u r v ei nt h el o w e rh a l fタ p l a n ee n c l o s i n ga l lt h e roots お(〆 , a') (j=ん +1 ,… , l). M u l t i p l y i n gexp(ーかむ(〆, lowsfrom Schwarzi n e q u a l i t yt h a t σ')) t o (6.5) , i tf o l ュ 一一一一 , e一削 d}.IL"_,, (2 .1飢えf(TF, σ')f2 II~rf山')l r L ε( 〆,ん σ') ^ I I L '(R~) L ( 6 . 6 ) ミ lt !;;;¥ C',(,', (ム L ,) L-< Àk ("ι旦ァ(えよ (r', σ');-一訂而')t'l σ), σ) \^k\" , . 1 1 .1 ¥" , J j (,', ) . ;(,', U U [ C,(〆 λσ') 一一一 -l| 』 -ii(T', d)|1d」. Jr , L ,(,',}., a') By( 5 . 2 )we have ( 6 . 7 ) C,(川 σ') 斗瓦 (}.2 _}.j(かう2) I { } . :(,', σ') 瓦().: (か,? -Àj(,', σ'l)} OnlVeCeSSa;門肌 d S u f f i c i e n tC o n d i t i o l l sfo γ V-Well駒Posedness ofA1ixedProblems 1 4 9 Theni tf o l l o w sfrom( 6 . 6 )and( 6 . 7 )t h a t ( 6 . 8 ) S 1d !!~rr i1(" ,)., ' a } e -i ) . ! ! L ε (,', )., σ')|L2(R1) ミC! ).ì(れ')1- 1 { I ) . ; -(,', a')IIImノむ(,', a ' ) 1 î- C' IIm む(かり I!} I f( 5 . 3 )i n Theorem 5.1 i sv a l i df o r C( ,',)., a ' )thenwe havefrom(6.8) l _l飢え{(TCσ')E削).;-(,', σ')lî(Re ,') → l'と CIι(,', a')1- 1 (1ι(,', σ')I- C' IIm).I-(" , σ')1). Usingt h ef a c tt h a t 1 訂(〆 , a')1 豆 C( Re ,') i n as m a l l neighbourhood U(,~, σ~), t h i si n e q u a l i t yi sn o tv a l i df o r (〆, a') su伍ciently c l o s et o (,~, σ~). Nextwe c o n s i d e rt h ec a s ewhen I 1 n).j(,~, σ~)<O f o ra l lj= 1 ,ー・ , l. I n asu伍ciently s m a l lneighbourhood U(,~, a~)n 2:↑, wea r r a n g et h er o o t s) . j(,', a ' ) i n t o rgroups {À;;, h(" , a ' ) ; h=l , …, k'} (k=1, …, r ) such t h a t {À;;, h(,~, σ~) ;ん= 1, "', k ' }i sk ' m u l t i p l er o o t . By t h ec o n d i t i o n (枠) t h e r ei sas i m p l e root , d e n o t e) . ; -(,', σ'), i na s m a l l neighbourhood U(,~, σ~) n2 :+・Let r k (ん =1 ,… , r ) be a su伍ciently s m a l l and c l o s e d Jordan curve i nt h e lower h a l f) . p l a n e e n c l o s i n ga l lt h er o o t s ).;;, h (r', a ' )(ん =1 ,… , k'). Thenwe can f nd g ε D(R~) such t h a t ( 6 .9 ) r ! g(s) ゐ !~êk !~~門川|斗 on r1and S 1 e -メ onr kf o rk= ' i =l By Schwarz i n q u a l i t yweo b t a i n I l r C'1(" , )., σF) ( 6 . 1 0 ) -,:." 1 J I IlgIIL'(R~)II~r i:i川 σ') ρえの IIL'(R~) I r C'1(" ,)., a ') 1J= 1 116 一 IJr , L,(〆, λσ')j。 ,' 1 . ¥ 11 "Ir C( ,',)., a 1J∞| ¥ 1 ;';:,' ' ;:,(')d) . ¥ e ω g(s)dsl |H1|jrALe(T', λσ') A J oL ! J¥ J jJ I -i. 削 σ (s) ds 卜 L: L ( . . U. I f( 5 . 3 )i nTheorem5 . 1i sv a l i df o r C(,',)., σ') thenwe have , by(6.7) , ( 6 . 9 ) and(6.10) , IlgIIL'(R~) (Eω 訂(1:', σ'))!(Re ,')一 1:?: C! ).iト(,', a ' ) I l(1 ーら) . By t h ef a c tt h a t 1).1'(,', a ' ) 1~C(Re ,') i nas m a l lneighbourhood U(,~, σ~), t h i s i n e q u a l i t yi sn o tv a l i df o r (,', σ') su伍ciently c l o s et o (,~, σ~). Thus t h ep r o o f i sc o m p l e t e . 7 . Examples. I nt h i ss e c t i o nwep r e s e n tsomee x a m p l e s . 1 ) . p(D)=a~-11 andB(D)=Dx 十 bDy - i c a " where1 1i sLa p l a c i a ni n R~ andb andca r er e a. l Thenwe have t h ef o l l o w i n gclassi五cation: 1 5 0 R .Agemiand T .S h i r o t a V-well-posed ( w i t hd e c r e a s i n go r d e r0) , n o tV w e l l p o s e db u tV w e l l p o s e dw i t hd e c r e a s i n go r d e r1, , X; n o tV w e l l p o s e dw i t ha n yd e c r e a s i n go r d e r ,・ -一・ Proof Int h i scase, タ " '("σ)= 土 i(,2 + σ2)t w herei ti sassumedt h a t(,2+σ2)ま has a p o s i t i v er e a lp a r ti f EC , L o p a t i n s k i i 'sdeterminantR("σ)=i(,2+ σ2)ま +bσ - Îc and r e f l e c t i o n coe伍cient C("λ一 ("σ), σ)=( _ i( 2 + σ2)ま +bσ ic,)/R ("σ). Hence , i ti st h en e c e s s a r yandsu伍cient c o n d i t i o nf o rV-well-posedness h ef o l l o w i n gi n e q u a l i t yh o l d si nas m a l ln e i g h ュ withd e c r e a s i n go r d e r νthat t ' "o fany (,~, σ~)E(E7 -l : c )UV' bourhood i n};• n V , , ( 7 .1 ) IC(,', 1 , r(,', σ'), σ')12 三三 CJI仰ノ À I (,', σ') Imタ-(,', a')II(ム P) (,', タ-(,', σ'), σ ' )J2 (Re ,'t 2 , -2. h er i g h t hando f( 7 . 1 )f o r ν= 0 i s bounded Remark that , by Lemma 6.1 , t b e l o w . I fc<-Ihl , R(" σ) キ o f o r("σ)E C X R 1• ByTheorem 6.2 , t h emixed s thenV w e l l p o s e d . I fc=一 Ib削1 , R(ケ" σ何)去キ干引o f o r (什" σ 吋)ε C ブ十 ラ problem(P, B) i R}a ndR(何 TdJ, 凶 σ《 1~ 拍 ιi心)=ニニニ二ニ4 ニ二 i出 n an eighbourhoodぱ 0 f (,~, σιj心). By t h e remarkaboveand( 7 . 1 )f o r ν=0, t h e mixedproblem(P, B)i sV引ell-posed. I fb 2 _C2 十 1<0 andc>O , S( r )depends on EC. Hence , byTheorem 3.1 , t h emixedproblem(P, B)i sn o tV-wellュ fc=1 , S( )={O} but( 7 . 1 )f o ranyνis n o t posedwithanyd e c r e a s i n go r d e r . I v a l i di na nighbourhoodo f (r~, 0 ) (,~ ECJ. Hence t h e mixed problem(P, B) i sn o tV-well-posedwithanyd e c r e a s i n go r d e r . I nt h eo t h e rcase , R (r, σ) キ O • , , 0 1 1 N.ヒc(:'ssa γ苫側 d S u f f i c i e n tConditio 出 for v -~Vell-Posedl1 ess ofl 1 1 i x e dProblems 1 5 1 f o r ("σ)EC xR l, R(,~, σ~) = 0 f o r some (,~, σ~)ε(~;_ -1:J and t h e numerator sn o tz e r oa t(,~, σ~). Hencet h emixedproblem(P, B) i s o fC(,', [(,', a'), σ') i n o tV w e l l p o s e d . But, by t h ef a c tt h a t IR(〆 , a ' )I ミ C(Re ,') i nan e i g h ュ h emixedproblem(P, B)i sV-well-posedwithd e c r e a s i n g bourhoodo f(,~, σ~), t o r d e r1 . 2 ) . P(D)=(討 -a 1 L1) (討 -az L1) whereL 1i sL a p l a c i a ni n_ l ln anda l and a 2 a r ep o s i t i v eandd i s t i n c t . I f Bl( D )=1andBz( D )=Dx then , by Theorem 6.2 , t h e mixed problem (P, B j )i sV w e l l p o s e d . I fB1(D)=IandB2 (D)=D;o rB1(D)=Dτand B2 ( D ) =D~ , b y Theorem5 . 1 andmore p r e c i s e l yt a k i n gt h er e s i d u ei n( 5 . 3 )( c .f . h e mixed problem (P, Bj) i sV w e l l p o s e d . I f Bl(D)=Dx and (6.4)) , then t B2 (D) ニ D; o rBl(D)=D;and B2(D)=D~, thent h e mixed problem (P, B j )i s n o t V-well-posed b u t V-well-posed with d e c r e a s i n go r d e r1 . F i n a l l yi f B1(D)=IandB 2(D)=D; , thent h emixedproblem(P, B j )i sn o tV幽well-posed with any d e c r e a s i n go r d e rbyC o r o l l a r y3 .2 . References [1] S . AGMON: Probl鑪es mixtes pour 己quations hyperboliques d ' o r d r e supérieur , Colloques Internationauxdu C . N. R .S. , 13-18( 1 9 6 2 ) . [2] M_ S _ AGRANOVICH and M. 1 . VISHIK: E l l i p t i c problems with aparameterand l 19, No. 3 , p a r a b o l i c problems o fgeneral type , Uspekhi Math. Nauk , Vo. 53-161 ( 1 9 6 4 1 . [3] G .F . D_ DUFF: Mixed problems f o r hyperbolic e q u a t i o n so fg e n e r a l order , Canad. J . Math. , Vo. l9 , 195-221 ( 1 9 5 9 ) . [4] M. IKAWA: Ont h emixedproblemf o rt h ewaveequationwithan o b l i q u ed e r i v ュ a t i v eboundarycondition , P r o c _ JapanAcad. , Vo. l44 , No.10, 1033-1037 ( 1 9 6 8 ) . [5] A .INOUE: Onthemixedproblemforthewaveequationwithan oblique boundュ o appear ary condition , t _ KREISS: I n i t i a l boundary v a l u e problems f o r hyperbolic system , Uppsala [6] H. 0 1 9 6 9 ) . Technical report , ( [7] T SADAMATSU: Onmixedproblems f o r hyperbolic systems of 五 rst order with c o n s t a n tcoe 伍 cients , Jour .Math_KyotoUniv. , Vo. l9, No. 3, 339-361 ( 1 9 6 9 ) . [8] T . SHIROTA and R .AGEMI: Onc e r t a i nmixedproblemf o rhyperbolic equations 。f higher order . III , P r o c . JapanAcad. , Vo. l45 , No. 10, 854-858( 1 9 6 9 ) . [9] T.SHIROTAandK ASANO: Onmixedproblemsf o rr e g u l a r l yhyperbolicsystems , J o u r _F a c _S c i _ Hokkaido Univ_ , Ser . I , Vo. l 21 , No. 1, 1-45( 1 9 7 0 ) . [ 1 0 ] H. Weyl: The c l a s s i c a l groups , Princeton Math_ Series , No. 1 . Department o fMathematics , Hokkaido U n i v e r s i t y 9 7 0 ) ( R e c e i v e d April 14, 1