...

ON NECESSARY AND SUFFICIENT CONDITIONS FOR L2

by user

on
Category: Documents
35

views

Report

Comments

Transcript

ON NECESSARY AND SUFFICIENT CONDITIONS FOR L2
Title
Author(s)
Citation
Issue Date
ON NECESSARY AND SUFFICIENT CONDITIONS FOR
L2-WELL-POSEDNESS OF MIXED PROBLEMS FOR
HYPERBOLIC EQUATIONS
Rentaro AGEMI; Taira SHIROTA
Journal of the Faculty of Science, Hokkaido University. Ser. 1,
Mathematics = 北海道大学理学部紀要, 21(2): 133-151
1971
DOI
Doc URL
http://hdl.handle.net/2115/58101
Right
Type
bulletin (article)
Additional
Information
File
Information
JFS_HU_v21n2-133.pdf
Instructions for use
Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
O NNECESSARYANDSUFFICIENTCONDITIONS
FORV..WE
L
L
POSEDNESSOFMlXED
PROBLEMSFORHYPERBOLIC EQUA'τ10NS
By
Rentaro AGEMIandTairaSHIROTA
1
. Introduction.
Le
tR~ bet
h
eopenh
a
l
fs
p
a
c
e {(x , y); x >0 , y ε B"-1}. W e c
o
n
s
i
d
e
r
t
h
emixedproblems (P, Bj;j= 1,… , 1), d
e
n
o
t
es
i
m
p
l
yi
tby (P, Bj) , f
o
r hyュ
p
e
r
b
o
l
i
ce
q
u
a
t
i
o
n
so
fo
r
d
e
rm :
(p(a t , Dx, D
y
)u
)(t, x , y
)= f(t , x , y
)
i
n(0 , T)xR
'
;
"
y
)u
)(t, 0, y
)= 0
(Bj(a t , D" , D
i
n(0 , T)xR"- I,
(
a
:
u
)(0 , x , y
)= 0
(
j= 1,… , 1)
(h=O, I , --vm-1)
。(
•
a
i
nR
'
;
"
.a ¥
wherea
t= ~~, Dx=-i':Jv~ , D,, =(-i一… -i~l a
ax' ~y 一 \ "aY1'--' "aYn-1) nd i=~ -1
Thepurposeo
ft
h
i
spaperi
st
o determine t
h
en
e
c
e
s
s
a
r
y and su伍cient
c
o
n
d
i
t
i
o
n
sf
o
rw
e
l
l
p
o
s
e
d
n
e
s
si
nt
h
ef
o
l
l
o
w
i
n
gs
e
n
s
e
:
j
)i
sL2-wellてposed withd
e
c
r
e
a
s
i
n
g
Dennition. Themixedproblem(P, B
nonn
e
g
a
t
i
v
ei
n
t
e
g
e
r
)i
fandonlyi
fthereexistpositiveconstanお
T' 三三 T w
hichsati.めI t
h
efollo叩ing c
o
n
d
i
t
i
o
n:
Fore
v
e
r
yfiεH川, O( (一∞ , T)x .R';, )1) 叩ith f=O(
t
<
O
)t
h
emixedproblem
(P, B
j
)h
a
sa u
n
i
q
u
es
o
l
u
t
i
o
n u εH禍 ((0, T')x .R';,) s
u
c
ht
h
a
t
order ν(ν ;
C, T andT'回ith
(
1
.1
)
J~' lilu(ム, )111L1 必 CJ~ Illf(t, ".
)Ili: ,odt2)
Whenν=0 wec
a
l
li
tD-wellアosedness (
w
i
t
hd
e
c
r
e
a
s
i
n
go
r
d
e
r0
)
.
Thec
o
n
t
e
n
t
so
ft
h
i
spapera
r
ea
sf
o
l
l
o
w
s
. InS
e
c
t
i
o
n2weg
i
v
ea sumュ
mary onboundaryv
a
l
u
eproblems f
o
re
l
l
i
p
t
i
co
r
d
i
n
a
r
yd
i
f
f
e
r
e
n
t
i
a
le
q
u
a
t
i
o
n
s
dependingonp
a
r
a
m
e
t
e
r
s
. InS
e
c
t
i
o
n3 wei
n
v
e
s
t
i
g
a
t
et
h
ez
e
r
o
so
fL
o
p
a
t
i
n
ュ
s
k
i
i
'
sd
e
t
e
r
m
i
n
a
n
tundert
h
eL2四well-posedness with d
e
c
r
e
a
s
i
n
go
r
d
e
r ν. In
1), 2
) F
o
rt
h
ede五nitions s
e
eS
e
c
t
i
o
n2. H
e
r
e
a
f
t
e
rwed
e
n
o
t
ev
a
r
i
o
u
sp
o
s
i
t
i
v
ec
o
n
s
t
a
n
t
s
b
yC a
n
dC' , w
h
i
c
ha
r
ei
n
d
e
p
e
n
d
e
n
to
fv
a
r
i
a
b
l
e
si
ne
a
c
hi
n
e
q
u
a
l
i
t
yc
o
n
s
i
d
e
r
e
db
e
l
o
wr
e
s
p
e
c
ュ
t
i
v
e
l
y
1
3
4
R
.Agemiand T
.S
h
i
r
o
t
a
S
e
c
t
i
o
n4 wed
e
s
c
r
i
b
eac
e
r
t
a
i
nn
e
c
e
s
s
a
r
yand su伍cient c
o
n
d
i
t
i
o
nf
o
rD-wellュ
h
etermo
ft
h
ecompensatingfunction ,
p
o
s
e
d
n
e
s
swithd
e
c
r
e
a
s
i
n
go
r
d
e
rνby t
and moreover we d
e
s
c
r
i
b
ei
t by t
h
e terms o
ft
h
er
e
f
l
e
c
t
i
o
n coe伍cients i
n
. I
nT
.S
h
i
r
o
t
aandK
.Asano[
9
]i
thasbeenshownbysemi-group
S
e
c
t
i
o
n5
methodt
h
a
tt
h
emixedproblem(P,D~j-!) (m=2
l
)i
sw
e
l
lposedi
nt
h
es
t
r
o
n
g
e
r
y
) does not contaヘn the odd order terms i
nD
x
.
s
e
n
s
ei
f P(D)= P(孔, Dx , D
Asone o
ft
h
ea
p
p
l
i
c
a
t
i
o
n
so
ft
h
er
e
s
u
l
t
si
nS
e
c
t
i
o
n 5 we show that , i
nt
h
e
c
a
s
eo
fc
o
n
s
t
a
n
tcoe国cients, t
h
ep
r
o
p
e
r
t
yo
fP(D)mentionedabove i
s essen田
t
i
a
lt
o be D-well-posed (
w
i
t
hd
e
c
r
e
a
s
i
n
go
r
d
e
r0
)f
o
rt
h
e mixed problem
j-1
)
.
(P, Y
x
Thisa
s
s
e
r
t
i
o
ni
sa
c
h
i
e
v
e
di
nS
e
c
t
i
o
n6
. F
i
n
a
l
l
ywep
r
e
s
e
n
tsome
.
examples i
nS
e
c
t
i
o
n7
Thispaperc
o
n
t
a
i
n
st
h
ed
e
t
a
i
l
so
f ourp
r
e
v
i
o
u
s paper [
8
]
.
2
. Preliminaries.
F
i
r
s
to
fa
l
l we s
t
a
t
efundamentala
s
s
u
m
p
t
i
o
n
s
. LetP(D)andB
j
(
D
) be
homogeneousdi丘erential operators o
fo
r
d
e
rm andmj(mj<m) with c
o
n
s
t
a
n
t
coe伍cients r
e
s
p
e
c
t
i
v
e
l
y
. W e assume t
h
a
t P(D) i
ss
t
r
i
c
t
l
yh~ρerbolic with
何学ect t
ot
d
i
r
e
c
t
i
o
nandt
h
ehypeゆlane x=0 i
sn
o
n
c
h
a
r
a
c
t
e
r
i
s
t
i
cforP
(
D
)
.
Theni
ti
se
a
s
i
l
ys
e
e
nt
h
a
tt
h
e number l(m-l)o
ft
h
er
o
o
t
s À;(-r, σ) (
タ
j(7", σ) ),
l
o
c
a
t
e
di
nt
h
eupper(
l
o
w
e
r
)h
a
l
f À-plane , i
nタ o
ft
h
ec
h
a
r
a
c
t
e
r
i
s
t
i
ce
q
u
a
t
i
o
n
P (7", À, σ) = 0 i
sc
o
n
s
t
a
n
tf
o
r any (7", σ) E0 , xR
n-l respectively , where C+=
{-r ε C; Rer>
O
}
. Furthermoreweassumet
h
a
tt
h
ehypeゅlane x=0i
sn
o
n
ュ
c
h
a
r
a
c
t
e
r
i
s
t
i
cforB
j
(
D
)andmJ>mk ザ j>k.
Throughoutt
h
i
s paperweuset
h
ef
o
l
l
o
w
i
n
gF
o
u
r
i
e
r
L
a
p
l
a
c
et
r
a
n
s
f
o
r
m
s
and norms:
山, σ)=j:dtfkjrj t 仰 iaYu(t, x , y
)dy ,
û( -r, x, σ) = ¥ d
t¥.
. e- ,t 的 u(t, x , y
)dy,
JO
!
'
]u(t, ・ γ)1:~ =
u(t, ".)引川川川
山i1吟|li企吟i
日l 川川川川川附
1川d似附(ケ仇-r,
判川
JR “
L
:II(ò; 叫(ム・ γ)1
1
~ ,
Z=
j
広ムh
i!トム
~Oo
il!~ = 主 fnn ,(1-rI 2 +1σ12)k 吋: |(α 帆 れWdx ,
".
)
2
lldh , )1112z= 詰:fnn- , 1
(r1
+ 1σ 12)k-h) daf~ I(D~ û) 川川ム
(
rE(工)
whereσγ=σ1 y1 + … +σn-1 Yn-!> 1σ1 2 =σî+ … +σ;'-1 and 1 卜 11 j i
st
h
enormi
n
OnNeωsary andS
u
f
f
i
c
i
e
n
tConditiolls 舟-L叫Vell-Posednω
01
MixedP
r
o
b
l
e
m
s 1
3
5
S
o
b
o
l
e
vspaβe HJ(l杭) (
j
;anon n
e
g
a
t
i
v
ei
n
t
e
g
e
r
)
_ By H k •l ((一∞ , T)x R~)
(え l; n
onn
e
g
a
t
i
v
ei
n
t
e
g
e
r
)weu
n
d
e
r
s
t
a
n
dt
h
ec
o
m
p
l
e
t
i
o
no
fC;'(( 一∞ , T)xRて)
, A
I
r
r
、 1
\官
byt
h
enorm(
¥ 1
I
1u(t, ・,・ )lilL dtr.
W edef
フ
neL
o
p
a
t
i
n
s
k
i
i
'
sd
e
t
e
r
m
i
n
a
n
tR("
σ)
a
sf
o
l
l
o
w
s
:
B(" σ) = d
e
t(B1 (" 訂(ヂ, σ), σ),… , Bl (" タ
.
;("σLσ) ;j ↓ 1 ,…,め,
R(" σ)
=B(" σ) / T
T (À.;(" σ) 一花 ("σ)).
l~J く k~l
ThenR(" σ) i
sa
n
a
l
y
t
i
ci
nC+xRn-landcanb
econtinuouslyextendedt
o +
xæ- 1• L
e
tV bet
h
ez
e
r
o
so
fR(" σ) i
nC十 x Rn-l andf
o
re
v
e
r
y,吋Y十 let
S( ,) b
et
h
ea
n
a
l
y
t
i
cv
a
r
i
e
t
y {σε Rn-l; (
"a
)EV} i
n Rn ー 1 Then we have
aV=V andaS( )=S(a-r) f
o
re
v
e
r
ya>O.
Applyingnowt
h
eF
o
u
r
i
e
r
L
a
p
l
a
c
et
r
a
n
s
f
o
r
mt
oe
q
u
a
t
i
o
n
si
nt
h
e mixed
)f
problem (P, B
j
) we o
b
t
a
i
nt
h
e boundary v
a
l
u
e problem C? , ヘ
3
o
re
l
l
i
p
t
i
c
j
o
r
d
i
n
a
r
yd
i
f
f
e
r
e
n
t
i
a
le
q
u
a
t
i
o
n
sdependingonp
a
r
a
m
e
t
e
r
s ("σ)ε C+ xRn-l:
,
(
P
(
"Dæ, σ)Û)("X, σ)=f("x, σ)
(
B
)
j(" Dæ, a
(,, 0, σ) = 0
i
nR~ ,
(j =1, …, l
).
L
e
tRj(', ふ σ) bet
h
ed
e
t
e
r
m
i
n
a
tr
e
p
l
a
c
i
n
gj-columni
n R(" σ) by t
h
et
r
a
n
s
ュ
p
o
s
e
dv
e
c
t
o
ro
f(exp(ixÀ.t(" σ)),…, exp(ixÀ.i("σ)) andr=r(" σ) ac
l
o
s
e
dJordan
c
u
r
v
ei
nt
h
el
o
w
e
rh
a
l
fタ
.p
l
a
n
ee
n
c
l
o
s
i
n
ga
l
lt
h
er
o
o
t
s訂 ("σ) (ん =1 ,… , m-l).
I
fR(" σ) キ o f
o
rsome("σ)ε C+ xRn- I, i
ti
sw
e
l
lknownt
h
a
tf
o
re
v
e
r
yj(" ・, σ)
ε Cö(R~) t
h
eboundaryv
a
l
u
eproblemC? , ヘ
3j) hasauniquesolution Û(" ・, σ)
εC担 (R~), w
hichi
sw
r
i
t
t
e
ni
nt
h
ef
o
l
l
o
w
i
n
gform:
(
2
.1
)
Û("X, σ)
=
2~7r
1
L
=~ P(,:-~, σ)dHE示。
G(X, …) f(日 σ)ds ,
[∞
eilæf(" λσ)
7"
f∞
!
.
.
_ R i(', x, σ)_ ホBi_(', ん σ)_ _-i81
whereG(x, s, "σ)=-21
j=1 R(T, σ-) )r子広工五了 e
3
. ZerosofL
o
p
a
t
i
n
s
k
i
i
'
sdeterminant.
I
nt
h
i
ss
e
c
t
i
o
nwei
n
v
e
s
t
i
g
a
t
et
h
ez
e
r
o
so
fLo
p
a
t
i
n
s
k
i
i
'
sd
e
t
e
r
m
i
n
a
n
tR(" σ)
under D
w
e
l
l
p
o
s
e
d
n
e
s
s with d
e
c
r
e
a
s
i
n
go
r
d
e
r ).l. The f
o
l
l
o
w
i
n
g theorem
shows出
t ha
叫t 証
if t
h
emixedproblem(P, B
j
)お
is D
-well-posedwithd
e
c
r
e
a
s
i
n
go
r
d
e
r
νthen t
h
ez
e
r
o
sV o
fRケ
( "σ
吋) h
a
st
h
ep
r
o
d
u
c
tr
e
p
r
e
s
e
n
t
a
t
i
o
nC+xS, whereS
iおs t
h
e∞
c one s
u
r
f
a
c
e羽
wit出
h 刊
v er
此te
位
x 抗
at t
h
eo
r
i
g
i
ni
nRn-l.
Theorem3.1. Ift
h
emixedproblem(P, B
j
)i
sD-ωellアosed withd
e
ュ
h
e
nt
h
ea
n
a
l
y
t
i
cv
a
r
i
e
t
i
e
sS( ,) d
o
n
'
tdφend on , EC+ ・
c
r
e
a
s
i
n
gorder ν, t
R
.Agemiand T
.S
h
i
r
o
t
a
1
3
6
Proof I
t su伍ces t
o prove t
h
a
ti
f R(T ,
σ。) i
si
d
e
n
t
i
c
a
l
l
yn
o
tz
e
r
of
o
r
then R(T, σ。)キ o f
o
ranyTEC+.
UsingW
e
i
e
r
s
t
r
a
s
sp
r
e
p
e
r
a
t
i
o
ntheorem, i
fR(To, σ。)=0 f
o
rsomeToEC+then
nCn-1 anda c
o
n
t
i
n
u
o
u
s(
a
n
a
l
y
t
i
c
)f
u
n
c
t
i
o
n
t
h
e
r
ea
r
eaneighbourhood U(σ。) i
r(σ) i
n an open s
e
t D cU(σ。) such t
h
a
t R(r(σ), σ) = 0 and r(σ)εCγin D.
j=1,…, l
)i
nD sucht
h
a
tf
o
r
Hencewecanf
i
n
dc
o
n
t
i
n
u
o
u
sf
u
n
c
t
i
o
n
s a j (σ) (
someσ。 ε Rn-l
anyσεD
(~).
1
)
(
a1(σ),… , a z (σ) )キ 0
,
(
3
.2
)
L
:a j (σ) ß" , j(τ(σ) , σ) = 0
where
ß" ,1 (T, σ) = B ,, (T , タ1(T, σ), σ) ,
:
1
d8
ん (r, a)=
σj(ケ
T‘ σ;
1
(
h= 1 ,・'., l
),
必 j --2よ
かド:〉〉〉
):80街8{-2
十ド一
昨-2 θ鳥j上
μ
の恥←」川
2
f (T, σ)-Àt (T, σ)) 8+・
8
)=訂 (T, σ) +(
タ
2
1
…+(む (T, σ)-).;-I(T, σ)) 8 1 … θj ー 1
(j=2, …ヲ l) .
Note t
h
a
twecandeterminebranches )
.
; such that え;(τ(σ), σ) i
sc
o
n
t
i
n
u
o
u
s
h
eh
y
p
e
r
p
l
a
n
e x= 0 i
sn
o
n
c
h
a
r
a
c
t
e
r
i
s
t
i
cf
o
r
(
a
n
a
l
y
t
i
c
)i
nD'c D , becauset
P
(
D
)
.
F
i
r
s
twec
o
n
s
t
r
u
c
tsmooth s
o
l
u
t
i
o
n
so
ft
h
ee
q
u
a
t
i
o
n
s (P(D)u
)(ムふ ν)=0
and (Bj(D)u) (ム 0, y)=O , which d
o
n
'
ts
a
t
i
s
f
yt
h
ef
o
l
l
o
w
i
n
ge
s
t
i
m
a
t
e
(
3
.
3
)
I
"T
¥ u(t,., .)!II;"_ldt ζCII (a:u)(0、., .
)II~ ,
wherenon n
e
g
a
t
i
v
ei
n
t
e
g
e
r
s hand ka
r
e arbitrarily
Fo
rt
h
i
s purposewe d
e
f
i
n
et
h
ef
u
n
c
t
i
o
n
u(t, x , y
)= .
z
:¥
五xed.
aj(σ) 九 (T(σ), X, σ) exp(r(σ)t+iσγ)d,σ ,
j- -, l .J D "
whereD"=D'nRn-lwhichmaybe assumed t
o be n
o
t empty, 1'1 (r,
exp(
i
x
)
.
t(T, σ)) and
x, σ)=
山ぷ
μMσ
削)=引
叩収
=h
州
(ix
i臼Z判3)ぺ
Fo
re
v
e
r
y pos討
sit
江ti討
ve i
n
t
e
g
e
rp l
e
t us s
e
t up 付
( t, x , νω)=U(1ρh吋tム, 1ρりI)X, ρ
1台勾
νω).
Then, by
t
h
e homogeneityo
fP(D)andBj(
D
) and(
3
.2) , Up i
s as
o
l
u
t
i
o
no
ft
h
ee
q
u
a
ュ
t
i
o
n
sa
b
o
v
e
. FromP
l
a
n
c
h
e
r
e
ltheoremweo
b
t
a
i
n
(
3
.4
)
1
1
(
a
;u
p) (0,
・,・) II~::三 C L: ρ2k+2j-n
OnN
e
c
e
s
s
a
r
yandS
u
f
f
i
c
i
e
n
tC
o
n
d
i
t
i
o
n
sforL
2
-Well-PosednessofA1ixedProblcms 137
Ont
h
eo
t
h
e
rhand, s
i
n
c
ef
o
reach h (D;rj) (7"(σ),
x, σ)
(
j= 1,… , l) a
r
el
i
n
e
a
r
l
y
i
n
d
e
p
e
n
d
e
n
ta
sf
u
n
c
t
i
o
n
si
nx , i
tf
o
l
l
o
w
sfrom (
3
.1
)t
h
a
tL
:aj(σ) (D;rj)(7"(σ) ,
x, σ) 主 o f
o
r anyσE D". Hencechoosing su伍ciently s
m
a
l
l D"we have , by
o
ranyp
o
s
i
t
i
v
e T andp
P
l
a
n
c
h
e
r
e
l theorem , f
(
3
.5
)
1~lilUp(t,., .)lli;"-ldぱ円 zpzkn
By(
3
.4
)and(
3
.5
)Up d
o
e
sn
o
ts
a
t
i
s
f
yt
h
ee
s
t
i
m
a
t
e(
3
.3
)f
o
rasu伍ciently l
a
r
g
ep
.
Nextwec
o
n
s
t
r
u
c
ta s
o
l
u
t
i
o
no
ft
h
emixedproblem (P, B
j
) which d
o
e
s
1
.1
)
. Usingt
h
eabovef
u
n
c
t
i
o
nup l
e
tu
sd
e
f
i
n
ef
o
r
n
o
ts
a
t
i
s
f
yt
h
ee
s
t
i
m
a
t
e(
al
a
r
g
eK
(3.6)
円 (t,
x, y
)=
S
e
t
t
i
n
g 'Lι (t, x , y
)=
that 叩~
(
3
.
7
)
x
L
:tk(:up)(0, x , y)/長,
L
L
:xqfp ,q(t, y
)(L= max mル
we
d
e
t
e
r
m
i
n
et
h
eι , q such
i
sa s
o
l
u
t
i
o
no
ft
h
ef
o
l
l
o
w
i
n
ge
q
u
a
t
i
o
n
s:
(Bj(D) (日~-Vp))
(t , 0 , y
)= 0
(メ;(W;)-Vp+Up
)
)(0 , x , y
)= 0
(
j= 1,… , l
)
i
n (0 , T)xRηl
(k=O , 1,… , m-1)
i
n Rn
_
.
,
Thisi
sp
o
s
s
i
b
l
ei
fK>
m +L
. Infact , s
u
b
s
t
i
t
u
t
i
n
gw~ i
n
t
othe 五rst e
q
u
a
t
i
o
n
i
n(
3
.7) , t
h
efp ,q a
r
ei
n
d
u
c
t
i
v
e
l
ydeterminedby t
h
ef
o
l
l
o
w
i
n
gforms:
j二 , q(t,
(
3
.8
)
y
)= 0 i
f q キ mj
(j=1,… , l
),
fp ,m ,(t , y
)= (B1(
D
)V r,) (ム
0,
y)/m1 ! ,
ん問
ι
凡
mj川川(付仇川川
tム川
,仰川
νω)={
y
X:〉
主
川
μ
叫叫h!A
m
必4らj 明町ゐ (仇a孔ι
叫
t, ムb)ι
D'}J んん九川Lゐ (伊ω
川
, 伊州)+川十刊(団
νyω B
具jバル川(仰倒
叩
D)川U叫
州刈山)川巾以(伊仇
ω
p)山tム, 仰川)
(υj~ミミ 2
勾)
whereBj(D)=D;:j+L
:Afz(t> Dy)D;:r d •
,
Note that 叩~ satie五es then t
h
e
seconde
q
u
a
t
i
o
ni
n(
3
.
7
)
. Letus s
e
t wp(t, x , y
)
=
c
p
(
x
)w~(t, x , y) , where c
p
(
x
)
(
)
and c
p(
x
)= 0(x ミ 1).
1¥
ε C;'(R~) w
ith c
p
(
x
)= 1
¥O::;;x 壬 2
Then wp-vp+u p ε
T)xR
"
;
.
)i
sa s
o
l
u
t
i
o
no
ft
h
emixedproblem (P, B
j
)(
s
e
t
t
i
n
gf=P(D)
(Wp-V p 十 U p )) a
nd s
a
t
i
s
f
i
e
sP(D)(w p 一円 +U p ) (0, x , y)=Oi
n R, n.
H叫 ((0,
I
fthemixedproblem (P, Bj) i
s D-well-posed with d
e
c
r
e
a
s
i
n
go
r
d
e
r ν,
thena s
o
l
u
t
i
o
nwp-vp+u
a
t
i
s
f
yt
h
ee
s
t
i
m
a
t
e(
1
.1), t
h
a
t is ,
pmusts
j
T
ol||(叩p 一円切) (t ,', ')lii;"-ldt::;;CI~T
III(Pの) (w p 一 Vp+U p )) (t ,', ')ill: odt
,
UsingP(D) 叫 =0 weo
b
t
a
i
n
R
.Llgcmiand T
.S
h
i
r
o
t
a
1
3
8
(
3
.9
)
J: 目的 (t,',')
d
t
:
:
:
;
;
C
(
j
: W (t ,., .
)
';,+, dt+ j:li:V/) は ,.);,;", dt)
]l
S
i
n
c
ewe havefrom(
3
.8
)
ilw ]J弘・,・ )ν 三三 CI:' 7)1)(t, ・,
.
)111;n+L 寸 1 →リ
i
tf
o
l
l
o
w
s from (
3
.6
) and (
3
.9
)t
h
a
t
(3 川
[', U]J (t,., .)I!!二 l dt :::;;C戸。 II(a; u 1J 似, .
)11;,か 1
Ther
i
g
h
thandi
n(
3
.
1
0
)i
sp
o
l
y
n
o
m
i
a
lo
r
d
e
ri
npandt
h
el
e
f
thand i
n(
3
.
1
0
)
. Then , f
o
ra su伍ciently l
a
r
g
ep , U i
s ar
e
q
u
i
r
e
d
i
se
x
p
o
n
e
n
t
i
a
lo
r
d
e
ri
np
f
u
n
c
t
i
o
n
. Thus t
h
ep
r
o
o
fi
sc
o
m
p
l
e
t
e
.
]
J
Remark. Thec
o
n
s
t
r
u
c
t
i
o
no
ft
h
ef
u
n
c
t
i
o
nw -v i
s used i
nS
e
c
t
i
o
n4
.
]
J
]
l
h
a
tBj(D)d
o
n
'
tc
o
n
t
a
i
nt
h
et
e
r
m
si
n a,. If
Corollary 3
.
2
. Sゅpose t
t
h
emixedρroblem (P, B
j
)i
sV-wellアosed withd
e
c
r
e
a
s
i
n
gorder ν, t
h
e
nS
(
r
l
lS emjうty f
oranyrEC ,.
Proof Assume t
h
a
tR(ro, σ。)=0 f
o
r some (ro, σ点灯+ X IC- 1• ByTheo・
rem 3
.1and t
h
e homogeneity o
f R(r, σ) we o
b
t
a
i
nt
h
a
t R(r, O)=O f
o
r any
TεC. On t
h
eo
t
h
e
r hand , R(r, 0
)i
sw
r
i
t
t
e
ni
nt
h
ef
o
l
l
o
w
i
n
gform:
d
e
t(
(
i
a
"r
)
m
" ・・・ , (
i
a
k't)
l
n1 ; ん↓ 1 , ・・・ , l
)
R(r, 0
)=函( (ia戸)仁 -i ihh)Z17云「↓ 1子三 l)
where t
h
ei
a
"r(τε り) a
r
er
o
o
t
so
fP(τ, Æ, 0
)=0with p
o
s
i
t
i
v
eimaginaryp
a
r
t
.
o
r
By t
h
et
h
e
o
r
yo
fc
h
a
r
a
c
t
e
r
so
fu
n
i
t
a
r
yg
r
o
u
p
s
3
)weob
t
a
i
nt
h
a
tR(r , 0) キ o f
e
v
e
r
y r キ 0, h
e
r
ewe u
s
et
h
eassumption t
h
a
t m1< … <mz. (
s
e
e[
1
0
]
)
. Thus
t
h
ep
r
o
o
fi
sc
o
m
p
l
e
t
e
.
By t
h
efr
s
tp
a
r
to
ft
h
ep
r
o
o
fo
fC
o
r
o
l
l
a
r
y3
.2 we have
Corollary3.3ゐ Suppose t
h
a
tR(ro , 0) キ o forsomeroEC+ ・ Ifthe mixed
problem(P, B
j
)i
sV-well-jうosed ω ith d
e
c
r
e
a
s
i
n
g order ν, t
h
e
nV i
sen,ψty.
4
. A c
e
r
t
a
i
nnecessaryandsu伍 cient condition
for V-well-posedness (
1
)
.
o
n
d
i
t
i
o
n
1
nt
h
i
ss
e
c
t
i
o
n we d
e
s
c
r
i
b
ea c
e
r
t
a
i
nn
e
c
e
s
s
a
r
y and su伍cient c
f
o
rV
w
e
l
l
p
o
s
e
d
n
e
s
swithd
e
c
r
e
a
s
i
n
go
r
d
e
rνby t
h
etermo
ft
h
ecompensating
f
u
n
c
t
i
o
n G(x, s, r, σ).
L
e
t ~ bet
h
es
e
t {(r' , a')EC~ xRn-l; j
T
1
'2
+1σ'12=1} and ~+ i
t
sc
l
o
s
u
r
e
.
3
1 This method i
s suggested by Prof
.L
.G蚌ding
OnNeces叫γy andSuffi正問 nt Conditionsfo γ
v- W
e
l
l
P
o
s
e
d
n
e
s
sofl
'
v
lixedPγohle 111s
L
e
tV
'=Vn1
.
'l' where V i
st
h
ez
e
r
o
so
f R("σ) i
n ~\ xR ,n-1.
.
'
+ wed
e
n
o
t
et
h
ecomplemento
fA i
n 1.'ト by Aヘ
as
u
b
s
e
ti
n1
Thenweo
b
t
a
i
nt
h
ef
o
l
l
o
w
i
n
gmain
13!
、
When A i
s
,
. L
et S(,)キ Rn-1 andS( )=S b
e ind,φendent of日 C_.
Theorem 4
.1
Themixedproblem(P, B
j
)i
sD-wellア osed withdecr,ω sing order レグ ωld
only ザ the folloω ing c
o
n
d
i
t
i
o
n(
1
)i
ssati,ポed:
(
1
)
. Fore
v
e
r
y(,~, σ~)ε(2+ -1.'+
)
UV
't
h
e
r
ee
x
i
s
taneighbourhoodU(τJ, σ~)
and α constant C(,~, σ~) s
u
c
ht
h
a
tforany(,', a') ε U(,~, σ~) パ1.'"什 V'c
(
4
.
1
)
I
I
(
D
;
G
)(x , s, ,', a')II~(L2(s>0) , L'(X>0)) 三三 C(,~, σ~) (Re,') ν 1
(h=O, l , --v m-1)
where 1
1
.11 .tl (L'(S>O) , L'(X>O)) i
st
h
e。ρera初 r normfromD(s>O) t
oD(x>O).
Toprove Theorem 4
.1we need t
h
ef
o
l
l
o
w
i
n
g lemmas. I
n particular,
4
.3 i
se
s
s
e
n
t
i
a
L F
i
r
s
t we s
t
a
t
e an elementary lemma on s
t
r
i
c
t
l
y
h
y
p
e
r
b
o
l
i
cp
o
l
y
n
o
m
i
a
lwithout p
r
o
o
f
.
Lεmma
(" ofdegl官 m i
ss
t
r
i
c
t
l
y
Lemma4
.2
. 1fahomogeneous ρolynomial P
o" t
h
e
n wehaveforany(
"ç)ε C+ xI
l
n
h
y
p
e
r
b
o
l
i
cwith re学ect t
IP(" ごw 二三 C(Re
,? (1 , 12+l
蹣
2
)
m
1.
Lemma4
.3
. 1
ft
h
ea
s
s
u
m
p
t
i
o
ni
n Theorem 4
.1andt
h
ec
o
n
d
i
t
i
o
n(
1
)
a
r
esatisfied, t
h
e
nfore
v
e
r
y(T, σ)EC+ xRn-1with σ 伝 S andfEHνI " , 1," ((∞,
∞ )xB';) (ん , a n
on n
e
g
a
t
i
v
einteger) ω ith f=O(
t
<
O
)t
h
e boundarツ value
ρroblem CF , ハ
j
)h
a
sa u
n
i
q
u
es
o
l
u
t
i
o
n û(". , a) ε Hm ," (R\) , which s
a
t
i
s
f
i
e
s
t
h
efollowinge
s
t
i
m
a
t
e
f
)
lL 1 三三 Clil f(T , v-)!lii ,o ,
(Re,?(川 )ill d(T, -
(
4
.2
)
(
1
2
eT)2(Ul1)|10(T, v・)
k 三二 CiLf(". , .)2 k11 , k
I
(ん =0 , 1,…
,h
)
,
f
o
rany EC •
Proof Note t
h
a
tt
h
en
o
t
a
t
i
o
no
ft
h
e norms has no ambiguity , b
e
c
a
u
s
e
t
h
emeasureofS i
sz
e
r
o
. Usingt
h
el
i
m
i
tp
r
o
c
e
s
sandt
h
er
e
l
a
t
i
o
nP("Dx, σ)
û(-r, x, σ)=f(" x, σ), i
tsu缶ces t
oprovet
h
ef
i
r
s
te
s
t
i
m
a
t
eo
f(
4
.2
)f
o
rjiεC;((O ,
∞) xB "
t
)and d
e
f
i
n
e
di
n(
2
.1
)
.
F
i
r
s
tl
e
t 1 bethe 五rst termi
nt
h
er
i
g
h
thando
f(
2
.
1
)
. Then i
tf
o
l
l
o
w
s
from Lemma 4
.2 and P
l
a
n
c
h
e
r
e
l theorem t
h
a
t
(Re,)Z I:i\(". , ・ kllL 1 三二 Clilf(". , .
)
i
l
!
L
which i
m
p
l
i
e
s the 五rst e
s
t
i
m
a
t
eo
f(
4
.
2
)f
o
r Z{ 1 ・
Let U
'bethes
e
to
fa
l
lp
o
i
n
t
s(,', a
'
)f
o
rwhich (
4
.
1
)i
sv
a
l
i
dand U t
h
e
s
e
t {("σ); (τ" a') ε U'} where ,'=,ρl, d=σρ1 and ρ=( 1r 1 2 +1σ| ポ. We d
e
-
1
4
0
R
.Ag四ni and 7
'
. Shi:γot品
compose û= ム+ゐ + Û3 , whereロ3i
st
h
ef
u
n
c
t
i
o
nm
u
l
t
i
p
l
y
i
n
gt
h
ec
h
a
r
a
c
t
e
r
i
s
t
i
c
f
u
n
c
t
i
o
no
f U 句 the s
e
c
o
n
dtermi
nt
h
er
i
g
h
t hando
f(
2
.1
)
.
4
.2
)f
o
rロ2 weremarkt
h
ef
o
l
l
o
w
i
n
g
Nextt
op
r
o
v
et
h
ef
i
r
s
testimat疋 of (
o
re
v
e
r
yi
n
t
e
g
e
r
f
a
c
t
s
. By t
h
ehomogeneity o
f P(D)andBj(D) we have, f
hミo a
nd(!', σ) ミ U,
(
4
.
3
)
(00122'~Rj) (!', x, σH À~
~2k-2幅一 J∞ 1 (D~R;) (!", x , a
')1
0
)
I
\--XR3(!,:'~)~' ~/ I
d
x= p
2
k
2
m
r
1
)
0I
\~X~R(れ~'U '
1
2
_
I
fK=K(!" , a
'
)i
st
h
e∞nvex h
u
l
lo
ft
h
er
o
o
t
s1
;(!", σ') (j=1,… , l) , t
h
e
nwe
have
(
4
.4
)
I(D~Rj)
(!", x, σ') 1
三三 1 L
:
_s~_p ID~(lkéXl)ljh!f
\h~O
l忌K
njL
:s
u
pI(D~ Bp)(!", 1, a
'
)
j
hf
!
lEK
J
)p キ j\h~O
Byt
h
ef
a
c
tt
h
a
tR(!" , a') ミ Cand B例訂(!", σ') 三 C f
o
rony(!", σ') ミ U', i
tf
o
l
l
o
w
s
4
.
3
)and(
4
.
4
)t
h
a
t
from(
(
4
.
5
)
[
0
0
1(D~Rj)
(!', x, σ)
¥
\.L/X .L~j/_\':t' ,
1
J
O1
S
i
n
c
e IP(!',
(
4
.
6
)
R(!', σ)
u
ん σ)J2:2::C( 1!'1 2 +
flBjMσ)
2À~./
1
1
1
r" ~2k-2,,,, -1
f
o
rany(r,
dx~C ρ;-1
一
1
1
12
+1σ12)地
1似
2加均片叫町咋
r一
α
p伊
ω
壬C
伊
μ
a
一一|い
2
∞ P(什!', ん1, σ
司)
for
any(!',
σ) 主 U
f
o
rany(!',
σ)ξ U.
andた R}, wehave
σ) 怪 U.
ByP
l
a
n
c
h
e
r
e
ltheoremandSchwarzi
n
e
q
u
a
l
i
t
yi
tf
o
l
l
o
w
sfrom(
4
.
5
)and(
4
.
6
)
t
h
a
t
1tÎ 2 (!', ・ γ) !I! ;,云 Clllf(!', ・, -)liii ,
whichi
m
p
l
i
e
s the 五rst e
s
t
i
m
a
t
eo
f(
4
.
2
)f
o
rÛ2・
F
i
n
a
l
l
yn
o
t
et
h
a
t(
t
+-.E
+
)
UV
'i
scompactand
(
4
.
7
)
(D!G)(x, ふれ σ)= 〆一冊 +1(D!G) (ρx, ps , !", σ')
(
k= 0 , 1,… , m-1).
Usingt
h
er
e
l
a
t
i
o
n(4.7) , t
h
ec
o
n
d
i
t
i
o
n(
1
)andt
h
echangeo
fv
a
r
i
a
b
l
e
sweo
b
t
a
i
n
!
ltÎ 3 (!' , ".)川
目I広li弘Lι
いい-寸
仏 -1弘い
=戸= Z
剖乱
L肋州
JJ(hω
ノ
y)y/p
〆
r吋y
〆2
=玄剖1D(r)P 吋:k
ベ11ぽ
r 仰) (伊x, 刊川(仇乙叩
S伊p戸1\川,
豆 C慣れt 2 (針。 1D(r) p"u凶rl 1 仇 SP1σ)J2 ds
豆 C(Re!'t 2 ( 叶川:
whereD(!')={σε Rn-1; (!', σ)ε V).
1(!', "・) 111~ , 0 ,
h
ep
r
o
o
fi
o
m
p
l
e
t
e
.
Thust
sc
OnN
e
c
e
s
s
a
r
yandSu
J
f
i
ci
e
n
tC
o
n
d
i
t
i
o
n
sforv
-Well-PosednessofMixedProblems 141
By Lemma4.3 and Paley-Wiener theorem (
e
.g
. Theorem 7.1 i
n[
2
]
)
weo
b
t
a
i
nt
h
ef
o
l
l
o
w
i
n
g
Lemma4
.
4
. 1ft
h
eωsumption i
n Theorem4
.
1 andt
h
ec
o
n
d
i
t
i
o
n(
1
)
i
ssati,ゆd, t
h
e
nfore
v
e
r
ya>O andf withe~atfiε H' 山 , h ((一∞,∞ )xR,:-)
(
h
;anonn々gative i
n
t
e
g
e
r
)andf=O(
t
<
O
)t
h
emixedproblem(P, B
j
)(
w
i
t
h
T= ∞ ) hω a
u
n
i
q
u
es
o
l
u
t
i
o
nu withe~at u ε Hm 叶 ((0,∞) xR
'
:
)s
u
c
ht
h
a
t
子-2Ml
iu(ム
(
4
.
8
)
,.
)川川il肱1 ル|広ル
い一→
Lι
此ル~ldt
子r:〉〉
ef一叫 u叫(仇tム,', ')III~+kdt 豆(仰い)) f~ e~2at li!f仇, .
)日11 11:+k+
(偵
k=O ,
1,… , h) .
Thef
o
l
l
o
w
i
n
glemmau
s
e
di
np
r
o
o
fo
ft
h
en
e
c
e
s
s
i
t
yo
fTheorem4
.1 i
s
duet
oT
. Okubo. Thep
r
o
o
fi
se
a
s
y
.
etfb
eaf
u
n
c
t
i
o
ni
nH"o(
(一∞,∞ )xR,:-) ωith 佑 sup­
Lemma4
.
5
. L
p
o
r
ti
n(0, T)xR
'
:
-andu af
u
n
c
t
i
o
n sati,めling e一山ぽ Hm((o, ∞ )xRて ) for
somea'>Oand(
a
:
u
)(0, x , y)=O(k=O , 1, …, m-1). Thent
h
ee
s
t
i
m
a
t
e
(
4
.
9
)
r
子一川 u(ム, )lllL1 似 C
Illf(t , ".
)111: ,odt
i
m
p
l
i
e
st
h
a
t
(
4
.
1
0
)
II;û(r,',
.)!I;~~l~CoCf二 lilj(a+ 祢, )1I110拘
foranyrwithRer=a(α >a'), ωhere ac
o
n
s
t
a
n
tCodφends o
n
l
yona , a
'
andt
h
es
u
p
p
o
r
tC!.日
Remark. I
fthemixedproblem(P, B
j
)i
sD明ell-posed w
i
t
hd
e
c
r
e
a
s
i
n
g
o
r
d
e
rν, t
h
e
nf
o
re
v
e
r
yfEH叶 1 ,0 ((一∞,∞ )xR!) withf=O(
t
<
O
)t
h
emixed
j
)(
w
i
t
h T= ∞) h
a
sau
n
i
q
u
es
o
l
u
t
i
o
nu s
a
t
i
s
f
y
i
n
g e~at ぽ H明
problem(P, B
((0,∞) xR
!)f
o
rsomea>Oandt
h
ee
s
t
i
m
a
t
e(
4
.
9
)
. This f
o
l
l
o
w
s from t
h
e
f
a
c
tt
h
a
tP(D)andB
j
(
D
)a
r
ehomogeneousando
fc
o
n
s
t
a
n
tcoe伍cients.
Nowwer
e
a
d
yf
o
rt
h
ep
r
o
o
fo
fTheorem4
.1
. Ourp
r
o
o
fo
ft
h
en
e
c
e
s
s
i
t
y
i
si
n
s
p
i
r
e
dbyM. Ikawa [
4
]
.
ProofofTheorem4
.1
. 1
)
. Su伍ciency. The e
x
i
s
t
e
n
c
ef
o
l
l
o
w
s immeュ
d
i
a
t
e
l
yfromLe
m m4
.
4
. Top
r
o
v
et
h
eu
n
i
q
u
e
n
e
s
sweu
s
eanextension 沼 of
ut
o (0,∞) xR! whichs
a
t
i
s
f
i
e
se~at UEH禍( (0,∞) xR!) f
o
r some a>O and
(Bj(D) 辺) (ム 0, y
)=Oi
n(0,∞) xRn~ t. (
F
o
rt
h
ee
x
i
s
t
e
n
c
eo
f such an e
x
t
e
n
ュ
s
i
o
ns
e
eRemarka
f
t
e
rt
h
ep
r
o
o
fo
fTheorem3
.1
. Hereweu
s
et
h
ef
a
c
tt
h
a
t
umaybec
o
n
s
i
d
e
r
e
da
sasu伍ciently smoothf
u
n
c
t
i
o
ni
n(t, y
)byt
h
emethod
o
fc
o
n
v
o
l
u
t
i
o
n
)
. Thent
h
eu
n
i
q
u
e
n
e
s
sf
o
l
l
o
w
sfrom Lemma4
.4andP
a
l
e
y
-
1
4
2
R
.Agemiand T
.S
h
i
r
o
t
a
<
G,
訂,
qι
的,
rI
α
1de
+
nsE
‘‘,
∞∞
<一
明
,
2
τ
十
A
u
《的
(
4
.1
1
)
c
Wienert
h
e
o
r
e
m
.
2
)
.N
e
c
e
s
s
i
t
y
. Supposet
h
a
tt
h
emixed problem (P, B
j
)i
s V-well-posed
e
tfbe a smooth f
u
n
c
t
i
o
n with i
t
ss
u
p
p
o
r
ti
n
with d
e
c
r
e
a
s
i
n
go
r
d
e
r li. L
(0 , T)xR~. Theni
tf
o
l
l
o
w
sfromt
h
eRemarkabovet
h
a
tt
h
ee
s
t
i
m
a
t
e(
4
.
1
0
)
i
sv
a
l
i
df
o
rt
h
e Fourier田Laplace t
r
a
n
s
f
o
r
mロ o
f aunique s
o
l
u
t
i
o
nU o
ft
h
e
mixedproblem(P, B
j
)(
w
i
t
hT= ∞).羽Teu
s
en
o
t
a
t
i
o
n
si
nt
h
ep
r
o
o
fo
fLemma
4
.
3
. S
i
n
c
et
h
ei
n
v
e
r
s
eF
o
u
r
i
e
r
L
a
p
l
a
c
et
r
a
n
s
f
o
r
m U1 o
f ロ1 i
s as
o
l
u
t
i
o
nf
o
r
Cauchy problem , byLemma 4.5 , t
h
ee
s
t
i
m
a
t
e(
4
.1
0
)i
sv
a
l
i
df
o
r û 1 ・ Hence
ロ2+ 3 m
usta
l
s
os
a
t
i
s
f
y(
4
.10), t
h
a
tis ,
,
f
o
rany with Re =a.
I
ft
h
ec
o
n
d
i
t
i
o
n(
1
)i
sn
o
t satis五ed, t
h
e
nt
h
e
r
ee
x
i
s
tap
o
i
n
t (,~, σ~)ε(主 ι
-l'+
)
UV' , an i
n
t
e
g
e
r ko(O -::;, k。壬 m-1) and a s
e
q
u
e
n
c
e {r~, σ~} (ρ=1 , 2, 3,…)
i
nl
',. nV
'
cwhich converges t
o (,~, σ~) such t
h
a
t
(
4
.1
2
)
Cp= (Re ,~)川 II(D~o G)(x, s, ,~, σ~) Ils(L'(S>O) , L'(X>O))
t
e
n
d
st
oi
n
.fn
i
t
yi
fpd
o
e
ss
o
.
F
i
r
s
twe t
a
k
e 9 μ cppEC;'(R~) whicha
r
ei
d
e
n
t
i
c
a
l
l
yn
o
tz
e
r
o and s
a
t
i
s
f
y
I[ι
而扇 k
吋r 似
G)(同
Zぷ叩川,バ5ふ, M
)ω
州)
三 ;ipplldllgJlultii(DM)(ぷ川叫) IIB(L'(S>山>的
Si附 1~ 予而而示而j 吋刊
dx r(α0心
G) 川 〆μ
川
刈
, σ〆a'叫Fり) ι
ω(伊(s) d
似
s
iおs
(
}
p
>
O sucht
h
a
t
I[而)dxr 叫 G) 川,', a')gp(s) ゐ|
(
4
.1
3
)
叫
R叫
三寸; 川
l1lゆ仇仇刷川¢引れ引川
川1)11 どL 2ベ川川川
官唱叫叫(川叫叫叫
川叫
ppllIIL'(
tわ1叶)リIlgσιω
いL
ル
f
o
rany(,', a
'
)with 1σ' 一 σ~I <
(
}
p and I ,'-, ~I <
(
}
p
.
o
i
n
t(
a
jRe,~) (,~, a~) andJpa s
e
t{(α jRe ,~) (σ ;)+8); l
L
e
t('m σp) beap
l
m
a
l
lαp sucht
h
a
tifσε Jp t
h
e
n 1ρ 戸 σ -a~l< θw
<α p<(}p}. Takeasu伍 ciently s
|ρ ;1'p_ , ;)1 <(}pandC 壬 (Re ι)ρJ 云 C' , whereρp=( ]-r pI2+1σ12)ff.
Nextt
a
k
eιε C;'(Jp ) which i
si
d
e
n
t
i
c
a
l
l
yn
o
tz
e
r
o
. W e choosefεC~
4
) Regarding t
o
n
t
i
n
u
i
t
yo
h
ef
o
l
l
o
w
i
n
gc
l
a
s
s
i
c
a
lf
a
c
t
:
h
ec
ft
h
er
o
o
t
s I. j( 7:, σ) we use t
) such t
h
e
r
ei
a
b
e
l
l
i
n
go
ft
o
o
t
s I. j( 7:, a
h
a
t Àj(T , σis c
o
n
ュ
sa l
h
er
o
i
n
t \7: 0 , σ0) t
For a 五 xed p
t
i
n
u
o
u
sa
t(1' 0 , σ 。).
O
l
l Necessary
肌d
S
u
f
f
i
c
i
e
n
tC
O
l
l
d
i
t
i
o
l
l
Sjó γ
L2- ~Vell-Posedness
(
(げ)) such that 1九)= )~ e'"万川キ o
ofI
v
I
i
xedProhlems
1総
,
迂i f we 配
Then we have
L:I 阿川附句Wd百五 IIm'1' 12"J~ e2"'I(alγ) (
t
)
l
2d
t
R
e
p
l
a
c
i
n
g
,
and f(α 十句, X, σ) i
n(
4
.1
1
) by '
p and fp(α +i行)σ}) (ρ ]J X) ψJ) (σ)
r
e
s
p
e
c
t
i
v
e
l
yand multiplyi昭 r ¥ d,σ\
¥J
J_
、~ p
.
10
~"
1ψp(σ) れ (ρ1) xWdx) t
o(
4
.11),
i
tf
o
l
l
o
w
s
from Schwarz i
n
e
q
u
a
l
i
t
yt
h
a
t
r
(L:d~ L ,)da t,μ +i可 1 2 + 1σ1 2 )jl 九川行) 01'(ρpX) 州 1 2 dx)亘
× (jfflι(σ) 叫んxWdx/
ミ
c
I
L
)
)ψ
p
(
a
)p7,
r
(
×イ
x α
1
吋:〉〉¢仇}) (情
川
w
ρ凡ん〆川
川
M
1))x
刈
x羽)
G)(μz
川,,sム山,パ
τ
which i
m
p
l
i
e
sby t
h
er
e
l
a
t
i
o
n(円4. 列7) and t
h
e change o
fv
a
r
i
a
b
l
e
s白
t ha
計t
)119 ,, 1 L'(RD(tJ二吋JF1(lG+ 均 1 2
1
1
01)
1
1J
.
'
(
n
¥
22)j
11 可叩
川
)j3
十 l同σ
叫川川川附
げ川附
門
注斗
clドF九九仏川
山ι
pバJ
川Jベhω
叶叶
川川
庁(ケ
ω
T九
,イ
p)1)IIL 再1
2
ψ附
p
From t
h
i
s and t
h
ec
h
o
i
c
eo
fJ
"we have
(
4
.
1
4
)
IlopIIL'(削除1)IIL'(u1)II1'})II~'(Rn ')(えに(Ia+ i~12 +(恥;,t 2 )jlλ(a+ めWd~r
,~向、Jν
二三C( Re , ;')I\
向目
1 1'1'(σWd,σ \ 91'(
X
)dx¥
Byt
h
ec
h
o
i
c
eo
f1
;
)and Ilrt
e
s
t
i
m
a
t
e
dby
三三 C( Re
,;))
,
(
D
!
"G
)(x , s, '1)ρpl,
σρ/) σ1' (s)
d
s
l
=(
a1仰心) /.
l
l
e,;, t
h
el
e
f
t hand i
n(
4
.1
4
)i
s
l
'
つ1 0
}
)
1
1L)(R~)II 9
p
l
lL'(R~)II ψJ) ll~2(Rn
1
)
・
Byt
h
ec
h
o
i
c
eo
f 0"and9" t
h
ei
n
t
e
g
r
a
n
di
nt
h
er
i
g
h
t hand o
f(
4
.
1
4
)i
sn
o
t
z
e
r
oa
t (,~, σ;,). Hence i
ft
h
ed
i
a
m
e
t
e
ro
f Jp i
s su伍ciently s
m
a
l
lt
h
er
i
g
h
t
hando
f(
4
.1
4
)i
se
s
t
i
m
a
t
e
dby
R
.A
g
e
m
ia
n
dT
.S
h
i
r
o
t
a
1
4
4
二三 (C/l'X)(Re ι)
¥I
CÞバσ)l2d.σ 1\
JJ
p
IJO
¥
Op
(
x
)dx¥ (D~o G)(x , s, r
pp; l, σρ戸)σ p(s)dsl ,
JO
I
wheret
h
ec
o
n
s
t
a
n
tC i
s same i
n(
4
.1
4
)
. Therefore i
tf
o
l
l
o
w
s from them,
(
4
.1
2
)and(
4
.1
3
)t
h
a
t 1 二三 C Cp • Butt
h
i
si
n
e
q
u
a
l
i
t
yi
sn
o
tv
a
l
i
df
o
ra su伍.
c
i
e
n
t
l
yl
a
r
g
eρThus t
h
ep
r
o
o
fi
sc
o
m
p
l
e
t
e
.
5
. A c
e
r
t
a
i
nnecessary and su伍 cient condition
for V'well'posedness(
I
I
)
.
o
n
d
i
t
i
o
nf
o
r
I
nt
h
i
ss
e
c
t
i
o
nwed
e
c
r
i
b
eac
e
r
t
a
i
nn
e
c
e
s
s
a
r
yandsu伍cient c
withd
e
c
r
e
a
s
i
n
go
r
d
e
rνby t
h
etermso
ft
h
er
e
f
l
e
c
t
i
o
ncoe伍.
c
i
e
n
t
s
. Toa
c
h
i
e
v
et
h
i
spurposewefr
s
ts
t
a
t
et
h
ef
o
l
l
o
w
i
n
gc
o
n
d
i
t
i
o
ni
n
t
r
o
ュ
ducedbyS
. Agmon [
1
]
.
Lにwell-posedness
u
l
t
i
p
l
i
c
i
t
yofar
e
a
lr
o
o
tÀ(r, σ) in え of t
h
ec
h
a
r
ュ
Condition(骨). Them
a
c
t
e
r
i
s
t
i
ceqωtion P(r , À, σ)=0 ゐ at most doublefor e
v
e
r
y non z
e
r
o (r, σ)
withRer=OandaER'" 1
T0 def net
h
er
e
f
l
e
c
t
i
o
n coe伍cients, f
o
re
v
e
r
y (τJ, σ~)ε (Ë ト-l' +)U V
' we
a
r
r
a
n
g
et
h
er
o
o
t
sタ
j(r', σ') i
n
t
oqgroups {λ;.h(r', a'); h=1 , ..., k'} (k=1 , …, q)
i
n as
u
f
f
i
c
i
e
n
t
l
ys
m
a
l
l neighbourhood U(r~, σ~)n l'ト such t
h
a
t P;, h(1'~, a~); ん=
L ・", k
'
}i
sk
'
m
u
l
t
i
p
l
er
o
o
t
. LetRj , k(r' , x, σ') be t
h
ed
e
t
e
r
m
i
n
a
n
tr
e
p
l
a
c
i
n
g
h
et
r
a
n
s
p
o
s
e
dv
e
c
t
o
ro
f(0 ,…, 0 , exp(ixÀi , l(r',σ')) ,
t
h
ej-columi
nRj(r' , x, σ') byt
ー, exp
(iXÀ; , Æ' (1", σ')),
0,…, 0).
S
i
n
c
e Rj(r' , x, σ') = L
:Rj , k(r' , x, σ'), we can
def ne
t
h
eg
e
n
e
r
a
l
i
z
e
drポection c
o
e
f
fc
i
e
n
t
sCk, h(r' , À, σ') (k=1 , … , q; ん =1 ,…,
k
'
) by t
h
ef
o
l
l
o
w
i
n
ge
q
u
a
l
i
t
y
Z R (T, z, σ')q
y
Z
一一一:,
~~,~
, À, a
'
)= L
:
L
:
f
"
;
:
1
R(τ , a
'
)IBj(r'
j\"' , ^, v ) - ;
:
1;
:
:
1Ck , h(r' , À,
(
5
.
1
)
.LJ
where
σ') 九バT', z, d) ,
7k, l(r' , x, σ') = exp(iXÀI, I(τ', σ'),
ん山, σ') 口 (ixy 1r:必l' ..d8j_2):θf2 θ仇h-2バe位x吋
れkム,刈
g
, hバ(r
〆,, σ
〆'; 的
8 )=Àk'ι, バ
1 (τ
〆,, σ
〆')+(υÀ;, バ
2 (r
〆,, σ
〆')えk , バ
1 (r
〆,, σ
〆')リ)8
仇1+'一….
.一
…+ (À; , h(r' , a')-À;, ト I(r' ,
σ'))
81 …8h- 1
(h 二三 2)
.
I
n particular, i
fタ
j(r', σ') i
ss
i
m
p
l
ei
n U(1'~, σ~)n l'什 for example タ
j(r~ , σ~)
(Rer~=O) i
sr
e
a
landt
h
ec
o
n
d
i
t
i
o
n (枠) i
s satisfìed5l, thent
h
eg
e
n
e
r
a
l
i
z
e
d re刷
f
l
e
c
t
i
o
n coe伍cient i
sw
r
i
t
t
e
ni
nt
h
ef
o
l
l
o
w
i
n
gform:
(
5
.
2
)
Cj (τヘ λσ') =
5
) SeeLemma6
.1
.
Bj(r' , À,
σ')fB(r', σ')
,
OnNecessaJツ
and
S
u
f
f
i
c
i
e
n
tC
o
n
d
i
t
i
o
n
sf
o
rv
-W
e
l
l
P
o
s
e
d
n
e
s
so
fM
i
x
e
dP
r
o
b
l
e
m
s 145
where B j ( 7:', À, a
'
)i
st
h
ed
e
t
e
r
m
i
n
a
n
tr
e
p
l
a
c
i
n
gむ(,',
FromTheorem 4
.1weo
b
t
a
i
nt
h
ef
o
l
l
o
w
i
n
g
σ')
i
nB(,,',
σ')
byλ
. S
uppose t
h
a
tt
h
ec
o
n
d
i
t
i
o
n (枠 ) i
s satis.fied , S(7:) キ Rn-l
Theorem5
.1
andS=S(7
:
)i
sind,φendent of7:・ The mixedproblem(P, B
j
)i
sD-wellてþosed
ωith d
e
c
r
e
a
s
i
n
go
r
d
e
rl! i
fando
n
l
yi
ft
h
efollowingc
o
n
d
i
t
i
o
n(
1
1
)i
ss
a
t
i
s
.
f
i
e
d
:
(
1
1
)
. For・ everッ (T~, σ~)ε(工-1.' +)U V
't
h
e
r
ee
x
i
s
taneighbourhoodU(,,~, σ~)
anda c
o
n
s
t
a
n
tC(τ0, σ~) s
u
c
ht
h
a
t
(
5
.3
)
l CAh(TFMF)l
)r-耳,:~e 臼削吋明刈刈
1守d心叫刈刈
刊叶
'ÀII川 幻
豆αC(
ω
“川川(ケ凶同
ω(T~,(]~)ふ,
forany (τ"
a') ε U(7:~, σi)nLn
(k=l , 一. ….一", q;h=l ,'一….一勺.、, ν
ん ,り)
灼
v
c
.
Proof 1
)
. (
I
I
)i
m
p
l
i
e
s(
1
)
. By(5.1), (
5
.
3
)andt
h
ed
e
fn
i
t
i
o
n
o
fG(x, s , 7:,
we obtain , f
o
re
v
e
r
yfED(R~),
ii(D~ G)(x ,
(
5
.4
)
σ)
s, 7:', σ')f(s) dslk(R~)
三 Ilfll L
'(
R
;
)C(7:~, σ~) (Re τ') 一 ν l L;
L
;II(D~rk , h)(7:', x,
σ)Ii L'(R~)(bn
À; ,h(,,', a'))"
l
na su伍ciently s
m
a
l
l neighbourhood U(τi, σ~)n 1.' ~ nVIc.
1
n U(7:~, σ~) n1
.
'~ nV'c , i
f B例えん (T~, σ~) =0 , by t
h
ec
o
n
d
i
t
i
o
n (持),
À~ , 1 (7:', a
'
)
i
ss
i
m
p
l
e and hence we have 1\(D~rk , l) (7:', x, σ') Il L'(R~) 三二 C Lω 訂,1 (,,', σ') )久
andf
u
r
t
h
e
r
m
o
r
ei
f I..飢え;,,,(,,', a
'
)
>
Owehave Il (D~rk , h) (7:', x, σ ') Il L'(R~) 三 C and
~IJn À; , h (7:', σ') 三二C. T
hereforet
h
ec
o
n
d
i
t
i
o
n(
1
)f
o
l
l
o
w
s from (
5
.4
)
.
2
)
. (
1
)i
m
p
l
i
e
s(
I
I
)
. Byt
h
ec
o
n
d
i
t
i
o
n(1) , t
h
ed
e
fn
i
t
i
o
n
o
fG(x, s, ", a
)and
Schwarz i
n
e
q
u
a
l
i
t
yweobtain, f
o
re
v
e
r
y g , soε D(R~),
191L
'(R~) 1 1L
'(
I
l
;
)
s
o
(
5
.
5
)
C(7:~, σ~) (Re τ') →ー 1
r
(
k
cu(叫ん σ') e似)
r (7:',, 11.À,, a
'
)S
O
(
x
)dx)
~Il
I:q
L;1f
l\jr
d
タ
)
(
\ん(山川村)
k
lh
¥
o引吋r
l
A
^
)
¥
J
o'
P(T'J, σ')
L-
-;81
k ,h
k ,1t ¥
"
V
)
"
f
"¥
.
A
.
-j '
"
'
.
.
A
-)
l
na 叩
s u伍clen
叫lÌ叫
tly s
m
a
l
l neighbourhood 【U(“
T4;, σ
吋~)n 1.'一 η V'c
I
f the condition (但II町) i
sn
o
t satis五ed, then t
h
e
r
ee
x
i
s
tap
o
i
n
t ("ム σ~)ε
(
2+- 1
.
')
UV' , ap
a
i
ro
fi
n
t
e
g
e
r
s (ん ho) (1 壬長。壬 q; 1 三九三三 k') and a sequence
{
(7:~, ι)} i
n1.'• n V
'
cwhichconvergest
o(7:~, σ~) sucht
h
a
tC~o , ho t
e
n
d
st
oi
n
fn
i
t
y
i
fP d
o
e
ss
o and
(
5
.6
)
C~o , lto/C~ , h 二三 C>O
l
I
CM(TL,ん σL)
f
o
re
v
e
r
y(k , h) キ (ko, h
o
),
州
11
h
e
r
eCM=││l
e a||(Zω À;,1t("; σ~)r"(Re 7:~)肘 1
1J
r P(7:~, À, σL)|lf(叫)
F
i
r
s
twechoose g ]J ECo(R~) which i
si
d
e
n
t
i
c
a
l
l
yn
o
tz
e
r
oands
a
t
i
s
fe
s
R
.Agemiand T
.S
h
i
r
o
t
a
1
4
6
I~∞ogp(s)ds~rr~KP(Tふん
山σふ)11;)
(
5
.
7
)
.
c
n
f kA(TLId) _-i8l J , II
ミ玄 IIgpIIL2(R~)IDr -P(心, σゴ e一句
R
e
p
l
a
c
i
n
g1:', σ, andgi
n(
5
.5
)by1:~,
(
5
.7
)andt
h
ed
e
f
i
n
i
t
i
o
no
f C~ , h
ιand
g
prespectively,
we o
b
t
a
i
n from
1
1
o
s
1
1('l~)三 c{ ~ C~.,h. (E肌huι市 rk.,h. (い ι) タ
L'
(
5
.
8
)
一 (k ふ h)qh(b叫ん同 ι))ま Ir rk,h(い ι) 州 dxl}
Nexti
fE例えい。(九 σ'~)=o wetake れ(x)=exp (iXrk川。(T~, σ~)). Thenwehave
|怜
l険ω
叫
仇凶川¢仇
川
pll11
~oreover
t
h
es
e
c
o
n
d匂t 疋町rm i
nt
h
er
i
g
h
thando
f(恒5.8町)
5
.6
)and(
5川a叫t
f
o
l
l
o
w
sfromthem, (
お
i s bou
山
mdeβd.
1紅
Hencei
t
1 註 C ααv
。川h'(位
t一 C'(ぽ
I制叫訂払ん
À%.,h.品
0
Byt
h
ec
h
o
i
c
eo
f(悼
ん伽 ho心) t
h
h
i
si
n
e
q
u
a
l
i
t
yi
sn
o
tv
a
l
i
df
o
ra su伍clen
凶
ltl匂
y l
a
r
g
e1ρ1.1.
If L例 Àk山(1:~, σ~)>O wec
anf
i
n
dSOEV(R~) whichh
a
sacompacts
u
p
p
o
r
t
and sa帥s
ev町y
r
r
rko,h.(1:~, X, 11~) so(x) ゐ= 1 and rk, h(古川)タ (x)dx= 0 for
(k , h) キ(丸, h o) , because the rk , h(1:~, X, σ。)
V(引).
By t
h
econtin向
of
a町
linearly
i
n
d
e
p
e
n
d
e
n
ti
n
t
h
efunctiorイrk,h(以内 (x)dx a
t(制),
weobtain, f
o
rasu伍ciently l
a
r
g
ep ,
(
5
.
9
)
~~ rko,h.(1:~,
r 九ル ιι) 少 (x) dX":;;'S~,h
i
f(k , h) キ(んん) ,
whereS~ , h i
ssu伍ciently s
m
a
l
l
. T
h
e
r
e
f
o
r
ei
tf
o
l
l
o
w
sfrom(
5
.8
)and(
5
.9
)t
h
a
t
Ilso11L2(叫)ミ C C;,'h.{ ~ (Inût,, d1:~, σ~))ま 1 官
L:
(k , h) キ(~,~)
εア (E削!,h (T~, (]~))ヰJ
Byt
h
ec
h
o
i
c
eo
f(ん ho) t
h
i
si
n
e
q
u
a
l
i
t
yi
sn
o
tv
a
l
i
df
o
ra su伍ciently l
a
r
g
ep
.
Thust
h
ep
r
o
o
fi
sc
o
m
p
l
e
t
e
.
6
. A
p
p
l
i
c
a
t
i
o
n
s
.
I
nt
h
i
ss
e
c
t
i
o
nwep
r
o
v
eS
. Agmon'sr
e
s
u
l
t
si
n[
1
] and t
h
ei
n
t
e
r
e
s
t
i
n
g
r
e
s
u
l
t
ss
t
a
t
e
di
nI
n
t
r
o
d
u
c
t
i
o
n
. F
i
r
s
tt
op
r
o
v
eS
. Agmon's r
e
s
u
l
t
s we need
OnN
e
c
e
s
s
a
r
yandS
u
f
f
i
c
i
e
n
tC
o
n
d
i
t
i
o
n
sforL
2
-W
e
l
l
P
o
s
e
d
n
e
s
sofMixedProblems 1
4
7
t
h
ef
o
l
l
o
w
i
n
glemma which i
si
m
p
l
i
c
i
t
l
yc
o
n
t
a
i
n
e
di
n[
7
]
.
Lemma6
.1
. L
ett
h
ec
o
n
d
i
t
i
o
n(詩) b
es
a
t
i
s
f
i
e
d
. Thenforevelツ non z
e
r
o
(-ro, σ。)ω ith Re τ。 =0
andσoERη1 t
h
e
r
ee
x
i
s
t
saneighbourhoodU(-ro,
σ。)
s
u
c
h
t
h
a
t
1). ザ α real r
o
o
ti
nタofP( -ro, À, σ。)=0 i
ssim.ρle t
h
e
nt
h
e
r
e ぬ ω1 a
n
a
ュ
n U( -ro, ao) 叫んich s
a
t
i
s
j:
sP(-r, À(-r, σ), σ)=0 and
l
y
t
i
cf
u
n
c
t
i
o
n À(-r, σ) i
(
6
.1
)
[1飢え(-r, σ)[
2). ザ α real
"?_C(Ber
)
i
n U (-ro,
σ。)
.
r
o
o
tin えザ P( -r o, À, σ。)=0 i
ss
t
r
i
c
t
l
ydoωle t
h
e
nt
h
e
r
e αre
Xt(-r, σ) i
n U(-ro, σ。)n l'ト Z叫
ω
vl
hωi
ωlyt
i
cf
u
n
c
t
i
o
n
s
αωnd
(6.2)
日Jn Xt(-r, σ)[ ~三 C(Be
(
6
.
3
)
[Iln ぇ(-r, σ)
I mr(-r,
-r),
σ)[ [À+(-r, σ)-À-
(-r,
aW"?_ C( l訟 で)Z
i
n U(-r o ,
σ。) nl
'+・
Thenweo
b
t
a
i
nt
h
ef
o
l
l
o
w
i
n
g
h
a
tt
h
ec
o
n
d
i
t
i
o
n (時) i
ss
a
t
i
s
f
i
e
d
.
Theorem 6
.
2
.(
5
. Agmon) 5u1ゆose t
1fR(-r, σ) キ o foreveゥ non z
e
r
o (-r, σ) EC, xRn t, t
h
e
nt
h
e mixedproblem
(P, B
j
)i
sD-well-posed(
w
i
t
hd
e
c
r
e
a
s
i
n
go
r
d
e
r0
)
.
Proof Bythe s
i
m
i
l
a
rc
o
n
s
i
d
e
r
a
t
i
o
ni
nt
h
ep
r
o
o
fo
f Theorem 5
.1 and
u
s
i
n
gt
h
a
t R(-r, σ) キ o f
o
reverynonz
e
r
o (7', σ)εC xRn-t, we can show t
h
a
t
j
)i
s D-wellてposed i
f and o
n
l
yi
ft
h
ef
o
l
l
o
w
i
n
g
t
h
e mixed problem (P, B
c
o
n
d
i
t
i
o
ni
s satis五ed:
Forevery (τi, σ~)ε(1\- l',) t
h
e
r
ee
x
i
s
t a neighbourhood U(-r~, σ~) and a
o
r any (-r', σ')E U(-r~, σ~) パ Zγ ,
c
o
n
s
t
a
n
t C(-r~, σ~) such that , f
(
6
.
4
)
[Cj( -r', タ
k(-r', σ'), σ'W
三二 C(-r~, σ~)[Im む (r', σ')
I mタ
k(-r',
σ')[
[(a ,p) (-r', タ
k(-r',
σ'),
a'W(Rer
'
)2
wheret
h
ejandks
a
t
i
s
f
yt
h
ec
o
n
d
i
t
i
o
n
s Itnタ
j(-r~, σ~)=O andIJn ι (T~, σ~)=O
r
e
s
p
e
c
t
i
v
e
ly
.
F
i
r
s
t ifι (T~, σ~) i
ss
i
m
p
l
e then (
6
.
4
)i
sv
a
l
i
dby (
6
.
1
) and (
6
.
2
)
. When
タ
k(-r~, σ~) i
ss
t
r
i
c
t
l
ydoublewedenote anotherbranchbyタ
k(
c
.f
. Lemma 6
.
1
)
.
Next ifι( -r~, σ~) i
ss
t
r
i
c
t
l
y double and k キj, by t
h
ef
a
c
tt
h
a
t [Cj (〆 , タ
k(〆,
a'), σ')[ 豆c[み(-r', a')-Àk(-r', a
'
)
[ and [(D,P) (-r', タ
k(-r', σ'), a')[ 迂c[えよ(-r', r
'
) ぷ (τ',
σ') [, (
6
.4
)i
sv
a
l
i
d
. F
i
n
a
l
l
y ifι (r~, σ~) i
ns
t
r
i
c
t
l
y doubleandj=kthen(
6
.4
)
i
sv
a
l
i
dby (
6
.3
)
. Thus t
h
ep
r
o
o
fi
sc
o
m
p
l
e
t
e
.
Nextweprove t
h
ef
o
l
l
o
w
i
n
g
Theorem 6
.3
. L
etQ(
D
)b
eahomogeneousdi.tたrential operator, which
r
d
e
r m-1 ω ith c
o
n
s
t
a
n
t
d
o
e
sn
o
tc
o
n
t
a
i
nt
h
eoddo
r
d
e
rt
e
r
m
si
n Dx , ofo
R
.Agemiand T
. 5hiγota
1
4
8
l
e
t Bj(D)=D;H(j=1, …, l; m=2l). lfP(D) s
a
t
i
s
f
i
?
st
h
e
o
e
sn
o
tc
o
n
t
a
i
nt
h
e odd o
r
d
e
rt
e
r
m
si
n Dx , t
h
e
nt
h
e
c
o
n
d
i
t
i
o
n (非 ) andd
mixedproblem(
P
(
D
)+ εDxQ(D), B
j
(
D
)
)i
sn
o
tV-ωellでposed (
w
i
t
hd
e
c
r
e
a
s
i
n
g
)foras
u
f
f
i
c
i
e
n
t
l
ysmall εωith c
e
r
t
a
i
nf
i
x
e
ds
i
g
n
.
o
r
d
e
r0
coζffìcients ωzd
Proo
f
. W e mayassume that , for a su伍ciently small s, Lε (D)=P(D) 十
sDxQ(
D
)i
ss
t
r
i
c
t
l
yh
y
p
e
r
b
o
l
i
cands
a
t
i
s
f
i
e
st
h
ec
o
n
d
i
t
i
o
n(特). Furthermore t
h
e
sa c
o
n
s
t
a
n
t lf
o
rany
numbero
ft
h
er
o
o
t
s ÀHr, σ) (ん, (-r, a))ofLε(-r, À, σ) =0 i
(-r, σ) EC+xRn' S
i
n
c
eL
o
p
a
t
i
n
s
k
i
i
'
sd
e
t
e
r
m
i
n
a
n
tw
r
i
t
t
e
ni
nt
h
ef
o
l
l
o
w
i
n
g
form:
R(" σ)= 訂 ("σ) …訂 ("σ) I
I (
タ
j("σ)+ 瓦 ("σ) ),
1 三3くk 三E
,
S( ,) i
s emptyf
o
rany ECc •
S
i
n
c
e P(D) i
ss
t
r
i
c
t
l
yh
y
p
e
r
b
o
l
i
c and deg, Q<
deg , P , t
h
e
r
ei
sap
o
i
n
t
(r~, σ~)ε(S 卜-].'十) s
ucht
h
a
tP(,~, 0, σ~)=o and Q(,~, 0, σ~) キ o. Byt
h
eassumpュ
t
i
o
no
f P(D) wehave (Jぇ L ,) (九, 0, σ~)=εQ(,~, 0, σ~) キ O. Hence t
h
e
r
ee
x
i
s
ta
neighbourhood U(,~, σ~) and a s
i
m
p
l
e root, d
e
n
o
t
e}
.
t(,', a') , i
n U(,~, σ~) such
t
h
a
t}
.
:(,~, σ~) ==O
. Herewemayassumet
h
a
tIm 訂(,', a
'
)>0i
nU(,~, σ~) n1
.
'I,
b
e
c
a
u
s
e onecan change εinto -s.
F
i
r
s
twec
o
n
s
i
d
e
rt
h
ec
a
s
ewhent
h
e
r
ee
x
i
s
t
saroot, d
e
n
o
t
eタi(,', σ'), such
t
h
a
t}
.
i(,~, σ~) キ o and Im}.j(,~, σ~) = O
. Assume t
h
a
t I.仰 }.k (,~, σ~)=O(ん=
L--vh).SInce ι(r', σ') (長 =1 ,… , h) a
r
es
i
m
p
l
ei
n as
m
a
l
l neighbourhood
U(,~, σ~) n1.'~, we o
b
t
a
i
n
jC1(TCA, d)
,~ e
-is)d
タ
(
6
.5
)
r L ,(,',}., σj
ょ
C, (,', タk(, 'σ'), σ')
,.,_, , .
"• [ c(,', )., a
'
)
+¥
;1)" ,' '~' I~ e
'.,
Jr , L ,(,', ん σ/
ーや
一一一一ァ戸内(,', 11')
台1 (aλ L,) (,',えれ, , σ), σ) t
: _...",. ,-
wherer
v'
臼'd}. ,
,i
sac
l
o
s
e
dJordanc
u
r
v
ei
nt
h
el
o
w
e
rh
a
l
fタ
p
l
a
n
ee
n
c
l
o
s
i
n
ga
l
lt
h
e
roots お(〆 , a') (j=ん +1 ,… , l). M
u
l
t
i
p
l
y
i
n
gexp(ーかむ(〆,
lowsfrom Schwarzi
n
e
q
u
a
l
i
t
yt
h
a
t
σ'))
t
o (6.5) , i
tf
o
l
ュ
一一一一 , e一削 d}.IL"_,, (2 .1飢えf(TF, σ')f2
II~rf山')l
r L ε( 〆,ん σ')
^
I
I
L
'(R~)
L
(
6
.
6
)
ミ lt
!;;;¥
C',(,',
(ム L ,)
L-<
Àk ("ι旦ァ(えよ
(r', σ');-一訂而')t'l
σ), σ) \^k\" ,
.
1
1
.1 ¥" , J
j
(,', )
.
;(,',
U
U
[ C,(〆 λσ')
一一一
-l| 』 -ii(T', d)|1d」.
Jr , L ,(,',}., a')
By(
5
.
2
)we have
(
6
.
7
)
C,(川 σ') 斗瓦 (}.2 _}.j(かう2)
I
{
}
.
:(,', σ') 瓦().: (か,? -Àj(,', σ'l)}
OnlVeCeSSa;門肌 d S
u
f
f
i
c
i
e
n
tC
o
n
d
i
t
i
o
l
l
sfo γ
V-Well駒Posedness
ofA1ixedProblems 1
4
9
Theni
tf
o
l
l
o
w
sfrom(
6
.
6
)and(
6
.
7
)t
h
a
t
(
6
.
8
)
S
1d
!!~rr i1("
,)., '
a
}
e
-i
)
.
!
!
L ε (,', )., σ')|L2(R1)
ミC! ).ì(れ')1- 1 {
I
)
.
;
-(,', a')IIImノむ(,', a
'
)
1 î- C' IIm む(かり I!}
I
f(
5
.
3
)i
n Theorem 5.1 i
sv
a
l
i
df
o
r C( ,',)., a
'
)thenwe havefrom(6.8)
l _l飢え{(TCσ')E削).;-(,', σ')lî(Re ,') → l'と CIι(,', a')1- 1 (1ι(,', σ')I- C' IIm).I-(" , σ')1).
Usingt
h
ef
a
c
tt
h
a
t 1 訂(〆 , a')1 豆 C( Re ,') i
n as
m
a
l
l neighbourhood U(,~, σ~),
t
h
i
si
n
e
q
u
a
l
i
t
yi
sn
o
tv
a
l
i
df
o
r (〆, a') su伍ciently c
l
o
s
et
o (,~, σ~).
Nextwe c
o
n
s
i
d
e
rt
h
ec
a
s
ewhen I
1
n).j(,~, σ~)<O f
o
ra
l
lj= 1 ,ー・ , l. I
n
asu伍ciently s
m
a
l
lneighbourhood U(,~, a~)n 2:↑, wea
r
r
a
n
g
et
h
er
o
o
t
s)
.
j(,', a
'
)
i
n
t
o rgroups {À;;, h(" , a
'
)
; h=l , …, k'} (k=1, …, r
) such t
h
a
t {À;;, h(,~, σ~) ;ん=
1, "', k
'
}i
sk
'
m
u
l
t
i
p
l
er
o
o
t
. By t
h
ec
o
n
d
i
t
i
o
n (枠) t
h
e
r
ei
sas
i
m
p
l
e root ,
d
e
n
o
t
e)
.
;
-(,', σ'), i
na s
m
a
l
l neighbourhood U(,~, σ~) n2
:+・Let r k (ん =1 ,… , r
)
be a su伍ciently s
m
a
l
l and c
l
o
s
e
d Jordan curve i
nt
h
e lower h
a
l
f)
.
p
l
a
n
e
e
n
c
l
o
s
i
n
ga
l
lt
h
er
o
o
t
s ).;;, h (r', a
'
)(ん =1 ,… , k'). Thenwe can f nd
g ε D(R~)
such t
h
a
t
(
6
.9
)
r
! g(s) ゐ !~êk
!~~門川|斗 on r1and
S
1
e
-メ
onr
kf
o
rk=
'
i
=l
By Schwarz i
n
q
u
a
l
i
t
yweo
b
t
a
i
n
I
l
r C'1(" , )., σF)
(
6
.
1
0
)
-,:." 1
J
I
IlgIIL'(R~)II~r i:i川 σ') ρえの IIL'(R~)
I
r C'1(" ,)., a
') 1J=
1
116
一 IJr , L,(〆, λσ')j。
,' 1
.
¥ 11 "Ir C( ,',)., a
1J∞|
¥
1 ;';:,' '
;:,(')d)
.
¥
e ω g(s)dsl
|H1|jrALe(T', λσ') A
J
oL
!
J¥
J
jJ
I
-i.
削 σ (s) ds 卜 L:
L
(
.
.
U.
I
f(
5
.
3
)i
nTheorem5
.
1i
sv
a
l
i
df
o
r C(,',)., σ') thenwe have , by(6.7) , (
6
.
9
)
and(6.10) ,
IlgIIL'(R~) (Eω 訂(1:', σ'))!(Re ,')一 1:?: C! ).iト(,', a
'
)
I
l(1 ーら) .
By t
h
ef
a
c
tt
h
a
t 1).1'(,', a
'
)
1~C(Re ,') i
nas
m
a
l
lneighbourhood U(,~, σ~), t
h
i
s
i
n
e
q
u
a
l
i
t
yi
sn
o
tv
a
l
i
df
o
r (,', σ') su伍ciently c
l
o
s
et
o (,~, σ~). Thus t
h
ep
r
o
o
f
i
sc
o
m
p
l
e
t
e
.
7
. Examples.
I
nt
h
i
ss
e
c
t
i
o
nwep
r
e
s
e
n
tsomee
x
a
m
p
l
e
s
.
1
)
. p(D)=a~-11 andB(D)=Dx 十 bDy - i
c
a
" where1
1i
sLa
p
l
a
c
i
a
ni
n R~
andb andca
r
er
e
a.
l Thenwe have t
h
ef
o
l
l
o
w
i
n
gclassi五cation:
1
5
0
R
.Agemiand T
.S
h
i
r
o
t
a
V-well-posed (
w
i
t
hd
e
c
r
e
a
s
i
n
go
r
d
e
r0) ,
n
o
tV
w
e
l
l
p
o
s
e
db
u
tV
w
e
l
l
p
o
s
e
dw
i
t
hd
e
c
r
e
a
s
i
n
go
r
d
e
r1,
, X; n
o
tV
w
e
l
l
p
o
s
e
dw
i
t
ha
n
yd
e
c
r
e
a
s
i
n
go
r
d
e
r
,・
-一・
Proof Int
h
i
scase, タ
"
'("σ)= 土 i(,2 + σ2)t w
herei
ti
sassumedt
h
a
t(,2+σ2)ま
has a p
o
s
i
t
i
v
er
e
a
lp
a
r
ti
f EC , L
o
p
a
t
i
n
s
k
i
i
'sdeterminantR("σ)=i(,2+ σ2)ま
+bσ - Îc and r
e
f
l
e
c
t
i
o
n coe伍cient C("λ一 ("σ), σ)=( _ i( 2 + σ2)ま +bσ ic,)/R
("σ). Hence , i
ti
st
h
en
e
c
e
s
s
a
r
yandsu伍cient c
o
n
d
i
t
i
o
nf
o
rV-well-posedness
h
ef
o
l
l
o
w
i
n
gi
n
e
q
u
a
l
i
t
yh
o
l
d
si
nas
m
a
l
ln
e
i
g
h
ュ
withd
e
c
r
e
a
s
i
n
go
r
d
e
r νthat t
'
"o
fany (,~, σ~)E(E7 -l
:
c
)UV'
bourhood i
n};• n V
,
,
(
7
.1
)
IC(,',
1
,
r(,', σ'), σ')12
三三 CJI仰ノ À I (,', σ') Imタ-(,', a')II(ム P)
(,', タ-(,',
σ'), σ ' )J2 (Re ,'t 2 , -2.
h
er
i
g
h
t hando
f(
7
.
1
)f
o
r ν= 0 i
s bounded
Remark that , by Lemma 6.1 , t
b
e
l
o
w
.
I
fc<-Ihl , R(" σ) キ o f
o
r("σ)E C X R 1• ByTheorem 6.2 , t
h
emixed
s thenV
w
e
l
l
p
o
s
e
d
. I
fc=一 Ib削1 , R(ケ" σ何)去キ干引o f
o
r (什" σ
吋)ε C
ブ十 ラ
problem(P, B) i
R}a
ndR(何
TdJ, 凶
σ《 1~
拍
ιi心)=ニニニ二ニ4
ニ二
i出
n an
eighbourhoodぱ
0 f (,~, σιj心). By t
h
e remarkaboveand(
7
.
1
)f
o
r ν=0, t
h
e
mixedproblem(P, B)i
sV引ell-posed. I
fb 2 _C2 十 1<0 andc>O , S(
r
)depends
on EC. Hence , byTheorem 3.1 , t
h
emixedproblem(P, B)i
sn
o
tV-wellュ
fc=1 , S( )={O} but(
7
.
1
)f
o
ranyνis n
o
t
posedwithanyd
e
c
r
e
a
s
i
n
go
r
d
e
r
. I
v
a
l
i
di
na nighbourhoodo
f (r~, 0
) (,~ ECJ. Hence t
h
e mixed problem(P, B)
i
sn
o
tV-well-posedwithanyd
e
c
r
e
a
s
i
n
go
r
d
e
r
. I
nt
h
eo
t
h
e
rcase , R (r, σ) キ O
•
,
,
0
1
1 N.ヒc(:'ssa γ苫側 d S
u
f
f
i
c
i
e
n
tConditio 出
for
v
-~Vell-Posedl1 ess
ofl
1
1
i
x
e
dProblems 1
5
1
f
o
r ("σ)EC xR l, R(,~, σ~) = 0 f
o
r some (,~, σ~)ε(~;_ -1:J and t
h
e numerator
sn
o
tz
e
r
oa
t(,~, σ~). Hencet
h
emixedproblem(P, B) i
s
o
fC(,', [(,', a'), σ') i
n
o
tV
w
e
l
l
p
o
s
e
d
. But, by t
h
ef
a
c
tt
h
a
t IR(〆 , a
'
)I ミ C(Re ,') i
nan
e
i
g
h
ュ
h
emixedproblem(P, B)i
sV-well-posedwithd
e
c
r
e
a
s
i
n
g
bourhoodo
f(,~, σ~), t
o
r
d
e
r1
.
2
)
. P(D)=(討 -a 1 L1) (討 -az L1) whereL
1i
sL
a
p
l
a
c
i
a
ni
n_
l
ln anda
l and a
2
a
r
ep
o
s
i
t
i
v
eandd
i
s
t
i
n
c
t
.
I
f Bl(
D
)=1andBz(
D
)=Dx then , by Theorem 6.2 , t
h
e mixed problem
(P, B
j
)i
sV
w
e
l
l
p
o
s
e
d
. I
fB1(D)=IandB2
(D)=D;o
rB1(D)=Dτand B2
(
D
)
=D~ , b
y Theorem5
.
1 andmore p
r
e
c
i
s
e
l
yt
a
k
i
n
gt
h
er
e
s
i
d
u
ei
n(
5
.
3
)(
c
.f
.
h
e mixed problem (P, Bj) i
sV
w
e
l
l
p
o
s
e
d
. I
f Bl(D)=Dx and
(6.4)) , then t
B2 (D) ニ D; o
rBl(D)=D;and B2(D)=D~, thent
h
e mixed problem (P, B
j
)i
s
n
o
t V-well-posed b
u
t V-well-posed with d
e
c
r
e
a
s
i
n
go
r
d
e
r1
. F
i
n
a
l
l
yi
f
B1(D)=IandB 2(D)=D; , thent
h
emixedproblem(P, B
j
)i
sn
o
tV幽well-posed
with any d
e
c
r
e
a
s
i
n
go
r
d
e
rbyC
o
r
o
l
l
a
r
y3
.2
.
References
[1] S
. AGMON: Probl鑪es mixtes pour
己quations
hyperboliques d
'
o
r
d
r
e supérieur ,
Colloques Internationauxdu C
. N. R
.S. , 13-18(
1
9
6
2
)
.
[2] M_ S
_ AGRANOVICH and M. 1
. VISHIK: E
l
l
i
p
t
i
c problems with aparameterand
l 19, No. 3 ,
p
a
r
a
b
o
l
i
c problems o
fgeneral type , Uspekhi Math. Nauk , Vo.
53-161 (
1
9
6
4
1
.
[3] G
.F
. D_ DUFF: Mixed problems f
o
r hyperbolic e
q
u
a
t
i
o
n
so
fg
e
n
e
r
a
l order ,
Canad. J
. Math. , Vo.
l9 , 195-221 (
1
9
5
9
)
.
[4] M. IKAWA: Ont
h
emixedproblemf
o
rt
h
ewaveequationwithan o
b
l
i
q
u
ed
e
r
i
v
ュ
a
t
i
v
eboundarycondition , P
r
o
c
_ JapanAcad. , Vo.
l44 , No.10, 1033-1037 (
1
9
6
8
)
.
[5] A
.INOUE: Onthemixedproblemforthewaveequationwithan oblique boundュ
o appear
ary condition , t
_ KREISS: I
n
i
t
i
a
l boundary v
a
l
u
e problems f
o
r hyperbolic system , Uppsala
[6] H. 0
1
9
6
9
)
.
Technical report , (
[7] T SADAMATSU: Onmixedproblems f
o
r hyperbolic systems of
五 rst
order with
c
o
n
s
t
a
n
tcoe 伍 cients , Jour
.Math_KyotoUniv. , Vo.
l9, No. 3, 339-361 (
1
9
6
9
)
.
[8] T
. SHIROTA and R
.AGEMI: Onc
e
r
t
a
i
nmixedproblemf
o
rhyperbolic equations
。f
higher order
. III , P
r
o
c
. JapanAcad. , Vo.
l45 , No. 10, 854-858(
1
9
6
9
)
.
[9] T.SHIROTAandK ASANO: Onmixedproblemsf
o
rr
e
g
u
l
a
r
l
yhyperbolicsystems ,
J
o
u
r
_F
a
c
_S
c
i
_ Hokkaido Univ_ , Ser
. I , Vo.
l 21 , No. 1, 1-45(
1
9
7
0
)
.
[
1
0
] H. Weyl: The c
l
a
s
s
i
c
a
l groups , Princeton Math_ Series , No. 1
.
Department o
fMathematics ,
Hokkaido U
n
i
v
e
r
s
i
t
y
9
7
0
)
(
R
e
c
e
i
v
e
d April 14, 1
Fly UP