Comments
Description
Transcript
カイラル対称性の部分的回復とη`中間子原子核 - J-PARC分室
J-PARCハドロン原子核理論検討会 カイラル対称性の部分的回復とη’中間子原子核 D. Jido (Yukawa Institute, Kyoto) collaboration with H. Nagahiro and S. Hirenzaki (Nara WU) Reference Nuclear bound state of eta'(958) and partial restoration of chiral symmetry in the eta' mass. Daisuke Jido, Hideko Nagahiro, Satoru Hirenzaki. Sep 2011. e-Print: arXiv:1109.0394 [nucl-th] LoI for GSI-SIS: Spectroscopy of η’ mesic nuclei with (p,d) reaction K. Itahashi, H. Outa, H. Fujioka, H. Geissel, H. Weick, V. Metag, M. Nanova, R.S. Hayano, S. Itoh, T. Nishi, K. Okochi, T. Suzuki, Y. Tanaka, S. Hirenzaki, H. Nagahiro, D. Jido, K. Suzuki D. Jido Friday, 16 December 2011 KEK 東海1号館 12.16, 2011 Introduction (3つのキーワード) UA(1) anomaly 量子効果による対称性の破れ η の質量生成機構と密接に関連 核媒質中のカイラル対称性の部分的回復 深く束縛されたπ中間子原子、低エネルギーπ核散乱実験 & 理論 30%程度のクォーク凝縮の減少 ∗ �q̄q� � �q̄q� � b1 b∗1 �1/2 � 1−γ ρ ρ0 � DJ, Hatsuda, Kunihiro, PLB 670 (2008) 109. 中間子原子核 中間子-原子核束縛系、実験で観測 束縛状態はあるが、幅が広い(束縛エネルギーと幅が同程度) s-channel N* → πN 引力と吸収の起源が同じ D. Jido Friday, 16 December 2011 2 J-PARC検討会 Mesonic atoms and mesonic nuclei bound systems of meson and nuclei experimental tool to observe medium modification of meson we do not have to remove in-vacuum contributions modification of mass and width by many-body effects ex. mass shift width mN → mN mN → B ∗ interactions between meson and nucleus mN → πN mN N → N N in-medium self-energy of meson extract more fundamental and universal quantities ex. D. Jido Friday, 16 December 2011 quark condensate �q̄q� 3 J-PARC検討会 Low density theorem model independent theoretical relation � � σπN ∗ �q̄q� = 1 − 2 2 ρ �q̄q� + O(ρn>1 ) mπ fπ Drukarev, Levin, Prog. Part. Nucl. Phys. 27, 77 (1991) σπN : πN sigma term, O(mq), obtained from TπN at soft limit derivation density expansion �q̄q�∗ = �q̄q� + ρ�N |q̄q|N � + O(ρn>1 ) definition of sigma term 2mq �N |q̄q|N � = σπN Gell-Mann Oakes Renner relation m2π fπ2 = −2mq �q̄q� 30 % reduction of quark condensate at nuclear density D. Jido Friday, 16 December 2011 4 J-PARC検討会 Partial restoration of chiral symmetry effective reduction of quark condensate in nuclear medium �q̄q� /�q̄q� < 1 ∗ hadronic quantities closely connected to dynamical breaking 1) pion decay constant W. Weise, NPA690 (01) 98. K. Suzuki et al., PRL92 (04) 072302. DJ, Hatsuda, Kunihiro, PLB 670 (08) 109. deeply bound pionic atom 2) spectrum of sigma meson Hatsuda, Kunihiro, PRL55 (1985), 158. Hatsuda, Kunihiro, Shimizu, PRL82 (99) 2840. ππ production off nuclei DJ, Hatsuda, Kunihiro, PRD63 (01) 011901. 3) mass difference of chiral partners ρ-a1 N-N*(1535) 4) mass of eta’ meson etc. D. Jido Friday, 16 December 2011 etc. Weinberg, PRL18 (67) 507. Kapusta, Shuryak, PRD49 (94) 4694. DeTar, Kunihiro, PRD39 (89) 2805. H.C. Kim, DJ, Oka, NPA640 (98) 77. etc. etc. etc. S.H. Lee, Hatsuda, PRD57 (96) 1871 DJ, Nagahiro, Hirenzaki, arXiv: 1109.0394 etc. need systematic studies 5 J-PARC検討会 Deeply bound pionic atom pion is one of the Nambu-Goldstone bosons - in-medium properties of pion are directly connected to chiral symmetry in nuclear matter - especially s-wave pion-nucleus interaction is important to chiral symmetry, since symmetry properties are seen in soft limit (p→0), K. ITAHASHI et al. π- bound in atomic orbit deeply bound states (1s, 2p,... ) not observed in X ray spectroscopy need to formation experiments neutron picking-up process in (d, 3He) sensitive to nuclear effects effective density ~ 0.6ρ0 complemental experiment low-energy pion-nucleus scattering GSI 20~30 MeV LAMPF, PSI D. Jido Friday, 16 December 2011 6 FIG. 10. !a" The real part of local potential V(r), which is J-PARC検討会 total real-part potenequivalent to the pion mass shift )m &eff(r), the tial including the Coulomb interaction „V c (r)…, and the imaginary Deeply bound pionic atom level shift ΔE and width Γ → medium effect of pion π- optical potential (s-wave part) S 2mπ Uopt � = −4π 1 + mπ mN � (b0 ρ − b1 δρ) + · · · b1 parameter: isovector pion-nucleus scattering length fit parameters so as to reproduce data isoscalar density ρ = ρ p + ρn isovector density δρ = ρp − ρn missing repulsion puzzle low density theorem S S Σπ = 2mπ Uopt = −ρTπN b0 and b1 should be in-vacuum values bfree 1 /b1 = 0.78 pionic atom enhancement of repulsion D. Jido Friday, 16 December 2011 7 J-PARC検討会 Reduction of pion decay constant Fπ enhancement of s-wave repulsive interaction 'HHSO\ERXQGSLRQLFDWRP .6X]XNLHWDO35/ V\VWHPDWLFVWXG\RI/ERXQGVWDWHVLQ6QLVRWRSHV (ODVWLFVFDWWHULQJ)ULHGPDQHWDO This is related to in-medium reduction of pion decay constant Fπ at low density Weinberg-Tomozawa realtion � � mπ free mπ 4π 1 + mN b1 = − 2 in vacuum 2F � � in medium mπ mπ at low-density 4π 1 + mN b1 = − 2(Fπt )2 bfree 1 b1 = � Fπt Fπ �2 Kolomeitsev, Kaiser, Weise, PRL90 (03), 092501. DJ, Hatsuda, Kunihiro, PLB 670 (08), 109. The next question is how to conclude partial restoration of chiral symmetry from the reduction of Fπ. D. Jido Friday, 16 December 2011 8 J-PARC検討会 Nuclear bound state of meson neutral meson (η’) only strong interaction is relevant nuclear many body effects attraction mN→mN absorption mN→πN m N N→ N N attraction and absorption come from the same mechanism wavefunctions of meson and nucleus largely overlap → binding energy and width have comparable sizes d<PHVLFQXFOHL d< PHVLFQXFOHL due to large width, bound states are hard to see in experiment 100 MeV absorption for omega meson (>0H9@ (>0H9@ 70 MeV one-body potential in nucleus Friday, 16 December 2011 typical energy scale D. Jido SLRQLFDWRP &D &D &*DUFLD5HFLRHWDO3/% 9 7RNLHWDO13$ J-PARC検討会 Search for Kaonic nuclear bound states attractive electromagnetic interaction attractive strong interaction K- (Kbar) no doubt that Kbar is bound in nucleus Kishimoto et al. PTP118, 181 (07) KEK 12 C(K − , n) 12 K + 12 pΛ invariant mass spectrum C→N +X back-to-back correlation in light nuclei some strength in bound region D. Jido Agnello et al. PRL94, 212303 (05) C(K − , p) missing mass spectra − FINUDA hint of KbarNN bound state still we have no clear signals of kaonic nuclear states Friday, 16 December 2011 10 J-PARC検討会 Origin of η’ mass symmetry in classical QCD U(3)L ⊗ U(3)R → SU(3)V ⊗ U(1)V no UA(1) symmetry due to quantum anomaly symmetry in the original theory can be counted by numbers of conserved currents η’ is not necessarily massless → η’ is massive UA(1) anomaly effect lifts η’ mass up Vogl, Weise, Prog.Part.Nuc.Phys.270, 195 (91) divergence of axial current i µ (8) ¯ 5 d − 2ms s̄γ5 s) ∂ Aµ = √ (mu ūγ5 u + md dγ 3 ∂ µ A(0) µ anomaly for simplicity, we consider SU(3) and chiral limits, and neglect η and η’ mixing Friday, 16 December 2011 A 3αs a µν ¯ = 2i(mu ūγ5 u + md dγ5 d + ms s̄γ5 s) + Fµν F̃a 8π PCAC D. Jido a F̃aµν ≡ �µνρσ Fρσ 11 V V J-PARC検討会 η’ meson in chiral restoration DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] When chiral symmetry is restored... all the particle belonging to the same chiral multiplet should degenerate chiral multiplet for S and PS mesons (3̄, 3) ⊕ (3, 3̄) q̄iL qjR R L q̄i qj SUL (3) ⊗ SUR (3) (3×3)+(3×3)=18 q̄i γ5 qj , q̄i qj parity eigenstate scalar and pseudoscalar both octet and singlet contain π, K, η8 , η0 (1+8)+(1+8)=18 σ, a0 , κ, f0 if chiral symmetry is manifest, η8 and η0 should degenerate even though anomaly is there axial trans. mixes octet and singlet [QaA , φB 5 ] = q̄ � � B λa λ 2 , 2 q = daBC φC σ↔π a0 ↔ η � both singlet and octet belong to the same multiplet without U(3) dynamical argument was given by Lee and Hatsuda D. Jido Friday, 16 December 2011 12 Lee, Hatsuda, PRD54, 1871 (1996) J-PARC検討会 η’ meson in chiral restoration DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] When chiral symmetry is restored... 9 PS π, K, η8 , η0 9S σ, a0 , κ, f0 get degenerate even though UA(1) anomaly exists in the singlet axial current η0 massive UA(1) anomaly π, K, η8 , η0 π, K, η8 manifest chiral sym. massless broken chiral sym. the UA(1) anomaly can affect the η’ mass only through (spontaneous and/or explicit) chiral symmetry breaking. η-η’ mass difference comes from the anomaly effect through the quark condensate at the chiral limit. D. Jido Friday, 16 December 2011 13 J-PARC検討会 η’ meson in nuclear matter DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] divergence of axial current ∂ µ (0) Aµ 3αs a µν ¯ = 2i(mu ūγ5 u + md dγ5 d + ms s̄γ5 s) + Fµν F̃a 8π PCAC anomaly nonchiral gluon field cannot couple to chiral pseudoscalar states without explicit and/or dynamical chiral symmetry breaking. η’ R L L D. Jido Friday, 16 December 2011 L R R R L R L 14 J-PARC検討会 2 (c) gD (ρ) = gD exp[−(ρ/ρ0 ) ], η’ meson in nuclear matter is the vacuum strength of the determinant interaction why the η$ mass decrease. In Fig degenerate completely and their density, and the mass of η$ has n the UA (1) anomaly effects. With n Table I. The gD (ρ) has no density dependence for Hooft - Kobayashi - Maskawa interaction and‘t(b). In case (a), the meson vacuum properties NJL model eproduced as shown in Table I, while there are no use slightly ffects in case (b). For gD = 0 case, we�q̄q� (a) UA(1) anomaly parameter set as shown in Table I in Ref. [60] to contributes η’ mass the meson masses and the pion decay constant in through ChSB LD assume ithout anomaly effect. In case (c), we simply y dependence of gD as this form in order to examine m effect due to density dependence of gD itself on If partial restoration of chiral symmetry takes place mass spectra in finite density. in nuclear matter may be interesting for our study to notice that there we expectabout strong mass reduction in nuclei tical suggestions possible density dependence ,62]. In Ref. [62],Δm the effective coupling constant η’ ~ 150 MeV stanton-induced interaction is suggested to have (with 35% PRChS - mη ≈ For 400NMeV) potential dependence for Nfand =m 2 η’ systems. f = Nagahiro, Takizawa, Hirenzaki , we can expect to have the similar µ dependence, FIG. 2. Density (2006) dependence of PRC74,045203 is not easy to show explicitly. We are interested in panels corresponds to the cases (a) also, P. Costa, M. C. Ruivo, and Y. L. Kalinovsky, he effect of such density dependence discussed in See respectively. The nucleon density ρ Phys. Lett. B560, 171 (2003). on meson mass spectra as future works. normal nuclear density ρ0 = 0.17 f D. Jido Friday, 16 December 2011 15 J-PARC検討会 Narrow width ?? nuclear many body effects absorption attraction η’ N → π N η’ N → N* η’ N N→ N N attraction coming from suppression of anomaly effect contact interaction in hadronic level no hadronic imaginary part UA(1) anomaly contributes η’ mass through ChSB �q̄q� LD suppression of anomaly effect selectively affects η’ channel elastic η’ N → η’ N This mass reduction does not directly come from nuclear many-body interaction. Thus the width may be smaller than binding energy. Δm ~ 150 MeV > Γ D. Jido Friday, 16 December 2011 16 J-PARC検討会 Current experimental status !" in-medium width RHIC: phenix/star (low energy pion) compared theoretical calculations and E. Oset of "‘ meson η’with mass reduction of at leastA.Ramos 200 MeV in-medium properties ⇒in-medium width: in the medium: = quasiparticle; properties reflect interaction with the medium; Csorgo, Vertesi,!"Sziklai, PRL 105 (2010) 182301 TA TA additional inelastic channels remove !"-mesons, e.g. !" N# $ N pp →Ea=2.1 η’ppGeV final COSY Ea=1.9state GeV interaction transparency ratio: 1 1 0.8 "#A $ %' X 0.9 E =1200-2200 MeV in the medium: TA et = al, PLB482(2000) Moskal 365 !" = quasiparticle; propertiesa reflect interaction with the 1 A& "#N $ additional %' X inelastic channels remove !"-mesons, e.g. !" N# $ N 0.8 data transparencyd’exp ratio: normalized to 12C K(l )=10 MeV d’exp data K(l0)=10 MeV K(l0)=15 MeV K(l0)=20 MeV K(l0)=25 MeV K(l0)=30 MeV K(l0)=35 MeV K(l0)=40 MeV CB-ELSA/TAPS 0.7 ! properties of "‘ mes 0 0.7 K(l0)=15 MeV K(l0)=20 MeV K(l%0')=25 #A $ X MeV K(l0)=30 MeV K(l0)=35 MeV #NK(l$ %' XMeV 0)=40 " transparency ratio Tprocesses secondary production ? = A A& " ($N#!’N) 0.9 0.8 0.7 0.6 lim in y r a TA 0.9 TA pη’ scatt. length ~ 0.1 fm (Δm~10MeV) in-medium 1 0.9 0.8 0.7 Ea=1200 e "’ reproduced with smaller T kin r 2 2 10 p normalized to 12C 10 0.4 comparison with TA for A! meson Ad’ A "" absorption weaker than ! absorption d’ for Tkin> (Ea-md’)/2 o data #($0,<|p!’|> % 0.9 GeV/c) % 25-30 MeV 0.6 secondary production processes ? t 0.3 ! ($N#!’N) d for Tkin>0.5 (Ea-md)/2 " absorption properties ened in Nanova, the medium talk at Baryon2010 "’ reproduced T. Mertens et al., EPJA 38 (2008) with 195 smaller Tkin 2 Γinel 10 0.4 d’ comparison with TA for ! meson 10 A = = 14 mb !(T) ! %(T,A) ∝ A ; A scaling law 17 D. Jido J-PARC検討会 ρ·β·�·c "" absorption weaker than ! absorption d’ for Tkin> ( Friday, 16 Decemberfor 2011& and ": '=0.67 for !"-? 0.6 0.6 0.5 Missing mass spectroscopy formation reaction of bound states observe spectra of final nucleon (missing mass) identification of meson in nuclei (energy, isospin,decay,...) P 1 P % observing decays helps to reduce the background η: N(1535)→πN K: Λ(1405)→πΣ nucleon pick-up convolution of hole states and meson partial waves recoilless selection rule −1 s−1 ⊗ s , p m N N ⊗ pm , . . . D. Jido Friday, 16 December 2011 18 J-PARC検討会 Formation spectrum 12 C(π , p) + pπ=1.8 GeV/c H. Nagahiro, PTPS 186, 316 (2010) DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] q=200MeV/c J-PARC elementary cross section (reference) η’ potential (Wood-Saxon type) π + n → pη � ρ(r) Vη� (r) = V0 ρ0 � dσ dΩ �lab. = 100µb/st Δm = 150 MeV Γ/2 = 20 MeV p3/2 hole s1/2 hole D. Jido Friday, 16 December 2011 19 J-PARC検討会 Formation spectrum + 12 H. Nagahiro, PTPS 186, 316 (2010) DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] (S ,p) spectra : C target : incident energy dependence 12 + GeV/c C(π , p)MeV p(pπS=1.8 J-PARC 7S = 820 = 950 MeV/c) q=200MeV/c 7S = 650 MeV (pS = 777 MeV/c) Chiral doublet model [C=0.2] elementary cross section (reference) � π + n15 → pη � �lab. dσ recoilless position = 100µb/st dΩ 80 40 5 20 0 Chiral unitary model 20 Δm = 150 MeV Γ/2 = 20 MeV ρ(r) Vη� (r) = V0 ρ0 60 10 0 Chiral doublet model [C=0.2] η’ potential (Wood-Saxon type) Chiral unitary model 60 15 -100 10 -50 0 40 50 Eex – E0 [MeV] 100 150 p3/2 hole 20 5 NFQCD10, Joint Symposium of theory and experiment in “Hadrons in nulei” 20 s1/2 hole 0 -100 -50 0 50 100 150 0 -100 Eex – E0 [MeV] D. Jido Friday, 16 December 2011 -50 0 50 100 Eex – E0 [MeV] 19 150 16 J-PARC検討会 Formation spectrum 12 C(π , p) + pπ=1.8 GeV/c H. Nagahiro, PTPS 186, 316 (2010) DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] q=200MeV/c J-PARC elementary cross section (reference) η’ potential (Wood-Saxon type) π + n → pη � ρ(r) Vη� (r) = V0 ρ0 � dσ dΩ �lab. = 100µb/st Δm = 150 MeV Γ/2 = 20 MeV p3/2 hole s1/2 hole D. Jido Friday, 16 December 2011 19 J-PARC検討会 Formation spectrum 12 C(π , p) + pπ=1.8 GeV/c H. Nagahiro, PTPS 186, 316 (2010) DJ, Nagahiro, Hirenzaki, arXiv:1109.0394 [nucl-th] q=200MeV/c J-PARC elementary cross section (reference) η’ potential (Wood-Saxon type) π + n → pη � ρ(r) Vη� (r) = V0 ρ0 Re V0 Im V0 s p d � dσ dΩ �lab. = 100µb/st −150 MeV −20 MeV (93.5, 34.0) (21.9, 19.1) (56.3, 27.7) (21.0, 20.8) Δm = 150 MeV Γ/2 = 20 MeV p3/2 hole s1/2 hole D. Jido Friday, 16 December 2011 19 J-PARC検討会 Conclusion η 質量生成は、カイラル対称性の破れと UA(1) anomaly の 共演 η 質量に対する UA(1) anomaly の効果は、カイラル対称性の破れを伴う必要がある。 カイラル対称性が回復するとη 質量は減少すると予想される。 大きな吸収効果を伴うことなく、大きな質量減少が期待される クォーク・グルーオンのダイナミクスによる引力 フレーバー1重項への選択的な相互作用 100 MeV オーダーの質量減少と30 MeV 程度の吸収幅 η 中間子原子核系の束縛状態を観測できる可能性がある UA(1)問題に対して、有益な実験的情報を得ることを期待 outlook 理論的考察:クォーク凝縮との関係、質量公式、カイラル有効理論の構築 現象論的情報:η N 相互作用 実験:12C(p,d)反応 @ GSI, LoI 提出(板橋さん、藤岡さんら) D. Jido Friday, 16 December 2011 20 J-PARC検討会