Comments
Transcript
外来診療を目的とした Real-Time PCR 法による Mycoplasma
ῌ!%[\I» 2009 148 ῌ῎ ῐ῍ Real-Time PCR Mycoplasma pneumoniae !"#$% & 20 12 ' 26 !(") 21 5 ' 11 !(* +,-./01234# 1053067$%89 :&/. ; < ) => Mycoplasma pneumoniae ?@$%89 7'A$BCD/. C7E:F(CG ; HIHI7-J / real-time PCR ). M. pneumoniae E*K+; K+GL) MN 3 ,O./ -D; PQ.R) STEUVWXYZ/ SYBR Green I ).) Light Cycler 2.0 system (Roche) [)) PCR /#0\] 1EL 45 23^_; PCR ) . primer 7 M. pneumoniae 16S rRNA `4abWcYZ) d57 3.09 fg/ml PC Ee6CGD; fI7ghW7ijk # 1025103 ghW8) 29:.l; m M. pneumoniae n<7o2=pe6CG qHI; r) 'A`4CHI >s? DNA ?E@tuAvw; xy/ M. pneumoniae zI 15 n<-./ DNA ?E@tBCC crossing point values D{D:) DNA ?E@tH?.E| -./}~F?d 5:GI; x) PCR HIO./-; 2JK 7wI?<D:) KLL<?d5MNN; ) <OP) 2QRS-T3?E e6?`4UKk fCVmWC } ; Key words: real-time PCR, Mycoplasma pneumoniae, 16S rRNA gene ῏ ῑ zIOOG ?<C357)) Vm M. pneumoniae Mycoplasma pneumoniae 7) ZdXn K?3:h0z 0?19 ROC) YC70dX I/. ; =>) 'A$BCEe6? n34- 105306& 1); >K$ dXn9 7 Streptococcus pneumoniae ¦ Hae- DZ+,9[\I/ 15 < mophilus influenzae .DRi?RSCj§ 44 ,-./7# 406: M. pneumoniae e6?2¨CG ; fIRi©2 dXn7 ,-J C7ª«¬X®l¯°) dXn :& }.HI/. 2); M. pneumoniae ) n<- ]<:^¡ _,`ab¢ (£632῍8552) cF¤0¥de 200 !"#$% TEL: 0743῍63῍5611 fg 8665 FAX: 0743῍62῍5576 E-mail: nakamurium῎[email protected] 26 !%[\I¼½ Vol. 19 No. 3 2009. ±²/. :) $%89 CG M. pneumoniae ¦ Chlamydia pneumoniae 7D{k5::.} <<HQ) =C7E:F(CG ; M. pneumoniae ¦ C. pneumoniae 72>;/ ©lm³´Ri©2 dXnµn)z I b-«¶b¬ 2·7¸¹ºz?.; :D /) 12:Ri©2 }<$%89 /0 Mycoplasma pneumoniae Real-Time PCR 149 0 M. pneumoniae PCR QUX primer dimer IJ !"# $ 0 Touch down PCR /l YZ, 95 7 %&'$ ()*+,-. min Hot start Z, 95 1 s f= 63 /012+ 53 5 s (step size 0.5/cycle) 5FG[ 728 s ' 3 1 cycle >p 14 s@ 40 cycle 0 3 456 2007 %&07 !89:;<:= >"# #?@ ABC $ A%DE&' 5FG()"*"H+IJ*KL,!8-. ExyFx\ 6595 15 s (step size 0.2/cycle) 5FG] 20 30 s PCR ^_ 28 min 0 M!8/ $%&'8) NO (4) DNA P&P&-.M!8QR01S'M. pneu- #'6 moniae 2T /3UV4I M. pneumoniae W0 PCR XY5Z[ ! `a'~ DNA bWcde]^0 a'~fg hLijk 500 ml _ 1 . 67W*12+, 45 \8+V4I W B' 12,000 G 15 s lc|0 6XY5]^0 3 >m'L¡¢ nom_ 200 ml 3>m sample _0 lX 15 s, 30 s, 1 min, 2 min 5FG 2 min (1) lnom£¤=0 3&¥&X _` Roche a Real-time PCR ` Light <0 ¦ DNA bW0 sample 1 Cycler 2.0 system _0 bcWdefgh C w 0 M. pneumoniae " § 6 ¨ i >PA @ 5'&©I>pq LightCycler FastStart DNA Master SYBR M. Green I ]9 >FastStart Taq DNA Polymerase, re- pneumoniae %&0 15 r6 action bu#er, dNTP mix, SYBR Green I :;5FG ' QIAamp DNA Mini Kit (QIAGEN) F DNA 10 mM MgCl2 jk@ '0 SYBR Green I /l b W 0 sample # ª O | 0 sample 0 PCR ()0} crossing point values >CP (2) Primer s@ Cw0 ,0 M. pneumoniae \/ NO< 16S rRNA mf;n=o> $%&0 10 r5't/ ? p % & 0 primer9) qforward primer @ Ar 5 ῌ - u.' -Iz{L!«<:gf¬:gf& cgccagcttgtaaaagtgagc-3ῌ reverse primer @Ar 5ῌ- 'IJCw0 tagcaacacgtttttaaatattacc-3ῌs >\t primer A@ 5F G P1 mf;n=o>?p%&0 primer10) (5) PCR " DNA #$%&'( 6'0 PCR QU DNA JK{L qforward primer @Ar 5ῌ-attcccgaacaaaataatga-3ῌ 39®f¯°v±²w³q' Exy reverse primer @Ar 5ῌ-gtttgacaaagtc-cgtgaag-3ῌs Fx\12xT,³q0 ,0 >\t primer B@ 2 uB_v primer Cw sequence ' ´A@A³q|0 0 Cw8D ῌExyFGH% ῍primer dimer 5FG-IzJK{L&' ῎W1 I 5 NO _ 0 primer F | M* & direct DNA (6) PCR )*&+ # DNA ybW6'0 6 §L9!"~$µz0} PCR ¶·³q DNA N OP> primer A '0} 190 bp, 0 §L9 CEZ, CAM, MINO, LVFX, ST 5FG primer B 151 bp I VCM '0 v9¸ U1$ 1 mg/ml 5FG (3) PCR PCR 10 mg/ml IF9~ 500 ml {| MacF0.5 PCR Q U R ~ S 20 ml 9 < < {|0 M. pneumoniae }¹Lº~fg~ f T 0 DW 14.0 ml, MgCl2 1.6 ml > U 1 3.0 3»0ªO'v9¸'u. mM@ Forward-primer 0.2 ml > U1 0.5 mM@ Re- 0 ,0 "~'V" 1 ml, 5 ml 5FG 10 ml verse-primer 0.2 ml > U1 0.5 mM@ hLijk 500 ml 3ªO LightCycler FastStart DNA Master SYBR Green I2.0 ml ' 3&¥&u.0 & sample 2.0 ml VQUR~W 20 ml "# L#¼½ Vol. 19 No. 3 2009. 27 &'()*+ 150 Fig. 1. 16S rRNA primer (primer A) P1 (primer B) 3 Fig. 2. 16S rRNA primer (primer A) P1 primer (primer B) !"#$% 28 ,-./012345 Vol. 19 No. 3 2009. ¤¥¦§¨©,& Mycoplasma pneumoniae Real-Time PCR _u 151 Fig. 3. 7G PCR ῌ 12,000 G 2 min W &¡W¢Nv ῍ 12,000 G 15 s s£v ῎ 12,000 G 30 s s£v ῏ 12,000 G 1 min s£v ῐ 12,000 G 2 min s£v primer _ ` a b c & RNA MS 2 (1) Primer (Roche) ῌ j&"#$;7<OPQRST Fig. 2 DNA defgh\& PCR i M. pneumoniae DNA 2 %& primer A k( 3.09 fg/ml lk- primer ./0%&6 primer B k( 30.9 fg/ml 6_ primer mnko OPQR#$2pq#$ko PCR !" #$ Fig. 1 %& primer A TM '( 84.8) *+ primer B TM '( 88.5)*+,- ./0(1 primer ,2345%& 6 primer A ( primer B 789:-./0% & r s # $ 7 8 t PCR _ u f v primer ( 16S rRNA sw/Mxy,& primer A ,& (2) PCR DNA Primer A v &z{_| ! PCR } ~ DNA @ABC( 3HIJK/LMNOPQR ῍primer dimer ;7<=>?@ABCDE ] "#$5]& 2 primer ;FG@ABC 3HIJK/ l direct DNA sequence g] LMNOPQRST Fig. 1 %& 1 primer , M. pneumoniae 16S rRNA g 2-U3VWX%&YZ- primer dimer ,3&G,]& ;7<=>?@ABC[\(]^-Z ῎_`a M. pneumoniae DNA 2 (3) DNA t;FG7G PCR Fig. 3 %& ῌk(`a(k ªtz{«¬C®¯ Vol. 19 No. 3 2009. 29 kI 152 Table 1. */ A B C D E F G H I J K L M N O M. pneumoniae */ 15 */bc DNA 89op!qrc CP >$ TM >!?@ TM > CP > stuvw 5,120 640 y40 1,280 2,560 80 10,240 640 640 320 320 5,120 160 1,280 ND 5,120 ND DNA 89< DNA 89G DNA 89< DNA 89G 34.45 30.56 33.44 31.13 32.22 34.60 33.91 30.38 30.67 30.84 28.74 33.32 35.00 31.02 34.51 x35.00 29.64 31.80 30.25 32.91 30.87 34.73 32.42 29.72 29.72 26.76 31.95 31.98 28.82 31.58 84.90 84.78 84.85 84.65 84.99 85.42 84.95 84.69 84.94 84.96 84.79 84.95 85.34 84.84 85.03 85.07 84.65 84.61 84.59 85.16 84.66 84.84 84.69 84.82 84.75 84.68 84.84 84.80 84.67 84.72 CP >z crossing point{ |>$}~!{ TM >z melting temperature{ }~! { Table 2. M. pneumoniae Ka!)**/ 10 */bc DNA 89op!qrc CP >$ TM >?@ */ stuvw P Q R S T U V W X Y ND y40 80 ND ND y40 y40 y40 y40 y40 CP > TM > DNA 89< DNA 89G DNA 89< DNA 89G x35.00 x35.00 x35.00 ῌ x35.00 ῌ x35.00 x35.00 x35.00 x35.00 ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ x35.00 77.26 ῌ ῌ ῌ ῌ ῌ 76.52 ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ ῌ CP >z crossing point{ |>$}~!{ TM >z melting temperature{ }~! { ῍῎ !J CP > 3.00 KL!MN<O+PQ*/ F RO 3.73S M RO 3.02S G$T DNA !"#ῌ! 12,000 G 15 s $ 89G!E CP >F> TM >U %&'( M. pneumoniae )*+,-. DV 85.0W1.0XG YZ<[\ 15 */!0123456+ QIAamp DNA Mini ]!^_`+PQ [E M. pneumoniae Ka! Kit +7 DNA 89:;$ DNA 89+< )*,-. 10 */bc CP >$ TM >! =:;! CP >$ TM >+?@AB+ Table ?@+ Table 2 CD DNA 89Gd$ef 1 C D DNA 8 9 < ! E CP > F > !*/ghi!LjPQ<= */ A, E, G H ! 4 */G H! DNA 89< 10 */k 8 */ 35 cy- I! 11 */ DNA 89G!E CP cle Klghi!Lj+PQ TM >DV >F>+C DNA 89<$ DNA 89G 85.0W1.0Xmn^_`PQ<= 30 &' Vol. 19 No. 3 2009. ¡¢>H£ Mycoplasma pneumoniae Real-Time PCR @A Table 3. PCR CP c 1 mg/ml 10 mg/ml CEZ CAM MINO LVFX ST VCM 25.96 24.62 25.51 25.63 24.55 24.79 25.46 23.68 24.45 24.78 23.93 24.34 25.20 153 (4) PCR PCR Table 3 PCR Table 4 CP CP !"#! 1 mg/ml "$ 10 mg/ml % CP &'()*+ ,- ./01 2345+! CP 36 7 (5) M. pneumoniae 89 M. pneumoniae :;<=>?(@A BC Fig. 4 DEFG:;>HIJKLJM NOP QR NSTUVW XYZ["$\ Table 4. PCR 2 CP c 1 ml 5 ml 10 ml 24.04 24.17 26.26 29.77 ]^_`a0bcd:;e+f1 ghi j#klm n@Aop ,- 8901 XYq3rs:;e#tu,vr@A3wxy zf {L|}~!bcd:;eZ0 1 XYq M. pneumoniae PCR @Aop!# M!# bcd:; e{L|}~1 _);Z *V);'()#./0 {L|}~ Fig. 4. 89" Mycoplasma :;>?( ¤nXY¥¦§¨©ª Vol. 19 No. 3 2009. 31 ¡¼½S 154 Di#-Quik *B==> 12,000 G 15 s gmno,p (SYSMEX) PCR F= &= qr M. pneumoniae \ PCR %&;<= 15 "] DNA c1d LightCycler PCR 's-Bt="]Mu,= ! " #$%&' !( "]' 3 g.hevwx'*k DNA c1d !(5YcyP8%97 ) 45 '* =LLA "]Bc1d ῌ ῍ fF' CP z,B&B="]Mu, +, M. pneumoniae -"#$%&' = F< DNA c1d {@| ()*'./01234.567849 M R' M. pneumoniae P-" :+;<9,-./ =>?0 %&;<= 10 "] DNA c1' @1'A+2'*11) =B 35 cycle uvB,-}>="]C~ C/#$4.5678491'(D> '*B= TM zHDj<iG'*B E< )F'G3 real-time PCR ( LAMP = =B P8%97 =)Lt' (H NASBA (B=I4JK L= M. DNA c1d ef=fF= pneumoniae 5)M#$1'(6 PCR <kI8pEI4JL ¡¢kEp-Bt}>= 7;<12N16) O<O<P8%9Q:;<#$LRS L£=> £ real-time PCR (= M. pneumoniae 5 ¡¢F &= # $ 1 ' ( T = = O < O < = 9 ¤ } > p B = ) L ' real-time PCR UV LightCycler 2.0 >4?@ DNA c1d fO=>;&¥& PCR W>=X7YZ[\7]2^AV _`'a <k¢iG0E< )=> ) B5bcd2efB=> 30N40 g.he LfB=qr M. pneumoniae posi- PCR 20N30 CD!(EFi tive control ¦!F' <k G= &= PCR HDj< T}F& ! FkI8lXd2YmeJ`nKL +,P8%9Q§¨V-"%&: k ;E!(EFSB= )L \%9X.37.b©A 3 ª !(M1kOop 45 '*k P8 qr"2¡¡«. N@O9qr'AsO<LtT='A k0\^\¬'(;< = &= real-time PCR uv1wx24yc F¬'(i-BB; RP SYBR Green I, Hybridization Probe, Sim- <8) F'(MBMqr 0\ ple Probe TaqMan Probe zS'(* ®RPL¯;<°2Yu, ) PCR Lt' SYBR Green I = Y±'RPL¯!7/ SYBR Green I Q=L'6d2{R ^\®²}>="]' qr³ =>SI4JLT|}~"iG' ^\®´5µbc )L" *FM)(UVRS'* )Lt= primer M. pneumoniae 16S )L PCR "=>R rRNA I4J,2myc -B 3.09 fg/ml F<EW~'*k abL' &'1iG'*B= F<5\2. "'A+2'* p G3 LAMP W 10 N10 5\2XY Z[?0@ M. (H NASBA (B=a¶·HD(¸;< pneumoniae \"]^_iG'*sO CR < F&< 2 3 ¶·HD(+;< )L`*=k abI4JL'fO +, 5±L'1^\5 < DNA c1d ef= gh M. pneumoniae P C. pneumoniae *k 12,000 G 2 min gZb= sample ' F<E 1 ly¹.'!1iG Multiplex -Bi'*B=j<k'l< PCR t`'A<º ;EP8%9»qr 32 /)qr:;<K¢ Vol. 19 No. 3 2009. ¶4n,® Mycoplasma pneumoniae Real-Time PCR !"#$%&'( )*+,-./012345 671 89:" 10) ῍ 1) 2) 3) 4) 5) 6) 7) 8) 9) ῌ Miyashita, N., H. Fukano, K. Mouri, et al. 2005. Community-acquired pneumonia in Japan: A prospective ambulatory and hospitalized patient study. J. Med. Microbiol. 54: 395῍400. ;< = >?@A BCDE FG 2006G HI JK.LMNOPQRSMTQ>UVWXY G Z#[\]^_` 44: 906῍915. a>bc ;< = def+ FG 2006G gh ijklgJK 90 NSMTRmnRY o /pG Z#[\]^_` 44: 607῍612. qrst uvw@A xy?z FG 2006G { |/}~,h n$ SMghijklgJK 1 NG Z^` 65: 280῍286. ;< =G 2006G ghijklgJKSMM NG mn 40: 223῍225. Takiguchi, Y., N. Shikama, N. Aotsuka, et al. 2001. Fulminant Mycoplasma pneumoniae pneumonia. Internal. Medicine 40: 345῍348. Chan, E. D., C. H. Welsh. 1995. Eulminant Mycoplasma pneumoniae pneumonia. West. J. Med. 162: 133῍142. Z#[\]^[\]M o/h kh ^G 2007G HIJK4nh k hG Z#[\]^ G Kessler, H. H., D. E. Dodge, K. Pierer, et al. 1997. 11) 12) 13) 14) 15) 155 Rapid detection of Mycoplasma pneumoniae by an assay based on PCR and probe hybridization in a nonradioactive microwell plate format. J. Clin. Microbiol. 35: 1592῍1594. Templeton, K. E., S. A. Scheltinga, A. W. Gra#elman, et al. 2003. Comparison and evaluation of real-time PCR, real-time nucleic acid sequencebased amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J. Clin. Microbiol. 41: 4366῍4371. y FG 2007G g hijklg ¡45$¢£¤G Z# [\]^` 45: 936῍942. Raggam, R. B., E. Leitner, J. Berg, et al. 2005. Single-run, parallel detection of DNA from three pneumonia-producing bacteria by realtime polymerase chain reaction. J. Mol. Diagn. 7: 133῍138. ¥¦§¨© ªe « xy¬+ FG 2003. Mycoplasma pneumoniae &',® PCRῌ¯q[\]M°,±²³ῌG Z#´ n$^_` 51: 289῍299. Loens, K., T. Beck, D. Ursi, et al. 2008. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. J. Clin. Microbiol. 46: 185῍191. Saito, R., Y. Misawa, K. Moriya, et al. 2005. Development and evaluation of a loopmediated isothermal amplification assay for rapid detection of Mycoplasma pneumoniae. J. Med. Microbiol. 54: 1037῍1041. Construction of Inspection System for M. pneumoniae Rapid Detection Method in Outpatients, Using Real-Time PCR Method Akihiro Nakamura, Noriyuki Abe, Hisashi Kono, Yoshiko Fujimoto, Saori Fukuda, Noriko Hatanaka, Syuji Matsuo Department of Clinical Bacteriology, Clinical Pathology, Tenri Hospital Atypical pneumonia pathogens hold about 10 to 30µ among community-acquired pneumonia pathogens in Japan. The quick and accurate detection of atypical pneumonia pathogens, such as M. pneumoniae, is di$cult by the routine outpatient-based laboratory inspections. We established the M. pneumoniae rapid detection method in outpatients, using real-time PCR method. For the purpose of establishing the inspection methods, we focused on three points as follows. First of all we used SYBR Green I as a fluorescence detection format and 2.0 Light Cycler system, which enabled us to make up a 45-minutes rapid detection method from specimen presentation to report of results. The primer on M. pneumoniae 16S rRNA gene was used for this PCR method, and sensitivity for M. pneumoniae in the minimum was showed to be 3.09 fg/ml, Z#·¸VWX_` Vol. 19 No. 3 2009. 33 156 which is equivalent to about 102ῌ103 copies in number. It seems that we could be able to su$ciently cope with an acute phase of M. pneumoniae pneumonia, although in which period numbers of bacteria could be abundant. Next, we tried to omit the DNA extraction used in common genetic diagnostic examinations. We compared crossing point values between two situations, one is performing DNA extraction and the other is not, in 15 cases diagnosed as M. pneumoniae pneumonia. As a result, the PCR sensitivity did not show any estrangement in both methods. Finally we examined about PCR inhibitors. Antibacterial agents did not influenced the PCR process, but blood did lower the sensitivity of the PCR. We believe that introduction of this genetic methodology into routine bacteriological examinations, such as Gram staining, bacteriological culture tests and serological examination, can contribute to quicker and accurate bacteriological diagnosis. 34 Vol. 19 No. 3 2009.