...

外来診療を目的とした Real-Time PCR 法による Mycoplasma

by user

on
Category: Documents
26

views

Report

Comments

Transcript

外来診療を目的とした Real-Time PCR 法による Mycoplasma
ῌ!%[\IŽ» 2009
148
ῌ῎
ῐ῍
Real-Time PCR Mycoplasma pneumoniae
!"#$%
& 20
12 ' 26 !(") 21
5 ' 11 !(*
+,-./01234# 1053067$%89
:&/.
; <
) => Mycoplasma pneumoniae ?@$%89
7'A$BCD/.
C7E:F(CG
; HIHI7-J
/ real-time PCR ). M. pneumoniae E*K+; K+GL) MN 3 ,O./
-D;
PQ.R) STEUVWXYZ/ SYBR Green I ).) Light Cycler 2.0 system
(Roche) [)) PCR /#0\]
1EL 45 23^_; PCR )
. primer 7 M. pneumoniae 16S rRNA `4abWcYZ) d57 3.09 fg/ml PC
Ee6CGD; fI7ghW7ijk
# 1025103 ghW8) 29:.l;
m M. pneumoniae n<7o2=pe6CG
qHI;
r) 'A`4CHI
>s? DNA ?E@tuAvw; xy/ M.
pneumoniae zI 15 n<-./ DNA ?E@tBCC crossing point values D{D:) DNA ?E@tH?.E|
-./}~F€?d
5:GI;
x‚) PCR HƒI„O./-; …2J†K
‡ˆ7wI?<D:) ‰Š
†KLL<?d5MNN;
‹‚) Œ<OP) 2QRS-‰TŽ3?E
e6?`4UKk
fCVm‘WC’
}“
;
Key words: real-time PCR, Mycoplasma pneumoniae, 16S rRNA gene
῏
ῑ
zIOOG
?<C357)) Vm M. pneumoniae Mycoplasma pneumoniae 7) ”Z•–—dXn
K?š3:h0z
˜0?19
ROC) YC70•–—dX
I/.
; =>) 'A$BCEe6?•–
n34-™ 105306&
1); >K$š
—dXn9
7 Streptococcus pneumoniae ¦ Hae-
D˜Z+,9›[\I/ 15 œ<
mophilus influenzae .DRi?RSCj§
44 œ ,-./7# 406: M.
pneumoniae
e6?2¨CG
; fIRi©2
dXn7
,-J
C7ª«¬X­®l¯°) dXnš
:&
}.HI/.
2); ž
M. pneumoniae
) 
Ÿn<- ]<:^¡
_,`ab¢ (£632῍8552) cF¤0¥de 200
!"#$%
TEL: 0743῍63῍5611 fg 8665
FAX: 0743῍62῍5576
E-mail: nakamurium῎[email protected]
26 !%[\IŽ¼½ Vol. 19
No. 3
2009.
±²/.
:) $%89
CG
M. pneumoniae
¦ Chlamydia pneumoniae 7D{k5::.}
<<HQ) =C7E:F(CG
;
M. pneumoniae ¦ C. pneumoniae 72>;/
©lm³´Ri©2
dXnµn)z
I
b-«¶b¬…2·7¸¹ºz?.; :D
/) 12:Ri©2
}<$%89
/ƒ0 Mycoplasma pneumoniae Real-Time PCR 149
0
M. pneumoniae
PCR QUX‡ primer dimer ˆIJ‰Š
!"#
$
0 Touch down PCR /l Y‹Z, 95Œ 7
%&'$ ()*+,-.
min Hot start Z, 95Œ 1 s Žfƒ= 63
/012+
53Œ 5 s (step size 0.5Œ/cycle) 5FG[ 72Œ8 s
' 3
1 cycle >‘p 14 s@ 40 cycle 0 3’
456 2007
%&07
!89:;<:= >"#
#?@ ABC $
A%DE&' 5FG()"*"H+IJ*KL,!8-.
ExyFx\ 6595Œ 15 s (step size 0.2Œ/cycle)
5FG]“ 20Œ 30 s PCR ”^_ 28 min 0
M!8/
$%&'8) NO
(4) DNA P&P&-.M!8QR01S'M. pneu-
#'6
moniae 2T /3UV4I M. pneumoniae W0 PCR XY5Z[
!
•`–a—˜'~
DNA bWc™de]^0 –a—˜'~fg
š›’ hLijk 500 ml œ_ 1 .ž
67W*12+, 45 \8+V4I
„W
ŸB' 12,000 G 15 s lc™|0
6XY5]^0
3’ >m'L¡¢„ nom_
200 ml 3>m sample _0
lX‡ 15 s, 30 s, 1 min, 2 min 5FG 2 min (1) l’nom£€¤=0 3&¥&X‡
_` Roche a Real-time PCR ` Light
<0 ¦ DNA bW0 sample 1
Cycler 2.0 system _0 bcWdefgh
C w 0 M. pneumoniae " § 6 ¨ i
>PA @ 5'&©I>pq
LightCycler FastStart DNA Master SYBR
M.
Green I ]9 >FastStart Taq DNA Polymerase, re-
pneumoniae %&0 15 r6
action bu#er, dNTP mix, SYBR Green I :;5FG
' QIAamp DNA Mini Kit (QIAGEN) F DNA
10 mM MgCl2 jk@ '0 SYBR Green I /l
b W 0 sample # ª O | 0 sample 0
PCR ()0} crossing point values >CP
(2) Primer s@ Cw0 ,0 M. pneumoniae \/
NO< 16S rRNA mf;n=o>
$%&0 10 r5'tŸ/
? p % & 0 primer9) qforward primer @ Ar 5 ῌ -
u.' -Iz{L!«<:gf¬:gf&
cgccagcttgtaaaagtgagc-3ῌ reverse primer @Ar 5ῌ-
'IJCw0
tagcaacacgtttttaaatattacc-3ῌs >\t primer A@ 5F
G P1 mf;n=o>?p%&0 primer10)
(5) PCR " DNA #$%&'(
6'0 PCR QU’ DNA JK{L
qforward primer @Ar 5ῌ-attcccgaacaaaataatga-3ῌ
3­9®f¯°v±²w³q' Exy
reverse primer @Ar 5ῌ-gtttgacaaagtc-cgtgaag-3ῌs
Fx\12xT,³q0 ,0
>\t primer B@ 2 uB_v primer Cw
sequence ' ´A@A³q|0
0 Cw8D
ῌExyFGH%
῍primer
dimer 5FG-IzJK{L&' ῎W1
I 5
NO _ 0 primer F | M* & direct DNA
(6) PCR )*&+
# DNA ybW6'0
6
§L9!"~$µz0} PCR œ¶·³q
DNA N OP> primer A '0} 190 bp,
0 §L9 CEZ, CAM, MINO, LVFX, ST 5FG
primer B 151 bp I
VCM '0 v9¸…U1$ 1 mg/ml 5FG
(3) PCR PCR 10 mg/ml IF9~ 500 ml {| MacF0.5
PCR Q U R ~ S 20 ml 9 <  €  ‚ <
{|0 M. pneumoniae }¹Lº~fg~
ƒ f T 0 „ DW 14.0 ml, MgCl2 1.6 ml >… U 1 3.0
3’»0ªO'v9¸Ÿ'u.
mM@ Forward-primer 0.2 ml >…U1 0.5 mM@ Re-
0 ,0 "~Ÿ'V" 1 ml, 5 ml 5FG 10 ml
verse-primer 0.2 ml >…U1 0.5 mM@
hLijk 500 ml €†3’‚ªO
LightCycler
FastStart DNA Master SYBR Green I2.0 ml „
' 3&¥&u.0
& sample 2.0 ml † VQUR~W 20 ml
"#„…L#¼½ Vol. 19
No. 3
2009. 27
&'()*+
150
Fig. 1.
16S rRNA primer (primer A) P1 (primer B) 3
Fig. 2.
16S rRNA primer (primer A) P1 primer (primer B) !"#$%
28 ,-./012345 Vol. 19
No. 3
2009.
¤¥¦§¨©,& Mycoplasma pneumoniae Real-Time PCR _u
151
Fig. 3. ‘’“”7G PCR •–—
ῌ 12,000 G 2 min ‘ š›œžŸW &¡W¢Nv
῍ 12,000 G 15 s ‘ š›œs£v
῎ 12,000 G 30 s ‘ š›œs£v
῏ 12,000 G 1 min ‘ š›œs£v
ῐ 12,000 G 2 min ‘ š›œs£v
primer _ ` a b c & RNA MS 2
(1) Primer (Roche) ῌ
j&"#$;7<OPQRST Fig. 2
DNA defgh\& PCR i
M. pneumoniae DNA 2 %& primer A k( 3.09 fg/ml lk-
primer ./0%&6 primer B k( 30.9 fg/ml 6_
primer mnko OPQR#$2pq#$ko
PCR !"
#$ Fig. 1 %& primer A TM '( 84.8)
*+ primer B TM '( 88.5)*+,- ./0(1 primer ,2345%&
6 primer A ( primer B 789:-./0%
&
r s # $ 7 8 t PCR _ u f v
primer (
16S rRNA sw/Mxy,& primer A ,&
(2) PCR DNA Primer A v
&z{_|
! PCR }
~ DNA @ABC( 3HIJK/LMNOPQR
῍primer dimer ;7<=>?@ABCDE
] "#$€5]&
2 primer ;FG@ABC 3HIJK/
l direct DNA sequence ‚ƒ„g]
LMNOPQRST Fig. 1 %& 1 primer ,
M. pneumoniae 16S rRNA …†‡‚ƒ„g
2-U3VWX%&YZ- primer dimer
,ˆ‰3Š&G‹,]&
;7<=>?@ABC[\(]^-Z
῎_`a
M. pneumoniae DNA 2 (3) DNA tŒŽ;FG‘’“”7G PCR
•–— Fig. 3 %& ’“ῌk(`a(˜™k
ªtz{«¬C­®¯ Vol. 19
No. 3
2009. 29
k‹ŒŽI
152
Table 1.
*/
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
M. pneumoniae ‡ˆ*/ 15 */bc DNA 89op!qrc CP >$ TM >!?@
TM >
CP >
stuvw
5,120 ‰
640 ‰
y40 ‰Š1,280 ‰
2,560 ‰
80 ‰Š10,240 ‰
640 ‰
640 ‰
320 ‰
320 ‰
5,120 ‰
160 ‰
1,280 ‰
ND
5,120 ‰
ND
DNA 89<
DNA 89G
DNA 89<
DNA 89G
34.45
30.56
33.44
31.13
32.22
34.60
33.91
30.38
30.67
30.84
28.74
33.32
35.00
31.02
34.51
x35.00
29.64
31.80
30.25
32.91
30.87
34.73
32.42
29.72
29.72
26.76
31.95
31.98
28.82
31.58
84.90
84.78
84.85
84.65
84.99
85.42
84.95
84.69
84.94
84.96
84.79
84.95
85.34
84.84
85.03
85.07
84.65
84.61
84.59
85.16
84.66
84.84
84.69
84.82
84.75
84.68
84.84
84.80
84.67
84.72
CP >z crossing point{ |>$}~!€{
TM >z melting temperature{ }~‚ƒ!„…†{
Table 2.
M. pneumoniae Ka!)**/ 10 */bc DNA 89op!qrc CP >$ TM >?@
*/
stuvw
P
Q
R
S
T
U
V
W
X
Y
ND
y40
80
ND
ND
y40
y40
y40
y40
y40
CP >
TM >
DNA 89<
DNA 89G
DNA 89<
DNA 89G
x35.00
x35.00
x35.00
ῌ
x35.00
ῌ
x35.00
x35.00
x35.00
x35.00
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
x35.00
77.26
ῌ
ῌ
ῌ
ῌ
ῌ
76.52
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
ῌ
CP >z crossing point{ |>$}~!€{
TM >z melting temperature{ }~‚ƒ!„…†{
῍῎
!J CP > 3.00 KL!MN<O+PQ*/
F RO 3.73S M RO 3.02S G$T DNA
!"#ῌ! 12,000 G 15 s $
89G!E CP >F> TM >U
%&'( M. pneumoniae )*+,-.
DV 85.0W1.0XG YZ<[\
15 */!0123456+ QIAamp DNA Mini
]!^_`+PQ [E M. pneumoniae Ka!
Kit +7 DNA 89:;$ DNA 89+<
)*,-.
10 */bc CP >$ TM >!
=:;! CP >$ TM >+?@AB+ Table
?@+ Table 2 CD DNA 89Gd$ef
1 C D DNA 8 9 < ! E CP > F > !*/ghi!LjPQ<=
*/ A, E, G H ! 4 */G H!
DNA 89< 10 */k 8 */ 35 cy-
I! 11 */ DNA 89G!E CP
cle Klghi!Lj+PQ TM >DV
>F>+C DNA 89<$ DNA 89G
85.0W1.0Xmn^_`PQ<=
30 &'ƒ‘’“ Vol. 19
No. 3
2009.
¡¢>H£… Mycoplasma pneumoniae Real-Time PCR @A
Table 3.
PCR CP ”•–—c˜™š
1 mg/ml
10 mg/ml
CEZ
CAM
MINO
LVFX
ST
VCM
25.96
24.62
25.51
25.63
24.55
24.79
25.46
23.68
24.45
24.78
23.93
24.34
25.20
153
(4) PCR PCR Table 3 PCR Table 4 CP CP !"#! 1 mg/ml "$ 10 mg/ml %
CP &'()*+ ,- ./01 2345+! CP 36
7
(5)
M. pneumoniae
89 M. pneumoniae :;<=>?(@A
BC Fig. 4 DEFG:;>HIJKLJM
NOP QR NSTUVW XYZ["$\
Table 4.
PCR 2
CP ”•–—c˜™š
1 ml
5 ml
10 ml
24.04
24.17
26.26
29.77
]^_`a0bcd:;e+f1 ghi
j#klm n@Aop ,- 8901
XYq3rs:;e#tu,vr@A3wxy
zf {L|}~!bcd:;eZ€0
1 XYq
M. pneumoniae PCR @Aop!#
‚ƒ„…†‡Mˆ!# bcd:;
e{L|}~‰Š1 ‹Œ_Ž);Z
*V‘)’;'()#./0“ {L|}~
Fig. 4. 89"› Mycoplasma :;>?(œžŸ žˆ
¤nXY¥¦§¨©ª Vol. 19
No. 3
2009. 31
… ¡¼½S
154
Di#-Quik
*B==> 12,000 G 15 s ‰gmno,p“
(SYSMEX) PCR F= &= qr
M. pneumoniae \
PCR ƒ%&;<= 15 "] DNA c1d…
LightCycler PCR 's”-Bt•="]Mu,=–—†
! " #$%&'
!(
"]' 3 g.he˜vwx'*k DNA c1d
…!(5Yc™yP8%97
) 45 '*
=LLšA™› "]Bc1d
ῌ
῍
…fF' CP z,B&B="]Mu,
+, M. pneumoniae -"#$%&'
= F< DNA c1d…œ{@|
()*'./01234.567849
M™› R' M. pneumoniae ˜P-"
:+;<9,-./ =>?0
%&;<= 10 "] DNA c1'
@1'A+2'*11) =B
35 cycle ˜žuvŸB,-}>="]C~
C/#$4.5678491'(D>
'*B= TM zHDj<iG'*B
E< )F'G3 real-time PCR ( LAMP
= =B P8%97
=)Lt'
(H NASBA (B=I4JK
L= M.
DNA c1d…ef=fF=
pneumoniae 5)M#$1'(6
PCR  <kI8pEI4JL€
¡¢‚kƒEp-Bt•}>= 7;<12N16)
O<O<P8%9Q:;<#$LRS
L£„“=> £
real-time PCR (= M. pneumoniae 5
„…¡¢‚F†™› &=
# $ 1 ' ( T = = O < O < =
9 ‚ ¤  ‘ } > p B = ) L ' real-time PCR UV LightCycler 2.0 >4?@
DNA c1d…fO=>;&¥& PCR  W>=X7YZ[\7]2^AV _`'a
<k¢‚iG0™›E< )=> )
B5bcd2efB=> 30N40 g.he
LfB=qr M. pneumoniae posi-
PCR 20N30 CD!(EFi
tive control ‡¦€!ˆF' <k
G= &= PCR HDj<
‰ŠT}F‹&
! FkI8lXd2YmeJ`nKL
+,P8%9Q§¨V-"%&Œ:
k ;E!(EFSB= )L
…\ƒ%9X.37.b’©A 3Ž ’ª
!(M1kOop 45 '*k P8
‰Š qr"2‘’¡“¡«.†”
N@O9qr'AsO<LtT='A
k‚0\ƒ•^\ƒ¬–'(—;<
= &= real-time PCR uv1wx24yc
F¬–'(iŽ-B­B˜ƒ;
RP
SYBR Green I, Hybridization Probe, Sim-
<8) F'(MBMqr
‚0\
ple Probe TaqMan Probe zS'(*
ƒ®RP‚L¯™;<°2Yu,
) PCR Lt' SYBR Green I =
Y±'RP‚L¯™!7/•
SYBR Green I Q=L'6d2{R
^\ƒ®²}>="]'
qr³
=>SI4JLT|}~"iG'
•^\ƒ®´5µbc )L"
*FM)(UVRS'*
‡ˆ
)Lt= primer M. pneumoniae 16S
)L PCR "=>š›œR
rRNA I4J,2myc -B 3.09 fg/ml
F<E›œW~'*k abL'
&'1iG'*B= F<5\2.€
"'A+2'* p G3 LAMP
W 10 N10 5\2XY ‚Z[?0@ M.
(H NASBA (B=ža¶·HD(¸Ÿ;<
pneumoniae \ƒ"]^_iG'*sO
Cš›œR
<
F‹&<
2
3
¶·HD(+;<
)L„`*=k abI4JL'fO
+, 5±L'1•^\ƒ5
< DNA c1d…†ef‡ˆ= ‰ghŠ
M. pneumoniae ˜P C. pneumoniae †*k
12,000 G 2 min ‰g‹ZŒb= sample '
F<E‚ 1 ly¹.'€!1iG Multiplex
-BiŽ'*B=j<k‘'’l<
PCR t„`'A<º ;EP8%9»qr
32 /)qr:;<K¢
Vol. 19
No. 3
2009.
¶4n,®Š Mycoplasma pneumoniae Real-Time PCR !"#$%&'(
)*+,-./012345
671
89:"
10)
῍
1)
2)
3)
4)
5)
6)
7)
8)
9)
ῌ
Miyashita, N., H. Fukano, K. Mouri, et al. 2005.
Community-acquired pneumonia in Japan: A
prospective ambulatory and hospitalized patient study. J. Med. Microbiol. 54: 395῍400.
;< = >?@A BCDE FG 2006G HI
JK.LMNOPQRSMTQ>UVWXY
G Z#[\]^_` 44: 906῍915.
a>bc ;< = def+ FG 2006G gh
ijklgJK 90 NSMTRmnRY
o
/pG Z#[\]^_` 44: 607῍612.
qrst uvw@A xy?z FG 2006G {
|/}~,€‚ƒ„h…†‡‚n$ˆ‰
ŠSMghijklgJK 1 NG Z‹Œ^`
65: 280῍286.
;< =G 2006G ghijklgJKSMM
NG mn 40: 223῍225.
Takiguchi, Y., N. Shikama, N. Aotsuka, et al.
2001. Fulminant Mycoplasma pneumoniae
pneumonia. Internal. Medicine 40: 345῍348.
Chan, E. D., C. H. Welsh. 1995. Eulminant Mycoplasma pneumoniae pneumonia. West. J. Med.
162: 133῍142.
Z#[\]^[\]ŽM o/h…kh
‘’“”^G 2007G ’•HIJK4nh…k
hG Z#[\]^ –—G
Kessler, H. H., D. E. Dodge, K. Pierer, et al. 1997.
11)
12)
13)
14)
15)
155
Rapid detection of Mycoplasma pneumoniae by
an assay based on PCR and probe hybridization in a nonradioactive microwell plate format. J. Clin. Microbiol. 35: 1592῍1594.
Templeton, K. E., S. A. Scheltinga, A. W. Gra#elman, et al. 2003. Comparison and evaluation of
real-time PCR, real-time nucleic acid sequencebased amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J. Clin. Microbiol. 41: 4366῍4371.
˜™ š ›œ  žy Ÿ FG 2007G g
hijklgŽ ¡45$¢£¤G Z#
[\]^` 45: 936῍942.
Raggam, R. B., E. Leitner, J. Berg, et al. 2005.
Single-run, parallel detection of DNA from
three pneumonia-producing bacteria by realtime polymerase chain reaction. J. Mol. Diagn.
7: 133῍138.
¥¦§¨© ªe « xy¬+ FG 2003. Mycoplasma pneumoniae &'­,®Š
PCRῌ¯q[\]ŽM°,±²³ῌG Z#´
n$^_` 51: 289῍299.
Loens, K., T. Beck, D. Ursi, et al. 2008. Development of real-time multiplex nucleic acid sequence-based amplification for detection of
Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. J. Clin. Microbiol. 46: 185῍191.
Saito, R., Y. Misawa, K. Moriya, et al. 2005.
Development and evaluation of a loopmediated isothermal amplification assay for
rapid detection of Mycoplasma pneumoniae. J.
Med. Microbiol. 54: 1037῍1041.
Construction of Inspection System for M. pneumoniae Rapid Detection
Method in Outpatients, Using Real-Time PCR Method
Akihiro Nakamura, Noriyuki Abe, Hisashi Kono, Yoshiko Fujimoto, Saori Fukuda,
Noriko Hatanaka, Syuji Matsuo
Department of Clinical Bacteriology, Clinical Pathology, Tenri Hospital
Atypical pneumonia pathogens hold about 10 to 30µ among community-acquired pneumonia pathogens in Japan. The quick and accurate detection of atypical pneumonia pathogens, such as M. pneumoniae,
is di$cult by the routine outpatient-based laboratory inspections. We established the M. pneumoniae rapid
detection method in outpatients, using real-time PCR method. For the purpose of establishing the inspection methods, we focused on three points as follows. First of all we used SYBR Green I as a fluorescence
detection format and 2.0 Light Cycler system, which enabled us to make up a 45-minutes rapid detection
method from specimen presentation to report of results. The primer on M. pneumoniae 16S rRNA gene was
used for this PCR method, and sensitivity for M. pneumoniae in the minimum was showed to be 3.09 fg/ml,
Z#·¸VWX_` Vol. 19
No. 3
2009. 33
156
which is equivalent to about 102ῌ103 copies in number. It seems that we could be able to su$ciently cope
with an acute phase of M. pneumoniae pneumonia, although in which period numbers of bacteria could be
abundant. Next, we tried to omit the DNA extraction used in common genetic diagnostic examinations. We
compared crossing point values between two situations, one is performing DNA extraction and the other
is not, in 15 cases diagnosed as M. pneumoniae pneumonia. As a result, the PCR sensitivity did not show any
estrangement in both methods. Finally we examined about PCR inhibitors. Antibacterial agents did not
influenced the PCR process, but blood did lower the sensitivity of the PCR. We believe that introduction
of this genetic methodology into routine bacteriological examinations, such as Gram staining, bacteriological culture tests and serological examination, can contribute to quicker and accurate bacteriological
diagnosis.
34 Vol. 19
No. 3
2009.
Fly UP