Comments
Description
Transcript
浅川鋼児 - TOKYO TECH OCW
材料物理科学特別講義第3 Photo Lithography 東芝 研究開発センター 浅川 鋼児 2011/4/13 Copyright 2011, Toshiba Corporation. Copyright 2011, Toshiba Corporation. Lithography in Electronics Industries Typical Photolithography Process • Most of the electronic devices are made by lithography. Light Source – Semiconductors – Hard disk drives Reticle (Mask) – Flat panel displays Resist – Printed Circuit Board Wafer 1.Spincoat 東京工業大学 講義資料 110413 3 東京工業大学 講義資料 110413 2.Expose 3.Develop 4 Evolution of Lithography Lithography in Semiconductor Process Process flow of MOS transistor Si wafer Form Poly Si The International Technology Roadmap for semiconductors (ITRS) http://www.itrs.net/ Form protective film Form insulate layer 1000 Deposit Si3N4 Etch Poly Si Lithography 3 Source drain pattern Form metal film Etch Si3N4 Ion implantation Lithography 5 Wire pattern Form gate oxide layer Etch metal film 3 Etch protective film Etch insulate layer Lithography 1 Isolation pattern 6 5 4 Lithography 6 Bonding pad pattern Lithography 4 Contact pattern Half Pitch / nm Lithography 2 Gate pattern Surface oxidization Electric property test 100 Next ??? Wavelength of Light source 1990 2000 2010 2020 Year of Production Famous “Moore’s law” An integrated circuit for minimum component doubles every 2 years 東京工業大学 講義資料 110413 6 Exposure wave lengths and optical materials NA λ Exposure wave length (nm) Shorter wavelength g-Line (436nm) → i-Line (365nm) → KrF (248nm) → ArF (193nm) → F2 (157nm) ? → EUV(13.5nm)? Mask Projection Lens Light Source (nm) Atmosphere 13 EUV 13.5 Vacuum Greater NA 0.24 → 0.46 → 0.63 → 0.75 → 0.85 → 0.93 → 1.20 → 1.35 High Pressure Mercury Lamp UV laser Illumination optics 東京工業大学 講義資料 110413 ArF excimer 193nm 6 5 4 10 1980 5 Resolving Power ∝ k 1 Wafer i-line 365nm 2 Photo Lithography Projection lens g-line 436nm DRAM Flash 3 Even simple transistor requires several PhotoExposure Processes (PEP) 東京工業大学 講義資料 110413 2 KrF excimer 248nm Optical System Optical Materials 100 200 Ar2 F2 127 157 ArF 193 Absorbed by Oxygen, Water, etc. Catoptric System Multilayer Metal Film 300 KrF 248 400 XeCl 308 i 365 g 436 Normal Air Diptric System Fluorite Synthetic Quartz Optical Glass Immersion 7 東京工業大学 講義資料 110413 8 Electron Beam Resist (Main Chain Scission) Photoresists KPR m m Cl n m n O COOH PMMA O C C H H Cl O O OCH2CF3 CH2CH3 EBR-9 n hν H H O C C C C O H H C C O H H n n poly(vinyl-cinnamate) (PVCN) ZEP520A hν KTFR n n O EB cyclized rubber N3 N3 CH3 bisazide O g-line and i-line Resist Substrate Substrate 東京工業大学 講義資料 110413 O O DNQ DNQ O SO2 DNQ 東京工業大学 講義資料 110413 9 10 Chemically Amplified Resists Photo Resist H+ KrF Resist hv ΔH O Reticle PAG n m n m Inhibitor (Insoluble to Developer) COOH hν SO2 novolac resin Chemical Amplification Resist Si Wafer N2 OH n CH3 Substrate O DNQ OH + S CF3 SO3 1.Spincoat - hν CH3 CO2 OH OH OH CH3 CH3 Acid KrF resin Generated Acid from PAG PAG (for KrF and ArF) 2. Expose ArF Resist O H+ n m O O ΔH O m O COOH n O COOH O 3.Bake Decomposed Inhibitor (Soluble to Developer) ArF resin 4. Develop 東京工業大学 講義資料 110413 11 東京工業大学 講義資料 110413 12 Optical Proximity effect Correction (OPC) 日立 岡崎様資料 Images projected at the same wavelength by the same optical system K1 : 0.8 K1 : 0.6 Design on Mask K1 : 0.4 K1 : 0.3 Optical Image hammerhead Serif Serif sub resolution pattern 東京工業大学 講義資料 110413 13 東京工業大学 講義資料 110413 14 Double patterning Immersion Lithography: Greater NA Light Revolution of Stepper Projection lens n0=1.0 resist nP=1.5 θ n0 =1.0 wafer n0=1.0 resist nR=1.7 Projection Lens Total reflection Exposure 1.0 0.95 0.85 0.75 Mask Resist substrate Slim Pattern NA = n0sinθ = sin θ wafer Deposit Spacer NA is limited to 1 Projection lens Etch Spacer water resist ni =1.4 Resolving Power ∝ NA λ wafer ni =1.4 Shorter wavelength Greater NA g-Line (436nm) → i-Line (365nm) → KrF (248nm) → ArF (193nm) → F2 (157nm) 0.24 → 0.46 → 0.63 → 0.75 → 0.85 → 0.93 東京工業大学 講義資料 110413 nP=1.5 ni =1.4 θ nR =1.7 Qz Remove Resist 1.20 1.05 Water 0.95 0.85 0.75 Remove unnecessary part Water Resist NA= ni sinθ NAND Flash Memory Fabrication Greater NA than 1 is realized 15 東京工業大学 講義資料 110413 16 Key to the ArF resist resin => To add hydrophilicity to alicyclic compounds Dry-Etch Resistance Acrylic polymer with alicyclic side chain Development of Resist O n m Fujitsu, NEC, Toshiba Alicyclic main chain polymer O O IBM, ATT, Samsung, Hundai O O O O O O O O HO Hydrophilicity Acrylic polymer with alicyclic side chain Alicyclic main chain polymer Easy to modify High dry-etch resistance Low dry-etch resistance High price of monomers Shelf life Resolution 東京工業大学 講義資料 110413 Copyright 2011, Toshiba Corporation. Developed Resist Performance 18 Molecular Resists Lithographic Technology Technology Node Size m O O O COOH ΔH n O H+ O O Resist m n High Resolution O O Low Line-Edge-Roughness (LER) +H2O Shrinkage O OH COOH Molecular Resist HO 10.0 High Sensitivity LER Polymers High Resolution & Low LER 11.6 R Solubility parameter δ (cal1/2cm-3/2) OH OH OH HO CH 2 OH Large ! n 0.13 μmL/S 0.12 μmL/S HO 0.11 μmL/S Exposure Tool : Nikon NSR Stepper with NA=0.6, sigma=0.75, 2 mJ/cm2 東京工業大学 講義資料 110413 19 Calixarene Dendrimer OH Catechol Derivative 東京工業大学 講義資料 110413 Mw = ca. 20000 Main Factor: Molecular Size 20 Molecular Resists at Toshiba Negative-Working Molecular Resist Derived from Truxene Amorphous Truxene OH Cross-Linker OH Nanopatterning with Microdomains of Block Copolymers using Reactive-Ion Etching Selectivity O O N N N O N N N O O O HO HO OH OH THBTX : MAT = 75 : 25 Higher Etching Durability Compared with Polymer Fabrication of hp 20 nm-Scale L&S Pattern 100 nm 東京工業大学 講義資料 110413 21 Copyright 2011, Toshiba Corporation. Next Generation Lithography (NGL) Hierarchical structures of block copolymers 30oX Mold Resist Substrate X X X X X X X X X (CH2)n 2-3nm Press mold X SH SH SH SH SH SH SH SH SH SH SH Gold Anodic Porous Alumina Remove mold Domains Self-Assembled Monolayer (SAM) (a).Micro-phase separated structure Etching Ink Nano Beads Writing direction Substrate Block Polymer 東京工業大学 講義資料 110413 A segment Print B segment CH3 n Molecular Transport n n n n O PB N Water Meniscus Substrate Natural Lithography (b).Block copolymer Substrate AFM Tip Etching Chemical bond PDMS Nanoimprint n PS Release P2VP OH PHS O PEO O CH3 CH3 Si PI PMMA n O n CH3 PDMS Soft Lithography (c).Typical segments consisting block copolymers Dip Pen Lithography 23 東京工業大学 講義資料 110413 24 Micro-Phase Separated Structures of Block-copolymer Spherical Cylindrical Bicontinuos Chemical bond Lamella Remove A polymer B A Molecular Weight A polymer Change in Size B polymer Micro-Phase Separation of Block Copolymer Repulsion Annealing Microphase separation Composition Change in Structure Self-assembled nano-structures K. Asakawa, T. Hiraoka, Jpn. J. Appl. Phys. vol.41, 6112 (2002). 東京工業大学 講義資料 110413 東京工業大学 講義資料 110413 25 First Block Copolymer Lithography Princeton University 26 Method to remove one phase of block copolymer • C. Harrison at Chaikin’s Lab (Physics) and M. Park at Register’s Lab (Chem. Eng.) started experiments. Substrate High Energy Beam Prof. Richard A. Register Prof. Paul M. Chaikin Me O3 Me O3 Metalized O3 Ozonized Scission & Develop M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science vol. 276, 1401 (1997). PB,PI (Os) PS (Ru) 東京工業大学 講義資料 110413 27 Etching PB,PI 東京工業大学 講義資料 110413 PMMA,PαS Selective RIE PS-PMMA PDMS-PS (O2) 28 Relationship between N/(Nc-No) and Dry-etch Rates etched by CF4. 6 n • Fabrication using Block-Copolymer as a Mask Gas: CF 4 Pressure: 0.01 torr Output: 150W PHS ①Coat Etch Rate / nm s -1 5 4 OH n PtBMA PS 2 n PVN 1 ②Generate Phase Separated Structure PMMA CH 3 3 Nano-Pattering Technique ③Etch Phase Separated Film & Substrate ④Remove Polymer Film by Ashing CH 3 n n C=O C=O O O C(CH 3 ) 3 CH 3 Only RIE PB n 0 0 1 2 3 N/(N C -N O ) 4 5 6 The polymers containing more carbon have strong dry-etch resistance, and the polymers containing more oxygen are etched easily. K. Asakawa, T. Hiraoka, Jpn. J. Appl. Phys. vol.41, 6112 (2002). 東京工業大学 講義資料 110413 29 Micro-Phase Separated Patterns of Block-Copolymer and Silicon surface after CF4 etching Ozone, Osmium Metal, etc. K. Asakawa, T. Hiraoka, Jpn. J. Appl. Phys. vol.41, 6112 (2002). 東京工業大学 講義資料 110413 30 Summary of block copolymer lithography • The nano-meter scale dot pattern can be obtained by self-assembled block copolymer films. • This method does not require complicated materials and processes and can be used as etching masks for a lot of purposes in the industries. K. Asakawa, T. Hiraoka, Jpn. J. Appl. Phys. vol.41, 6112 (2002). 東京工業大学 講義資料 110413 31 東京工業大学 講義資料 110413 32 Applications for Electronic Devices Transparent Conductive Metal LED Transmittance 60% @opening 27% Metal wires for Memories 500nm 500nm (a) 33 nm pitch (16.5nmL/S) metal nano-wires Al nano-mesh TCO Al thin film nano-meshed aluminum on 4-inch wafer (b) P. Vincent et. al., Appl. Phys. Lett. vol. 88, 211114 (2006) Nakanishi et. al. , Appl. Phys. Exp. vol. 4 025201 (2011). K. Asakawa et. al, Appl. Opt., vol. 44, 7475 (2005) Antireflective structure Hard Disk Media Nano-Patterned Magnetic Media for Hard Disk Drive (Application of Block Copolymer Lithography) OLED P: 700nm H: 440nm 2.5-inch disk 1.0 4000 3500 0.8 3000 Reflectivity 100nm 発光強度 0.6 0.4 Magnetic particles 2500 2000 1500 1000 0.2 500 0 0.0 380 450 430 K. Naito et. al. IEEE Tran. Magn, vol. 38, 1949 (2002) 480 530 580 630 680 500 730 550 600 650 波長 / nm WaveLength/nm Nakanishi et. al. , Jpn. J. Appl. Phys, vol. 40, 075001 (2011). Nakanishi et. al. , Appl. Opt., vol. 48, 5889 (2009) 東京工業大学 講義資料 110413 33 Trend of HDD Copyright 2011, Toshiba Corporation. Patterned Media for HDD Conventional Media Heterogeneous in Size and Shape Perpendicular recording Density / Gb inch -2 1000 GMR-head 100 Advanced longitudinal media 10 Magnetic particle 1bit MR-head 1 100nm 0.1 1985 Surface Structures of Magnetic Film Patterned media 1990 1995 2000 2005 2010 2015 Next generation media Homogenous in Size and Shape Year of Production 東京工業大学 講義資料 110413 35 東京工業大学 講義資料 110413 36 Fabrication Process of Patterned Media Concept of Artificially Assisted Self-Assembly method (Guided self-assembly) Phase-separation takes place in the grooves to produce aligned dot patterns. on a flat surface Anneal for Phase Separation Coat Block-copolymer in 200nm width grooves Etch Fill Block-Copolymer SOG (Spin on Glass) Into polymer dots 2μm Etch magnetic Layer Remove Polymer K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, J. Photopolym. Sci. Technol. vol. 15, 465 (2002). 東京工業大学 講義資料 110413 37 Patterned Media on 2.5-inch Disk 東京工業大学 講義資料 110413 38 Perpendicular M-H Loops of Raw Continuous film (CoCrPt) M / emu 0.005 Before Etch Magnetic Particles Etch 3min Etch 6min CoPt 2.5-inch Disk Ti -10 0 10 H / kOe [Co74Pt26(40 nm) /Ti(5nm)] 100nm -0.05 A coercive force (2950 Oe) and squareness ratio (0.70) of the patterned film increased compared to those of the continuous film. K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, J. Photopolym. Sci. Technol. vol. 15, 465 (2002). 東京工業大学 講義資料 110413 39 Katsuyuki Naito et. al. IEEE Tran. Magn, vol. 38, 1949-1951 (2002) 東京工業大学 講義資料 110413 40 MFM Images of Patterned Media Circumferentially aligned FePt dots AFM image of 30-nm-pitch dot pattern Photo image of 2.5” disk 500nm After AC erase After DC erase MFM images of Co74Cr6Pt20dots ¾Circumferentially aligned FePt dots were uniformly fabricated on a whole HDD substrate Katsuyuki Naito et. al. IEEE Tran. Magn, vol. 38, 1949-1951 (2002) 東京工業大学 講義資料 110413 41 H. Hieda, Y. Yanagita, A. Kikitsu, T. Maeda, K. Naito, J. Photopolym. Sci. Technol., 19, 245 (2006). 東京工業大学 講義資料 110413 Summary of Bit Patterned Magnetic Media • Using self-assembled block-copolymer and nanoimprint lithography, a circumferential magnetic patterned media on a 2.5-inch diameter glass plate was fabricated. • A coercive force and squareness ratio of the patterned film increased compared to those of the continuous film. • 1Tbpsi magnetic dots were fabricated by selfassembled block copolymer. • Distribution of magnetic dots was narroed by optimizing the guide for aligning. • Nanoimprint mold was fabricated for high volume manufacturing. 東京工業大学 講義資料 110413 43 High Luminescent Light-Emitting Diode with Columnar Structure on the Surface Copyright 2011, Toshiba Corporation. 42 Efficiency of Commercially Available Lamp Current Issues of LED Low Light Extraction Upper Electrode 140 Surface Efficiency / lm/W Below Total Above Total Reflection Angle Reflection Angle Sodium Lamp 120 Current Diffusion Layer 100 Air n = 1 Active Layer 80 Fluorescent Lamp 60 1965 1934 LED substrate n = 3.2(Red) n = 2.5(Blue) LED Reflector 40 1959 20 Tungsten-Halogen Lamp Most of light cannot go out of LED… Incandescent Lamp 1879 0 1920 1996 1930 1940 1950 1960 1970 1980 1990 OLED 2000 2010 Year 東京工業大学 講義資料 110413 45 Scale Range of Columnar Structures vs. Light 46 How to Extract More Light? - Antireflection structure and Diffraction structure Geometric Optics Wave Optics 東京工業大学 講義資料 110413 Below Total Reflection Angle Effect is enhanced by reflector Above Total Reflection Angle Air n = 1 LED substrate n = 3.2 Efficiency Diffraction ~X2 (2) Graded Index Light Ray Reflection ~X1.5 Anti Reflection ~X1.2 -1st Order Light Visible Light 100nm (3) Grating -1st Order Light 1μm Self-Assembling Wave Length of Light (4) This Study Nanoimprint Photo Lithography 東京工業大学 講義資料 110413 (1) Flat Surface 47 東京工業大学 講義資料 110413 Most of light cannot go out of LED… If there are nanostructures on the LED surface, more light can be extracted. Structure size is smaller than wavelength 48 Fabrication process (1) Spincoat SOG Nano-Patterned Surface on AlGaAs-LED (2) Spincoat block copolymer (3) Microphase-separation by annealing Block copolymers (PS-PMMA) PS GaP SEM image of LED surface Emitted LED tips 500 nm Brighter! SOG (Organic silica) (4) Remove PMMA by O2 RIE Remaining PS dots (5) Dry-etch SOG by CF4 (6) Dry-etch LED substrate by Cl-based gases Flat surface Patterned surface Diameter 100 nm, Period 150 to 200nm, Height 450 to 500 nm. 1.8 times Brighter than conventional LED. K. Asakawa, A. Fujimoto, Appl. Opt., vol. 44, 7475 (2005) 東京工業大学 講義資料 110413 49 A. Fujimoto, K. Asakawa, Toshiba Review, vol.60, no.10 pp32 (2005) 東京工業大学 講義資料 110413 Summary of high luminescent LED Princeton University • Nano-structured surfaces were fabricated by self-assembled block copolymers. • The external efficiency of the fabricated surface on the GaP was improved 2.6 times compared with the flat one. • Brightness of AlGaAs LED having the new extracted structure increased 1.8 times compared with the flat surface. 東京工業大学 講義資料 110413 50 Aligning Block Copolymers 51 Copyright 2011, Toshiba Corporation. Microphase separation of block copolymers Grapho-Epitaxy and Chemical Registration Chemical bond PS PHMA (Polystyrene) (Poly-hexylmethacrylate) Top Down Method PS-PHMA (1:3) forms cylindrical domains Repulsion Heat Annealing Bottom Up Method Microphase separation Self-assembled nano-structures 東京工業大学 講義資料 110413 53 東京工業大学 講義資料 110413 54 Chemical Registration of Block Copolymer Thin Films Grapho-Epitaxy Form Groove Coat Block-copolymer 60+ nm 1 row 150nm 2 rows 200nm 3 rows Anneal for Phase Separation 250nm 4 rows Nealey’ Group, The University of Wisconsin 400nm 6 rows Just width 1 row Groove width Row width ratio 1 2 rows 3 rows 2 1 x 2 pattern 東京工業大学 講義資料 110413 3 4 rows 4 6 rows 5 6 S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411. 4-5 zigzag pattern 55 東京工業大学 講義資料 110413 56 Prof. Paul F. Nealey Chemical and Biological Engineering Fig. 1. Process to create lithographically defined chemically prepatterned surfaces and subsequent directed assembly. (A) Electron-beam lithography patterns at Ls = L0 (left) and Ls = 2L0 (right). (B) Chemical contrast on the substrate after O2 plasma exposure on the e-beam–defined spots above. (C) Block copolymer thin film. (D) Guided self-assembly in registration with the underlying chemical pattern. D. S. Kercher, T. R. Albrecht, J. J. de Pablo, P. F. Nealey, Science 936 vol. 321 (2008) D. S. Kercher, T. R. Albrecht, J. J. de Pablo, P. F. Nealey, Science 936 vol. 321 (2008) 57 ITRS2009 東京工業大学 講義資料 110413 58 Conclusion Top-down lithography and bottom-up self-assembling Low <= Cost of Fabrication => High Directed self-assembly (DSA) is still on the list. Photolithography EUV 13.5nm New Device Creation F2 157nm ArF 193nm i-line 365nm KrF 248nm Low cost Ultra fine High Accuracy Self-Assembling 100 Low <= Alignment Accuracy => High 東京工業大学 講義資料 110413 10 Target Resolution /nm 東京工業大学 講義資料 110413 59 東京工業大学 講義資料 110413 60