...

2010年4月~2010年12月

by user

on
Category: Documents
43

views

Report

Comments

Transcript

2010年4月~2010年12月
京都産業大学総合生命科学部 年報
ࠠࡖࡦࡄࠬࡑ࠶ࡊ
✚ว↢๮⑼ቇㇱ㑐ㅪᩞ⥢╬
⒓
㈩
第一号
ฬ
⟎
╙ 㧝 ታ 㛎 ቶ ᫟ ↢ ๮ ⾗ ḮⅣ Ⴚ ቇ⑼
㧢
㧥
㧝
ภ
ภ
㧡
㙚
✚ ว ↢ ๮⑼ ቇ ㇱ੐ ോ ቶ㧔㧝 㧲 㧕
േ ‛ ↢ ๮ක ⑼ ቇ⑼ 㧔 㧮㧝㧲 㧕
㧝
㙚 ↢ ๮ ⾗ ḮⅣ Ⴚ ቇ⑼ 㧔 㧞㧲࡮ 㧟 㧲 㧕
ภ
㙚 ↢ ๮ ࠪ ࠬ࠹ ࡓ ቇ⑼ ࡮ േ‛↢ ๮ ක ⑼ቇ ⑼
ᇹᲫӭ
࠰‫إ‬
ᲬᲪᲫᲪᲢ࠯঺ᲬᲬ࠰Უ
⊒
ⴕ
ᣣ
㧞㧜 㧝 㧝㧔ᐔ ᚑ 㧞 㧟㧕 ᐕ 㧝㧜 ᦬ 㧝ᣣ
⊒
ⴕ
⠪
੩ㇺ ↥ ᬺᄢቇ ✚ ว ↢๮ ⑼ ቇㇱ
‫ ޥ‬
੩ㇺ Ꮢ ർ඙਄ ⾐ ⨃ ᧄጊ
6'. (#: JVVRYYYM[QVQUWCELRFGRCTVOGPVPNU
二〇一〇(平成二十二年)
ʮᣃငಅ‫ܖٻ‬ዮӳဃԡᅹ‫ܖ‬ᢿ
目
巻頭言
次
・ ・ ・・ ・ ・・・ ・ ・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
研 究 室 メン バ ー・ 事 務室ス タ ッ フ一 覧 ・全 学 委員会 委 員 一覧
1
・・ ・ ・・・ ・ ・ ・・
3
・・ ・ ・・・ ・ ・ ・
5
平 成 2 2年 活 動記 録
生 命 シ ステ ム 学科
永
田
和
宏
教
授( 学 部 長)
嶋
本
伸
雄
教
授 ( 副 学部 長 )
・ ・・・ ・ ・ ・・
10
中
田
博
教
授 ( 学 科主 任 )
・ ・・・ ・ ・ ・・
13
黒
坂
光
教
授 ( 副 学科 主 任)
・・・ ・ ・ ・・
16
板
野
直
樹
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
19
佐
藤
賢
一
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
22
瀬
尾
美
鈴
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
25
中
村
暢
宏
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
29
千
尋
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
31
成
行
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
34
謙
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
36
浜
生 命 資 源環 境 学科
動 物 生 命医 科 学科
福
井
横
山
伊
藤
維
昭
客 員教授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
38
八
杉
貞
雄
客 員教授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
41
吉
田
賢
右
客 員教授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
45
山
岸
博
教
授( 学 科 主任 )
野
村
哲
郎
教
授 ( 副 学科 主 任)
津
下
英
明
教
寺
地
徹
米
澤
勝
金
子
貴
河
邊
木
村
高
橋
本
橋
大
槻
竹
内
加
藤
齋
・ ・ ・・・ ・ ・ ・
49
・・・ ・ ・ ・・
51
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
53
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
56
衛
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
60
一
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
63
昭
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
66
成
介
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
68
純
一
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
70
健
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
73
一
客 員 教授( 学 科 主任 )
実
教
授 ( 副 学科 主 任)
啓
子
教
藤
敏
之
前
田
秋
松
本
村
・ ・ ・・・ ・ ・ ・
76
・・・ ・ ・ ・・
81
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
84
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
87
彦
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
89
耕
三
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
92
田
英
雄
教
授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
94
高
桑
弘
樹
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
96
西
野
佳
以
准 教 授
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・
98
今
野
兼次郎
助
教
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ 1 00
染
谷
梓
助
教
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ 1 02
棚
橋
行
助
教
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ 1 03
年 報 発 刊に あ たっ て ~総合 生 命 科学 部 事務 室 から~
・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ 1 05
セ ミ ナ ー等 開 催記 録
新 聞 掲 載記 事
公
靖
・・ ・ ・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ 1 06
・ ・ ・・・ ・ ・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ ・ ・・ ・ ・・・ ・ ・ ・・ 1 10
Ꮞ
㗡
⸒
✚ว↢๮⑼ቇㇱ㐳
᳗ ↰ ๺ ብ
੩ㇺ↥ᬺᄢቇ✚ว↢๮⑼ቇㇱߪ‫ޔ‬ᐔᚑ㧞㧞ᐕ㧠᦬߆ࠄߘߩᵴേࠍ㐿ᆎ
ߒߚ‫ޕ‬ᣥᎿቇㇱ↢‛Ꮏቇ⑼ࠍᡷ⚵ߒ‫ޔ‬ᣂߚߦ‫↢ޟ‬๮ࠪࠬ࠹ࡓቇ⑼‫↢ޟޠ‬
๮⾗ḮⅣႺቇ⑼‫ޟޠ‬േ‛↢๮ක⑼ቇ⑼‫ߩޠ‬㧟ቇ⑼߆ࠄߥࠆ‫ޔ‬੩ㇺ↥ᬺᄢ
ቇߢߪ㧤⇟⋡ߩቇㇱߢ޽ࠆ‫ޕ‬
ᧄቇߦ߅޿ߡ‫ޟ‬ᖱႎㅢାᎿቇ⑼‫‛↢ޟޠ‬Ꮏቇ⑼‫ߩޠ‬㧞ቇ⑼߆ࠄߥࠆ‫ޟ‬Ꮏ
ቇㇱ‫ߪߩߚߒ⿷⊒߇ޠ‬ᐔᚑరᐕߩߎߣߢ޽ߞߚ‫ޕ‬ਔቇ⑼ߣ߽ᒰᤨߩ⑳ቇ
ߦ߅޿ߡߪవ⷗ߩ᣿ߦንࠎߛ↹ᦼ⊛ߥቇ⑼ߢ޽ࠅ‫ޔ‬ቇㇱߢ޽ߞߚ‫ࠇߘޕ‬
߆ࠄ㧞㧜ᐕ૛ࠍ⚻ߡ‫ޟޔ‬ᖱႎㅢାᎿቇ⑼‫߇ޠ‬ᣂߚߦ‫࠲࡯ࡘࡇࡦࠦޟ‬ℂᎿ
ቇㇱ‫ߡߒߣޠ‬ᡷ⚵ߐࠇߚߩࠍฃߌ‫ޔ‬ᣥ‫‛↢ޟ‬Ꮏቇ⑼‫ߩޠ‬ᡷ⚵߇⸘ࠄࠇߚ‫ޕ‬
ᐔᚑ㧝㧤ᐕࠃࠅ⻁໧ᆔຬળ߇⊒⿷ߒ‫ޔ‬ᄖㇱߩ⻁໧ᆔຬࠍ੤߃ߡ‫ᤨޔ‬ઍߩ
ⷐ⺧ߦ޽ߞߚᣂߚߥቇㇱࠍߤߩࠃ߁ߦ᭴▽ߔࠆߩ߆‫ߥ៼⌀ޔ‬ද⼏ߩ႐߇
ᢙᄙߊᜬߚࠇ‫⃻ޔ‬࿷ߩ㧟ቇ⑼߆ࠄߥࠆ‫✚ޟ‬ว↢๮ቇㇱ‫ߎࠆࠇߐ⟎⸳߇ޠ‬
ߣߣߥߞߚ‫ޕ‬
㧞㧝਎♿ߪ߹ߐߦ↢๮⑼ቇ‫ᤨߩࠬࡦࠛࠗࠨࡈࠗ࡜ޔ‬ઍߣ⸒ߞߡ߽ㆊ⸒
ߢߪߥ޿‫ᧄޕ‬ቇㇱߢߪߘࠇࠄ‫↢ޟ‬๮⑼ቇ‫✚ޟࠍޠ‬ว‫ߟ߆ޔߦ⊛ޠ‬ᄙⷺ⊛
ߦᢎ⢒࡮⎇ⓥߔࠆߚ߼‫ޔ‬㧟ߟߩቇ⑼߇⋧੕⵬ቢ⊛ߥᓎഀߣ⋡⊛ࠍᜂߞߡ
޿ࠆ‫↢ޟޕ‬๮ࠪࠬ࠹ࡓቇ⑼‫↢ޔߪߢޠ‬๮⃻⽎ࠍࠪࠬ࠹ࡓߣߒߡ⛔ว⊛ߦ
ᝒ߃ࠆߚ߼‫ޔ‬ಽሶ‫⚦ޔ‬⢩‫ޔ❱⚵ޔ‬୘૕࡟ࡌ࡞ߢߩ↢๮ᵴേߩಽሶ⊛ၮ⋚
ࠍ᣿ࠄ߆ߦߔࠆ‫↢ޟޕ‬๮⾗ḮⅣႺቇ⑼‫ޔߪߢޠ‬ᬀ‛ࠍ฽߼ߚ࿾⃿਄ߩ↢
๮ߣⅣႺߣߩࠗࡦ࠲࡯ࡈࠚࠗࠬߦᵈ⋡ߒ‫ޔ‬㒢ࠅ޽ࠆ↢๮⾗Ḯߩ᦭ലߥᵴ
↪ࠍ⸘ࠆߚ߼ߩၮ␆⎇ⓥࠍⴕ߁‫ޟߚ߹ޕ‬േ‛↢๮ක⑼ቇ⑼‫ޔߪߢޠ‬୘૕
࡟ࡌ࡞ߩ↢๮⃻⽎ߣߒߡ‫ޔ‬േ‛ߩ∛ᘒࠍℂ⸃ߔࠆߎߣߢ‫ੱޔ‬₞౒ㅢᗵᨴ
∝ߥߤࡅ࠻ߩ∛᳇ߩℂ⸃ߣᴦ≮߳ᓎ┙ߡࠆߚ߼ߩᢎ⢒‫⎇ޔ‬ⓥࠍⴕ߁‫ޕ‬
↢๮⑼ቇߪᧂ⍮ߩㇱಽߩ߶߁߇࿶ୟ⊛ߦᄙ޿ᣂߒ޿ಽ㊁ߢ޽ࠆ‫↢ޕ‬๮
⃻⽎ߪⶄ㔀ߢ޽ࠅ‫⤘ߦߢߔޔ‬ᄢߢᄙⷺ⊛ߥ⍮⼂૕♽߇᭴▽ߐࠇߡ߈ߚ߇‫ޔ‬
ቇ↢߇තᬺߒߡ␠ળߢߘࠇࠄߩ⍮⼂ࠍᓎ┙ߡࠆߚ߼ߦߪ‫ᧄޔ‬ᒰߦၮ␆ߥ
⍮⼂ࠍ‫✚ޔ‬ว⊛߆ߟ⛔ว⊛ߥଔ୯ⷰߩ߽ߣߦㆬᛯߒߡℂ⸃࡮⎇ⓥߔࠆߎ
ߣ߇ᔅ㗇ߢ޽ࠆ‫ޔߢߎߘޕ‬㧟ߟߩቇ⑼ߩოࠍߢ߈ࠆߛߌዋߥߊߒߡ‫ޔ‬ቇ
⑼ߦ஍ࠄߥ޿ᢎ⢒ࠍⴕ߁ߎߣ߇‫ߡ߼ࠊ߈ޔ‬㊀ⷐߥߎߣߣߥࠆ‫ޕ‬
⑳ቇߦ߅޿ߡߪ‫ޔ‬ቇ↢ߦఝࠇߚᢎ⢒ࠍ଻㓚ߔࠆߎߣ߇‫ޔ‬ᄢቇߣߒߡߩ
ᦨ㊀ⷐߩ⺖㗴ߢ޽ࠆ‫ᧄޔࠄ߇ߥߒ߆ߒޕ‬ቇㇱߪ‫ޔ‬ᢎ⢒ߛߌࠍⴕߞߡ޿ߡ‫ޔ‬
1
ߘࠇߢᢎຬߣߒߡߩ⟵ോࠍో߁ߒߡ޿ࠆߣߪ⠨߃ߥ޿‫ߩ⾰⦟ޕ‬ᢎ⢒ࠍ
ⴕ߁ߎߣߪᔅⷐ᧦ઙߢߪ޽ࠆ߇‫ޔ‬චಽ᧦ઙߢߪߥ޿‫ޕ‬ᄢቇߣ޿߁႐ߦ߅
ߌࠆ⦟޿ᢎ⢒ߪ‫⎇ޔ‬ⓥ⠪ߣߒߡ߽ఝࠇߚᢎຬߦߒ߆ߢ߈ߥ޿ߣ‫ߪ⑳ޔ‬⠨
߃ߡ޿ࠆ‫⎇ޕ‬ⓥ⠪ߣߒߡ߽ఝࠇߚᬺ❣ࠍᱷߖࠆࠃ߁ߥቇㇱߢ޽ࠅߚ޿ߣ
޿߁ߩߪ‫ޔ‬ቇㇱ⊒⿷ߦ޽ߚߞߡߩᏗᦸߢ޽ࠅ‫ߚ߹ޔ‬ᄢቇ߆ࠄߩⷐ⺧ߢ߽
޽ߞߚ‫ޕ‬
ߘߎߢᧄቇㇱߦ߅޿ߡߪ‫ޔ‬ᢎຬ⥄ࠄߩ⥄Ꮖ⹏ଔ‫⋧ޔ‬੕⹏ଔ‫ޔ‬ቴⷰ⹏ଔ
ߩၮ␆⾗ᢱߣߒߡ‫ޔ‬Ფᐕ‫ޟ‬ᐕႎ‫ࠍޠ‬಴ ߔࠆߎߣߦߒߚ‫ߥ߁ࠃߩߤޕ‬㗄
⋡ࠍ✂⟜ߒ‫ߥ߁ࠃߩߤޔ‬ᒻߦߔࠆߩ߆ߥߤߪ‫ޟ‬ᐕႎ࡮⹏ଔᆔຬળ‫⼏ߩޠ‬
⺰ࠍ⚻ߡ‫ޔ‬ᢎ᝼ળߢ᳿ቯߐࠇߚ‫ޕ‬
ᧄᐕߪᐕႎߣߒߡߪᦨೋߩᐕߦ޽ߚࠅ‫ޔ‬ᘕ㊀ࠍᦼߔߚ߼ߦ‫ޔ‬಴ ߇ᄢ
᏷ߦㆃࠇߚ‫ޕ‬ᰴᐕᐲ߆ࠄߪ‫ޔ‬㧠᦬਄ᣨߦ಴ࠆࠃ߁ദജߒߚ޿‫ߩࠄࠇߎޕ‬
⾗ᢱߪ‫ᧄޔ‬ቇㇱߩᢎຬߛߌߢߪߥߊ‫ઁޔ‬ቇㇱߩᢎຬ‫ᧄ߮ࠃ߅ޔ‬ቇㇱߩᄢ
ቇ㒮↢‫ޔ‬ቇ↢ߣ߽౒᦭ߔࠆߎߣߦߒߡ޿ࠆ‫৻ޕ‬ㇱߪ‫ઁޔ‬ᄢቇߩಽ㊁ߩㄭ
޿⎇ⓥ⠪ߦ߽ㅍઃߔࠆ੍ቯߢ޽ࠆ‫ޕ‬
⊒⿷ߒߡ╙৻ภߢ޽ࠆ‫ޕ‬⒳‫ޔޘ‬ਇⴕ߈ዯ߈ߩὐ‫ޔ‬ਇ஻ߥߤ߽޽ࠆߪߕ‫ޔ‬
߅᳇ߠ߈ߩᣇ߇޽ࠇ߫‫ߏ߭ߗޔ‬ᜰ៰‫ߏޔ‬ᵈᗧࠍ޿ߚߛߌࠇ߫ᐘ޿ߢ޽ࠆ‫ޕ‬
2
✚ว↢๮⑼ቇㇱᢎຬ⎇ⓥቶ৻ⷩ
ቇ⑼
↢
๮
ࠪ
ࠬ
࠹
ࡓ
ᓎ
⡯
⡯
ฬ
ࠬ࠲࠶ࡈ╬ฬ★
ฬ
ഥᢎ࡮⻠Ꮷ
․ቯ⎇ⓥຬ㧔2&
․ቯ⎇ⓥຬ㧔64
ᷕ
ᐔ ጊ ዏᔒ㇢
᫪ ᚭ ᄢ ੺
%JW :KCQSKPI
⍹
⇗
ቇㇱ㐳
ᢎ
᝼ ᳗
↰
๺
ብ
ኴ
㑐
೽ቇㇱ㐳
ᢎ
᝼ ᎑
ᧄ
િ
㓶
ਛ
ጊ
⑲
༑
ቇ⑼ਥછ
ᢎ
᝼ ਛ
↰
ඳ
⑺
ᚭ
↰
↰
ቬ
⮍
⼾
೽ቇ⑼ਥછ ᢎ
᝼ 㤥
ဈ
శ
ਛ
ਛ
ጊ
᧛
༑
⋥
᣿
੺
ᢎ
᝼ ἑ
የ
⟤
㋈
ᢎ
᝼ ⑔
੗
ᚑ
ⴕ
ᢎ
᝼ ૒
⮮
⾫
৻
᧼
ਛ
ᵿ
ᮮ
દ
౎
㊁
᧛
⋥
ᥰ
ජ
ጊ
⮮
᧖
⛽
⽵
᮸
ብ
዆
⻞
ᤘ
㓶
ቴຬᢎ᝼ ศ
↰
⾫
ᢎ
᝼ ጊ
ጯ
೽ቇ⑼ਥછ ᢎ
᝼ ㊁
᧛
ື
㇢
ᢎ
᝼ ☨
Ỉ
ൎ
ⴡ
ᢎ
᝼
ᢎ
᝼
ᢎ
᝼
ᢎ
᝼
ቴຬᢎ᝼
ቴຬᢎ᝼
ቇ⑼ਥછ
↢
๮
⾗
Ḯ
Ⅳ
Ⴚ
ᢎ
ቇ⑼ਥછ
േ
‛
↢
๮
ක
⑼
᳁
᝼ ኹ
࿾
ᢎ
᝼ ᵤ
ಎ ᢎ ᝼ ㊄
ಎ ᢎ ᝼ ᴡ
ಎ ᢎ ᝼ ᧁ
ਅ
ሶ
ㆻ
᧛
⧷
⾆
ಎ ᢎ ᝼ 㜞
ᯅ
ಎ ᢎ ᝼ ᧄ
ᯅ
ቴຬᢎ᝼ ᄢ
ᮎ
᣿
⟤
4CLCP$CDW5WICPVJCP
㜞 ᯅ 㤗⍫ሶ
ሶ
⼱
ਛ
ጊ
ජ
⍹
⪲
੗
ᔒ
ᵏ
ା
㓶
ฝ
ర
ፉ
ผ
዆
ኼ
㊁
㊁
ፉ
⦟
㆐
ੑ
਽
ඳ
㜞
ᯅ
੫
↰
቟
ਛ
ᧄ
⟵
᥊
ⴕ
ᄥ
↰
๟
ᐔ
ᴡ
㊁
ᱜ
ቁ
⢈
Ⴆ
㕏
ᒾ
਄
㊁
ା
ᵗ
ᯅ
㢬
᧛
ᚑ
᣿
৻
ᤘ
੺
⚐
৻
᪖
Ꮉ
ਛ
᧛
ᱞ
ầ
↰
ਛ
᧛
ฎ
㜞
㊁
ጊ
ᷝ
ᧄ
ᐙ
⌀
㓶
♿
ਛ
ᄢ
┻
ᷡ
ౝ
ጊ
ᐸ
ౝ
ዏ
િ
⟤
਽
೰
຦
੺
૒
᧻
ୖ
↰
㊄
⑔
᫪
↰
๺
ᵏ
⟤
ሶ
┻
ౝ
ᮮ
ጊ
᣿
ሶ
ਛ
⷏
᷷
ሶ
⍹
ਛ
㦮
᎑
㓁
᥏
ሶ
ሶ
ታ
ᔒ
ታ
ጯ
㜞
ஜ
₹
བྷ⸤࡮ᄾ⚂⡯ຬ
㩔㩅㩧 #-/ 㩙㩖㩨㩖㩨
ᔀ
౏
ጊ
↰
ቴຬ⎇ⓥຬ
Ꮉ
෹
৻
ర
ㄞ
ศ
੫
ବ
ᷕ
ፉ
᧛
⷗
ఝ
ሶ
⌀ ⴩
㤗⴩ሶ
੫
⚐
ᴦ
⡸
౷ ጟ 㑛 ሶ
ᬀ ᧛ 㚅 ❱
㩁㩨㨶㩦㩢 㩞㩊㩨㩖 㩖㩩㩡㩅㩎㩨
ጊ ਅ 㓁 ሶ
ᴦ
ᶏ
ᜏ
ବ
ቄ
৻
೽ቇ⑼ਥછ ᢎ
᝼ ┻
ౝ
ታ
ᢎ
᝼ ᧻
ᧄ
⠹
ਃ
ᢎ
᝼ ട
⮮
໪
ሶ
ᢎ
᝼ 㥲
ᢎ
᝼ ೨
ᢎ
᝼ ᧛
ಎ ᢎ ᝼ 㜞
ಎ ᢎ ᝼ ⷏
ഥ
ᢎ ੹
ഥ
ᢎ ᨴ
ഥ
ᢎ ᫜
⮮
↰
↰
᪀
㊁
㊁
⼱
ᯅ
ᢅ ਯ
⑺ ᒾ
⧷ 㓶
ᒄ ᮸
૫ એ
౗ᰴ㇢
ᪧ
㕏 ⴕ
ᱜ
᣿
ୃ
⷏
3
፸
ᄢ
⾆
✚ว↢๮⑼ቇㇱ੐ോቶࠬ࠲࠶ࡈฬ★
ࠬ࠲࠶ࡈ╬ฬ★
ᄢቇ㒮↢
ዊ
⼱
෹
⍹
ਁ
ᳯ
ᷡ
ጟ
ਛ
᫪
ㄞ
⮮
ᄢ
↰
ᧁ
Ꮉ
᳓
ᧄ
ጊ
ේ
᎑
↰
᦭Ꮧሶ
&
⡸
&
㗼 ᒄ
/
⏴ᄹ⟤
/
㓁 Ꮖ
/
㦖 ᒾ
/
ാ ઩
/
ᐽ ብ
/
ᶈ ༑
/
ᦶ
/
੝૓⟤
/
₿
᧻
ፉ
ᧄ
዁
ዏ
ᄥ
/
჻
/
㜞 ᯅ
↰ ਛ
ఽ ፉ
᧛ ਄
ᵤ ↰
ႇ
—↰ㇱ
ᩊ ↰
9 ጊ
↱
⠍
ᘮ
੫
ℰ
ෘ
ᄤ
ᐘ
᮸
/
ᄥ
/
ሶ
/
ᄥ
/
ᳯ
/
ༀ
/
ᐔ
/
ᐔ
/
ᖘ
/
ጊ
⮮
⵨
⵨
▸
/
਽
/
᫪
ጊ
Ꮉ
㊀
ᧄ
੗
ጟ
ᷝ
┨
ᢅ
ᓀ
ℭ
ℂ
/
ᣂ
Ꮉ
᧖
⪤
⌀
દ
၂
ᧁ
㦮
ᶆ
ේ
⍾
⮮
⧎
᧛
਄
๺
㇌
ੳ
⺈
᦭
ㅴ
ᄥ
ߘߩઁ
ቁ
ᄢቇ㒮ᆔ⸤↢
ੱ
ᄢቇ㒮ᆔ⸤↢
⟤
ᄢቇ㒮ᆔ⸤↢
ᥓ
ᄢቇ㒮ᆔ⸤↢
૞
ᄢቇ㒮ᆔ⸤↢
਽
ᄢቇ㒮ᆔ⸤↢
৻
ᄢቇ㒮ᆔ⸤↢
ᓎ ⡯ ฬ ╬
ቇ㐳ቶ
✚ว↢๮⑼ቇㇱ㐳⵬૒
ᢎቇ࠮ࡦ࠲࡯⺖㐳⵬૒㧔✚ว↢๮⑼ቇㇱᜂᒰ㧕
ᢎቇ࠮ࡦ࠲࡯⺖ຬ㧔✚ว↢๮⑼ቇㇱᜂᒰ㧕
ᢎቇ࠮ࡦ࠲࡯ᄾ⚂⡯ຬ㧔✚ว↢๮⑼ቇㇱᜂᒰ㧕
ᢎቇ࠮ࡦ࠲࡯ᄾ⚂⡯ຬ㧔✚ว↢๮⑼ቇㇱᜂᒰ㧕
ᢎቇ࠮ࡦ࠲࡯ᄾ⚂⡯ຬ㧔✚ว↢๮⑼ቇㇱᜂᒰ㧕
ᢎቇ࠮ࡦ࠲࡯བྷ⸤⡯ຬ㧔ታ㛎⵬ഥຬ㧕
ᢎቇ࠮ࡦ࠲࡯བྷ⸤⡯ຬ㧔ታ㛎⵬ഥຬ㧕
ᢎቇ࠮ࡦ࠲࡯བྷ⸤⡯ຬ㧔ታ㛎⵬ഥຬ㧕
ᢎቇ࠮ࡦ࠲࡯བྷ⸤⡯ຬ㧔ታ㛎⵬ഥຬ㧕
ᢎቇ࠮ࡦ࠲࡯བྷ⸤⡯ຬ㧔ታ㛎⵬ഥຬ㧕
ᢎቇ࠮ࡦ࠲࡯བྷ⸤⡯ຬ㧔ታ㛎⵬ഥຬ㧕
ᢎቇ࠮ࡦ࠲࡯․ቯ⡯ຬ㧔㧾㧵ᬺോᜂᒰ㧕
੗
㋈
ખ
ട
ᐔ
ะ
⨹
ጟ
⷏
ਭ
ች
ศ
⎶
᳁
਄
ᧁ
᧛
⮮
ర
੗
ᧁ
ᧄ
᧛
ን
Ꮉ
↰
ጊ
ฬ
᦮ ᐢ
િ ↵
໪ ๋
෹ 㚅
⟤ Ⓞ
⌀ ሶ
૫ᄹሶ
ᴕ⍫㚅
㚅 ㉿
೑ ᗆ
⌀↱ሶ
ື ᴦ
⩿‫ޘ‬ሶ
᳗
ᧄ
ἑ
㊁
☨
㊁
┻
㜟
㊄
㊁
ਛ
ኹ
᎑
ᧄ
೨
੹
⑔
ᮮ
ᵤ
㥲
᧛
㜞
ኹ
㤥
ᵿ
ጊ
᧼
ᆔຬ᳁ฬ
↰ ๺ ብ
ᯅ
ஜ
የ ⟤ ㋈
᧛ ື ㇢
Ỉ ൎ ⴡ
᧛ ື ㇢
ౝ
ታ
᪀ ᒄ ᮸
ሶ ⾆ ৻
᧛ ື ㇢
᧛ ᥰ ብ
࿾
ᔀ
ᧄ િ 㓶
ᯅ
ஜ
↰ ⑺ ᒾ
㊁ ౗ᰴ㇢
੗ ᚑ ⴕ
ጊ
⻞
ਅ ⧷ ᣿
⮮ ᢅ ਯ
↰ ⧷ 㓶
ᯅ ⚐ ৻
࿾
ᔀ
ဈ
శ
ජ ዆
ጯ
ඳ
㊁ ⋥ ᮸
ᙗ
ᄢቇ㒮ᆔ⸤↢
ోቇᆔຬળ╬ᆔຬฬ★
ᆔ ຬ ળ ╬ ฬ ⒓
ోቇ౒ㅢࠞ࡝ࠠࡘ࡜ࡓᆔຬળ
ోቇ౒ㅢࠞ࡝ࠠࡘ࡜ࡓផㅴᆔຬળ㧔✚ว↢๮⑼ቇㇱ㧕
ࠞ࡝ࠠࡘ࡜ࡓᡷ㕟ࡊࡠࠫࠚࠢ࠻
ੱᮭ࠮ࡦ࠲࡯ㆇ༡ᆔຬળ
ੱᮭᆔຬળ
ੱᮭ࠮ࡦ࠲࡯⓹ญ⋧⺣ຬ
࡝ࠛ࠱ࡦࠝࡈࠖࠬㆇ༡ᆔຬળ
੤ㅢኻ╷ᆔຬળ
⋭ࠛࡀ࡞ࠡ࡯ផㅴᆔຬળ
⥄Ꮖὐᬌ࡮⹏ଔㆇ༡ᆔຬળ㧔Ꮏቇㇱ㧕
⥄Ꮖὐᬌ࡮⹏ଔㆇ༡ᆔຬળ㧔✚ว↢๮⑼ቇㇱ㧕
⥄Ꮖὐᬌ࡮⹏ଔㆇ༡ᆔຬળ㧔Ꮏቇ⎇ⓥ⑼㧕
㧲㧰㧛㧿㧰ផㅴࡢ࡯ࠠࡦࠣࠣ࡞࡯ࡊ㧔✚ว↢๮⑼ቇㇱ㧕
ᢎോᆔຬળ㧔✚ว↢๮⑼ቇㇱ㧕
ቇ↢ㇱᆔຬળ㧔౗࡮ᅑቇ↢ㆬ⠨ᆔຬળ㧕
ቇ↢ኰᢎ⢒ࠬ࠲࠶ࡈ
㓚߇޿ቇ↢ᡰេᆔຬ
౉ቇ⹜㛎ᆔຬળ
ㅴ〝࠮ࡦ࠲࡯ㆇ༡ᆔຬળ
࿑ᦠ㙚ᆔຬળ
࿖㓙੤ᵹផㅴᆔຬળ
⇐ቇ↢ࠕ࠼ࡃࠗࠩ࡯
ᄢቇ㒮ᆔຬળ
ᢎ⡯⺖⒟⻠ᐳ࠮ࡦ࠲࡯ㆇ༡ᆔຬળ
ࠠࡖ࡝ࠕᢎ⢒⎇ⓥ㐿⊒࠮ࡦ࠲࡯ㆇ༡ᆔຬળ
ᖱႎၮ⋚ㆇ༡ᆔຬળ
ࡀ࠶࠻ࡢ࡯ࠢ࠮ࠠࡘ࡝࠹ࠖᚲዻ▤ℂ⽿છ⠪
㧔ࡀ࠶࠻ࡢ࡯ࠢ࠮ࠠࡘ࡝࠹ࠖᆔຬળ㧕
⺰㓸✬㓸ᆔຬળ
ඳ
/
ਯ
/
㚅
/
㉿
/
ਛ
㐳
Ꮉ
ፒ
৻
㓶
᮸
ᆔ⸤↢
ᄥ
ᆔ⸤↢
4
᫜
ᯅ
㕏
ⴕ
ศ
↰
⾫
ฝ
ಽሶ⚦⢩↢‛ቇ⎇ⓥቶ
ᢎ᝼ ᳗↰ ๺ብ
Laboratory of Molecular and Cellular Biology
Prof. Kazuhiro Nagata, Ph.D
ഥᢎ ኴ㑐 ᷕ
Assist. Prof. Jun Hoseki, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
䋲䋩 ዊ⢩૕㑐ㅪಽ⸃䈮㑐ਈ䈜䉎ᣂⷙ䉺䊮䊌䉪⾰⟲䈱ᯏ⢻
⸃ᨆ
ಽሶ⚦⢩↢‛ቇ⎇ⓥቶ䈪䈲䇮䇸䉺䊮䊌䉪⾰䈱৻↢䇹䉕ᄢ䈐䈭
⎇ⓥ䈱ᨒ䈫䈚䈩⸳ቯ䈚䇮䈠䈱⺀↢䈎䉌ᱫ䉁䈪䈱䊜䉦䊆䉵䊛䉕ਛ
ዊ⢩૕䈪䊚䉴䊐䉤䊷䊦䊄䈚䈢䉺䊮䊌䉪⾰䈲䉰䉟䊃䉹䊦䈻ㅒ
ᔃ䈮䇮ਛ䈪䉅䇮․䈮䇸ಽሶ䉲䊞䊕䊨䊮䈮䉋䉎䊐䉤䊷䊦䊂䉞䊮䉫䈫
ャㅍ䈘䉏䈩䈎䉌䊡䊎䉨䉼䊮䊒䊨䊁䉝䉸䊷䊛♽䈮䉋䈦䈩ಽ⸃䈘
⚦⢩ᯏ⢻೙ᓮ䇹䈍䉋䈶䇸䉺䊮䊌䉪⾰ຠ⾰▤ℂᯏ᭴䇹䈮ὶὐ䉕
䉏䉎䋨䌅䌒䌁䌄䋩䇯䈖䈱ㆊ⒟䈪㊀ⷐ䈭ᓎഀ䉕ᨐ䈢䈜 㪜㪛㪜㪤 䈍䉋
䈅䈩䈩⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯
䈶 㪜㪩㪻㫁㪌 䈫䈇䈉ಽሶ䉕⊒⷗䈚䈢䇯䈖䉏䉌䈱ᯏ⢻⸃ᨆ䉕ⴕ䈇䇮ዊ
⢩૕㑐ㅪಽ⸃ᯏ᭴䈱ో⽩䉕᣿䉌䈎䈮䈜䉎䇯
䉺䊮䊌䉪⾰䈲ᱜ䈚䈒วᚑ䈘䉏䇮ᱜ䈚䈇᭴ㅧ䉕䈫䈦䈩ೋ䉄䈩ᧄ
䋳䋩 䉺䊮䊌䉪⾰ຠ⾰▤ℂ䈮䈍䈔䉎ዊ⢩૕䊧䊄䉾䉪䉴䊈䉾䊃
᧪䈱ᯏ⢻䉕⊒ើ䈜䉎䈏䇮䈠䉏䈮䈲⒳䇱䈱ಽሶ䉲䊞䊕䊨䊮䈏
䊪䊷䉪䈱ᗧ⟵
㊀ⷐ䈭௛䈐䉕䈚䈩䈇䉎䇯䉁䈢䈇䈦䈢䉖ᱜ䈚䈇ᯏ⢻䉕₪ᓧ䈚䈢䉺
䊮䊌䉪⾰䉅䇮⚦⢩䈮ਇᢿ䈮䈎䈎䉎⒳䇱䈱䉴䊃䊧䉴䈮䉋䈦䈩ᄌᕈ
ዊ⢩૕䈮䈍䈔䉎䉳䉴䊦䊐䉞䊄⚿ว䈱ᒻᚑ䇮⸃㔌䈲䇮䉺䊮䊌
䈚䈢䉍䇮ㆮવ⊛ᄌ⇣䈮䉋䈦䈩䈬䈉䈚䈩䉅ᱜ䈚䈇᭴ㅧ䉕䈫䉏䈭䈇
䉪⾰ຠ⾰▤ℂ䈮䈍䈇䈩䈐䉒䉄䈩㊀ⷐ䈭෻ᔕ䈪䈅䉎䇯ዊ⢩૕
䉺䊮䊌䉪⾰䉅ሽ࿷䈜䉎䇯䈖䈱䉋䈉䈭䈇䉒䉉䉎㪓ਇ⦟䉺䊮䊌䉪⾰㪕
䈮䈍䈔䉎㉄ൻㆶర䈮㑐䉒䉎ಽሶ⟲䈱✂⟜⊛⸃ᨆ䉕ㅢ䈛䈩䇮
䈲䇮න䈮ᯏ⢻䉕ᜬ䈢䈭䈇䈣䈔䈪䈭䈒䇮⚦⢩Ქᕈ䈮䉋䈦䈩⚦⢩
ຠ⾰▤ℂ䈮㊀ⷐ䈭䉥䉨䉲䊄䊧䉻䉪䉺䊷䉷䈱ᯏ⢻䉕⸃᣿䈜䉎䇯
ᱫ䉕⺃ዉ䈚䇮䉝䊦䉿䊊䉟䊙䊷∛䉇䊌䊷䉨䊮䉸䊮∛䈱䉋䈉䈭
䋴䋩 䉥䊦䉧䊈䊤ᮮᢿຠ⾰▤ℂᯏ᭴䈱ಽሶᯏ᭴
⒳䇱䈱␹⚻ᄌᕈ∔ᖚ䈱ේ࿃䈫䉅䈭䈦䈩䈇䉎䇯ᓥ䈦䈩䇮䉺䊮䊌
ᩭ䈮䈍䈇䈩ᄌᕈ䈚䈢䉺䊮䊌䉪⾰䈲ᩭౝ䈱䊡䊎䉨䉼䊮䊒䊨
䉪⾰䉕ᱜ䈚䈒วᚑ䈜䉎 㫇㫉㫆㪻㫌㪺㫋㫀㫍㪼 㪽㫆㫃㪻㫀㫅㪾 䈫䇮䊚䉴䊐䉤䊷䊦䊄䈚
䊁䉝䉸䊷䊛♽䈮䉋䈦䈩ಽ⸃ಣℂ䈘䉏䉎䈫㐳䈇㑆ା䈛䉌䉏䈩䈐
䈢䉺䊮䊌䉪⾰䉕ㆡᱜ䈮ಣℂ䈜䉎䈢䉄䈱ຠ⾰▤ℂᯏ᭴䈫䉕䈫䉅
䈢䇯ᧄ⎇ⓥቶ䈪ᦨㄭ⊒⷗䈚䈢 㪬㪹㫀㫅 䈍䉋䈶 㪧㫆㫊㫋 䈫䈇䈉䋲䈧䈱ᣂ
䈬䉅䈮⎇ⓥ䈜䉎䈖䈫䈲䇮䉺䊮䊌䉪⾰േᘒ䈱ᕡᏱᕈ䇮⚦⢩䊧䊔
ⷙ࿃ሶ䈮䉋䈦䈩䇮ᩭౝ䈱䊚䉴䊐䉤䊷䊦䊄䉺䊮䊌䉪⾰䉅䉰䉟䊃䉹䊦
䊦䈪䈱↢๮䉲䉴䊁䊛䈱ᕡᏱᕈ䈱⛽ᜬ䈫䈇䈉ⷰὐ䈎䉌䈲䇮ᔅ㗇
䈻ㅒャㅍ䈘䉏䈩ಽ⸃䈘䉏䉎น⢻ᕈ䈏␜ໂ䈘䉏䈢䇯䈖䈱ಽሶᯏ
䈱⎇ⓥ㗔ၞ䈪䈅䉎䇯
᭴䉕⸃᣿䈜䉎䇯
ᧄ⎇ⓥಽ㊁䈪䈲ౕ૕⊛䈮ᰴ䈱⻉ὐ䈮䈧䈇䈩⎇ⓥ䉕ዷ㐿䈚
䈩䈇䉎䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䋱䋩 䉮䊤䊷䉭䊮․⇣⊛ಽሶ䉲䊞䊕䊨䊮 㪟㫊㫇㪋㪎 䈱ᯏ⢻⸃ᨆ
䋱䋩 䉮䊤䊷䉭䊮․⇣⊛ಽሶ䉲䊞䊕䊨䊮 㪟㫊㫇㪋㪎 䈱ᯏ⢻⸃ᨆ
䉮䊤䊷䉭䊮วᚑ䈮䈍䈇䈩䉮䊤䊷䉭䊮․⇣⊛ಽሶ䉲䊞䊕䊨
㪟㫊㫇㪋㪎 䈱ᯏ⢻䉕․ቯ䈜䉎䈢䉄䇮䊙䉡䉴䈮䈍䈔䉎䉮䊮䊂䉞䉲䊢
䊮 㪟㫊㫇㪋㪎 䈲ᔅ㗇䈱ᓎഀ䉕ᨐ䈢䈚䈩䈇䉎䇯䊉䉾䉪䉝䉡䊃䊙䉡䉴䈭
䊅䊦䊉䉾䉪䉝䉡䊃䋨㪺㪢㪦䋩䉕⹜䉂䇮エ㛽⚦⢩․⇣⊛䈮 㪟㫊㫇㪋㪎 䉕
䈬䉕㚟૶䈚䈩䇮ᧄ⎇ⓥቶ䈪⊒⷗䈚䈢 㪟㫊㫇㪋㪎 䈱ᯏ⢻⸃ᨆ䉕ⴕ
䊉䉾䉪䉝䉡䊃䈜䉎䈖䈫䈮ᚑഞ䈚䈢䇯䌣䌋䌏䊙䉡䉴䈲䇮⺀↢⋥ᓟ䈮
䈉䇯
ᱫ੢䈚䇮૕ゎ䇮ᚻ⢇䈱ᒻᚑਇో䇮エ㛽ᒻᚑਇో䈭䈬䇮䌉䌉ဳ䉮
䊤䊷䉭䊮䈱㑐ਈ䈜䉎⚵❱䈮ౖဳ⊛䈭⇣Ᏹ䉕␜䈚䈢䇯䈖䉏䉌䈱
䈖䈫䈎䉌䇮䌈䌳䌰䋴䋷䈏ᓥ᧪ᚒ䇱䈏᣿䉌䈎䈮䈚䈩䈐䈢䇮䌉ဳ䈍䉋䈶䌉
䌖ဳ䉮䊤䊷䉭䊮䈱ಽሶᚑᾫ䈮ᔅⷐ䈭䈣䈔䈪䈭䈒䇮䌉䌉ဳ䉮䊤䊷䉭
䊮䈱ಽሶᚑᾫ䈮䉅ᔅ㗇䈱ಽሶ䉲䊞䊕䊨䊮䈫䈚䈩௛䈇䈩䈇䉎䈖
䈫䈏᣿䉌䈎䈮䈭䈦䈢䇯
5
䋲䋩 ዊ⢩૕㑐ㅪಽ⸃䈮㑐ਈ䈜䉎ᣂⷙ䉺䊮䊌䉪⾰⟲䈱ᯏ⢻
1: Functional analysis of collagen-specific molecular
⸃ᨆ
chaperone Hsp47. We have succeeded in establishing
䌅䌄䌅䌍䋱䈫ᒝ⺞䈚䈩௛䈐䇮䊚䉴䊐䉤䊷䊦䊄䉺䊮䊌䉪⾰䈱䉳䉴
conditional knockout mice in which hsp47 gene is specifically
䊦䊐䉞䊄⚿ว䉕ㆶర㐿ⵚ䈚䇮䌅䌒䌁䌄䉕ଦㅴ䈜䉎ㆶర㉂⚛䌅䌒
deleted in the cartilage. Mice died just after birth with
䌤䌪䋵䈮㑐䈚䈩䇮䌘✢⚿᥏⸃ᨆ䉕ⴕ䈦䈢䇯㪉㪅㪌㷬䈱⸃௝ᐲ䈪᭴ㅧ
apparent abnormality in the lack of arms and legs.
䉕⸃䈒䈖䈫䈮ᚑഞ䈚䇮䌅䌒䌤䌪䋵䈏ᓥ᧪੍ᗐ䈚䈩䈇䈢䋴䈧䈱䉼䉥䊧
Chondrogenic bone formation was severely impaired in these
䊄䉨䉲䊮䊄䊜䉟䊮䈱ઁ䈮䇮䋲୘䈱㉂⚛ᵴᕈ䉕ᜬ䈢䈭䈇䉼䉥䊧䊄
mice due to the failure of molecular maturation of type II
䉨䉲䊮䊄䊜䉟䊮䉕ᜬ䈧䈖䈫䇮䌃ᧃ┵஥䈱䋲୘䈱䉼䉥䊧䊄䉨䉲䊮䊄
collagen in the cartilage. These results suggest Hsp47 plays
䊜䉟䊮䈮䌅䌒䌁䌄ଦㅴᵴᕈ䈏䈅䉎䈖䈫䈭䈬䉕᣿䉌䈎䈮䈚䇮⒳䇱䈱
essential role in type II collagen maturation as a chaperone in
↢ൻቇ⊛⸃ᨆ䈫૬䈞䈩䇮♧䉺䊮䊌䉪⾰䌅䌒䌁䌄䈱ၮ⾰䈱ᵹ䉏
addition to types I and IV collagens.
䉕᣿䉌䈎䈮䈚䈢䇯
2: Analysis of molecular mechanism of ER-associated
degradation.
We previously found EDEM1 molecule
(EMBO Rep., 2001, Science 2003), which recognizes
misfolded proteins through mannose-trimming of their
N-glycans and segregates them from productive folding
pathway to degradation pathway, so called ER-associated
degradation (ERAD).
We also found a novel ER-resident
reductase ERdj5 (Science 2008), which associates with
EDEM1 and reductively cleaves the disulfide bonds of
misfolded proteins to facilitate the ERAD. We succeeded to
solve the crystal structure of ERdj5 this year at 2.5A
resolution. After extensive biochemical experiments, we
established the substrate transfer pathway for glycoprotein
ERAD, and this figure was adopted as a cover of Molecular
Cell.
3. Analysis of ER redox networks in the ER quality control
䋳䋩 䉺䊮䊌䉪⾰ຠ⾰▤ℂ䈮䈍䈔䉎ዊ⢩૕䊧䊄䉾䉪䉴䊈䉾䊃
system. More than 20 oxidoreductases have been reported in
䊪䊷䉪䈱ᗧ⟵
ዊ⢩૕䈮䈲䋲䋰⒳㘃䉕⿧䈋䉎䉥䉨䉲䊄䊧䉻䉪䉺䊷䉷䋨㉄ൻ
the mammalian ER most of which contain thioredoxin
ㆶర㉂⚛䋩䈏ሽ࿷䈜䉎䇯䈠䉏䈡䉏䈱䉥䉨䉲䊄䊧䉻䉪䉺䊷䉷䈮䉺
domains with CXXC motifs for their enzymatic activity. We
䉫䉕ઃ䈔䇮఺∉ᴉ㒠䈮䉋䈦䈩⚿ว䈚䈩䈒䉎䉺䊮䊌䉪⾰䉕⾰㊂ಽ
performed the interactome analysis by cloning all of them,
ᨆ䈮䉋䈦䈩✂⟜⊛䈮⸃ᨆ䈚䈢䇯⥝๧ᷓ䈇䊈䉾䊃䊪䊷䉪ᒻᚑ䉕
making CXXA mutant of each proteins to stabilize the
⏕⹺䈚䇮䈠䈱⹦⚦䈭⸃ᨆ䉕ⴕ䈦䈩䈇䉎䇯
interaction with downstream proteins, transfecting them and
䋴䋩 䉥䊦䉧䊈䊤ᮮᢿຠ⾰▤ℂᯏ᭴䈱ಽሶᯏ᭴
immunoprecipitating the associated proteins followed by
ᩭ䈮䈍䈇䈩䊚䉴䊐䉤䊷䊦䊄䈚䇮䊡䊎䉨䉼䊮ൻ䈘䉏䈢䉺䊮䊌䉪
identification by mass spectroscopic analysis. We are now
⾰䈏ᚒ䇱䈱⎇ⓥቶ䈪⊒⷗䈚䈢ᣂⷙ࿃ሶ 㪬㪙㪠㪥 䈫䌐䌏䌓䌔䈮䉋
analyzing the detailed features of these thousands of
䈦䈩䉰䉟䊃䉹䊦䈮ャㅍ䈘䉏䇮䊒䊨䊁䉝䉸䊷䊛䈮䉋䈦䈩ಽ⸃ಣℂ
interactions.
䈘䉏䉎น⢻ᕈ䉕␜䈜䈖䈫䈏䈪䈐䈢䇯䈖䉏䈲ᓥ᧪䈱ᩭౝ䈱䉺䊮
4. Analysis of trans-organelle quality control mechanism.
䊌䉪⾰ຠ⾰▤ℂ䈮䉁䈦䈢䈒ᣂ䈚䈇᭎ᔨ䉕ᜬ䈤䈖䉃䉅䈱䈪䈅䉍䇮
We cloned novel two proteins, UBIN and POST, involved in
੹ᓟ䈱⊒ዷ䈮ᦼᓙ䉕䈚䈩䈇䉎䇯
the quality control of proteins misfolded within the nucleus. In
general, nuclearly misfolded proteins have been thought to be
㧟㧚Research projects and annual reports
degraded in the nucleus, because nucleus have both ubiquitin
We have been focusing our research on the productive folding
lygase and proteasomes.
of nascent polypeptides by molecular chaperones and protein
that some aggregation-prone proteins misfolded in the nucleus
quality control mechanism for misfolded proteins within the
are ubiquitinated in the nucleus and exported to the cytosol
cells. Particularly, we have been devoted our activity on the
with the aid of UBIN and POST for the degradation by
following three major research projects:
cytosolic proteasomes. This study is now undergoing.
6
However, we have got the evidence
㧠㧚⊒⴫⺰ᢥ
Glycobiology 20(5):567-575 (2010)
J. Hoseki, R. Ushioda and K. Nagata: Mechanism and components of
M. Hagiwara, K. Maegawa, M. Suzuki, R. Ushioda, K. Araki, Y.
Matsumoto, J. Hoseki, K. Nagata and K. Inaba: Structural basis of
endoplasmic reticulum-associated degradation. J. Biochem. 147:
an ERAD pathway mediated by the ER-resident protein disulfide
19-25 (2010)
reductase ERdj5. Mol. Cell in press
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
K. Araki and K. Nagata : Functional in vitro analysis of ERO1 and
protein-disulfide isomerase (PDI) pathway.
K. Araki and K. Nagata : Protein Folding and Quality Control in the
J. Biol. Chem. in press
ER. Cold Spring Harbor Perspectives in Biology
Y.Masago, A.Hosoya, S.Kawano, A.Nasu, J.Toguchida, K.Fujita,
H.Nakamura, G. Kondoh and K.Nagata : Molecular chaperone
Degradation and Disulfide Reductase ERdj5.
Hsp47 is essential for cartilage and endochondral bone formation.
Methods Enzymol. in press
J. Cell Sci.
Y. Ishida and K.Nagata㧦Hsp47as a collagen-specific molecular
in press
W. Liu, D. Morito, (18 ฬ⋭⇛), K. Nagata, N. Hashimoto and
chaperone. Methods Enzymol.
Moyamoya Disease and Its Possible Role in Vascular Development.
polyglutamine-expansion proteins and its modulation by molecular
Plos one in press
chaperones. Methods
in press
᳗↰๺ብ㧦ࠬ࠻࡟ࠬᔕ╵ᚢ⇛ߩᄙ᭽ᕈ‫ޕ‬਎⇇ᕁᗐ ᤐ ภ
N. Yamagishi , M. Yokota , K. Yasuda , Y. Saito , K. Nagata and T.
㧔㧕
Hatayama : Characterization of stress sensitivity and chaperone
activity of Hsp105 in mammalian cells.
in press
H. Kubota, A. Kitamura and K. Nagata䋺Analyzing the aggregation of
A.Koizumi : Identification of RNF213 as a Susceptibility Gene for
Commun.
in press
R. Ushioda, K. Nagata㧦The Endoplasmic Reticulum-Associated
Biochem Biophys Res
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
in press
Y. Iida, T. Fujimori, K. Okawa, K. Nagata, I. Wada, & N. Hosokawa:
K Araki, R. Ushioda, J. Hoseki and K. Nagata: Quality control &
SEL1L critically determines the stability of the HRD1-SEL1L
Redox regulatory network. Gordon Research Conference, Lucca
ERAD complex to optimize the degradation kinetics of ERAD
(Italy), 2010.5.11
substrates
JBC in press
Kazuhiro Nagata: Regulation of electron transfer networks among
H. Kitamura, S. Yamamoto, H. Nakase, Y. Honzawa, K. Matsumura,
endoplasmic reticulum oxidoreductases. The 8th International
Y. Takeda, N. Uza, K. Nagata and T. Chiba: Role of heat shock
Workshop for CSSI, South Korea, 2010.6.2
᳗↰๺ብ㧦⚦⢩ౝ࠲ࡦࡄࠢ⾰ຠ⾰▤ℂᯏ᭴ ੩ㇺ↥ᬺᄢቇ✚ว
protein 47 in intestinal fibrosis of experimental colitis. Biochem
↢๮⑼ቇㇱࡃࠗࠝࡈࠜ࡯࡜ࡓ‫ޔ‬੩ㇺᏒ‫ޔ‬2010.7.5
Biophys Res Commun. in press
᳗↰๺ብ㧦ࠦ࡜࡯ࠥࡦಽሶᚑᾫߣዊ⢩૕࠲ࡦࡄࠢ⾰ຠ⾰▤ℂᯏ
D. Hasegawa, R. Fujii, (12ฬ⋭⇛), K. Nagata, H. Senoo, S.L.
Friedman, K. Nishioka, Y. Yamano, F. Itoh, T. Nakajima: E3
᭴‫ޔ‬㑐⷏ක⑼ᄢቇᄢቇ㒮ડ↹࠮ࡒ࠽࡯‫ޟ‬Cell Biology ߆ࠄౣ↢
ubiquitin ligase Synoviolin is involved in liver fibrogenesis.
ක≮߹ߢ‫ޔޠ‬቞ญᏒ‫ޔ‬2010.9.10
Plos one 5(10):e13590 (2010)
K. Nagata: Regulation in the electron transfer cascade among the
oxidoreductases in the endoplasmic reticulum. The 3rd International
J. Hoseki, H. Sasakawa, Y. Yamaguchi, M. Maeda, H. Kubota, K.
Kato and K, Nagata: Solution structure and dynamics of mouse
ARMET.
Symposium on Protein Community, Nara, 2010.9.14
᳗↰๺ብ㧦․೎⻠Ṷ‫ߣ↢৻ߩ⾰ࠢࡄࡦ࠲ޟ‬ຠ⾰▤ℂᯏ᭴‫᧙ޔޠ‬
FEBS Lett. 584:1536-1542 (2010)
ᨋ੍㒐කቇ⎇ⓥᚲ‫╙ޔ‬㧡࿁ಽሶᢛวකቇᜰዉ⠪ߩߚ߼ߩ࠮ࡒ
Y. Sugiura, K. Araki, S. Iemura, T. Natsume, J. Hoseki and K.
࠽࡯‫ޔ‬
Nagata: The novel thioredoxin-related transmembrane protein
TMX4 has reductase activity.
੩ㇺᏒ‫ޔ‬
᳗↰๺ብ㧦࠲ࡦࡄࠢ⾰ຠ⾰▤ℂᯏ᭴ ╙㧠࿁ᒻᘒ⑼ቇࠪࡦࡐࠫ
J. Biol. Chem. 285(10):7135-7142
࠙ࡓ㧔ᣣᧄቇⴚળ⼏ਥ௅㧕‫ᧅޔ‬ᏻᏒ‫ޔ‬2010.11.4
(2010)
Y. Honzawa , H. Nakase, Y. Takeda, K. Nagata and T. Chiba: Heat
shock protein 47 can be a new target molecule for intestinal fibrosis
㧣㧚ቇળ⊒⴫
related to inflammatory bowel disease. Inflamm. Bowel Dis.
J. Hoseki and K. Nagata 㧦 Reduction mechanism of the ERAD
16(12):2004-2006 (2010)
enhancing disulfide reductase, ERdj5. Gordon Research Conference,
N. Hosokawa, L.O. Tremblay, B. Sleno, Y. Kamiya, I. Wada, K.
Lucca (Italy) ,2010.5.9-14
᫪ᚭᄢ੺‫ޔ‬ഏਁᵗ‫ޔ‬ጊፒᖗ‫⷗ੱޔ‬ᢅ᣿‫ޔ‬ዊᨋᨐ‫᧻ޔ‬ᶆ▸ᄦ‫▰ ޔ‬
Nagata, K. Kato and A. Herscovics: EDEM1 accelerates the
WULPPLQJRIĮ-linked mannose on the C branch of N-glycans.
ᣇብᎺ‫ޔ‬ේ↰ᶈੑ‫ ޔ‬㜞ፉᚑੑ‫ޔ‬ችᧄ੧‫ޔ‬ᯅᧄାᄦ‫ޔ‬ዊᴰᤘᄦ‫ޔ‬
7
᧖ᶆੳ⟤㧦࠴ࠝ࡟࠼ࠠࠪࡦ᭽࠼ࡔࠗࡦࠍᜬߟዊ⢩૕⤑࠲ࡦࡄࠢ
᳗↰๺ብ㧦ᣂⷙᏂᄢ ATP ࠕ࡯࠯/࡙ࡆࠠ࠴ࡦ࡝ࠟ࡯࠯ Mysterin
ߪⴊ▤ᣂ↢ࠍ೙ᓮߒ‫∛ࡗࡕࡗࡕޔ‬㧔࠙ࠗ࡝ࠬേ⣂ベ㐽Ⴇ∝㧕
⾰ TMX4 ߪㆶర㉂⚛ߣߒߡᯏ⢻ߔࠆ‫╙ޕ‬㧡࿁⥃ᐥࠬ࠻࡟ࠬᔕ
ߦ㑐ਈߔࠆ‫ ╙ޕ‬62 ࿁ᣣᧄ⚦⢩↢‛ቇળᄢળ‫ޔ‬ᄢ㒋Ꮢ‫ޔ‬
╵ቇળᄢળ‫ޔ‬ᓼፉᏒ‫ޔ‬2010.11.19-20
Y. Sugiura, K. Araki, S. Iemura, T. Matsume, J. Hoseki, K. Nagata㧦
2010.5.19-21
ᣂᧁ๺ቁ‫ޔ‬ኅ᧛ବ৻㇢ ‫ޔ‬David Ron‫ ޔ‬ᄐ⋡ᔀ‫ޔ‬᳗↰๺ብ㧦ዊ⢩
The Nobel thioredoxin-related transmembrane protein 4 works as a
૕㉄ൻㆶర㉂⚛ߩ೙ᓮᯏ᭴ߩ⸃ᨆ‫ ╙ޔ‬62 ࿁ᣣᧄ⚦⢩↢‛ቇળ
reductase in the endoplasmic reticulum. ╙㧟㧟࿁ᣣᧄಽሶ↢‛ቇ
ᄢળ‫ޔ‬ᄢ㒋Ꮢ‫ޔ‬2010.5.19-21
ળᐕળ‫╙ޔ‬㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫␹ޔ‬ᚭᏒ‫ޔ‬
၂⧎ᄥ৻‫ޔ‬S. Vavassori‫ޔ‬ᣂᧁ๺ቁ‫ޔ‬ኅ᧛ବ৻㇢‫ޔ‬ᄐ⋡ᔀ‫ޔ‬R. Sitia‫ޔ‬
2010.12.7-10
᳗↰๺ብ㧦ERp44 ߪࡍ࡞ࠝࠠࠪ࡟࠼ࠠࠪࡦ㧠ߣ⚿วߒಽᴲࠍ
T. Kakihana, S. Vavassori, K. Araki, S. Iemura, T. Natsume, R. Sitia,
೙ᓮߔࠆ‫ ╙ޕ‬62 ࿁ᣣᧄ⚦⢩↢‛ቇળᄢળ‫ޔ‬ᄢ㒋Ꮢ‫ޔ‬2010.5.21
K. Nagata㧦The novel mechanism for localization of antioxidative
ầ↰੫‫ޔ‬᳗↰๺ብ㧦ࠫࠬ࡞ࡈࠖ࠼ㆶర㉂⚛ ERdj5 ࠍ੺ߒߚዊ⢩
enzyme Peroxiredoxin-4(Prx4) in the ER. ╙㧟㧟࿁ᣣᧄಽሶ↢
૕㑐ㅪಽ⸃‫╙ޠޕ‬㧞㧞࿁㜞㆙ࠪࡦࡐࠫ࠙ࡓ‫ޔ‬દ㇊Ꮢ‫ޔ‬2010.8.19-20
‛ቇળᐕળ‫╙ޔ‬㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫␹ޔ‬ᚭᏒ‫ޔ‬
2010.12.7-10
J. Hoseki and K. Nagata㧦Glutathione is Required for Activation of the
rd
T. Fujimori, Y. Kamiya, K. Kato, K. Nagata, N. Hosokawa㧦Functional
ERAD Enhancing Disulfide Reductase, ERdj5. The 3 International
Symposium on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
analysis of a mammalian lectin XTP3-B in the endoplasmic
D. Morito, W. Liu, S. Yamazaki, T. Hitomi, H. Kobayashi, N.
reticulum quality control.
╙㧟㧟࿁ᣣᧄಽሶ↢‛ቇળᐕળ‫╙ޔ‬
㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫␹ޔ‬ᚭᏒ‫ޔ‬2010.12.7-10
Matsuura, H. Hashikata, K. Harada, S. Takashima, S. Miyamoto, N.
ർ᧛ᦶ‫ޔ‬Ⓑ↰ߩࠅߎ‫ޔ‬ਭ଻↰ᐢᔒ‫ᧄ᧻ޔ‬ᒏ‫ޔ‬᳗↰๺ብ‫ޔ‬㊄ၔ᡽
Hashimoto, K. Nagata and Akio Koizumi: Novel ATPase/ubiquitin
ቁ㧦╭ᆔ❗ᕈ஥⚝⎬ൻ∝ࠍᒁ߈⿠ߎߔේ࿃࠲ࡦࡄࠢ⾰ߩ⣕ಝ
ligase Mysterin is responsible for familial Moyamoya disease and is
rd
involved in proper angiogenesis. The 3 International Symposium
㓸ㆊ⒟ߣ⚦⢩Ქᕈߩ㑐ଥᕈ‫╙ޕ‬㧟㧟࿁ᣣᧄಽሶ↢‛ቇળᐕળ‫ޔ‬
on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
╙㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫␹ޔ‬ᚭᏒ‫ޔ‬2010.12.7-10
R. Ushioda, J. Hoseki and K. Nagata: Two distinct pathways for
recruitment of misfolded proteins to ERdj5. The 3rd International
㧤㧚ߘߩઁ․⸥੐㗄
Symposium on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
㧝㧕ᄖㇱ⾗㊄
Y. Sugiura, K. Araki, S. Iemura, T. Natsume, J. Hoseki and K.
⑼ቇ⎇ⓥ⾌⵬ഥ㊄࡮ቇⴚഃᚑ⎇ⓥ
Nagata: The novel thioredoxin-related transmembrane protein 4
⺖㗴ฬ㧦࠲ࡦࡄࠢ⾰ຠ⾰▤ℂᯏ᭴
works as a reductase in the endoplasmic reticulum. The 3rd
⎇ⓥઍ⴫⠪㧦᳗↰๺ብ‫ޔ‬ขᓧᐕᐲ㧦* ᐕ
ᐕ
International Symposium on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬
⑼ቇ⎇ⓥ⾌⵬ഥ㊄࡮․ቯ㗔ၞ⎇ⓥ‫ޟ‬㩊㩧㩔㩩㩂⾰ߩ␠ળ‫ޠ‬
2010.9.13-16
⺖㗴ฬ㧦ዊ⢩૕ߦ߅ߌࠆ㩊㩧㩔㩩㩂⾰ຠ⾰▤ℂᯏ᭴
M. Hagiwara, K. Maegawa, M. Suzuki, R. Ushioda, K. Araki, Y.
⸘↹⃰⎇ⓥઍ⴫⠪㧦᳗↰๺ብ‫ޔ‬ขᓧᐕᐲ㧦* ᐕ
ᐕ
Matsumoto, J. Hoseki, K. Inaba and K. Nagata: The role of ERdj5
rd
in glycoprotein ERAD pathway. The 3 International Symposium
ᚢ⇛⊛࿖㓙⑼ቇᛛⴚදജផㅴ੐ᬺ࡮ᣣᧄ
,56㧙ධࠕ
04(⎇ⓥ
on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
੤ᵹ‫⺖ ޔ‬㗴ฬ㧦ᾲᏪࡑ࡜࡝ࠕේ⯻2NCUOQFKWO HCNEKRCTWO㧕ߩ
T. Kakihana, S. Vavassori, K. Araki, S. Iemura, T. Natume, R. Sitia
ዊ⢩૕ߦዪ࿷ߔࠆ*UR ࠪࡖࡍࡠࡦ2HL ߩᯏ⢻⸃ᨆ
and K. Nagata: The novel mechanism for localization of
antioxidative enzyme Peroxiredoxin-4 (Prx4) in the ER. The 3
rd
⎇ⓥઍ⴫⠪㧦᳗↰๺ብ‫ޔ‬ขᓧᐕᐲ㧦* ᐕ
ᐕ
International Symposium on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬
⑼ቇ⎇ⓥ⾌⵬ഥ㊄࡮ቇⴚഃᚑ⎇ⓥ
2010.9.13-16
⺖㗴ฬ㧦࠲ࡦࡄࠢ⾰ຠ⾰▤ℂᯏ᭴
N. Hosokawa, Y. Iida, K. Okawa, K. Nagata 㧦 Formation of
⎇ⓥಽᜂ⠪㧦ኴ㑐ᷕ‫ޔ‬ขᓧᐕᐲ㧦* ᐕ
ᐕ
HRD1-SEL1L ubiquitin ligase complex that regulates the
mammalian ERAD. The 3rd International Symposium on Protein
⑼ቇ⎇ⓥ⾌⵬ഥ㊄࡮․೎⎇ⓥຬᅑബ⾌
Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
⺖㗴ฬ㧦࠴ࠝ࡟࠼ࠠࠪࡦ᭽࠼ࡔࠗࡦࠍᜬߟዊ⢩૕⤑࠲ࡦࡄࠢ⾰
T. Fujimori, Y. Kamiya, K. Kato, K. Nagata and N. Hosokawa㧦
ߩᯏ⢻⸃ᨆ
Functional analysis of a mammalian lectin XTP3-B in the
endoplasmic reticulum quality control. The 3rd International
⎇ⓥઍ⴫⠪㧦᧖ᶆੳ⟤‫ޔ‬ขᓧᐕᐲ㧦* ᐕ
ᐕ
Symposium on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
8
⑼ቇ⎇ⓥ⾌⵬ഥ㊄࡮․೎⎇ⓥຬᅑബ⾌
⺖㗴ฬ㧦ࠦ࡜࡯ࠥࡦ․⇣⊛ಽሶࠪࡖࡍࡠࡦ *52 ߪエ㛽ᒻᚑ‫ޔ‬
ౝエ㛽ᕈ㛽ൻߦ㊀ⷐߢ޽ࠆ
⎇ⓥઍ⴫⠪㧦⌀⍾᦭૞‫ޔ‬ขᓧᐕᐲ㧦* ᐕ
ᐕ
㧞㧕⍮⽷ᮭ╬ ߥߒ
㧟㧕ቇᄖᵴേ
᳗↰๺ብ㧦⑼ቇ⎇ⓥ⾌ᆔຬળኾ㐷ᆔຬ㧔ਥᩏ㧕
᳗↰๺ብ㧦‫ᦨޟ‬వ┵࡮ᰴ਎ઍ⎇ⓥ㐿⊒ᡰេࡊࡠࠣ࡜ࡓ‫ޠ‬ክᩏᆔ
ຬળᆔຬ㧔ਥᩏ㧕
᳗↰๺ብ㧦⑼ቇ⎇ⓥ⾌⵬ഥ㊄ߦ߅ߌࠆ⹏ଔߦ㑐ߔࠆᆔຬળ
㧔߇ࠎ㗔ၞ⹏ଔᆔຬળ㧕ክᩏᆔຬ
᳗↰๺ብ㧦⑼ቇ⎇ⓥ⾌⵬ഥ㊄⹏ଔ㧔ክᩏ㧕ᆔຬ
᳗↰๺ብ㧦ᣣᧄቇⴚળ⼏㧔⚦⢩↢‛ቇ㧕ㅪ៤ળຬ
᳗↰๺ብ㧦⑼⎇⾌․ቯ㗔ၞ⎇ⓥ‫⾰ࠢࡄࡦ࠲ޟ‬ಽ⸃ߦࠃࠆ⚦⢩࡮
୘૕ᯏ⢻ߩ೙ᓮ‫ޠ‬㧔᳓ፉ⃰㧕ᄖㇱ⹏ଔᆔຬ
᳗↰๺ብ㧦⑼⎇⾌ᣂቇⴚ㗔ၞ⎇ⓥ‫⚦ޟ‬⢩ౝࡠࠫࠬ࠹ࠖࠢࠬ‫ޠ‬
㧔ศ᫪⃰㧕⹏ଔᆔຬ
᳗↰๺ብ㧦ࡠ࡟ࠕ࡞࡙ࡀࠬࠦᅚᕈ⑼ቇ⠪ᣣᧄᅑബ⾨ ክᩏຬ
᳗↰๺ብ㧦੩ㇺᄢቇᄢቇ㒮↢๮⑼ቇ⎇ⓥ⑼
᳗↰๺ብ㧦⑺↰ᄢቇᎿቇ⾗Ḯቇㇱ
㕖Ᏹൕ⻠Ꮷ
㕖Ᏹൕ⻠Ꮷ
᳗↰๺ብ㧦᡼ㅍᄢቇ 㕖Ᏹൕ⻠Ꮷ
㧠㧕ฃ⾨╬
ߥߒ
㧡㧕ߘߩઁ
⎇ⓥቶࡔࡦࡃ࡯ߩ౮⌀
9
䊅䊉䊋䉟䉥䊨䉳䊷⎇ⓥቶ
ᢎ᝼ ᎑ᧄ િ㓶
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪥㪸㫅㫆㪹㫀㫆㫃㫆㪾㫐
㪧㫉㫆㪽㪼㫊㫊㫆㫉 㪥㫆㪹㫌㫆 㪪㪿㫀㫄㪸㫄㫆㫋㫆
ഥᢎ ਛጊ ⑲༑
㪘㫊㫊㪅 㪧㫉㫆㪽㪼㫊㫊㫆㫉 㪟㫀㪻㪼㫂㫀 㪥㪸㫂㪸㫐㪸㫄㪸
䋱䋮⎇ⓥ᭎ⷐ
㫋㫄㪩㪥㪘 䈲䇮்䈧䈇䈢 㫄㪩㪥㪘 䉇䉝䊚䊉㉄㘫㙈䈮䉋䈦䈩⠡⸶
ಽሶ↢‛ቇ䈪䈲䇮↢૕䈱௛䈐䉕䇮䉺䊮䊌䉪⾰䈭䈬䈪಴᧪䈢ᓸ
䈏㒖ኂ䈘䉏䈢䈫䈐䈮䇮㪸㫃㪸㫅㫐㫃㪄㫋㪩㪥㪘 䈫䈚䈩䇮䊕䊒䉼䊄㎮䉕િ
ዊ䈭ᯏ᪾䈱௛䈐䈫䈚䈩ℂ⸃䈜䉎䇯䈖䈱ಽሶ䈱ᯏ᪾䈱ᄢ䈐䈘䈲䇮
㐳䈚䇮ᰴ䈮⥄り䈏 㫄㪩㪥㪘 䈫䈚䈩䉝䊚䊉㉄䈻䈱ಽ⸃䉕ᜰ઎䈜䉎
㪈㪄㪈㪇㪇㫅㫄 䈪䇮ォ౮䇮ⶄ⵾䇮⠡⸶䇮ャㅍ䇮ᖱႎવ╬䉕ᜂ䈦䈩䈇
䊕䊒䉼䊄㈩೉䉕ઃട䈚䇮⠡⸶䉕⚳⚿䈜䉎䇯⚦⩶⇇䈮଻ሽ䈘
䉎䇯䈖䉏䉌䈱ಽሶᯏ᪾䈱૞↪ᯏ᭴䈲䇮ಽሶᯏ᪾䈱േ䈐䉇ᒻ䈱
䉏䈢䇮⌀ᩭ䈱䊡䊎䉨䉼䊮䈫䉥䊷䊃䊐䉜䉳䊷䈮ኻᔕ䈜䉎㊀ⷐ
ᄌൻ䈫䈚䈩ℂ⸃䈜䉎䈖䈫䈏䊅䊉䊋䉟䉥䊨䉳䊷䈪䈅䉎䇯⿛ᩏ䊒䊨
ᯏ⢻䉕ม䉎ಽሶ䈪䈅䉎䇯䈚䈎䈚䇮㫋㫄㪩㪥㪘 䈱ᰳᄬ䈏ᄢ⣺⩶䈮
䊷䊑㗼ᓸ㏜䇮ᣂశቇᛛⴚ䇮䊅䊉ᠲ૞ᛛⴚ䈱⊒ዷ䈮䉋䉍น⢻
䉅䈢䉌䈜⴫⃻ဳ䈲䈾䈫䉖䈬ή䈇䈫䈇䈉⍦⋫䈏ሽ࿷䈚䈩䈇䈢䇯
䈮䈭䈦䈢䇯ᧄ⎇ⓥቶ䈲ㆮવሶ⊒⃻䇮․䈮⠡⸶䈱䊅䊉䊋䉟䉥䊨
䉳䊷䉕⎇ⓥ䈚䈩䈇䉎䇯ᧄᐕ䈲䇮䊅䊉䊋䉪䊁䊥䉥䊨䉳䊷䈱⏕┙䉕
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
⋡ᜰ䈚䈢䇯
䋱䋩䋲䈧䈱ᣂ᭴ㅧ૕䈱⊒⷗䈏᦭䈦䈢䇯╙৻䈲䇮ᮡḰ䈱Ⴧᱺ᧦
䋱䋩 ᄢ⣺⩶䈱Ⴧᱺᦼ 㪜㪚㪤 䈫ᓸዊ⚦⢩䈱⊒⷗
ઙ䇮㪣 ၭ࿾䇮᷷ᐲ 㪊㪎㫦㪚 䈪䇮㊁↢ᩣ䈫䈘䉏䉎 㪮㪊㪈㪈㪇 䉇
ᄢ⣺⩶䈲䇮ᕈ⾰䈏ဋ৻䈭⁛┙⚦⢩䈫䈚䈩Ⴧᱺ䈚䇮ቯᏱ
㪤㪞㪈㪍㪌㪌 䈲䇮Ⴧᱺᦼ䊶ቯᏱᦼ䉕໧䉒䈝䇮㪜㪚㪤 䈲ሽ࿷䈜䉎䈫䈇
ᦼ䈪䈱䉂 㪹㫀㫆㪽㫀㫃㫄 䈫䈇䈉 㪜㫏㫋㫉㪸㪺㪼㫃㫃㫌㫃㪸㫉 㪤㪸㫋㫉㫀㫏㩿㪜㪚㪤㪀ౝ䈪↢ሽ
䈉⊒⷗䈪䈅䉎䇯㪜㪚㪤 䈪ⶄᢙ䈱⩶૕䈏ធ⸅䈚䈩䈇䉎䉅䈱䈲 㪈㪉
䈜䉎䈫䈘䉏䈩䈇䈢䇯䈖䉏䉌䈱⚿⺰䈲䇮ਥ䈮శቇ㗼ᓸ㏜䈮䉋䉎
ᤨ㑆䈪ᦨዊ䈮䈭䉎䋨ඨᢙ䋩䇯䈠䈱ᓟ 㪜㪚㪤 䈪ㅪ⚿䈚䈢⩶䈱䉪䊤
ⷰኤ䈎䉌ᓧ䉌䉏䈩䈇䈢䇯⚦⢩࿕ቯ䉇㊀㊄ዻᨴ⦡䉕ⴕ䈇
䉴䉺䊷䈲ᄢ䈐䈒䈭䉎䇯䈖䈱䇮․䈮 㪈㪉 ᤨ㑆એ೨䈱 㪜㪚㪤 䈲䇮ᵞᵺ
㪪㪜㪤 䈮䉋䉎⚦⢩௝䉅ᓧ䉌䉏䈩䈇䈢䇯䈚䈎䈚䈠䈱䉋䈉䈭ᣇᴺ䈪
䈜䉎䈫᷹ⷰ䈘䉏䈭䈒䈭䈦䈢䇯
䈲䇮శቇ㗼ᓸ㏜䈱ฎౖ⊛ಽ⸃⢻એਅ䈱䉅䈱䉇䇮ᵞᵺ䈪㒰
╙ੑ䈱⊒⷗䈲䇮㐳ᓘ䈏 㪇㪅㪌㪄㪈㩷 㫫㫄 䈱ᓸዊ䈭⚦⢩᭽᭴ㅧ૕
䈎䉏䉎䉅䈱䈲䈖䉏䉁䈪ήⷞ䈘䉏䈩䈇䈢䇯
䋨ዊ⢩䈫⇛䋩䈱⊒⷗䈪䈅䉎䇯ዊ⢩䉅ో䈩䈱ᤨᦼ䈮ሽ࿷䈚䇮ቯᏱ
䈠䈖䈪䇮ᵞᵺ䉕 㪪㪜㪤 ⷰኤ䈮ᔅ㗇䈭⣕Ⴎ䈣䈔䉕ⴕ䈇䇮
ᦼ䈱ਛᦼ䈮Ⴧᄢ䈜䉎䇯䈖䈱ᤨ䈮䈲䇮㪛㪥㪘 วᚑ䈲஗ᱛ䈚䈩䈍䉍䇮
㪽㫀㫃㫋㪼㫉 䈮䊃䊤䉾䊒䈚䇮ᦨ䉅ૐ᷷䈪⌀ⓨਛ⫳⌕䈏น⢻䈭 㪦㫊 ↪
䈖䉏䉌䈱ዊ⢩䈱৻ㇱ䈲䇮ቢో䈭䉭䊉䊛䉕෼⚊䈜䉎૕Ⓧ䈏ή䈒䇮
䈇䈢ⷰኤ䈪ᣂ᭴ㅧ૕䉕⎇ⓥ䈚䈢䇯
㪛㪥㪘 䈏䈲䉂಴䈚䈩䈇䉎⚦⢩䈱௝䈏ᓧ䉌䉏䈢䇯䉁䈢䇮䈖䉏䈲䇮
ᄢ⣺⩶䈏ቯᏱᦼ䈮䉅ಽⵚ䉕஗ᱛ䈞䈝ዊ⢩䈫䈇䈉ᱫ⚦⢩䉕↢
䉂಴䈚䈩䈇䉎䈖䈫䉕␜䈚䈩䈇䉎䇯䈧䉁䉍䇮ᄢ⣺⩶䈱ቯᏱᦼ䈲䇮
ᵴേ䈏஗ᱛ䈚䈢 㫊㫋㪸㫋㫀㫆㫅㪸㫉㫐 䈪䈲䈭䈒䇮↢⚦⢩䈏৻ቯ䈱 㫊㫋㪼㪸㪻㫐
䈪䈅䉍䇮㉂Უ䈱ቯᏱᦼ䈫㘃ૃ䈚䈩ዬ䉎䈖䈫䈏್᣿䈚䈢䇯
࿑䋱 ㊁↢ᩣᄢ⣺⩶ 㪮㪊㪈㪈㪇䋨Ꮐ䋩䈫 㪤㪞㪈㪍㪌㪌䋨ฝ䋩䈱ᣂ⊒⷗
㪜㪚㪤 䈮䉋䉍䉪䊤䉴䉺䊷䉕ᒻᚑ䈚䈢Ⴧᱺᦼ䈱⚦⢩
࿑䋲 㪮㪊㪈㪈㪇 䈮⷗䉌䉏䉎䇮ᮡḰ⊛䈭ᄢ䈐䈘䈱ᄢ⣺⩶䋨㤛ᨒ䋩䈫
䈠䉏䉋䉍ዊ䈘䈇ዊ⢩䋨⿒ᨒ䋩
䋲䋩 㫋㫄㪩㪥㪘 䈱ᣂᯏ⢻䈱⊒⷗
10
䋲䋩㫋㫄㪩㪥㪘 䈱ᰳ៊ᩣ䋨㺁㫊㫊㫉㪘䋩䈱⴫⃻ဳ䉕ᣂ䈚䈇⍮⷗䉕䉅䈫䈮
㫀㫅㫍㫆㫃㫍㫀㫅㪾 㫋㪿㪼 㪺㪼㫃㫃㪄㪺㪼㫃㫃 㪺㫆㫄㫄㫌㫅㫀㪺㪸㫋㫀㫆㫅 㪽㫆㫉 㪸㪻㪸㫇㫋㪸㫋㫀㫆㫅 㫋㫆
ౣ⸃ᨆ䈜䉎䈫䇮శቇ㗼ᓸ㏜䈪䉅䇮㪪㪜㪤 䈪䉅䇮㊁↢ᩣ䈮Ყ䈼䈩䇮
㫅㫌㫋㫉㫀㪼㫅㫋 㪻㪼㪽㫀㪺㫀㪼㫅㫋㪃 㪸㫅㪻 㪺㪼㫃㫃 㪻㫀㪽㪽㪼㫉㪼㫅㫋㫀㪸㫋㫀㫆㫅㪅
ቯᏱᦼ䈮ዊ⢩䈱ഀว䈏ᄙ䈒䇮ᱜᏱ䈭ᄢ䈐䈘䈱⚦⢩䈏᦭ᗧ䈮
ᷫዋ䈚䈩䈇䈢䇯㺁㫊㫊㫉㪘 䈱ዊ⢩䈲ቯᏱᦼ䈪Ⴧ䈋⛯䈔䈢䈏䇮㊁↢
䋴䋮⊒⴫⺰ᢥ
ᩣ䈪䈲ᱜᏱ䈭ᄢ䈐䈘䈱⚦⢩䈫ห᭽৻ቯ୯䉕଻䈦䈢䇯䈘䉌䈮䇮
㪠㫄㪸㫊㪿㫀㫄㫀㫑㫌 㪤㪃 㪫㪸㫅㪸㫂㪸 㪢㪃 㪪㪿㫀㫄㪸㫄㫆㫋㫆 㪥㪃 㪚㫆㫄㫇㪸㫉㪸㫋㫀㫍㪼 㫊㫋㫌㪻㫐
ኻᢙჇᱺᦼᓟᦼ䈎䉌㺁㫊㫊㫉㪘 䈱↢ሽ₸ૐਅ䈏ᆎ䉁䉍ቯᏱᦼਛ
㫆㪽 㪺㫐㪸㫅㫆㪹㪸㪺㫋㪼㫉㫀㪸㫃 㪸㫅㪻 㪜㪅 㪺㫆㫃㫀 㪩㪥㪘 㫇㫆㫃㫐㫄㪼㫉㪸㫊㪼㫊㪑
ᦼ䈪䈲 㪈㪇䋦⒟ᐲ䈮䈭䉎䈖䈫䈏⊒⷗䈘䉏䈢䇯
㫄㫀㫊㫀㫅㪺㫆㫉㫇㫆㫉㪸㫋㫀㫆㫅㪃 㪸㪹㫆㫉㫋㫀㫍㪼 㫋㫉㪸㫅㫊㪺㫉㫀㫇㫋㫀㫆㫅㪃 㪸㫅㪻 㪻㪼㫇㪼㫅㪻㪼㫅㪺㪼 㫆㫅
䉁䈢䇮㺁㫊㫊㫉㪘 䈎䉌䈘䉌䈮 㫋㫄㪩㪥㪘 䈮㑐䉒䉎䊕䊒䉼䉻䊷䉷䉕ᰳ
㪻㫀㫍㪸㫃㪼㫅㫋 㪺㪸㫋㫀㫆㫅㫊㩹 㪞㪼㫅㪼㫋㪅 㪠㫅㫋㪼㫉㫅㪸㫋㪅 㪩㪼㫊㪅 㪠㫅 㫇㫉㪼㫊㫊
ᄬ䈘䈞䉎䈫䇮⥌ᱫ䈮䈭䉎䈣䈔䈪䈭䈒䇮ၭ㙃᧦ઙ䉕ᄌ䈋䉎䈫䇮⥌
㪞㪼㪼㫉㫋㫑 㪤㪃 㪤㪼㪿㪸㫅㪻㫑㫀㫊㫂㪸 㪪㪃 㪪㫆㪹㪼㫋㫊㫂㫆 㪧㪃 㪡㪸㫅㪾㪸 㪪㪃 㪪㪿㫀㫄㪸㫄㫆㫋㫆 㪥㪃
ᱫ䈮䈭䉌䈭䈒䈭䉎䈫⸒䈉⥝๧ᷓ䈇ᄌ⇣ᩣ䉕ᓧ䈢䇯䈖䈱ᩣ䉕↪䈇
㪤㫌㫊㫂㪿㪼㫃㫀㫊㪿㫍㫀㫃㫀 㪞㪃 㪫㫉㪸㫍㪼㫉㫊 㪘㪅 㪪㫋㫉㫌㪺㫋㫌㫉㪸㫃 㪺㫆㫌㫇㫃㫀㫅㪾 㪹㪼㫋㫎㪼㪼㫅
䉎䈫䇮ᄢ⣺⩶䈏 㪾㪼㫉㫄 㫃㫀㫅㪼 䈫䈠䉏䈮ᩕ㙃䉕ଏ⛎䈜䉎 㪺㪼㫃㫃 䈫䈮ಽ
㪩㪥㪘 㫇㫆㫃㫐㫄㪼㫉㪸㫊㪼 㪺㫆㫄㫇㫆㫊㫀㫋㫀㫆㫅 㪸㫅㪻 㪛㪥㪘 㫊㫌㫇㪼㫉㪺㫆㫀㫃㫀㫅㪾 㫀㫅
ൻ䈜䉎䈖䈫䉕⸽᣿䈪䈐䉎น⢻ᕈ䉕ᓧ䈢䇯䈖䈱䉋䈉䈮䇮ᄢ⣺⩶䈱
㪺㫆㫆㫉㪻㫀㫅㪸㫋㫀㫅㪾 㫋㫉㪸㫅㫊㪺㫉㫀㫇㫋㫀㫆㫅㪑 㪸 㪾㫃㫆㪹㪸㫃 㫉㫆㫃㪼 㪽㫆㫉 㫋㪿㪼 㫆㫄㪼㪾㪸
Ⴧᱺ䉇↢ሽ䈮㑐䉒䉎ᣂ᭎ᔨ䈏ᓧ䉌䉏䈧䈧䈅䉎䇯
㫊㫌㪹㫌㫅㫀㫋㪖 㫄㪙㫀㫆㪅 㪠㫅 㫇㫉㪼㫊㫊
㪩㪼㫊㪼㪸㫉㪺㪿 㫇㫉㫆㫁㪼㪺㫋㫊 㪸㫅㪻 㪸㫅㫅㫌㪸㫃 㫉㪼㫇㫆㫉㫋㫊
䋳䋮㪩
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
㪥㫆㪹㫌㫆 㪪㪿㫀㫄㪸㫄㫆㫋㫆 㪸㫅㪻 㪛㫉㪅 㪟㫀㪻㪼㫂㫀 㪥㪸㫂㪸㫐㪸㫄㪸㪃 㪸㫉㪼 㫅㫆㫎
䈭䈚
㫀㫅㫋㪼㫉㪼㫊㫋㪼㪻 㫀㫅 㫉㪼㫎㫉㫀㫋㫀㫅㪾 㫋㪿㪼 㪺㫆㫅㫍㪼㫅㫋㫀㫆㫅㪸㫃 㫍㫀㪼㫎 㫆㪽 㫋㪿㪼 㫊㫌㫉㫍㫀㫍㪸㫃
㫊㫋㫉㪸㫋㪼㪾㫐 㫆㪽 㪹㪸㪺㫋㪼㫉㫀㪸 㪹㫐 㫌㫊㫀㫅㪾 㫋㪿㪼 㫅㪼㫎㪼㫊㫋 㫋㫆㫆㫃㫊 㫆㪽 㫅㪸㫅㫆㪄
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
㫄㪸㫅㫀㫇㫌㫃㪸㫋㫀㫆㫅 㫀㫅 㪺㫆㫄㪹㫀㫅㪸㫋㫀㫆㫅 㫎㫀㫋㪿 㪾㪼㫅㪼㫋㫀㪺㫊㪅 㪙㪸㪺㫋㪼㫉㫀㪸 㫊㫌㪺㪿 㪸㫊 㪜㪅
㪥㪅 㪪㪿㫀㫄㪸㫄㫆㫋㫆 㪸㫅㪻 㪤㪅 㪠㫄㪸㫊㪿㫀㫄㫀㫑㫌㪃 㪩㫆㫃㪼 㫆㪽 㪹㫉㪸㫅㪺㪿㪼㪻 㫇㪸㫋㪿㫎㪸㫐 㫆㪽
㪺㫆㫃㫀 㪿㪸㫍㪼 㪹㪼㪼㫅 㪹㪼㫃㫀㪼㫍㪼㪻 㪸㫊 㪸 㫊㫀㫄㫇㫃㪼㫊㫋 㪺㫉㪼㪸㫋㫌㫉㪼 㫎㪿㫀㪺㪿 㪾㫉㫆㫎 㪸㫊
㫀㫅㫀㫋㫀㪸㫋㫀㫆㫅㪑 㪚㫆㫄㫇㪸㫉㪸㫋㫀㫍㪼 㫊㫋㫌㪻㫐 㫆㪽 㪺㫐㪸㫅㫆㪹㪸㪺㫋㪼㫉㫀㪸 㪸㫅㪻 㪜㪅 㪺㫆㫃㫀㪃 㪈㪈㫋㪿
㫀㫊㫆㫃㪸㫋㪼㪻 㪺㪼㫃㫃㫊 㫎㪿㫀㪺㪿 㪿㪸㫍㪼 㫋㪿㪼 㫊㪸㫄㪼 㪺㪿㪸㫉㪸㪺㫋㪼㫉㫀㫊㫋㫀㪺㫊㪅 㪚㪼㫃㫃
㪘㫊㫀㪸㫅 㪸㫅㪻 㪦㪺㪼㪸㫅㫀㪸㫅 㪚㫆㫅㪽㪼㫉㪼㫅㪺㪼 㫆㪽 㪫㫉㪸㫅㫊㪺㫉㫀㫇㫋㫀㫆㫅㪃 㪥㪸㫂㫀㫁㫀㫅㪃 㪦㫂㫀㫅㪸㫎㪸㪃
㪻㫀㫍㫀㫊㫀㫆㫅 㫀㫊 㫊㫌㫇㫇㫆㫊㪼㪻 㫋㫆 㪹㪼 㫊㫋㫆㫇㫇㪼㪻 㫀㫅 㫊㫋㪸㫋㫀㫆㫅㪸㫉㫐 㫊㫋㪸㫋㪼㪅 㪫㪿㪼
㪡㪘㪧㪘㪥
㪺㪼㫃㫃㪄㪺㪼㫃㫃 㪺㫆㫄㫄㫌㫅㫀㪺㪸㫋㫀㫆㫅 㪸㫅㪻 㪺㪼㫃㫃 㪻㫀㪽㪽㪼㫉㪼㫅㫋㫀㪸㫋㫀㫆㫅 㫆㪽 㪹㪸㪺㫋㪼㫉㫀㪸
㪟㪅 㪥㪸㫂㪸㫐㪸㫅㪸 㪸㫅㪻 㪥㪅 㪪㪿㫀㫄㪸㫄㫆㫋㫆㪃 㪪㫋㪸㫋㫀㫆㫅㪸㫉㫐 㫊㫋㪸㫋㪼 㫀㫊 㫅㫆㫋 㫊㫋㪸㫋㫀㫆㫅㪸㫉㫐 㫀㫅
㪿㪸㫍㪼 㪹㪼㪼㫅 㪹㪼㫃㫀㪼㫍㪼㪻 㪹㪼 㪼㫏㪺㪼㫇㫋㫀㫆㫅㪸㫃㪅 㪮㪼 㪸㫉㪼 㪺㪿㪸㫃㫃㪼㫅㪾㫀㫅㪾 㫋㫆
㪜㪅㪺㫆㫃㫀㪅㪃 㪈㪈㫋㪿 㪘㫊㫀㪸㫅 㪸㫅㪻 㪦㪺㪼㪸㫅㫀㪸㫅 㪚㫆㫅㪽㪼㫉㪼㫅㪺㪼 㫆㪽 㪫㫉㪸㫅㫊㪺㫉㫀㫇㫋㫀㫆㫅㪃
㫋㪿㪼㫊㪼 㫃㫆㫅㪾 㪄 㫊㫋㪸㫅㪻㫀㫅㪾 㪿㫐㫇㫆㫋㪿㪼㫊㪼㫊 㪹㫐 㫀㫅㫋㫉㫆㪻㫌㪺㫀㫅㪾 㫅㪼㫎
㪥㪸㫂㫀㫁㫀㫅㪃 㪦㫂㫀㫅㪸㫎㪸㪃 㪡㪘㪧㪘㪥
㫅㪸㫅㫆㪄㫋㪼㪺㪿㫅㫀㫈㫌㪼㫊㪅
㪜㫃㫆㫅㪾㪸㫋㫀㫆㫅 㫆㪽 㫇㪼㫇㫋㫀㪻㪼 㫀㫊 㪺㪸㫋㪸㫃㫐㫑㪼㪻 㪹㫐 㪎㪇㪪 㫉㫀㪹㫆㫊㫆㫄㪼㪃 㫎㪿㫀㫃㪼
᎑ᧄિ㓶䋺䇸ᯏ⢻䈜䉎䉺䊮䊌䉪⾰䇹㪢㪘㪪㪫ᢎ⢒⻠ᐳ䇸ಽሶ↢‛ቇ䉮䊷
㫋㫉㪸㫅㫊㫃㪸㫋㫀㫆㫅 㫀㫅㫀㫋㫀㪸㫋㫀㫆㫅 㫋㪸㫂㪼㫊 㫇㫃㪸㪺㪼 㫀㫅 㫋㪿㪼 㪽㫆㫉㫄 㫆㪽 㪻㫀㫊㫊㫆㪺㫀㪸㫋㪼㪻
䉴䇹㪉㪇㪈㪇㪅㪍㪅㪈㪋
㫊㫌㪹㪄㫇㪸㫉㫋㫀㪺㫃㪼㫊㪃 㪊㪇㪪 㪸㫅㪻 㪌㪇㪪㪅 㪫㪿㪼㫉㪼㪽㫆㫉㪼㪃 㫋㪿㪼 㪺㫐㪺㫃㪼 㫊㪿㫆㫌㫃㪻
᎑ᧄિ㓶䋺䇸䋱ಽሶ䉻䉟䊅䊚䉪䉴䈮⷗䉌䉏䉎 㪛㪥㪘 䈫䉺䊮䊌䉪⾰䈫䈱⚿ว
㫀㫅㫍㫆㫃㫍㪼 㪻㫀㫊㫊㫆㪺㫀㪸㫋㫀㫆㫅 㫆㪽 㪎㪇㪪 㪸㫅㪻 㪻㫀㫊㫊㫆㪺㫀㪸㫋㫀㫆㫅 㫆㪽 㫄㪩㪥㪘 㪽㫉㫆㫄
ᐔⴧ䋺↢‛ቇ䈫ൻቇ䈱䊌䊤䊄䉪䉴䇹䉲䊮䊘䉳䊠䉡䊛ജቇ䈫⛔⸘ജቇ䈱
㫉㫀㪹㫆㫊㫆㫄㪼㪅 㪘 㫃㫆㫅㪾㪄㫊㫋㪸㫅㪻㫀㫅㪾 㪺㫆㫅㫋㫉㪸㪻㫀㪺㫋㫀㫆㫅 㫀㫊 㫎㪿㫀㪺㪿 㪻㫀㫊㫊㫆㪺㫀㪸㫋㪼
⁜㑆䋨ጟጊᄢቇ䊶┙๮㙚ᄢቇ౒௅䋩䇮ᄢᵤᏒ䇮㪉㪇㪈㪇㪅㪐㪅㪉㪌㪄㪍
㪽㫀㫉㫊㫋㪅 㪦㫌㫉 㫉㪼㫊㫌㫃㫋㫊 㫊㪿㫆㫎㪼㪻 㫋㪿㪸㫋 㪎㪇㪪 㪻㫀㫊㫊㫆㪺㫀㪸㫋㪼㫊 㪼㪸㫉㫃㫀㪼㫉 㫋㪿㪸㫅 㫋㪿㪼
㪻㫀㫊㫊㫆㪺㫀㪸㫋㫀㫆㫅 㫆㪽 㫄㪩㪥㪘 㫀㫅 㫋㪿㪼 㫉㪼㪾㫌㫃㪸㫉 㪺㫐㪺㫃㪼㪅 㪮㪼 㪸㫃㫊㫆 㪺㫃㪸㫉㫀㪽㫀㪼㪻
㧣㧚ቇળ⊒⴫
㫋㪿㪼 㫄㪼㪺㪿㪸㫅㫀㫊㫄 㫆㪽 㪿㫀㪹㪼㫉㫅㪸㫋㫀㫆㫅 㫆㪽 㫉㫀㪹㫆㫊㫆㫄㪼 㫀㫅 㫊㫋㪸㫋㫀㫆㫅㪸㫉㫐 㫊㫋㪸㫋㪼㪅
ਛጊ⑲༑䇮᎑ᧄિ㓶㪑 䍀㵱㫊㫋㪸㫋㫀㫆㫅㪸㫉㫐 㫇㪿㪸㫊㪼㵱䈪ᄢ⣺⩶䈲 㫊㫋㪸㫋㫀㫆㫅㪸㫉㫐 䈪
㪮㪼 㪸㫃㫊㫆 㪽㫆㫌㫅㪻 㫋㪿㪸㫋 㫋㪿㪼 㫆㫉㪻㪼㫉 㫆㪽 㪻㫀㫊㫊㫆㪺㫀㪸㫋㫀㫆㫅 㫀㫊 㫉㪼㫍㪼㫉㫊㪼㪻㪃 㫀㪽
䈭䈇䍁╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ䇮╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળ
㫋㫄㪩㪥㪘 㫀㫊 㫇㫉㪼㫊㪼㫅㫋㪅 㪫㪿㪼 㫋㫄㪩㪥㪘㪃 㫀㫅 㪺㫆㫄㪹㫀㫅㪸㫋㫀㫆㫅 㫊㪼㫍㪼㫉㪸㫃
วหᄢળ ␹ᚭ䊘䊷䊃䉝䉟䊤䊮䊄㪃 㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
㫇㪼㫇㫋㫀㪻㪸㫊㪼㫊 㪸㫅㪻 㪪㫄㫇㪙㪃 㫀㫊 㫋㪿㪼 㫇㫉㫆㫂㪸㫉㫐㫆㫋㫀㪺 㪺㫆㫌㫅㫋㪼㫉㫇㪸㫉㫋 㫆㪽 㫋㪿㪼
⇗ጊ᣿ሶ䇮᎑ᧄિ㓶䋺䇸✢⯻ೋᦼ⢦䈱න৻ഀ⃿䈻䈱㔚᳇⊛‛⾰ዉ
㫌㪹㫀㫈㫌㫀㫋㫀㫅 㪻㪼㪾㫉㪸㪻㪸㫋㫀㫆㫅 㫄㪸㪺㪿㫀㫅㪸㫉㫐 㫀㫅 㪼㫌㫂㪸㫉㫐㫆㫋㪼㪅 㪠㫉㫉㪼㫊㫇㪼㪺㫋㫀㫍㪼 㫆㪽
౉䇹╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ䇮╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળ ว
㫋㪿㫀㫊 㫀㫄㫇㫆㫉㫋㪸㫅㫋 㫉㫆㫃㪼 㫆㪽 㫋㫄㪩㪥㪘㪃 㫋㪿㪼 㫄㫌㫋㪸㫅㫋 㫃㪸㪺㫂㫀㫅㪾 㫋㫄㪩㪥㪘
หᄢળ ␹ᚭ䊘䊷䊃䉝䉟䊤䊮䊄㪃 㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
㪾㪼㫅㪼㩷㩿㺁㫋㫄㪩㪥㪘㪀㩷㪿㪸㫊㩷㪹㪼㪼㫅㩷㫉㪼㫇㫆㫉㫋㪼㪻㩷㫋㫆㩷㫊㪿㫆㫎㩷㫃㫀㫋㫋㫃㪼㩷㫇㪿㪼㫅㫆㫋㫐㫇㪼㪅㩷
䋸䋮䈠䈱ઁ․⸥੐㗄
㪦㫌㫉 㫅㪼㫎 㪪㪜㪤 㫋㪼㪺㪿㫅㫀㫈㫌㪼 㪼㫅㪸㪹㫃㪼㪻 㫌㫊 㫋㫆 㪻㪼㫋㪼㪺㫋 㫋㪿㪼 㫍㪸㫉㫀㪼㫋㫐 㫆㪽
㪺㪼㫃㫃 㫊㪿㪸㫇㪼㫊 㪸㫅㪻 㪜㪚㪤㪄㫄㪼㪻㫀㪸㫋㪼㪻 㪺㫃㫌㫊㫋㪼㫉㫀㫅㪾 㫆㪽 㪺㪼㫃㫃㫊㪅
㪘㫇㫇㫃㫐㫀㫅㪾
㪈㪅 ᄖㇱ⾗㊄
㫋㪿㪼㫊㪼 㫅㪼㫎 㫋㪼㪺㪿㫅㫀㫈㫌㪼㪃 㫎㪼 㪽㫆㫌㫅㪻 㪻㫀㫊㫋㫀㫅㪺㫋 㫇㪿㪼㫅㫆㫋㫐㫇㪼 㫆㪽 㺁㫋㫄㪩㪥㪘㪅
䉥䊥䊮䊌䉴㩿ᩣ㪀 ౒ห⎇ⓥ
㪙㫐 㪺㫆㫅㫊㫋㫉㫌㪺㫋㫀㫅㪾 㫄㫆㫉㪼 㫋㪿㪸㫅 㪋㪇 㫉㪼㫃㪸㫋㪼㪻 㫊㫀㫅㪾㫃㪼㪃 㪻㫆㫌㪹㫃㪼㪃 㪸㫅㪻
ᣣᧄቇⴚᝄ⥝ળ ੑ࿖㑆ቇⴚ੤ᵹ䇴䉟䊮䊄䇵 㪘㪚㪫 㪈㪈 ᡰេ
㫋㫉㫀㫇㫃㪼 㫄㫌㫋㪸㫅㫋㫊㪃 㫎㪼 㪸㫃㫊㫆 㪽㫆㫌㫅㪻 㪸 㫅㪼㫎 㫇㪿㫐㫊㫀㫆㫃㫆㪾㫀㪺㪸㫃 㫉㫆㫃㪼 㫆㪽
᧲੩୾ᭉㇱ䋨⽷䋩 㪘㪚㪫 㪈㪈 ᡰេ
㫋㫄㪩㪥㪘㪅
㪮㪼 㪸㫉㪼 㫆㫇㪼㫅㫀㫅㪾 㪸 㫅㪼㫎 㪹㪸㪺㫋㪼㫉㫀㫆㫃㫆㪾㫐 㫆㪽 㪜㪅 㪺㫆㫃㫀
ᴒ✽⋵੹Ꮻੳ᧛ᣣ☨੤ᵹၮ㊄ 㪘㪚㪫 㪈㪈 ᡰេ
11
㪉㪅 ⍮⽷ᮭ╬
䈭䈚
䋳䋮ቇᄖᵴേ
࿖㓙ቇળਥ௅ 㪘㫊㫀㪸㫅 㪸㫅㪻 㪦㪺㪼㪸㫅㫀㪸㫅 㪚㫆㫅㪽㪼㫉㪼㫅㪺㪼 㫆㪽 㪫㫉㪸㫅㫊㪺㫉㫀㫇㫋㫀㫆㫅㪃 䈱
ળ㗡䈫䈚䈩㪈㪈࿁ቇળ䉕ᴒ✽੹Ꮻੳ᧛䈮䈩ਥ௅䈚䈢䇯㪈㪇䉦࿖㪈㪇㪎ฬ
㩿㪋㪇㩼䈏࿖ᄖෳട⠪㪀䈏ෳട䈚䈢䇯㪉㪇㪈㪇㪅㪎㪅㪈㪄㪌
࿑䋳㪘㪚㪫㪈㪈 䈪䈲䇮㪙㪼㪸㪺㪿 㪪㪼㫊㫊㫀㫆㫅 ╬䈱ᣂડ↹䈏ෳട⠪䈱ⷫ⌬䉕ᷓ䉄䇮
䇸৻⇟ᭉ䈚䈇࿖㓙ቇળ䇹䈱ฬ⒓䉕቞䉎䈖䈫䈏಴᧪䈢䇯
㪘㫊㫀㪸㫅 㪸㫅㪻 㪦㪺㪼㪸㫅㫀㪸㫅 㪚㫆㫅㪽㪼㫉㪼㫅㪺㪼 㫆㪽 㪫㫉㪸㫅㫊㪺㫉㫀㫇㫋㫀㫆㫅 ࿖㓙ᆔຬળᣣᧄઍ
⴫ᆔຬ
ಽሶ↢‛ቇળ⧯ᚻᡰេንỈၮ㊄ክᩏᆔຬ
↢‛‛ℂቇળಽ㊁ᆔຬ
㪞㪼㫅㪼㫊 㫋㫆 㪚㪼㫃㫃㫊 㫋㫉㪸㫅㫊㪽㪼㫉 㪼㪻㫀㫋㫆㫉
ᧂ〯ᛛⴚදળ㩿␠㪀⎇ⓥળ䇸↢๮䉕䈲䈎䉎䇹ᐙ੐
᎑ᧄિ㓶䋺䇸ᯏ⢻䈜䉎䉺䊮䊌䉪⾰䇹㪢㪘㪪㪫 ᢎ⢒⻠ᐳ䇸ಽሶ↢‛ቇ䉮䊷
䉴䇹⻠Ꮷ 㪉㪇㪈㪇㪅㪍㪅㪈㪋
㪋㪅 ᝼⾨╬
䈭䈚
䋵䋮䈠䈱ઁ
࿖㓙䊪䊷䉪䉲䊢䉾䊒䇸ᄢቇ㒮䉕䉝䉳䉝䈮ะ䈎䈦䈩㐿䈒䈮䈲䋿䇹
㵰㪜㫏㫇㫆㫊㫌㫉㪼 㫆㪽 㫆㫌㫉 㪾㫉㪸㪻㫌㪸㫋㪼 㫊㪺㪿㫆㫆㫃㫊 㫋㫆 㪘㫊㫀㪸㫅 㪺㫆㫌㫅㫋㫉㫀㪼㫊㵱 㪉㪇㪈㪇㪅㪎㪅㪎
਎⹤ੱ
᎑ᧄિ㓶䇮ਛ᧛ᥰብ䇮ᵤਅ⧷᣿䇮ട⮮໪ሶ㪃 ᄢቇ㒮㑆දቯ䈱䈢䉄
䈱╙৻ᰴ⸰䉺䉟࿅䋺 㪝㪸㪺㫌㫃㫋㫐 㫆㪽 㪪㪺㫀㪼㫅㪺㪼㪃 㪤㪸㪿㫀㪻㫆㫃 㪬㫅㫀㫍㪼㫉㫊㫀㫋㫐㪅
㪚㪿㫌㫃㪸㪹㪿㫆㫉㫅 㪩㪼㫊㪼㪸㫉㪺㪿 㪠㫅㫊㫋㫀㫋㫌㫋㪼㪅 㪝㪸㪺㫌㫃㫋㫐 㫆㪽 㪭㪼㫋㪼㫉㫀㫅㪸㫉㫐 㪪㪺㫀㪼㫅㪺㪼㪃
㪤㪸㪿㫀㪻㫆㫃 㪬㫅㫀㫍㪼㫉㫊㫀㫋㫐㪅 㪝㪸㪺㫌㫃㫋㫐 㫆㪽 㪪㪺㫀㪼㫅㪺㪼㪃 㪢㪸㫊㪼㫋㫊㪸㫉㫋 㪬㫅㫀㫍㪼㫉㫊㫀㫋㫐
㪉㪇㪈㪈㪃 㪉㪅㪉㪏㪄㪊㪅㪌
᎑ᧄિ㓶䇮᧛↰⧷㓶䇮੗਄᦮ᐢ䇮ᄢቇ㒮㑆දቯ䈱䈢䉄䈱╙ੑᰴ⸰
䉺䉟࿅䇮㪝㪸㪺㫌㫃㫋㫐 㫆㪽 㪭㪼㫋㪼㫉㫀㫅㪸㫉㫐 㪪㪺㫀㪼㫅㪺㪼㪃 㪤㪸㪿㫀㪻㫆㫃 㪬㫅㫀㫍㪼㫉㫊㫀㫋㫐 㪉㪇㪈㪈㪃
㪊㪅㪉㪏㪄㪊㪈
12
ᢎ᝼ ਛ↰ ඳ
఺∉♧㎮↢‛ቇ⎇ⓥቶ
Prof. Hiroshi Nakada, Ph.D
Laboratory of Immunoglycobiology
ഥᢎ ⑺↰ ⮍
Assist. Prof. Kaoru Akita, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
ಽᴲ䈘䉏䈢䉍䇮䈅䉎䈇䈲⤑䉺䊮䊌䉪⾰䈫䈭䉎䇯≸ൻ䈜䉎䈫ᭂ
䊛䉼䊮䈲䇮๭ๆེ䇮ᶖൻེ䇮↢ᱺེ䈭䈬䈱਄⊹⚵❱ౝ⣧⴫
ᕈ䈏ή䈒䈭䉎䈖䈫䈮䉋䉍䇮䊛䉼䊮䈲⚦⢩⴫㕙ో૕䈮ャㅍ䈘䉏䇮
㕙䉕ⷒ䈉ਥⷐᚑಽ䈪䈅䉍䇮ᄙᢙ䈱䌏㪄䉫䊥䉦䊮䉕ᜬ䈧㜞ಽሶ䈱
৻ㇱ䈲≸⚵❱ో૕䈮ಽᴲ䈘䉏䇮ⴊᵹਛ䈮䉅᡼಴䈘䉏䉎䇯ⴊ
♧䉺䊮䊌䉪⾰䈪䈅䉎䇯⑳㆐䈲䇮䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴䈱ᗵᨴ
ᵹਛ䈮ᄙ䈒䈱䊛䉼䊮䈏ሽ࿷䈜䉎ᖚ⠪䈱 㪌 ᐕ↢ሽ₸䈲ૐ䈇䈖
䉇਄⊹⚦⢩䈱ᖡᕈൻ䈫㑐ㅪ䈚䈩䊛䉼䊮䈱ᯏ⢻䉕⎇ⓥ䈚䈩䈇
䈫䈏⍮䉌䉏䈩䈇䉎䈏䇮䊛䉼䊮䈱↢‛ቇ⊛ᗧ⟵䈲䈾䈫䉖䈬᣿
䉎䇯ਅ࿑䈲⎇ⓥౝኈ䉕⚵❱䊧䊔䊦䇮⚦⢩䊧䊔䊦䈍䉋䈶ಽሶ䊧
䉌䈎䈮䈘䉏䈩䈇䈭䈇䇯఺∉⚦⢩਄䈮䈲ᄙ䈒䈱䊧䉪䉼䊮䋨♧㎮
䊔䊦䈪䈱෻ᔕ䉕ᮨᑼ⊛䈮␜䈚䈢䇯
䉕⹺⼂䈜䉎䉺䊮䊌䉪⾰䋩䈏⊒⃻䈚䈩䈇䉎䈖䈫䈎䉌䇮ᚒ䇱䈲䊛
䉼䊮䈏䉲䉫䊧䉾䉪䊐䉜䊚䊥䊷䈱䉋䈉䈭䊧䉪䉼䊮䈫⚿ว䈜䉎䈱䈪
îSñå è„îÁ
䈲䈭䈇䈎䈫⠨䈋䈢䇯ᄙ䈒䈱䉲䉫䊧䉾䉪䈲఺∉⚦⢩਄䈮⊒⃻䈚
䈩䈇䉎䈖䈫䈮ട䈋䈩䇮♧㎮਄䈱䉲䉝䊦㉄䈮⚿ว䈜䉎䈖䈫䈫఺
ãCìãÅAè¡âªä« ǻǫ
ååä«
ÉÄÉ`Éì
äÓíÍ ñå
∉⚦⢩䉕⽶䈮೙ᓮ䈜䉎䊝䉼䊷䊐䉕䉅䈦䈩䈇䉎䈖䈫䉕․ᓽ䈫䈚
à´ê´âª è„îÁëgêD
䈩䈇䉎䇯䊛䉼䊮䈫䈖䉏䉌䈱䊧䉪䉼䊮䉕੺䈚䈢⋧੕૞↪䈲䇮఺
ÉCÉìÉtÉãÉGÉìÉUÉEÉCÉãÉX
∉⚦⢩䈫≸⚦⢩䈮⋧੕䈱䉲䉫䊅䊦䈫䈭䉍䇮೨⠪䈮䈲఺∉೙
ñ²âuç³ñEÇÃêZèÅÅ@
ᓮ૞↪䇮ᓟ⠪䈮䈲≸䈱ㅴዷ䉕ଦㅴ䈜䉎૞↪䉕䉅䈢䉌䈜䈖䈫
îSñåè„îÁ ç³ñE
䈏੍ᗐ䈘䉏䉎䇯⑳㆐䈲䈖䈱䉋䈉䈭⎇ⓥ䉕ㅢ䈛䈩䇮≸䈱ᖡᕈൻ
QuickTimeý Dz
êLí£ÉvÉçÉOÉâÉÄ
njDZÇÃÉsÉNÉ`ÉÉÇ¾å ©ÇÈÇåǽDžÇÕïKóv Ç-Ç•ÅB
䉕స᦯䈜䉎ᣇᴺ䉕㐿⊒䈜䉎䈖䈫䉕⋡⊛䈫䈚䈩䈇䉎䇯
ååä«
Siglec-7
NK
ÉÄÉ`Éì
ç³ñE
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
MUC1,4,16
䋱䋩䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴ฃኈ૕䈱⸃ᨆ
ÉÄÉ`Éì
ÉVÉOÉåÉbÉN
-9
䊆䊪䊃䊥᳇㆏☼⤑䉋䉍㠽䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴䋨㪟㪌㪥㪊䋩䈮⚿
ÉVÉOÉåÉbÉN
-2
Bç³ñE
ä‡
é×èÛ
ว䈜䉎䊛䉼䊮䉕න㔌䈚䈢䇯䊛䉼䊮䈻䈱䉡䉟䊦䉴䈱⚿ว䈲䇮䊛䉼
ç³ñE
ç³ñE
䊮䉕࿕⋧ൻ䈚䈢䊒䊧䊷䊃䈻䈱䉡䉟䊦䉴䈱⚿ว䇮䈅䉎䈇䈲䊛䉼䊮
ÉÄÉ`Éì
䉕㔚᳇ᵒേᓟ䇮䉡䉣䉴䉺䊮䊑䊨䉾䊁䉞䊮䉫䈚䈢⤑਄䈻䈱䉡䉟䊦
ÉäÉKÉìÉh
MUC1
p-
p-ERK
E
-
ÉJÉeÉjÉì
Bç³ñE
éÛóeëÃ
-p
Lyn
Ō
Ō
äj
䉴䈱⚿ว䈮䉋䉍⏕⹺䈘䉏䈢䇯න㔌䈚䈢䊛䉼䊮䈲䇮㪤㪛㪚㪢 ⚦⢩
ÉVÉOÉåÉbÉN
-2
䈻䈱䉡䉟䊦䉴䈱⚿ว䈍䉋䈶ᗵᨴ䉕ㇱಽ⊛䈮ᛥ೙䈚䈢䇯
-p
-p
䋲䋩਄⊹ᕈ≸⚦⢩䈱↥↢䈜䉎䊛䉼䊮䈱↢‛ቇ⊛ᗧ⟵
SHP-1
à¹çs
䊍䊃ᄢ⣺≸↱᧪⚦⢩䈱↥↢䈜䉎䊛䉼䊮䈏䊍䊃ᧂᾫ᮸⁁⚦⢩
p-ERK Å´
ä‡ç³ñEÇÃëùêBŌ
਄䈮⊒⃻䈜䉎䉲䉫䊧䉾䉪㪄㪐 䈮⚿ว䈚䇮㪠㪣㪄㪈㪉 䈱↥↢䉕ᛥ೙䈜
ñ²âuó}êß
䉎䈖䈫䉕⷗䈇䈣䈚䈢䇯
䈏䉖ᓸዊⅣႺ䈮䈍䈇䈩䇮ᶐẢ䈚䈢ᧂᾫ᮸⁁⚦⢩਄䈱䉲䉫
䋱䋩䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴ฃኈ૕䈱⸃ᨆ
䊧䉾䉪㪄㪐 䈫਄⊹ᕈ≸⚦⢩਄䈱 㪤㪬㪚㪈 䈫䈏⋧੕૞↪䈜䉎น⢻
䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴䈏ᦨೋ䈮⑳㆐䈱૕䈮ଚ౉䈜䉎䈫
ᕈ䈏⚵❱ൻቇ⊛䈮␜䈘䉏䈢䇯㪤㪬㪚㪈 ᒝ೙⊒⃻⚦⢩䈻䈱䉲䉫
䈐䇮਄⊹⚦⢩⴫㕙䈱♧䉺䊮䊌䉪⾰䈱䉲䉝䊦㉄䈮䉡䉟䊦䉴䈱
䉅䈧ⵍ⤑䉺䊮䊌䉪⾰䈪䈅䉎䊓䊙䉫䊦䉼䊆䊮㩿㪟㪘㪀䈏⚿ว䈜䉎䇯
䉡䉟䊦䉴䈱ᗵᨴᯏ᭴䉕⎇ⓥ䈜䉎਄䈪䇮㪟㪘 䈫⚿ว䈜䉎ฃኈ
䊧䉾䉪㪄㪐 䈱⚿ว䈲䇮㪤㪬㪚㪈 䈱⚦⢩⾰䊄䊜䉟䊮䈻䈱㱎㪄䉦䊁䊆䊮
䈱䊥䉪䊦䊷䊃䉇 㪜㪩㪢㪈㪆㪉 䈱䊥䊮㉄ൻ䈱੣ㅴ䉕䉅䈢䉌䈚䈢䇯
㪚㪘㪈㪉㪌 䈲ෆᎽ≸䈱⣲≌䊙䊷䉦䊷䈫䈚䈩ᐢ䈒↪䈇䉌䉏䈩䈇䉎
૕䉕න㔌䈚䇮⺞䈼䉎䈖䈫䈏㊀ⷐ䈪䇮䊛䉼䊮䈲䈠䈱୥⵬ಽሶ
䈏䇮ሶችౝ⤑∝䈭䈬䈱⦟ᕈ∔ᖚ䈮䈍䈇䈩䉅⊒⃻䈜䉎䇯㪚㪘㪈㪉㪌
䈪䈅䉎䇯
䈱䉮䉝䉺䊮䊌䉪⾰䋨㪤㪬㪚㪈㪍䋩਄䈮⊒⃻䈜䉎䉲䉝䊥䊦 㪫㫅 ᛫ේ䈱
䋲䋩਄⊹ᕈ≸⚦⢩䈱↥↢䈜䉎䊛䉼䊮䈱↢‛ቇ⊛ᗧ⟵
䊧䊔䊦䈱Ꮕ⇣䈮䉋䉍ෆᎽ≸䈫ሶችౝ⤑∝䉕⼂೎䈜䉎䉰䊮䊄䉟
ᄢඨ䈱䈏䉖䈲਄⊹⚦⢩↱᧪䈪䈅䉎䈖䈫䈲⦟䈒⍮䉌䉏䈩䈇
䉾䉼 㪜㪣㪠㪪㪘 ᴺ䉕㐿⊒䈚䈢䇯
䉎䇯ᱜᏱ䈭਄⊹⚵❱䈪䈲䇮⚦⢩䈱ᭂᕈ䈏଻ᜬ䈘䉏䇮วᚑ䈘
䉏䈢䊛䉼䊮䈲⚦⢩䈱䉝䊏䉦䊷䊦䋨㗂┵ㇱ䋩஥䈮ャㅍ䈘䉏䈩䇮
13
䋳䋮Research projects and annual reports
Mucins produced by human colon cancer cells could bind to
Mucins are major components covering the luminal surfaces
Siglec-9
of the epithelial respiratory, gastrointestinal, and reproductive
down-modulation of IL-12 production. We found that
tracts, and are high molecular weight glycoproteins with a
infiltrated immune cells such as DCs could interact with tumor
number of O-glycans. We have been studying on the function
cells through Siglec-9 and MUC1 expressed on DCs and
of these mucins with respect to infection of influenza virus
tumor cells, respectively. Binding of Siglec-9 to MUC1 on
and tumor progression.
tumor cells enhanced the recruitment of E-catenin to MUC1
The first stage of influenza virus entry to a host cell is
expressed
on
immature
DCs,
leading
to
C-terminal domain and phosphorylation of ERK1/2.
recognition of terminal sialic acids on glycosylated epithelial
CA125 is commonly used as an ovarian cancer marker, but
cell surface molecules by the viral HA protein. To elucidate
its elevated expression is also found in a number of benign
the infection mechanism, it is essential to isolate and
conditions including endometriosis. We found that sialyl-Tn
characterize the influenza virus receptor from the epithelial
antigen is expressed on the CA125 core protein prepared from
tissues. Since the mucins contain a variety of sialylated
many patients with ovarian cancer but not from patients with
O-glycans, they may play a role as the influenza virus
endometriosis.
receptor.
discriminate ovarian cancer from endometriosis.
We developed
a sandwich
ELISA to
It is well-known that most of tumor cells are derived from
the epithelial cells. Since normal epithelial cells exhibit a clear
䋴䋮⊒⴫⺰ᢥ
polarity, synthesized mucins are transported to be the apical
M. Hamaguchi, Y. Kawahito, H. Ishino, N. Takeuchi, D. Tokunaga, T.
cell surface and become secretory or membrane-bound
Hojo, A. Yamamoto, M. Kadoya, T. Seno, M. Kohno, and H.
glycoproteins. Upon malignant transformation, mucins are
Nakada: Mucin from rheumatoid arthritis synovial fluid enhances
transported to whole cell surface, and then some mucins are
interleukin-6 production by human peripheral blood mononuclear
secreted into tumor tissues and/or bloodstream of cancer
cells. Hum. Immunol. in press, (2011)
patients because of loss of the cell polarity of epithelial tissues.
T. Kizumi, A. Matsumoto-Takahashi, H. Nakada, M. Nakata, and Y.
It has been reported that patients with a higher amount of
Fujita-Yamaguchi: Preparation of asialo-agalacto-glycophorin A for
mucins in their bloodstream have a lower 5-year survival rate.
screening of anti-Tn antibodies. Biosci. Trends. 4(6):308-311
However, little is known regarding the biological significance
(2010)
of mucins.
M. Ohta, A. Ishida, M. Toda, K. Akita, M. Inoue, K. Yamashita, M.
Since many lectins (carbohydrate recognition proteins ) are
Watanabe, T. Murata, T. Usui, and H. Nakada: Immunomodulation
found in many immune cells, we predict that mucins may
of monocyte-derived dendritic cells through ligation of
interact with these lectins such as siglec family, many of
tumor-produced mucins to Siglec-9. Biochem. Biophys. Res.
which are characterized by binding to sialoglycans and
Commun. 402(4): 663-669 (2010)
possessing immune regulatory motif. Binding of mucins to the
H. Ishino, Y. Kawahito, M. Hamaguchi, N. Takeuchi, D. Tokunaga, T.
siglec family may lead to down-modulation of immune cells.
Hojo, M. Wada, A. Yamamoto, M. Kadoya, Y. Tsubouchi, M.
On the other hand, when membrane-bound mucins expressed
Kohno, and H. Nakada: Expression of Tn and sialyl Tn antigens in
on the epithelial tumor cells interact with the siglec family, the
synovial tissues in rheumatoid arthritis. Clin. Exp. Rheumatol.
signaling through the membrane-bound mucin may play a role
28(2): 246-249 (2010)
in tumor progression. Our aim is to develop clinical ways to
H. Kajihara, M. Toda, T. Mine, H. Nakada, H. Wariishi, and T.
overcome tumor progression based on these researches.
Yamamoto: Visualization of sialic acid produced on bacterial cell
1: Analyses of influenza virus receptor
surfaces by lectin staining. Microbes Environ. 25:152-155 (2010)
We isolated mucins from the avian respiratory tract and found
that avian influenza virus (H5N3) could bind to the mucins
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
coated on the plate and transferred onto the membrane after
S. Sirko, K. Akita, A. von Holst, and A. Faissner: Structural and
SDS-PAGE. The mucins partially inhibited the binding and
functional analysis of chondroitin sulfate proteoglycans in the
infection of the influenza virus to MDCK cells.
neural stem cell niche. Methods Enzymol. 479: 37-71 (2010)
2: Biological significance of epithelial tumor cell-produced
mucins
14
of
⍹↰᦭Ꮧሶ䇮ᚭ↰ቬ⼾䇮⑺↰ ⮍䇮੗਄ℰᳯ䇮ਛ↰ ඳ䋺䉲䉫䊧䉾䉪 㪊
carcinoma-produced mucins on B cell function. Trends in
䈮䉋䉎 㪫㫆㫃㫃㪄㫃㫀㫂㪼 㫉㪼㪺㪼㫇㫋㫆㫉㪄㪋 䉲䉫䊅䊦વ㆐䈱ᛥ೙䇮╙ 㪊㪊 ࿁ᣣᧄಽ
Glycoscience and Glycotechnology 22: 226-238 (2010)
ሶ ↢ ‛ ቇ ળ ᐕ ળ 䊶 ╙ 㪏㪊 ࿁ ᣣ ᧄ ↢ ൻ ቇ ળ ᄢ ળ 䇮 ␹ ᚭ Ꮢ 䇮
M.
Toda
and
H.
Nakada:
Immunosuppressive
effect
㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
䋸䋮䈠䈱ઁ․⸥੐㗄
H. Nakada: Signal transduction through MUC1-Siglec 9 interaction.
䋱䋩ᄖㇱ⾗㊄
th
㪥㪜㪛㪦 ♧㎮ᯏ⢻ᵴ↪ᛛⴚ㐿⊒
The 7 International Symposium on Glycosyltransferases, GlycoT
䋲䋩⍮⊛⽷↥╬
2010 Tokyo, 2010.7.31-8.1
ਛ↰ ඳ䋺఺∉⚦⢩䈱䊛䉼䊮⚿วಽሶ䉕⢛᥊䈫䈜䉎఺∉೙ᓮ೷䈱㐿
․⸵䋺㪚㪘㪈㪉㪌 ਄䈱 㪪㪫㫅 ᛫ේ䈱᦭ή䈮ၮ䈨䈒ሶችౝ⤑∝䈫ෆᎽ≸
⊒䋮ㄭ⇰䊋䉟䉥䉟䊮䉻䉴䊃䊥䊷ᝄ⥝ળ⼏䇮ᄢ㒋Ꮢ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪍
䈱Ꮕ೎ൻ
䋳䋩ቇᄖᵴേ
䋷䋮ቇળ⊒⴫
ᓼፉᄢቇ㕖Ᏹൕ⻠Ꮷ䇮੩ㇺ䊋䉟䉥䊐䉤䊷䊤䊛ᐙ੐䇮⑼ቇᛛⴚᝄ⥝
T. Murata, T. Hattori, Y. Honda, M. Toda, E. Y. Park, T. Usui, and H.
ᯏ᭴ᚢ⇛⊛䉟䊉䊔䊷䉲䊢䊮ផㅴㇱ䉝䊄䊋䉟䉱䊷䇮㪥㪜㪛㪦 䊏䉝䊧䊎䊠
䊷䉝䊷䇮ᣣᧄ↢ൻቇળ⹏⼏ຬ䇮ᣣᧄ♧⾰ቇળ⹏⼏ຬ
Nakada: Chemoenzymatic synthesis of artificial mucins carrying
䋴䋩ฃ⾨╬
sialylated O-linked glycans with a polylactosamine extension and
interactions
with
CD22/siglec-2.
The
25th
䈭䈚
International
䋵䋩䈠䈱ઁ
Carbohydrate Symposium, Chiba, 2010.8.1-6
䈭䈚
ਛ↰ ඳ䇮੗਄ℰᳯ䋺䉲䉫䊧䉾䉪 㪐 䈫䈱⋧੕૞↪䈮䉋䉎 㪤㪬㪚㪈 䉕੺䈚䈢
䉲 䉫 䊅 䊦 વ ㆐ 䋮 ╙ 㪍㪐 ࿁ ᣣ ᧄ ≸ ቇ ળ ቇ ⴚ ✚ ળ 䇮 ᄢ 㒋 Ꮢ 䇮
㪉㪇㪈㪇㪅㪐㪅㪉㪉㪄㪉㪋
੗਄ℰᳯ䇮㜞᪀ᒄ᮸䇮Ᏹ࿡⦟ᄥ䇮⮐↰ᶻ੍䇮દ⮮ᄈ໪䇮ᄢᮎ౏৻䇮
ਛ↰ ඳ䋺䊆䊪䊃䊥᳇㆏਄䈱㠽䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴⚿วⰮ⊕⾰䈱
ᬌ⚝䋮╙ 㪌㪏 ࿁ᣣᧄ䉡䉟䊦䉴ቇળቇⴚ✚ળ䇮ᓼፉᏒ䇮㪉㪇㪈㪇㪅㪈㪈㪅㪎㪄㪐
G. P. Subedi, T. Satoh, S. Hanashima, A. Ikeda, H. Nakada, R. Sato,
M. Mizuno, N. Yuasa, Y. Fujita-Yamaguchi, and Y. Yamaguchi:
Establishment of overproduction procedure for anti-Tn antigen
MLS128 single-chain Fv fragment toward the structural studies䋮╙
㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ䊶╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળ䇮␹ᚭ
Ꮢ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
ጤୖஜม䇮ጟ ୃᐔ䇮ᚭ↰ቬ⼾䇮⎽᳖ᵏᏒ䇮᧛↰ஜ⤿䇮ਛ↰ ඳ䋺⎫
㉄ൻ♧฽᦭ੱᎿ䊛䉼䊮䈫 㪧㪄䉶䊧䉪䉼䊮䈫䈱⋧੕૞↪⸃ᨆ䋮╙ 㪊㪊
࿁ᣣᧄಽሶ↢‛ቇળᐕળ䊶╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળ䇮␹ᚭᏒ䇮
㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
Ⴧ↰⋥਽䇮䉱䊛䊥 䊉䊷䊦䊙䉟䉱䇮᳗੗␭ቱ䇮⍫ፉ↱♿ሶ䇮ਛ↰ ඳ䇮
ጊญ䋨⮮↰䋩㓁ሶ䋺᛫ 㪫㫅 ᛫૕ 㪤㪣㪪㪈㪉㪏 䈱䊍䊃⚿⣺䈏䉖⚦⢩ 㪟㪫㪉㪐
䈮ኻ䈜䉎Ⴧᱺᛥ೙૞↪䋮╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ䊶╙ 㪏㪊
࿁ᣣᧄ↢ൻቇળᄢળ䇮␹ᚭᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
⼱↰๟ᐔ䇮⑺↰ ⮍䇮ᚭ↰ቬ⼾䇮੗਄ℰᳯ䇮ਛ↰ ඳ䋺㪪㫀㪾㫃㪼㪺㪄㪐 䈱⚿
ว䈮઻䈉 㪤㪬㪚㪈 䉕੺䈚䈢ᖱႎવ㆐䋮╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળ
ᐕળ䊶╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળ䇮␹ᚭᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
ᚭ↰ቬ⼾䇮ጊਅ⛮ผ䇮ᷰㆺ᣽ᒾ䇮⍹↰᦭Ꮧሶ䇮⑺↰ ⮍䇮੗਄ℰᳯ䇮
᧛ ↰ ஜ ⤿ 䇮⎽ ᳖ ᵏ Ꮢ 䇮 ਛ ↰ ඳ 䋺 Immunosuppressive effect of
mucin on splenic marginal zone B cells in tumor-bearing state䋮╙
㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ䊶╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળ䇮␹ᚭ
Ꮢ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
15
ᢎ᝼ 㤥ဈ శ
␹⚻♧㎮↢‛ቇ⎇ⓥቶ
Prof. Akira Kurosaka, Ph. D.
Laboratory of Neuroglycobiology
ഥᢎ ਛጊ༑᣿
Assist. Prof. Yoshiaki Nakayama Ph. D.
䋱䋮⎇ⓥ᭎ⷐ
∛ 䈪䈅䉎 㪮㫀㫃㫃㫀㪸㫄㫊㪄㪙㪼㫌㫉㪼㫅 ∝ ୥ ⟲ 䋨 㪮㪙㪪䋩䈱ᰳ ᄬ 㗔 ၞ
䉺䊮䊌䉪⾰䈻䈱♧㎮䈱ઃട 䈲䋬ਥⷐ䈭⠡⸶ᓟୃ 㘼෻
䋨㪮㪙㪪 㪺㫉㫀㫋㫀㪺㪸㫃 㫉㪼㪾㫀㫆㫅䋩䈮฽䉁䉏䉎 㪮㪙㪪㪚㪩㪈㪎 ㆮવሶ䈫䈚
ᔕ䈱৻䈧䈪䈅䉍䋬ઃട䈘䉏䈢♧㎮䈲⚦⢩㑆䈱ធ⌕䉇⹺
䈩䉅⍮䉌䉏䈩䈇䉎䋮㪞㪸㫃㪥㪘㪺㪄㪫㪐䋬㪮㪙㪪㪚㪩㪈㪎 䈫䉅 㫀㫅 㫍㫀㫋㫉㫆 䈱
⼂䈭䈬䈮㊀ⷐ䈭௛䈐䉕䈜䉎䋮♧㎮䈱᭴ㅧ䈲䋬♧䈫䉺䊮䊌䉪
㉂⚛ᵴᕈ䋬䈍䉋䈶䈠䈱ಽሶ䈱ᯏ⢻䈲ో䈒ℂ⸃䈘䉏䈩䈇䈭
⾰䈱⚿ว᭽ᑼ䈮䉋䈦䈩䈇䈒䈧䈎䈱䉺䉟䊒䈮ಽ㘃䈘䉏䉎䈏䋬
䈇䋮ᚒ䇱䈲⣖䈮䈍䈔䉎䊛䉼䊮ဳ♧㎮䈱௛䈐䉕⺞䈼䉎䈢䉄
ᚒ䇱䈲 㪥㺍䉝䉶䉼䊦䉧䊤䉪䊃䉰䊚䊮㩿㪞㪸㫃㪥㪘㪺㪀䉇䊙䊮䊉䊷䉴
䈮䋬䈖䉏䉌䈱ಽሶ䈱↢ൻቇ⊛ 䈭․ᓽ䋬䈘䉌䈮⣖䈱⊒↢䊶
䋨㪤㪸㫅䋩䈫䉺䊮䊌䉪⾰ਛ䈱䉶䊥䊮䋬䊃䊧䉥䊆䊮ᱷၮ䈱䊍䊄䊨䉨
ಽൻ䈮䈍䈔䉎ᓎഀ䉕䋬ၭ㙃⚦⢩䉇䉷䊑䊤䊐䉞䉾䉲䊠䉕↪
䉲䊦ၮ䈫䈱㑆䈮ᒻᚑ䈘䉏䉎 㪦㺍䉫䊥䉮䉲䊄ဳ⚿ว
䈇䈩⸃ᨆ䈚䈩䈐䈢䋮䈖䉏䉁䈪䋬䉷䊑䊤䊐䉞䉾䉲䊠䉕↪䈇䈢ታ
䋨㪞㪸㫃㪥㪘㪺D㪈㸢㪪㪼㫉㪆㪫㪿㫉㪃 㪤㪸㫅D㪈㸢㪪㪼㫉㪆㪫㪿㫉䋩䈮ᵈ⋡䈚䋬䈠
㛎♽䈪䈲䋬⣖․⇣⊛䈭 㪞㪸㫃㪥㪘㪺㪄㪫㪐㪃 㪞㪸㫃㪥㪘㪺㪄㪫㪈㪊䋬䈍䉋
䉏䉌䈱ਥ 䈮⣖ 䈮䈍䈔䉎ᯏ ⢻ 䉕⸃ᨆ 䈚䈩䈇䉎䋮㪞㪸㫃㪥㪘㪺D㪈
䈶 㪮㪙㪪㪚㪩㪈㪎 䈮ኻ䈜䉎䉝䊮䉼䉶䊮䉴䊝䊦䊖䊥䊉䉥䊥䉯䉕↪
㸢㪪㪼㫉㪆㪫㪿㫉 䈱᭴ㅧ䉕᦭䈜䉎♧㎮䈲䋬ᶖൻེቭ䋬๭ๆེ
䈇䈩䋬䈠䉏䈡䉏䈱ಽሶ䈱⊒⃻䉕ᛥ೙䈚䋬⊒↢䈮ਈ䈋䉎ᓇ
ቭ╬䈱਄⊹⚦⢩䈏ಽᴲ䈜䉎☼ᕈ䉺䊮䊌䉪⾰䈪䈅䉎䊛䉼䊮
㗀䉕⺞䈼䋬㪮㪙㪪㪚㪩㪈㪎 䈱⊒⃻ᛥ೙⢦䈪ᦨ䉅㗼⪺䈮ᓟ⣖
䈮ᄙ䈒⷗䉌䉏䉎䈖䈫䈎䉌䋬䊛䉼䊮ဳ♧㎮䈫䉅๭䈳䉏䉎䋮䈖䈱
㗔ၞ䈮䈍䈇䈩⊒↢⇣Ᏹ䈏⿠䈖䉎䈖䈫䉕ႎ๔䈚䈩䈐䈢䋮
᭴ㅧ䈱♧㎮䈲䊛䉼䊮ಽሶ䈱䉂䈭䉌䈝䋬ઁ䈱ᄙ䈒䈱⚦⢩⴫
䋲䋩D㪄㪻㫐㫊㫋㫉㫆㪾㫃㫐㪺㪸㫅 䈱䊛䉼䊮ဳ䋬䈍䉋䈶 㪦㺍㪤㪸㫅 ဳ♧㎮䈮
㕙䉇ಽᴲ♧䉺䊮䊌䉪⾰ਛ䈮䉅ሽ࿷䈚䈩䋬☼⤑䈱଻⼔䈣䈔
㑐䈜䉎⎇ⓥ
䈪䈭䈒䋬䊥䊮䊌⃿䈫ⴊ▤ౝ⊹⚦⢩䈱⋧੕૞↪䋬ᓸ↢‛䉇
D㪄㪻㫐㫊㫋㫉㫆㪾㫃㫐㪺㪸㫅䋨એ㒠D㪛㪞䋩䈲䋬㪦㪄㪤㪸㫅 ဳ♧㎮䈫䊛䉼䊮
Ქ⚛䈱⹺⼂䈭䈬䈱↢‛⃻⽎䈮㑐ਈ䈜䉎䈖䈫䈏⍮䉌䉏䈩䈇
ဳ♧㎮ 䉕᦭ 䈜䉎䋮䈅䉎⒳䈱వ ᄤᕈ╭䉳䉴䊃䊨䊐䉞䊷䈪䈲
䉎䋮৻ᣇ䋬䈾੃㘃䈮䈍䈔䉎 㪤㪸㫅D㪈㸢㪪㪼㫉㪆㪫㪿㫉 䈱᭴ㅧ䉕᦭
╭⡺䈱∝ ⁁䈫䈫䉅䈮䋬․ᓽ ⊛ 䈮⍮⊛⊒ ㆐ㆃṛ䉇䈩䉖䈎
䈜䉎 㪦㪄㪤㪸㫅 ဳ♧㎮䈲䋬╭⡺䉇␹⚻♽䈭䈬䈱㒢ቯ䈘䉏䈢
䉖䈭䈬ਛᨔ␹⚻∝⁁䉕๒䈜䉎䈏䋬䈠䈱ේ࿃䈫䈚䈩D㪛㪞 䈱
䉺䊮䊌䉪⾰䈮䈱䉂ሽ࿷䈚䈩䈍䉍䋬䈠䈱วᚑ⇣Ᏹ䈲╭䉳䉴䊃
㪦㪄㪤㪸㫅 ဳ♧㎮䈮วᚑਇో䈏⿠䈖䉍䋬D㪛㪞 䈱䊥䉧䊮䊄䈻䈱
䊨䊐䉞䊷䈭䈬䈱∔∛䈫㑐ଥ䈚䈩䈇䉎䋮
⚿ว⢻䈏ૐਅ䈜䉎䈖䈫䈏⠨䈋䉌䉏䈩䈇䉎䋮੹ᣣ䈪䈲㱍㪛㪞
ⶄ㔀䈭⚦⢩㑆䊈䉾䊃䊪䊷䉪䉕ᒻᚑ䈜䉎␹⚻♽䈱⚦⢩䈪
䈱♧㎮ୃ㘼⇣Ᏹ䈮䉋䉍ᒁ䈐⿠䈖䈘䉏䉎∔ᖚ䈲
䈲䋬ⶄว♧⾰䈱♧㎮䈏㊀ⷐ䈭ᓎഀ䉕ᨐ䈢䈚䈩䈍䉍䋬䊒䊨
D㪄㪻㫐㫊㫋㫉㫆㪾㫃㫐㪺㪸㫅㫆㫇㪸㫋㪿㫐 䈫๭ 䈳 䉏䈩䈇 䉎 䈏䋬 䈠䈱 ৻ ᣇ 䈪
䊁䉥䉫䊥䉦䊮䉇䌎㺍䉫䊥䉮䉲䊄ဳ♧㎮䋨㪞㫃㪺㪥㪘㪺E㪈㸢㪘㫊㫅䋩䈏䋬
D㪛㪞 䈱䊛䉼䊮ဳ♧㎮䈱ᯏ⢻䈮䈧䈇䈩䈲䈾䈫䉖䈬⺞䈼䉌
䉲䊅䊒䉴䈱ᒻᘒᄌൻ䉇␹⚻࿁〝䈱ᒻᚑ䈮㑐䉒䉎䈭䈬䈱
䉏䈩䈇䈭䈇䋮ᧄ⎇ⓥ䈪䈲䋬䉷䊑䊤䊐䉞䉾䉲䊠䉕↪䈇䈩D㪛㪞
ႎ๔䈏䈭䈘䉏䈩䈐䈢䋮䈚䈎䈚䋬㪦㪄䉫䊥䉮䉲䊄ဳ♧㎮䈱␹⚻
䈱⠡⸶ᓟୃ㘼䋬․䈮䊛䉼䊮ဳ♧㎮䈱ୃ㘼䈫D㪛㪞 䈱ᯏ⢻
♽䈮䈍䈔䉎䈲䈢䉌䈐䈮䈧䈇䈩䈲䋬䈾䈫䉖䈬⸃ᨆ䈘䉏䈩䈇䈭
䈱㑐ଥ䉕᣿䉌䈎䈮䈜䉎䈖䈫䉕⋡⊛䈫䈚䈩䈇䉎䋮
䈇䋮䈖䈱䉋䈉䈭⢛᥊䉕〯䉁䈋䋬ᚒ䇱䈱⎇ⓥቶ䈪䈲䋬 㪦㪄䉫
䊥䉮䉲䊄ဳ♧㎮䋬䈍䉋䈶䈠䉏䈮㑐ㅪ䈚䈢ಽሶ䈱⣖䈮䈍䈔
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䉎ᯏ⢻⸃ᨆ䉕⎇ⓥ䈱⋡⊛䈫䈚䈩䋬ᰴ䈱䉋䈉䈭⎇ⓥ䉕ⴕ䈦
䋱䋩␹⚻․⇣⊛䈭䊛䉼䊮ဳ♧㎮䈱วᚑ෻ᔕ䈫䋬♧㎮䈱ᯏ
䈩䈇䉎䋮
⢻⸃ᨆ
䋱䋩␹⚻․⇣⊛䈭䊛䉼䊮ဳ♧㎮䈱วᚑ෻ᔕ䈫䋬♧㎮䈱ᯏ
㪞㪸㫃㪥㪘㪺㪄㪫 ㆮવሶ䊐䉜䊚䊥䊷䈫㜞䈇⋧หᕈ䉕ᜬ䈧䈏䋬㉂
⢻⸃ᨆ
⚛ᵴᕈ䈏ᬌ಴䈘䉏䈩䈇䈭䈇 㪮㪙㪪㪚㪩㪈㪎 䈱↢ൻቇ⊛䈭ᕈ
䊛䉼䊮ဳ♧㎮䈱↢วᚑ䈱㐿ᆎ෻ᔕ䈲䋬㪬㪛㪧㪄㪞㪸㫃㪥㪘㪺䋺
⾰ 䉕 ⺞ 䈼 䈢 䋮 㪮㪙㪪㪚㪩㪈㪎 䈱 ⚦ ⢩ ౝ ዪ ࿷ ᕈ 䉕 䋬 䊍 䊃
㫇㫆㫃㫐㫇㪼㫇㫋㫀㪻㪼 㪥㪄㪸㪺㪼㫋㫐㫃㪾㪸㫃㪸㪺㫋㫆㫊㪸㫄㫀㫅㫐㫃㫋㫉㪸㫅㫊㪽㪼㫉㪸㫊㪼 㩿 એ ᓟ
㪮㪙㪪㪚㪩㪈㪎 䈫 㪞㪝㪧 䈱Ⲣว䉺䊮䊌䉪⾰䉕 㪟㪼㪣㪸 ⚦⢩䋬㪚㫆㫊㪎
㪞㪸㫃㪥㪘㪺㪄㪫 䈫⇛䈜䉎㪀 䈏⸅ ᇦ 䈜䉎䋮䈖䈱㉂ ⚛䈲䉺䊮䊌䉪
⚦⢩䈪⊒⃻䈘䈞䈩⺞䈼䈢䈫䈖䉐䋬Ⲣว䉺䊮䊌䉪⾰䈲ઁ䈱
⾰ਛ䈱䊛䉼䊮ဳ♧㎮䈱ᢙ䈫૏⟎䉕᳿ቯ䈜䉎㊀ⷐ䈭㉂⚛
㪞㪸㫃㪥㪘㪺㪄㪫 䈫ห᭽䈮 㪺㫀㫊㪄㪞㫆㫃㪾㫀 䉕ਛᔃ䈫䈚䈢⚦⢩ౝ⤑♽
䈪䈅䉎䋮ㄭᐕᚒ䇱䈲䋬␹⚻․⇣⊛䈮⊒⃻䈜䉎
䈮ᄙ䈒⊒⃻䈚䈩䈇䈢䋮䈖䈱䈖䈫䈲䋬㪮㪙㪪㪚㪩㪈㪎 䈏♧ォ⒖㉂
㪞㪸㫃㪥㪘㪺㪄㪫㪐㪃䈍䉋䈶 㪞㪸㫃㪥㪘㪺㪄㪫 䈫㜞䈇⋧หᕈ䉕ᜬ䈧ಽሶ
⚛䈫䈚䈩ᯏ⢻䈜䉎น⢻ᕈ䉕␜ໂ䈚䈩䈇䉎䋮ᰴ䈮䋬㪫㫅 ᛫ේ䋬
䉕䉪䊨䊷䊆䊮䉫䈚䈢䋮ᓟ⠪䈱ಽሶ䈲♖␹ㆃṛ䉕઻䈉ㆮવ
㪫 ᛫ේ䈭䈬䉕⹺⼂䈜䉎䊧䉪䉼䊮䉕↪䈇䈩䋬⚦⢩ᨴ⦡䋬䊧䉪
16
䉼䊮䊑䊨䉾䊃⸃ᨆ䋬䈍䉋䈶 㪥㪄䉝䉳䊄䉝䉶䉼䊦䉧䊤䉪䊃䉰䊚䊮
structures.
㩿㪞㪸㫃㪥㪘㫑㪀䉕↪䈇䈢♧㎮䈱ઍ⻢ᮡ⼂ᴺ䉕↪䈇䈩♧㎮䈱⸃
observed linkage, and O-glycans with this structure are
ᨆ䉕ⴕ䈦䈢䋮䊧䉪䉼䊮䉕↪䈇䈢⸃ᨆ䈪䈲䋬㪮㪙㪪㪚㪩㪈㪎 ⊒⃻
called the mucin carbohydrates since they are highly
⚦⢩䈫䉮䊮䊃䊨䊷䊦⚦⢩㑆䈪䈱㆑䈇䈲⷗䉌䉏䈭䈎䈦䈢䈏䋬
expressed on mucins secreted from epithelial cells.
ઍ⻢ᮡ⼂䈚䈢♧䉺䊮䊌䉪⾰♧㎮䉕䉲䊠䉺䉡䊂䉞䊮䉧䊷ㅪ
There
⚿෻ᔕ䈮䉋䉍䊒䊨䊷䊑䉕⚿ว䈘䈞䈩ᬌ಴䈜䉎ታ㛎䈮䈍䈇
ManDĺ6Hr(Thr).
䈩䈲䋬㪮㪙㪪㪚㪩㪈㪎 ⊒⃻⚦⢩䈪⊒⃻䈏Ⴧട䈜䉎䊋䊮䊄䉕ᬌ
occurrence of O-mannosylated carbohydrates is mostly
಴䈚䈢䋮䈖䈱⚿ᨐ䈲䋬㪮㪙㪪㪚㪩㪈㪎 䈏♧ォ⒖ᵴᕈ䉕ᜬ䈧䈖䈫
confined to the tissues, such as muscle and brain.
䉕␜ໂ䈚䈩䈇䉎䋮
interest is to define functional roles of these two types of
䉷䊑䊤䊐䉞䉾䉲䊠䉕↪䈇䈢ታ㛎♽䈪䈲䋬㪮㪙㪪㪚㪩㪈㪎 䈱⊒
GalNAcDĺ6HU7KULVWKHPRVWIUHTXHQWO\
is
another
O-glycosidic
structure,
Contrary to the mucin sugars, the
Our
O-glycosylation in the brain, and we carried out the
⃻䉕ᛥ೙䈚䈢䈫䈐䈮⷗䉌䉏䉎ᓟ⣖㗔ၞ䈪䈱⊒↢⇣Ᏹ䈱ේ
following experiments.
࿃䉕⺞䈼䉎䈢䉄䈮䋬㪮㪙㪪㪚㪩㪈㪎 ⊒⃻ᛥ೙⢦䈮䈍䈔䉎ᓟ⣖
1) Analysis of synthesis and function of neuron-specific
䈱䊙䊷䉦䊷ಽ ሶ 䈱⊒ ⃻ 䉕ಽ ᨆ 䈚䈢䋮䈠䈱⚿ ᨐ 䋬㫎㫅㫋㪈䋬
mucin-type carbohydrates
㫉㪽㫅㪾 䈭䈬䈱ᓟ⣖䈱Ⴚ⇇䈱ᒻᚑ䈮㑐䉒䉎ಽሶ䈱⊒⃻䊌䉺
a UDP-GalNAc: polypeptide N-acetylgalactosaminyl-
䊷䊮䈏ᶖᄬ䈅䉎䈇䈲ੂ䉏䈩䈇䉎䈖䈫䉕⷗䈇䈣䈚䈢䋮䈘䉌䈮䋬
transferase (GalNAc-T) catalyzes the initial step in the
․ ⇣ ⊛ 䈭䉝䊮䉼䉶䊮䉴䊝䊦䊖䊥䊉䉥䊥䉯䉕↪ 䈇䈩 㫎㫅㫋㪈㪃
biosynthesis of mucin-type glycans.
㫉㪽㫅㪾 䈱⊒⃻ᛥ೙⢦䉕૞⵾䈚䈢䈫䈖䉐䋬㪮㪙㪪㪚㪩㪈㪎 ᛥ೙⢦䈫
cloned a novel neuron-specific isozyme, designated
䉋䈒ૃ 䈢⴫ ⃻ ဳ 䈱⇣ Ᏹ 䉕␜ 䈚䈢䈖䈫䈎䉌䋬㪮㪙㪪㪚㪩㪈㪎 䈲
GalNAc-T9, and more recently identified a putative
㫎㫅㫋㪈㪃 㫉㪽㫅㪾 䈭䈬䈱䉲䉫䊅䊦♽䈮㑐ㅪ䈚䈩䈇䉎น⢻ᕈ䈏⠨
GalNAc-T gene, which is also mainly expressed in the
䈋䉌䉏䈢䋮
embryonic and adult brain.
We previously
The gene for this putative
isozyme is also known as WBSCR17, one of the genes
identified in the region critical to Williams- Beuren
syndrome
(WBS).
We
carried
out
biochemical
characterization of WBSCR17, and knockdown of brainspecific isozymes (GalNAc-T9, -T13, and WBSCR17),
and obtained the following data.
i) WBSCR17 was predominantly expressed in the
cis-Golgi as is the case with other GalNAc-T
࿑ 㪮㪙㪪㪚㪩㪈㪎 䈱⊒⃻ᛥ೙䈮䉋䉎ᓟ⣖㗔ၞ䈱⊒↢⇣Ᏹ
isozymes, when its recombinant molecule with GFP
㪮㪙㪪㪚㪩㪈㪎 䈱⊒⃻ᛥ೙⢦䈲䋬㫉㪽㫅㪾 䈍䉋䈶 㫎㫅㫋㪈 ⊒⃻ᛥ೙
was expressed in mammalian cells.
⢦䈫䉋䈒ૃ䈢⴫⃻ဳ䉕␜䈜㪅
localization suggests that WBSCR17 may work as a
The subcellular
glycosyltransferase.
ii) Carbohydrate profiles were studied in the cells with
䋲䋩D㪄㪻㫐㫊㫋㫉㫆㪾㫃㫐㪺㪸㫅 䈱䊛䉼䊮ဳ䋬䈍䉋䈶 㪦㺍㪤㪸㫅 ဳ♧㎮䈮
constitutively expressed WBSCR17 by metabolic
㑐䈜䉎⎇ⓥ
labeling of carbohydrates using GalNAz.
The
䈖䈱ታ㛎䈪䈲䉷䊑䊤䊐䉞䉾䉲䊠䈱ೋᦼ⢦䈮 㪝㪣㪘㪞 䉺䉫䉕
detection of metabolically labeled glycoproteins from
᦭䈜䉎D㪛㪞 䉕⊒⃻䈘䈞䉎䋮䈠䈱㓙䋬䉝䊮䉼䉶䊮䉴䊝䊦䊖䊥
the cells with overexpressed WBSCR17 demonstrated
䊉䉥䊥䉯䉕↪䈇䈩․ቯ䈱 㪞㪸㫃㪥㪘㪺㪄㪫 䈱⊒⃻䉕ᛥ೙䈚䈩䋬䈬
bands with enhanced expression, indicating the
䈱䉝䉟䉸䉱䉟䊛䈏D㪛㪞 䈱䊛䉼䊮ဳ♧㎮↢วᚑ䈮㑐䉒䈦䈩
possible glycosylation by WBSCR17.
iii) The knockdown (KD) of WBSCR17 in zebrafish
䈇䉎䈎䉕䉴䉪䊥䊷䊆䊮䉫䈜䉎䋮੹ᐕᐲ䈲䋬⚵឵D㪛㪞 䈱䉮䊮
generated most severe malformation of hindbrain
䉴䊃䊤䉪䊃䉕૞⵾䈚䈢䋮
compared with the other brain-specific isozymes.
We then examined the expression of some hindbrain
㧟㧚Research projects and annual reports
markers, and found that wnt1 and rfng were lost or
O-Glycosylation is an important post-translational
modification of proteins, and is classified into several
ectopically expressed.
subtypes based on the carbohydrate-protein linkage
rfng in zebrafish showed the similar phenotype to that
17
The KD of either wnt1 or
of the WBSCR17 KD embryos.
All these data
Homologous to Polypeptide GalNAc-transferases in
indicate the WBSCR17 is somehow related to signal
Zebrafish. ╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ㪆╙ 㪏㪊 ࿁ᣣᧄ↢
transduction of wnt1 and/or rfng.
ൻቇળᄢળวหᐕળ䋬␹ᚭᏒ䋬㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
2) Analysis of functions of O-glycosidic carbohydrates
H. Fujiwara, T. Satoh, Y. Nakayama, N. Nakamura, A.
in D-dystroglycan (DDG)
Kurosaka, Functional analysis of brain-specific polypeptide
N-acetylglactos- aminyltransferase-related genes, ╙ 㪊㪊 ࿁ᣣ
The aim of this project is to identify GalNAc-T
ᧄಽሶ↢‛ቇળᐕળ㪆╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ䋬
isozymes involved in mucin-type O-glycosylation of
DDG,
and
to
identify
mucin-carbohydrates.
the
roles
DDG
of
␹ᚭᏒ䋬㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
To express FLAG-tagged DDG
in zebrafish, we generated its construct.
Y.
We are
Nakayama,
Y.
Tsuji,
Characterization
of
N.
Nakamura,
brain-specific
A.
Kurosaka,
polypeptide
GalNAc-transferases in P19 cells, ╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇ
introducing the construct into the embryos.
ળ ᐕ ળ 㪆╙ 㪏㪊 ࿁ ᣣ ᧄ ↢ ൻ ቇ ળ ᄢ ળ ว ห ᐕ ળ 䋬␹ ᚭ Ꮢ 䋬
䋴䋮⊒⴫⺰ᢥ
㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
K. Yamauchi, and A. Kurosaka: Expression and function of
䋸䋮䈠䈱ઁ․⸥੐㗄
glycogen synthase kinase-3 in human hair follicles. Arch.
䋱䋮 ᄖㇱ⾗㊄
Dermatol. Res. 302(4): 263-270 (2010)
⑼ ቇ ⎇ ⓥ⾌ ၮ⋚ ⎇ⓥ 䋨㪚䋩䋨ઍ⴫䋩䋬ၮ ⋚⎇ ⓥ䋨㪙䋩㩿ಽ
I, Kimura, Y. Nakayama, M. Konishi, T. Kobayashi, M. Mori, M.
ᜂ㪀
Ito, A. Hirasawa, G. Tsujimoto, M. Ohta, N. Itoh, M. Fujimoto:
⑳┙ᄢቇᚢ⇛⊛⎇ⓥၮ⋚ᒻᚑᡰេ੐ᬺ䋨ಽᜂ䋩
Neuferricin, a novel extracellular heme-binding protein,
promotes neurogenesis. J. Neurochem. 112(5): 1156-1167
䋲䋮 ⍮⽷ᮭ╬ 䈭䈚
(2010)
䋳䋮 ቇᄖᵴേ 䈭䈚
䋴䋮 ฃ⾨╬ 䈭䈚
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
䋵䋮 䈠䈱ઁ
↥ቇදห䋨䉟䊮䉺䊷䊒䊨䊁䉟䊮␠䈫䈱౒ห⎇ⓥ䋩
S. Sasaki, Y. Nakayama, M. Konishi, A. Miyake, N. Itoh: The
㜞ᄢㅪ៤੐ᬺ 㪪㪧㪧 䈱ታᣉ
FGF Family in Humans, Mice, and Zebrafish: Development,
Physiology, and Pathophysiology. Genetic Disease. in press
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
䈭䈚
䋷䋮ቇળ⊒⴫
N. Nakamura, M. Tawara, K. Nishimura, K. Hachiga, H.
Nishizaki, Y. Nakayama, A. Miyake, N. Itoh, A. Kurosaka,
The
Biological
Roles
GalNAc-transferases
of
in
Brain-specific
Zebrafish.
Polypeptide
International
Carbohydrate Symposium (ICS2010), Yokohama (Japan),
2010.8.1-6.
A. Kurosaka, S. Toba, T. Satoh, N. Nakamura, Y. Nakayama, K.
⎇ⓥቶ䈱㓸ว౮⌀䋨䋱䋵ภ㙚䊁䊤䉴䈮䈩䋩
Ozaki Suppression of a novel brain-specific UDP-GalNAc:
polypeptide N-acetylgalactosaminyltransferase causes cell
death in P19 embryonic carcinoma cells during neural
differentiation.
International
Carbohydrate
Symposium
(ICS2010), Yokohama (Japan), 2010.8.1-6.
N. Nakamura, M. Tawara, K. Nishimura, K. Hachiga, H.
Nishizaki, Y. Nakayama, A. Miyake, Nobuyuki Itoh, A.
Kurosaka, The Biological Roles of WBSCR17, a Gene
18
᛫⠧ൻකቇ⎇ⓥቶ
ᢎ᝼ ᧼㊁ ⋥᮸
Laboratory of Anti-Aging Medicine
Prof. Naoki Itano, Ph.D.
䋱䋮 ⎇ⓥ᭎ⷐ
䉇ౣ⊒䉕ᒁ䈐⿠䈖䈜ᦨᄢ䈱ⷐ࿃䈫⠨䈋䉌䉏䇮ᩮᴦ⊛ᴦ≮䈱
㜞㦂ൻ␠ળ䈱ᕆㅦ䈭ㅴⴕ䉕⢛᥊䈫䈚䈩䇮੺⼔䈭䈬᭽䇱䈭
ᮡ⊛䈫䈚䈩㊀ⷐⷞ䈘䉏䈩䈇䉎䇯
໧㗴䈱⸃᳿䈏ᕆോ䈱⺖㗴䈫䈭䈦䈩䈇䉎䇯ᒰ⎇ⓥቶ䈱⋡ᮡ䈲䇮
≸ᐙ⚦⢩䈲ᱜᏱᐙ⚦⢩䈫ห᭽䈮䇮․ᱶ䈭ᓸዊⅣႺ㩿ᐙ⚦
⠧ൻ䈮․ᓽ⊛䈭∛⊛䈭⁁ᘒ䈮੺౉䈚䇮㐳ኼ䈱⾰䋨ర᳇䈮㐳
⢩䊆䉾䉼㪀ౝ䈪↢ሽ䈚䇮䈠䈱ᐙ⚦⢩ᕈ䉕⛽ᜬ䈚䈩䈇䉎䈫⠨䈋䉌
ኼ䉕੨ฃ䈪䈐䉎⁁ᘒ䋩䉕⏕଻䈜䉎䈢䉄䈱㕟ᣂ⊛䈭ᛛⴚ䉕⏕┙
䉏䈩䈇䉎䇯ᓥ䈦䈩䇮≸ᐙ⚦⢩䈱ᐙ⚦⢩ᕈ䉕༚ᄬ䈘䈞䇮ᖡᕈᒻ
䈜䉎䈖䈫䈪䈅䉎䇯᛫⠧ൻකቇ⎇ⓥቶ䈪䈲䇮䈖䈱⋡⊛䈱䈢䉄䇮
⾰ォ឵䉕㒖ᱛ䈜䉎䈢䉄䈮䈲䇮≸ᐙ⚦⢩䊆䉾䉼䉕ᮡ⊛䈫䈜䉎䈖
ಽሶ↢‛ቇ䇮⚦⢩↢‛ቇ䇮↢ൻቇ䇮䈠䈚䈩䇮ㆮવሶᎿቇ䈱
䈫䈏㊀ⷐ䈪䈅䉎䇯ᧄ⎇ⓥ䈱ਥ⋡⊛䈲䇮≸ᐙ⚦⢩䊆䉾䉼䈱ᒻᚑ
వ┵ᛛⴚ䉕㚟૶䈚䈩䇮એਅ䈱⎇ⓥ⺖㗴䈮ข䉍⚵䉖䈪䈇䉎䇯
䉕ᡰ㈩䈚䈩䈇䉎⚦⢩ᚑಽ෸䈶ಽሶ䉕หቯ䈚䇮䈠䈱ᒻᚑ䉕䉮䊮
䊃䊨䊷䊦䈜䉎䈖䈫䈮䉋䉍䇮≸䉕ભ⌁䈮ዉ䈒䈢䉄䈱ᣂⷙᴦ≮ᴺ䉕
䋱㪑䊍䉝䊦䊨䊮㉄↢วᚑᯏ᭴䈱⸃᣿䈫䉝䊮䉼䉣䉟䉳䊮䉫ᛛⴚ
⏕┙䈜䉎䈖䈫䈪䈅䉎䇯
䈻䈱ዷ㐿
㑐▵ᯏ⢻䈱ૐਅ䈏ේ࿃䈪ኢ䈢䈐䉍䈮䈭䉎㜞㦂⠪䈏Ⴧ䈋䈩
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䈇䉎䇯䈖䈱ⷐ࿃䈫䈚䈩䇮㑐▵䈪䉪䉾䉲䊢䊮䉇ẢṖ䈱ᓎഀ䉕䈜䉎
⑳㆐䈲ᦨㄭ䇮⣲≌㑐ㅪ䊙䉪䊨䊐䉜䊷䉳䈏䇮䊍䉝䊦䊨䊮㉄䊥䉾
䊍䉝䊦䊨䊮㉄䈱ᷫዋ䈏䈅䉎䇯䊍䉝䊦䊨䊮㉄䈲䇮㪥㪄䉝䉶䉼䊦䉫䊦
䉼⣲≌ᓸዊⅣႺ䈮ଐሽ䈚䈩䇮⣲≌㑆⾰䈮േຬ䈘䉏䉎䈖䈫䉕᣿
䉮䉰䊚䊮㩿㪞㫃㪺㪥㪘㪺㪀䈫䉫䊦䉪䊨䊮㉄㩿㪞㫃㪺㪘㪀䈏䇮㱎㵥㪈㪃㪊䈫㱎㵥㪈㪃㪋⚿
䉌䈎䈮䈚䈢䇯䊙䉪䊨䊐䉜䊷䉳േຬ䈮ኻ䈜䉎㑆⾰↱᧪䊍䉝䊦䊨䊮
ว䈪੤੕䈮ㅪ⚿䈚䈢㪉♧䊡䊆䉾䊃䈱➅䉍㄰䈚᭴ㅧ䈎䉌䈭䉎㜞ಽ
㉄䈱ነਈ䉕⺞䈼䉎䈢䉄䇮⑳㆐䈲㑆⾰✢⛽⧘⚦⢩䈮䈍䈔䉎䊍
ሶᄙ♧䈪䈅䉍䋨࿑䋱䋩䇮․䈮⚿ว⚵❱䈱⚦⢩ᄖ䊙䊃䊥䉾䉪䉴ᚑಽ
䉝䊦䊨䊮㉄วᚑ㉂⚛䋲䋨㪟㪸㫊㪉䋩䈱ㆬᛯ⊛䈭ㆮવሶ⎕უ䉕ⴕ䈦
䈫䈚䈩ᐢ䈒ሽ࿷䈚䈩䈇䉎䇯⑳㆐䈲䇮਎⇇䈮వ㚟䈔䈩䇮േ‛䈱䊍
䈢䇯䈠䈚䈩䇮✢⛽⧘⚦⢩䈮䈍䈔䉎䊍䉝䊦䊨䊮㉄วᚑ䈱ᰳ៊䈏䇮
䉝䊦䊨䊮㉄วᚑ㉂⚛䉕⷗಴䈚䇮䊍䉝䊦䊨䊮㉄วᚑᯏ᭴䈱⸃᣿
⣲≌㑆⾰䈻䈱䊙䉪䊨䊐䉜䊷䉳䈱േຬ䈫⣲≌ⴊ▤䊶䊥䊮䊌▤䈱
䈮ข䉍⚵䉖䈪䈐䈢䇯䈠䈚䈩䇮วᚑ㉂⚛ㆮવሶ⚵឵䈋䉺䊮䊌䉪
ᣂ↢䉕૗䉏䉅㗼⪺䈮ᛥ೙䈜䉎䈖䈫䉕᣿䉌䈎䈮䈚䈢䇯਄⸥⚿ᨐ
⾰䉕↪䈇䈢⹜㛎▤ౝ䊍䉝䊦䊨䊮㉄วᚑ䉲䉴䊁䊛䈱㐿⊒䈮ᚑ
䈲䇮㑆⾰↱᧪✢⛽⧘⚦⢩䈱ᒻᚑ䈜䉎䊍䉝䊦䊨䊮㉄䊥䉾䉼䈭⣲
ഞ䈚䇮㉂⚛䉕ᵴᕈൻ䈜䉎ൻว‛䈱ត⚝䉕ᆎ䉄䈩䈇䉎䇯੹ᓟ䇮
≌ᓸዊⅣႺ䈏䇮⣲≌㑐ㅪ䊙䉪䊨䊐䉜䊷䉳䈱േຬ䈫䈠䈱ᓟ䈱ⴊ
䊍䉝䊦䊨䊮㉄↢วᚑᯏ᭴䈱ోኈ⸃᣿䈮ข䉍⚵䉂䇮䈠䈱⎇ⓥ䉕
▤䊶䊥䊮䊌▤ᣂ↢䈮㊀ⷐ䈭ᓎഀ䉕ᨐ䈢䈚䈩䇮䈏䉖ㅴዷ䈮ነਈ
ㅢ䈛䈩䇮䉝䊮䉼䉣䉟䉳䊮䉫䈻䈱ᛛⴚዷ㐿䉕⋡ᜰ䈜䇯
䈚䈩䈇䉎䈖䈫䉕␜ໂ䈚䈩䈇䉎䇯
䋨એ਄䈱ᚑᨐ䈲㪚㪸㫅㪺㪼㫉 㪩㪼㫊㪅㪉㪇㪈㪇䈮䈩౏⴫䋩
3. Research projects and annual reports
We here in Japan are facing a multitude of problems caused by
GlcA
the rapid growth of what has been termed the “super-aged
GlcNAc
society”. The aims of our research are to improve the
࿑ ࡅࠕ࡞ࡠࡦ㉄ߩ᭴ㅧ
morbidities that are characteristic of age progression and to
establish
innovative
technologies
that
can
ensure
a
䋲䋺≸ᓸዊⅣႺᒻᚑ䈱ಽሶᯏ᭴䈫≸ᐙ⚦⢩䊆䉾䉼䉕ᮡ⊛䈫䈚
comfortable quality of life (QOL) for elderly. To this end, our
䈢ᴦ≮䈱ၮ⋚⎇ⓥ
laboratory has been pursuing the following research programs
㜞㦂ൻ␠ળ䈱೔᧪䈮䉋䈦䈩䇮ᚒ䈏࿖䈪䈲䇮≸䈏ਥ䈭ᱫ࿃䈫
using advanced technologies in molecular and cellular biology,
䈭䉍䇮䈠䈱స᦯䈏␠ળ⊛ⷐ⺧䈫䈭䈦䈩䈇䉎䇯≸䈲䇮↢๮䉲䉴䊁
biochemistry, and genetic engineering:
䊛䈱♖Ꮑ䈭䉮䊮䊃䊨䊷䊦䉕ㅺ⣕䈚䈩⚦⢩䈏Ⴧ䈋⛯䈔䉎䈖䈫䈪
⊒∝䈜䉎䈏䇮≸䈱ㅴዷ䇮ォ⒖䇮ౣ⊒䈱ᱜ⏕䈭ᯏ᭴䈮䈧䈇䈩
1: Elucidation of the Biosynthetic Process of Hyaluronan and
䈲䇮ᧂ䈣චಽ䈭⸃᣿䈏䈭䈘䉏䈩䈇䈭䈇䇯ㄭᐕ䇮ᄙ䈒䈱≸䈮䈍
its Application to Anti-aging Technologies
䈇䈩䇮䇸≸ᐙ⚦⢩䇹䈱ሽ࿷䈏ႎ๔䈘䉏䈩䈍䉍䇮䈖䈱⚦⢩䈏≸䈱
There are an increasing number of bedridden elderly people in
Ḯ䈪䈅䉎䈫䈇䈉⠨䈋䈮ᵈ⋡䈏㓸䉁䈦䈩䈇䉎䇯≸ᐙ⚦⢩䈲䇮ᓥ
Japan with a loss of joint function due to conditions like
᧪䈱ൻቇ≮ᴺ䉇᡼኿✢ᴦ≮䈮ᛶ᛫ᕈ䉕␜䈜䈖䈫䈎䉌䇮ォ⒖
osteoarthritis. Hyaluronan (HA) acts as a cushion and
lubricant in articulating joints. It is an integral component of
19
the synovial fluid between joints, but becomes reduced by age
We recently discovered that tumor-associated macrophages
and thereby causes functional disorders. HA is a high
preferentially traffic to stromal areas formed within tumors in
molecular-mass polysaccharide found in the extracellular
a manner dependent on an HA-rich tumor microenvironment.
matrix, especially of that of connective tissues, and is
To address the role of stroma-derived HA in macrophage
composed
which
recruitment, we disrupted the murine HA synthase 2 (Has2)
N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcUA)
gene in stromal fibroblasts using conditional gene targeting.
are linked together by alternating ß-1,3 and ß-1,4 linkages
The Has2-null fibroblasts showed severe impairment in
(Figure 1). Our laboratory discovered the first mammalian HA
recruiting macrophages when inoculated with tumor cells into
synthase (HAS) gene and has been thoroughly investigating
nude mice, suggesting a key role of HA in tumor targeting.
the mechanism of HA biosynthesis ever since. Recently, we
Furthermore, a deficiency in stromal HA attenuated tumor
succeeded in establishing an in vitro reconstitution system
angiogenesis and lymphangiogenesis concomitantly with
using a recombinant HAS protein and developed a screening
impaired macrophage recruitment. These results suggest that
system for compounds that have HAS activation potential. Our
stroma-derived HA serves as a microenvironmental signal for
future challenge is therefore to understand the entire
the recruitment of tumor-associated macrophages, which are
mechanism of HA biosynthesis and apply this knowledge to
key regulatory cells involved in tumor neovascularization.
developing innovative anti-aging technologies.
(Published in Cancer Res.2010㧕
2: Studies on Cancer Microenvironment Formation and the
㪋䋮⊒⴫⺰ᢥ
Establishment of Therapies Targeting Cancer Stem Cell
H. Yamazaki, M. Takeoka, M. Kitazawa, T. Ehara, N. Itano, H.
of
repeating
disaccharide
units
in
Niches
Kato, and S. Taniguchi: ASC plays a role in the priming
Cancer has become the leading cause of death in our country
phase of the immune response to type II collagen in
collagen-induced arthritis.
due to increased longevity, and as such the eradication of
Rheumatol Int. (2011) in press.
cancer has become a social mission. Although it is well known
N. Kobayashi, S. Miyoshi, T. Mikami, H. Koyama, M.
that uncontrolled cell proliferation leads to the development of
Kitazawa, M. Takeoka, K. Sano, J. Amano, Z. Isogai, S.
cancers, the precise mechanisms underlying metastatic tumor
Niida, K. Oguri, M. Okayama, J.A. McDonald, K. Kimata, S.
progression and recurrence have not been fully resolved.
Taniguchi, and N. Itano: Hyaluronan deficiency in tumor
Cancer stem cells (CSCs) have recently been reported to exist
stroma
impairs
macrophage
trafficking
and
tumor
in many malignancies and have attracted remarkable attention
neovascularization. Cancer Res. 70(18):7073-7083 (2010)
because they are believed to be the only cells capable of
K. Nakajima, M. Takeoka, M. Mori, S. Hashimoto, A. Sakurai,
initiating cancer growth. Because CSCs are relatively resistant
H. Nose, K. Higuchi, N. Itano, M. Shiohara, T. Oh, and S.
to conventional chemotherapy and radiotherapy, and because
Taniguchi: Exercise effects on methylation of ASC gene. Int.
J. Sports Med. 31(9):671-675 (2010)
they are closely associated with cancer metastasis and
A. Sugaya, M. Takeoka, N. Itano, A. Taguchi, T. Ehara, and S.
recurrence, targeting them is now a primary goal in cancer
Taniguchi: Calponin h1-S175T point mutation enhances
therapy.
resistance to actin cytoskeleton perturbation in human cancer
CSCs, like normal stem cells, reside and maintain their
cells. Anticancer Res. 30(4):1071-1078 (2010)
stemness within a specialized microenvironment called a stem
cell niche. Thus, strategies to limit their stemness and
K. Kanyama, H. Yabushita, Y. Obayashi, M. Noguchi, L. Zhuo,
malignant transformation must focus on the importance of
N. Itano, K. Kimata, and A. Wakatsuki: Role of hyaluronan
targeting this CSC niche. The main purpose of our research in
synthase,
this domain is to identify the cellular and molecular cues that
hyaluronan-associated protein (SHAP)-hyaluronan complex
govern the formation of the specialized CSC niche
in endometrial cancer. J. Aichi Med. Univ. Assoc.
microenvironment and establish novel therapies to induce a
38(1-4):29-42 (2010)
hyaluronan
and
serum-derived
state of cancer dormancy by controlling the niche.
䋵䋮 ✚⺑䊶⪺ᦠ䈍䉋䈶✚⺑
᧼㊁⋥᮸ 䊍䉝䊦䊨䊮㉄วᚑ㉂⚛ ↢ൻቇ 㪏㪉㩿㪎㪀㪃 㪍㪌㪎㪃 㪉㪇㪈㪇㪅
3: Recent progress in our laboratory
20
䋶䋮 ᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
᧼㊁⋥᮸ 䊍䉝䊦䊨䊮㉄วᚑ⇣Ᏹ䈫䈏䉖ㅴዷ ╙ 㪈㪎㪊 ࿁ᣣ੽
↢‛ቇળ䇮 ੩ㇺᏒ 㪉㪇㪈㪇㪅㪈㪉㪅㪋
N.
Itano: Stromal
hyaluronan
accelerates
macrophage
mobilization and tumor neovascularization. Hyaluronan
2010 (International Society for Hyaluronan Sciences, 8th
International Conference), Kyoto (Japan), 2010.6.7
䋷䋮 ቇળ⊒⴫
䈭䈚
䋸䋮 䈠䈱ઁ․⸥੐㗄
䋱䋮 ᄖㇱ⾗㊄
㪤㫀㫑㫌㫋㪸㫅㫀 㪽㫆㫌㫅㪻㪸㫋㫀㫆㫅 㪽㫆㫉 㪞㫃㫐㪺㫆㫊㪺㫀㪼㫅㪺㪼
㪪㪙㪠 䉝䊤䊒䊨䊝ᩣᑼળ␠౒ห⎇ⓥ⚻⾌
䋲䋮 ⍮⽷ᮭ╬
䈭䈚
䋳䋮 ቇᄖᵴേ
ᣣᧄ⚿ว⚵❱ቇળ⹏⼏ᆔຬ
ᣣᧄ䈏䉖ォ⒖ቇળ⹏⼏ᆔຬ
䊒䊨䊁䉥䉫䊥䉦䊮䊐䉤䊷䊤䊛਎⹤ੱળᓎຬ
㪟㫐㪸㫃㫌㫉㫆㫅㪸㫅 㪉㪇㪈㪇 㩿㪠㫅㫋㪼㫉㫅㪸㫋㫀㫆㫅㪸㫃 㪪㫆㪺㫀㪼㫋㫐 㪽㫆㫉 㪟㫐㪸㫃㫌㫉㫆㫅㪸㫅
㪪㪺㫀㪼㫅㪺㪼㫊㪃 㪏㫋㪿 㪠㫅㫋㪼㫉㫅㪸㫋㫀㫆㫅㪸㫃 㪚㫆㫅㪽㪼㫉㪼㫅㪺㪼㪀੐ോዪ㐳䇮䊒䊨
䉫䊤䊛ᆔຬ
䋴䋮 ฃ⾨╬
䈭䈚
䋵䋮 䈠䈱ઁ
䈭䈚
21
%$&' +1
Laboratory of Cell Signaling and Development Prof. Ken-ichi Sato, Ph.D
AKM
Assist. Prof. Mahbub Hasan A.K.M., Ph.D )(
*('
Œ˜2òēĎğIJ»î{vvp7|ðv&s±ĂČ
ĻĺĚĭċĈIJÑĘĶģč³ıĪĥěıĶļòęĴēĶıĶÁ
ĸĵĸĞîâìÓļëòěĸīĂMêìØþÔĻëøóÓñĄ
ò¨\
ĦıĊĚĭċĈIJĂĮĜIJvpîäþ!‰L‡ò5cbí
Ò ıĪĥěıĶļĹĺóÓĚĭċĈIJòĭĕLò•Ÿí$
×þÔqñ‰5î݌˜žijĨIJíđĶĘčĝâèîÞñ´
LáÿþÏĘĶģč³ĥěĴĔćĠĶÝ?ñ·ü
àþÓ{vÃ4òēĎğIJ»cbñ %Ý×þÔļëøóÓ
ÿìgŒ˜ñ
ñĤĝò,͌˜^ĂĮĜIJ8ЊîäþÝ㌘òv
vãþÑĘĶģč³í×þԃèéóàò ÝęĴēĶı
p7|cší×þÔqñÝ㌘ñqXòÓd@Œ˜ñó
ĶÁáÿìØþàîĂTüÜñâèÔ òęĴēĶıĶÁ
ðØvp7|cšĹèîÚôÓ×þu/ñÛßþŒ˜eO
óÓBLYÜüLoÓ!‰ÛûõY{vĹÑĘ
NGĺò5-}ñ %Ý×þÔàÿüóÓ¦ÛØñÄ
Ķģč³Ýj3äþĉĘīĔįčēAvY÷íĺøãìH@
òðØÓ×þØóvpò­vîeñæÿçÿÄä
|ñ§;áÿèÔ¡ñĘĶģč³ęĴēĶıĶÁ݌˜
þîØÙI%í~äþěĸīí×þûÙñUþÜùâÿðØÔ
ž¶íӌ˜2ò°u/ò1ñFãìº|ñ§;
âÜâƒèéóÓļëòv&s±ñÓ¸ò½5wpÝÜ
áÿþàîÔÚþîÓ òďĸĕóqyí×ý %kØÔ
Üāþ¸òtÝ×þòíóðØÜÓî”Úì
ýµ÷ÿþÇñ¿¨Ă!ßèŽ]
ý
ĩIJĮĶmñûþgŒ˜òLoÝÓęĴēĶıĶÁ*
ăíØþÔvÞpòvîeó—$āåòÄÓðïî©Ùà
ògŒ˜öòE<hñûêìÅ9áÿþîØÙ8Ð
îÝ×þԃèéóӌ˜ijĨIJòvîeÝØñ—$ā
Ž]ÝDüÿèÔęĴēĶıĶÁ*ÛûõÈıĶÁ*ò
åòÄñ×þ"šGĂ5ijĨIJía«âìØÞèØî”
ñvtcšò¼ØÂ'äþŽ]îâìÓCò†
ÚìØþÔ!‰Ăěĸīîäþ†íóòĽnñÂnĂ
>ÃñvÜâìØÞèØÔĹ¯R{¤×ýĺ
‘ØìØþÔ
Ļĺ!‰ñٌ˜ęĴēĶČğĸė &ĹĒĸčĺòiG
ò5cbîvt|I’
ļ匘žE<Ê+ŞīąčĴĞĭąĶĺò‰5îò~
xú & iGò.îâìòÞ
ĽĺòBLÓLoÓÛûõ!‰ñÙgG # ò“ªi
GîħĴěĉĸĬò1
Ò ÷èÓÝăĂěĸīîäþ†íóÓòĽnñÂnÑ
ØìØþÔ
ļ匘žīąčĴĞĭąĶ=)ĘĶģč³ĆĴħİČĶ ò
ĻĺÝ㌘ò#…ĕĝijĕu/Ĺ¢lÌÎķ
Á‹ķ
Q
¨\
ðïĺñÛßþŒ˜e(¾ĭĊĠĖĬ
Ò Œ˜žīąčĴĞĭąĶñ=)äþž²¸*ĘĶģč³Ć
ļ匘2òu/ĂJ€âFˆäþ.îâìòŒ˜žE<
ĴħİČĶ ĹÓĺòŒ˜=)ñÄäþv7|ķ
Ê+ŞīąčĴĞĭąĶĺòÞ
z7|¨\Ă£êèîàĀÓ ó?ñÛ
ĽĺÝ㌘òvp7|cšñÛßþŒ˜žijĨIJò
ßþŒ˜BLYÜüĘĶģč³{sĂâìØþSíÓ
$%$! $%#" cbî_ijĨIJò ! $%#" cbò~x
Œ˜¤ÉñÛßþ{sóPCòZ!‰ñÆüÿþà
Ò ðÛÓ[†ó$v&„7¿ħĴĔćčĝ†ÕXGv
îÂ'äþŽ]ĂDèÔàòàîóӉ5!:ò¥
fcbñÛßþvfŒ˜žēĎğIJ»ò†Öòuî
5í×þ òcš|{sĭĊĠĖĬò§nÜü %kØÔ
âì£āÿìØþÔ
Có òŒ˜rñÛßþ{sò8Ăáüñ¬Œñ
¨\âÓBLYòïòVní‰5Ă!:äþàîÝ"šñ
22
ðþÜîØÙnî$āåìTüÜñâìØÞèØÔŏ®¯R
of membrane microdomains (MDs), where a specific subset of
{¤×ýĺ
signaling molecules as described above are pre-organized
and/or transiently localized from other cellular compartments.
By combining studies on the fertilization system by using frog
eggs and the cancer system by using human cancer cell lines,
we will explore the idea that life and death of the cell system
are regulated by a similar signal transduction mechanism.
In 2010, we have published one research paper on
tyrosine phosphorylation of lipovitellin 2, a yolk-associated
protein in Xenopus laevis oocytes, eggs, and early embryos.
Shown below is the summary of the study (partly taken from
the published paper): A tyrosine-phosphorylated protein of 33
ĽĺÝ㌘ĆĴħİČĶ Ûûõ & òŒ˜eONGēĎ
kDa is shown to be present in the solubilized yolk fraction of
ğıĶĎñÛßþcšò¨\
Xenopus laevis oocytes, eggs, and early embryos. The
Ò òĤĝĩĮĴĎĂ{säþ#…ĤĝÝ㌘^ĂxØìÓ
phosphoprotein
¢lÌÎONGòŒ˜0fcbĂTüÜñäþèøò
immunoprecipitation and Mass spectrometry studies and is
ò8ÐĂ£êèԝ™Ý㵅ŠðïĺӎœÝăĻ…
termed pp33/LV2. pp33/LV2 is stably present during
ĹĺÓÛûõ›ŸÝăĻ…ĹĺòæÿçÿòÝăŒ
oogenesis, oocyte maturation, and early embryogenesis. In
˜ñÛØìÓ¢lÌÎu/íòĘĶģč³ıĶÁÀ‹
vitro enzyme assays with the use of the tyrosine phosphatase
& òiGrKÓÛûõŒ˜0fñÛßþ & 6Gè
LAR and the tyrosine kinase Src demonstrate a reversible
\âèîàĀÓĽ…Ëò™ÝăíÓ& òiGî & 6
nature of the tyrosine phosphorylation of pp33/LV2.
is
lipovitellin
2
as
demonstrated
by
|ðŒ˜0fݧ;áÿèÔàòàîóӝ™Ý㌘Ý
Microinjection studies demonstrate that the solubilized yolk
& 6|¢lÌÎONGĭĊĠĖĬĂW¹|ñXâ
fractions, but not those of immunodepleted of pp33/LV2 or
ìØþ"šGÂ'âìÛý %kØÔĹ¯RLĺ
those pretreated with LAR inhibit progesterone-induced
oocyte maturation. A pp33/LV2-like protein seems to present
in two Xenopus subspecies, one other frog species, and two
fish species, but not in other amphibian species such as newt
and salamander. These results suggest that LV2, in its
tyrosine-phosphorylated form, serves in a cellular function in a
species-specific manner.
53%,/
S. Kushima, G. Mammadova, A.K.M. Mahbub Hasan, Y.Fukami, and
K. Sato: Characterization of lipovitellin 2 as a tyrosine-phospho-
43Research projects and annual reports
rylated protein in oocytes, eggs, and early embryos of Xenopus
Research in our laboratory focuses on the biological functions
laevis. Zool. Sci. in press, 2011.
of gamete cells and cancer cells.
More specifically, we are
interested in analyzing signal transduction in fertilization and
63*!).
activation of development, and cancer cell’s anti-death
A.K.M. Mahbub Hasan, Y. Fukami, and K. Sato: Gamete membrane
behavior and its relevance to cellular malignancy.
Molecules
microdomains and their associated molecules in fertilization
of interest include extracellular signals such as hormones (e.g.
signaling. Mol. Reprod. Dev. in press, 2011.
EGF), membrane receptors (e.g. EGF receptor), membrane-
A.A. Tokmakov, T. Iwasaki, K. Sato and Y. Fukami: Analysis of
associated enzymes (e.g. Src tyrosine kinase), transcription
signal transduction in cell-free extracts and rafts of Xenopus eggs.
factors (e.g. myc, STATs), and other adaptor or functional
Methods 51(1):177-82 (2010)
We also
have substantial interest in investigating structure and function
molecules (e.g. MAPK, Shc, PLCg, hnRNP K).
23
730"
(
±´hlƒ¦¨®³d©~‚ŠˆA—ĉIJċġİĐĢĬò
Ken-ichi Sato: Molecular mechanisms of Xenopus egg fertilization:
†L]Ă-}îäþXx`pò–L®³P…½
Roles of egg membrane microdomains and their associated
signaling molecules. Friday Harbor labs Research Symposium:
N_®³êŽT‚•|G¯ë
Mechanisms of Egg Maturation and Fertilization, Friday Harbor
2. ­Òš¶
(WA, USA), 2010.9.12
Ë}
IÃÕ<îSignaling mechanisms of fertilization and activation of
3. lgžQ
N_>ÊCµía£œ®³8;
development: Roles of egg membrane microdomains and their
associated molecules. ‘Q lGhG
4$,ßL
9/!2’B
ê2010 { 8  18 20 
·hl=¥ÁŸnè"9#;
IÃÕ<îÀ07'39×e
¸k[p§£ß
hlâã?лäzSÐyê2010 { 9  2 3 t\h
Y¼ URLîhttp://seishokuwakate.com/ë
2010.9.24
j
(6Pk›˜éxhl£œ:§£vl"1(;
lhlâ¢vl®³²ë
ª™Xw2011.3.6
4. [Ô¶
83%,
Ë}
IÃÕ<¡uqiîWº¾À07'39×e
5. D
[¸
(6Hۛ˜µ 4 a£œ®³8;
4$,=
Zoological Science §ÆϋêKushima et al.ë‡Ø]ê2011 { 8
¥w2010.8.18-20
]@mëƹ&9†¤
¡uqiIÃÕ<î%36Wº¾À07'39s
b#9*֛¿Ç”
µ 4 a£œ®³8;
®³o.;2-;!ꍑÍZÂÍëF= URL Mß
4$,
http://web.me.com/kksateau/LABHPJ/Welcome.html
=¥w2010.8.18-20
K. Sato, Y. Kawada, N. Yamamoto, Y. FukamiîSerum-independent
growth and anti- apoptosis of human bladder carcinoma cells
require functions of membrane microdomain- associated proteins
such as Src and uroplakin III. µ 33 a‘Pk£ lG{G
µ 83 a‘£TlGhG^_{G°„w2010.12.7-10
¡uqi“‘rfMahbub Hasan A.K.M.IÃÕ<î+5
%36£œº¾¤ Uroplakin III ZD[
¸áÚ#9*Öǔµ 33 a‘Pk£ lG{Gµ
83 a‘£TlGhG^_{G°„w2010.12.7-10
93#-2
1. gÜÓÞ
‹Ü²l«ŒlÅåc®³Q– NÙ
7Ìɛ˜
ǏMR®³:®³Eƽ ®³Îæ`À0
7'39×e
ÝKkàÌÑÀÄ^Pk›˜
®³oO¬î15 ]çVJìU—È€6)2¤‰ê2010
êY¼ URLîhttp://allo-authentication.net/ë
{ 10 ë
24
ⴊ▤䈫␹⚻↢‛ቇ⎇ⓥቶ
ᢎ᝼ ἑየ ⟤㋈
Laboratory of Vascular and Neuronal Biology
Prof. Misuzu Seo, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
✢⛽⧘⚦⢩Ⴧᱺ࿃ሶ㧔FGF㧕߿ⴊ▤ౝ⊹Ⴧᱺ࿃ሶ
ߦࠃߞߡ FGFR3IIIb‫ ޔ‬IIIc‫ ޔ‬นṁဳ FGFR3'TM ߩ㧟⒳
(VEGF)ߩᖱႎࠍ⚦⢩ᄖ߆ࠄฃߌขࠆ࡟࠮ࡊ࠲࡯߇ᵴᕈൻ
ߪ‫ޔ‬FGF ߦኻߔࠆ․⇣ᕈ߇⇣ߥߞߡ߅ࠅ‫ޔ‬FGFR3IIIc ߩ
ߐࠇ⚦⢩ౝߦવ߃ࠆᖱႎ㧔ࠪࠣ࠽࡞㧕ߪ‫⚦ޔ‬⢩ߩ↢ᱫ‫ޔ‬Ⴧ
⊒⃻਄᣹ߪ㘩㆏߇ࠎᖚ⠪ߩ੍ᓟਇ⦟ߦ㑐ࠊߞߡ޿ࠆน⢻
ᱺ‫ޔ‬ಽൻ‫ޔ‬ㆇേ‫ޔ‬ᒻᘒߩ೙ᓮߦᷓߊ㑐ਈߒߡ޿ࠆ‫ࠄࠇߎޕ‬
ᕈ߇㜞޿‫ޕ‬
FGFR3IIIc ߪᱜᏱߥ਄⊹⚦⢩ߦ߅ߌࠆ⊒⃻ߪ߶
ߩ⚦⢩ౝࠪࠣ࠽࡞વ㆐ߩ⇣Ᏹ߇వᄤᕈ∔ᖚ߿߇ࠎߥߤ‫ޔ‬
ߣࠎߤ⹺߼ࠄࠇߕ‫ޔ‬㑆⪲♽ߩ⚦⢩ߦ⊒⃻ߒߡ޿ࠆ‫ޕ‬⣲≌
᭽‫∛ߥޘ‬᳇ࠍᒁ߈߅ߎߔ‫⚦ޕ‬⢩Ⴧᱺ࿃ሶߩ࡟࠮ࡊ࠲࡯߇‫ޔ‬
ౝㇱߩⅣႺᄌൻߦࠃߞߡ‫ޔ‬਄⊹㑆⪲⒖ⴕ(EMT)߇⺃⊒ߐ
ᱜᏱߥ⁁ᘒߢߪ⚦⢩ౝߦߤߩࠃ߁ߥࠪࠣ࠽࡞ࠍᒁ߈⿠ߎߔ
ࠇㅢᏱߪ⊒⃻ߒߥ޿ FGFR3IIIc ߩ⊒⃻߇⺃ዉߐࠇࠆߎߣ
ߩ߆᣿ࠄ߆ߦߒ‫߮ࠃ߅ࠎ߇ޔ‬వᄤᕈ␹⚻♽∔ᖚߦ߅޿ߡߪ
ߦࠃࠅォ⒖ᕈ߇㜞߹ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
FGFR3IIIc ߇≸⚦⢩
ࠪࠣ࠽࡞વ㆐ߩߤߩㆊ⒟ߦ⇣Ᏹࠍ߈ߚߒߡ޿ࠆߩ߆ࠍಽሶ
ߩォ⒖ࠍଦㅴߔࠆᯏ᭴ࠍ᣿ࠄ߆ߦߔࠆ‫ޕ‬
㘃ߩࠕࠗ࠰ࡈࠜ࡯ࡓࠍ↢ߓࠆ‫ࡓ࡯ࠜࡈ࠰ࠗࠕߩࠄࠇߎޕ‬
࡟ࡌ࡞ߢ⸃᣿ߒ‫ޔ‬ᖚ⠪ߩᴦ≮ᴺߩᚻ߇߆ࠅࠍ⷗ߟߌࠆ㧔ಽ
㧟㧕␹⚻⚦⢩ߩ⊒↢ߣಽൻíࠞ࡞ࡑࡦ∝୥⟲ߩ∛࿃⸃᣿
ሶᮡ⊛ᴦ≮ᴺ㧕‫ޕ‬
ࠞ࡞ࡑࡦ∝୥⟲(KS)ߩේ࿃ㆮવሶߢ޽ࠆ KAL-1 ㆮવ
ᧄ⎇ⓥቶߢߪ㧘એਅߩ⎇ⓥ࠹࡯ࡑߦߟ޿ߡ⎇ⓥࠍㆀⴕߒߡ
ሶߣ KAL-2 ㆮવሶߩᯏ⢻⸃ᨆߣ‫ߡߒ࠼࡯ࠦ߇ࠇߙࠇߘޔ‬
޿ࠆ‫ޕ‬
޿ࠆ Anosmin-1 ߣ FGF ࡟࠮ࡊ࠲࡯ 1(FGFR1)ߩ㑐ㅪߦߟ
㧝㧕VEGF-A/࠾ࡘ࡯ࡠࡇ࡝ࡦ-1(NRP1)ߩࠪࠣ࠽࡞વ㆐⚻
޿ߡ⎇ⓥࠍㆀⴕߒߡ޿ࠆ‫ޕ‬KS ߣߪේ࿃ㆮવሶߩᄌ⇣ߦࠃ
〝ߣ߇ࠎ⚦⢩ߩᖡᕈൻᯏ᭴
ߞߡ‫ޔ‬༦ⷡ㓚ኂ࡮ᶖᄬࠍ઻ߞߚૐࠧ࠽࠼࠻ࡠࡇࡦᕈᕈ⣼
ⴊ▤ౝ⊹⚦⢩Ⴧᱺ࿃ሶ(VEGF-A)ߪ‫ޔ‬⢝ఽᦼߦ߅ߌࠆⴊ
ᯏ⢻ૐਅ∝߿ᕁᤐᦼߩᰳᅤ߇⷗ࠄࠇࠆవᄤᕈ∔ᖚߢ޽ࠆ‫ޕ‬
▤ᒻᚑߦ㊀ⷐߥᓎഀࠍᨐߚߔߛߌߢߥߊ㧘߇ࠎ⚦⢩߆ࠄ
Anosmin-1 ߪ⚦⢩ធ⌕ಽሶ߹ߚߪዪᚲ⺃ዉಽሶߣߒߡᯏ
ಽᴲߐࠇ⣲≌ⴊ▤ᣂ↢ࠍ⺃ዉߔࠆߎߣߦࠃߞߡ߇ࠎ⚦⢩
⢻ߒ‫ޔ‬༦⃿ߩゲ⚝ಽጘࠍೝỗߒ‫⚦ޔ‬⢩ធ⌕߿␹⚻⓭⿠િ
ߩ↢ሽߣォ⒖ࠍଦㅴߔࠆ‫⎇ᧄޕ‬ⓥቶߢߪ㧘߇ࠎ⚦⢩߇⥄
㐳ࠍଦㅴߔࠆ‫ޕ‬㧞⇟⋡ߩㆮવሶߪ╙ 8 ᨴ⦡૕਄ߩ KAL-2
ಽߩ↥↢ߔࠆ VEGF-A ߩᖱႎࠍ NRP1 ߇࡟࠮ࡊ࠲࡯ߣߒ
ㆮવሶߢ‫⽾⤑ޔ‬ㅢဳ࠴ࡠࠪࡦࠠ࠽࡯࠯࡟࠮ࡊ࠲࡯ߢ޽ࠆ
FGFR1 ࠍࠦ࡯࠼ߒߡ޿ࠆ‫ޕ‬FGFR1 ߪ‫ࡦ࡝ࡦࠪࡠ࠴ߩߘޔ‬
㉄ൻㇱ૏ࠍ⹺⼂ߔࠆࠕ࠳ࡊ࠲࡯࠲ࡦࡄࠢࠍ੺ߒߡ⚦⢩ౝ
ࠪࠣ࠽࡞વ㆐⚻〝ࠍᵴᕈൻߒ‫⚻␹ޔ‬ᐙ⚦⢩ߩჇᱺߣಽൻ
ࠍଦㅴߔࠆ‫ޕ‬FGF ߇ FGFR1 ߦ⚿วߔࠆߣ߈ߦ‫⚦ޔ‬⢩⤑਄
ߢ Anosmin-1‫⋧ߣࡦࠞ࡝ࠣࠝ࠹ࡠࡊ㉄⎫ࡦ࡜ࡄࡋޔ‬੕૞
↪ߒ‫⚦ޔ‬⢩ౝࠪࠣ࠽࡞વ㆐ࠍჇᒝߔࠆߎߣ߇ႎ๔ߐࠇߡ
޿ࠆ‫ޕ‬anosmin-1 ߣ FGFR1 ߩᄌ⇣߇‫ޔ‬KS ߩේ࿃ߣߥࠆࠧ
࠽࠼࠻ࡠࡇࡦ(GnRH)ಽᴲ␹⚻⚦⢩ߩ⊒↢⇣Ᏹ߿༦⃿ᒻ
ᚑ⇣Ᏹࠍߤߩࠃ߁ߦᒁ߈⿠ߎߔߩ߆‫ߩߘޔ‬ಽሶᯏ᭴ࠍ⸃
᣿ߔࠆ‫ޕ‬
ߡฃߌขࠅ(autocrine) ‫⚦ࠎ߇ޔ‬⢩ߩ↢ሽߣㆆ⿛ࠍଦㅴߒ
ߡ޿ࠆ੐ࠍ⷗޿ߛߒߚ‫ޕ‬NRP1 ߩ⚦⢩ౝࠪࠣ࠽࡞વ㆐⚻
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
1) VEGF-A/࠾ࡘ࡯ࡠࡇ࡝ࡦ-1(NRP1)ߩࠪࠣ࠽࡞વ㆐⚻〝
〝ࠍ⸃᣿ߒ‫ࠎ߇ޔ‬ᴦ≮ߩᣂߒ޿ಽሶᮡ⊛ࠍ⊒⷗ߔࠆ (࿑
1) ‫ޕ‬
ߣ߇ࠎ⚦⢩ߩᖡᕈൻᯏ᭴
VEGF-A ߦࠃࠆᖡᕈ߇ࠎ⚦⢩ߩࠝ࡯࠻ࠢ࡝ࡦჇᱺߩࠪ
࿑ 1 ᖡᕈ⣲≌ߦ߅ߌࠆ VEGF-A/NRP1 ࠪࠣ࠽࡞વ㆐
ࠣ࠽࡞߇࠾ࡘ࡯ࡠࡇ࡝ࡦí1㧔NRP1㧕ߦࠃߞߡᇦ੺ߐࠇߡ
޿ࠆ੐ࠍ᣿ࠄ߆ߦߒߚ‫ޔߦࠄߐޕ‬NRP1 ߩਅᵹࠪࠣ࠽࡞
䋲䋩 ᖡᕈᚳᐔ਄⊹≸䈮䈍䈔䉎 Fibroblast Growth Factor 䊧䉶
ߦ௛޿ߡ޿ࠆ࠲ࡦࡄࠢ⾰⊒⃻ࠍsiRNA ߦࠃߞߡࡁ࠶ࠢ࠳
䊒䉺䊷(FGFR)䈱⊒⃻੣ㅴ䈫ォ⒖ᯏ᭴
࠙ࡦߔࠆߣ㧘߇ࠎ⚦⢩ߩ⿷႐㕖ଐሽᕈჇჇᱺࠍᛥ೙ߔࠆ
⣲≌ᒻᚑㆊ⒟䈮䈍䈇䈩䇮≸⚦⢩䈱Ⴧᱺ䈮䉋䉍⣲≌䈏Ⴧ
੐ࠍ␜ߒߚ‫ޕ‬ォ⒖ᕈᚳᐔ਄⊹≸⚦⢩ DJM1 ߪ‫ޔ‬ᕡᏱ⊛ߦ
ᄢ䈜䉎䈮઻䈇䇮⣲≌ౝㇱ䈲ૐ㉄⚛䇮ૐᩕ㙃⁁ᘒ䈮䈭䉎䇯䈠
VEGF-A ࠍ⚦⢩ᄖ߳ಽᴲߒ⣲≌ⴊ▤ᣂ↢ࠍ⺃ዉߔࠆ‫ޕ‬
䈱⚿ᨐ䇮≸⚦⢩䈱ㆮવሶ⊒⃻䈏ᄌൻ䈚䇮ᖡᕈൻ䈏⺃ዉߐࠇ
DJM1 ⚦⢩ࠍ VEGF-A siRNA ߢಣℂߔࠆߣ‫ޔ‬VEGF-A ߩ
ࠆ‫ޕ‬
એ೨‫ޔ‬
ᧄ⎇ⓥቶߢ㘩㆏߇ࠎᖚ⠪ߩ߇ࠎ⚵❱ߢߪ‫ޔ‬
FGFR
ಽᴲ߇ૐਅߒ‫⿷ޔ‬႐㕖ଐሽᕈჇᱺ߇ᒝߊᛥ೙ߐࠇߚ‫ޕ‬
㧟ߩࠕࠗ࠰ࡈࠜ࡯ࡓߢ޽ࠆ FGFR3IIIc ߩ⊒⃻߇਄᣹ߒߡ
VEGFR kinase inhibitor ߢߪ⿷႐㕖ଐሽᕈߩჇᱺࠍᛥ೙ߒ
޿ࠆߎߣࠍ⷗޿ߛߒߚ‫ޕ‬FGFR3 ߪㆬᛯ⊛ࠬࡊ࡜ࠗࠪࡦࠣ
25
ߥ߆ߞߚ߇‫ޔ‬NRP1 ߩ siRNA ߢߪ VEGF-A ଐሽᕈߩჇᱺ
ࠍᛥ೙ߒߚߎߣ߆ࠄ‫ޔ‬VEGF-A/NRP1 ࠪࠣ࠽࡞߇ DJM1
⚦⢩ߩ↢ሽߣჇᱺࠍଦㅴߒߡ޿ࠆ੐߇ࠊ߆ߞߚ‫ޕ‬NRP1
ߩਅᵹࠪࠣ࠽࡞࠲ࡦࡄࠢ⾰ߦኻߔࠆ siRNA ߦࠃߞߡ߽‫ޔ‬
VEGF-A ଐሽᕈߩࠦࡠ࠾࡯ᒻᚑ߇ᒝߊᛥ೙ߐࠇߚ‫ޕ‬એ਄
ߩ⚿ᨐ߆ࠄ‫ޔ‬ᣂߚߥ߇ࠎߩಽሶᮡ⊛ߣߒߡ NRP1 ߩࠪࠣ
࠽࡞વ㆐⚻〝ࠍㆬᛯߔࠆߎߣ߇᦭ലߢ޽ࠆߣ⠨߃ࠄࠇࠆ‫ޕ‬
㧞㧕ࠞ࡞ࡑࡦ∝୥⟲ᖚ⠪ߩᣂⷙ acid box ᄌ⇣ဳ FGFR1 ߩᯏ
⢻⸃ᨆߣ༦⃿ߩᒻᚑਇోߣߩ㑐ㅪ
ᣂⷙࠞ࡞ࡑࡦ∝୥⟲ߩᖚ⠪ߢߪ‫ޔ‬
༦ⷡߩૐਅߣ༦⃿ߩᒻ
ᚑਇో߇⹺߼ࠄࠇߚ‫ߩߎޕ‬ᖚ⠪ߢߪ‫ޔ‬FGFR1 ߩ Acid Box
ߦ 1 ࠕࡒࡁ㉄ᝌ౉ᄌ⇣(D132_133 insD㧧FGFR1 mutant)߇
޽ߞߚ‫ޕ‬ᱜᏱဳ FGFR1 (FGFR1 WT)ߣ FGFR1 mutant ࠍ
3㧚
㧚Research projects and annual reports
Solid tumor growth in animals and in man is accompanied by
BaF3 ⚦⢩ߦ⊒⃻ߐߖߚ‫ޕ‬FGFR1 mutant ߪ FGF ೝỗߦࠃ
neovascularization called angiogenesis. New capillary growth is
ࠅ⚦⢩Ⴧᱺࠍଦㅴߒ‫ޔ‬FGFR1 WT ߣߩჇᱺߦ㆑޿ߪ⷗ࠄ
elicited by a diffusible factor such as vascular endothelial growth
ࠇߥ߆ߞߚ‫ޕ‬FGF2 ߩⷫ๺ᕈߪ‫ޔ‬FGFR1 WT ߣ mutant ߢ
factor (VEGF) and fibroblast growth factor (FGF) generated by
ߪห᭽ߢ޽ߞߚ㧔Kd :10 ng/ml㧕‫ޕ‬PC12 ⚦⢩ࠍ↪޿ߚ␹
malignant tumor cells. There is evidence that overexpression of
⚻⓭⿠િ㐳ࠕ࠶࠮ࠗߢߪ‫ޔ‬FGFR1 mutant ߪ FGFR1 WT
VEGF and FGF correlate poor prognosis. We are investigating
ࠃࠅ␹⚻⓭⿠િ㐳߇⍴߆ߞߚ(⚂ 50 %)‫ޕ‬FGFR1mutant ߢ
the molecular mechanisms whereby VEGF and FGF mediate
ߪߥߗ␹⚻⓭⿠િ㐳߇⍴ߊߥࠆߩ߆‫ߩߘޔ‬ේ࿃ࠍ⺞ߴࠆ
tumor progression. Anti-VEGF antibodies (such as Avastin) have
ߚ߼ FGFR1 ߩਥⷐߥ⚦⢩ౝࠪࠣ࠽࡞વ㆐⚻〝ߢ޽ࠆ
received much attention lately for their ability to block tumor
Ras/MAPK(ERK1/2)⚻〝‫ޔ‬PI3K/Akt ⚻〝‫ޔ‬3/&Ȗ ⚻〝ߦߟ
angiogenesis and prolong the life of cancer patients. Neuropilins
޿ߡ⺞ߴߚ‫ޕ‬FGF2 ೝỗߪ‫ޔ‬WT ߣ mutant ࠍ੺ߒߡ
(NRP1 and NRP2) are receptors for the VEGF family of
MAPK(ERK1/2)ߣ Akt ߩ࡝ࡦ㉄ൻࠍห᭽ߦᒁ߈⿠ߎߒߚ
angiogenesis stimulators. Previously, it was shown that VEGFs
mutant
߇‫ޔ‬
FGFR1WTߣFGFR1mutant߳ߩ3/&Ȗߩ⚿วߪ‫ޔ‬
act via VEGF receptor tyrosine kinases, but it now appears that
ߢߪૐߊߥߞߡ޿ߚ‫ޕ‬એ਄ߩ⚿ᨐ߆ࠄ‫⿠⓭⚻␹ޔ‬િ㐳ߩ
VEGF activity is also modulated by NRPs, which have no kinase
Ꮕߪ 3/&Ȗ ߩ⚻〝߇㑐ਈߒߡ޿ࠆߣ⠨߃ࠄࠇߚ‫ޕ‬FGFR1
ߩ Acid Box ߦ߅ߌࠆ㧝ࠕࡒࡁ㉄ᝌ౉ᄌ⇣߇‫⚦⚻␹ޔ‬⢩ߩ
activity. We focus on developing new antitumor agents, which
␹⚻⓭⿠ߩિ㐳ߦ㓚ኂࠍ෸߷ߒ‫⚿ߩߘޔ‬ᨐ↢૕ౝߢߪ༦
target the VEGF/NRPs and/or FGF mediated cell signaling in
⃿ߩᒻᚑߦᓇ㗀ࠍਈ߃ߡ޿ࠆߎߣ߇␜ໂߐࠇߚ‫ޕ‬
malignant tumor cells.
Another important project of our group is to investigate the
3) ࠞ࡞ࡑࡦ∝୥⟲ේ࿃ㆮવሶ↥‛ Anosmin-1 ߪ␹⚻ᚑ㐳
౞㍙ߩᒻᚑࠍଦㅴߔࠆ
molecular mechanisms of congenital disorders caused by neuronal
⚵឵߃ဳ Anosmin-1 ࠲ࡦࡄࠢ⾰ߩ૞⵾ࠍⴕߞߚ‫ޕ‬PC12
impairment. FGF regulates the survival and motility of neural cells
⚦⢩ߦࡅ࠻ᱜᏱဳ FGFR1WT ࠍ቟ቯ⊒⃻ߐߖ‫ޔ‬FGF2 ߣ
in vertebrates. Especially, loss of the function of FGF signaling
Anosmin-1 ߢೝỗߒ␹⚻⓭⿠ࠍિ㐳ߐߖߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬
in the central nervous system accounts for many hereditary and
FGF2 න⁛ߢ␹⚻⓭⿠ߩિ㐳߇ଦㅴߐࠇߚ߇‫ޔ‬Anosmin-1
congenital disorders. We are actively studying the role of FGF
ሽ࿷ਅߢᚑ㐳౞㍙ߩᒻᚑ߇ଦㅴߐࠇࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬
receptor 1 (FGFR1) and downstream signaling cascades in
Anosmin-1 ߪ Cdc42‫ޔ‬Rac1 ߩᵴᕈൻࠍᒁ߈⿠ߎߒߚ‫ࠞޕ‬
Kallmann syndrome (KS).
࡞ࡑࡦ∝୥⟲ࠍᒁ߈⿠ߎߔᄌ⇣ဳ Anosmin-1 ߪᚑ㐳౞㍙
KS is defined by the combination of hypogonadotropic
ᒻᚑଦㅴࠍ⺃ዉߒߥ߆ߞߚ‫ޕ‬Anosmin-1 ߪỚᐲଐሽ⊛ߦ
hypogonadism (HH) and anosmia/ hyposmia. Loss-of-function
ᚑ㐳౞㍙ᒻᚑࠍଦㅴߒߚ߇‫ ߪ⿠⓭⚻␹ޔ‬Anosmin-1 න⁛
mutations in the KS gene KAL2/FGFR1 account for roughly 10%
ߢߪિ㐳ߒߥ߆ߞߚ‫ޕ‬ᚑ㐳౞㍙ᒻᚑߩࠪࠣ࠽࡞ࠍ⺞ߴߚ
of KS cases, leading to the autosomal dominant form the diseases.
ߣߎࠈ‫ޔ‬Anosmin-1 ೝỗߢ Cdc42 ߇ᵴᕈൻߒߡ޿ߚ‫ޕ‬એ
The smell deficiency in KS is related to a defect in olfactory bulb
਄ߩ⚿ᨐߪ‫ޔ‬FGFR1 ߣ Anosmin-1 ߇␹⚻⓭⿠િ㐳ߣᚑ㐳
development, and hypogonadism is due to gonadotropin-
౞㍙ߩᒻᚑߦ㊀ⷐߥᓎഀࠍᜂߞߡ޿ࠆߎߣࠍ␜ߒߡ޿ࠆ‫ޕ‬
releasing hormone (GnRH) deficiency, which presumably results
Anosmin-1 ߇ᚑ㐳౞㍙ߩᒻᚑࠍଦㅴߔࠆߎߣߪೋ߼ߡߩ
from a failure of the embryonic migration of neuroendocrine
ႎ๔ߢ޽ࠆ ࿑ ‫ޕ‬
GnRH cells from the olfactory epithelium to the forebrain.
࿑ Anosmin-1 ᷝടߦࠃࠆ␹⚻ᚑ㐳౞㍙ߩᒻᚑଦㅴ
Clinical spectrum in KAL2/FGFR1 mutation positive patients
ranges widely from typical KS phenotype to apparently normal
26
phenotype with fertility, including anosmina/ hyposmia only
䋴䋮⊒⴫⺰ᢥ
phenotype.
ߥߒ
Our contributions in these research fields are expected to lead to
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
the development of regenerative therapies for neuronal disorder
䈭䈚
patients, which are currently the center of attention, as well as
novel cancer treatments.
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
1: VEGF-A induces VEGFR-independent signaling, Neuropilin
䋷䋮ቇળ⊒⴫
dependent Tumorigenesis.
Tumor-secreted VEGF-A is a crucial factor for tumor
ศ↰੝૓⟤‫ޔ‬ኹ↰ၮ೰‫ޔ‬ᷡ᳓ᤘ↵‫ޔ‬ἑየ⟤㋈ 㧦ⴊ▤ౝ⊹⚦⢩Ⴧᱺ
ߥߒ
࿃ሶฃኈ૕(VEGFR)ߦଐሽߒߥ޿ VEGF-A ߩ⣲≌ᒻᚑଦㅴ‫╙ޕ‬㧡
㧣࿁ᣣᧄ↢ൻቇળㄭ⇰ᡰㇱ଀ળ ↢㚤Ꮢ‫ޔ‬2010.5.22
malignancy i.e tumor angiogenesis. Besides the aspect of tumor
angiogenesis, there are reports to account that VEGF-A may
ᄢ᎑ᦶ‫ޔ‬ጟᧄᴕ⍫㚅‫ޔ‬ኹ↰ၮ೰‫ޔ‬᫪Ꮉാ⾆‫ޔ‬ᷡ᳓ᤘ↵‫ޔ‬૒⮮⋥ሶ‫ޔ‬
promote proliferation and survival of tumor themselves. DJM1
✜ᣇൕ‫ޔ‬ἑየ⟤㋈㧦ࠞ࡞ࡑࡦ∝୥⟲ේ࿃ㆮવሶ↥‛ Anosmin-1 ߪ
cells, obtained from a metastatic squamous cell carcinoma patient,
FGFR1 ᵴᕈൻߦࠃࠆᚑ㐳౞㍙ᒻᚑࠍଦㅴߔࠆ‫╙ޕ‬㧡㧣࿁ᣣᧄ↢ൻ
ቇળㄭ⇰ᡰㇱ଀ળ‫↢ޔ‬㚤Ꮢ‫ޔ‬2010.5.22
6
secrete high levels of VEGF-A (1.4 ng/ml, 1×10 cells, 48h) in
vitro. Indeed, DJM1 tumor highly induced microvessels in vivo,
ጟᧄᴕ⍫㚅‫ޔ‬᫪Ꮉാ⾆‫ޔ‬ศᑝ⟤㉿‫ޔ‬ᄢ᎑ᦶ‫ޔ‬ኹ↰ၮ೰‫ޔ‬ᷡ᳓ᤘ↵‫ޔ‬
and the conditioned medium form DJM1 cells stimulated growth
૒⮮⋥ሶ‫✜ޔ‬ᣇൕ‫ޔ‬ἑየ⟤㋈㧦✢⛽⧘⚦⢩Ⴧᱺ࿃ሶฃኈ૕㧝
and migration of HUVEC. VEGF-A siRNA treatment decreased
(FGFR1) Acid Box 㗔ၞߪ␹⚻⓭⿠િ㐳ߦ㊀ⷐߥᓎഀࠍᨐߚߔ‫╙ޕ‬
VEGF-A secretion and the colony formations of DJM1 cells in
㧡㧣࿁ᣣᧄ↢ൻቇળㄭ⇰ᡰㇱ଀ળ‫↢ޔ‬㚤Ꮢ‫ޔ‬2010.5.22
soft agar. However, VEGFR2 kinase inhibitor did not suppress the
ศ↰੝૓⟤‫ޔ‬ἑየ⟤㋈ 㧦VEGF-A ߩ Neuropilin ࠍ੺ߒߚ≸⚦⢩ߩ
colony formations. siRNA for neuropilin-1, another VEGF-A
Ⴧᱺଦㅴ‫╙ޕ‬㧝㧠࿁ᣣᧄ߇ࠎಽሶᮡ⊛ᴦ≮ቇળቇⴚ㓸ળ‫᧲ޔ‬੩⦁
receptor, suppressed the colony formations, too. These results
ၳ‫ޔ‬2010.7.8
ศ↰੝૓⟤‫ޔ‬
ኹ↰ၮ೰‫ޔ‬ጟᧄᴕ⍫㚅‫ޔ‬ᷡ᳓ᤘ↵‫ޔ‬
Michael Klagsbrun‫ޔ‬
suggest that VEGF-A induces tumor angiogenesis and the
ἑየ⟤㋈ 㧦VEGF-APromotes Tumor Proliferation in Skin Cancer
survival and growth of tumor cells.
Cells Expressing Neuropilin-1. ╙㧟㧟࿁ᣣᧄಽሶ↢‛ቇળᐕળ‫╙ޔ‬
㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫␹ޔ‬ᚭᏒ‫ޔ‬2010.12.7-10
2: A novel acid box mutant of FGFR1 confers olfactory bulb
Sayaka Okamoto, Akira Ohshima, Motoki Terada,Akio Shimizu, Naoko
aplasia in a Kallmann syndrome patient.
We found a novel KAL2/FGFR1 mutant which induces the KS
Sato, Tsutomu Ogata, Misuzu Seo :Anovel acid box mutant of FGFR1
symptom. The proband was a 7-year-old Japanese girl who came
confers olfactory bulb aplasia in a Kallmann syndrome patient. ╙㧟㧟
to us because of anosmia. Magnetic resonance imaging (MRI)
࿁ᣣᧄಽሶ↢‛ቇળᐕળ‫╙ޔ‬㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫ޔ‬
␹ᚭᏒ‫ޔ‬2010.12.7-10
revealed aplasia of bilateral olfactory bulbs, and an alinamin test
ᄢ᎑ᦶ‫ޔ‬ጟᧄᴕ⍫㚅‫ޔ‬ኹ↰ၮ೰‫ޔ‬᫪Ꮉാ⾆‫ޔ‬ᷡ᳓ᤘ↵‫ޔ‬૒⮮⋥ሶ‫ޔ‬
indicated the lack of olfactory acuity. FGFR1 consists of three
✜ᣇൕ‫ޔ‬ἑየ⟤㋈㧦 Kallmann ∝୥⟲ේ࿃ㆮવሶ↥‛ Anosmin-1
extracellular Ig-like domains D1-D3, an acid box domain, one
ߪ␹⚻ᚑ㐳౞㍙ߩᒻᚑࠍଦㅴߔࠆ‫╙ޕ‬㧟㧟࿁ᣣᧄಽሶ↢‛ቇળᐕ
transmembrane domain and one tyrosine kinase domain. A
ળ‫╙ޔ‬㧤㧟࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ‫␹ޔ‬ᚭᏒ‫ޔ‬2010.12.7-10
heterozygous 3 bp insertion mutation (D132_D133insD; ABinsD)
leading to an expansion of the Asp repeat from six to seven was
䋸䋮䈠䈱ઁ․⸥੐㗄
identified at exon 4 of FGFR1 in the girl. Our objective is to
㪈㪅 ᄖㇱ⾗㊄
explore that the mutation in the Acid box domain of FGFR1
1) ⑳┙ᄢቇᚢ⇛⊛⎇ⓥၮ⋚ᒻᚑᡰេ੐ᬺ⎇ⓥ⠪䇮⎇ⓥઍ⴫䋺ᄢᮎ
causes functional defects during FGF signaling. We transfected
౏৻ 䇸ᣂဳ䉟䊮䊐䊦䉣䊮䉱ኻ╷䈮ଥ䉎⥄ὼ⑼ቇ䈍䉋䈶␠ળ⑼ቇⲢ
PC12 cells with expression vectors of FGFR1WT or FGFR1ABinsD,
ว⎇ⓥ䇹
and cloned the stable expression cells. Using the clone for
2) ⑼ቇ⎇ⓥ⾌⵬ഥ㊄ၮ⋚ C ⎇ⓥ⠪䇮 ⎇ⓥઍ⴫䋺㤥ဈ శ䇸␹⚻⊒
FGFR1WT and the clone for FGFR1ABinsD, we analyzed the neurite
↢䈫䉝䊘䊃䊷䉲䉴䈮㑐䉒䉎⣖․⇣⊛䊛䉼䊮ဳ♧㎮วᚑ㉂⚛䈱ᯏ⢻⸃
outgrowth assay. FGF2, the ratio of the neurite bearing cells was
ᨆ䇹
higher and the length of the neurites were longer in the FGFR1WT
3) ౒ห⎇ⓥ䇮䉟䊮䉺䊷䊒䊨䊁䉟䊮ᩣᑼળ␠ 䇸VEGF 䉲䉴䊁䊛⺞▵⮎
-expressing PC12 cells compared to the FGFR1ABinsD -expressing
䈱䉴䉪䊥䊷䊆䊮䉫♽䈮㑐䈜䉎⎇ⓥ䇹
PC12 cells. These results demonstrate that the acid box of FGFR1
2. ⍮⊛⽷↥ᮭ 䈭䈚
is important for neurite outgrowth in PC12 cells and the acid box
3. ␠ળ⊛⽸₂ ੩ㇺᐭ⊒᣿╬ഞഭ⠪⴫ᓆክᩏᆔຬ䈫䈚䈩䋬╙䋵䋵࿁੩
mutation may be responsible for the olfactory aplasia in the KS
ㇺᐭ⊒᣿╬ഞഭ⠪⴫ᓆ䈱ክᩏ䉕ⴕ䈦䈢 ‫ޕ‬2011 ᐕ㧟᦬
patient.
27
4. ฃ⾨╬ 䈭䈚
䋵䋮䈠䈱ઁ
1) ⺰ᢥᩏ⺒:Cancer Science (Wiley Blackwell), 2010 ᐕ 9 ᦬
2) ቇળᐳ㐳:╙㧡㧣࿁ᣣᧄ↢ൻቇળㄭ⇰ᡰㇱ଀ળ ᄹ⦟వ┵
⑼ቇᛛⴚᄢቇ㒮ᄢቇ‫↢ޔ‬㚤Ꮢ‫ޔ‬2010.5.22
3) ቇౝᓎ⡯䋺࿑ᦠ㙚㐳 䋨2010.10.1ޯ
䋩
28
⊒↢⚦⢩↢‛ቇ⎇ⓥቶ
ᢎ᝼ ਛ᧛ ᥰብ
Laboratory of Cell and Developmental Biology
Prof. Nobuhiro Nakamura, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
䉯䊦䉳૕䈪 㪦 ဳ♧㎮䈱ਇน䉕ฃ䈔䋨㪋㪍㫂㪛㪸䋩䇮䈘䉌䈮䇮䉯䊦䉳
䉯䊦䉳૕䋨ⵝ⟎䋩䈲ዊ⢩ャㅍ⚻〝䈱ਛᔃ䈮૏⟎䈚䇮ಽᴲ䉺
૕䈪 㪚 ᧃ┵䈱⤑ౝ⣧ㇱ૏䈏ಾᢿ䈘䉏䉎䋨㪊㪍㫂㪛㪸䋩䈖䈫䈏᣿䉌䈎
䊮䊌䉪⾰䉇⤑䉺䊮䊌䉪⾰䈱ୃ㘼䉇৻ㇱ䈱⢽⾰䇮♧⢽⾰䈱ว
䈫䈭䈦䈢䇯
ᚑ䉕ᜂᒰ䈚䈩䈇䉎䇯䉯䊦䉳૕䈲䇮䉁䈢วᚑୃ㘼䈘䉏䈢䉺䊮䊌䉪
㪰㪠㪧㪝㪊 䈫 㪰㪠㪧㪝㪋 䈲䉯䊦䉳૕䈪ⶄว૕䉕ᒻᚑ䈚䇮䈖䈱ⶄว૕ᒻ
⾰⟲䈱ຠ⾰▤ℂ䉕ⴕ䈉䈫䈫䉅䈮䇮ቢᚑ䈚䈢䉺䊮䊌䉪⾰⟲䉕ᦨ⚳
ᚑ䈏 㪰㪠㪧㪝㪊 䈫 㪰㪠㪧㪝㪋 䈱ዪ࿷䈫ᯏ⢻䈮㊀ⷐ䈪䈅䉎䈖䈫䈏␜ໂ䈘
⋡⊛࿾䈮䈚䈢䈏䈦䈩ㆬ೎䈚㈩ㅍ䈜䉎ᯏ⢻䉅ᜂ䈦䈩䈇䉎䇯ㄭᐕ䇮
䉏䈢䇯㪰㪠㪧㪝㪊 䈅䉎䈇䈲 㪰㪠㪧㪝㪋 䈱䈇䈝䉏䈱䊉䉾䉪䉻䉡䊮䈮䉋䈦䈩
ᒰ⎇ⓥቶ䈪䈱⎇ⓥ䈎䉌䇮⚦⢩䈱Ⴧᱺ䉇ᱫ䇮⚵❱ᒻᚑ䈮䈫䉅䈭
䉅᦭ᗧ䈭䉯䊦䉳૕䈱ಽᢔൻ䈏ⷰኤ䈘䉏䈢䈖䈫䈎䉌䇮㪰㪠㪧㪝㪊 䈫
䈉⚦⢩䈱ಽൻ䉇ಽᭂ䈮䈍䈇䈩䇮䉯䊦䉳૕䈏ᄢ䈐䈭ᓎഀ䉕ᨐ䈢
㪰㪠㪧㪝㪋 䈏䇮䉯䊦䉳૕䈱᭴ㅧ⛽ᜬ䈮ᯏ⢻䈚䈩䈇䉎੐䈏␜ໂ䈘䉏
䈚䈩䈇䉎੐䈏᣿䉌䈎䈫䈭䈦䈩䈐䈩䈇䉎䇯
䈢䇯
⚦⢩䈲䉯䊦䉳૕䈱ᯏ⢻⁁ᘒ䉕䊝䊆䉺䊷䈚䈩䇮䈠䈱᭴ㅧ䉇⚦
⢩ౝ䈪䈱ዪ࿷䉕䇮⚦⢩䈱ᯏ⢻⊒⃻䈮ว䉒䈞䈩Ꮑᅱ䈮⺞▵䈚
㧟㧚Research projects and annual reports
䈩䈇䉎䈫ផኤ䈘䉏䉎䈏䇮䈠䈱⸃ᨆ䈲䈾䈫䉖䈬ㅴ䉖䈪䈇䈭䈇䇯䈠
Research Projects
䈖䈪䇮䉯䊦䉳૕䈮ዪ࿷䈜䉎䉺䊮䊌䉪⾰䇮․䈮⚦⢩๟ᦼ䉇⚦⢩
The Golgi apparatus is situated at the center of the
ㆇേ䈱೙ᓮ䉇⚦⢩ᱫ䈱ᖱႎવ㆐䈻䈱㑐ਈ䈏␜ໂ䈘䉏䈩䈇䉎
vesicular transport pathway. It is an organelle where secretory
䉺䊮䊌䉪⾰䈱᜼േ䉇ᯏ⢻䉕↢ൻቇ⊛䊶ಽሶ↢‛ቇ⊛䊶⚦⢩↢
and membrane proteins and some glycolipids are synthesized
‛ቇ⊛䊶⊒↢↢‛ቇ⊛ᚻᴺ䉕↪䈇䈩⸃ᨆ䈚䇮㽲䉯䊦䉳૕䈱
and modified. The Golgi apparatus inspects the quality of the
᭴ㅧ⛽ᜬ䈱ಽሶᯏ᭴䉇䈠䈱⚦⢩๟ᦼ⺞▵䈫䈱ㅪ㑐䉕᣿䉌䈎
synthesized and modified proteins and only the approved
䈮䈜䉎䈫䈫䉅䈮䇮㽳䉯䊦䉳૕䈎䉌ᩭ䉇⚦⢩⾰ో૕䈻䈬䈱䉋䈉䈭
proteins are selected, sorted and dispatched to their final
ᖱႎવ㆐䈏ⴕ䉒䉏䈩䈇䉎䈱䈎䉕᣿䉌䈎䈮䈜䉎䈖䈫䉕⋡⊛䈫䈚
destinations. Our recent experimental results indicated that the
䈩⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯䉁䈢䇮ೋᦼ⊒↢䈱ⷰኤ䈏ኈᤃ䈪䈎䈧
Golgi
ၭ㙃⚦⢩♽䈪䈱⚦⢩↢‛ቇ⊛⸃ᨆ䈏น⢻䈪䈅䉎䇮䉷䊑䊤䊐
differentiation and polarization during the cell growth, death
䉞䉾䉲䊠䉕䊝䊂䊦♽䈫䈚䈩䇮㽴䉯䊦䉳૕䈏⊒↢䊶⚵❱ᒻᚑ䉇ಽ
and tissue development.
apparatus
plays
important
roles
in
the
cell
ൻ䈭䈬䈱⚦⢩䈱㜞ᰴᯏ⢻⊒⃻䈮䈬䈱䉋䈉䈭ᓎഀ䉕ᨐ䈢䈚䈩䈇
It is proposed that the cell somehow monitors the
䉎䈎䉕᣿䉌䈎䈮䈜䉎੐䉕⚳ዪ⊛䈭⋡⊛䈫䈚䈩⎇ⓥ䉕ⴕ䈦䈩䈇
functional state of the Golgi apparatus and efficiently
䉎䇯․䈮䇮ೋᦼ⊒↢䈪䈱䉯䊦䉳૕䇮෸䈶䉯䊦䉳૕㑐ㅪ䉺䊮䊌
regulates its localization and structure according to the needs
䉪⾰䈱⚦⢩ౝേᘒ䉕⸃ᨆ䈜䉎䈫䈫䉅䈮䇮⚦⢩䈱ᒻᘒᒻᚑ䈮䈍
of cellular functions. However, the regulatory mechanism has
䈔䉎䉯䊦䉳૕䈱ᓎഀ䉕᣿䉌䈎䈮䈜䉎੐䉕⋡ᜰ䈚䈩䈇䉎䇯
not been well understood. We, therefore, trying to elucidate
(1) the molecular mechanism of the maintenance of the Golgi
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
structure and its relationship with the cell cycle control, (2) the
ዊ⢩૕䈎䉌䉯䊦䉳૕䈻䈱ャㅍ䈮ᯏ⢻䈜䉎੐䈏ႎ๔䈘䉏䈩䈇
mechanism of the signal transduction from the Golgi
䉎㉂Უ 㪰㫀㫇㪈㫇㪆㪰㫀㪽㪈㫇 䈱ູ੃േ‛⚦⢩䈮䈍䈔䉎⋧ห䉺䊮䊌䉪⾰
apparatus to the cytoplasm and the nucleus, by analyzing the
䈫䈚䈩หቯ䈘䉏䈢䋹䈧䈱䉺䊮䊌䉪⾰䋨㪰㪠㪧㪝㪆㪰㫀㫇 㪻㫆㫄㪸㫀㫅 㪽㪸㫄㫀㫃㫐䋩
functions and dynamics of the proteins which are propose to
䈱䈉䈤䇮䉯䊦䉳૕䈮ዪ࿷䈚䈩䈍䉍䇮㪙㫃㫌㪼㪄㪥㪸㫋㫀㫍㪼 㪧㪘㪞㪜 䈪⋧੕
be involved in the cell cycle control, cell movement and cell
૞↪䈱น⢻ᕈ䈏␜ໂ䈘䉏䈢 㪰㪠㪧㪝㪊 䈫 㪰㪠㪧㪝㪋 䈱ᯏ⢻⸃ᨆ䉕ㅴ
death
䉄䈢䇯
developmental biological methods.
using
biochemical,
molecular,
cellular
and
఺∉Ⱟశᨴ⦡䈍䉋䈶఺∉㔚ሶ㗼ᓸ㏜⸃ᨆ䈱⚿ᨐ䇮㪰㪠㪧㪝㪊 䈫
We are also trying to find (3) the role of the Golgi
㪰㪠㪧㪝㪋 䈲᣿䉌䈎䈮䉲䉴䉯䊦䉳䈮Ớ❗䈚䈩ሽ࿷䈜䉎䈖䈫䈏᣿䉌
apparatus in the expression of the higher ordered cellular
䈎䈫䈭䈦䈢䇯㪰㪠㪧㪝㪋 䉺䊮䊌䉪⾰䈲䇮ㆮવሶ䈎䉌੍ᗐ䈘䉏䉎න৻
functions during embryonic and tissue development using
䈱ಽሶ㊂䈱↥‛䈫䈚䈩ᬌ಴䈘䉏䈢䈏䇮㪰㪠㪧㪝㪊 䈲䇮䋳⒳䈱⇣䈭
zebrafish,
䈦䈢ಽሶ㊂䈱↥‛䈫䈚䈩ᬌ಴䈘䉏䈢䇯
embryogenesis and cell biological analyses, as a model
which
is
suitable
for
the
observation
of
㪲㪊㪌㪪㪴䉕↪䈇䈢䊃䊧䊷䉰䊷ᴺ䈫䇮ฦ⒳♧㎮ಽ⸃㉂⚛ಣℂ䉕↪
organism. Especially, we are focusing on the dynamics of the
䈇䈢↢ൻቇ⊛⸃ᨆ䇮䉁䈢఺∉Ⱟశᨴ⦡ᴺ䈮䉋䉎⸃ᨆ䈮䉋䈦
Golgi apparatus and the associated proteins during the early
䈩䇮㪰㪠㪧㪝㪊 䈲䇮䉁䈝ዊ⢩૕䈪 㪥 ဳ♧㎮䈏ઃട䈚䈢ᓟ䋨㪋㪇㫂㪛㪸䋩䇮
29
ಽሶ↢‛ቇળᐕળ䋬╙ 㪏㪊 ࿁䇮ᣣᧄ↢ൻቇળᄢળ䇮วหᄢળ䋨␹
embryogenesis to understand the role of the Golgi apparatus in
ᚭ䋩㪉㪇㪈㪇 ᐕ 㪈㪉 ᦬ 㪎 ᣣޯ㪈㪇 ᣣ
the cellular morphogenesis and movement.
M. Sohda, Y. Misumi, A. Yamamoto, N. Nakamura and K. Oda:
Annual report
Interaction of golgin-94 with the conserved oligomeric Golgi
The Yip1 domain family (YIPF) proteins are
(COG) complex mediated the intra-Golgi retrograde transport.
homologues of yeast Yip1p and Yif1p, which are proposed to
BMB2010㧘╙ 㪊 ࿁䇮ᣣᧄಽሶ↢‛ቇળᐕળ䋬╙ 㪏㪊 ࿁䇮ᣣᧄ↢ൻ
function in ER to Golgi transport. We characterized YIPF3
ቇળᄢળ䇮วหᄢળ䋨␹ᚭ䋩㪉㪇㪈㪇 ᐕ 㪈㪉 ᦬ 㪎 ᣣޯ㪈㪇 ᣣ
and YIPF4, homologues of human Yif1p and Yip1p,
respectively.
Immunofluorescence
and
䋸䋮䈠䈱ઁ․⸥੐㗄
immuno-electron
microscopy showed that both YIPF3 and YIPF4 are clearly
N. Nakamura: Emerging new role of the Golgi apparatus in higher
concentrated in the cis-Golgi. While YIPF4 was detected as a
order cell functions: Presentation as a member of Kyoto Sangyo
single mobility form consistent with its predicted molecular
University delegates, Faculty of Science, Mahidol University
weight, three different mobility forms of YIPF3 were detected
(Bankok, Thailand), March 1, 2011
by western blotting. Biochemical and immunofluorescence
N. Nakamura: Emerging new role of the Golgi apparatus in higher
experiments strongly indicated that YIPF3 is synthesized in
order cell functions: Presentation as a member of Kyoto Sangyo
the ER as a N-glycosylated form (40 kDa), is then
University delegates, Chulabhorn Research Institute (Bankok,
O-glycosylated in the Golgi apparatus to become a lower
Thailand), March 2, 2011
mobility form (46 kDa) and finally becomes a higher mobility
N. Nakamura: Emerging new role of the Golgi apparatus in higher
form cleaved at its C-terminal luminal domain (36 kDa).
order cell functions: Presentation as a member of Kyoto Sangyo
YIPF3 and YIPF4 form a complex in the Golgi apparatus, and
University delegates, Faculty of Veterinary Science, Mahidol
this was suggested to be important for their proper localization
University (Bankok, Thailand), March 3, 2011
and function. The knockdown of YIPF3 or YIPF4 in HeLa
N. Nakamura: Emerging new role of the Golgi apparatus in higher
cells induced fragmentation of the Golgi apparatus, suggesting
order cell functions: Presentation as a member of Kyoto Sangyo
their involvement in the maintenance of the Golgi structure.
University delegates, Faculty of Sciences, Kasetsart University
(Bankok, Thailand), March 4, 2011
䋴䋮⊒⴫⺰ᢥ
M. Sohda, Y. Misumi, A. Yamamoto, N. Nakamura, S. Ogata, S.
Sakisaka, S. Hirose, Y. Ikehara and K. Oda. Interaction of
Golgin-84 with the COG complex mediates the intra-Golgi
retrograde transport. Traffic 11: 1552-1566 (2010)
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
N. Nakamura. Emerging new roles of GM130, a cis-Golgi matrix
protein, in higher order cell functions. J Pharmacol Sci 112:
255-264 (2010)
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
ߥߒ
䋷䋮ቇળ⊒⴫
D. Tamura and N. Nakamura: Involvement of phospholipase A2 and
rab GTPase in the disassembly of the Golgi apparatus induced by
low pH treatment. ╙ 㪍㪉 ࿁䇮ᣣᧄ⚦⢩↢‛ቇળᄢળ䋨ᄢ㒋䋩㪉㪇㪈㪇
ᐕ䇮㪌 ᦬ 㪈㪐ޯ㪉㪈 ᣣ
N. Nakamura and N. Sakai: Yip1 domain family members localizing
in the trans-Golgi/trans-Golgi network. BMB2010㧘╙ 㪊 ࿁䇮ᣣᧄ
30
␹⚻࿁〝⊒↢⎇ⓥቶ
ᢎ᝼
Laboratory of Neural Network Development
Prof. Chihiro Hama, Ph.D
ഥᢎ
ᵿ
ਛጊ
ජ዆
ታ
Assist. Prof. Minoru Nakayama
㧝㧚⎇ⓥ᭎ⷐ
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
䉒䉏䉒䉏䈏ᣣᏱ䇮‛䉕⠨䈋䈢䉍䇮ቇ⠌䇮⸥ᙘ䈚䈢䉍䈜䉎䈖
䋱䋩㪟㫀㪾 䉺䊮䊌䉪⾰䈫⋧੕૞↪䈜䉎ಽሶ䈱หቯ
䈫䈏䈪䈐䉎䈱䈲䇮⣖䈱ⶄ㔀䈘䈱ਛ䈮䉒䉏䉒䉏䈱⍮⼂䉕⿥䈋
㪟㫀㪾 䉺䊮䊌䉪⾰䈲⵬૕⺞▵䉺䊮䊌䉪⾰䊄䊜䉟䊮䉕ⶄᢙᜬ
䈢ᧂ䈣⻘䈫๭䈹䈼䈐ᯏ᭴䈏ሽ࿷䈜䉎䈎䉌䈪䈅䉎䇯䈠䈚䈩䇮
䈧䈖䈫䈎䉌䇮ઁ䈱䉺䊮䊌䉪⾰䈫ⶄว૕䉕ᒻᚑ䈚䈩ᯏ⢻䈜䉎
䈠䈱⻘䉕᣿䉌䈎䈮䈜䉎䈖䈫䈪ᷙᴋ䈫䈚䈢⣖䈮ᴺೣᕈ䉕␜䈜
䈖䈫䈏੍ᗐ䈘䉏䉎䇯䈠䈚䈩䇮䈠䈱ⶄว૕䈱᭴ᚑ䉺䊮䊌䉪⾰
䈖䈫䈏䈪䈐䉎䉋䈉䈮䈭䉎䇯䉒䉏䉒䉏䈲䇮⣖䈱୘䇱䈱⊒↢⃻⽎
䉕หቯ䈜䉎䈖䈫䈮䉋䉍 㪟㫀㪾 䈱ᯏ⢻䈏⸃᣿䈘䉏䉎น⢻ᕈ䈏䈅
䈱೙ᓮᯏ᭴䉕ಽሶ䊧䊔䊦䈪᣿䉌䈎䈮䈜䉎䈫౒䈮䇮⣖ో૕
䉎䇯䉒䉏䉒䉏䈲䇮䈠䈱᭴ᚑ䉺䊮䊌䉪⾰䉕หቯ䈜䉎⋡⊛䈪䇮
䈱⊒↢䉕⛔ᓮ䈜䉎ㆮવ䊒䊨䉫䊤䊛䈱⸃᣿䉕⋡ᜰ䈚䈩⎇ⓥ
㪿㫀㪾 ᄌ⇣ᩣ䈫ห᭽䈮ᵴേᕈ䈏ૐਅ䈜䉎ᄌ⇣ᩣ䈱ត⚝䉕䈜
䉕ㅴ䉄䈩䈇䉎䇯એ਄䈱໧㗴䈮䉝䊒䊨䊷䉼䈜䉎䈢䉄䈮䇮䋱䋰
䈜䉄䈢䈫䈖䉐䇮ᣂ䈢䈮䋲䈧䈱ㆮવሶ䈱ᄌ⇣䇮㪻㫀㪾䋨㪻㪼㪽㪼㪺㫋㫀㫍㪼
ਁ୘䈱␹⚻⚦⢩䈎䉌䈭䉎䉲䊮䊒䊦䈭⣖䋨䊍䊃䈱⣖䈱⊖ਁಽ
㫃㫆㪺㪸㫃㫀㫑㪸㫋㫀㫆㫅 㫆㪽 㪟㫀㪾䋩䈫 㪿㫀㪾㫃 㩿㪿㫀㪾㪄㫃㫀㫂㪼㪀䉕หቯ䈚䈢䇯⥝๧ᷓ䈇
䈱৻䋩䉕ᜬ䈧䉲䊢䉡䉳䊢䉡䊋䉣䉕䊝䊂䊦േ‛䈫䈚䈩⎇ⓥ䈮↪
䈖䈫䈮 㪻㫀㪾 ᄌ⇣૕䈱⣖䈪䈲䇮㪟㫀㪾 䉺䊮䊌䉪⾰䈱䉲䊅䊒䉴㗔
䈇䈩䈇䉎䇯
ၞ䈮䈍䈔䉎ዪ࿷䈏ᶖᄬ䈚䈩䈇䈢䇯䈜䈭䉒䈤䇮㪛㫀㪾 䈲 㪟㫀㪾 䉺
⣖䈱ᯏ⢻䈲䇮ᄙᢙ䈱␹⚻࿁〝䈏ද⺞⊛䈮૞േ䈜䉎䈖䈫
䊮䊌䉪⾰䈱䉲䊅䊒䉴㑆㓗䈻䈱ዪ࿷䈮ᔅⷐ䈪䈅䉎䈖䈫䈏᣿
䈮䉋䉍↢䉁䉏䉎䇯䈠䈚䈩ᓸⷞ⊛䈮䈲䇮䈠䉏䈡䉏䈱࿁〝䉕૞
䉌䈎䈫䈭䈦䈢䇯㪛㫀㪾 䈫 㪟㫀㪾 䈏ታ㓙䈮䉺䊮䊌䉪⾰ⶄว૕䉕ᒻ
䉎␹⚻⚦⢩䈏✢⛽䉕િ㐳䈘䈞䈩੕䈇䈮․⇣⊛䈮ធ⛯䈚䇮
ᚑ䈜䉎น⢻ᕈ䈮䈧䈇䈩䈲੹ᓟᬌ⸽䈚䈩䈇䈒䇯䉁䈢䇮㪛㫀㪾 䈏
䈠䈱ធ⛯ㇱ䈪䈅䉎䉲䊅䊒䉴䈏ᱜᏱ䈮௛䈎䈭䈔䉏䈳䈭䉌䈭
㪟㫀㪾 䈱䉲䊅䊒䉴䈮䈍䈔䉎቟ቯᕈ䈮㑐ਈ䈜䉎䈱䈎䇮䈅䉎䈇
䈇䇯䉒䉏䉒䉏䈲䇮䈖䈱࿁〝䈏䈪䈐䈅䈏䉎ㆊ⒟䈪⇣Ᏹ䉕↢
䈲䉲䊅䊒䉴㑆㓗䈻䈱ャㅍ䈮㑐ਈ䈜䉎䈱䈎᣿䉌䈎䈮䈚䈩䈇
䉃ㆮવሶᄌ⇣䈱⸃ᨆ䉕䉅䈫䈮䇮␹⚻࿁〝䈱⊒↢ᯏ᭴䈮㑐
䈒ᔅⷐ䈏䈅䉎䇯䉅䈉䈵䈫䈧䈱 㪿㫀㪾㫃 ㆮવሶ䈮䈧䈇䈩䈲䇮䈠䈱
䈜䉎એਅ䈱䋲䈧䈱䊁䊷䊙䈮䈧䈇䈩⎇ⓥ䈚䈩䈇䉎䇯
⊒⃻䉕 㫀㫅 㫊㫀㫋㫌 䊊䉟䊑䊥䉻䉟䉷䊷䉲䊢䊮䈮䉋䉍⺞䈼䈢䈫䈖䉐䇮
䋱䋩㪟㫀㪾 䉺䊮䊌䉪⾰䈱ᯏ⢻䈱⸃᣿
⢦䈮䈍䈇䈩䈲ਛᨔ␹⚻♽䈱৻ㇱ䈱⚦⢩䈪⊒⃻䈚䈩䈇䉎
䈖䈫䈏᣿䉌䈎䈫䈭䈦䈢䇯
ᵴേᕈ䈱ૐਅ䈍䉋䈶䇸䈸䉎䈋䇹䉕␜䈜ᄌ⇣⴫⃻ဳ䈱ේ
䋲䋩༦ⷡ␹⚻⚦⢩䈱ᛩ኿⇣Ᏹ䉕␜䈜ᄌ⇣ㆮવሶ䈱หቯ
࿃ㆮવሶ䈫䈚䈩หቯ䈘䉏䈢 㪿㫀㫂㪸㫉㫌 㪾㪼㫅㫂㫀 㩿㪿㫀㪾㪀 ㆮવሶ䈲
䉲䊅䊒䉴㑆㓗䈮ዪ࿷䈜䉎ಽᴲᕈ䉺䊮䊌䉪⾰䉕䉮䊷䊄䈚䈩
੹䉁䈪䈮ಽ㔌䈚䈩䈐䈢༦ⷡ␹⚻⚦⢩䈱ゲ⚝ᛩ኿䈮⇣Ᏹ
䈇䉎䇯䈖䈱 㪟㫀㪾 䉺䊮䊌䉪⾰䈱䉲䊅䊒䉴ಽൻ䈮䈍䈔䉎ᓎഀ
䉕␜䈜ⶄᢙ䈱ᄌ⇣ᩣ䈮ኻ䈚䈩ᄌ⇣䊙䉾䊏䊮䉫䉕ⴕ䈦䈢䈫
䈲ᧂ䈣⻘䈪䈅䉍䇮䈠䈱ᯏ⢻䈍䉋䈶૞↪ᯏ᭴䉕ಽሶ䊧䊔
䈖䉐䇮䋳⒳㘃䈱ᄌ⇣ᩣ䈮䈧䈇䈩ේ࿃ㆮવሶ䈱หቯ䈮ᚑഞ
䊦䈪⸃᣿䈜䉎䈖䈫䉕⋡ᮡ䈫䈜䉎䇯䈘䉌䈮䊍䊃䈪⷗䈇䈣䈘䉏
䈚䈢䇯䈠䈱䈉䈤䈱䈵䈫䈧䈲䇮䊍䉴䊃䊮䈱䊜䉼䊦ൻ೙ᓮ䈮㑐ਈ
䈢㘃ૃㆮવሶ䈲䇸䈩䉖䈎䉖䇹䉇♖␹ㆃṛ䇮⣖᭴ㅧ䈱⇣Ᏹ
䈜䉎䉺䊮䊌䉪⾰䉕䉮䊷䊄䈚䈩䈇䈢䇯䈠䈱ᄌ⇣䈮䉋䉎⴫⃻ဳ
╬䈱ㆮવᕈ∔ᖚ䈱ේ࿃ㆮવሶ䈫䈚䈩หቯ䈘䉏䈩䈍䉍䇮䈠
䈲䇮ゲ⚝䈏ᧄ᧪䈫䈲⇣䈭䉎૏⟎䈮䉅ᛩ኿䈜䉎䇮䈅䉎䈇䈲ᱜ
䈱↥‛䈫 㪟㫀㪾 䉺䊮䊌䉪⾰䈫䈱ᯏ⢻⊛㑐ㅪᕈ䉕⸃ᨆ䈜䉎䇯
䈚䈇ᮡ⊛૏⟎䈎䉌䈘䉌䈮ゲ⚝䈏ㆊિ㐳䈜䉎䈫䈇䈉䉅䈱䈪䈅
䋲䋩༦ⷡ␹⚻䈱ゲ⚝ᛩ኿䈏⇣Ᏹ䈮䈭䉎ᄌ⇣ᩣ䈱⸃ᨆ
䈦䈢䋨ਅ࿑ฝ䇯Ꮐ䈲㊁↢ဳ䋩䇯䈖䉏䉌䈱⚿ᨐ䈲䇮䊍䉴䊃䊮䈱䊜
༦ⷡ␹⚻⚦⢩䈱ゲ⚝ᛩ኿䊌䉺䊷䊮䈮⇣Ᏹ䈏↢䈛䉎ᄌ
⇣ᩣ䉕䉒䉏䉒䉏䈲䉪䊨䊷䊮⸃ᨆ䉕↪䈇䈢䉴䉪䊥䊷䊆䊮䉫
䈮䉋䉍ⶄᢙಽ㔌䈚䈩䈐䈩䈇䉎䇯䈠䈱ේ࿃ㆮવሶ䈱หቯ䈫
↥‛䈱ᯏ⢻⸃ᨆ䉕ㅴ䉄䉎䈖䈫䈮䉋䉍䇮♖ኒ䈭ゲ⚝ᛩ኿䉕
೙ᓮ䈜䉎ಽሶᯏ᭴䉕᣿䉌䈎䈮䈚䈩䈇䈒䇯
㊁↢ဳ
Ꮐ࿑ ࡚࡚ࠪ࠙ࠫ࠙ࡃࠛ
ߩ⣖ౝߦ޽ࠆ༦ⷡ৻ᰴਛ
ᨔ㧔✛߅ࠃ߮⊕㧕㧚
ᄌ⇣ဳ
䉼䊦ൻ䈮䉋䉍ゲ⚝ᛩ኿䉕೙ᓮ䈜䉎ㆮવሶ䈱⊒⃻䈏೙ᓮ䈘
䉏䈩䈇䉎䈖䈫䉕␜ໂ䈚䈩䈇䉎䇯੹ᓟ䈲䇮ᄌ⇣ᩣ䈮䈍䈔䉎⴫
31
⃻ဳ䈱⹦⚦䉕䈘䉌䈮⸃ᨆ䈚䈩䈇䈒䈫౒䈮䇮ౕ૕⊛䈮ᓇ㗀䉕
regulates the stability of Hig or transport of Hig to synaptic
ฃ䈔䈩䈇䉎ゲ⚝ᛩ኿೙ᓮㆮવሶ䉕หቯ䈚䈩䈇䈒䇯
clefts. Another gene higl, as analyzed by in situ hybridization,
㧟㧚Research projects and annual reports
is expressed in a subset of neurons in the embryonic central
How the brain expresses a variety of neural function still
nervous system.
remains enigmatic. We study molecular mechanisms
1-2: Hig protein as a possible component of the synaptic
underlying specific neuronal events that occur during nervous
cleft extracellular matrix.
system development and also try to understand a genetic
Immunofluorescence with newly generated Hig antibody reveals
program that globally governs the circuit formation in the
that Hig is present in most synaptic regions in the adult brain and
brain. To approach these problems, we employ a small brain
tightly adjacent to both presynaptic and postsynaptic proteins
5
of Drosophila comprising 10 neurons, only a millionth of the
(Bruchpilot and ALS, respectively), being consistent with Hig
human brain. Our research, based on the analysis of the
localization in synaptic clefts. During rescue experiments, we
mutants that show either a behavioral or morphological
found that Hig-GFP protein expressed by a glia-specific driver
phenotype, is focused on two themes concerning neural circuit
recovered the locomotor activity and longevity of hig mutants.
formation.
Notably, Hig-GFP produced by the glia cells is predominantly
1: A role of Hig protein in synaptic clefts.
present in the synaptic regions. This suggests that Hig protein
The hig (hikaru geneki) gene, identified by a mutant
transported from a distance through extracellular spaces and not
phenotype of reduced locomotor activity, encodes a secreted
from synaptic terminals can be incorporated into synaptic clefts.
protein localized to synaptic clefts in the brain. The goal of
We propose that Hig protein specifically binds to some of scaffold
this project is to reveal a role for Hig in synaptic clefts. In
components that constitute an extracellular matrix in synaptic
addition, the absence of one of the human proteins resembling
clefts.
to Hig is known to cause epilepsy, mental retardation or brain
2: Identification of the responsible genes for the mutants
malformation. Thus, we are also interested in the functional
showing abnormal axonal projection of ORNs.
relationships between Hig and the human protein.
We have successfully identified the genes responsible for
three mutations that affect ORN axonal projection. One of the
Analysis of the mutants showing abnormal axonal
projection of olfactory receptor neurons (ORNs).
genes encodes a protein that is involved in the regulation of
We have isolated several mutants in which ORN axons
histone methylation. The mutant phenotype is ectopic axonal
exhibit abnormal projection patterns in the first-order
targeting or overshooting from the correct target. These data
olfactory center in the brain. The purpose of this project is to
suggest that histone methylation regulates expression of a
reveal the molecular mechanisms that regulate the precise
gene that controls axon guidance. We will further examine the
axonal projection of ORNs through the analysis of the
details of the phenotype and identify the guidance cue
mutants and causal genes.
expressed under the epigenetic control.
Annual reports
㧠㧚⊒⴫⺰ᢥ
1-1: Identification of a protein that affects the localization of
M. Nakayama, H. Sato, T. Okuda, N. Fujisawa, N. Kono, H. Arai, E.
Hig in synaptic clefts.
Suzuki, M. Umeda, HO. Ishikawa and K. Matsuno. PLoS One in
Hig is predicted to form a complex with other proteins
press, 2011.
because Hig contains several CCP (Complement Control
HO. Ishikawa, T. Ayukawa, M. Nakayama, S. Higashi, S. Kamiyama,
Protein) domains. Identifying such a complex component
S. Nishihara, K. Aoki, N. Ishida, Y. Sanai and K. Matsuno. J. Biol.
would help us reveal the function of Hig. We therefore
Chem. 285(6):4122-4129 (2010)
decided to search the mutants exhibiting reduced locomotor
activity, a phenotype similarly shown by hig mutants, and
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
found two mutants, tentatively named dig and higl. Notably,
M. Nakayama and C. Hama: Modulation of neurotransmitter receptors
Hig disappeared in the synaptic regions of the dig mutant
and synaptic differentiation by proteins containing
brains, which indicates that Dig is required for Hig
complement-related domains. Neuroscience Research in press,
localization in synaptic clefts. Whether Dig forms a complex
2011.
with Hig has to be tested by immunoprecipitation experiments
ᵿ ජ዆㪑䉲䊢䉡䉳䊢䉡䊋䉣༦ⷡ␹⚻࿁〝䈱⊒↢ᯏ᭴㪅
in the near future. It also remains to be clarified whether Dig
32
䊑䊧䉟䊮䉰䉟䉣䊮䉴䊧䊎䊠䊷䋲䋰䋱䋰 㪈㪏㪌㪄㪉㪇㪏 㩿㪉㪇㪈㪇㪀
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
ᵿ ජ዆䋺䉲䊢䉡䉳䊢䉡䊋䉣༦ⷡ␹⚻࿁〝䈱ᒻᚑᯏ᭴㪅 ੩ㇺ↥ᬺᄢ
ቇ✚ว↢๮⑼ቇㇱ䊋䉟䉥䊐䉤䊷䊤䊛䇮੩ㇺᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪉㪈
㧣㧚ቇળ⊒⴫
ߥߒ
㧤㧚ߘߩઁ․⸥੐㗄
㧝 ᄖㇱ⾗㊄
ᣣᧄቇⴚᝄ⥝ળ⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ၮ⋚⎇ⓥ䋨㪙䋩
䇸䉲䊅䊒䉴䉕ᒻᚑ䈜䉎␹⚻⚦⢩㑆䈱⊒↢ㆊ⒟䈮䈍䈔䉎⋧੕
૞↪䇹䋨ઍ⴫䋩
㧞 ⍮⽷ᮭ╬
ߥߒ
㧟 ቇᄖᵴേ
ᣣᧄቇⴚᝄ⥝ળ ․೎⎇ⓥຬ╬ክᩏળኾ㐷ᆔຬ
㧠 ฃ⾨╬
ߥߒ
㧡 ߘߩઁ
ߥߒ
33
♧⾰↢‛ቇ⎇ⓥቶ
ᢎ᝼
Laboratory of Glycobiology
⑔੗
ᚑⴕ
Prof. Shigeyuki Fukui,Ph.D
㧝㧚⎇ⓥ᭎ⷐ
ߚ߼ߦ‫ࡦࡒࠨ࠻ࠢ࡜࡝ࡐޔ‬㎮ߩ⊒⃻㊂߇ዋߥ߆ߞߚߎ
♧㎮ߪේᩭ⚦⢩ߣ⌀ᩭ⚦⢩ߦᐢߊሽ࿷ߔࠆᄙ᭽ߥᖱ
ߣ߇᣿ࠄ߆ߣߥߞߚ‫ޕ‬
ႎࠍᜬߟಽሶߢ‫♧ޔ⾰ࠢࡄࡦ࠲♧ޔ‬⢽⾰‫࡝ࠣࠝ࠹ࡠࡊޔ‬
CD24 ߪߎࠇ߹ߢߩᄙߊߩ⎇ⓥ߆ࠄ‫♽∉఺ޔ‬㧔․ߦᧂಽ
ࠞࡦߣߒߡሽ࿷ߔࠆ‫♧ޕ‬㎮ߩᜂ߁↢‛ቇ⊛ߥᓎഀߪߎࠇ
ൻ B-⚦⢩㧕‫⚦♽⚻␹ޔ‬⢩߿޿ߊߟ߆ߩ≸ൻ⚦⢩ߥߤߦ⊒
߹ ߢߩ ᄙߊ ߩ⎇ ⓥ߆ ࠄ‫⾰ ࠢࡄ ࡦ࠲ ޔ‬㜞 ᰴ᭴ ㅧߩ ⋙ⷞ
⃻ߐࠇࠆߎߣ߇⍮ࠄࠇ‫ޔߚ߹ޔ‬SDS-PAGE ਄ߩ․⇣ߥⴕ
㧔quality control㧕‫ޔ‬⢦⊒↢ߩೋᦼߩࠦࡦࡄ࡚ࠢࠪࡦߦ
േߦߟ޿ߡႎ๔ߐࠇߡ޿ߚ߇‫ߩߘޔ‬ේ࿃ߩߺߥࠄߕ‫↢ޔ‬
ઍ⴫ߐࠇࠆ⚦⢩㑆ߩធ⌕‫⚦♽∉఺ޔ‬⢩ߩⴊ▤♽߆ࠄ࡝ࡦ
‛ቇ⊛ߥᓎഀߦߟ޿ߡ߽ਇ᣿ߣߐࠇߡ޿ࠆ‫ޕ‬
ࡄ♽߳ߩ⒖േߦ㑐ࠊࠆ࠮࡟ࠢ࠴ࡦ߇♧㎮ࠍ⼂೎ߔࠆߎߣ‫ޔ‬
ᦨㄭ‫♧ޔ‬㎮ߣ⋧੕૞↪ߔࠆ࠲ࡦࡄࠢ⾰ߩ࡝ࠟࡦ࠼ߣߥ
ᄙߊߩࡎ࡞ࡕࡦ㧔FGF ߿ HGF ߥߤ㧕ߣ⚦⢩Ⴧᱺ࿃ሶ߇
ࠆ♧㎮᭴ㅧࠍᬌ⚝ߔࠆᣇᴺߣߒߡ‫ੱޔ‬Ꮏ♧⢽⾰㧔ࡀࠝࠣ
ߘࠇࠄߩฃኈ૕ߣ⚿วߒߡ↢ߓࠆࠪࠣ࠽࡞વ㆐ࠍ♧㎮߇
࡜ࠗࠦ࡝ࡇ࠼㧕ࠍᔕ↪ߒߚ♧㎮ࡑࠗࠢࡠࠕ࡟ࠗᴺࠍ⠨᩺
⺞▵ߒߡ޿ࠆߎߣ‫⚦♽∉఺ޔ‬⢩ߩ࡝ࠢ࡞࡯࠻߿ᵴᕈൻߦ
ߒ‫ޔ‬㜞ᗵᐲߢ⚿ว♧㎮ߩ᭴ㅧࠍផቯߔࠆߎߣࠍน⢻ߣߒ
㑐ࠊࠆࠤࡕࠞࠗࡦ߿ࠨࠗ࠻ࠞࠗࡦߩዪᚲㇱ૏߳ߩ⫾Ⓧ‫ޔ‬
ߚ‫ޕ‬
ᗵᨴ࠙ࠗ࡞ࠬߩ docking site ߩᒻᚑ‫♧ߦߤߥޔ‬㎮߇ᷓߊ
ߘߎߢ⃻࿷ߪ‫ޔ‬1㧕ࡐ࡝࡜ࠢ࠻ࠨࡒࡦ㎮ࠍ฽᦭ߔࠆߎߣ
㑐ࠊࠆߎߣ߇᣿ࠄߦߐࠇߡ޿ࠆ‫⚦ޔߚ߹ޕ‬⢩ߩ߇ࠎൻߦ
ࠍ᣿ࠄ߆ߦߒߚ PC12 ⚦⢩ߩ CD24 ߇᥉ㆉ⊛ߥ߽ߩߢ޽
઻ߞߡ⊒⃻ߐࠇࠆ․⇣♧㎮߽᣿ࠄ߆ߣߐࠇ‫⚦ࠎ߇ޔ‬⢩ߩ
ࠆߩ߆ࠍ⍮ࠆߚ߼ߦ‫ޔ‬ᣂߚߦ㐿⊒ߒߚ CD24 ♖⵾ᴺࠍ↪
Ⴧᱺߣォ⒖ߣߩ㑐ࠊࠅߦߟ޿ߡ߽ᵈ⋡ߐࠇߡ޿ࠆ‫߆ߒޕ‬
޿ߡ‫⚦⚻␹ޔ‬⢩ߩߺߥࠄߕ‫⚦ߩ♽ࡄࡦ࡝ޔ‬⢩‫⚦ࠎ߇ޔ‬⢩
ߒߥ߇ࠄ‫⚦ޔ‬⢩ធ⌕࡮⹺⼂߿⚦⢩Ⴧᱺߥߤߦ㑐ࠊࠆᄙߊ
߆ࠄ߽ಽ㔌♖⵾ߒ‫❱⚵ޔ‬㑆ߦ߅ߌࠆ CD24 ߦ⚿วߒߡ޿
ߩ࠲ࡦࡄࠢ⾰߇ߤߩࠃ߁ߥ․⇣♧㎮᭴ㅧߣ⋧੕૞↪ߒߡ
ࠆ♧㎮᭴ㅧߩ౒ㅢὐ߿㆑޿ࠍ᣿ࠄ߆ߦߔࠆ‫ޕ‬2㧕CD24 ߇
↢ℂᵴᕈ߇⺞▵ߐࠇߡ޿ࠆߩ߆ߦߟ޿ߡߪਇ᣿ߥὐ߇ᄙ
≸⚦⢩ࠍ฽߼ߡᧂಽൻ⚦⢩ߦ⊒⃻ߐࠇࠆߎߣ߆ࠄ‫ޔ‬CD24
ߊᱷߐࠇߡ޿ࠆ‫ޕ‬
ߩ⊒⃻ࠍᛥ೙ߒߚᤨߩಽൻㆊ⒟߳ߩᓇ㗀ߦ⥝๧߇ᜬߚࠇ
ࠆ‫ޔߢߎߘޕ‬RNAi ᴺࠍ↪޿ߡ PC12 ⚦⢩ߩ CD24 ⊒⃻
ߎࠇ߹ߢ♧㎮ߩᗧ⟵ߦ㑐ߔࠆ⎇ⓥࠍ⛯ߌߡ߈ߚ߇‫ᦨޔ‬
ㄭߩᧃ᪳␹⚻⚦⢩(PC12,PC12D ⚦⢩)ߩ࠾ࡘ࡯ࡠࡦ߳ߩ
ࠍᛥ೙ߐߖߡ NGF ೝỗߦࠃࠆ PC12 ⚦⢩ߩ࠾ࡘ࡯ࡠࡦ
ಽൻߦ㑐ࠊࠆ♧㎮᭴ㅧߩᲧセ⎇ⓥ߆ࠄ‫ᧂޔ‬ಽൻ㧔NGF ή
߳ߩಽൻߩᓇ㗀ࠍⷰኤߔࠆ‫ޔߚ߹ޕ‬NGF ߩฃኈ૕⚿วߦ
ೝỗ㧕⁁ᘒߦ޽ࠆ PC12 ⚦⢩ߦ޽ߞߡߪ‫⚦ޔ‬⢩⤑⴫㕙ߦ
ࠃࠆࠪࠣ࠽࡞વ㆐ߦ෸߷ߔ CD24 ߩᓎഀ߽ㅊ෸ߔࠆ‫ޕ‬3㧕
޽ࠆ♧࠲ࡦࡄࠢ⾰ߦ⚿วߒߡ޿ࠆࡐ࡝࡜ࠢ࠻ࠨࡒࡦ㎮ߩ
ࡐ࡝࡜ࠢ࠻ࠨࡒࡦ㎮એᄖߦ‫ޔ‬CD24 ಽሶ਄ߦߪ᭽‫♧ߥޘ‬
⊒⃻㊂߇࠾ࡘ࡯ࡠࡦ߳ߣಽൻߔࠆㆊ⒟ߢᛥ೙ߐࠇࠆߎߣ‫ޕ‬
㎮߇⚿วߒߡ޿ࠆ‫♧ࠄࠇߘޕ‬㎮ߩᓎഀࠍㅊ෸ߔࠆߚ߼ߦ‫ޔ‬
߹ߚ‫⥝ޔ‬๧ᷓ޿ߎߣߦ‫ޔ‬PC12 ⚦⢩߆ࠄᄌ⇣⚦⢩ߣߒߡ
CD24 ߆ࠄಽ㔌ߒߚ♧㎮ࠍࡀࠝࠣ࡜ࠗࠦ࡝ࡇ࠼ൻߒ‫♧ޔ‬
ಽ㔌ߐࠇߚ PC12D ⚦⢩ߢߪ‫ޔ‬NGF ߦ෻ᔕᕈ߇㜞ߊ‫ޔ‬⍴
㎮ࡑࠗࠢࡠࠕ࡟ࠗᴺߦᔕ↪↪ߒߡ‫ޔ‬CD24 ಽሶ਄ߩ᭽‫ޘ‬
ᤨ㑆ߢ࠾ࡘ࡯ࡠࡦ߳ߣಽൻߔࠆ⢻ജࠍ஻߃ߡ޿ࠆߎߣߣ‫ޔ‬
ߥ♧㎮ߩ᭴ㅧࠍ᣿ࠄ߆ߦߔࠆߣߣ߽ߦ‫♧ࠄࠇߘޔ‬㎮‫․ޔ‬
ࡐ࡝࡜ࠢ࠻ࠨࡒࡦ㎮ߩ⊒⃻㊂ߩᷫዋߣ߇ࠃߊ৻⥌ߒߚ‫ޕ‬
ߦࡐ࡝࡜ࠢ࠻ࠨࡒࡦ♧㎮ߣ⋧੕૞↪ߔࠆ↢૕‛⾰ࠍหቯ
ߘߎߢ‫ࡦࡒࠨ࠻ࠢ࡜࡝ࡐޔ‬㎮฽᦭♧࠲ࡦࡄࠢ⾰ࠍ PC12
ߔࠆ‫ޕ‬4㧕఺∉♽ߩ B-⚦⢩ߦ㑐ߒߡ‫ޔ‬㠽㘃ߢߪ㛽㜑ߢ↢
⚦⢩ߩ⤑↹ಽ߆ࠄಽ㔌♖⵾ߒ‫ߩߘޔ‬ਥⷐߥ♧࠲ࡦࡄࠢ⾰
߹ࠇߚᧂᾫ B-⚦⢩ߪ✚ឃᴭ⣧ߩᧃ┵ߦ޽ࠆࡈࠔࡉ࡝ࠠ࠙
ߩ 1 ߟߦߟ޿ߡ‫㉄ࡁࡒࠕޔ‬㈩೉ಽᨆߩ᳿ቯ‫ޔ‬ㆮવሶ࠺࡯
ࠬྙߢಽൻჇᱺߒߡᚑᾫ B-⚦⢩ߣߥࠆߎߣ߇⍮ࠄࠇߡ޿
࠲࡯ࡌ࡯ࠬߩᬌ⚝‫ࡦࡒࠨ࠻ࠢ࡜࡝ࡐޔ‬ಽ⸃㉂⚛ߦࠃࠆ࠲
ࠆ‫ޕ‬ᣂဳ㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥߩ৻ߟߣߒߡ‫࡞ࡈࡦࠗޔ‬
ࡦࡄࠢ⾰ߩ᜼േߩⷰኤߥߤ߆ࠄ‫ޔ‬ਥⷐߥࡐ࡝࡜ࠢ࠻ࠨࡒ
ࠛࡦࠩ࠙ࠗ࡞ࠬߩᗵᨴߔࠆኋਥ⚦⢩ߩ 1 ߟߢ‫ߦ♽∉఺ޔ‬
ࡦ฽᦭♧࠲ࡦࡄࠢ⾰ߩ 1 ߟ߇ CD24 ߢ޽ࠆߎߣ߇⓭߈ᱛ
ᓇ㗀ࠍਈ߃ࠆᮡ⊛♧࠲ࡦࡄࠢ⾰ߣߒߡ߽ CD24 ߇⠨߃ࠄ
߼ࠄࠇߚ‫ޕ‬
ࠇߚ‫ ࠆ޽ߦྙࠬ࠙ࠠ࡝ࡉࠔࡈߩ࡝࠻ࡢ࠾ޔߢߎߘޕ‬B-⚦
ᓧࠄࠇߚ⚿ᨐ߆ࠄ‫ޔ‬NGF ೝỗߦࠃࠆ PC12 ⚦⢩ߩ࠾ࡘ
⢩ߦኻߒߡߩࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߩᗵᨴߩ᦭ή‫࠾ޔ‬
࡯ࡠࡦ߳ߩಽൻߩㆊ⒟ߢ‫ޔ‬૗ࠄ߆ߩᓇ㗀ߦࠃߞߡ⚦⢩⤑
ࡢ࠻࡝ߩ⣖߿ B-⚦⢩߆ࠄಽ㔌♖⵾ߒߚ CD24 ߩ♧㎮᭴ㅧ
⴫㕙ߩ CD24 ߩ⊒⃻߇ᛥ೙ߐࠇ‫⚿ߩߘޔ‬ᨐ⤑⴫㕙ߦ⊒⃻
ࠍ᣿ࠄ߆ߦߔࠆ‫ ࡝࠻ࡢ࠾ޔߡߒߣ৻╙ߩߘޕ‬CD24 ߦኻ
ߐࠇࠆࡐ࡝࡜ࠢ࠻ࠨࡒࡦ㎮߇ᷫዋߔࠆߎߣ‫␹ޔߡߒߘޕ‬
ߔࠆ᛫૕߇ᔅⷐߢ޽ࠆ‫ޔߢߎߘޕ‬ㆮવሶ࠺࡯࠲࡯ࡌ࡯ࠬ
⚻⓭⿠ࠍ⍴ᤨ㑆ߢᒻᚑߔࠆᄌ⇣ᩣߩ PC12D ⚦⢩ߢߪ
߆ࠄ CD24 ㆮવሶࠍផቯߒ‫㉄ࡁࡒࠕߩߘޔ‬㈩೉ࠍ೑↪ߒ
NGF ᧂೝỗߢ޽ߞߡ߽‫ޔ‬CD24 ⊒⃻㊂߇ᛥ೙ߐࠇߡ޿ߚ
34
ߡ᛫૕ߩ૞ᚑࠍ⹜ߺߡ޿ࠆ‫⃻ޕ‬࿷‫⇣․ޔ‬᛫૕ࠍ฽߻᛫ⴊ
might be originated in less expression of CD24 gene in
ᷡࠍᓧߚ⁁ᘒߢ޽ࠆ‫ޕ‬
addition to the less GnT-i activity.
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
㧠㧚ቇળ⊒⴫
㧝㧕PC12 ⚦⢩߆ࠄ‫ࠍࡓ࡜ࠞࡦ࠴ࠢ࡟ޔ‬ᔕ↪ߒߚࡐ࡝࡜
1.
ࠢ࠻ࠨࡒࡦ㎮฽᦭♧࠲ࡦࡄࠢ⾰ߩ♖⵾ߣ‫㉄ࡁࡒࠕޔ‬㈩೉
Poly-N-acetyl-lactosamine-carrying glycoproteins in PC12 cells and
ߩಽᨆ‫⇣․ޔ‬㉂⚛ߦࠃࠆ SDS-PAGE ਄ߩ᜼േ߆ࠄ‫ޔ‬ਥ
its variant cells, PC12D. ╙ 25 ࿁࿖㓙♧⾰ࠪࡦࡐࠫ࠙ࡓ
ⷐߥࡐ࡝࡜ࠢ࠻ࠨࡒࡦ㎮฽᦭♧࠲ࡦࡄࠢ⾰ߩ 1 ߟ߇
᦬
᧲੩㧔ජ⪲㧕᐀ᒛ
62kDa ߩ CD24 ߢ޽ࠆߎߣ߇⓭߈ᱛ߼ࠄࠇߚ‫ޕ‬2㧕CD24
2.
S. Murakoshi, S. Mizumoto㧘K. Kalayamanitra㧘S. S. Deepa㧘S.
S. Fukui and M. Kawahara; Characterization of one of major
2010 ᐕ 8
ߪ GPI ࠕࡦࠞ࡯ဳ♧࠲ࡦࡄࠢ⾰ߢ޽ࠅ‫‛ޔ‬ℂ⊛ߥᕈ⁁߇
Fukui㧘P. Kongtawelert㧘S. Yamada and K. Sugahara; A series of
♧⢽⾰ߩߘࠇߣ㘃ૃߔࠆߎߣ߆ࠄ‫᦭ޔ‬ᯏṁᇦࠍ↪޿ߚ♖
novel hexasaccharides isolated from chondroitin sulfate of shark fin
⵾ᣇᴺࠍ↪޿ࠆߎߣߢല₸ࠃߊಽ㔌ߢ߈ࠆߎߣࠍ᣿ࠄ߆
cartilage and recognized by the antibody that stains mouse brain
ߣߒߚ‫ߩߎޔߚ߹ޕ‬ᕈ⾰߆ࠄ‫ޔ‬CD24 ߪ♧㎮ࡑࠗࠢࡠࠕ
sections. ╙ 25 ࿁࿖㓙♧⾰ࠪࡦࡐࠫ࠙ࡓ
࡟ࠗᴺߦ⋥ធᔕ↪ߢ߈ߚ‫♧ޕ‬㎮ࡑࠗࠢࡠࠕ࡟ࠗߩ⚿ᨐ߆
⪲㧕᐀ᒛ
ࠄ PC12 ⚦⢩↱᧪ߩ CD24 ߪ‫♧ࡦࡒࠨ࠻ࠢ࡜࡝ࡐޔ‬㎮એ
ᄖߦ‫ޔ‬ǂ ⚿ว߿ ǂ ⚿วߒߚࠪࠕ࡞㉄‫ޔ‬fucose ฽᦭
㧚䈠䈱ઁ․⸥੐㗄
♧㎮ߥߤࠍ฽߻ᄙ᭽ᕈߦን߻ಽሶߢ޽ࠆߎ߇᣿ࠄ߆ߦߥ
ߥߒ
ߞߚ‫⥝ޕ‬๧ᷓ޿ߎߣߦ‫ޔ‬CD24 ߪ↱᧪ߔࠆ⚵❱ߦࠃߞߡ
ࡐ࡝࡜ࠢ࠻ࠨࡒࡦ♧ߩߺߥࠄߕ♧㎮ߩ᭴ᚑࠍ⇣ߦߒߡ޿
ߡ޿ߚ‫ޕ‬
㧟㧚Research projects and annual reports
To explore the biological role of carbohydrate chains
in the process of nerve cell differentiation, I have carried out
characterization of the carbohydrate structure of glycoproteins
by comparing conventional PC12 cells with variant cells
(PC12D). Previously we showed that the length and content
of poly-N-acetyllactosamine chains obtained from the
membrane fraction differed significantly between PC12 and
PC12D, and also that NGF stimulation decreased the content
of poly-N-acetyllactosamine chains of PC12 cells, but had no
effect on PC12D cells. The isolated PL-GPs were analyzed by
SDS-PAGE and fluorography as well as the susceptibility to
endo-E-galactosidase. The amino acid sequence analysis of
62kDa PL-GP quite resembled that of rat CD24.
CD24 is a GPI-glycoprotein that is anchored to the
surface of cell membrane. To characterize carbohydrate
chains on 62kDa PL-GP (i.e. CD24), the nitrocellulose based
microarray system on which partially purified CD24 was
immobilized, were applied. This assay revealed that CD24
had not only poly-N-acetyllactosamine chains, but also the
poly-N-acetyllactosamine chains were terminated with
O-blood type fucose residues, but not Lewis x and/or sialyl
Lewis x structures, for example. This microarray assays also
suggested that the reason for the less content and having
shorter poly-N-acetyllactosamine chains in PC12D cells
35
2010 ᐕ 8 ᦬ ᧲੩㧔ජ
⤑ࠛࡀ࡞ࠡ࡯ઍ⻢ಽ㊁
ᢎ᝼
Laboratory of membrane bioenergetics and metabolism
Prof. Ken Yokoyama, Ph.D
㧝㧚⎇ⓥ᭎ⷐ
࿁ォ⸅ᇦᯏ᭴ߦࠃࠆࠛࡀ࡞ࠡ࡯ᄌ឵߿ࠗࠝࡦャㅍᯏ᭴ߩ
↢๮ߩ⛽ᜬߦߪࠛࡀ࡞ࠡ࡯߇ᔅⷐߢ޽ࠆ‫↢ޕ‬๮߇ࠛࡀ
ᮮጊ
⻞
⸃᣿‫ޔ‬8#62CUG ࠍᮡ⊛ߣߒߚഃ⮎ߦߟߥ߇ࠆ⍮⷗ࠍᓧࠆ
࡞ࠡ࡯૞ࠅ಴ߔ઀⚵ߺࠍ⎇ⓥߔࠆߩ߇‫↢ޔ‬૕ࠛࡀ࡞ࠡ࡯
ߎߣ߇⋡⊛ߢ޽ࠆ‫ޕ‬
ቇ $KQGPGTIGVKEU ߢ޽ࠆ‫↢ޕ‬๮ߩࠛࡀ࡞ࠡ࡯ㅢ⽻ߢ޽
୘૕ߢߩ #62 ࡟ࡌ࡞ࠗࡔ࡯ࠫࡦࠣ
ࠆ #62ߩᄢㇱಽߪ‫ޔ‬๭ๆߦࠃࠆ㉄ൻ⊛࡝ࡦ㉄ൻߦࠃࠅല
ᩕ㙃⁁ᘒߣኼ๮ߣߩ㑐ㅪ߇ㄭᐕᜰ៰ߐࠇߡ޿ࠆ‫ޕ‬ᩕ㙃
₸ࠃߊ૞ࠄࠇࠆ‫ޕ‬ᚒ‫ߩޘ‬૕ߢߪ‫⚦ޔ‬⢩ౝེቭߢ޽ࠆࡒ࠻
೙㒢ߦࠃࠅᄙߊߩ↢‛⒳ߢኼ๮߇ᑧ߮ࠆߎߣ߽ႎ๔ߐࠇ
ࠦࡦ࠼࡝ࠕߦሽ࿷ߔࠆ๭ๆ㎮㉂⚛⟲߇ߘߩᓎഀࠍᜂߞߡ
ߡ޿ࠆ‫࡯ࠡ࡞ࡀࠛޕ‬ઍ⻢ߩⷐߣ߽޿߃ࠆ #62 ߩ↥↢̒ᶖ
޿ࠆ‫ޕ‬๭ๆ㎮㉂⚛ߩ࠻࠶ࡊࡃ࠶࠲࡯߇ⶄว૕+ ߣ޿ࠊࠇ
⾌ߣኼ๮ߣߩ㑐ㅪࠍ✢⯻ %CGPQTJCDFKVKU GNGICPU ࠍ᧚
ࠆ 0#&* ⣕᳓⚛㉂⚛ߢ޽ࠆ‫ޕ‬๭ๆ㎮㉂⚛ߩ++ ߆ࠄ +8 ߹
ᢱߦߒߡ᣿ࠄ߆ߦߔࠆ‫ޕ‬
ߢߩ᭴ㅧߪ⹦⚦ߦ⸃᣿ߐࠇߡ߅ࠅ‫ߩߺ⚵઀ߩߘޔ‬ℂ⸃߽
ⶄ㔀ߥ⤑࠲ࡦࡄࠢ⾰ߩ᭴ㅧ⸃ᨆ‫ޕ‬
ߛ޿߱ㅴࠎߢ޿ࠆ‫ⶄޕ‬ว૕8 ߔߥࠊߜ #62วᚑ㉂⚛ߪ‫ޔ‬
8#62CUG ߩࠃ߁ߥⶄ㔀ߥࠨࡉ࡙࠾࠶࠻᭴ㅧࠍ߽ߟ⤑
ⶄว૕ ++8 ߦࠃߞߡ૞ࠄࠇߚࡊࡠ࠻ࡦỚᐲ൨㈩ߣ⤑㔚
࠲ࡦࡄࠢ⾰ߩ᭴ㅧ߇⸃ߌߚ଀ߪᄙߊߥ޿‫⚿ߪߩ߁޿ߣޕ‬
૏㧔ࡊࡠ࠻ࡦ㚟േജ㧕ࠍ࿁ォജߦᄌ឵ߒ‫ޔ‬࿁ォജߦࠃߞ
᥏᭴ㅧቇߦㆡߒߚ⿥ಽሶ⤑࠲ࡦࡄࠢ⾰ߩ♖⵾߇㔍ߒ޿߆
ߡ #&2 ࠍ࡝ࡦ㉄ൻߒߡ #62 ࠍวᚑߔࠆ㧔࿑㧝ෳᾖ㧕‫ޕ‬
ࠄߢ޽ࠆ‫ޕ‬8#62CUG ߩ♖⵾♽ߢ↪޿ߡ޿ࠆᅢᾲ⩶ࠍኋਥ
࿁ォߣ #62วᚑߩ㑐ଥߪ‫ޔ‬᭴ㅧ↢‛ቇߣ㧝ಽሶⷰኤߣ޿
ߣߒߚ࠲ࠣ♖⵾♽ࠍᔕ↪ߒ‫ޔ‬ᓥ᧪࿎㔍ߢ޽ߞߚⶄ㔀ߥ⤑
߁ᚻᴺߢߘߩℂ⸃߇ㅴࠎߢ޿ࠆ‫ࡦ࠻ࡠࡊޔߒ߆ߒޕ‬㚟േ
࠲ࡦࡄࠢ⾰ߩ♖⵾♽ࠍ⏕┙ߒ‫ޔ‬᭴ㅧ⸃᣿ࠍ⋡ᜰߔ‫ޕ‬2UT
ജߢ࿁ォߔࠆ઀⚵ߺߪ‫ޕ޿ߥ޿ߡߞ߆ࠊߊࠃޔ‬
๭ๆ㎮࠲ࡦࡄࠢ⾰ߩ৻⒳‫ޔ‬๭ๆ㎮㉂⚛ߩ %QORNGZ +‫ޔ‬
❫Ძⶄว૕ߩ৻ㇱߦ㑐ߒߡࡅࠬ࠴ࠫࡦ࠲ࠣ♖⵾♽ߩ⏕┙
ᚒ‫ⶄޔߪޘ‬ว૕+ ߩ⹦⚦
ߦᚑഞߒߡ߅ࠅ‫⚿ޔ‬᥏߽ᓧࠄࠇߡ޿ࠆ‫ߥ⊛⟜✂ޕ‬᭴ㅧ↢
‛ቇߢࠞࡃ࡯ߒ߈ࠇߥ޿ⶄ㔀ߥ⤑࠲ࡦࡄࠢ ⾰ߩ᭴ㅧᖱ
࿑ #62 วᚑ㉂⚛ߩ᭎ᔨ
ႎࠍឭଏߔࠆߣߣ߽ߦ‫ޔ‬ᰴߩ⎇ⓥ᧚ᢱࠍត⚝ߔࠆߩ߇⋡
࿑‫ޕ‬࿁ォㆇേࠍ੺ߒߡ᳓
⊛ߢ޽ࠆ‫ޕ‬
⚛ࠗࠝࡦߩャㅍߣൻቇ෻
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
ᔕࠍ⚿߮ߟߌߡ޿ࠆ‫ޕ‬
㧝㧕8#62CUG ߩࠗࠝࡦャㅍャㅍߦ㑐ଥߒߚേ߈ߩ⸃᣿
⋥ᓘ PO ߣ޿߁ᓸዊߥ☸ሶࠍ 8#62CUG ߦ⚿วߐ
ߥ᭴ㅧ‫ࡦ࠻ࡠࡊ߮ࠃ߅ޔ‬㚟
േജߦࠃࠆ࿁ォߩ઀⚵ߺߩ⸃᣿ࠍ‫ޔ‬᭴ㅧ↢‛ቇ‫ޔ‬㧝ಽሶ
ߖ‫ޔ‬#62 ߩട᳓ಽ⸃ߦ઻߁࿁ォㆇേࠍⷰኤߒߚ‫⚿ߩߘޕ‬
ⷰኤ‫↢ޔ‬ൻቇ
ᨐ࿁ォಽሶࡕ࡯࠲࡯ߦ߅ߌࠆࠗࠝࡦャㅍߩ⚛ㆊ⒟ߦ㑐ଥ
ߩᚻᴺࠍ↪޿ߡขࠅ⚵ࠎߢ޿ࠆ‫ޕ‬
↢๮߇ࠛࡀ࡞ࠡ࡯ࠍᄌ឵ߒߚࠅ೑↪ߔࠆㆊ⒟ߪ‫৻ޔ‬ᣇߢ‫ޔ‬
ߒߚേ߈ࠍ⋥ធⷰኤߔࠆߎߣߦ਎⇇ߢೋ߼ߡᚑഞߒߚ‫ޕ‬
⠧ൻ߿⠧ൻߦ઻߁∔∛ߣᷓ޿㑐ଥ߇޽ࠆ‫ޕ‬ኼ๮ࠍᄌൻߐ
ߎࠇߦࠃࠅ‫ߩࡦࠝࠗޔ‬േ߈ߣ࿁ォㆇേ㑆ߩࠛࡀ࡞ࠡ࡯ᄌ
ߖࠆㆮવሶߩਛߦߪ‫࡯ࠡ࡞ࡀࠛޔ‬ઍ⻢㑐ଥߩ㉂⚛߇ᴛጊ
឵ㆊ⒟ߩ઀⚵ߺߩ৻┵߇⸃᣿ߐࠇߚ‫ޕ‬
޽ࠅ‫࡯ࠡ࡞ࡀࠛޔ‬៨ข㊂ߘߩ߽ߩ߇ኼ๮ࠍⷙቯߔࠆߎߣ
⠧ൻߦ઻߁ #62 Ớᐲᄌൻߩᬌ಴
⠧ൻ࡮ኼ๮⎇ⓥߦ߅޿ߡᦨ߽ታ❣ߩ޽ࠆࡕ࠺࡞↢‛ߢ
߽ႎ๔ߐࠇߡ޿ࠆ‫ޕ‬ᚒ‫࡯ࠡ࡞ࡀࠛޔߪޘ‬ઍ⻢ߩਛᔃ‛⾰
ߢ޽ࠆ #62 ߩ⚦⢩ౝỚᐲߣኼ๮ߣߩ㑐ଥࠍ‫ޔ‬ಽሶࠗࡔ࡯
޽ࠆ %GNGICPU ࠍ᧚ᢱߣߒ‫ޔ‬ട㦂ߦ઻߁ #62 Ớᐲᄌൻߩ
ࠫࡦࠣߣ޿߁ᚻᴺߢ⸃᣿ߔࠆ⎇ⓥߦ⌕ᚻߒߚߣߎࠈߢ޽
᦭ή‫ޔ‬#62 Ớᐲߣ⠧ൻ߿⚦⢩࡮୘૕ᱫߣߩ⋥ធ㑐ଥߩ᦭
ࠆ‫↢ޕ‬૕ࠛࡀ࡞ࠡ࡯ቇߩⷞὐ߆ࠄ⠧ൻ࡮ኼ๮ߩ໧㗴ߦߣ
ήࠍ⺞ߴߚ
ࠅߊࠎߢ޿ߊ੍ቯߢ޽ࠆ‫ޕ‬
ࠚ࡜࡯࠯ࠍ↪޿ߚῂశߢ᷹ቯߒߚ‫⚿ߩߘޕ‬ᨐ‫ޔ‬ട㦂ߦ઻
ᧄ⎇ⓥಽ㊁ߢߪᰴߩ⻉ὐߦߟ޿ߡ⎇ⓥࠍዷ㐿ߒߡ޿ࠆ‫ޕ‬
㧝୘૕ߩ #62 ㊂ࠍ࡞ࠪࡈࠚ࡝ࡦ࡮࡞ࠪࡈ
߁⪺ߒ޿ #62 Ớᐲᄌൻ߇⿠ߎࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬ᰴߦ
%GNGICPU ߦ #62 ࠮ࡦࠨ࡯࠲ࡦࡄࠢ⾰ߢ޽ࠆ #6GCO ࠍ
8#62CUG ߩ࿁ォ⸅ᇦᯏ᭴ߩ⸃᣿
ዉ౉ߒߚ‫ޕ‬ቯᏱ⊛ߦ #6GCO ࠍ․ቯߩ⚦⢩㧔╭⡺‫⚦⚻␹ޔ‬
ᚒ‫↢ޔߪޘ‬ൻቇ‫‛‛↢ޔ‬ℂቇ㧔㧝ಽሶⷰኤ㧕‫ޔ‬᭴ㅧ↢
⢩╬㧕ߢ⊒⃻ߔࠆㆮવሶዉ౉✢⯻ࠍ૞ᚑߒߚ‫ޕ‬
‛ቇߩᚻᴺࠍ↪޿ߡ‫↢ޔ‬૕ౝߢᦨ߽㊀ⷐߢഃ⮎࠲࡯ࠥ࠶
࠻ߢ߽޽ࠆ 8#62CUG ߩᯏ⢻̒᭴ㅧߩ⸃᣿ࠍㅴ߼ߡ޿ࠆ‫ޕ‬
36
㧟㧚Research projects and annual reports
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
1. Rotary mechanism of V-ATPase
ᮮጊ
⻞㧦⠧ൻߣ #62Ớᐲ ╙ ࿁ ⤑ャㅍ૕⎇ⓥળ㧔․ቯ㗔ၞ
㕟ᣂ⊛࠽ࡁ࠹ࠢࡁࡠࠫ࡯
Vacuole-type ATPases (VoV1) and FoF1 ATP synthases couple
ਥ௅㧕‫ޔ‬૛ᏒᏒ‫ޔ‬
ATP hydrolysis/synthesis in the soluble V1 or F1 portion with
proton (or Na+) flow in the membrane-embedded Vo or Fo
㧣㧚ቇળ⊒⴫
portion through rotation of one common shaft.
(WTWKMG 5 0CMCPQ / #FCEJK - 0QLK * -KPQUJKVC - ,T
Here we
show at submillisecond resolutions the ATP-driven rotation of
;QMQ[COC -
isolated V1 and of the whole VoV1 from Thermus thermophilus,
4GUQNXKPI UVGRRKPI TQVCVKQP QH 8#62CUG YKVJ CP
by attaching a 40-nm gold bead for which viscous drag is
GUUGPVKCNN[ FTCIHTGG RTQDG VJ 'WTQRGCP $KQGPGIGVKEU
almost negligible.
EQPHGTGPEG
V1 made 120q steps, commensurate with
the presence of three catalytic sites.
9CTUCY 2QNCPF Dwells between the
-KUJKMCYC , (WLKMCYC / +OCOWTC * ;CUWFC - +UJKK 0
steps involved at least two events other than ATP binding, one
/KVCPK 5 0QLK * ;QMQ[COC -
VoV1 exhibited twelve dwell
likely ATP hydrolysis.
positions per revolution, consistent with the twelve-fold
#62 EQPEGPVTCVKQP EJCPIG KP %CGPQTJCDFKVKU GNGICPU VJ
symmetry of the Vo rotor in T. thermophilus.
'WTQRGCP $KQGPGIGVKEU EQPHGTGPEG
undergoes
80q-40q
substepping,
Unlike F1 that
9CTUCY 2QNCPF chemo-mechanical
ጯᎹ ᷕ৻ ⮮Ꮉ ⺈ ੹᧛ ඳ⤿ ቟↰ ૫ઍ ⍹੗ ⋥᣿ ਃ
checkpoints in isolated V1 are all at the ATP-waiting position,
and Vo adds further bumps through stator-rotor interactions
⼱ ᣽ᐔ ㊁࿾ ඳⴕ ᮮጊ ⻞
outside and remote from V1.
✢⯻ %CGPQTJCDFKVKU GNGICPU ߩട㦂ߦ઻߁ #62 Ớᐲᄌൻߩ
2. ATP sensing system in whole nematode
᷹ቯ
Adenosine 5’-triphosphate (ATP) is the major energy currency
ᄢ㒋ᄢቇ࡮㌁᧙ળ㙚 ╙࿁ ᣣᧄ↢૕ࠛࡀ࡞ࠡ࡯⎇ⓥળ
ฎᳰ ᥏ ᧁਅ ৻ᒾ ᮮጊ ⻞
and is involved in many biological processes. The ATP
monitoring system of the single cell of living animal in
ή⽶⩄࿁ォࡊࡠ࡯ࡉߦࠃࠆᅢᾲ⩶ 8Q88 ߩࠬ࠹࠶ࡊ⸃ᨆ╙
real-time can be helpful to study the relation between energy
࿁ ᣣᧄ↢૕ࠛࡀ࡞ࠡ࡯⎇ⓥળ
metabolism and biological processes. The fluorescent ATP
ᄢ㒋ᄢቇ࡮㌁᧙ળ㙚 ጯᎹ ᷕ৻ ⮮Ꮉ ⺈ ੹᧛ ඳ⤿ ቟↰ ૫ઍ ⍹੗ ⋥᣿ ਃ
biosensor ATeam, which has been reported to monitor free
ATP levels inside living cultured cells based on fluorescence
⼱ ᣽ᐔ ㊁࿾ ඳⴕ ᮮጊ ⻞
resonance energy transfer (FRET), was then introduced into
✢⯻ߩട㦂ߦ઻߁⚦⢩ౝ #62 Ớᐲߩᄌൻ ᣣᧄಽሶ↢‛ቇ
nematodes by microinjection and UV-irradiation method. It is
ળ࡮ᣣᧄ↢ൻቇળ
confirmed whether ATeam function in nematode cells using
␹ᚭࡐ࡯࠻ࠕࠗ࡜ࡦ࠼ วหᄢળ
cultured cells derived from the transgenic nematode. The
ATeam expressed and worked in nematode cells. Their vulval
㧤㧚ߘߩઁ․⸥੐㗄
cells allowed detection of different ATP levels in the cytosol
ᄖㇱ⾗㊄
compared to mitochondria. These experiments demonstrate
ฃ⸤⎇ⓥ
࠲࡯ࠥ࠶࠻࠲ࡦࡄࠢ⎇ⓥࡊࡠࠣ࡜ࡓ
‫ޟ‬ഃ⮎ߦ❬߇
ࠆ⤑ャㅍ૕ߩ᭴ㅧ‫ޔ‬ᯏ⢻ߩ⸃᣿‫ޠ‬ಽᜂઍ⴫⎇ⓥ⠪㧦 ᮮጊ ⻞
that ATeam is available for detection of ATP levels change in
⑼ቇ⎇ⓥ⵬ഥ㊄ၮ⋚⎇ⓥ $‫ޟ‬㔚ሶ㗼ᓸ㏜ߦࠃࠆⶄว૕ + ߅ࠃ߮
nematode cells.
8#62CUG ߩ᭴ㅧ⸃ᨆ‫ޠ‬
㧠㧚⊒⴫⺰ᢥ
Furuike, S, Nakano, M., Adachi, K., Noji, H., Kinosita Jr., K., and
Yokoyama, K. Resolving stepping rotation in Thermus thermophilus
H+-ATPase/synthase with an essentially drag free probe. Nature
Communications,2 in press
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
ߥߒ‫ޕ‬
37
⎇ⓥઍ⴫⠪㧦
ᮮጊ
⻞
䉺䊮䊌䉪⾰䊋䉟䉥䉳䉢䊈䉲䉴⎇ⓥቶ
ᢎ᝼ દ⮮ ⛽ᤘ
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪧㫉㫆㫋㪼㫀㫅 㪙㫀㫆㪾㪼㫅㪼㫊㫀㫊
㪧㫉㫆㪽㪅 㪢㫆㫉㪼㪸㫂㫀 㪠㫋㫆
ഥᢎ ජ⪲ ᔒା
㪘㫊㫊㫀㫊㫋㪅 㪧㫉㫆㪽㪅 㪪㪿㫀㫅㫆㪹㫌 㪚㪿㫀㪹㪸
䋱䋮⎇ⓥ᭎ⷐ
⇣䈭䉎୘೎ᕈ䈱㜞䈇ᣇᑼ䈪䊥䊗䉸䊷䊛䈮௛䈐䈎䈔䉎䈖䈫䉕᣿䉌
䉺䊮䊌䉪⾰䊋䉟䉥䉳䉢䊈䉲䉴⎇ⓥቶ䈪䈲䇮ᣂ䈢䈭⎇ⓥಽ
䈎䈮䈚䈢䇯䉁䈢䇮㪤㫀㪽㪤 䈱䉶䊮䉰䊷ㇱ૏䉕ᡷᄌ䈜䉎䈖䈫䈮䉋䉍䇮
㊁䇸วᚑㅜ਄㎮䈱ಽሶ↢‛ቇ䇹䈱㐿ᜏ䈫ផㅴ䉕ⴕ䈦䈩䈇䉎䇯
⤑ᝌ౉෻ᔕ䈮䉋䈦䈩೙ᓮ䈘䉏䉎⠡⸶䉝䊧䉴䊃䉕ಽᴲ෻ᔕ䈮䉋
↢๮ᵴേ䉕ㅴⴕ䈘䈞䉎ਛᔃ⊛䈭↢૕ಽሶ䈪䈅䉎䉺䊮䊌䉪⾰
䈦䈩೙ᓮ䈘䉏䉎䉋䈉䈮ォ឵䈘䈞䉎䈖䈫䈮ᚑഞ䈚䈢䇯䈖䉏䉌䈱⚿
䈲䇮㪛㪥㪘 䈮ᦠ䈐ㄟ䉁䉏 㫄㪩㪥㪘 䈮౮䈚ข䉌䉏䈢ㆮવᖱႎ䈮
ᨐ䈎䉌䇮䉝䊧䉴䊃㈩೉䈫䉶䊮䉰䊷ㇱ૏䈲⁛┙䈱䊡䊆䉾䊃䈫䈚䈩
ᓥ䈦䈢㗅⇟䈪䉝䊚䊉㉄䈏㗅ᰴ⚿ว䈜䉎䈖䈫䈮䉋䈦䈩૞䉌䉏䉎䇯
௛䈐ᓧ䉎䉅䈱䈪䈅䉎䈖䈫䉕␜䈚䈢䇯ర᧪䈲⇣䈭䉎⺞▵♽↱᧪䈱
䈖䈱ㆮવᖱႎ䈱⠡⸶ㆊ⒟䈲䊥䊗䉸䊷䊛䈱ౝㇱ䈮䈍䈇䈩ㅴ
䉶䊮䉰䊷䈫䊑䊧䊷䉨䉕⚵䉂ว䉒䈞䈩䉅ㆮવሶ⊒⃻⺞▵䈏น
ⴕ䈚䇮િ㐳䈚䈧䈧䈅䉎วᚑㅜ਄㎮䋨㫇㫆㫃㫐㫇㪼㫇㫋㫀㪻㫐㫃㪄㫋㪩㪥㪘䋩䈲䊥
⢻䈪䈅䉎䈖䈫䈏䉒䈎䉍䇮䈠䉏䈡䉏䈱↢‛⒳䈲䇮࿕᦭䈱ᯏ⢻න
䊗䉸䊷䊛ౝㇱ䈱䊃䊮䊈䊦䉕ㅢ䈦䈩䊘䊥䊕䊒䉼䊄ㇱಽ䈏䊥䊗䉸
૏䈫䈚䈩௛䈒䈖䉏䉌䈱䉝䊚䊉㉄㈩೉䉕⚵䉂ว䉒䈞䈩䇮᭽䇱䈭↢
䊷䊛䈱ᄖ䈮಴䈩ⴕ䈒䇯ㅢᏱ䇮䉺䊮䊌䉪⾰䈲䊥䊗䉸䊷䊛䈎䉌↢
ℂᵴᕈ䉕䊝䊆䉺䊷䈜䉎䇸วᚑㅜ਄䈪௛䈒೙ᓮ♽䇹䉕ㅴൻ䈘䈞
䉁䉏⪭䈤䈢ᓟ䇮┙૕᭴ㅧ䉕₪ᓧ䈚䈩௛䈒䈫⠨䈋䉌䉏䈩䈇䉎
䈩䈐䈢䈖䈫䉕␜ໂ䈚䈢䇯
䈏䇮ᚒ䇱䈲䇮䇸วᚑㅜ਄䈪௛䈒䇹䈫䈇䈉䇮䉺䊮䊌䉪⾰䈱ᣂ䈢䈭
⚦⢩䈮ᣈ䈔䉎 㫇㫆㫃㫐㫇㪼㫇㫋㫀㪻㫐㫃㪄㫋㪩㪥㪘 䉕ᬌ಴䈜䉎ᣇᴺ䈱㐿
䈅䉍ᣇ䈮㑐䈜䉎⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯ౕ૕⊛䈮䈲䇮䉺䊮䊌䉪⾰
⊒䋺 ⚦⢩ౝ䈱 㫇㫆㫃㫐㫇㪼㫇㫋㫀㪻㫐㫃㪄㫋㪩㪥㪘 䉕ᬌ಴䈜䉎䈖䈫䈲䇮䇸วᚑ
䈱⚦⢩ᄖ䈻䈱ಽᴲ䉕⋙ⷞ䈚䈩⤑ㅘㆊ䊝䊷䉺䊷䉺䊮䊌䉪⾰
ㅜ਄㎮䈱ಽሶ↢‛ቇ䇹䈱ၮ␆䈪䈅䉎䈏䇮ᓥ᧪䈲䈖䈱䉋䈉䈭⹜
㪪㪼㪺㪘 䈱⊒⃻೙ᓮ䉕ⴕ䈉ᄢ⣺⩶ 㪪㪼㪺㪤 䉇䇮⤑䉺䊮䊌䉪⾰䈱⚦
䉂䈏䈭䈘䉏䈩䈇䈭䈎䈦䈢䇯䈠䈖䈪䇮䊕䊒䉼䊄䈫 㫋㪩㪥㪘 䈫䉕⚿ว
⢩⤑䈻䈱ᝌ౉ㆊ⒟䉕⋙ⷞ䈚䈩⤑ᝌ౉ⵝ⟎ 㪰㫀㪻㪚 䈱⠡⸶೙
䈜䉎䉣䉴䊁䊦⚿ว䈱቟ቯᕈ䈮㑐䈜䉎⹦䈚䈇⺞ᩏ䉕ⴕ䈇䇮䈠
ᓮ䉕ⴕ䈉ᨗ⨲⩶ 㪤㫀㪽㪤 䈭䈬䉕䈫䉍䈅䈕䈩䈇䉎䇯
䉏䉕೑ ↪䈚 䈢 ੑ ᰴర㔚 ᳇ᵒേ 䈮䉋 䉍⚦⢩ౝ
㫇㫆㫃㫐㫇㪼㫇㫋㫀㪻㫐㫃㪄㫋㪩㪥㪘䋨㵰㫅㪸㫊㪺㪼㫅㫋㫆㫄㪼㵱䋩䉕ᬌ಴䊶นⷞൻ䈜䉎ᣇᴺ
⚦⢩ᯏ⢻䉕⋙ⷞ䈚䈩ㆮવሶ⊒⃻䉕೙ᓮ䈜䉎䈖䉏䉌䈱䊝
䉕㐿⊒ਛ䈪䈅䉎䇯
䊆䉺䊷䉺䊮䊌䉪⾰䈲䊥䊗䉸䊷䊛䊃䊮䊈䊦䈱ౝㇱ䈪䊃䊮䊈䊦ᚑ
ಽ䈫⋧੕૞↪䈚䈩⠡⸶䈮䊑䊧䊷䉨䉕䈎䈔䉎䇸䉝䊧䉴䊃㈩೉䇹
䉕ᜬ䈧৻ᣇ䇮䊥䊗䉸䊷䊛䈱ᄖ䈮಴䈢䇸䉶䊮䉰䊷䇹ㇱಽ䈲䉺䊮
䊌䉪⾰ಽᴲⵝ⟎䉇⤑ᝌ౉ⵝ⟎䈭䈬䈱௛䈐䉕ฃ䈔䇮䈠䉏䉌䈱
Nascent chain biology
ᵴᕈ䈮๭ᔕ䈚䈩⠡⸶䈮䊑䊧䊷䉨䉕䈎䈔䉎䈎䈬䈉䈎䉕᳿䉄䈩
䈇䉎䇯䈖䈱䉋䈉䈮䈚䈩 㫄㪩㪥㪘 ਄䈪䈱䊥䊗䉸䊷䊛䈱േ䈐䈏೙ᓮ
䊶วᚑㅜ਄㎮䊥䊗䉸䊷䊛䊃䊮䊈䊦⋧੕૞↪
䈘䉏䇮㫄㪩㪥㪘 ಽሶ䈱⁁ᘒᄌൻ䈫ᮡ⊛ㆮવሶ䈱⠡⸶೙ᓮ䈏
nascent chain-exit tunnel interaction
ⴕ䉒䉏䉎䇯ᚒ䇱䈲䇮㪪㪼㪺㪤 䉇 㪤㫀㪽㪤 䈱⊒⷗䈮䉋䉍␜䈚䈢ᣂ੐
modulated elongation speed
ታ㵩㵩䇼䊥䊗䉸䊷䊛䈮䉋䉎⠡⸶䈱䉴䊏䊷䊄䈏วᚑㅜ਄㎮䈱䉝䊚
䊉㉄㈩೉䈍䉋䈶䈠䈱േ⊛⁁ᘒ䈮䉋䉍ᓇ㗀䈘䉏䉎䈖䈫䈏䈅䉎䇽
㵩㵩䈱ᯏ᭴䉇ᗧ⟵䉕⸃᣿䈜䉎䈫หᤨ䈮䇮䈘䉌䈮⊒ዷ䈘䈞䈩䇮
feedback control
⠡⸶䉴䊏䊷䊄䈱ᓸ⺞ᢛ䈏䇮䉋䉍৻⥸⊛䈮䉺䊮䊌䉪⾰䈱⚦⢩
ౝ㈩⟎䇮┙૕᭴ㅧ䈱₪ᓧ䇮ⶄว૕ᒻᚑ䈭䈬䈱ᚑᾫㆊ⒟䉕
co-translational events in protein maturation
(targeting, assembly, folding - - - - -)
ଦㅴ䈚䈩䈇䉎น⢻ᕈ䉕ㅊ᳞䈚䈩䈇䉎䇯䈖䈱䈢䉄䇮⚦⢩䈮ᣈ
䈔䉎วᚑㅜ਄㎮䋨ᧂ䈣 㫋㪩㪥㪘 ಽሶ䈮⚿ว䈚䈩䈇䉎䊘䊥䊕䊒
㧟㧚Research projects and annual reports
䉼䊄㎮䋩䈮ᵈ⋡䈚䈢⎇ⓥ䉅ዷ㐿䈚䈩䈇䉎䇯
We intend to develop a new area of research, which
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
might be called “nascent chain biology” by addressing a
㪈㪀 䉝䊧䉴䊃㈩೉䈱ᄙ᭽ᕈ䇮․⇣ᕈ䇮䉶䊮䉰䊷䈫䈱⚵䉂ว䉒䈞
concept that translation elongation speed is fine-tuned by
䈱⥄↱ᐲ䈮㑐䈜䉎⸃ᨆ䋺 ㅢᏱ䇮㘃ૃ䈱↢ൻቇ⊛ᕈ⾰䉕౒᦭
intra-ribosomal part of amino acid sequences of the translation
䈜䉎䉺䊮䊌䉪⾰ห჻䈲䉝䊚䊉㉄㈩೉䈮㘃ૃᕈ䈏䈅䉎䈏䇮䉝䊧䉴
product
䊃㈩೉䈲ᭂ䉄䈩ᄙ᭽䈪䈅䉎䇯⹜㛎▤ౝ䈪䈱ή⚦⢩䉺䊮䊌䉪⾰
extra-ribosomal part of the same nascent chain.
วᚑ෻ᔕ䉕㚟૶䈚䈢ታ㛎䈮䉋䉍䇮䉝䊧䉴䊃㈩೉䈏↢‛⒳Ფ䈮
that some of cellular factors that facilitate secretory protein
38
as
well
as
by
dynamic
behaviors
of
the
We found
export and membrane protein insertion are controlled by
䋴䋮⊒⴫⺰ᢥ
regulatory nascent polypeptides that function in concert with
Saito, A., Hizukuri, Y., Matsuo, E., Chiba, S., Mori, H., Nishimura, O.,
this principle and are studying molecular mechanisms and
Ito, K. and Akiyama, Y.: Post-liberation cleavage of signal peptides
physiological outcomes of the regulation.
is catalyzed by the site-2 protease (S2P) in bacteria.
Also, we are
developing experimental methods to visualize cellular
polypeptidyl-tRNAs,
essential
but
poorly
Proc. Natl.
Acad. Sci. USA in press, 2011
studied
Tsukazaki, T, Mori, H., Echizen, Y., Ishitani, R., Fukai, S., Tanaka, T.,
intermediates in translation.
Perederina, A., Vassylyev, D. G., Kohno, T., Maturana, A. D., Ito,
This year’s accomplishments:
K., and Nureki, O. Structure and function of a membrane
1.
Regulatory
nascent
polypeptides
encoding
component SecDF that enhances protein export. Nature in press,
ribosome-stalling amino acid sequences provide a novel
2011
mechanism to regulate the expression of genetic information.
Chiba, S., Kanamori, T., Ueda, T., Akiyama, Y., Pogliano, K. and Ito,
Our previous studies have shown that two of these regulatory
K.: Recruitment of a species-specific translational arrest module to
nascent chains, B. subtilis MifM and E. coli SecM, are unique
monitor different cellular processes. Proc. Natl. Acad. Sci. USA in
in having two functional elements, with one region (the arrest
press, 2011
module) stalling translation and the other (the sensor module)
White, R., Chiba, S., Pang, T., Dewey, J.S., Savva, C.G., Holzenburg,
monitoring the cellular processes of membrane protein
A., Pogliano, K. and Young, R.: Holin triggering in real time. Proc.
insertion (in the case of MifM) or protein export (in the case
Natl. Acad. Sci. USA in press, 2011
of SecM) by serving as co-translational substrates of the
respective machineries and thereby controlling release of the
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
translational arrest.
Ron, D. and Ito, K.: A translational pause to localize. Science in press,
We probed the species specificity and
modularity of these two regulatory polypeptides, using in vitro
and in vivo approaches.
2011
The results obtained demonstrate
Ito, K., Chiba, S. and Pogliano, K.: Divergent stalling sequences sense
that the elongation arrest produced by these polypeptides is
and control cellular physiology.
species-specific and therefore a result of specific interactions
Commun. 393: 1-5 (2010)
Biochem. Biophys. Res.
between the nascent chain and the ribosome. However, we can
convert MifM into a monitor of protein secretion by replacing
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
its native transmembrane domain with an export signal
Ito, K.: Structure, function and regulation of the Sec translocation
sequence. This highlights the modular nature of regulatory
system. International Symposium 㵰Life of Proteins㵱 in Honor of
nascent chains and indicates that the translational arrest can be
the 1st Retirement of Professor Kazuhiro Nagata, Kyoto (Japan)
regulated by different co-translational events that use different
March 18, 2010.
cellular machineries.
Ito, K., Chiba, S., Akiyama, Y. and Abo, T.: Visualizing dynamic
2. Polypeptidyl-tRNAs are important components of
nascentome of the cell. FASEB Summer Research Conference
translation, which occur as intermediates, but they have not
Protein Folding in the Cell. Saxtons River, Vermont (USA). July
been profiled in cellular contexts. We are developing
25-30, 2010.
experimental methods that visualize polypeptidyl-tRNAs of
Ito, K.: From SecY to nascent chain biology. International
the cell, termed "nascentome", by SDS-PAGE in two
Symposium on Protein Community. Nara (Japan), September
dimensions, first in neutral pH, where peptidyl-tRNA ester
13-16, 2010.
bonds
are
preserved
and
subsequently
after
hydrolysis-enhancing incubation at high pH/temperature. To
䋷䋮ቇળ⊒⴫
this end, we have characterized stabilities of ester bonds that
㋈ᧁ቞䇮Ⓑ⪲⻞ᰴ䇮೨Ꮉᙗ৻䇮⑺ጊୃᔒ䇮દ⮮⛽ᤘ䇮⑺ጊ⧐ዷ䋺 ᄢ
bridge the different, last amino acids and tRNA and worked
⣺⩶⤑ౝಾᢿ䊒䊨䊁䉝䊷䉷 RseP 䈱 PDZ 䊄䊜䉟䊮䈱᭴ㅧ⸃ᨆ. ╙
out conditions for the two-dimensional separation.
23 ࿁ᣣᧄ᡼኿శቇળᐕળ䇮ᆢ〝䇮2010. 1. 6-9
By
combining this method with pulse-chase schemes, we plan to
Tsukazaki, T., Mori, H., Ito, K., and Nureki, O.: Structural analysis of
follow the fates of cellular polypeptidyl-tRNAs to achieve
bacterial Sec translocon machinery. Gordon Research Conferences
deeper understanding of protein biogenesis and quality control
on Protein Transport Across Cell Membranes, Galveston (U.S.A),
pathways.
March 7-12, 2010
39
⑼ቇ⎇ⓥ⾌⵬ഥ㊄
㋈ᧁ቞䇮Ⓑ⪲⻞ᰴ䇮೨Ꮉᙗ৻䇮⑺ጊୃᔒ䇮દ⮮⛽ᤘ䇮⑺ጊ⧐ዷ䋺 ᄢ
․ቯ㗔ၞ⎇ⓥ‫ޟ‬⠡⸶ㅜ਄㎮ߩ࠲ࡦࡄࠢ⾰
␠ળߦ߅ߌࠆᗧ⟵ߣᓎഀ‫⎇ޠ‬ⓥઍ⴫⠪㧦 દ⮮⛽ᤘ
⣺⩶⤑ౝಾᢿ䊒䊨䊁䉝䊷䉷 RseP 䈱 X ✢⚿᥏᭴ㅧ⸃ᨆ. ╙ 27 ࿁
⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ⧯ᚻ⎇ⓥ䋨䌂䋩䇸ᨗ⨲⩶Ⱞ⊕⾰⤑⚵ㄟ䉕䊝䊆
PF 䉲䊮䊘䉳䉡䊛. 䈧䈒䈳, 2010, 3, 9-10
䉺䊷䈜䉎⠡⸶ㅜ਄㎮䇹 ⎇ⓥઍ⴫⠪䋺 ජ⪲ᔒା
᫪ ඳᐘ䇮Ⴆፒᥓ਽䇮⿧೨෹㚅䇮Ứᧁℂ䇮દ⮮⛽ᤘ䋺 䊋䉪䊁䊥䉝䈱䉺
⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ․ቯ㗔ၞ⎇ⓥ 䇸⤑ౝಾᢿ 㩿㪩㪠㪧㪀 䊒䊨䊁䉝
䊮䊌䉪⾰⤑ㅘㆊⵝ⟎䈱᭴ㅧ䈫ᯏ⢻. ᣣᧄ⚦⩶ቇળ䊪䊷䉪䉲䊢䉾䊒
䊷䉷䈱⚦⢩ᯏ⢻䇹 ⎇ⓥઍ⴫⠪䋺 ජ⪲ᔒା
䇸⚦⩶䈱䉺䊮䊌䉪⾰ಽᴲ♽䇹䇮ᮮᵿ. 2010. 3. 27-29
Ⴆፒᥓ਽䇮᫪ ඳᐘ䇮⿧೨↱㚅䇮⍹⼱㓉৻㇢䇮ᷓ੗๟਽䇮↰ਛ೰ผ䇮
Perederina, A., Vassylyev, D. G.䇮ᴡ㊁ବਯ䇮દ⮮⛽ᤘ䇮Ứᧁℂ䋺
䋲䋮⍮⽷ᮭ╬
Sec 䊃䊤䊮䉴䊨䉮䊮䈫౒䈮ᯏ⢻䈜䉎 SecDF ⤑䉺䊮䊌䉪⾰䈱᭴ㅧ. ╙
䈭䈚
10 ࿁Ⱞ⊕⾰⑼ቇળᐕળ䇮ᧅᏻ. 2010. 6. 16-18.
䋳䋮ቇᄖᵴേ
ජ⪲ᔒା䇮㊄᫪ፏ䇮਄↰ථ਽䇮દ⮮⛽ᤘ: ᨗ⨲⩶⠡⸶䉝䊧䉴䊃࿃ሶ
mifM 䈱 in vitro ⠡⸶♽䈮䉋䉎⸃ᨆ. ᐔᚑ䋲䋲ᐕᐲ䉫䊤䊛㓁ᕈ⩶䉭䊉
㪤㪼㫄㪹㪼㫉㪃 㪝㪸㪺㫌㫃㫋㫐 㫆㪽 㪈㪇㪇㪇 㩿㪿㫋㫋㫇㪑㪆㪆㪽㪈㪇㪇㪇㪅㪺㫆㫄㪆㪀 䋨⺰ᢥ⹏ଔ䉲
䊛ળ⼏. ධᧁᦦ, 2010. 9. 2-3
䉴䊁䊛䋩 દ⮮⛽ᤘ
Ito, K., Chiba, S., Akiyama, Y. and Abo, T.: Visualizing dynamic
䋴䋮ฃ⾨╬
"nascentome" of the cell. International Symposium on Protein
䈭䈚
Community, Nara (Japan), September 13-16, 2010
Mori, H., Tsukazaki, T., Nureki, O., Ito, K. and Akiyama, Y.: A
functionally
important
intramolecular
interaction
in
SecA:
involvement of hydrophobic amino acids in motif IV and
anti-parallel beta sheet in translocase activation. International
Symposium on Protein Community, Nara (Japan), September 13-16,
2010
Tsukazaki, T., Mori, H., Echizen, Y., Ishitani, R., Fukai, S., Tanaka,
T., Perederina, A., Vassylyev, D. G., Kohno, T., Ito, K. and Nureki,
O.: Crystal structure of SecDF, a Sec translocon-associated
membrane protein. International Symposium on Protein Community,
Nara (Japan), September 13-16, 2010
Yura, T., Lim, B., Gross, C., Ito, K., Mori, H. and Akiyama, Y.:
SRP-dependent targeting of sigma 32 to the membrane: A critical
step for the chaperone-mediated feedback control in bacteria heat
shock response. International Symposium on Protein Community,
Nara (Japan), September 13-16, 2010
Tamura, T., Kiyoto, A., Yoshida, T., Ito, K. and Inagaki, K.:
Combinatorial mutation of the active-site dipeptide sequence
revealed no correlation between the redox potentials and biological
functionality of DsbA[CXXC]. International Symposium on Protein
Community, Nara (Japan), September 13-16, 2010
ᢪ⮮ ໪䇮ජ⪲ᔒା䇮᧻የ⧷৻䇮⷏᧛ ♿䇮દ⮮⛽ᤘ䇮⑺ጊ⧐ዷ䋺
Fate of signal peptides in bacteria: post liberation cleavage by S2P
protease.
╙䋳䋳࿁ᣣᧄಽሶ↢‛ቇળᄢળ䊶╙䋸䋳ળᣣᧄ↢ൻቇ
ળᄢળวหᄢળ 䊪䊷䉪䉲䊢䉾䊒䇸⤑䉺䊮䊌䉪⾰䈱᭴ㅧ䊶ᯏ⢻䈎䉌⷗
䉎䉥䊦䉧䊈䊤䈱ㅴൻ䇹, ␹ᚭ. 2010. 12. 7-10
䋸䋮䈠䈱ઁ․⸥੐㗄
㪈㪅 ᄖㇱ⾗㊄
⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ၮ⋚⎇ⓥ䋨䌁䋩 䇸䌎䌡䌳䌣䌥䌮䌴 䌃䌨䌡䌩䌮䋨วᚑㅜ
਄㎮䋩䈱ಽሶ↢‛ቇ䇹 ⎇ⓥઍ⴫⠪䋺 દ⮮⛽ᤘ
40
ᢎ᝼ ౎᧖ ⽵㓶
⊒↢䉲䉴䊁䊛⎇ⓥቶ
㪧㫉㫆㪽㪼㫊㫊㫆㫉 㪪㪸㪻㪸㫆 㪰㪸㫊㫌㪾㫀㪃 㪧㪿㪅㪛
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪛㪼㫍㪼㫃㫆㫇㫄㪼㫅㫋㪸㫃 㪪㫐㫊㫋㪼㫄㫊
ഥᢎ ⍹੗ ᵏ㓶
㪘㫊㫊㫀㫊㫋㪸㫅㫋 㪧㫉㫆㪽㪼㫊㫊㫆㫉 㪰㪸㫊㫌㫆 㪠㫊㪿㫀㫀㪃 㪧㪿㪅㪛
䋱䋮⎇ⓥ᭎ⷐ
䈱਄⊹⚦⢩䇮䈅䉎䈇䈲㑆ల❱䋨⚿ว⚵❱䉇╭⡺䋩⚦⢩䉕ಽൻ
⊒↢䉲䉴䊁䊛⎇ⓥቶ䈪䈲䇮⣄ᬁേ‛䈱⊒↢ㆊ⒟䈮䈍䈔䉎䇮
䈘䈞䉎䈖䈫䈮䉋䈦䈩䇮ᶖൻེቭ䈱⒳䇱䈱⚦⢩ಽൻ䈱ᯏ᭴䉕᣿
ེቭ䋨⤳ེ䋩䈱ᒻᚑ䉕ಽሶ↢‛ቇ䇮⚦⢩↢‛ቇ䇮⚵❱ቇ䈭䈬
䉌䈎䈮䈜䉎䈢䉄䈮䇮䉁䈝 㪜㪞 ⚦⢩䉕૞ᚑ䈜䉎ᣇᴺ䈱⏕┙䈫䇮
䈱ᣇᴺ䉕↪䈇䈩⎇ⓥ䈚䈩䈇䉎䇯ਥ䈭⎇ⓥኻ⽎䈲䇮䊆䊪䊃䊥⢦䈱
ᆎේ↢ᱺ⚦⢩䈱䊙䊷䉦䊷ㆮવሶ䈪䈅䉎 㪚㪭㪟 ㆮવሶ䈱䉪䊨䊷
ᶖൻེቭ䇮ᔃ⤳䇮䈍䉋䈶↢ᱺ⚦⢩䈪䈅䉎䇯
䊆䊮䉫䉕⹜䉂䈢䇯
䋨䋱䋩ᶖൻེቭ䈮㑐䈜䉎⎇ⓥ
ᶖൻེቭ䈲േ‛䈱↢ሽ䈮ᔅ㗇䈱ེቭ♽䈪䇮ᧄ᧪䋱ᧄ䈱▤
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䈪䈅䉎ᶖൻ▤䈎䉌䇮ຜ㗡䇮㘩㆏䇮⢗䇮ዊ⣺䇮ᄢ⣺䈭䈬䈏ಽൻ
䋨䋱䋩ᶖൻེቭ䈮㑐䈜䉎⎇ⓥ
䈜䉎䈫䈫䉅䈮䇮⢄⤳䉇⤟⤳䈫䈇䈦䈢㊀ⷐ䈭ེቭ䉅ᵷ↢䈜䉎䇯ၮ
㪙㪤㪧 䈱⣼ᒻᚑ䈮ኻ䈜䉎ലᨐ䉕䈘䉌䈮ᬌ⸽䈜䉎䈢䉄䈮䇮㪙㪤㪧
ᧄ⊛䈭⢦ᦼ䈱ᶖൻ▤䈲ౝ஥䈱ౝ⢦⪲ᕈ਄⊹䈫䈠䉏䉕ข䉍Ꮞ
䈱ਅᵹ䈪⚦⢩ౝ䉲䉫䊅䊦વ㆐䈮㑐ਈ䈜䉎䊥䊮㉄ൻ 㪪㫄㪸㪻 䈱
䈒ਛ⢦⪲ᕈ䈱㑆ల❱䈎䉌䈭䉍䇮䉒䉏䉒䉏䈲ᶖൻེቭ䈱ᒻᚑ
ᶖ㐳䉕․⇣⊛᛫૕䉕↪䈇䈩ᬌ಴䈜䉎䈖䈫䉕⹜䉂䈢䇯
䈮ᒰ䈢䈦䈩䈲਄⊹㵩㑆ల❱⋧੕૞↪䈏㊀ⷐ䈪䈅䉎䈖䈫䉕␜䈚
㪪㫄㪸㪻㩿㪪㫄㪸㪻㪈㪆㪌㪆㪏㪀䈲䊥䊮㉄ൻ䈘䉏䉎䈫ᩭ䈮⒖ⴕ䈚䇮ォ౮࿃ሶ
䈩䈐䈢䇯䈠䈚䈩㑆ల❱࿃ሶ䈱ዋ䈭䈒䈫䉅৻䈧䈲䇮㛽ᒻᚑ࿃ሶ
䈫䈚䈩૞↪䈜䉎䈱䈪䇮䊥䊮㉄ൻ 㪪㫄㪸㪻 䈲৻⥸䈮ᩭ䈪ᬌ಴䈘䉏䉎䇯
㩿㪙㪤㪧㪀㪉 䈪䈅䉎䈖䈫䉅␜䈚䈢䇯䉁䈢䇮਄⊹䈎䉌ಽᴲ䈘䉏䉎䉸䊆䉾䉪
䈚䈎䈚䇮఺∉ᨴ⦡䈱᧦ઙ䈏㔍䈚䈒䈩䇮㪉㪇㪈㪇 ᐲ䈲ᬌ಴䈮ᚑഞ䈞
䊓䉾䉳䊖䉾䉫㩿㪪㪿㪿㪀䈲䇮㑆ల❱䈱ᚑ㐳䉇ಽൻ䉕೙ᓮ䈜䉎䈖䈫䉅
䈝䇮᧪ᐕᐲ䈮ᜬ䈤⿧䈚䈫䈭䈦䈢䇯㪪㪿㪿 䈱૞↪䈮䈧䈇䈩䈲䇮䈫䈒
᣿䉌䈎䈮䈚䈩䈐䈢䇯䋨࿑䋩㪉㪇㪈㪇 ᐕᐲ䈮䈲䇮䈖䉏䉌䈱⍮⷗䈮ၮ䈨
䈮ዊ⣺䈱ಽൻ䈮ኻ䈜䉎ᓇ㗀䉕⺞䈼䉎䈼䈒䇮㪪㪿㪿 䈱䉲䉫䊅䊦વ
䈇䈩䇮ᶖൻེቭ䈱⊒↢䊶ಽൻ䈮䈍䈔䉎 㪙㪤㪧 䉇 㪪㪿㪿 䈱૞↪䉕
㆐䉕㒖ኂ䈜䉎ᬀ‛ᕈ䉝䊦䉦䊨䉟䊄䈪䈅䉎䉰䉟䉪䊨䊌䊚䊮䉕䇮䋶ᣣ
䉋䉍⹦⚦䈮᣿䉌䈎䈮䈜䉎䈖䈫䉕⹜䉂䈢䇯
⢦ዊ⣺䈱ၭ㙃♽䈮ᷝട䈚䈩䋶ᣣ㑆ၭ㙃䈚䈢䇯ዊ⣺਄⊹䈪⊒
䉁䈢䇮ᶖൻེቭ਄⊹䈱ᐙ⚦⢩䈏⊒↢ㆊ⒟䈪䈬䈱䉋䈉䈮↢䈛
⃻䈜䉎 㪪㪿㪿㪃 㪠㪝㪘㪙㪧㪃 䉴䉪䊤䊷䉷䈭䈬䉕ᜰᮡ䈫䈚䈩ዊ⣺਄⊹䈱
䉎䈎䇮⊒↢ㆊ⒟䈪䈇䈎䈭䉎ᯏ⢻䉕䉅䈧䈎䈲᣿䉌䈎䈮䈜䉎䈢䉄
ಽൻ䉕ᬌ⸛䈚䈢䇯䉰䉟䉪䊨䊌䊚䊮䈱Ớᐲ䉇 㫀㫅 㫊㫀㫋㫌 㪿㫐㪹㫉㫀㪻㫀㫑㪸㫋㫀㫆㫅
䈮䇮ູ੃㘃䈱ዊ⣺ᐙ⚦⢩䈮․⇣⊛䈮⊒⃻䈜䉎䈫䈇䉒䉏䉎
䈱᧦ઙ䉕᳿ቯ䈚䈩䇮ታ㛎䉕ⴕ䈦䈢⚿ᨐ䇮䉰䉟䉪䊨䊌䊚䊮ሽ࿷ਅ
㪣㪾㫉㪌 ㆮવሶ䉕䉪䊨䊷䊆䊮䉫䈚䇮䊆䊪䊃䊥⢦䈪䈱⊒⃻䊌䉺䊷䊮䉕
䈪ၭ㙃䈚䈢ᣇ䈏䇮ዊ⣺䈱⛐Ძᒻᚑ䈏ଦㅴ䈘䉏䉎䇮䈫䈇䈉䊂䊷
⸃ᨆ䈜䉎䈖䈫䈮䈚䈢䇯
䉺䉕ᓧ䈩䈇䉎䇯⃻࿷଀ᢙ䉕Ⴧ䉇䈜䈭䈬䈚䈩䇮⚿ᨐ䈱⏕⹺䉕ⴕ
䋨䋲䋩ᔃ⤳䈱⊒↢䈮㑐䈜䉎⎇ⓥ
䈦䈩䈇䉎䇯
ᔃ⤳䈲⊒↢ㆊ⒟䈪䉅䈦䈫䉅ᣧ䈒䈎䉌ᯏ⢻䈜䉎ེቭ䈪䈅䉎䈏䇮
㪣㪾㫉㪌 䈲䇮ዊ⣺਄⊹ᐙ⚦⢩䈪․⇣⊛䈮⊒⃻䈜䉎ㆮવሶ䈪䈅
ೋᦼ䈱ᔃ⤳䈲䇮ᔃ╭䈫ᔃౝ⤑䈫䈎䉌䈭䉎䈗䈒න⚐䈭৻ᧄ䈱▤
䉎䈫䈇䉒䉏䉎䇯䊆䊪䊃䊥䈱 㪣㪾㫉㪌 䉕 㪧㪚㪩 䉕↪䈇䈩䉪䊨䊷䊆䊮䉫䈚䇮
䈮䈜䈑䈭䈇䇯ᔃ╭䈮ⴊᶧ䉕ଏ⛎䈜䉎౰േ⣂䈲䇮ᔃ⤳䈏ᜉേ
䊒䊨䊷䊑䉕૞ᚑ䈚䈩䇮⢦ᦼ䈍䉋䈶䊍䊣䉮ዊ⣺䈮䈧䈇䈩 㫀㫅 㫊㫀㫋㫌
䈚䈲䈛䉄䈢䈱䈤䈮䇮ᔃᄖ⤑ේၮ㩿㫇㫉㫆㪼㫇㫀㪺㪸㫉㪻㫀㫌㫄㪀䈫䉋䈳䉏䉎ᔃ
㪿㫐㪹㫉㫀㪻㫀㫑㪸㫋㫀㫆㫅 䉕ⴕ䈦䈢䇯૬䈞䈩䇮⊒⃻⚦⢩䈏ᐙ⚦⢩䈪䈅䉎䈖
⤳䈱ᄖ䈎䉌⒖േ䈚䈩䈒䉎ਛ⢦⪲ᕈ䈱⚦⢩⟲䈏ᣂ䈢䈮ઃ䈔ട
䈫䉕⏕⹺䈜䉎䈢䉄䈮䇮㪙㫉㪻㪬 䈱ข䉍ㄟ䉂䉕⺞䈼䈢䇯䊍䊣䉮䈪䈲
䉒䉎䈖䈫䈮䉋䈦䈩↢䈛䉎䇯ㄭᐕ䇮ᔃᄖ⤑ේၮ䈍䉋䈶䈠䈱ሶቊ
㪣㪾㫉㪌 䈲ಽⵚ⢻䉕䉅䈦䈢㒶┃䈱ᐙ⚦⢩䈮㒢ዪ䈚䈢⊒⃻䉕␜䈜
⚦⢩䈏䇮౰േ⣂䈣䈔䈪䈭䈒䇮ᔃ╭䉕฽䉃ᔃ⤳䈱䈘䉁䈙䉁䈭⚦
䈏䇮䋱䋵ᣣ⢦ዊ⣺䈪䈲਄⊹ో૕䈏䊘䉳䊁䉞䊑䈪䈅䉍䇮ᐙ⚦⢩䈏
⢩⒳䈮ಽൻ䈚䈉䉎䈖䈫䈏␜䈘䉏䇮䈠䈱ᕈ⾰䉇䈸䉎䉁䈇䈲䇮ౣ↢
㒶┃䈮㒢ቯ䈘䉏䉎䈱䈲⊒↢䈱ᓟᦼ䈪䈅䉎䈖䈫䉕䈉䈎䈏䉒䈞䈩
කቇ䈱ⷰὐ䈎䉌䉅ᵈ⋡䈘䉏䈧䈧䈅䉎䇯⑳䈢䈤䈲䇮ᔃᄖ⤑ේၮ
䈇䉎䇯⢦ዊ⣺਄⊹䈮䈍䈔䉎 㪣㪾㫉㪌 䈱⊒⃻䈲䈖䉏䉁䈪ႎ๔䈏䈭䈒䇮
䈱⺃ዉ䇮ᔃ⤳䈻䈱ㅴ౉䊜䉦䊆䉵䊛䇮౰േ⣂ᒻᚑ䈮䈍䈔䉎ᓎഀ䇮
䉁䈢ᐙ⚦⢩䈱⊒↢䈮䈍䈔䉎േᘒ䉅䈾䈫䉖䈬⸃ᨆ䈘䉏䈩䈇䈭䈇
ౣ↢ක≮䈻䈱ᔕ↪䈱น⢻ᕈ䈮䈧䈇䈩䇮ታ㛎⊒↢ቇ䈮ㆡ䈚䈢
䈱䈪䇮ᧄ⎇ⓥ䈲੹ᓟᄢ䈐䈒⊒ዷ䈜䉎น⢻ᕈ䉕䉅䈦䈩䈇䉎䇯
㠽㘃⢦䉕↪䈇䈩⎇ⓥ䉕䈍䈖䈭䈦䈩䈇䉎䇯
䋨䋲䋩ᔃ⤳䈱⊒↢䈮㑐䈜䉎⎇ⓥ
䋨䋳䋩⢦ᕈ↢ᱺ⚦⢩䈮㑐䈜䉎⎇ⓥ
ᔃᄖ⤑ේၮ䈲䇮ᔃ⤳䈱ᚱቶធวㇱ䈮ะ䈎䈦䈩ᚑ㐳䈚䇮䈠
㠽㘃䈪䈲䇮ູ੃㘃䈱 㪜㪪 ⚦⢩䈮⋧ᒰ䈜䉎⚦⢩䈏⏕┙䈚䈩䈇
䈱ㇱ૏䈻䈱ធ⌕䉕੺䈚䈩ᔃ⤳䈻䈫ㅴ౉䈜䉎䇯䈚䈎䈚ᔃᄖ⤑ේ
䈭䈇䇯৻ᣇ䇮ᆎේ↢ᱺ⚦⢩䉕ㆡᒰ䈭᧦ઙਅ䈪ၭ㙃䈜䉎䈫䇮ᄙ
ၮ䈱ᚑ㐳䈱ᣇะ䉕೙ᓮ䈜䉎䈚䈒䉂䈲䉋䈒䉒䈎䈦䈩䈇䈭䈇䇯⑳
ಽൻ⢻䉕䉅䈦䈢ᐙ⚦⢩䋨⢦ᕈ↢ᱺ⚦⢩䇮㪜㪞 ⚦⢩䋩䈻䈫ಽൻ䈜
䈢䈤䈲䇮㫀㫅 㫍㫀㫋㫉㫆 䈫 㫀㫅 㫍㫀㫍㫆 䈱ਔᣇ䈱♽䈮䈍䈇䈩䇮ᔃᄖ⤑ේၮ
䉎䈖䈫䈏⍮䉌䉏䈩䈇䉎䇯዁᧪⊛䈮䇮㪜㪞 ⚦⢩䉕↪䈇䈩ᶖൻེቭ
䈏ᚱቶធวㇱ䈮ะ䈎䈦䈩ᚑ㐳䈜䉎䈖䈫䉕᣿䉌䈎䈮䈚䈢䇯䈖䈱
41
ᚱቶធวㇱ䈱⺃ᒁ૞↪䈲䇮㪙㪤㪧 䈮ኻ䈜䉎ᜟ᛫㒖ኂ䉺䊮䊌䉪
studies suggest that the PE and its derivatives are potential
⾰ 㪥㫆㪾㪾㫀㫅 䈮䉋䈦䈩㒖ኂ䈘䉏䇮ᚱቶធวㇱ䈮㜞䊧䊔䊦䈪⊒⃻
sources of stem cells useful for regenerative therapies for
䈜䉎 㪙㪤㪧㪉 䉺䊮䊌䉪⾰䈮䉋䈦䈩ౣ⃻䈘䉏䈢䇯䈖䉏䉌䈱⚿ᨐ䈲䇮
cardiovascular disease. We investigate mechanisms of PE
ᔃ⤳↱᧪䈱ಽᴲᕈ䉲䉫䊅䊦ಽሶ䈏䇮ᔃᄖ⤑ේၮ䉕ᔃ⤳䈱․
induction, fusion of the PE to the heart, roles of PE cells in
ቯ䈱ㇱ૏䈻䈫⺃ᒁ䈜䉎䈫䈇䈉䊝䊂䊦䉕ᡰᜬ䈚䈩䈇䉎䇯
coronary development, and potential for PE cells for medical
䋨䋳䋩⢦ᕈ↢ᱺ⚦⢩䈮㑐䈜䉎⎇ⓥ
applications, using the chick embryo as a model system.
⢦ᕈ↢ᱺ⚦⢩䋨㪜㪞 ⚦⢩䋩䈲䊆䊪䊃䊥⢦↢ᱺ⣼䈎䉌ᆎේ↢ᱺ
(3) Embryonic germ cells
⚦⢩㩿㪧㪞㪚㪀䉕ಽ㔌䈚䈩ၭ㙃䈜䉎䈖䈫䈪ᓧ䉌䉏䉎䇯䈠䈱䈢䉄䈮䈲䇮
No ES cells and iPS cells are established using avian cells.
㪧㪞㪚 䈱⴫㕙᛫ේ䉕↪䈇䈩䇮㪤㪘㪚㪪 䈪ಽ㔌䈜䉎䈖䈫䉕⹜䉂䇮᧦
On the other hand, the primordial germ (PG) cells can be
ઙ᳿ቯ䉕ⴕ䈦䈢䇯ว䉒䈞䈩䇮㪧㪞㪚 䈱․⇣⊛䊙䊷䉦䊷ㆮવሶ
induced to differentiate into pluripotent stem cells, embryonic
䈪䈅䉎 㪚㪭㪟 䉕䉪䊨䊷䊆䊮䉫䈚䈩䇮੹ᓟ䈱⎇ⓥ䈮↪䈇䉎䈖䈫䈮䈚
germ (EG) cells. We tried to concentrate PG cells with using
䈢䇯
MACS and characterize cells with several markers such as
SSEA-1 and CVH.
䋳䋮Research projects and annual reports
In our laboratory, the laboratory of Developmental Systems,
Results
the molecular biological, cell biological and histological
(1) Digestive organs
aspects of organogenesis are being studied. The main targets
To examine the signaling pathway of BMP, we detected
of the study are digestive organs, heart and germinal cells.
phosphorylated SMAD with specific antibody. However the
(1) Digestive organs
clear results were not obtained, partly because of the small
Digestive organs are necessary for the survival of animals.
amount of the antigen. As for the action of the sonic hedgehog,
In the vertebrates, the esophagus, stomach, small and large
we cultivated small intestine in the presence of inhibitor,
intestines are formed from the simple tube, together with liver
cyclopamine. The formation of villi seemed to be stimulated
and pancreas. The embryonic gut is consisted of endodermal
by the addition of cyclopamine.
epithelium and mesodermal mesenchyme. It has been
The intestinal stem cells were detected during the
repeatedly shown that the interactions between two tissues are
development with expression of Lgr5 and incorporation of
required for the development of normal. For example, in the
BrdU. The in situ hybridization with Lgr5 probe gave no clear
chicken embryo, the epithelia of glandular stomach and
results. However cells incorporating BrdU were restricted to
muscular stomach differentiate according to the inductive
the crypt region rather rapidly at the latest period of
influence of the mesenchyme. We have identified several
incubation.
factors such as BMP2 and sonic hedgehog working in the
(2) Heart
interactions. In the year 2010, we analyzed more precisely the
The proepicardium (PE) protrudes toward and attaches to
action of these factors.
the atrioventricular junction (AVJ) of the looping heart tube.
We are interested in the differentiation of stem cells in the
However,
mechanisms
underlying
this
directional
PE
digestive organs. Stem cells exist in the epithelium of adult
protrusion remained unclear. We demonstrated that the PE
digestive organs. However, the derivation and localization of
preferentially protrudes toward the AVJ myocardium both in
these cells during the development are not exactly known. We
vitro and in vivo. This preference was suppressed by a BMP
then aimed to clone Lgr5 genes which is a specific marker
antagonist Noggin and mimicked by BMP2, which is abundant
gene of intestinal stem cells and to analyze expression patterns
in the AVJ myocardium. These results support a model in
during the intestinal development.
which a heart-derived soluble factor(s) guides PE protrusions
(2) Heart
to a specific region of the heart (see the figure below).
The heart is the first organ to function in vertebrate
embryos. The heart, however, initially lacks coronary vessels,
which later supply oxygen to the heart muscle and are crucial
for the heart function in an adult. Precursors of coronary
vessels and the epicardium originate from extracardiac
mesodermal protrusions called the proepicardium (PE). Recent
42
⍹੗ᵏ㓶䋺౰േ⣂㪆ᔃᄖ⤑೨㚟⚦⢩䈱⺃ዉ䊶⒖േ䇮╙ੑ⻠ᐳീᒝ
ળ䊶⊒↢䊒䊨䉫䊤䊛⎇ⓥቶീᒝળ䇮੩ㇺᏒ䇮㪉㪇㪈㪇㪅㪍㪅㪈㪐
(3) Embryonic germ cells
⍹੗ᵏ㓶䋺౰േ⣂㪆ᔃᄖ⤑೨㚟⚦⢩䈱ᔃ⤳䈻䈱⒖േ䊜䉦䊆䉵䊛䇮ᄢ
We examined the conditions to isolate PG cells from the
gonad of young chicken embryos. Also, CVH gene was cloned
㒋ᐭ┙ᐓᲣሶ଻ஜ✚วක≮䉶䊮䉺䊷⎇ⓥᚲ䉶䊚䊅䊷䇮๺ᴰᏒ䇮
to identify germ cells. These studies will be continued.
㪉㪇㪈㪇㪅㪎㪅㪊㪇
䋴䋮⊒⴫⺰ᢥ
䋷䋮ቇળ⊒⴫
W. Kimura, C. Alev, G. Cheng, M. Jakt, S. Yasugi and K. Fukuda:
㪦㫂㪸㫐㪸㫄㪸㪃 㪰㪅㪃 㪢㫀㫄㫌㫉㪸㪃 㪮㪅㪃 㪰㪸㫊㫌㪾㫀㪃 㪪㪅 㪸㫅㪻 㪝㫌㫂㫌㪻㪸㪃 㪢㪅 㪪㫀㫑㫑㫃㪼㪻 㫀㫅 㫋㪿㪼
Identification of region-specific genes in the early chicken
㪽㫆㫉㪼㪾㫌㫋 㫉㪼㫊㫋㫉㫀㪺㫋㫊 㫃㫀㫍㪼㫉 㫉㪼㪾㫀㫆㫅 㫀㫅㫋㫆 㪸㫅㫋㪼㫉㫀㫆㫉 㫀㫅㫋㪼㫊㫋㫀㫅㪸㫃 㫇㫆㫉㫋㪸㫃 㫀㫅 㫋㪿㪼
endoderm. Gene Expression Patterns in press
㪺㪿㫀㪺㫂㪼㫅 㪼㫄㪹㫉㫐㫆㪅 ᣣ ᧄ േ ‛ ቇ ળ ╙ 㪏㪈 ࿁ ᄢ ળ 㪅 ᧲ ੩ ㇺ 㪃
㪉㪇㪈㪇㪅㪐㪅㪉㪉㪄㪉㪌㪅
I. Oda-Ishii, Y. Ishii and T. Mikawa: Eph regulates dorsoventral
⍹੗ᵏ㓶䋺ᔃ⤳↱᧪䈱ಽᴲᕈ࿃ሶ䈏㠽㘃⢦౰േ⣂೨㚟⚦⢩䈱ᔃ
asymmetry of the notochord plate and convergent
⤳䈻䈱⒖േ䉕೙ᓮ䈜䉎䇮ᣣ੽↢‛ቇળ╙ 㪈㪎㪉 ࿁଀ળ䇮᧲੩䇮
extension-mediated notochord formation. PLoS One 5 (10):e13689
㪉㪇㪈㪇㪅㪌㪅㪉㪐
(2010)
R. J. Garriock, C. Czeisler, Y. Ishii, A. M. Navetta and T. Mikawa:
⍹੗ᵏ㓶䇮౎᧖⽵㓶䇮ਃᎹ㓉䋺䊆䊪䊃䊥⢦✂⤑ේၮ䈱䊌䉺䊷䊮ᒻᚑ䈮
An anteroposterior wave of vascular inhibitor downregulation
䈍䈔䉎 㪪㫆㫏㪙㪈 ㆮવሶ䈱ᓎഀ䇮ᣣ੽↢‛ቇળ╙ 㪈㪎㪊 ࿁଀ળ䇮੩ㇺ
signals aortae fusion along the embryonic midline axis.
Ꮢ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪋
Development 137 (21): 3697-3709 (2010)
䋸䋮䈠䈱ઁ․⸥੐㗄
Y. Ishii, R. J. Garriock, A. M. Navetta, L. E. Coughlin and T.
Mikawa: BMP signals promote proepicardial protrusion necessary
䋨䋱䋩ᄖㇱ⾗㊄
for recruitment of coronary vessel and epicardial progenitors to the
⍹੗ᵏ㓶䋺⎇ⓥᵴേ䉴䉺䊷䊃ᡰេ 䇸౰േ⣂೨㚟⚦⢩䈱⺃ዉ䊶⒖േ䊜
䉦䊆䉵䊛䇹
heart. Dev. Cell 19: 307-319 (2010)
䋨䋳䋩ቇᄖᵴേ
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
౎᧖⽵㓶 ᣣᧄ⑼ቇᛛⴚᝄ⥝⽷࿅ ࿖㓙↢‛ቇ䉥䊥䊮䊏䉾䉪ᣣᧄᆔ
ຬળᆔຬ㪅
౎᧖⽵㓶䋺ེቭᒻᚑ䈱䊝䊂䊦േ‛䈫䈚䈩䈱䊆䊪䊃䊥⢦㪅 㑐⷏ታ㛎േ
౎᧖⽵㓶 ᣣᧄቇⴚᝄ⥝ળ䇸ᦨవ┵䊶ᰴ਎ઍ⎇ⓥ㐿⊒䊒䊨䉫䊤䊛䇹
‛⎇ⓥળળႎ㪃 㪊㪉㪑 㪍㪌㪄㪎㪏 㩿㪉㪇㪈㪇㪀
౎᧖⽵㓶䋺ౝ⢦⪲䈱ಽൻ㪅 ⍹ේൎᢅ䊶ᧃశ㓉ᔒ✬䇸↢‛䈱ㄉౖ䇹䋨ᦺ
ክᩏᆔຬળᆔຬ
౎᧖⽵㓶 ੩ㇺ↥ᬺᄢቇᢎ㙃⻠ᐳ䇸↢‛ㅴൻ䈫䊍䊃䈱ᧄ⾰䇹
ୖᦠᐫ䋩㩿㪉㪇㪈㪇㪀
⍹੗ᵏ㓶䇮ਃᎹ㓉䋺౰േ⣂䈍䉋䈶ᔃᄖ⤑೨㚟⚦⢩䈱ᔃ⤳䈻䈱ㅴ౉
㪉㪇㪈㪇㪅㪍㪅㪉㪍㪃 㪎㪅㪊㪅
౎᧖⽵㓶䇮⍹੗ᵏ㓶 䇸㜞ᩞ↢‛ᢎ⡯ຬ⎇ⓥળ ⊒↢↢‛ቇ䊥䉦䊧
ㆊ⒟䈮䈍䈔䉎㪙㪤㪧䉲䉫䊅䊦䈱ᓎഀ䇯䊤䉟䊐䉰䉟䉣䊮䉴ᣂ⌕⺰ᢥ䊧
䊎䊠䊷㪝㫀㫉㫊㫋 㪘㫌㫋㪿㫆㫉㩾㫊 㩿ᢥㇱ⑼ቇ⋭ᆔ⸤⎇ⓥ㐿⊒੐ᬺ䇸✚ว䊂䊷䉺
䊮䊃⻠ᐳ䇹䋨ᣣᧄ⊒↢↢‛ቇળ䇮ℂ⎇⊒↢䍃ౣ↢⑼ቇ✚ว⎇ⓥ䉶䊮
䊔䊷䉴䊒䊨䉳䉢䉪䊃䇹㪀㪃㪉㪇㪈㪇ᐕ㪐᦬㪈㪎ᣣ䉥䊮䊤䉟䊮ឝタ
䉺䊷౒௅䋩⻠Ꮷ䇮㪉㪇㪈㪇㪅㪈㪇㪅㪈㪉㪄㪈㪊
㩿㪿㫋㫋㫇㪑㪆㪆㪽㫀㫉㫊㫋㪅㫃㫀㪽㪼㫊㪺㫀㪼㫅㪺㪼㪻㪹㪅㫁㫇㪆㪸㫉㪺㪿㫀㫍㪼㫊㪆㪏㪌㪍㪀
䋨䋵䋩䈠䈱ઁ
⍹੗ᵏ㓶䋺䇸౰േ⣂ᒻᚑ䈱઀⚵䉂⸃᣿ ੩↥ᄢ䈭䈬 ౣ↢ක≮䈮ᦼ
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
ᓙ䇹䇮⺒ᄁᣂ⡞ᦺೀ⸥੐ឝタ䇮㪉㪇㪈㪇㪅㪐㪅㪉㪍
⍹੗ᵏ㓶䋺䇸౰േ⣂ᒻᚑ䈱઀⚵䉂৻ㇱ⸃᣿ ੩↥ᄢഥᢎ䉌☨⚕䈮⊒
౎᧖⽵㓶 ེቭᒻᚑ䈱䊝䊂䊦േ‛䈫䈚䈩䈱䊆䊪䊃䊥⢦㪅 㑐⷏ታ㛎േ
‛⎇ⓥળ㪅੩ㇺᏒ㪃 㪉㪇㪈㪇㪅㪊㪅㪈㪐㪅
⴫䇹䇮੩ㇺᣂ⡞ᦺೀ⸥੐ឝタ䇮㪉㪇㪈㪇㪅㪐㪅㪉㪈
౎᧖⽵㓶 㩿㪉㪇㪈㪇㪀 䊆䊪䊃䊥⢦ᶖൻེቭᒻᚑ䈱ಽሶ䊜䉦䊆䉵䊛㪅 ੩ㇺ
ᐭ┙ක⑼ᄢቇ․೎⻠⟵㪅੩ㇺᏒ㪃 㪉㪇㪈㪇㪅㪋㪅㪉㪊㪅
౎᧖⽵㓶 㩿㪉㪇㪈㪇㪀 䊆䊪䊃䊥⢦䈱ⷰኤ䈫 㪥㪼㫎 䈱ၭ㙃㪅 ᧲੩ㇺ↢‛ᢎ⢒
⎇ⓥળ㪅᧲੩ㇺ㪃 㪉㪇㪈㪇㪅㪏㪅㪉㪊㪅
౎᧖⽵㓶 㩿㪉㪇㪈㪇㪀 ᶖൻེቭᒻᚑ䈱㎛ㆮવሶ䉕᳞䉄䈩㪅 ᣣᧄേ‛ቇ
ળ╙ 㪏㪈 ࿁ᄢળ䉲䊮䊘䉳䉡䊛㪅᧲੩ㇺ㪃 㪉㪇㪈㪇㪅㪐㪅㪉㪉㪄㪉㪌㪅
౎᧖⽵㓶 㩿㪉㪇㪈㪇㪀 䊆䊪䊃䊥⢦䉕↪䈇䈢⊒↢⎇ⓥ㪅 ℂൻቇ⎇ⓥᚲ⊒
↢䍃ౣ↢⑼ቇ✚ว⎇ⓥ䉶䊮䉺䊷 ⊒↢↢‛ቇ䊥䉦䊧䊮䊃⻠ᐳ㪅␹ᚭ
Ꮢ㪃 㪉㪇㪈㪇㪅㪈㪇㪅㪉㪅
43
㓸ว౮⌀
㜞ᩞ↢‛ᢎ⡯ຬ⎇ⓥળ ⊒↢↢‛ቇ࡝ࠞ࡟ࡦ࠻⻠ᐳ
㜞ᩞ↢‛ᢎ⡯ຬ⎇ⓥળ ⊒↢↢‛ቇ࡝ࠞ࡟ࡦ࠻⻠ᐳ
44
࠲ࡦࡄࠢ⾰ᯏ⢻⎇ⓥቶ
ᢎ᝼
Laboratory of Protein Function
Prof. Masasuke Yoshida, Ph.D
ഥᢎ
ศ↰
రፉ
Assit. Prof.
⾫ฝ
ผ዆
Fumihiro Motojima, Ph.D
ᨆ߇ߢ߈ࠆ‫ߪߦ࠲࡯ࡕߩߎޔߚ߹ޕ‬೙ᓮⵝ⟎߇ᔅⷐߢ޽
㧝㧚⎇ⓥ᭎ⷐ
ࠆ‫⎇ᧄޕ‬ⓥಽ㊁ߢߪౕ૕⊛ߦᰴߩὐߦߟ޿ߡ⎇ⓥࠍዷ㐿
ᧄ⎇ⓥቶ䈪䈲䇸ಽሶ䉲䊞䊕䊨䊮䇹䈫䇸㪘㪫㪧 วᚑ㉂⚛䇹䈮䈧䈇
䈩⎇ⓥ䈚䈩䈇䉎䇯
ߒߡ޿ࠆ‫ޕ‬
ಽሶࠪࡖࡍࡠࡦ
㧝㧕Ǫǫǭ߆ࠄߥࠆᣂߒ޿ⶄว૕
⃻ઍ␠ળߪ‫ߩࠇߙࠇߘޔ‬୘ੱߪ⥄ಽߩ⽿છߢ⥄↱ߦⴕേ
( ߪ‫ޔ‬DEJGHߩࠨࡉ࡙࠾࠶࠻⚵ᚑࠍᜬߟ‫ޔߒ߆ߒޕ‬E+ J+ H
ࠍㆬᛯߢ߈ࠆࠃ߁ߦ⷗߃ߥ߇ࠄో૕ߣߒߡߪ㜞ᐲߦ▤ℂ
߆ࠄߥࠆᣂߒ޿ⶄว૕߇ሽ࿷ߔࠆࠄߒ޿‫ߩߎޕ‬ᱜ૕ࠍ⷗
ߐࠇߚ቟ቯߥ⚵❱ߢ޽ࠆ‫⚦ޕ‬⢩ߩਛߩ࠲ࡦࡄࠢ⾰ߩ␠ળ
߈ࠊ߼ࠆ‫ޕ‬
߽ห᭽ߢ޽ࠆ‫ޕ‬୘‫ࠇߙࠇߘߪ⾰ࠢࡄࡦ࠲ߩޘ‬୘ᕈ⊛ߢ޽
㧞㧕IF1 ࡁ࠶ࠢࠕ࠙࠻ࡑ࠙ࠬߩᕈ⾰
ࠅ‫ࠄ߆↢⺀ߩߘޔ‬ᶖṌ߹ߢᄙ᭽ߥㆇ๮ࠍߚߤࠆߦ߽߆߆
⌀ᩭ⚦⢩ߩࡒ࠻ࠦࡦ࠼࡝ࠕ ATP วᚑ㉂⚛ߦߪ‫ߥ⊛⇣․ޔ‬
ࠊࠄߕ‫⚦ޔ‬⢩ߪ⛔৻⊛ߥᯏ⢻ࠍ⛽ᜬߒߡ޿ࠆ‫ޔߦࠄߐޕ‬
㒖ኂࡍࡊ࠴࠼ IF1 ߇ሽ࿷ߔࠆ‫⚦ޕ‬⢩߇ࠛࡀ࡞ࠡ࡯ਇ⿷ߦ
ⅣႺ߇ᄌൻߔࠇ߫ߘࠇߦᔕߓߡ࠲ࡦࡄࠢ⾰ߩ␠ળࠍౣ✬
ߥࠆߣ‫ޔ‬ATP วᚑߦᔅⷐߥࡒ࠻ࠦࡦ࠼࡝ࠕߩ๭ๆ♽߇௛
ᚑߢ߈ࠆ‫ߩ⾰ࠢࡄࡦ࠲ޕ‬୘ᕈߪ┙૕᭴ㅧߢⷙቯߐࠇߡ߅
߆ߥߊߥࠅ‫ޔ‬ATP วᚑ㉂⚛ߪㅒ෻ᔕߢ޽ࠆ ATP ട᳓ಽ⸃
ࠅ‫┙ޔ‬૕᭴ㅧߩㆫ⒖ࠍ೙ᓮߔࠆಽሶࠪࡖࡍࡠࡦߪ‫ࡦ࠲ޔ‬
ࠍᆎ߼ࠆ‫ޕ‬IF1 ߪ‫ࠍࠇߎޔ‬㒖ᱛߒߡ ATP ߩή㚝ߥಽ⸃ࠍ
ࡄࠢ⾰␠ળߩ⛔ᓮߦ㊀ⷐߥᓎഀࠍᨐߚߒߡ޿ࠆ‫⎇ᧄޕ‬ⓥ
㒐ߋߣ⠨߃ࠄࠇߡ޿ࠆ‫ ߩߎޕ‬IF1 ࠍ߹ߞߚߊᰳ޿ߚࡑ࠙
ಽ㊁ߢߪౕ૕⊛ߦᰴߩ⻉ὐߦߟ޿ߡ⎇ⓥࠍዷ㐿ߒߡ޿ࠆ‫ޕ‬
ࠬࠍ૞ᚑߒ‫ߩߘޔ‬ᕈ⾰ࠍ⺞ߴࠆ‫ޕ‬
㧝㧕ᄢ⣺⩶ GroEL ߩ૞↪ᯏ᭴
GroEL ߪ‫ޔ‬૞↪ᯏ᭴߇ࠃߊࠊ߆ߞߚಽሶࠪࡖࡍࡠࡦߣߒ
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
ߡ߶ߣࠎߤߩ↢ൻቇᢎ⑼ᦠߦ⚫੺ߐࠇߡ޿ࠆ‫ޕ‬GroEL ߦ
ಽሶࠪࡖࡍࡠࡦ
GroES ߇⚿วߔࠆߣ‫ߪ࠼࠴ࡊࡍ࡝ࡐޔ‬ಽሶౝㇱߩⓨᵢߦ
㧝㧕ᄢ⣺⩶ GroEL ߩ૞↪ᯏ᭴
ቢోߦ㓒㔌෼ኈߐࠇߡ‫ޔࠆߔࠣࡦࠖ࠺࡞࡯ࠜࡈߢߎߘޔ‬
ⓨᵢౝߩᄌᕈ࠲ࡦࡄࠢ⾰ߪ native ᭴ㅧࠍᒻᚑߔࠆ⋥೨߹
ߣ޿߁ࡕ࠺࡞ߢ޽ࠆ‫⎇ᧄޔߒ߆ߒޕ‬ⓥቶߢߪ‫ޔ‬ᢎ⑼ᦠࡕ
ߢ GroEL ߣ⋧੕૞↪ߒߡ޿ࠆߎߣࠍ᣿ࠄ߆ߦߒߚ‫ޕ‬ⓨᵢ
࠺࡞ߢߪℂ⸃ߢ߈ߥ޿ታ㛎⚿ᨐࠍᓧߡ޿ࠆ‫ޕ‬ᣂߒ޿૞↪
ౝߩᄌᕈ࠲ࡦࡄࠢ⾰ߩᄙߊߪⓨᵢౝߢࡈࠜ࡯࡞࠺ࠖࡦࠣ
ᯏ᭴ࠍ⸃᣿ߔࠆ‫ޕ‬
ࠍቢੌߒߚ߇‫৻ޔ‬ㇱߪⓨᵢᄖߦ߽಴ߡⴕߊߎߣ߇น⢻ߢ
㧞㧕ATP ଐሽᕈࡊࡠ࠹ࠕ࡯࠯ FtsH ߩ᭴ㅧߣᯏ⢻
޽ࠆߎߣ߇್᣿ߒߚ‫ߩߎޕ‬ⓨᵢౝ߳ߩ㐽ߓㄟ߼ല₸ߩ਄
޽ࠆ․ቯߩ࠲ࡦࡄࠢ⾰ࠍ․ቯߩ᧦ઙਅߢߛߌಽ⸃ߔࠆߩ
᣹ߦߪᄌᕈ࠲ࡦࡄࠢ⾰ߣⓨᵢߣߩ⇹᳓⋧੕૞↪߇㊀ⷐߥ
ߪ ATP ଐሽᕈࡊࡠ࠹ࠕ࡯࠯ߢ޽ࠆ‫ޕ‬FtsH ߪ⤑࠲ࡦࡄࠢ⾰
ᓎഀࠍߒߡ޿ࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬
߿޽ࠆ⒳ߩ࠲ࡦࡄࠢ⾰ߛߌࠍಽ⸃ߔࠆ‫⎇ᧄޕ‬ⓥቶߢߪ‫ޔ‬
㧞㧕ATP ଐሽᕈࡊࡠ࠹ࠕ࡯࠯ FtsH ߩ᭴ㅧߣᯏ⢻
ᢙᐕ೨ߦ FtsH ߩ┙૕᭴ㅧࠍ᳿ቯߒߚ߇‫ߩߘޔ‬ᯏ⢻‫ߊߣޔ‬
ࡐ࡝ࡍࡊ࠴࠼ࠍ FtsH ౝㇱߦᒁ߈ㄟ߻࠻ࡦࡀ࡞ࠍᗐቯߒ
ߦࡐ࡝ࡍࡊ࠴࠼ࠍಽሶౝㇱߦ޽ࠆࡊࡠ࠹ࠕ࡯࠯ᵴᕈㇱ૏
ߡ޿ࠆ߇‫৻ߩ࡞ࡀࡦ࠻ߩߘޔ‬ㇱߢ޽ࠆ lid helix ߅ࠃ߮ ȕ
߹ߢㅍࠅㄟ߻ㅢࠅ㆏ߣㅍࠅㄟߺߩᯏ᭴ߦߟ޿ߡ⸃᣿ࠍㅴ
ࡋࠕࡇࡦߦᄌ૏ࠍዉ౉ߒߚߣߎࠈ‫ޔߦ߆ߒߚޔ‬ATP ଐሽ
߼ߡ޿ࠆ‫ޕ‬
ᕈࡊࡠ࠹ࠕ࡯࠯ᵴᕈߪૐਅߒߚ‫৻ޕ‬ᣇ‫ޔ‬ᣂߒ޿⚿᥏߇ߣ
ATP วᚑ㉂⚛
ࠇߚߩߢ᭴ㅧ⸃ᨆࠍㅴ߼ߡ޿ࠆ‫ޕ‬
ATP ߪో↢‛ߩࠛࡀ࡞ࠡ࡯ㅢ⽻ߢ޽ࠅ‫ޔ‬ATP วᚑ㉂⚛߇
ATP วᚑ㉂⚛
ATP วᚑߩᄢㇱಽࠍ⺧ߌ߅ߞߡ޿ࠆ‫ޕ‬ATP วᚑ㉂⚛ߪ‫ޔ‬
㧝㧕Ǫǫǭ߆ࠄߥࠆᣂߒ޿ⶄว૕
2 ߟߩ࿁ォࡕ࡯࠲ߩⶄวߒߚ߽ߩߢ޽ࠆ‫ޔࠅ߹ߟޕ‬ATP
߶߆ߩࠨࡉ࡙࠾࠶࠻ߩᷙ౉ࠍ㒐ߋߚ߼ߦǪǫǭߛߌࠍ฽
ട᳓ಽ⸃ߢ㚟േߐࠇࠆ F1 ࡕ࡯࠲ߣ‫ࡦ࠻ࡠࡊޔ‬㧔ߟ߹ࠅ
߻ࡊ࡜ࠬࡒ࠶࠼ࠍᄢ⣺⩶ߦዉ౉ߒߚߣߎࠈ‫ߦ߆ߒߚޔ‬Ǫ
᳓⚛ࠗࠝࡦ㧕ߢ㚟േߐࠇࠆ FO ࡕ࡯࠲ߢ޽ࠆ‫ߡߒߘޕ‬ਔ
ǫǭࠍ฽߻ⶄว૕ࠄߒ߈߽ߩ߇ᬌ಴ߐࠇߚ‫ߘޔߒ߆ߒޕ‬
⠪ߪ‫౒ޔ‬ㅢߩࠪࡖࡈ࠻㧔࿁ォゲ㧕ߢㅪ⚿ߐࠇߡ޿ࠆ‫ޕ‬FO
ߩ⷗߆ߌߩಽሶ㊂ߪ‫ᦼޔ‬ᓙߒߚǪ6ǫǭࠃࠅߕߞߣዊߐߊ‫ޔ‬
ࡕ࡯࠲߇ࡊࡠ࠻ࡦߢ࿁ォߔࠇ߫‫ޔ‬F1 ࡕ࡯࠲ߪㅒ࿁ォࠍᒝ
߹ߚ‫ޔ‬ATP ട᳓ಽ⸃ᵴᕈ߽ߥߐߘ߁ߢ޽ࠆ‫ߒ⹦ߦࠄߐޕ‬
޿ࠄࠇߡ‫⚿ߩߘޔ‬ᨐ‫ޔ‬ATP ߇วᚑߐࠇࠆ‫ޕ‬F1 ࡕ࡯࠲ߩ࿁
ߊ⺞ߴߡ޿ࠆ‫ޕ‬
ォߪ㗼ᓸ㏜ߢ⋥ⷞߢ߈ࠆߩߢ‫ޔ‬1 ಽሶⷰኤߦࠃࠆᯏ⢻⸃
㧞㧕IF1 ࡁ࠶ࠢࠕ࠙࠻ࡑ࠙ࠬߩᕈ⾰
45
⢝↢⥌ᱫߣ޿߁น⢻ᕈ߽⠨߃ࠄࠇߚ߇‫ࡑ࠻࠙ࠕࠢ࠶ࡁޔ‬
specifically inhibits ATP hydrolysis activity of ATP synthase.
࠙ࠬߪ⷗ߚߣߎࠈᱜᏱߦ↢߹ࠇߡ߈ߚ‫ⴊ⯯߿ࠬ࡟࠻ࠬޕ‬
We have made IF1-knockout mouse and found that, to our
ߦߤ߁෻ᔕߔࠆ߆‫ޕࠆ޿ߡߴ⺞ޔ‬
surprise, KO-mice grow normally. Growth and physiological
response under the stress conditions are now being tested.
㧟㧚Research projects and annual reports
We are studying two independent projects; molecular
㧠㧚⊒⴫⺰ᢥ
chaperones and ATP synthase.
Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T. Conformational
Molecular chaperones
transitions of subunit epsilon in ATP synthase from thermophilic
Bacterial chaperonin, GroEL and its co-chaperone GroES, is
Bacillus PS3. Biophys J. 98(3):434-42 (2010)
best understood molecular chaperone, in which, according a
Hossain MD, Furuike S, Onoue Y, Adachi K, Yoshida M, Kinosita K
textbook model, unfolded polypeptide is captured and
Jr. Stimulation of F(1)-ATPase activity by sodium dodecyl sulfate.
enclosed internal cavity of GroEL/GroES complex where it
folds
without
risk
of
aggregation.
However,
Biochim Biophys Acta. 1797(4):435-42 (2010)
using
Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita
ATPase-deficient GroEL mutants that keep GroES bound, we
K Jr. Chemo-mechanical coupling in F(1)-ATPase revealed by
found that, in the rate-limiting intermediate of a chaperonin
catalytic site occupancy during catalysis. Biophys J. 98(7):1227-36
reaction, the unfolded polypeptide in the cage partly protrudes
(2010)
through a narrow space near the GroEL/GroES interface. Then,
Saita E, Iino R, Suzuki T, Feniouk BA, Kinosita K Jr, Yoshida M.
the entire polypeptide is released either into the cage or to the
Activation and stiffness of the inhibited states of F1-ATPase probed
outside medium. The former adopts a native structure very
by single-molecule manipulation. J Biol Chem. 285(15):11411-7
rapidly and the latter undergoes spontaneous folding. Partition
(2010)
of the in-cage folding and the escape varies among substrate
Kobayashi M, Akutsu H, Suzuki T, Yoshida M, Yagi H. Analysis of
proteins and is affected by hydrophobic interaction between
the open and closed conformations of the beta subunits in
the polypeptide and GroEL cavity wall. The ATPase-active
thermophilic
GroEL with decreased in-cage folding produced less of a
F1-ATPase
by
solution
NMR.
J
Mol
Biol.
398(2):189-99 (2010)
native model substrate protein in Escherichia coli cells. Thus,
Mitome N, Ono S, Sato H, Suzuki T, Sone N, Yoshida M. Essential
the polypeptide in the critical GroEL-GroES complex is
arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a
neither free nor completely confined in the cage, but it is
role to prevent the proton shortcut without c-ring rotation in the F(o)
interacting with GroEL’s apical region, partly protruding to
proton channel. Biochem J. 430(1):171-7 (2010).
outside.
Motojima-Miyazaki Y, Yoshida M, Motojima F. Ribosomal protein
ATP synthase
L2 associates with E. coli HtpG and activates its ATPase activity.
FoF1-ATP synthase (FoF1) is ubiquitously found in membranes
Biochem Biophys Res Commun. 400(2):241-5 (2010).
of bacteria, chloroplast, and mitochondria, and synthesizes
Fujikawa M, Yoshida M. A sensitive, simple assay of mitochondrial
ATP by the energy of proton flow driven by the proton motive
ATP
force. FoF1 is also able to catalyze the reverse reaction, ATP
high-throughput
hydrolysis-driven proton pumping, which actually occurs in
401:538-43 (2010).
synthesis
of
cultured
analysis.
mammalian
Biochem
cells
Biophys
suitable
Res
for
Commun.
some cases and conditions. FoF1 is a motor enzyme composed
Motojima F, Yoshida M. Polypeptide in the chaperonin cage partly
of two rotary motors, membrane integral Fo which converts
protrudes out and then folds inside or escapes outside. EMBO J.
the proton motive force into rotation, and water-soluble F1
29:4008-19 (2010).
which converts the rotation into synthesis of ATP. F1 has a
subunit composition of D3E3JGH and acts as ATPase when
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
ߥߒ
isolated. It has been known for the typical bacterial enzymes
from thermophilic Bacillus PS3 (TFoF1) and Escherichia coli,
that the smallest subunits of F1, H acts as an endogenous
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
inhibitor of ATPase activity under some conditions. H exists in
Motojima F, Yoshida M: Fold or escape; fates of substrate
eukaryotic mitochondrial ATP synthase, but it no longer has
polypeptide in the critical GroEL/GroES intermediate. Cold Spring
inhibitory function. Instead, a small protein, called IF1,
Harbor Meeting, New York, USA, 2010. 5. 4
46
Yoshida M: Mechanism and Regulation of rotary motor enzyme,ATP
Naoki Soga, Kazuhiko Kinosita, Masasuke Yoshida, Toshiharu
synthase. Sanford-Burnham Medical Research Insititute, San Diego,
Suzuk.i ᅢᾲ⩶↱᧪ FoF1-ATP วᚑ㉂⚛ߩ ATP วᚑߦ߅ߌࠆ
USA 2010. 5. 10
ӠpH ߣӠȌ ߩነਈ. ╙㧠㧤࿁ᣣᧄ↢‛‛ℂቇળᐕળ 2010.9
㋈ᧁବᴦ‫⧯ޔ‬ᨋජᤩ‫↰ޔ‬ਛ৻Ꮘ‫ޔ‬⒢↰⧷৻㇢‫ޔ‬ฎᳰ ᥏‫ᧁޔ‬ਅ৻
Motojima F, Yoshida M: Polypeptide in the chaperonin cage partly
ᒾ‫ޔ‬ศ↰⾫ฝ. ੱߩ ATP วᚑ㉂⚛ߪߤߩࠃ߁ߥ߽ߩ߆? ⚵឵߃
protrudes out and then folds inside or escapes outside. The
rd
3 International Symposium on Protein Community, Nara, 2010. 9.
ࡅ࠻↱᧪ F1-ATPase ߩ↢ൻቇ⊛ಽᨆߣ࿁ォ৻ಽሶ⸃ᨆ.╙ 36 ࿁
14
ᣣᧄ↢૕ࠛࡀ࡞ࠡ࡯⎇ⓥળ 2010.11
⮮Ꮉ ⺈‫ޔ‬ᄢဈ⼱ ⨃ᓼ‫ޔ‬᫪ ⮍ሶ‫ޔ‬ศ↰ ⾫ฝ Global analyses of
㧣㧚ቇળ⊒⴫
human mitochondrial ATP synthesis regulation mechanism by
MASC assay. ╙ 36 ࿁ᣣᧄ↢૕ࠛࡀ࡞ࠡ࡯⎇ⓥળ 2010.11
⮮Ꮉ ⺈‫ޔ‬᫪ ⮍ሶ‫ޔ‬ศ↰ ⾫ฝ Functional analyses of the minor
Toshiharu Suzuki, Chiaki Wakabayashi, Ei-ichiro Saita, Kazumi
subunits in FoF1 complex with a novel assay for mammal FoF1-ATP
synthase. ᣣᧄ⚦⢩↢‛ቇળ ╙ 62 ࿁ ᐕળ 2010.5
Tanaka, Shou Furuike, Kazuhiko Kinosita, Masasuke Yoshida. ࡅ࠻
F1-ATPase ߩ৻ಽሶ࿁ォ⸃ᨆ. ╙ 33 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ
Suzuki T, Wakabayashi C, Saita E, Tanaka K, Furuike S, Kinosita K,
╙ 83 ࿁ᣣᧄ↢ൻቇળᄢળวหቇળ 2010.11
Yoshida M: Biochemical and single-molecule analyses of human
⮮Ꮉ ⺈‫ޔ‬᫪ ⮍ሶ‫ޔ‬ศ↰ ⾫ฝ
F1-ATPase. 16th European Bioenergetics Conference 2010. 2010.7
Hiroki Sata, Noriyo Mitome, Toshiharu Suzuki, Masasuke Yoshida.
Aqueous access channels in subunit a
IF1 influences on energy
metabolism not only under energy restricted condition but also under
normal condition. ╙ 33 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ ╙ 83 ࿁ᣣᧄ
of sodium transporting
↢ൻቇળᄢળวหቇળ 2010.11
FoF1-ATP synthase. 16th European Bioenergetics Conference 2010
2010.7
Boris A Fenyuk, Chiaki Wakabayashi,Toshiharu Suzuki, Masasuke
Naoki Soga, Kazuhiko Kinosita Jr ,Masasuke Yoshida, Toshiharu
Yoshida. Abolishing the MgADP-inhibition in FoF1-ATP synthase
Suzuki. Kinetic equivalence of membrane potential and pH
from Bacillus PS3. ╙ 36 ࿁ᣣᧄ↢૕ࠛࡀ࡞ࠡ࡯⎇ⓥળ 2010.11
difference across membrane in ATP synthesis by Bacillus PS3
Yuko Motojima-Miyazaki, Fumihiro Motojima and Masasuke
FoF1-ATP synthase. 16th European Bioenergetics Conference 2010
Yoshida, E. coli HtpG specifically associates with ribosomal protein
L2 and DnaK to form a ternary complex. ╙ 36 ࿁ᣣᧄ↢૕ࠛࡀ࡞
2010.7
ࠡ࡯⎇ⓥળ 2010.11
Fumitaka Kadoya, Shigeyuki Kato, Kei Watanabe, Toshiharu
Suzuki,Masasuke Yoshida, Yasuyuki Kato-Yamada. ATP binding to
Fumihiro Motojima and Masasuke Yoshida, The intermediate folding
the epsilon subunit of thermophilic ATP synthase is essential for
state formed in the chaperonin cage is different from that in the bulk
coupling ATPase and H+-pumping. 16th European Bioenergetics
medium. ╙ 33 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ
Conference 2010
ᄢળวหቇળ 2010.11
2010.7
╙ 83 ࿁ᣣᧄ↢ൻቇળ
Fenyuk B. ‫ޔ‬㋈ᧁ ବᴦ‫ޔ‬ศ↰ ⾫ฝ What is the mechanism of Mg
㧤㧚ߘߩઁ․⸥੐㗄
ADP-inhibition in F0F1-ATP synthase? 16th European Bioenergetics
Conference 2010
㧝㧚ᄖㇱ⾗㊄㧧
2010.7
⮮Ꮉ ⺈‫ޔ‬᫪ ⮍ሶ‫ޔ‬ศ↰ ⾫ฝ IF1 influences on energy metabolism
ᢥㇱ⑼ቇ⋭⑼ቇ⎇ⓥ⾌
ᢥㇱ⑼ቇ⋭⑼ቇ⎇ⓥ⾌
ၮ⋚⎇ⓥ㧔㧿㧕‫ޔ‬
․ቯ㗔ၞ⎇ⓥ‫ޔ‬ᢥㇱ⑼ቇ⋭࠲࡯ࠥ࠶
not only under energy restricted condition but also under normal
࠻࠲ࡦࡄࠢ⎇ⓥࡊࡠࠣ࡜ࡓ‫ޔ‬ᣣᧄ⑼ቇᛛⴚᝄ⥝ᯏ᭴
condition. 16th European Bioenergetics Conference 2010
ห⎇ⓥ㧔ICORP㧕
2010.7
⒢↰ ⧷৻㇢‫ޔ‬㋈ᧁ ବᴦ‫ޔ‬ศ↰ ⾫ฝ Torque generated by one or
㧞㧚⍮⽷ᮭ╬㧧
two ß subunits in F1-ATPase. ╙㧠㧤࿁ᣣᧄ↢‛‛ℂቇળᐕળ
࿖ౝ․⸵㧦㧟ઙ
2010.9
಴㗿ੱ㧦㧔⁛㧕 ⑼ቇᛛⴚᝄ⥝ᯏ᭴
Kuruma Yutetsu, Toshiharu Suzuki, Masasuke Yoshida, Takuya Ueda.
⾫ฝ
࿖㓙౒
⊒᣿⠪㧦⮮Ꮉ ⺈‫ޔ‬ศ↰
ฬ ⒓㧦ࡒ࠻ࠦࡦ࠼࡝ࠕߩઍ⻢ᵴᕈ᷹ቯᴺ
࠮࡞ࡈ࡝࡯Ⱞ⊕⾰วᚑߦࠃࠆᯏ⢻ᕈ↢૕⤑ߩ᭴▽ ╙㧠㧤࿁ᣣ
಴㗿ੱ㧦㧔⁛㧕 ⑼ቇᛛⴚᝄ⥝ᯏ᭴
ᧄ↢‛‛ℂቇળᐕળ 2010.9
ศ↰ ⾫ฝ‫⮮ޔ‬Ꮉ ⺈ ฬ
⊒᣿⠪㧦ᄢဈ⼱ ⨃ᓼ‫ޔ‬
⒓㧦ࡅ࠻ &#2+6 ࠍ఺∉ේߣߒߡᓧ
ࠄࠇߚࡐ࡝ࠢࡠ࡯࠽࡞᛫૕
Toshiharu Suzuki, Chiaki Wakabayashi, Ei-ichiro Saita, Kazumi
Tanaka, Shou Furuike(†), Kazuhiko Kinosita, Masasuke Yoshida.
಴㗿ੱ㧦㧔⁛㧕 ⑼ቇᛛⴚᝄ⥝ᯏ᭴
ࡅ࠻ F1-ATPase ߩ࿁ォ৻ಽሶ⸃ᨆ ╙㧠㧤࿁ᣣᧄ↢‛‛ℂቇળ
ศ↰ ⾫ฝ‫⮮ޔ‬Ꮉ ⺈ ฬ
ᐕળ 2010.9
ࠇߚࡐ࡝ࠢࡠ࡯࠽࡞᛫૕
㧟㧚ቇᄖᵴേ㧦
47
⊒᣿⠪㧦ᄢဈ⼱ ⨃ᓼ‫ޔ‬
⒓㧦ࡅ࠻ /.3 ࠍ఺∉ේߣߒߡᓧࠄ
᧲੩ᄢቇකቇㇱ㕖Ᏹൕ⻠Ꮷ‫ޔ‬㧔ቇᝄ㧕⑼ቇ⎇ⓥ⾌
ክᩏ࡮⹏
ଔ╙৻ㇱળ
48
ᬀ‛⢒⒳ቇ⎇ⓥቶ
ᢎ᝼
ጊጯ
ඳ
Laboratory of Plant Breeding
Prof.Hiroshi Yamagishi,Dr.Agr
㧝㧚⎇ⓥ᭎ⷐ
ߣߣ߽ߦ‫ޔ‬૕⚦⢩㔀⒳ߩࡒ࠻ࠦࡦ࠼࡝ࠕࠥࡁࡓߩ᭴ㅧࠍ
ᬀ‛ߩ⢒⒳ߦ߅޿ߡߪ‫ޔ‬ㄭᐕ‫ޔ‬㜞޿↢↥ᕈߣဋ৻ᕈࠍ
⸃ᨆߔࠆߎߣߦࠃࠅ‫ޔ‬㓶ᕈਇ⒤ߩࡔࠞ࠾࠭ࡓࠍ᣿ࠄ߆ߦ
ౕ஻ߒߚ (㧝ຠ⒳⢒⒳ߩ㊀ⷐᕈ߇ᕆㅦߦჇᄢߒߡ޿ࠆ‫ߚޕ‬
ߒࠃ߁ߣߒߡ޿ࠆ‫ޕ‬
ߣ߃߫ ਎♿ᓟඨߩ਎⇇⊛ߥ‫ߩ✛ޟ‬㕟๮‫ࠍޠ‬ផㅴߒߚේ
㧟㧕⚦⢩⾰⟎឵ߦࠃࠆ࠳ࠗࠦࡦ߅ࠃ߮࠽ࠬߩ㓶ᕈਇ⒤ߩ
േജߩ㧝ߟߪ‫( ࠆߌ߅ߦࠪࠦࡠࡕ࠙࠻ޔ‬㧝ຠ⒳ߩᕆㅦߥ᥉
㐿⊒
෸ߢ޽ߞߚ‫ߥ߁ࠃߩߎޕ‬㜞޿⢒⒳ലᨐࠍ᦭ߔࠆ (㧝⢒⒳ߦ
ቝㇺችᄢቇ‫ޔ‬૒⾐ᄢቇ߅ࠃ߮㊁⩿⨥ᬺ⎇ⓥᚲߣߩ౒ห
߅޿ߡߪ‫⏕ޔ‬ታ߆ߟല₸⊛ߦ (㧝⒳ሶࠍណ⒳ߔࠆߎߣ߇ᭂ
ࡊࡠࠫࠚࠢ࠻ߦ߅޿ߡ‫⑼࠽࡜ࡉࠕߣࡦࠦࠗ࠳ޔ‬㊁↢⒳ߣ
߼ߡ㊀ⷐߥᗧ๧ࠍᜬߟ‫ޕ‬ല₸⊛ߥ (㧝ណ⒳ࠍน⢻ߦߔࠆᬀ
ߩዻ㑆㔀⒳ਗ߮ߦ࠽ࠬߣฦ⒳ߩ࠽ࠬዻ㊁↢ᬀ‛ߣߩ⒳㑆
‛ߩㆮવ⊛․ᕈߣߒߡ⚦⢩⾰㓶ᕈਇ⒤ᕈ߇޽ࠅ‫ޔ‬ታ㓙ߦ
㔀⒳ߦ↱᧪ߔࠆ㓶ᕈਇ⒤♽⛔ߦߟ޿ߡ‫⚦ޔ‬⢩⾰⟎឵ߦࠃ
ߎߩ․ᕈ߇ᄙߊߩ૞‛ߩ (㧝⢒⒳ߢ೑↪ߐࠇߡ޿ࠆ‫⚦ޕ‬⢩
ࠆ㓶ᕈਇ⒤ൻߩࡔࠞ࠾࠭ࡓࠍ⸃᣿ߒߡ޿ࠆ‫ߩࠇߙࠇߘޕ‬
⾰㓶ᕈਇ⒤ᕈߪࡒ࠻ࠦࡦ࠼࡝ࠕࠥࡁࡓ਄ߩㆮવሶߦࠃߞ
㓶ᕈਇ⒤୘૕ߢ․⇣⊛ߦ⊒⃻ߔࠆࡒ࠻ࠦࡦ࠼࡝ࠕㆮવሶ
ߡ⺃⿠ߐࠇࠆ‫৻ߩߘޕ‬ᣇߢ‫ޔ‬ᄙߊߩ႐วᩭౝߦߎߩ㓶ᕈ
ࠍ᣿ࠄ߆ߦߒ‫ߩߣဳ⃻⴫ޔ‬ኻᔕࠍ⺞ᩏߔࠆߎߣߦࠃࠅ‫ޔ‬
ਇ⒤ߦኻߔࠆ⒤ᕈ࿁ᓳㆮવሶ߇ሽ࿷ߒ‫ޔ‬㓶ᕈਇ⒤߇⴫⃻
㓶ᕈਇ⒤ߩේ࿃ㆮવሶࠍ․ቯߒࠃ߁ߣߒߡ޿ࠆ‫ޕ‬
ဳߣߒߡᦨ⚳⊛ߦ⊒⃻ߔࠆ߆ߤ߁߆ߪ‫ࠕ࡝࠼ࡦࠦ࠻ࡒޔ‬
ߩㆮવሶߣᩭߩ⒤ᕈ࿁ᓳㆮવሶߩ⋧੕૞↪ߦࠃߞߡ᳿ቯ
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
ߐࠇࠆ‫ޕ‬
㧝㧕⃻࿷߹ߢߦන㔌ߐࠇߡ޿ࠆࠝࠣ࡜ဳ㓶ᕈਇ⒤ߦኻߔ
ߎߩߚ߼‫⚦ޔ‬⢩⾰㓶ᕈਇ⒤ᕈࠍᬀ‛ߩ (㧝⢒⒳ߦታ㓙ߦ
ࠆ⒤ᕈ࿁ᓳㆮવሶએᄖߦ‫ޔ‬㊁↢ߩࡂࡑ࠳ࠗࠦࡦ߅ࠃ߮ࡠ
ㆡ↪ߔࠆߚ߼ߦߪ‫߮ࠃ߅ࡓࡁࠥࠕ࡝࠼ࡦࠦ࠻ࡒޔ‬ᩭࠥࡁ
ࠪࠕේ↥ߩ̈ࠢࡠ࠳ࠗࠦࡦ̉ߦ⒤ᕈ࿁ᓳㆮવሶ߇޽ࠆߎ
ࡓߩㆮવሶߩᯏ⢻ࠍᱜߒߊᛠីߔࠆᔅⷐ߇޽ࠆ‫ߣࠇߘޕ‬
ߣࠍ⷗಴ߒߚ‫ߩ̉ࡦࠦࠗ࠳ࡠࠢ̈ޔߜ߁ߩߎޕ‬⒤ᕈ࿁ᓳ
หᤨߦ‫ߩߎޔ‬㓶ᕈਇ⒤̅⒤ᕈ࿁ᓳߩ♽ߪ‫ޔ‬ᬀ‛ߦ߅ߌࠆᩭ
ㆮવሶߪ‫ޔ‬㓶ᕈਇ⒤ߩේ࿃ㆮવሶߢ޽ࠆ QTH ߩ⊒⃻ࠍ
ߣࡒ࠻ࠦࡦ࠼࡝ࠕߩࠢࡠࠬ࠻࡯ࠢߩㅴൻࠍ⑼ቇ⊛ߦ⸃᣿
⠡⸶࡟ࡌ࡞ߢᛥ೙ߔࠆߎߣ߇᣿ࠄ߆ߦߥߞߚ‫৻ޕ‬ᣇ‫ᦨޔ‬
ߔࠆߚ߼ߩఝࠇߚ⥰บߣߥࠆ‫ⷞߥ߁ࠃߩߎޕ‬ὐ߆ࠄ‫ޔ‬㓶
ㄭ੩ㇺᐭ⥰㢬Ꮢߦ߅޿ߡ߆ߟߡߩਥⷐ࿷᧪ຠ⒳ߢ޽ߞߚ
ᕈਇ⒤̅⒤ᕈ࿁ᓳ♽ߦ߅ߌࠆਔࠥࡁࡓߩㆮવሶߩಽൻߣ
̈૒ᵄ⾐̉࠳ࠗࠦࡦߩᩱၭࠍᓳᵴߐߖࠃ߁ߣ޿߁ㆇേ߇
ㅴൻ‫⚦ޔ‬⢩⾰⟎឵߅ࠃ߮⚦⢩Ⲣวߦࠃࠆᣂߒ޿㓶ᕈਇ⒤
ዷ㐿ߐࠇߡ޿ࠆ‫ޕ‬ᚒ‫⎇ߩߢ߹ࠇߎޔߪޘ‬ⓥߢ̈૒ᵄ⾐̉
ᕈߩታ↪⊛㐿⊒ߩਔ㕙ߢ⎇ⓥࠍㅴ߼ߡ޿ࠆ‫ౕޕ‬૕⊛ߦߪ‫ޔ‬
࠳ࠗࠦࡦ߇⒤ᕈ࿁ᓳㆮવሶࠍ߽ߟߎߣ߆ࠄ‫ࠦࠗ࠳ࡑࡂޔ‬
એਅߩ⻉⺖㗴ߦߟ޿ߡ⎇ⓥߒߡ޿ࠆ‫ޕ‬
ࡦ߇ᩱၭൻߐࠇߚ߽ߩߢ޽ࠆߎߣࠍ᣿ࠄ߆ߦߒߚ߇‫⃻ޔ‬
㧝㧕࠳ࠗࠦࡦߦ߅ߌࠆࠝࠣ࡜ဳ㓶ᕈਇ⒤ㆮવሶߣ⒤ᕈ࿁
࿷⥰㢬Ꮢߢ૶↪ߐࠇߡ޿ࠆຠ⒳ߪ‫ߣࠇߎޔ‬ᩱၭຠ⒳ߩ੤
ᓳㆮવሶߩಽൻ
㔀ᓟઍߢ޽ࠆߎߣ߇ផቯߐࠇߚ‫ޕ‬
ᚒ‫৻ߩޘ‬ㅪߩ⎇ⓥߦࠃߞߡ‫⑼࠽࡜ࡉࠕޔ‬૞‛ߩ⢒⒳ߦ
㧞㧕ࠪࡠࠗ࠿࠽࠭࠽ߣࠠࡖࡌ࠷ߩ૕⚦⢩㔀⒳߆ࠄ‫ࡖࠠޔ‬
߅޿ߡ㜞޿ታ↪ᕈࠍᜬߟࠝࠣ࡜ဳ㓶ᕈਇ⒤ㆮવሶߩ‫⿠ޔ‬
ࡌ࠷߳ߩᚯߒ੤㔀╙㧝਎ઍ߇ᓧࠄࠇߚ‫ࠇߕ޿ߪࠄࠇߎޕ‬
Ḯߣಽൻ߇᣿ࠄ߆ߦߐࠇߚ‫৻ޕ‬ᣇ‫ߦࠇߎޔ‬ኻߔࠆ⒤ᕈ࿁
߽቟ቯߒߚ㓶ᕈਇ⒤ᕈࠍ␜ߒߚ‫ࠍࠄࠇߘޕ‬Უᧄߦߒߡߐ
ᓳㆮવሶ߽‫ޔ‬㊁↢‫ޔ‬ᩱၭ࠳ࠗࠦࡦߦ߅޿ߡᄙ᭽ߦಽൻߒ
ࠄߦᚯߒ੤㔀╙㧞਎ઍ߇ᓧࠄࠇߚ‫ࠄࠇߎޕ‬㓶ᕈਇ⒤♽⛔
ߡ޿ࠆߎߣ߇␜ߐࠇߟߟ޽ࠆ‫⃻ޕ‬࿷‫ࠄࠇߘޔ‬⒤ᕈ࿁ᓳㆮ
ߣࡒ࠻ࠦࡦ࠼࡝ࠕࠥࡁࡓߩ᭴ㅧࠍᲧセߔࠆߚ߼ߦ‫ࡖࠠޔ‬
વሶߩන㔌ߣ⋧੕㑐ଥߩ⸃᣿ࠍㅴ߼ߡ޿ࠆ‫ޕ‬
ࡌ࠷ߩࡒ࠻ࠦࡦ࠼࡝ࠕࠥࡁࡓߩోႮၮ㈩೉ࠍ᳿ቯߒߚ‫ޕ‬
㧞㧕ࠪࡠࠗ࠿࠽࠭࠽ࠍ↪޿ߚ⚦⢩Ⲣวߦࠃࠆᣂߒ޿⚦⢩
㧟㧕࠳ࠗࠦࡦߦ߅ߌࠆ⚦⢩⾰⟎឵♽⛔㧔㧝♽⛔㧕‫ࠬ࠽ޔ‬
⾰㓶ᕈਇ⒤ߩ㐿⊒
ߦ߅ߌࠆ⚦⢩⾰⟎឵♽⛔㧔㧢♽⛔㧕ߩ޿ߕࠇߦ߅޿ߡ߽‫ޔ‬
਄⸥ࠝࠣ࡜ဳ㓶ᕈਇ⒤ߪ㜞޿ታ↪ᕈࠍᜬߟߚ߼‫ࡉࠕޔ‬
ࡒ࠻ࠦࡦ࠼࡝ࠕߩᣢሽㆮવሶߩ਄ᵹߦ‫ ߩ᦭․ޔ‬QTH ߇ሽ
࡜࠽⑼૞‛ߩ⢒⒳ߦ߅޿ߡߪߎߩㆮવሶߦ೑↪߇㓸ਛߒ
࿷ߔࠆߎߣࠍ⊒⷗ߒߚ‫ ߩࠄࠇߎޕ‬QTH ߣ⧎☳⒤ᕈߩ᦭ή
ߡ޿ࠆ‫ߥ߁ࠃߩߎޕ‬ㆮવ⊛⣀ᒙᕈࠍᛂ⎕ߔࠆߚ߼ߦߪ‫ޔ‬
ߣߩ㑆ߦ᣿⏕ߥኻᔕ߇ⷰኤߐࠇߚ‫ޕ‬
ᣂߒ޿㓶ᕈਇ⒤ࠍ㐿⊒ߔࠆߎߣ߇ᕆോߢ޽ࠆ‫ޔߢߎߘޕ‬
ࠪࡠࠗ࠿࠽࠭࠽ߣࠠࡖࡌ࠷ߣߩ㑆ߢ૕⚦⢩㔀⒳ࠍ૞಴ߒ‫ޔ‬
㧟㧚Research projects and annual reports
࠲ࠗࡊߩ⇣ߥࠆ㓶ᕈਇ⒤♽⛔ࠍ㧞♽⛔ᓧߚ‫↪ࠍࠄࠇߎޕ‬
In the field of plant breeding, F1 hybrids have many genetic
޿ߡࠠࡖࡌ࠷㘃ߩታ↪⊛ߥ㓶ᕈਇ⒤♽⛔ߩ㐿⊒ࠍㅴ߼ࠆ
advantages, and contribute to the increase of worldwide crop
49
⃻ࡄ࠲࡯ࡦߣߩ㑐ଥߦߟ޿ߡ‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫ޔ‬
production. For the efficient and stable F1 hybrid production,
⑺↰Ꮢ‫ޔ‬
cytoplasmic male sterility (CMS) is the most useful genetic
characteristic.
ศ⷗㤗⴩ሶ‫ޔ‬㥱⮮⁴㓶‫⦡৻ޔ‬ม㇢‫ޔ‬ኹ࿾ᔀ‫ޔ‬ጊጯඳ㧦%/5 ࠍ␜ߔ
Besides the practical importance of the CMS,
it is useful to study the interactions between nuclear genes and
࠽ࠬ⚦⢩⾰⟎឵♽⛔ߦ߅ߌࠆ CVR ㆮવሶ๟ㄝ㗔ၞߩ᭴ㅧ⸃ᨆ‫ޕ‬
mitochondrial one from scientific view points, especially for
ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫↰⑺ޔ‬Ꮢ‫ޔ‬
Thus, we have been
ጊጯඳ‫ޔ‬ᵤ↰ℰᳯ‫ఽޔ‬ፉᘮሶ‫ޔ‬቟ᧄ᥊ᄥ㧦ࠪࡠࠗ࠿࠽࠭࠽ߣࠠ
studying the CMS of various plants both in order to know the
ࡖࡌ࠷ߩ૕⚦⢩㔀⒳ᓟઍߦ߅ߌࠆ㓶ᕈਇ⒤ᕈ‫ޕ‬ᣣᧄ⢒⒳ቇળ
molecular and evolutional genetics.
╙ ࿁⻠Ṷળ‫↰⑺ޔ‬Ꮢ‫ޔ‬
evolutional processes and to exploit new breeding materials.
᧛਄੫ᄥ‫ޔ‬㊀㊁㤗ሶ‫ޔ‬ኹ࿾ᔀ‫ޔ‬ጊጯඳ㧦࠽ࠬߣ⪲✛૕ᒻ⾰ォ឵
1) The most important CMS in Cruciferous plants is that of
Ogura found in Japanese radish.
࠲ࡃࠦߩ㕖ኻ⒓⚦⢩Ⲣว‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫⑺ޔ‬
We are investigating the
↰Ꮢ‫ޔ‬
presence and differentiations of the fertility restorer genes of
In addition to the genes isolated so far, we
ႇෘༀ‫ޔ‬᫪ᖘᄥ‫ޔ‬቟ᧄ᥊ᄥ‫ޔ‬ጊጯඳ㧦ࡂࡑ࠳ࠗࠦࡦ߇᦭ߔࠆ⒤
have found new one in a radish variety, ‘Kurodaikon’, and
ᕈ࿁ᓳㆮવሶߩ⊒⃻ߩ቟ቯᕈ‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫ޔ‬
the Ogura CMS.
⑺↰Ꮢ‫ޔ‬
determined the sequences of it.
2) In order to exploit new CMS for cabbage, we produced two
↰ਛ⟵ⴕ‫ޔ‬቟ᧄ᥊ᄥ‫ޔ‬ጊጯඳ‫ޔ‬ኹ࿾ᔀ㧦࠳ࠗࠦࡦߩ⚦⢩⾰㓶ᕈ
CMS plants by cell fusions between Arabidopsis thaliana and
ਇ⒤ㆮવሶ QTH ࠍ⊒⃻ߔࠆ⪲✛૕ᒻ⾰ォ឵ࡌࠢ࠲࡯ߩ૞⵾
cabbages.
ߣߘࠇࠍ↪޿ߚ⒤ᕈ࿁ᓳㆮવሶ૞↪ࠕ࠶࠮ࠗ♽ߩ᭴▽‫ޕ‬ᣣᧄ
From one of them we obtained progenies that
constantly show the pollen sterility.
⢒⒳ቇળ╙ ࿁⻠Ṷળ‫↰⑺ޔ‬Ꮢ‫ޔ‬
We are now determining
ศ⷗㤗⴩ሶ‫ޔ‬㥱⮮⁴㓶‫⦡৻ޔ‬ม㇢‫ޔ‬ኹ࿾ᔀ‫ޔ‬ጊጯඳ㧦%/5 ࠍ␜ߔ
all the DNA sequences of the mitochondria genomes of those
CMS hybrids.
࠽ࠬ⚦⢩⾰⟎឵♽⛔ߦ߅ߌࠆᣂⷙ QTH ߩ⊒⃻⸃ᨆ‫ޕ‬ᣣᧄ⢒⒳
3) CMS of crop plants have been established maily by the
ቇળ╙ ࿁⻠Ṷળ‫ޔ‬ᮮᵿᏒ‫ޔ‬
cytoplasm substitutions after interspecific or intergeneric
ጊጯඳ‫↰—ޔ‬ㇱᄤᐔ‫↰ޔ‬ਛବశ‫ޔ‬ศ⷗㤗⴩ሶ‫⦡৻ޔ‬ม㇢‫ޔ‬㥱⮮
hybridizations between a cultivated plant and wild relative
⁴㓶㧦࠽ࠬߦ߅ߌࠆ⧎☳⒤ᕈ࿁ᓳㆮવሶߩ &0# ࡑ࡯ࠞ࡯ᣣᧄ
species.
⢒⒳ቇળ╙ ࿁⻠Ṷળ‫ޔ‬ᮮᵿᏒ‫ޔ‬
Under the collaborative projects with other
቟ᧄ᥊ᄥ‫ޔ‬ᵤ↰ℰᳯ‫ఽޔ‬ፉᘮሶ‫ޔ‬ጊጯඳ㧦ࠪࡠࠗ࠿࠽࠭࠽ߣࠠ
institutions, we found novel orfs in mitochondrial genomes of
The correspondence
ࡖࡌ࠷ߩ⚦⢩Ⲣวߦࠃࠅ㔀⒳ൻߒߚ㓶ᕈਇ⒤ࡒ࠻ࠦࡦ࠼࡝ࠕ
of the expressions of the orfs newly found and the phenotypic
ࠥࡁࡓߩ⸃ᨆ‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫ޔ‬ᮮᵿᏒ‫ޔ‬
alloplasmic radish and eggplant stains.
variations of pollen fertility suggests that they are causal genes
᫪ᖘᄥ‫ޔ‬቟ᧄ᥊ᄥ‫ޔ‬ᒛ㤀‫ޔ‬ጊጯඳ㧦ࠝࠣ࡜ဳ㓶ᕈਇ⒤ߦኻߔࠆ
of CMS in radish and eggplants.
㤥࠳ࠗࠦࡦߩ⒤ᕈ࿁ᓳㆮવሶߩ⸃ᨆ‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁
㧠㧚⊒⴫⺰ᢥ
⻠Ṷળ‫ޔ‬ᮮᵿᏒ‫ޔ‬
↰ਛ⟵ⴕ‫ޔ‬ᵤ↰ℰᳯ‫ޔ‬቟ᧄ᥊ᄥ‫ޔ‬ጊጯඳ‫ޔ‬ኹ࿾ᔀ㧦ᰴ਎ઍࠪ࡯
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
ࠢࠛࡦࠨ࡯ࠍ↪޿ߚ࠳ࠗࠦࡦߩࡒ࠻ࠦࡦ࠼࡝ࠕࠥࡁࡓߩ㈩೉
ጊጯඳ㧦ᩱၭ࠳ࠗࠦࡦߩ⿠Ḯߣᣣᧄ↥࠳ࠗࠦࡦߩ࡞࡯࠷ࠍតࠆ
⸃ᨆ I.࠽࠲ࡀࡒ࠻ࠦࡦ࠼࡝ࠕࠥࡁࡓߣߩᲧセ‫ޕ‬ᣣᧄ⢒⒳ቇળ╙
119 ࿁⻠Ṷળ‫ޔ‬ᮮᵿᏒ‫ޔ‬2011.3.29-30
㧔‫ߩࠎߎ޿ߛޡ‬㝯ജߦߖ߹ࠆ‫౐࠻࠶ࡒࠨࠎߎ޿ߛޟ‬ᐕ㑆ࠍ߰
ࠅ߆߃ߞߡ‫ޢޠ‬㧕‫ޕ‬ቝㇺችᄢቇㄘቇㇱߛ޿ߎࠎࠨࡒ࠶࠻ታⴕ
㧤㧚ߘߩઁ․⸥੐㗄
ᆔຬળ✬ 㧔㧕
㧝࿦⧓ቇળᐕ㑆ఝ⑲⺰ᢥ⾨㧔 ᐕ ᦬㧕ጊጯඳ‫ޔ‬ጊਅ㓁ሶ㧦
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
⚦⢩⾰㓶ᕈਇ⒤̅⒤ᕈ࿁ᓳ♽ߩㆮવሶࠍ↪޿ߚ੩ㇺᐭ࿷᧪࠳
ࠗࠦࡦ̈૒ᵄ⾐̉ߩ⿠Ḯߩ⸃᣿‫ޔ‬࿦⧓ቇ⎇ⓥ㧤
ጊጯඳ㧦੩㊁⩿ߦ߅ߌࠆㆮવ⊛ᄙ᭽ᕈߩᷫ⴮ߣ⛽ᜬ ࿾⃿⎇↢
㧞೽ቇ㐳㧔 ᐕ ᦬ޯ㧕
ሽ⍮ࠗ࠾ࠪࠕ࠹ࠖࡉ࡮⧎ඳ⸥ᔨදળ౒௅ࠪࡦࡐࠫ࠙ࡓ߽߁߭
ߣߟߩ↢‛ᄙ᭽ᕈг㘩ߣㄘߩㆮવ⊛ᄙ᭽ᕈг‫ޔ‬੩ㇺᏒ‫ޔ‬2011.3.15
㧣㧚ቇળ⊒⴫
቟ᧄ᥊ᄥ‫╴ޔ‬੗ᐽᄥ‫ޔ‬ᚱ⋧૓‫ޔ‬ኹ࿾ᔀ‫ޔ‬ጊጯඳ㧦⇣⾰⚦⢩⾰࠳
ࠗࠦࡦ♽⛔ߦߺࠄࠇࠆ㓶ᕈਇ⒤ᕈߣࡒ࠻ࠦࡦ࠼࡝ࠕ O40# ߩ⊒
50
േ‛ㆮવ⢒⒳ቇ⎇ⓥቶ
ᢎ᝼
Laboratory of Animal Genetics and Breeding
Prof. Tetsuro Nomura, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
㊁᧛
ື㇢
䊷䉺䉲䊚䊠䊧䊷䉲䊢䊮䈮䉋䈦䈩⹏ଔ䈚䈢䇯䉁䈢䇮ᓧ䉌䉏䈢ᣇᴺ䉕
↢‛㓸࿅ౝ䈮଻᦭䈘䉏䉎ㆮવ⊛ᄙ᭽ᕈ䈲䇮ㅴൻ䉇േᬀ‛
๺‐㓸࿅䈱䊙䉟䉪䊨䉰䊁䊤䉟䊃䊂䊷䉺䈮ㆡ↪䈚䇮ᓥ᧪䈱䉰䊮䊒
䈱ຠ⒳ᡷ⦟䋨⢒⒳䋩䈮䈫䈦䈩ਇนᰳ䈭⚛᧚䈪䈅䉎䇯䈢䈫䈋䈳䇮
䊥䊮䉫ᣇᴺ䉋䉍䉅஍䉍䈱ዊ䈘䈇ㆮવሶ㗫ᐲ䈱ផቯ୯䈏ᓧ䉌䉏
↢‛⒳䈏᭽䇱䈭ⅣႺ䈮ㆡᔕ䈚ㅴൻ䈚䈩䈇䈒䈢䉄䈮䈲䇮䈠䉏䈡
䉎䈖䈫䉕ታ⸽䈚䈢䇯
䉏䈱ⅣႺ䈮ㆡ䈚䈢ᄙ᭽䈭ㆮવሶ䈏㓸࿅ౝ䈮ሽ࿷䈜䉎ᔅⷐ䈏
䋲䋩േ‛䈍䉋䈶᣸⯻㓸࿅䈮䈍䈔䉎ㆮવ⊛ᄙ᭽ᕈ䈱⺞ᩏ
䈅䉎䇯䉁䈢䇮േᬀ‛䈱⢒⒳䈮䈍䈇䈩䉅䇮⢒⒳ኅ䈏ᡷ⦟䈚䉋䈉䈫
ⴊ⛔ᖱႎ䉕↪䈇䈩䉰䊤䊑䊧䉾䊄⒳㓸࿅䈱ㆮવ⊛ᄙ᭽ᕈ䉕⹏
䈜䉎㓸࿅ౝ䈮଻᦭䈘䉏䉎ㆮવ⊛ᄙ᭽ᕈ䈮௛䈐䈎䈔䇮ᦸ䉁䈚䈇
ଔ䈚䇮䈖䉏䉁䈪䈮⺞ᩏ䈚䈩䈐䈢㤥Ძ๺⒳䋨๺‐䋩䈱⚿ᨐ䈫Ყセ
ㆮવሶ䉕ੱὑㆬᛯ䈮䉋䈦䈩㓸Ⓧ䈜䉎䈖䈫䈏ၮᧄ䈫䈭䉎䇯
䈚䈢䇯䈠䈱⚿ᨐ䇮ੱᎿ᝼♖䈮䉋䉍ఝ䉏䈢⒳㓶䉕㓸ਛ⊛䈮❥ᱺ
േ‛ㆮવ⢒⒳ቇ⎇ⓥቶ䈪䈲䇮േ‛㓸࿅䈱ㆮવ⊛ᄙ᭽ᕈ䈱
䈮↪䈇䈩䈇䉎㤥Ძ๺⒳㓸࿅䈱ㆮવ⊛ᄙ᭽ᕈ䈱ૐਅ㊂䈲䇮ㆮ
⛽ᜬ䈫೑↪䈮䈧䈇䈩䇮଻ోㆮવቇ䈍䉋䈶⢒⒳ቇ䈱ⷰὐ䈎䉌
વ⊛ᄙ᭽ᕈ䈱ૐਅ䈏 ᔨ䈘䉏䈩䈇䉎䉰䊤䊑䊧䉾䊄⒳㓸࿅䉋䉍
⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯ౕ૕⊛䈮䈲䇮䈧䈑䈱䉋䈉䈭⎇ⓥ䊁䊷䊙䈪
䉅䈲䉎䈎䈮ᄢ䈐䈇䈖䈫䈏᣿䉌䈎䈮䈭䈦䈢䇯੹ᐕᐲ䈲䇮䊚䉿䊋䉼
⎇ⓥ䉕ዷ㐿䈚䈩䈇䉎䇯
㓸࿅䈱♽⛔⛽ᜬ䈮䈍䈇䈩ㆮવ⊛ᄙ᭽ᕈ䈱ૐਅ䉕㒐䈓䈢䉄䈱
䋱䋩േ‛㓸࿅䈱ㆮવ⊛ᄙ᭽ᕈ䈱⹏ଔᣇᴺ䈱㐿⊒
੤㈩᭽ᑼ䉇㓸࿅䈱᦭ല䈭ᄢ䈐䈘䈱ផቯᣇᴺ䈮䈧䈇䈩䉅䇮ℂ
㊁↢േ‛䉇ኅ⇓䈮䈧䈇䈩ⴊ⛔⸥㍳䉇 㪛㪥㪘 ᖱႎ䉕↪䈇
⺰⊛䈭⎇ⓥ䉕ⴕ䈦䈢䇯
䈩㓸࿅ౝ䈱ㆮવ⊛ᄙ᭽ᕈ䉕⹏ଔ䈜䉎䈢䉄䈱ᣇᴺ䈮䈧䈇䈩䇮
ℂ⺰⊛⎇ⓥ䉕ⴕ䈦䈩䈇䉎䇯
䊅䊚䊁䊮䊃䉡䈱㕽⠅᢬⚉ㆮવሶ䈱࿾ℂ⊛ಽᏓ䈮䈧䈇䈩䇮੹
ᐕᐲ䉅⛮⛯䈚䈩⺞ᩏ䉕ⴕ䈦䈢䇯䈠䈱⚿ᨐ䇮ᧄ⒳䈱㕽⠅᢬⚉
䋲䋩⛘Ṍ䈏ෂᗋ䈘䉏䉎㊁↢േ‛䈱⛽ᜬ㓸࿅䈍䉋䈶ኅ⇓Ꮧዋ
ㆮવሶ䈱㗫ᐲ䈮䈲䇮ᣣᧄ೉ፉ䈪䈲✲ᐲ䈮ᴪ䈦䈢᣿⍎䈭࿾ℂ
♽⛔䈮䈍䈔䉎ㆮવ⊛ᄙ᭽ᕈ䈱⛽ᜬᣇᴺ䈱⏕┙
⊛൨㈩䈏⹺䉄䉌䉏䈢䇯䉁䈢䇮ㆊ෰䈮ⴕ䉒䉏䈢⺞ᩏ⚿ᨐ䈫Ყセ
േ‛࿦䉇⥄ὼ౏࿦䈭䈬䈪േ‛䉕⛽ᜬ䈜䉎䈫䈐䈮䇮䈬䈱䉋
䈜䉎䈫䇮ฦ࿾䈪ੑ⚉ဳㆮવሶ䈱Ⴧട䇮⚃ဳㆮવሶ䈱ᷫዋ䈏
䈉䈭୘૕䉕ⷫ䈫䈚䈩ᱷ䈚䇮䈬䈱䉋䈉䈭੤㈩䉕ណ↪䈜䉏䈳ㆮવ
⿠䈖䈦䈩䈇䉎䈖䈫䈏᣿䉌䈎䈮䈭䈦䈢䇯䈖䈱䉋䈉䈭ᄌൻ䉕↢䈛䈢
⊛ᄙ᭽ᕈ䈏ല₸⊛䈮⛽ᜬ䈪䈐䉎䈎䈮䈧䈇䈩⎇ⓥ䉕ㅴ䉄䈩
ේ࿃䉕ⓥ᣿䈜䉎䈖䈫䈏੹ᓟ䈱⺖㗴䈪䈅䉎䇯䊅䊚䊁䊮䊃䉡䈱ห⢩
䈇䉎䇯
⒳䉪䊥䉰䉨䊁䊮䊃䉡䈱㕽⠅᢬⚉ᄙဳ䈮㑐䈜䉎ၮ␆⎇ⓥ䈫䈚䈩䇮
䋳䋩േ‛䈍䉋䈶᣸⯻㓸࿅䈮䈍䈔䉎ㆮવ⊛ᄙ᭽ᕈ䈱⺞ᩏ
ᧄᐕᐲ䈲㕽⠅᢬⚉ᄙဳ䈱ㆮવ᭽ᑼ䈱੤㈩ታ㛎䈮䉋䉎⸃᣿䇮
ᣣᧄ䈪᥉ㅢ䈮⷗䉌䉏䉎䊅䊚䊁䊮䊃䉡䉇䈠䈱ㄭ✼⒳䈱㕽⠅
࿾ℂ⊛ಽᏓ䈱੍஻⺞ᩏ䇮䊙䉟䉪䊨䉰䊁䊤䉟䊃䊙䊷䉦䊷䈮䉋䉎㓸
᢬⚉䉕ᡰ㈩䈜䉎ㆮવሶ䈱࿾ℂ⊛ಽᏓ䈮㑐䈜䉎⺞ᩏ䇮๺‐
࿅᭴ㅧ䈱⸃᣿䈮㑐䈜䉎੍஻ታ㛎䉅ⴕ䈦䈢䇯
䉇䉰䊤䊑䊧䉾䊄䈱ⴊ⛔⸥㍳䉕↪䈇䈢ㆮવ⊛ᄙ᭽ᕈ䈱⺞ᩏ䉕
ⴕ䈦䈩䈇䉎䇯
䋳䋮Research projects and annual reports
Genetic diversity retained in populations is an essential
material for adaptive evolution and breeding of plants and
animals; species can adapt through natural selection to
changing environment, if they have sufficient genetic diversity.
Breeders of domesticated plants and animals can genetically
ੑ⚉ဳ
྾⚉ဳ
᢬ဳ
improve their materials by artificial selection on genetic
⚃ဳ
variability.
䊅䊚䊁䊮䊃䉡䈮⷗䉌䉏䉎 䈧䈱᢬⚉ဳ
Our laboratory is researching the methodology
for evaluation, maintenance and utilization of genetic diversity
㪝㫆㫌㫉 㫋㫐㫇㪼㫊 㫆㪽 㪼㫃㫐㫋㫉㪸㫃 㫇㪸㫋㫋㪼㫉㫅㫊 㫀㫅 㪟㪸㫉㫄㫆㫅㫀㪸 㪘㫏㫐㫉㫀㪻㫀㫊
in wild and domesticated animal populations.
㪫㪿㪼㫊㪼 㫇㪸㫋㫋㪼㫉㫅㫊 㪸㫉㪼 㪺㫆㫅㫋㫉㫆㫃㫃㪼㪻 㪹㫐 㪽㫆㫌㫉 㪸㫃㫃㪼㫃㪼㫊 㫆㫅 㪸㫅㪸㫌㫋㫆㫊㫆㫄㪸㫃
Our main
research projects and the annual reports are as following:
㫃㫆㪺㫌㫊㪅
1: Development of methods for estimating genetic diversity in
animal populations
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
We are developing methods for estimating genetic
䋱䋩േ‛㓸࿅䈱ㆮવ⊛ᄙ᭽ᕈ䈱⹏ଔᣇᴺ䈱㐿⊒
diversity and related population genetic parameters using
ⴊ⛔⸥㍳䈏೑↪䈪䈐䉎㓸࿅䈮䈍䈇䈩䇮ㆮવሶ㗫ᐲ䉕ផቯ
molecular genetic markers.
䈜䉎䈢䉄䈱䉰䊮䊒䊥䊮䉫ᣇᴺ䉕㐿⊒䈚䇮䈠䈱᦭ലᕈ䉕䉮䊮䊏䊠
We have developed a novel
sampling method for estimating neutral allele frequencies in
51
pedigreed populations.
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
The efficiency was evaluated using
Monte Carlo simulation.
ၮ␆↢‛ቇ䊁䉨䉴䊃䉲䊥䊷䉵 㪐 䇸↢‛⛔⸘ቇ䇹ะ੗ᢥ㓶✬⪺ 䋨䋲┨䇮
The obtained method was also
䋳┨䇮䋵┨䇮㪈㪇 ┨䇮䋱䋴┨䋲䋮䋲䇮䋲䋮䋳ၫ╩䋩
applied to microsatellite data of Japanese Black cattle
population.
2:
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
Survey and monitor of genetic diversity in animal and
ߥߒ
insect populations
A common ladybird in Japan, Harmonia axyridis, shows
polymorphism in elytral pattern, which is determined by four
䋷䋮ቇળ⊒⴫
alleles on an autosomal locus.
We are surveying the
T. Honda, S. Sasazaki, K. Oyama, T. Nomura and F. Mukai. (2010)
geographical distribution of the allele frequencies, and
Sampling method for estimating neutral allele frequency in a
investigating
pedigreed population. 9th World Congress on Genetics Applied to
polymorphism.
the
evolutionary
significance
of
the
We are also evaluating and monitoring the
Livestock Production. Leipzig, Germany. August 1-6, 2010.
࿯ጊ ᖘ䇮㜞ᯅ⚐৻䇮㊁᧛ື㇢ 㩿㪉㪇㪈㪇㪀 䊙䉟䉪䊨䉰䊁䊤䉟䊃䉕↪䈇䈢䉪
genetic diversity of cattle and Thoroughbred population using
䊥䉰䉨䊁䊮䊃䉡䈱㓸࿅᭴ㅧ⸃ᨆ䈮㑐䈜䉎⎇ⓥ䋮ᣣᧄേ‛ⴕേቇળ
their pedigree records.
╙ 㪉㪐 ࿁ᄢળ
In the last year, we have continued our survey of
࿯ጊ ᖘ䇮㜞ᯅ⚐৻䇮㊁᧛ື㇢ 㩿㪉㪇㪈㪇㪀
geographical distribution of the frequencies of elytral pattern
the frequency distribution.
䊅䊚䊁䊮䊃䉡䈫䉪䊥䉰䉨䊁䊮䊃
䉡䈱㓸࿅ㆮવ᭴ㅧ⸃ᨆ䋮ᣣᧄ᣸⯻ቇળㄭ⇰ᡰㇱ 㪉㪇㪈㪇 ᐕᐲᄢળ
alleles in H. axyridis, and showed a clear latitudinal cline in
It was also shown that a
directional change has occurred in the allele frequencies
䋸䋮䈠䈱ઁ․⸥੐㗄
during the past five decades.
ᄖㇱ⾗㊄
Clarification of mechanism of
A sibling
⑼ቇ⎇ⓥ⾌䇮ၮ⋚⎇ⓥ䋨㪚䋩 䇸䊅䊚䊁䊮䊃䉡䈮䈍䈔䉎㕽⠅᢬⚉ㆮવ
species, Harmonia edonensis, shows a similar elytral pattern
ሶ䈱࿾ℂ⊛൨㈩䈱ᐕઍᄌൻ䈮ኻ䈜䉎࿾⃿᷷ᥦൻ䈱ᓇ㗀䇹䇮⎇ⓥ
to H. axyridis.
We investigated the inheritance mode of the
ઍ⴫⠪
elytral pattern, and the geographical distribution of the allele
ቇᄖᵴേ
this change is a future problem to be solved.
frequencies in several locations.
㘩ᢱ䊶ㄘᬺ䊶ㄘ᧛᡽╷ክ⼏ળᆔຬ
Furthermore, as a
preliminary study, the possibility of the use of microsatellite
ㄘᨋ᳓↥⋭⁛┙ⴕ᡽ᴺੱ⹏ଔᆔຬળᆔຬ
markers for the study of population structure of this species
␹ᚭᄢቇㄘቇㇱ㕖Ᏹൕ⻠Ꮷ㧔‫ޟ‬േ‛㓸࿅ㆮવቇ‫ޠ‬ᜂᒰ㧕
was preliminarily examined.
ችፒᄢቇㄘቇㇱ㕖Ᏹൕ⻠Ꮷ㧔‫ޟ‬㓸࿅ㆮવቇ‫ޠ‬ᜂᒰ㧕
As another study, we have evaluated the genetic diversity
in the Japanese Thoroughbred population by pedigree analysis,
and compared the results with those of the Japanese Black
cattle population.
It was shown that the decreasing rate of
genetic diversity in the Japanese Black cattle population is
much larger than in the Thoroughbred population, because of
the intensive use of a limited number of sires thorough
artificial insemination in the former breed.
A study for
establishing a mating design to minimize the loss of genetic
diversity in a strain of honeybees was also initiated.
䋴䋮⊒⴫⺰ᢥ
J. Yamashita, H. Oki, T. Hasegawa, T. Honda and T. Nomura. (2010)
Demographic
analysis
of
breeding
structure
in
Japanese
Thoroughbred population. J. Equine Sci. 21:11-16.
J. Yamashita, H. Oki, T. Hasegawa, T. Honda and T. Nomura. (2010)
Gene dropping analysis of ancestral contributions and allele survival
in Japanese Thoroughbred population. J. Equine Sci. 21:39-45.
52
࠲ࡦࡄࠢ⾰᭴ㅧ↢‛ቇ⎇ⓥቶ
ᢎ᝼
Laboratory of Protein Structural Biology
Prof. Hideaki Tsuge, Ph.D
ഥᢎ
ᵤਅ
㢬᧛
⧷᣿
ବᴦ
Assit. Prof. Toshiharu Tsurumura
䉕⹺⼂䈚䈩 㪘㪛㪧 䊥䊗䉲䊦ൻ䈜䉎䇮㪚㪅㪹㫆㫋㫌㫃㫀㫅㫌㫄 䈱 㪚㪊 Ქ⚛䈱
䋱䋮⎇ⓥ᭎ⷐ
䉺䊮䊌䉪⾰䈱ⶄว૕䈱᭴ㅧ↢‛ቇ䋺䈜䈭䉒䈤䉺䊮䊌䉪⾰䈫䉺
⎇ⓥ䉕ㅴ䉄䉎䇯
䊮䊌䉪⾰䈏䈇䈎䈮⚿䈶䈧䈒䈎䈮⥝๧䉕ᜬ䈤䇮⎇ⓥ䉕ⴕ䈦䈩䈇
䉎䇯․䈮ᗵᨴ∝䈮㑐䉒䉎࿃ሶ䈱᭴ㅧ↢‛ቇ䉕ㅴ䉄䈩䈇䉎䇯
䋨䋲䋩䉟䊮䊐䊦䉣䊮䉱䉡䉞䊦䉴 㪩㪥㪘 䊘䊥䊜䊤䊷䉷䈱᭴ㅧ↢‛ቇ䋺
䉺䊮䊌䉪⾰䈱᭴ㅧ䈲੹䉇↢๮䈱ၮ␆ℂ⸃䈮ᔅⷐਇนᰳ䈭
䉟䊮䊐䊦䉣䊮䉱 㪘 䉡䉞䊦䉴䈮䉋䉎 㪈㪐㪈㪏 ᐕ䈮⊒↢䈚䈢䉴䊕䉟䊮
䉅䈱䈫䈭䉍䈧䈧䈅䉎䇯䊎䉞䉳䊠䉝䊦䈮ಽሶ᭴ㅧ䉕␜䈜੐䈪੹䉁
䈎䈟䈲਎⇇⊛ᵹⴕ䋨䊌䊮䊂䊚䉾䉪䋩䉕ᒁ䈐⿠䈖䈚䇮㪈㪇㪇㪇 ਁએ਄
䈪䉒䈎䉌䈭䈎䈦䈢੐⽎䈮శ䉕ᒰ䈩䉎੐䈏น⢻䈮䈭䉎䇯․䈮 㪯
䈱ᱫ⠪䉕಴䈚䈢䇯㠽䈪ᗵᨴ䈚䈢䉡䉞䊦䉴䈏ᄌ⇣䉕䈚䈩䊍䊃䈻䈱
✢⚿᥏᭴ㅧ⸃ᨆ䈲䇮䈠䈱ಽ⸃⢻䈫ಽሶ㊂䈮㒢⇇䈏䈭䈇੐䈲
ᗵᨴ䈏⿠䈖䉎䈫⠨䈋䉌䉏䉎䇯䈖䈱ᒝᲥᕈ䈱₪ᓧ䈮䉟䊮䊐䊦䉣䊮
ઁ䈱ᣇᴺ䈮䈭䈇ᄢ䈐䈭೑ὐ䈪䈅䉎䇯
䉱䈱ᜬ䈧 㪩㪥㪘 䊘䊥䊜䊤䊷䉷䈱䈇䈒䈧䈎䈱䉝䊚䊉㉄䈱ᄌ⇣䈏㊀
ᚒ䇱䈲䈖䈱ᣇᴺ䉕↪䈇䈩䇮䉺䊮䊌䉪⾰ⶄว૕䇮․䈮ᗵᨴ∝࿃
ⷐ䈪䈅䉎੐䈏䉒䈎䈦䈩䈐䈢䇯․䈮᦭ฬ䈭ᄌ⇣䈲 㪩㪥㪘 䊘䊥䊜䊤
ሶ䈫䊖䉴䊃䈪䈅䉎䊍䊃䈱䉺䊮䊌䉪⾰䈱⋧੕૞↪䉕⷗䈢䈇䈫⠨䈋
䊷䉷ⶄว૕䈱 㪧㪙㪉 䉰䊑䊡䊆䉾䊃䈮䈍䈔䉎 㪜㪍㪉㪎㪢 䈱ᄌ⇣䈪䈅
䈩䈇䉎䇯䈖䈱ၮ␆⎇ⓥ䈎䉌዁᧪⊛䈮䈲ᗵᨴ∝䉕੍㒐䉇ᴦ≹
䉎䇯㪉㪇㪇㪐 ᐕᚒ䇱䈲䇮㪢㪍㪉㪎 ㇱ૏䉕฽䉃 㪧㪙㪉 䉰䊑䊡䊆䉾䊃䈱᭴
䈜䉎ᣂ䈢䈭ഃ⮎䈱น⢻ᕈ䈏↢䉁䉏䉎䇯
ㅧ䉕᣿䉌䈎䈮䈚䈩䇮ᒝᲥᕈ₪ᓧ䈱ಽሶၮ⋚䉕᣿䉌䈎䈮䈚䈢
⃻࿷䈱એਅ䈱䋴䈧䈱⎇ⓥ䊁䊷䊙䉕ᩇ䈫䈚䈩⎇ⓥ䉕ㅴ䉄䈩䈇
䋨㪢㫌㫑㫌㪿㪸㫉㪸 㪼㫋 㪸㫃㪅㪃 㪡㪙㪚 㪉㪇㪇㪐䋩䇯䈘䉌䈮ਃ⒳䈱䉰䊑䊡䊆䉾䊃䈎䉌
䉎䇯
䈭䉎 㪩㪥㪘 䊘䊥䊜䊤䊷䉷ⶄว૕䋨㪧㪙䋲䇮㪧㪙䋱䇮㪧㪘䋩䈱ో૕᭴ㅧ䈱
⸃᣿䉕⋡⊛䈫䈚䈩⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯
䋨䋱䋩㪘㪛㪧 䊥䊗䉲䊦ൻᲥ⚛䈫䈠䈱䊍䊃ᮡ⊛ಽሶⶄว૕䈱᭴ㅧ↢
‛ቇ䋺᭽䇱䈭∛ේᓸ↢‛䈲 㪘㪛㪧 䊥䊗䉲䊦ൻᲥ⚛㩿㪘㪛㪧㪩㪫㪀䉕
ಽᴲ䈚䈩䇮䊖䉴䊃䈱䉺䊮䊌䉪⾰䉕ୃ㘼䈚䇮䊖䉴䊃䈱䉲䉫䊅䊦વ
㩿㪊㪀ᣂⷙ䈱ᗵᨴ∝࿃ሶ䈱
㆐♽䈮ᓇ㗀䉕ਈ䈋䉎䇯䉝䉪䉼䊮․⇣⊛ 㪘㪛㪧㪩㪫䋨㪚㪅㫇㪼㫉㪽㫉㫀㫅㪾㪼㫅㫊
⚿᥏᭴ㅧ⸃ᨆ䈫䈠䈱ᯏ
䈱 㫀㫆㫋㪸 Ქ⚛ 㪠㪸 䉇 㪚㪅㪹㫆㫋㫌㫃㫀㫅㫌㫄 䈱 㪚㪉㪠䋩䈲䉝䉪䉼䊮䈱 㪘㫉㪾㪈㪎㪎
⢻䈱⸃ ᨆ㪑 㪟㪼㫃㫀㪺㫆㪹㪸㫋㪼㫉
䉕 㪘㪛㪧 䊥䊗䉲䊦ൻ䈚䇮䈠䈱㊀ว䉕ᅹ䈕䈩䇮⚦⢩㛽ᩰᒻᚑ䉕㒖
㫇㫐㫉㫆㫃㫀 䈱ᣂ䈚䈇∛ේᕈ
ኂ䈜䉎䇯ᚒ䇱䈱 㪠㪸 䈱⚿᥏᭴ㅧ⸃ᨆ䋨㪫㫊㫌㪾㪼 㪼㫋 㪸㫃㪅 㪡㪤㪙㪃 㪉㪇㪇㪊䋩
࿃ ሶ 㪫㪥㪝㪸
㫀㫅㪻㫌㪺㫀㫅㪾
䉕฽䉄䈩ᄙ䈒䈱䉫䊦䊷䊒䈏䇮䈠䉏䈡䉏䈱Ქ⚛䈱᭴ㅧ䉕᣿䉌䈎
㫇㫉㫆㫋㪼㫀㫅 䈱᭴ㅧ䉕᣿䉌䈎䈮䈚䋨㪫㫊㫌㪾㪼 㪼㫋 㪸㫃㪅 㪙㪙㪩㪚 㪉㪇㪇㪐䋩䇮䈠䈱
䈮䈚䈩䈐䈢䈏䇮䈠䈱䉝䉪䉼䊮䈫䈱ⶄว૕䈱᭴ㅧ䈲ో䈒䉒䈎䈦䈩
䊍䊃ฃኈ૕䈫䈚䈩 㫅㫌㪺㫃㪼㫆㫃㫀㫅 䉕หቯ䈚䈢 㪲⊒⴫⺰ᢥ 㪈㪴䇯
䈇䈭䈎䈦䈢䇯ᚒ䇱䈲 㪉㪇㪇㪏 ᐕ䈮 㪠㪸㪄㪹㪫㪘㪛㪄䉝䉪䉼䊮ⶄว૕᭴
ㅧ䉕᣿䉌䈎䈮䈚䈢㩿㪫㫊㫌㪾㪼 㪼㫋 㪸㫃㪅 㪧㪥㪘㪪 㪉㪇㪇㪏㪀䇯䈖䉏䈮䉋䉍 㪘㪛㪧 䊥
㩿㪋㪀䊎䉺䊚䊮䇮䉮䊐䉜䉪䉺䊷ᯏ⢻ℂ⸃䈱䈢䉄䈱㉂⚛䈱᭴ㅧ⸃ᨆ䋺
䊗䉲䊦ൻ෻ᔕ䉕ℂ⸃䈜䉎ಽሶၮ⋚䈏ᓧ䉌䉏䈢䇯䈖䈱⎇
ฎ⚦⩶䉇㜞ᐲᅢᾲ⩶↱᧪䈱㉂⚛䈱⚿᥏᭴ㅧ䈫ᯏ⢻⸃ᨆ䉕
ⓥ䉕䈘䉌䈮⊒ዷ䈘䈞䈩䇮⇣䈭䉎ၮ⾰ 㫊㫄㪸㫃㫃 㪞㪫㪧㪸㫊㪼 䈪䈅䉎 㪩㪿㫆㪘
ⴕ䈦䈩䈇䉎䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䋨䋱䋩㪠㪸 䈫 㪚㪉㪠 䈲䉝䉪䉼䊮䈱 㪘㪛㪧 䊥䊗䉲䊦ൻ䈱․⇣ᕈ䈏⇣䈭䉎䇯
㪠㪸 䈲㱍䇮㱎䉝䉪䉼䊮䈫䉅䈮 㪘㪛㪧 䊥䊗䉲䊦ൻ䉕䈜䉎䈏䇮㪚㪉㪠 䈲㱎
䉝䉪䉼䊮䈱䉂 㪘㪛㪧 䊥䊗䉲䊦ൻ䈜䉎䇯ᄢ⣺⩶䈪䉝䉪䉼䊮䈱⊒⃻
䈲㔍䈚䈒䇮䈖䈱․⇣ᕈ䈱ℂ⸃䈱䈢䉄䈮䉝䉪䉼䊮䈱☼⩶䈪䈱⊒
⃻♽䉕ᬌ⸛䈚䈢䇯䋨䋲䋩䈖䈱ㆊ⒟䈪☼⩶䉝䉪䉼䊮䈱 㪘㪛㪧 䊥䊗䉲
䊦ൻ䉕ⴕ䈇䇮䉝䉪䉼䊮䈱․⇣ᕈ䈮䈧䈇䈩㊀ⷐ䈭⍮⷗䉕ᓧ䈢䇯
䋨䋳䋩㪠㪸㪄䉝䉪䉼䊮ⶄว૕䈪 㪘㪛㪧 䉕↪䈇䈩⚿᥏ൻ䈮ᚑഞ䈚䇮ᣂ
䈢䈭䊥䉧䊮䊄ⶄว૕䈪䈱䌘✢࿁᛬䊂䊷䉺䉕෼㓸䈚䈢䇯䋨䋴䋩䉰䊦
䊝䊈䊤⩶䈱䊙䉪䊨䊐䉜䊷䉳䈻䈱ᗵᨴ䈮㊀ⷐ䈫⠨䈋䉌䉏䉎䉝䉪䉼
53
䊮 㪘㪛㪧 䊥䊗䉲䊦ൻᲥ⚛ 㪪㫇㫍㪙 䈱⊒⃻♽䈱᭴▽䉕ⴕ䈦䈢䇯䋨䋵䋩
Recently we revealed the structure of K627 domain of PB2
㪩㪿㫆㪘㪄㪚㪊 Ქ⚛䈱ⶄว૕䈱᭴ㅧ⸃ᨆ䉕⋡⊛䈫䈚䈩㪃 㪩㪿㫆㪘 䈱቟
and the mechanism of the pathogenicity (Tsuge et al. JBC
ቯ䈚䈢㜞⊒⃻♽䈱᭴▽䈍䉋䈶⊒⃻䉕ⴕ䈦䈢䇯䈠䈱⚿ᨐ
2009).
㪩㪿㫆㪘㪈㪎㪐㪝㪉㪌㪥 䈪቟ቯ䈚䈢 㪩㪿㫆㪘 䉕ᓧ䉌䉏䇮㪘㪛㪧 䊥䊗䉲䊦ൻ䈏
subunits; PB2, PB1, and PA. The structure of the whole
⿠䈖䉎੐䉕⏕⹺䈚䈢䇯䋨䋶䋩㪩㪥㪘 䊘䊥䊜䊤䊷䉷ⶄว૕䋨㪧㪙䋲䇮㪧㪙䋱䇮
complex of RNA polymerase has not known yet, so this is
㪧㪘䋩䈱ో૕᭴ㅧ⸃᣿䉕⋡ᜰ䈚䈩䇮䈠䉏䈡䉏䈱䉰䊑䊡䊆䉾䊃䈱
very interesting target for structural biology. Our purpose is to
⊒⃻♽᭴▽䈱ᬌ⸛䉕䈚䈢䇯
reveal the whole structure of the RNA polymerase complex in
RNA polymerase is consists of three different
future.
㧟㧚Research projects and annual reports
We have been focusing our research on the structural biology
(3) Structural and functional studies of novel carcinogenic
of infectious disease. Especially our target is macromolecular
factors:
Stomach cancer is strongly associated with infection
complex and we would like to reveal the interaction between
by Helicobacter pylori. In 2005, a new H. pylori gene
the carcinogenic factor and human protein. Currently we are
encoding a TNF-Į inducing protein (TipĮ) that acts as a
continuing the next four projects.
carcinogenic factor were found by our colleague Suganuma.
TipĮ is secreted from H. pylori as a homodimer whose
(1) Structural
biology
the
complex
between
subunits are linked by disulfide bonds. Using blast search,
and
human
protein:
there is no similar sequence with TipĮ, thus it is unique
ADP-ribosylation is one of the important enzyme modification
carcinogenic factor protein. We also characterized a TipĮ
after the protein translation. ADP-ribosylating toxin (ADPRT)
deletion mutant (del-TipĮ) that lacks the N-terminal six amino
adds ADP-ribosyl group of NAD to target and lead to
acid residues (LQACTC), including two cysteines (C5 and
disorganization of the cell. It is thought that some pathogenic
C7) that form disulfide bonds, but nonetheless shows a weak
bacteria use the ADPRT to infect into the host cell. ADPRT
ability to induce TNF-a expression. In 2009, we revealed the
can be classified into four groups as the target difference.
crystal structure of del-TipĮ at 2.47Å resolution (Tsuge et al.
Actin ADPRT such as iota toxin from C.perfringens
BBRC 2009). We are continuing the structural study of TipĮWR
ADP-ribosylating
ADP-ribosylates
Toxin
of
Arg- RI Į-Actin,
inhibits
actin
understand the TNF-Į inducing mechanism.
polymerization and induce cell rounding. It finally causes
diarrhea against human and domestic animals. Up to now,
(4) Structural biology of the enzyme to understand the vitamin
many actin ADPRT’s structures are available including Ia
and co-factor function
(catalytic subiunit of iota toxin ) by us (Tsuge et al. JMB
2003), however, there was no information how toxin binds to
In this year, we started next experiments; 䋨䋱䋩 We gained the
actin and how proceeds the ADP-ribosylation reaction.
novel information of the ADPRT specificity using D.
Recently, we reported the first crystal structure of Ia-Actin
discoideum actin.
FRPSOH[ZLWKȕ-TAD, which is nonhydrolyzable NAD analog,
of the Ia-actin with ADP as novel ligand. (3) We are
as its ligand (Tsuge et al. PNAS 2008). In this study, we
continuing to express actin mutant to reveal the specificity of
gained the structural basis of actin ADP-ribosylation and
actin ADPRT. (4) We constructed the actin specific ADPRT
proceed to next step study to understand the ADPRT`s
SpvB expression system,
specificity.
macrophage infection of S.enterica. (5) For the RhoA-C3
complex
structure
(2) We collected the new diffraction data
which is required for the
determination,
we
constructed
the
(2) Structural biology of RNA polymerase from influenza A
expression system of RhoA and purified the large amount of
virus: In 1918, a pandemic of influenza A virus resulted in ten
RhoA179F25N. We also checked the ADP-ribosylation by C3.
millius coon deaths worldwide. Currently, highly pathogenic
(6) We are continuing to construct the expression system of
H5N1 avian strains are serioncern because of the ability to
each subunit of RNA-polymerase.
infect humans with 60% mortality. It is great importance to
understand the molecular mechanism of avian to human host
adaptation for high virulence. K627 in PB2 is known to be
important for avian influenza virus adaptation to mammals.
54
䋴䋮⊒⴫⺰ᢥ
Hideaki Tsuge: Structural Biology in Infectious Disease,
Visiting Program for Kyoto Sangyo University (KSU), Japan :
Watanabe T, Tsuge H, Imagawa T, Kise D, Hirano K, Beppu M,
Takahashi A, Yamaguchi K, Fujiki H, Suganuma M.: Nucleolin as
Chulabhorn Research Institute, Bangkok 2010, 3.2
cell surface receptor for tumor necrosis factor-alpha inducing
Hideaki Tsuge: Structural Biology in Infectious Disease,
protein: a carcinogenic factor of Helicobacter pylori.
J Cancer
Visiting Program for Kyoto Sangyo University (KSU), Japan :
Res Clin Oncol. 136(6):911-21. (2010)
Faculty of Veterinary Science, Mahidol University (MUSC),
Takahashi S, Tsurumura T, Aritake K, Furubayashi N, Sato M,
Bangkok 2010,3.3
Yamanaka M, Hirota E, Sano S, Kobayashi T, Tanaka T, Inaka K,
Tanaka H, Urade Y.: High-quality crystals of human haematopoietic
prostaglandin D synthase with novel inhibitors. Acta Crystallogr
Sect F Struct Biol Cryst Commun. 66:846-50. (2010)
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
䈭䈚
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
ᵤਅ⧷᣿䋺⚦⩶䈍䉋䈶䉡䉞䊦䉴ᗵᨴ∝䈱᭴ㅧ↢‛ቇ
╙䋴࿁ቇⴚ䊐䊨䊮䊁䉞䉝䉲䊮䊘䉳䉡䊛䇸㪯 ✢⚿᥏᭴ㅧ⸃
ᨆ䈫⾰㊂ಽᨆ䈮䉋䉎↢ℂᵴᕈⰮ⊕⾰䈱᭴ㅧᯏ⢻⋧㑐䈱⎇ⓥ䇹
ᓼፉᢥℂᄢቇ䇮㪉㪇㪈㪇㪅㪈㪅㪊㪇
ᵤਅ⧷᣿䋺䊝䊉 㪘㪛㪧 䊥䊗䉲䊦ൻᲥ⚛䈫䈠䈱ᮡ⊛䉺䊮䊌䉪⾰䉝䉪䉼䊮䈫
䈱ⶄว૕䈱 㪯 ✢⚿᥏᭴ㅧ⸃ᨆ䋺࿖┙䈏䉖䉶䊮䉺䊷⎇ⓥᚲ
䇮㪉㪇㪈㪇㪃㪉㪅㪉㪉
䋷䋮ቇળ⊒⴫
੹Ꮉ⾆ੳ䇮ᵤਅ⧷᣿䋺㜞ᐲᅢᾲ⩶ 㪟㪙㪏 ↱᧪䈱䊐䊤䊎䊮ㆶర㉂⚛䈱
᭴ㅧᯏ⢻⸃ᨆ 䊎䉺䊚䊮 㪙 ⎇ⓥᆔຬળ ╙ 㪋㪉㪉 ࿁⎇ⓥද⼏ળ ੩
ㇺᏒ䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉㪎
䋸䋮䈠䈱ઁ․⸥੐㗄
㪈㪅ᄖㇱ⾗㊄
ၮ⋚⎇ⓥ䋨㪚䋩䊝䊉 㪘㪛㪧 䊥䊗䉲䊦ൻᲥ⚛䈫ၮ⾰Ⱞ⊕⾰ⶄว૕䈱⚿᥏
᭴ㅧ䈍䉋䈶෻ᔕᯏ᭴䈱⸃ᨆ
㪉㪅⍮⊛ᮭ╬
䈭䈚
㪊䋮ቇᄖᵴേ
ᓼፉᢥℂᄢቇ ஜᐽ⑼ቇ⎇ⓥᚲ ቴຬᢎ᝼
ℂൻቇ⎇ⓥᚲ ᠞⏴⎇ⓥᚲ ᭴ㅧ↢‛‛ℂ ቴຬ⎇ⓥຬ
ℂൻቇ⎇ⓥᚲ ᠞⏴⎇ⓥᚲ ᡼኿శࠪࠬ࠹ࡓ↢‛ቇ⎇ⓥࠣ࡞࡯ࡊ
ቴຬ⎇ⓥຬ
㪋䋮ฃ⾨╬
䈭䈚
㪌㪅䈠䈱ઁ
Hideaki Tsuge: Structural Biology in Infectious Disease,
Visiting Program for Kyoto Sangyo University (KSU), Japan :
Faculty of Science, Mahidol University , Bangkok 2010,3.1
55
ᬀ‛ಽሶㆮવቇ⎇ⓥቶ
ᢎ᝼
Laboratory Plant Molecular Genetics
Prof. Toru Terachi, Dr. Agr
ഥᢎ
ኹ࿾
㜞ᯅ
ᔀ
੫
Assist. prof. Kiyoshi Takahashi, Dr. Sci
䋱䋮⎇ⓥ᭎ⷐ
䈏䈪䈐䈢䇯䈚䈎䈚ᦨೋ䈱⚵឵䈋♽⛔䈪䈲䇮ROS 䈱⊒↢䈏ේ࿃
ᬀ‛ಽሶㆮવቇ⎇ⓥቶ䈪䈲䇮䇸㜞╬ᬀ‛䈱䉥䊦䉧䊈䊤䉭䊉
䈫ᕁ䉒䉏䉎⪲䈱უᱫ䈏ⷰኤ䈘䉏䈢䈱䈪䇮䈖䈱⃻⽎䉕᛼䈘䈋䉎
䊛䇹䈮⥝๧䉕ᜬ䈤䇮ᄌ⇣䉇ㅴൻᯏ᭴䈱⸃᣿䈫䈇䈦䈢ၮ␆⊛⎇
䈼䈒ዉ౉ㆮવሶ䉕䊐䉜䉟䊮䉼䊠䊷䊆䊮䉫䈚䈩䈇䉎䇯c)䈪䈲䇮䊝
ⓥ䈎䉌䇮ㆮવሶ⚵឵䈋䈮䉋䉎᦭↪ᬀ‛䈱૞಴䈭䈬䈱ᔕ↪⊛
䊂䊦ᬀ‛䋨䉺䊋䉮䋩䈪ၭ䈦䈢⪲✛૕䈱ᒻ⾰ォ឵ᛛⴚ䉕䇮૞‛
䈭⎇ⓥ䈮䈇䈢䉎䉁䈪䇮ᐢ▸䈭⎇ⓥ䈮ข䉍⚵䉖䈪䈇䉎䇯䈠䈱ਛ
䈪䈅䉎䊌䊮䉮䊛䉩䈻ㆡ↪䈪䈐䈭䈇䈎ᬌ⸛䈚䈩䈇䉎䇯䉺䊋䉮䈫㆑
䈪⃻࿷䈲䇮ਥ䈮એਅ䈱䋳䈧䈱䊒䊨䉳䉢䉪䊃䈏ㅴⴕਛ䈪䈅䉎䇯
䈇䉮䊛䉩䈲䉦䊦䉴䈎䉌䈱ౣಽൻ⢻ജ䈏䈫䈩䉅ૐ䈇䇯ౣಽൻ୘
䋱䋩䉥䊦䉧䊈䊤䉭䊉䊛䈱⎇ⓥᚑᨐ䉕ၮ⋚䈫䈜䉎᦭↪ᬀ‛䈱⢒
૕䉕ᓧ䉎䈢䉄䈮䈲䇮․೎䈭ຠ⒳䉕ᩱၭ䈚䇮㐿⧎ᓟ 2 ㅳ㑆⋡䈱
ᚑ
ᧂᾫ⢦䈎䉌䉦䊦䉴䉕⺃ዉ䈜䉎ᔅⷐ䈏䈅䉎䇯ᣂ䈢䈮᭴▽䈚䈢⪲
䋲䋩䉻䉟䉮䊮䈱㓶ᕈਇ⒤䊶⒤ᕈ࿁ᓳ䉲䉴䊁䊛䈱ಽሶᯏ᭴䈫䈠䈱
✛૕ᒻ⾰ォ឵䊔䉪䉺䊷䉕↪䈇䈩⚵឵䈋૕䈱૞಴䉕⹜䉂䈩䈇
ᄙ᭽ᕈᒻᚑ䊜䉦䊆䉵䊛䈱⸃᣿
䉎䈏䇮ᧂ䈣ታ㛎䈲ᚑഞ䈚䈩䈇䈭䈇䇯ᦨᓟ䈮 d䋩䈪䈲䇮⪲✛૕䈪
䋳䋩⚦⢩⾰⟎឵䉮䊛䉩䉕䊝䊂䊦䈫䈚䈢ᩭ䈫䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈱
⊒⃻䈘䈞䈢᦭↪䉺䊮䊌䉪⾰䈱න㔌෸䈶቟ቯൻ䈮䇮䉦䉟䉮䈱ᄙ
⋧੕૞↪䈮㑐䈜䉎⎇ⓥ
ᩭ૕䉺䊮䊌䉪⾰䉕೑↪䈜䉎䈖䈫䉕ᬌ⸛䈚䈩䈇䉎䇯ᄙᩭ૕䉺䊮䊌
ᦨೋ䈱䋱䋩䈱䊒䊨䉳䉢䉪䊃䈲䇮ᬀ‛䉥䊦䉧䊈䊤䉭䊉䊛䈱ᡷᄌ䈮
䉪⾰䈮䈲䇮․⇣⊛䈭䉲䉫䊅䊦䉕ᜬ䈧೎䈱䉺䊮䊌䉪⾰䉕ౝㇱ䈮
䉋䉍䇮ੱ㘃䈮᦭↪䈭ᬀ‛䉕⢒ᚑ䈜䉎䈖䈫䉕ⓥᭂ䈱⋡⊛䈫䈜䉎䇯
࿕ቯ䈜䉎ᕈ⾰䈏䈅䉍䇮䈠䈱䉺䊮䊌䉪⾰䉕ᾲ䉇ੇ῎䈎䉌଻⼔䈜
㜞╬ᬀ‛䈱⚦⢩⾰䈏ㆮવᖱႎ䉕ᜬ䈧䈖䈫䈲䇮䊜䊮䊂䊦䈱ᴺ
䉎䇯⃻࿷䇮ᄙᩭ૕䉕⊒⃻䈜䉎⪲✛૕䈱⚵឵䈋䉺䊋䉮䈏૞಴䈘
ೣ䈱ౣ⊒⷗⠪䈱৻ੱ䈫䈚䈩᦭ฬ䈭 C. Correns 䈱ᤨઍ䈎䉌⍮䉌
䉏䈩䈍䉍䇮䈖䈱ታ㛎♽䉕䊧䉺䉴䈮⒖ᬀ䈚䉋䈉䈫䈚䈩䈇䉎䇯
䉏䈩䈇䉎䇯䉁䈢⚦⢩⾰ㆮવ䉕ม䉎䉥䊦䉧䊈䊤䉭䊉䊛䇮䈜䈭䉒䈤
਄⸥䋲䋩䈱䊒䊨䉳䉢䉪䊃䈲䇮䉻䉟䉮䊮䈱㓶ᕈਇ⒤䈫⒤ᕈ࿁ᓳ䉲
⪲✛૕䈫䊚䊃䉮䊮䊄䊥䉝䈱 DNA 䈱ోႮၮ㈩೉䈲䇮䈠䉏䈡䉏 25
䉴䊁䊛䈱ಽሶᯏ᭴䈭䉌䈶䈮䈠䈱ᄙ᭽ᕈᒻᚑ䈮㑐䈜䉎䊜䉦䊆䉵
ᐕ೨䇮14 ᐕ೨䈮ೋ䉄䈩᣿䉌䈎䈮䈘䉏䈩䈇䉎䇯䈚䈎䈚䈖䉏䉌䈱䉭
䊛䉕᣿䉌䈎䈮䈜䉎䈖䈫䉕⋡⊛䈫䈜䉎䇯㓶ᕈਇ⒤䈫䈲䇮ᬀ‛૕䈲
䊉䊛䉕ᡷᄌ䈚䇮⌀䈮᦭↪䈭ᬀ‛䉕૞಴䈜䉎น⢻ᕈ䈏⧘↢䈋䈢
ᱜᏱ䈮↢⢒䈜䉎䈏䇮ᯏ⢻䉕ᜬ䈦䈢⧎☳䈏ᒻᚑ䈘䉏䈭䈇⃻⽎
䈱䈲䇮⪲✛૕䈱ㆮવሶ⚵឵䈋ᛛⴚ䈏⏕┙䈚䈢੹਎♿䈮౉䈦
䈪䇮ᄙ䈒䈱㜞╬ᬀ‛䈮⷗಴䈘䉏䈩䈇䉎䇯䈖䈱ᕈ⾰䈲 F1 ຠ⒳⢒
䈩䈎䉌䈱䈖䈫䈪䈅䉎䋨䊚䊃䉮䊮䊄䊥䉝䈱ㆮવሶ䈮䈧䈇䈩䈲䇮ᧂ䈣
ᚑ䈮↪䈇䉌䉏䉎䈳䈎䉍䈪䈲䈭䈒䇮㓶ᕈਇ⒤䈱ේ࿃ㆮવሶ䈏䊚
⚵឵䈋䈲㆐ᚑ䈘䉏䈩䈇䈭䈇䋩䇯䈠䈱ਛ䈪ᚒ䇱䈲䇮a)䉺䊋䉮䉕↪
䊃䉮䊮䊄䊥䉝䈮䇮䉁䈢䈠䈱௛䈐䉕ᛥ䈋䉎ㆮવሶ䈏ᩭ䈮⷗䈧䈎䉎
䈇䈢䉴䊃䊧䉴⠴ᕈᬀ‛䈱⢒ᚑ䇮b)䉺䊋䉮䉕䊝䊂䊦䈮䈚䈢⪲‛
䈖䈫䈎䉌䇮ᬀ‛䈮䈍䈔䉎䊚䊃䉮䊮䊄䊥䉝䈫ᩭ䈱⋧੕૞↪䈱䊝䊂䊦
㊁⩿䈱ᯏ⢻ᕈะ਄䈮㑐䈜䉎⎇ⓥ䇮c)䊌䊮䉮䊛䉩䈻䈱⪲✛૕
䈫䈚䈩⥝๧䈏ᜬ䈢䉏䈩䈇䉎䇯⃻࿷ᒰ⎇ⓥቶ䈪䈲䇮ᣣᧄฦ࿾䈱
⚵឵䈋ᛛⴚ䈱ㆡ↪䇮d)⪲✛૕䈱ㆮવሶ⚵឵䈋䈮䉋䉎᦭↪‛
䊊䊙䉻䉟䉮䊮䉕ណ㓸䈚䇮䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈱ᄌ⇣䉕⺞ᩏ䈜䉎
⾰↢↥♽䈱⏕┙䇮䈱 4 ⺖㗴䈮ข䉍⚵䉖䈪䈇䉎䇯
䈫䈫䉅䈮䇮ᣢ⍮෸䈶ᧂ⍮䈱⒤ᕈ࿁ᓳㆮવሶ䋨Rf ㆮવሶ䋩䈮䈧
䈇䈩䇮ㆮવቇ෸䈶ಽሶ↢‛ቇ䈱ਔ㕙䈎䉌ታ㛎䉕ㅴ䉄䈩䈇䉎䇯
ౕ૕⊛䈮 a)䈪䈲䇮ᬀ‛䈏ᒝశ䉇ੇ῎䈭䈬䈱㕖↢‛⊛䈭䉴䊃
䊧䉴䉕ฃ䈔䈢㓙䈮↢䈛䉎᦭ኂ䈭ᵴᕈ㉄⚛ಽሶ⒳䋨ROS䋩䉕ല
ౕ૕⊛䈮䇮ᣢ⍮䈱 Rf ㆮવሶ䋨orf687=PPR ㆮવሶ䈱䈵䈫䈧䋩
₸⊛䈮ᶖ෰䈜䉎䈖䈫䈪䇮䉴䊃䊧䉴䈮ᒝ䈇ᬀ‛䉕૞಴䈪䈐䈭䈇䈎
䈮䈧䈇䈩䈲䇮ᄙ᭽ᕈ䈏↥䉂಴䈘䉏䉎ේ࿃䉕Ⴎၮ㈩೉䊧䊔䊦
ᬌ⸛䈚䈩䈇䉎䇯ታ㛎䈪䈲⪲✛૕䈱䉝䉴䉮䊦䊔䊷䊃/䉫䊦䉺䉼䉥
䈪᣿䉌䈎䈮䈚䈧䈧䈅䉎䇯䉁䈢ᧂ⍮䈱 Rf ㆮવሶ䈮䈧䈇䈩䈲䇮ㆡ
䊮䉰䉟䉪䊦䉕᭴ᚑ䈜䉎 APX,MDAR 䈭䈬 5 䈧䈱㉂⚛䈮⌕⋡䈚䇮
ಾ䈭੤㈩ታ㛎䈮䉋䉎ㆮવ⊛․ᓽઃ䈔䉕ⴕ䈉䈫䈫䉅䈮䇮ㆮવሶ
䈖䉏䉌䈱㉂⚛䉕䉮䊷䊄䈜䉎ᩭ䈱ㆮવሶ䉕න⁛䇮䈅䉎䈇䈲䉥䊕
න㔌䈮䉃䈔䈢ᬀ‛᧚ᢱ䈱⢒ᚑ䉕ⴕ䈦䈩䈇䉎䇯
䊨䊮䈫䈚䈩䉺䊋䉮䈱⪲✛૕䉭䊉䊛䈮ዉ౉䈚䈢䇯⚵឵䈋૕䈪䈲䈖
ᦨᓟ䈱䋳䋩䈱䊒䊨䉳䉢䉪䊃䈪䈲䇮⚦⢩⾰⟎឵䉮䊛䉩䈫䈇䈉Ꮧ᦭
䉏䉌䈱㉂⚛䈏ᒝ⊒⃻䈚䋨଀䈋䈳 APX 䈱ᵴᕈ䈲ᢙච୚䈮䈭䈦
䈭᧚ᢱ䉕↪䈇䈩䇮䉮䊛䉩䈱ㄭ✼⒳䈪䈅䉎䉣䉩䊨䊒䉴ዻᬀ‛䈱
䈢䋩䇮䈠䈱⚿ᨐ䇮ROS 䈏ല₸⦟䈒ᶖ෰䈘䉏䇮ᒝశ䈭䈬䈻䈱䉴䊃
䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈱᭴ᚑ䉕ᰴ਎ઍ䉲䊷䉪䉣䊮䉰䊷䈱䊂䊷䉺
䊧䉴⠴ᕈ䈏㜞䉁䉎䈖䈫䈏␜䈘䉏䈢䇯䉁䈢 b)䈪䈲䇮਎⇇䈱ઍ⴫⊛
䉕䉅䈫䈮⸃ᨆ䈚䈩䈇䉎䇯䈖䉏䈮䉋䉍䊌䊮䉮䊛䉩䈱⴫⃻ဳ䈮ᓇ㗀
䈭ᩕ㙃㓚ኂ䈱䈵䈫䈧䈪䈅䉎㋕ਇ⿷⸃ᶖ䈱৻ഥ䈫䈚䈩䇮⪲✛૕
䉕ਈ䈋䉎ේ࿃ㆮવሶ䉕․ቯ䈚䉋䈉䈫⠨䈋䈩䈇䉎䇯
䈱ㆮવሶ⚵឵䈋䈮䉋䉍⪲‛㊁⩿䈱㋕฽㊂䉕㜞䉄䉎ᣇ╷䉕ត
䈦䈩䈇䉎䇯䉻䉟䉵䈱䊐䉢䊥䉼䊮ㆮવሶ䉕䉺䊋䉮䈱⪲✛૕䈪ᒝ⊒
⃻䈘䈞䈢⚿ᨐ䇮⪲䈮฽䉁䉏䉎㋕ಽ䉕⚂ 3 ୚䈮Ⴧട䈘䈞䉎䈖䈫
56
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
The first project aims at producing various transplastomic
䋱䋩a)䈱⺖㗴䈪䈲䇮࿑ 1 䈮␜䈚䈢࿁〝䉕᭴ᚑ䈜䉎㉂⚛䈱䈉䈤䇮
plants that will be useful for human beings.
APX/SOD 䉕䉥䊕䊨䊮䈫䈚䈩⪲✛૕䉭䊉䊛䈮ᜬ䈧⚵឵䈋䉺䊋䉮
several transplastomic lines (containing genes like apx, ferritin,
䈱૞಴䈮ᚑഞ䈚䈢䇯䈖䈱⚵឵䈋૕䈱ᓟઍ䉕․ᓽઃ䈔䈚䈢䈫䈖
etc...) have been produced using tobacco as a model plant and
䉐䇮੍ᗐ䈬䈍䉍㕖⚵឵䈋૕䈫Ყ䈼䈩 ROS 䉕⊒↢䈘䈞䉎⮎೷䈪
experiments producing transplastomic crops such as wheat and
䈅䉎䊜䉼䊦䊎䉥䊨䉭䊮䉇ᒝశ䈮ኻ䈜䉎⠴ᕈ䈏਄᣹䈚䈩䈇䉎䈖
lettuce have been conducted.
䈫䈏䉒䈎䈦䈢䇯䉁䈢 APX/MDAR䇮APX/SOD/MDAR 䉥䊕䊨䊮
reveal interaction between mitochondrial and nuclear genomes
䉕ᜬ䈧⚵឵䈋䉺䊋䉮䈱૞಴䈮䉅ೋ䉄䈩ᚑഞ䈚䈢䇯b䋩䈱⺖㗴䈪
using a male-sterility and fertility restoration system found in
䈲䇮ጟጊᄢቇ䈫䈱౒ห⎇ⓥ䈮䉋䉍䇮ICP-MS 䉕↪䈇䈩䇮䊐䉢䊥
radish.
䉼䊮䉺䊋䉮䈱⪲䈱㋕฽㊂䉕ᱜ⏕䈮ቯ㊂䈜䉎䈖䈫䈏䈪䈐䈢䇯䉁
nuclear Rf genes have been examined to reveal evolutionary
䈢უᱫ䈱ේ࿃䈏 ROS 䈱⊒↢䈮䉋䉎䈖䈫䉅␜䈘䉏䈢䇯c)䈱⺖㗴
aspect of the system.
䈪䈲䇮ㄘ᳓⋭↢‛⾗Ḯ⎇ⓥᚲ䈫䈱౒ห⎇ⓥ䉕ታᣉ䈚䇮䊌䊮䉮
mitochondrial genome of Ae. mutica.
䊛䉩䈱ᧂᾫ⢦䉦䊦䉴䈎䉌䈱ౣಽൻല₸䉕㜞䉄䉎䈖䈫䈮ᚑഞ䈚
mitochondrial genome of this species influences on the
䈢䇯䈭䈍 d)䈱⺖㗴䈲䇮ቴຬ⎇ⓥຬ䈫䈱౒ห⎇ⓥ䈪䈅䉎䈏䇮੹
phenotype of alloplasmic lines of common wheat.
ᐕᐲ䈲⚵឵䈋૕䈱਎ઍᦝᣂ䈱䉂䉕ⴕ䈦䈢䇯
the difference between mitochondrial genomes of Ae. mutica
Currently
The second project tries to
Genetic variations in both mitochondrial orf138 and
The third project concerns the
It is known that the
To clarify
and common wheat, complete nucleotide sequence has been
determined by the second-generation sequencer.
㧠㧚⊒⴫⺰ᢥ
੹ᐕᐲ䈲ή䈚
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
੹ᐕᐲ䈲ή䈚
࿑ 1. 䉫䊦䉺䉼䉥䊮/䉝䉴䉮䊦䊔䊷䊃࿁〝
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
㜞ᯅ੫䋺䉲䉴䋭䊃䊤䊮䉴⋧੕૞↪䈫ォ౮೙ᓮ䈱ㅴൻ䇮ጟጊᄢቇ⇣ಽ
䋲䋩ᐔᚑ 22 ᐕ 5 ᦬䈮ጊญ⋵䇮6 ᦬䈮⑔ፉ⋵䇮ᐔᚑ 23 ᐕ 3 ᦬
㊁Ⲣวవ┵⎇ⓥ䉮䉝䇮ᐔᚑ 22 ᐕᐲ╙ 5 ࿁⎇ⓥ䉶䊚䊅䊷䇮ጟጊ
䈮⑔ጟ⋵䈱⃻࿾⺞ᩏ䉕ⴕ䈇䇮䈠䉏䈡䉏 7 ୘૕䇮12 ୘૕䇮4 ୘
Ꮢ䇮2011.1.21
૕䈱㓶ᕈਇ⒤䉕␜䈜䊊䊙䉻䉟䉮䊮䉕ណ㓸䈚䈢䇯⃻࿷䇮䈖䉏䉌
㜞㊁ᢅⴕ䇮㜞ᯅ੫䋺ㆮવሶ⊒⃻䉕⺞▵䈜䉎⚦⢩ౝⅣႺ䈫䉲䉴⺞▵㗔
䈱ਛ䈮ᣂⷙ䈱䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䉕ᜬ䈧䉅䈱䈏䈅䉎䈎⺞ᩏਛ
ၞ䈱౒ㅴൻ䇮ᣣᧄㆮવቇળ䇮╙ 82 ࿁ᄢળ䊪䊷䉪䉲䊢䉾䊒䇸䉲䊢䉡
䈪䈅䉎䇯䉁䈢ᱜᏱဳ䈫䉥䉫䊤ဳ䈱䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈱᭴ㅧ䉕
䉳䊢䉡䊋䉣ㅴൻ⎇ⓥ䈱䈖䉏䈎䉌䋭䊘䉴䊃 12 䉭䊉䊛䈱ᣂዷ㐿䋭䇹䇮
Ყセ䈜䉎䈢䉄䇮ᰴ਎ઍ䉲䊷䉪䉣䊮䉰䊷䈮䉋䉎 mtDNA 䈱㈩೉
ᧅᏻᏒ䇮2010.9.22
䊂䊷䉺䉕ᓧ䈢䋨⹦⚦䈲⸃ᨆਛ䋩䇯
ኹ࿾ᔀ䋺ㆮવሶᵹേ೙ᓮᛛⴚ䈱㐿⊒䋭䉮䊛䉩⪲✛૕䈻䈱ㆮવሶዉ
䋳䋩Ae. mutica 䈱⚦⢩⾰䉕ᜬ䈧⟎឵䉮䊛䉩䈱 2 ♽⛔䈮䈧䈇䈩䇮
౉ᛛⴚ䈱㐿⊒䇮ㄘᨋ᳓↥⋭䇮╙4࿁䇸ᣂㄘᬺዷ㐿䉭䊉䊛䊒䊨䉳䉢䉪
䊚䊃䉮䊮䊄䊥䉝 DNA 䉕♖⵾䈚䈢䇯ਔ⠪㑆෸䈶䊌䊮䉮䊛䉩䈫䈱䉭
䊃䇹䉲䊮䊘䉳䉡䊛䇮᧲੩ㇺ䇮2010.11.30
䊉䊛᭴ㅧ䉕Ყセ䈜䉎䈢䉄䇮ᰴ਎ઍ䉲䊷䉪䉣䊮䉰䊷䈮䉋䉍
mtDNA 䈱㈩೉䊂䊷䉺䉕ᓧ䈢䋨⹦⚦䈲⸃ᨆਛ䋩䇯
㧣㧚ቇળ⊒⴫
቟ᧄ᥊ᄥ䇮╴੗ᐽᄥ䇮ᚱ⋧૓䇮ኹ࿾ᔀ䇮ጊጯඳ䋺⇣⾰⚦⢩⾰䉻䉟䉮
䋳䋮Research projects and annual reports
䊮♽⛔䈮䉂䉌䉏䉎㓶ᕈਇ⒤ᕈ䈫䊚䊃䉮䊮䊄䊥䉝 mRNA 䈱⊒⃻䊌䉺䊷
We have performed the following three major research
䊮䈫䈱㑐ଥ䈮䈧䈇䈩䇯ᣣᧄ⢒⒳ቇળ╙ 118 ࿁⻠Ṷળ䇮⑺↰Ꮢ䇮
projects relating to the organellar genomes in higher plants:
2010.9.24-25
1: Production of transplastomic plants that are useful for
ศ⷗㤗⴩ሶ䇮㥱⮮⁴㓶䇮৻⦡ม㇢䇮ኹ࿾ᔀ䇮ጊጯඳ䋺CMS 䉕␜䈜䊅
human beings.
䉴⚦⢩⾰⟎឵♽⛔䈮䈍䈔䉎 atp1 ㆮવሶ๟ㄝ㗔ၞ䈱᭴ㅧ⸃ᨆ䇯ᣣ
2: Comprehensive studies on the molecular mechanism of the
ᧄ⢒⒳ቇળ╙ 118 ࿁⻠Ṷળ䇮⑺↰Ꮢ䇮2010.9.24-25
male-sterility/fertility restoration system in radish.
3: Comparative mitochondrial genome analysis of Aegilops
mutica using alloplasmic lines of common wheat.
57
ጊᧄ⵨▸䇮᫪↰㊀ੱ䇮ኹ࿾ᔀ䋺ᵴᕈ㉄⚛ᶖ෰䉥䊕䊨䊮䉕⪲✛૕䈮ᜬ
↰ਛ⟵ⴕ䇮ᵤ↰ℰᳯ䇮቟ᧄ᥊ᄥ䇮ጊጯඳ䇮ኹ࿾ᔀ䋺ᰴ਎ઍ䉲䊷䉪䉣
䈧⚵឵䈋䉺䊋䉮䈱䉴䊃䊧䉴⠴ᕈ⹏ଔ䇯ᣣᧄ⢒⒳ቇળ╙ 118 ࿁⻠Ṷ
䊮䉰䊷䉕↪䈇䈢䉻䉟䉮䊮䈱䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈱㈩೉⸃ᨆ I.䊅䉺䊈䊚
ળ䇮⑺↰Ꮢ䇮2010.9.24-25
䊃䉮䊮䊄䊥䉝䉭䊉䊛䈫䈱Ყセ䇯ᣣᧄ⢒⒳ቇળ╙ 119 ࿁⻠Ṷળ䇮ᮮᵿ
ㄞ᧛᦮ᒾ䇮ᬀ᧛㚅❱䇮ጊᧄ⵨▸䇮ኹ࿾ᔀ䋺䊔䊮䉰䊚䉝䊅䉺䊋䉮
Ꮢ䇮2011.3.29-30
(Nicotiana benthamiana )䉕↪䈇䈢⪲✛૕ᒻ⾰ォ឵૕䈱૞಴䇯ᣣ
㧤㧚ߘߩઁ․⸥੐㗄
ᧄ⢒⒳ቇળ╙118࿁⻠Ṷળ䇮⑺↰Ꮢ䇮2010.9.24-25
᧛਄੫ᄥ䇮㊀㊁㤗ሶ䇮ኹ࿾ᔀ䇮ጊጯඳ䋺䊅䉴䈫⪲✛૕ᒻ⾰ォ឵䉺䊋
䇸䋱䋮ᄖㇱ⾗㊄䇹
䉮䈱㕖ኻ⒓⚦⢩Ⲣว䇯ᣣᧄ⢒⒳ቇળ╙ 118 ࿁⻠Ṷળ䇮⑺↰Ꮢ䇮
ኹ࿾ ᔀ䋺
2010.9.24-25
ᢥ⑼⋭⑼⎇⾌
ᬀ᧛㚅❱䇮ㇳ㐳Ⰲ䇮ኹ࿾ᔀ䋺䊐䉢䊥䉼䊮䉕⪲✛૕䈪ᒝ⊒⃻䈜䉎 3 ⒳㘃
䈱⚵឵䈋䉺䊋䉮䈱Ყセ⎇ⓥ䇯ᣣᧄ⢒⒳ቇળ╙ 118 ࿁⻠Ṷળ䇮⑺
ၮ⋚⎇ⓥ䋨䌂䋩䇸䉻䉟䉮䊮䈱㓶ᕈਇ⒤䊶⒤ᕈ࿁ᓳ䉲䉴䊁䊛䈱ಽሶᯏ᭴䈫
↰Ꮢ䇮2010.9.24-25
䈠䈱ᄙ᭽ᕈᒻᚑ䊜䉦䊆䉵䊛䈱⸃᣿䇹䋨ઍ⴫䋩
↰ਛ⟵ⴕ䇮቟ᧄ᥊ᄥ䇮ጊጯඳ䇮ኹ࿾ᔀ䋺䉻䉟䉮䊮䈱⚦⢩⾰㓶ᕈਇ⒤
ၮ⋚⎇ⓥ䋨䌃䋩䇸䉻䉟䉮䊮䈮䈍䈔䉎⧎☳⒤ᕈ࿁ᓳㆮવሶ䈱න㔌䇹䋨ಽ
ㆮવሶ orf138 䉕⊒⃻䈜䉎⪲✛૕ᒻ⾰ォ឵䊔䉪䉺䊷䈱૞⵾䈫䈠䉏
䉕↪䈇䈢⒤ᕈ࿁ᓳㆮવሶ૞↪ 䉝䉾䉶䉟♽䈱᭴▽䇯ᣣᧄ⢒⒳ቇળ
ᜂ䋩
╙ 118 ࿁⻠Ṷળ䇮⑺↰Ꮢ䇮2010.9.24-25
ၮ⋚⎇ⓥ䋨䌃䋩䇸␹⚻⊒↢䈫䉝䊘䊃䊷䉲䉴䈮㑐䉒䉎⣖․⇣⊛䊛䉼䊮ဳ
ㄞ᧛⌀⴩䇮౷ጟ㑛ሶ䇮᫪⋥᮸䇮ኹ࿾ᔀ䋺୚ᢙᕈ䉮䊛䉩䈱ㅴൻ䈮ᣂ䈚
♧㎮วᚑ㉂⚛䈱ᯏ⢻⸃ᨆ䇹䋨ಽᜂ䋩
䈇⍮⷗䉕䉅䈢䉌䈜䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈱᭴ㅧᄌ⇣䇯ᣣᧄ⢒⒳ቇળ
⑳┙ᄢቇᚢ⇛⊛⎇ⓥၮ⋚ᒻᚑᡰេ੐ᬺ
╙118࿁⻠Ṷળ䇮⑺↰Ꮢ䇮2010.9.24-25
䇸䉥䊦䉧䊈䊤䉭䊉䊛䈱⎇ⓥᚑᨐ䉕ၮ⋚䈫䈜䉎᦭↪ᬀ‛䈱⢒ᚑ䇹䋨ઍ⴫䋩
ጊ዁৻䇮᧖ጊᐽᙗ䇮ᧃศ♿ⴕ䇮ኹ࿾ᔀ䇮੉ਅാ䋺ᬀ‛ Ndr 䉨䊅䊷
䉷䈱⥄Ꮖ䉼䊨䉲䊮䊥䊮㉄ൻᵴᕈ䇯╙ 33 ࿁ᣣᧄಽሶ↢‛ቇળᐕળ䇮
╙ 83 ࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ䇮␹ᚭᏒ䇮2010.12.7-10
⁛┙ⴕ᡽ᴺੱㄘᬺ↢‛⾗Ḯ⎇ⓥᚲฃ⸤⎇ⓥ
䇸ㆮવሶᵹേ㒐ᓮᛛⴚ䈱㐿⊒䊶⪲✛૕䈻䈱ㆮવሶዉ౉ᛛⴚ䈱㐿
ਭ㊁ᕺਃ䇮ዊᨋஜੱ䇮ዊᨋ໪ሶ䇮቟ᧄ᥊ᄥ䇮ኹ࿾ᔀ䇮⢈Ⴆା਽䇮᧻
ጟஜ䇮ਛ᧛ፏ⵨䋺䉮䉶䊅ဳ⚦⢩⾰䉻䉟䉮䊮䈱⒤ᕈ࿁ᓳ࿃ሶ䈫䈚䈩
⊒䇹
௛䈒 PPR Ⱞ⊕⾰䈱 RNA ⚿ว⢻䈮㑐䈜䉎⸃ᨆ䇯╙ 52 ࿁ᣣᧄᬀ‛
ጟጊᄢቇ⾗Ḯᬀ‛⑼ቇ⎇ⓥᚲ౒ห⎇ⓥ
↢ℂቇળᐕળ䇮઄บᏒ䇮2011.3.20-22
䇸⪲✛૕䈱ㆮવሶ⚵឵䈋ᛛⴚ䉕೑↪䈚䈢䉴䊃䊧䉴⠴ᕈᬀ‛䈱⢒ᚑ䇹
᫪↰㊀ੱ䇮ട⮮⌀ੱ䇮ᨋᷡ㖸䇮↢Ỉᓆᄢ䇮㋈ᧁஜ๋䇮ጊᧄ⵨▸䇮Ⴧ
㜞ᯅ੫䋺
᧛ᆭብ䇮૒⮮⨃䇮ኹ࿾ᔀ䋺䉝䉴䉮䊦䊎䊮㉄䊕䊦䉥䉨䉲䉻䊷䉷䉕ㆊ
೾⊒⃻䈜䉎⪲✛૕ᒻ⾰ォ឵䉺䊋䉮䈱⸃ᨆ䇯╙ 52 ࿁ᣣᧄᬀ‛↢ℂ
ᢥ⑼⋭⑼⎇⾌
ቇળᐕળ䇮઄บᏒ䇮2011.3.20-22
䇸᜸ᚢ⊛⪚⧘⎇ⓥ ⟲㓸േᘒ䉕Ꮐฝ䈜䉎㓸࿅ㆮવ⊛䈭ⷐ࿃䉕ត䉎䇹
ㄞ᧛⌀⴩䇮᫪⋥᮸䇮ኹ࿾ᔀ䋺୚ᢙᕈ䉮䊛䉩䈱䊚䊃䉮䊮䊄䊥䉝䉭䊉䊛䈮⷗
䋨ઍ⴫䋩
䉌䉏䉎᭴ㅧᄌ⇣䈫䈠䈱ಽᏓ䇯ᣣᧄ⢒⒳ቇળ╙ 119 ࿁⻠Ṷળ䇮ᮮᵿ
ၮ⋚⎇ⓥ䋨䌂䋩䇸䉻䉟䉮䊮䈱㓶ᕈਇ⒤䊶⒤ᕈ࿁ᓳ䉲䉴䊁䊛䈱ಽሶᯏ᭴䈫
Ꮢ䇮2011.3.29-30
㗇㗡⍮਎䇮ᬀ᧛㚅❱䇮⷏Ⴆ㗅ሶ䇮ኹ࿾ᔀ䋺Ȗ-䉫䊦䉺䊚䊦䉲䉴䊁䉟䊮ว
䈠䈱ᄙ᭽ᕈᒻᚑ䊜䉦䊆䉵䊛䈱⸃᣿䇹䋨ಽᜂ䋩
ᚑ㉂⚛ㆮવሶ (GSH1)䉕⪲✛૕䉭䊉䊛䈮ᜬ䈧䉺䊋䉮ᒻ⾰ォ឵૕
䇸䋲䋮⍮⽷ᮭ╬䇹
䈱૞಴䇯ᣣᧄ⢒⒳ቇળ╙ 119 ࿁⻠Ṷળ䇮ᮮᵿᏒ䇮2011.3.29-30
․㗿㪉㪇㪇㪏㪄㪈㪐㪉㪈㪌㪎䇸䊔䉪䉺䊷䇮⚵឵䈋ᬀ‛䇮ਗ䈶䈮䇮䉺䊮䊌䉪⾰䈱⵾
ጊᧄ⵨▸䇮ㄞ᧛᦮ᒾ䇮ᨋᷡ㖸䇮᫪↰ ㊀ੱ䇮ኹ࿾ᔀ䋺⇣䈭䉎ᵴᕈ㉄
⚛ᶖ෰♽㉂⚛䈱ㆮવሶ䉕⪲✛૕䉭䊉䊛䈮ᜬ䈧⚵឵䈋䉺䊋䉮䈱Ყ
ㅧᣇᴺ䇹
セ䇯ᣣᧄ⢒⒳ቇળ╙ 119 ࿁⻠Ṷળ䇮ᮮᵿᏒ䇮2011.3.29-30
䇸䋳䋮ቇᄖᵴേ䇹
ㄞ᧛᦮ᒾ䇮ᬀ᧛㚅❱䇮ጊᧄ⵨▸䇮ኹ࿾ᔀ䋺䊔䊮䉰䊚䉝䊅䉺䊋䉮䈱⪲✛
ኹ࿾ ᔀ䋺
૕䉭䊉䊛䈻䈱 apx ෸䈶 gsh1 ㆮવሶ䈱ዉ౉䇯ᣣᧄ⢒⒳ቇળ╙ 119
ᣣᧄቇⴚᝄ⥝ળ䇸․೎⎇ⓥຬ╬ክᩏળኾ㐷ᆔຬ䇹
࿁⻠Ṷળ䇮ᮮᵿᏒ䇮2011.3.29-30
ศ⷗㤗⴩ሶ䇮㥱⮮⁴㓶䇮৻⦡ม㇢䇮ኹ࿾ᔀ䇮ጊጯඳ䋺CMS 䉕␜䈜䊅
↢⎇䉶䊮䉺䊷䇸䉟䊉䊔䊷䉲䊢䊮ഃ಴䈱䈢䉄䈱ၮ␆⎇ⓥផㅴ੐ᬺ ᐔᚑ
䉴⚦⢩⾰⟎឵♽⛔䈮䈍䈔䉎ᣂⷙ orf 䈱⊒⃻⸃ᨆ䇯ᣣᧄ⢒⒳ቇળ
㪉㪉ᐕᐲ┹੎⊛⾗㊄䈮ଥ䉎ኾ㐷ᆔຬ䇹
╙ 119 ࿁⻠Ṷળ䇮ᮮᵿᏒ䇮2011.3.29-30
㪞㪼㫅㪼 㩽 㪞㪼㫅㪼㫋㫀㪺 㪪㫐㫊㫋㪼㫄㫊 㪼㪻㫀㫋㫆㫉
㪙㫉㪼㪼㪻㫀㫅㪾 㪪㪺㫀㪼㫅㪺㪼 㪼㪻㫀㫋㫆㫉
58
㜞ᯅ੫䋺
㪞㪼㫅㪼 㩽 㪞㪼㫅㪼㫋㫀㪺 㪪㫐㫊㫋㪼㫄㫊 㪼㪻㫀㫋㫆㫉
╳ᵄᄢቇ↢๮ⅣႺቇ⟲↢‛ቇ㘃䇸ℂ⺰㓸࿅ㆮવቇ․⻠䇹
䇸䋴䋮ฃ⾨╬ 䇹䈭䈚
䇸䋵䋮䈠䈱ઁ 䇹 䈭䈚
59
ᬀ‛㓸࿅↢‛ቇ⎇ⓥቶ
ᢎ᝼ ☨Ỉ ൎⴡ
Laboratory of Plant Population Biology
Prof. Katsuei Yonezawa, Ph.D
㧝㧚⎇ⓥ᭎ⷐ
ߡᬌ⸛ߒߚ‫ޔߡߒߣ⺰⚿ޕ‬ᓥ᧪ߩᣇᴺߢ⸘᷹ߐࠇߚⓃ☸
એਅ䈱䋲䈧䈱䊁䊷䊙䈱ਅ䈪䇮ᢙℂ䊝䊂䊦䈮ၮ䈨䈒ℂ⺰
ൻቇᚑಽ฽᦭₸ߩ㧽㨀㧸⸃ᨆߢᓧࠄࠇࠆ㧸㧻㧰ࠬࠦࠕߩ
⊛䈭⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯
ಽᏓࡄ࠲࡯ࡦߣ‫ߩߎޔ‬฽᦭₸ߦ☸㊀ࠍਸ਼ߓߚ୯ߩ㧽㨀㧸
㧝㧕ᬀ‛⢒⒳ߩߚ߼ߩㆬᛮᣇᴺߩᦨㆡൻ
⸃ᨆߢᓧࠄࠇࠆ㧸㧻㧰ࠬࠦࠕߩಽᏓࡄ࠲࡯ࡦࠍᲧセߔࠆ
ᬀ‛ߩᣂߒ޿ຠ⒳ߪ‫ޔ‬ㅢᏱ‫ੱޔ‬Ꮏ੤㈩ߥߤߩᣇᴺߢ૞
ߎߣߦࠃߞߡ‫⼂ޔ‬೎ߢ߈ࠆߎߣࠍ␜ߒߚ‫ޕ‬
ߞߚᄌ⇣㓸࿅ߦኻߒߡㆬᛮ㧔․ᕈߩఝࠇߚ୘૕޽ࠆ޿ߪ
㧞㧕㧰㧺㧭ࡑ࡯ࠞ࡯ࠍ೑↪ߒߚㆬᛮᣇᴺߩ᦭↪ᕈ
♽⛔ࠍ㓸࿅ߩਛ߆ࠄㆬ߱ᠲ૞ߩߎߣ㧕ࠍ૗਎ઍ߆ߦࠊߚ
㧰㧺㧭ࡑ࡯ࠞ࡯ࠍ೑↪ߒߚ ߟߩㆬᛮᣇᴺ‫ࠊߥߔޔ‬
ߞߡ➅ࠅ㄰ߔߎߣߦࠃߞߡᓧࠄࠇࠆ‫ޕ‬ㆬᛮߩ⚿ᨐ‫ޔ‬ᣂຠ
ߜ‫ޔ‬/4 ᴺ㧦ᦨೋߩ਎ઍߢ㊀࿁Ꮻᴺߩᄌᢙㆬᛯߦࠃࠅ᦭ᗧ
⒳ߦ߰ߐࠊߒ޿ఝࠇߚ․ᕈࠍᜬߞߚ୘૕޽ࠆ޿ߪ♽⛔߇
ߥࡑ࡯ࠞ࡯ࠍㆬᛯߒ‫ޔ‬એ㒠ߪߎࠇࠄߩࡑ࡯ࠞ࡯ࠍ㊀࿁Ꮻ
ᓧࠄࠇࠆ߆ߤ߁߆ߪ‫ޔ‬Ფ਎ઍߩ㓸࿅ߩᄢ߈ߐ‫ޔ‬ㆬᛮߩᒝ
ଥᢙߢ㊀ߺߠߌߒߡ᳞߼ߚࡑ࡯ࠞ࡯ࠬࠦࠕߦၮߠ޿ߡㆬ
ߐᒙߐ‫․ޔ‬ᕈߩༀߒᖡߒߩ್ቯᣇᴺ‫ޔ‬ㆬᛮࠍ➅ࠅ㄰ߔ࿁
ᛮࠍⴕ߁ᣇᴺ‫)ޔ‬9 ᴺ㧦ᦨೋߩ਎ઍߢ࡝࠶ࠫ࿁Ꮻᴺߦࠃࠅ
ᢙߥߤߦᄢ߈ߊଐሽߔࠆ‫ޕ‬㒢ࠄࠇߚᤨ㑆ߣഭജߩਅߢߎ
ోࡑ࡯ࠞ࡯ߩ㊀ߺߠߌ୯ࠍ᳞߼‫ޔ‬એ㒠ߪߎࠇࠄߔߴߡߩ
ࠇࠄߩ੐㗄ࠍߤߩࠃ߁ߦቯ߼ࠆߩ߇ᦨༀ߆ࠍℂ⺰⊛ߥⷞ
ࡑ࡯ࠞ࡯ࠍ㊀ߺߠߌߒߡ⸘▚ߒߚࡑ࡯ࠞ࡯ࠬࠦࠕߦၮߠ
ὐ߆ࠄᬌ⸛ߒߡ޿ࠆ‫⋡ޕ‬ਅߪ‫ޔ‬㧰㧺㧭ࡑ࡯ࠞ࡯ࠍ೑↪ߒ
޿ߡㆬᛮࠍⴕ߁ᣇᴺ‫ޔ‬+/ ᴺ㧦ᦨೋߩ਎ઍߦ +PENWUKXG
ߚㆬᛮᣇᴺߩല₸⹏ଔߣᦨㆡൻߦ㑐ߔࠆ⎇ⓥߦข⚵ࠎߢ
%QORQUKVG +PVGTXCN /CRRKPI +%+/㧕ᴺߢࡑ࡯ࠞ࡯ࠍᬌ
޿ࠆ‫ޕ‬
಴ߒ‫ޔ‬એ㒠ߪᬌ಴ߒߚࡑ࡯ࠞ࡯ࠍฦ 36. ߩㆮવലᨐ୯ߢ
㧕ᬀ‛ߩㆮવ⊛ᄙ᭽ᕈߩ⛽ᜬᣇᴺ
㊀ߺߠߌߒߡ᳞߼ߚࡑ࡯ࠞ࡯ࠬࠦࠕߢㆬᛮࠍⴕ߁ᣇᴺ‫ޔ‬
ᬀ‛ߩㆮવ⊛ᄙ᭽ᕈࠍ⛽ᜬߔࠆߎߣߪ‫ޔ‬࿾⃿ⅣႺߩ㊀
ߩ᦭↪ᕈࠍࠦࡦࡇࡘ࡯࠲ࠪࡒࡘ࡟࡯࡚ࠪࡦߢᬌ⸛ߒ‫ޔ‬
ⷐߥ᭴ᚑⷐ࿃ߢ޽ࠆ↢ᘒ♽߿↢‛ߩᄙ᭽ᕈࠍ቞ࠆߣ޿
એਅߩ⚿⺰ࠍᓧߚ‫ઁޕ‬ᱺᬀ‛ߦ߅޿ߡߪ‫ޔ‬K 㐿⧎ᦼએ
߁㕙ߣ‫ޔ‬዁᧪ߩຠ⒳ᡷ⦟ߦᓎ┙ߟ᦭↪ߥㆮવ⾗Ḯࠍ⛽ᜬ
ᓟߦߒ߆⴫⃻ဳߩ⸘᷹߇ߢ߈ߥ޿ᒻ⾰ߦߟ޿ߡߪ‫ޔ‬㧟ߟ
ߔࠆߣ޿߁㕙߆ࠄ‫ޔ‬ᰳ߆ߖߥ޿ⷐઙߢ޽ࠆ‫ޕ‬ㆮવ⊛ᄙ᭽
ߩ޿ߕࠇߩᣇᴺ߽ᓥ᧪ߩ⴫⃻ဳㆬᛮࠃࠅ߽ߪࠆ߆ߦ᦭೑
ᕈࠍ⏕଻ߔࠆߚ߼ߩല₸⊛ߥ㓸࿅▤ℂᣇᴺ㧔㓸࿅ߩᄢ߈
ߢ޽ࠆ‫ޕ‬KK 㐿⧎ᦼએ೨ߦ⴫⃻ဳߩ⸘᷹߇น⢻ߥᒻ⾰ߦ
ߐ‫ޔ‬੤㈩᭽ᑼ‫ޔ‬୘૕ᒰߚࠅሶᢙ‫ޔ‬ฦ୘૕ߩ↢ᕷᐕᢙ‫ޔ‬㓸
ߟ޿ߡߪ‫ޔ‬⍴ᦼ㑆㧔ዋㆬᛮ࿁ᢙ㧕ߩㆬᛮലᨐߢ⷗ߚ႐ว
࿅㑆⒖૑ࡄ࠲࡯ࡦߥߤߩ▤ℂ㧕ߦߟ޿ߡℂ⺰⊛⎇ⓥࠍㅴ
ߪ‫ߩࠇߕ޿ޔ‬ᣇᴺ߽⴫⃻ဳㆬᛮࠃࠅ߽᦭೑ߢ޽ࠆ߇‫ޔ‬㐳
߼ߡ޿ࠆ‫ޕ‬
ᦼ㑆ߢߩㆬᛮലᨐߢ⷗ߚ႐วߪ‫ဳ⃻⴫ޔ‬ㆬᛮߩᣇ߇ᦨ⚳
⊛ߦߪ㜞޿ലᨐࠍਈ߃ࠆ‫ޕ‬KKK㧟ߟߩࡑ࡯ࠞ࡯ㆬᛮߩߥ
㧞㧚੹ᐕᐲߩ⎇ⓥᚑᨐ
߆ߢߪ‫)ޔ‬9 ߇ઁߩᣇᴺࠃࠅ߽ߪࠆ߆ߦ᦭೑ߢ޽ࠆ߇‫ࡑޔ‬
੹ᐕᐲߪ਄⸥ߩ ߟߩ࠹࡯ࡑߩ߁ߜ‫ޔ‬㧝㧕ߦ㑐ߔࠆ⎇
࡯ࠞ࡯ኒᐲ߇ૐߊߥࠆߣߘߩ᦭೑ߐߪᄢ᏷ߦᷫዋߔࠆ‫ޕ‬
ⓥࠍⴕ޿એਅߩ⚿ᨐࠍᓧߚ‫ޕ‬
⥄ᱺᬀ‛ߦ߅޿ߡߪ‫ޔ‬K㧕⴫⃻ဳㆬᛮߦኻߔࠆࡑ࡯ࠞ࡯
㧝㧕㊂⊛ᒻ⾰ߩㆬᛮߦᓎ┙ߟ㧽㨀㧸ߩ⼂೎ᣇᴺ
ㆬᛮߩ᦭೑ᕈߪઁᱺᕈ૞‛ߩ႐วߦᲧߴߡዊߐ޿߇‫ޔ‬⍴
㧽㨀㧸⸃ᨆߢᬌ಴ߐࠇࠆ㧽㨀㧸ߦߪ↢‛⊛ᯏ⢻߇⇣ߥ
ᦼ㑆ߩㆬᛮലᨐߢ⷗ߚ႐วߪ‫)ޔ‬9 ᴺ߇⴫⃻ဳㆬᛮࠃࠅ᦭
ࠆ߽ߩ߇ᄙᢙᷙ࿷ߔࠆ‫ࠄࠇߎޕ‬ᄙߊߩ㧽㨀㧸ࠍᯏ⢻ߩ㆑
೑ߢ޽ࠆ‫ޕ‬KK㧕)9 ᴺߩ᦭↪ᕈߪ‫ޔ‬ㆬᛮ୘૕㑆ߩ੤㈩ߣ޿
޿ߢಽ㘃ߔࠆߎߣߪ‫ޔ‬㊂⊛ᒻ⾰ߩㆬᛮߦ૶߃ࠆ᦭↪ߥࡑ
߁ᠲ૞ࠍขࠅ౉ࠇࠆߎߣߦࠃࠅ‫ޔ‬ᄢ߈ߊ਄᣹ߔࠆ‫ޕ‬KKK
࡯ࠞ࡯ࠍ᳿߼ࠆ਄ߢਇนᰳߢ޽ࠆ‫⎇ᧄޕ‬ⓥߢߪ․ߦ‫ޔ‬ᐢ
ઁᱺᬀ‛ߩ႐วߣห᭽‫)ޔ‬9 ᴺߩ᦭೑ߐߪࡑ࡯ࠞ࡯ኒᐲ
ߊ૶ࠊࠇߡ޿ࠆㄭ⿒ᄖశㅘㆊᴺߥߤߩᣇᴺߢ⸘᷹ߐࠇߚ
߇ૐ޿႐วߪᄢ᏷ߦᷫዋߔࠆ‫ޕ‬
Ⓝ☸ൻቇᚑಽ฽᦭₸ߩ㧽㨀㧸⸃ᨆߢᬌ಴ߐࠇࠆ㧽㨀㧸ߩ
ਛߦ‫ޔ‬ᒰ⹥ൻቇᚑಽߩวᚑ߿⫾Ⓧߦోߊ㑐ਈߒߥ޿නߥ
3. Research projects and annual reports
ࠆ⷗߆ߌ਄ߩ‫ޔߡߞ߇ߚߒޔ‬㜞฽᦭₸♽⛔ߩㆬᛮࡑ࡯ࠞ
Our research works major on the two themes mentioned
࡯ߣߒߡᓎߦ┙ߚߥ޿㧽㨀㧸߇ᄙߊ฽߹ࠇࠆߎߣࠍࠦࡦ
below:
ࡇࡘ࡯࠲ࠪࡒࡘ࡟࡯࡚ࠪࡦߢ␜ߒ‫ߩࠄࠇߎޔ‬ή⋉ߥ㧽㨀
1) Optimization of selection procedures for plant breeding:
㧸߆ࠄ᦭↪ߥ㧽㨀㧸ࠍ⼂೎ߔࠆߚ߼ߩ◲ଢߥᣇᴺߦߟ޿
New breeds of plant are normally obtained by repeated
60
selection over several generations from a variant population
control the size of tissues and QTL that control the rate of
produced by methods such as artificial mating. The
chemical synthesis. When QTL patterns are obtained and
probability that outstanding individuals or lines appropriate to
compared across multiple chemicals, QTL in each group can
the new breed are obtained as a result of such selection
be distinguished by their functional charges.
depends greatly on the size of the population in each
2: Usefulness of selection methods using DNA markers. The
generation, the intensity of selection, the method of evaluating
effectiveness of three marker-based selection methods, called
genetic potential of plants, and the number of times selection
MR (selection is based on the score that was calculated using a
is repeated. We are investigating how to determine these
multiple regression function of statistically significant markers),
conditions in an optimum manner from a theoretical
GW (selection is based on the score calculated using all
standpoint, given limited labor resources and time. Currently,
available markers weighted by the ridge regression), and IM
we are carrying out researches on the optimization of selection
(selection is based on the score calculated using markers
methods using DNA markers.
detected by the inclusive composite interval mapping), was
2) Methods for the maintenance of genetic diversity of plants:
discussed on the strength of computer simulations, leading to
Maintaining genetic diversity within and between plant
the following conclusions. In outcrossing plants, i) For traits
populations is an indispensable prerequisite, both from the
whose phenotypic value cannot be evaluated before flowering,
perspective of conserving ecological and biological diversity in
all of the three marker-based selection methods are much more
the natural world, and from the viewpoint of protecting valuable
effective than the traditional phenotypic selection method, ii)
genetic resources that will be useful for breed improvement in
For traits that can be evaluated phenotypically before flowering,
future. We are carrying out theoretical researches on the effective
the marker-based methods are superior in a short-term selection
methods of population management for maintaining the genetic
program, but not in a long-term selection program, and iii) Of
diversity (management of factors including population size,
the three marker-based selection methods, GW is by far the
mating system, number of offspring per individual, lifespan of
most effective, although its superiority is much reduced unless
individuals, and pattern of migration between populations).
sufficiently many DNA markers (a sufficiently high density of
In this academic year, wehave been devoted to the following
markers) are available. In self-pollinating plants, i) Although
two research subjects.
the advantage of the three marker-based selection methods
1: Methods for discriminating QTLs useful for quantitative trait
against phenotypic selection method is not as high as in
selection.Quantitative trait
different
outcrossing plants, GW is substantially superior in a short-term
biofunctional roles may occur simultaneously in QTL analysis.
selection program, ii) The effectiveness of GW is markedly
Categorizing these QTL by their functional roles is imperative
improved when using intercrossing between plants selected at
for choosing markers suitable for marker-assisted selection and
each selection cycle, iii) As is the case in outcrossing plants, the
gene searching. The feasibility of the QTL categorization was
advantage of GW diminishes with a low density of available
discussed in the context of QTL analysis for chemical
markers.
loci
(QTL)
with
concentration in seed grains. Our simulated QTL analysis
under simple, hypothetical histo-developmental and genetic
⊒⴫⺰ᢥ
models showed that, based on the concentration scores taken
Ishii, T., T. Hayashi, and K. Yonezawa: Categorization of Quantitative
by conventional methods such as near-infrared transmittance
trait loci by their functional roles: QTL analysis for chemical
spectroscopy (called score C), a gene can be detected as a QTL
concentration in seed grains. Crop Sci.50:784-793 (2010).
even though it has no role in the synthesis or storage of the
objective chemical. Such QTL, called nominal QTL, will not
㧡㧚ቇળ⊒⴫
be useful as a target of marker-assisted selection for a high
⍹੗ථᦶ‫ޔ‬⍫㊁ஜᄥ㇢‫ޔ‬ᨋᱞม‫ޔ‬ጤ↰ᵗ૫‫☨ޔ‬Ỉൎⴡ㧦ᧂᬌ⸽ߩ
chemical harvest. When QTL patterns obtained with score C
&0# ࡑ࡯ࠞ࡯ࠍ↪޿ߚ㊂⊛ᒻ⾰ㆬᛮߩ᦭↪ᕈߦߟ޿ߡ㧦ઁᱺ૞
are compared with those obtained with a modified score, score
‛ߦ߅ߌࠆ㓸࿅ᡷ⦟ߩ႐ว‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫ޔ‬
C × grain weight (called score D), nominal and useless QTL
੩ㇺᏒ‫ޔ‬㧞㧜㧝㧜㧚㧟㧚㧞㧢㧙㧞㧣
can be distinguished out and useful QTL can be categorized
⍫㊁ஜᄥ㇢࡮⍹੗ථᦶ࡮☨Ỉൎⴡ㧦㊂⊛ᒻ⾰ߩㆬᛮᣇᴺߩᦨㆡ
into two groups of functional categories, that is, QTL that
ൻߦ㑐ߔࠆ⎇ⓥ㧦ㆬᛮߩ೔㆐ὐࠍ᳿߼ࠆᦨ߽㊀ⷐߥⷐ࿃ߦߟ
61
޿ߡ‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ ࿁⻠Ṷળ‫ޔ‬੩ㇺᏒ‫ޔ‬㧞㧜㧝㧜㧚㧟㧚
㧞㧢㧙㧞㧣
⍹੗ථᦶ‫ޔ‬⍫㊁ஜᄥ㇢‫ޔ‬ᨋᱞม‫ޔ‬ጤ↰ᵗ૫‫☨ޔ‬Ỉൎⴡ㧦ᧂᬌ⸽ߩ
&0# ࡑ࡯ࠞ࡯ࠍ↪޿ߚ㊂⊛ᒻ⾰ㆬᛮߩ᦭↪ᕈߦߟ޿ߡ㧦⥄ᱺᕈ
૞‛ߩᡷ⦟ߩ႐ว‫ޕ‬ᣣᧄ⢒⒳ቇળ╙ 㧤࿁⻠Ṷળ‫↰⑺ޔ‬Ꮢ‫ޔ‬
㧞㧜㧝㧜㧚㧥㧚㧞㧠㧙㧞㧡
㧢㧚ߘߩઁ․⸥੐㗄
ߥߒ
62
䉭䊉䊛↢‛ቇ⎇ⓥቶ
ಎᢎ᝼ ㊄ሶ ⾆৻
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪞㪼㫅㫆㫄㫀㪺㫊
㪘㫊㫊㫆㪺㪅 㪧㫉㫆㪽㪅 㪫㪸㫂㪸㫂㪸㫑㫌 㪢㪸㫅㪼㫂㫆㪃 㪧㪿㪅㪛
䋱䋮⎇ⓥ᭎ⷐ
ᬀ‛䈮䈲䇮⚦⢩ౝ䉇⚦⢩㑆㓗䈮౒↢ᓸ↢‛䈏ሽ࿷䈜䉎䇯
䈠䈱䉋䈉䈭ᓸ↢‛䈱ᄙ䈒䈲䇮ㅢᏱ䇮ኋਥ䈫䈭䉎ᬀ‛䈮ኂ䉕䉅䈢
䉌䈜䉋䈉䈭䉻䊜䊷䉳䉕ਈ䈋䉎䈖䈫䈏䈭䈇䈖䈫䈏⍮䉌䉏䈩䈇䉎䇯䈖
䉏䉁䈪䈮䇮䈠䈱䉋䈉䈭․ᓽ䉕ᜬ䈧䉣䊮䊄䊐䉜䉟䊃䉇ᩮ☸⩶䈏䇮
ᄙ᭽䈭ᬀ‛䈎䉌ಽ㔌䈘䉏䈩䈍䉍䇮䈠䈱䈇䈒䈧䈎䈱⩶ᩣ䈮䈍䈇
䈩䈲䇮ᬀ‛䈱↢⢒ะ਄䇮∛ኂ䉇ⅣႺ䉴䊃䊧䉴䈻䈱ᛶ᛫ᕈะ਄
䈘䈞䉎䈖䈫䈏ႎ๔䈘䉏䈩䈐䈢䋨࿑䋱䋩䇯䈠䈱䉋䈉䈭․ᓽ䉕ᜬ䈧ᓸ
↢‛䈱৻ㇱ䈲䇮ㄘᬺ↢↥䈮䉅᦭↪䈪䈅䉎䈖䈫䈎䉌䇮․䈮⎇ⓥ
䈏ㅴ䉄䉌䉏䈩䈇䉎䇯ᚒ䇱䈲䇮ⅣႺᜰᮡ䈫䈭䉎ᓸ↢‛䇮․䈮ᬀ
‛䈱↢⢒䈮᦭ല䈭ലᨐ䉕␜䈜౒↢ᓸ↢‛䈱䉭䊉䊛⸃⺒䈮䈖
䉏䉁䈪ข䉍⚵䉂䇮ᓸ↢‛䈱↢ᵴⅣ䉇౒↢ᚑ┙䈮㑐䉒䉎ㆮવ
ሶᖱႎ䈫䈠䈱ᄙ᭽ᕈ䉕ႎ๔䈚䈩䈐䈢䋨࿑䋲䋩䇯䈚䈎䈚䈭䈏䉌䇮ᓸ
↢‛䈫ᬀ‛䈱⋧੕૞↪․ᕈ䈲ᓸ↢‛♽⛔䈮ଐሽ䈞䈝䇮ㄭ
✼♽⛔䈪䉅䈘䉁䈙䉁䈪䈅䉍䇮ⷐ࿃䈫䈭䉎ㆮવ࿃ሶ䈲ᧂ⸃᣿䈱
ㇱಽ䉅ᄙ䈇䇯䉁䈢䇮ⅣႺ䉭䊉䊛⸃ᨆ䈮䉋䉎䈫䇮ᧂႎ๔䈱౒↢ᓸ
↢‛䈏䇮䈅䉎ⅣႺ䈮䈍䈔䉎ᓸ↢‛㓸࿅䈱ᄙᢙ䉕භ䉄䉎䉬䊷
䉴䉅䈅䉎䇯䈖䈱䉋䈉䈭⢛᥊䈎䉌䇮ᬀ‛䈫⋧੕૞↪䈜䉎౒↢ᓸ↢
࿑䋲 ో䉭䊉䊛᭴ㅧ䉕᳿ቯ䈚䈢䉻䉟䉵ᩮ☸⩶䉭䊉䊛࿾࿑
‛䈱䉭䊉䊛⸃⺒䈮ข䉍⚵䉂䇮Ყセ䉭䊉䊛⎇ⓥ䉕ㅴ䉄䇮䈠䈱⚿
㤥ᄥ✢䈲ᄖ᧪ᕈ࿃ሶ䈪䈅䉎౒↢䉝䉟䊤䊮䊄䈱䉭䊉䊛䈻䈱ᝌ౉
ᨐ䉕ၮ⋚䈫䈚䈩౒↢䉲䉴䊁䊛䈮䈧䈇䈩⺞ᩏ䈜䉎䈖䈫䈮䉋䉍䇮ኋ
䉕␜䈜䇯
ਥᬀ‛䈱ᯏ⢻䉕䉋䉍㜞䉄䉎䈚䈒䉂䉕⷗䈧䈔䉎䈖䈫䉕⋡ᮡ䈮⎇
ⓥ䉕䈜䈜䉄䈩䈇䉎䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䉻䉟䉵ᩮ☸⩶ 㪙㫉㪸㪻㫐㫉㪿㫀㫑㫆㪹㫀㫌㫄 㫁㪸㫇㫆㫅㫀㪺㫌㫄 㪬㪪㪛㪘㪍 ᩣ䈱ో䉭
䊉䊛Ⴎၮ㈩೉䉕⸃⺒䈚䈢䇯㪬㪪㪛㪘㪍 䈱䉭䊉䊛䉰䉟䉵䈲 㪐㪉㪇㪎 㫂㪹䇮
㪞㪚 ฽ ㊂ 䈲 㪍㪊㪅㪎㩼 䈪 䈅 䉍 䇮 ᣢ ⍮ 䉭 䊉 䊛 䈱 㪙㪅 㫁㪸㫇㫆㫅㫀㪺㫌㫄
㪬㪪㪛㪘㪈㪈㪇 䈫ૃ䈢᭴ᚑ䈪䈅䉎䇯㪬㪪㪛㪘㪍 䈫 㪬㪪㪛㪘㪈㪈㪇 䈱౒↢䉝䉟
䊤䊮䊄䉕Ყセ䈜䉎䈫䇮㪠㫅㪛㪼㫃 䈲ሽ࿷䈜䉎䉅䈱䈱䇮Ⴎၮ㈩೉䊧䊔
䊦䈪䈾䈿ห৻䈪䈅䉎䈖䈫䈏䉒䈎䈦䈢䇯䈖䈱Ⴎၮ৻⥌₸䈲䇮ਔ
⠪䈱䉭䊉䊛䈱ၮᐙㇱಽ䈏 㪐㪇㩼⒟ᐲ䈪䈅䉎䈖䈫䈮Ყ䈼䈩ᭂ䉄䈩
㜞䈇䇯䈧䉁䉍䇮䈖䉏䈲ㄭ䈇౒ㅢ␲వ䈱౒↢䉝䉟䊤䊮䊄䈏♽⛔
䈱⇣䈭䉎 㪙㫉㪸㪻㫐㫉㪿㫀㫑㫆㪹㫀㫌㫄 ዻ⚦⩶䈻᳓ᐔવ᠞䈚䈢∥〔䈪䈅䉍䋬
䈠䈱ዉ౉䈏ਔ⠪䈱㜞䈇౒↢⓸⚛࿕ቯ⢻䈱⢛᥊䈫䈭䈦䈢䈖䈫
䉕␜䈚䈩䈇䉎䇯
㧟
Research projects and annual reports
Diversified microorganisms are able to colonize the
intercellular, and sometimes also intracellular, spaces of plant
tissues, without causing apparent damage to the host plant.
Bacterial endophytes and rhizobia have been isolated from
࿑䋱 ᦨ䉅⎇ⓥ䈏ㅴ䉄䉌䉏䈩䈇䉎ᬀ‛㪄ᓸ↢‛䈱౒↢᭽ᑼ䈪
several tissues in numerous plant species. Many bacterial
䈅䉎䊙䊜⑼ᬀ‛䈫ᩮ☸⩶䈱౒↢♽䈱⇛࿑
strains have beneficial effects on plant growth and health.
63
⇣⊛ㆮવሶ䈱ត⚝ ᣣᧄ࿯ფᓸ↢‛ቇળ 㪉㪇㪈㪇 ᐕᐲᄢળ䇮 ᢥ
Some beneficial strains of them are studied in terms of the
੩඙䇮㪉㪇㪈㪇㪅㪌㪅㪉㪈㪄㪉㪉
molecular mechanisms of establishment inside plants and their
We reported the full genome sequences of
ᵤਭ੗㓉⵨䇮㊄ሶ⾆৻䇮૒⮮ୃᱜ 䇮ጊ↰ቇ䇮᧼ୖቇ䇮ጊਅ᣿ผ䇮
such bacteria, Mesorhizobium loti, Bradyrhizobium japonicum,
ਃ੗ਭᐘ 䇮ᳯ↰ᔒ⏴䇮ධỈⓥ䋺䉻䉟䉵ᩮ☸⩶ 㪙㫉㪸㪻㫐㫉㪿㫀㫑㫆㪹㫀㫌㫄
and Azospirillum sp. B510. The genomic information provided
㫁㪸㫇㫆㫅㫀㪺㫌㫄㪬㪪㪛㪘㪈㪉㪉 ᩣ䈫 㪬㪪㪛㪘㪈㪈㪇 ᩣ䈱䉭䊉䊛Ყセ ⅣႺ䊋䉟䉥䊁
functions well.
䉪䊉䊨䉳䊷ቇળ 㪉㪇㪈㪇 ᐕᐲᄢળ䇮઄บᏒ䇮㪉㪇㪈㪇㪅㪍㪅㪉㪈㪄㪉㪉
valuable insights into the life of the bacteria, including
information about interactions with host plants. We examine
Ikeda S, Okubo T, Kaneko T, Inaba S, Sasaki K, Anda M, Eda S, Sato
the nucleotide sequences of the other related endophytic
S, Tabata S, Sato T, Mitsui H and Minamisawa K. : Community
bacterial strains genomes and deduce the symbiotic functional
shifts
gene repertoire in their genomes. Comparative genomics of
phenotypes and nitrogen applications.
naturally occurring plant-associated bacteria have a potential
Plant Microbe Symbiosis and Nitrogen Fixation, Miyazaki,
for providing information that can be used to develop
sequence of
soybean-associated
microbes
by host
nodulation
1st Asian Conference on
2010.9.20-24
enhanced plant-microbe interaction.
The nucleotide
of
Sato S, Kaneko T, Shimoda Y, Nakatshkasa H, Nakamura Y, Kato T.
symbiont
and Tabata S: Information and material resources derived from the
Bradyrhizobium japonicum USDA6 was determined. The
a
soybean
genome projects of Lotus japonicus and Mesorhizobium loti. 1st
chromosomally integrated elements were predicted by
Asian Conference on Plant Microbe Symbiosis and Nitrogen
comparing with B. japonicum USDA110 genome.
Fixation, Miyazaki, 2010.9.20-24
One of
them was identified as a symbiosis island with a length of 693
kb.
Kaneko T, Minamisawa K, Watanabe A, Kawashima K, Minami C,
The island is flanked by a valine-tRNA gene as is the
case in the USDA110 genome.
Katoh M, Nakazaki N, Yamada M, and Sato S: Comparative
The islands from two strains,
sequence analysis of the symbiosis island of Bradyrhizobium
USDA6 and USDA110, share approximately 600 kb of DNA
japonicum strain USDA6. 1st Asian Conference on Plant Microbe
regions in which the nucleotide level identity is significantly
Symbiosis and Nitrogen Fixation, Miyazaki, 2010.9.20-24
higher compare to the identitiy in the genomic backbone. The
Shigeyama T, Sasaki M, Suriyagoda L, TominagaA, Hireaesuka Y,
closely related nucleotide sequences show that the symbiosis
Uchiumi T, Abe M, Hashiguchi M, Akashi R, Sakai T, Inada S,
islands of two soybean symbionts would be acquired recently
Jikumaru Y, Kamiya Y, Sato S, Kaneko T, Tabata S, Agarie S,
by lateral transfer process.
Arima S and Suzuki A:
Root nodule formation controlled by light
quality in Lotus japonicus. 1st Asian Conference on Plant Microbe
䋴䋮⊒⴫⺰ᢥ
Symbiosis and Nitrogen Fixation, Miyazaki, 2010.9.20-24
䈭䈚
Okubo T, Ikeda S, Sasaki K, Oshima K, Kaneko T, Sato S, Tabata S,
Sato T, Eda S, Mitsui H, Hattori M and Minamisawa K:
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
Metagenomic survey for characteristics of plant-associated bacteria.
Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko
1st Asian Conference on Plant Microbe Symbiosis and Nitrogen
Fixation, Miyazaki, 2010.9.20-24
T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H,
Takeshima K, Wei M, Yokoyama T, Minamisawa K, Mitsui H,
Minamisawa K: Community- and genome-based views of
plant-associated bacteria: plant-bacterial interactions in soybean and
Itakura M, Kaneko T, Tabata S, Saeki K, Oomori H, Tajima S,
rice. Plant Cell Physiol. 2010 Sep;51(9):1398-1410.
Uchiumi T, Abe M., Ishii S and Ohwada T: Temperture-dependent
expression of type III secretion system genes and its regulation in
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
Bradyrhizobium japonicum.
㊄ሶ⾆৻䋺ᓸ↢‛䉭䊉䊛⸃ᨆ䈱㤡᣿ᦼ䈫⃻࿷㪅 ᣣᧄ᳓↥ቇળ䉲䊮䊘
Microbe Symbiosis and Nitrogen Fixation, Miyazaki, 2010.9.20-24
䉳䉡䊛䇸ᓸ↢‛䉭䊉䊛䈏ᜏ䈒᳓↥䈱ᣂ䈢䈭ầᵹ䇹੩ㇺᏒ 㪉㪇㪈㪇㪅㪐㪅㪉㪌
1st Asian Conference on Plant
S Kuno, T Yoshida, T Kaneko and Y Sako: Analysis On CRISPR
Sequences Of Toxic Bloom-forming Cyanobacterium Microcystis
䋷䋮ቇળ⊒⴫
aeruginosa.
ᵤਭ੗㓉⵨䇮㊄ሶ⾆৻䇮૒⮮ୃᱜ 䇮ጊ↰ቇ䇮᧼ୖቇ䇮ਃ੗ਭᐘ 䇮
㪉㪇㪈㪇㪅㪈㪈㪅㪉㪄㪌
࿖㓙᦭ኂ᦭Ქ䊒䊤䊮䉪䊃䊮ળ⼏㪃 䉩䊥䉲䊞㪃
ᳯ ↰ ᔒ ⏴ 䇮 ධ Ỉ ⓥ 䋺 䉻 䉟 䉵 ᩮ ☸ ⩶ 㪙㫉㪸㪻㫐㫉㪿㫀㫑㫆㪹㫀㫌㫄
⋿᧼ኡሶ䇮ᐔᎹ⧷᮸䇮ਛ᧛଻৻䇮㊄ሶ⾆৻䇮૒ષ๺ᒾ䇮↰⇌ືਯ䇮
㫁㪸㫇㫆㫅㫀㪺㫌㫄㪬㪪㪛㪘㪈㪉㪉 ᩣ䈫 㪬㪪㪛㪘㪈㪈㪇 ᩣ䈱䉭䊉䊛Ყセ䋺㪬㪪㪛㪘㪈㪉㪉 ᩣ․
૒⮮ୃᱜ䋺ᩮ☸⩶ 㪤㪼㫊㫆㫉㪿㫀㫑㫆㪹㫀㫌㫄 㫃㫆㫋㫀 䈱౒↢䉝䉟䊤䊮䊄䈮䈍䈔䉎Ყ
64
セ ⸃ ᨆ 䇮 ╙ 䋳 䋳 ࿁ ᣣ ᧄ ಽ ሶ ↢ ‛ ቇ ળ ᐕ ળ 䇮 ␹ ᚭ Ꮢ 䇮 㪉㪇㪈㪇㪅
㪈㪉㪅㪎㪄㪈㪇
S Sato, H Hirakawa, E Fukai, T Kaneko, Y Nakamura, E Asamizu, T
Kato, S Tabata㧦Updated genome information of Lotus japonicus
and status of legume comparative genomics. ╙䋳䋳࿁ ᣣᧄಽሶ↢
‛ቇળᐕળ䇮␹ᚭᏒ䇮㪉㪇㪈㪇㪅 㪈㪉㪅㪎㪄㪈㪇
ጟᧄᔋ䋬ਛየశノ䋬⮮Ỉ⾆ᥓ䋬૒⮮ୃᱜ䋬㊄ሶ⾆৻䋬ศ᧛⧷ዏ䋬ਛ
ᐔ᦭㚅䋬㒙ਭᵤᥓሶ䋬㏹䊱ᳯᒄ⟤䋬═੗⌀䋬ጊᧄ⚐ሶ䋬૞↰ජઍ
ሶ䋬㣮ፉ⵨ሶ䋬ਛ᧛଻৻㪑 䈎䈝䈘䉝䊉䊁䊷䉲䊢䊮䉴䉟䊷䊃䋺ᄙ᭽䈭䉭
䊉䊛䉝䊉䊁䊷䉲䊢䊮䈱䈢䉄䈱ද௛૞ᬺᚻᴺ䈫䉿䊷䊦䈱㐿⊒䇮╙䋳䋳
࿁ᣣᧄಽሶ↢‛ቇળᐕળ䇮␹ᚭᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
⮮Ỉ⾆ᥓ䋬ጟᧄᔋ䋬ਛየశノ䋬㊄ሶ⾆৻䋬↰⇌ືਯ䋬ਛ᧛଻৻㪑 ᢥ
₂ᖱႎ䈮ၮ䈨䈒䉭䊉䊛䊥䉝䊉䊁䊷䉲䊢䊮
╙䋳䋳࿁ᣣᧄಽሶ↢‛ቇ
ળᐕળ䇮␹ᚭᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
ᵤਭ੗㓉⵨䇮㊄ሶ⾆৻䇮૒⮮ୃᱜ䇮ጊ↰ቇ䇮᧼ୖቇ䇮ጊਅ᣿ผ䇮ਃ
੗ਭᐘ䇮ᳯ↰ᔒ⏴䇮ධỈⓥ䋺ኋਥㆮવሶ․⇣⊛䈭౒↢ਇ๺วᕈ
䉕䉅䈧䉻䉟䉵ᩮ☸⩶䈱䉭䊉䊛⸃ᨆ䇮╙ 㪌 ࿁ᣣᧄ䉭䊉䊛ᓸ↢‛ቇળ
ᐕળ䇮઄บᏒ䇮㪉㪇㪈㪈㪅㪊㪅㪈㪋㪄㪈㪍
ᄢਭ଻ථ䇮૒䇱ᧁ๺ᶈ䇮㊄ሶ⾆৻䇮ጊਅ᣿ผ䇮ᄢፉஜᔒᦶ䇮૒⮮ୃ
ᱜ䇮ᳯ↰ᔒ៺䇮ਃ੗ਭᐘ䇮૒⮮㓷ᔒ䇮↰⇌ືਯ䇮᦯ㇱᱜᐔ䇮ᳰ↰
ᚑᔒ䇮ධỈⓥ䋺 䉟䊈࿾਄ㇱ⚦⩶⟲㓸䈱䊜䉺䉭䊉䊛⸃ᨆ䇮╙ 㪌 ࿁ᣣ
ᧄ䉭䊉䊛ᓸ↢‛ቇળᐕળ䇮઄บᏒ䇮㪉㪇㪈㪈㪅㪊㪅㪈㪋㪄㪈㪍
㊄ሶ⾆৻䇮ౝᳰિ๺䇮ධỈⓥ䇮ᷰㄝ቟Ꮧሶ䇮 ↰ቇ䇮૒⮮ୃᱜ䋺䉻䉟
䉵ᩮ☸⩶ 㪙㫉㪸㪻㫐㫉㪿㫀㫑㫆㪹㫀㫌㫄 㫁㪸㫇㫆㫅㫀㪺㫌㫄 㫊㫋㫉㪸㫀㫅 㪬㪪㪛㪘㪍 䈱䉭䊉䊛᭴ㅧ⸃
ᨆ ╙ 㪌 ࿁ᣣᧄ䉭䊉䊛ᓸ↢‛ቇળᐕળ䇮઄บᏒ䇮㪉㪇㪈㪈㪅㪊㪅㪈㪋㪄㪈㪍
⋿᧼ኡሶ䇮ᐔᎹ⧷᮸䇮ਛ᧛଻৻䇮㊄ሶ⾆৻䇮૒ષ๺ᒾ䇮↰⇌ືਯ䇮
૒⮮ୃᱜ䋺䊚䊟䉮䉫䉰ᩮ☸⩶ 㪤㪼㫊㫆㫉㪿㫀㫑㫆㪹㫀㫌㫄 㫃㫆㫋㫀 䈮䈍䈔䉎౒↢䉝䉟
䊤䊮䊄䈱Ყセ⸃ᨆ䇮╙ 㪌 ࿁ᣣᧄ䉭䊉䊛ᓸ↢‛ቇળᐕળ䇮઄บᏒ䇮
㪉㪇㪈㪈㪅㪊㪅㪈㪋㪄㪈㪍
䋸䋮䈠䈱ઁ․⸥੐㗄
䋱㪅 ᄖㇱ⾗㊄
⑼ቇ⎇ⓥ⾌ ၮ⋚⎇ⓥ䋨㪙䋩䇸䉻䉟䉵౒↢⓸⚛࿕ቯ♽䈮㑐䉒䉎ㆮવ࿃
ሶ⸃᣿䈮ะ䈔䈢ᩮ☸⩶ᄙ᭽ᕈ䈱Ყセ䉭䊉䊛⎇ⓥ䇹⎇ⓥઍ⴫⠪䋺
㪉㪇㪇㪐㪄㪉㪇㪈㪉 ᐕ
䋲㪅⍮⊛⽷↥╬
䈭䈚
䋳㪅ቇᄖᵴേ
⽷࿅ᴺੱ 䈎䈝䈘 㪛㪥㪘 ⎇ⓥᚲ ․೎ቴຬ⎇ⓥຬ䈱౗ോ 㩿㪉㪇㪇㪐㵭㪎ޯ㪀
䋴㪅ฃ⾨╬
䈭䈚
䋵㪅䈠䈱ઁ
䈭䈚
65
㓸࿅ㆮવቇ⎇ⓥቶ
ಎᢎ᝼
Laboratory of Population Genetics
Assoc. Prof. Akira KAWABE Ph.D
㧝㧚⎇ⓥ᭎ⷐ
ᴡㆻ
ᤘ
ォ⒖࿃ሶߪᄙߊߩ↢‛ߢࠥࡁࡓߩᄢㇱಽࠍභ߼ࠆߥ
㓸࿅ㆮવቇಽ㊁ߢߪ‫ޔ‬ᬀ‛ࠍ᧚ᢱߣߒߡ &0# ᄌ⇣ߩ⛽
ߤᨴ⦡૕ߩ᭴ㅧࠍ⠨߃ࠆ਄ߢ㕖Ᏹߦ㊀ⷐߥⷐ⚛ߢ޽ࠆ‫ޕ‬
ᜬᯏ᭴ߩ⸃᣿ࠍᄢ߈ߥ⺖㗴ߣߒߡ⎇ⓥࠍ߅ߎߥߞߡ޿ࠆ‫ޕ‬
ォ⒖࿃ሶ߇↢ሽ਄㊀ⷐߥㆮવሶߦᝌ౉ߔࠆߎߣߢ↢‛
&0# ᄌ⇣߇ߤߩࠃ߁ߦ಴⃻ߒ‫ޔ‬਎ઍࠍ⚻ߡ㓸࿅ਛߢߩ㗫
ߦ᦭ኂߥലᨐࠍ߽ߚࠄߔߎߣ߽᦭ࠅ‫ޔ‬ᄙߊߩ↢‛ߢォ
ᐲࠍߤߩࠃ߁ߦᄌൻߐߖߡ޿ߊߩ߆ࠍ᣿ࠄ߆ߦߔࠆߎߣ
⒖࿃ሶࠍਇᵴൻߔࠆᯏ᭴߇ㅴൻߒߡ޿ࠆ‫ߦ߁ࠃߩߤޕ‬
ߪ㓸࿅ㆮવቇߩਥⷐߥ⋡⊛ߢ޽ࠅ‫ޔ‬ㆊ෰ߦ⿠ߎߞߚ಴᧪
ォ⒖࿃ሶ߇ߘߩࠦࡇ࡯ᢙࠍჇ߿ߒߡ޿ࠆߩ߆߿ߘߩਇ
੐ࠍផ᷹ߔࠆߎߣߢ⃻࿷ㅴⴕਛߩㅴൻ߿዁᧪⊛ߦߤߩࠃ
ᵴൻߩᯏ᭴ߪ޿߹ߛ⸃᣿ߐࠇߡ޿ߥ޿ߎߣ߽ᄙ޿‫ࠪޕ‬
߁ߦㅴൻ߇⿠ߎࠆߩ߆ࠍ੍᷹ߔࠆߎߣ߇ߢ߈ࠆ‫ޕ‬
ࡠࠗ࠿࠽࠭࠽ߢᦨㄭ᣿ࠄ߆ߦߥߞߚォ⒖ᵴᕈࠍᜬߟォ
ᧄ⎇ⓥಽ㊁ߢߪ․ߦᨴ⦡૕᭴ㅧߩ㆑޿߿ߘࠇࠍ߽ߚࠄ
⒖࿃ሶߦߟ޿ߡ‫ߩ⑼࠽࡜ࡉࠕޔ‬ਛߢߩㅴൻࡄ࠲࡯ࡦࠍ
ߔᯏ᭴߇ߤߩࠃ߁ߦ &0# ᄌ⇣ߦᓇ㗀ࠍਈ߃ࠆ߆ߣ޿߁ὐ
⸃ᨆߔࠆߎߣߢߤߩࠃ߁ߦࠦࡇ࡯ᢙࠍჇ߿ߒਇᵴൻࠍ
ߦὶὐࠍ⛉ߞߡ⎇ⓥࠍ߅ߎߥߞߡ޿ࠆ‫ߪߦࡓࡁࠥޕ‬ᄙߊ
߹ߕ߇ࠇߡ޿ࠆߩ߆ߥߤߦߟ޿ߡ᣿ࠄ߆ߦߒࠃ߁ߣߒ
ߩㆮવሶ߇ሽ࿷ߒ‫⥄߇ࠇߙࠇߘޔ‬ὼㆬᛯߩኻ⽎ߣߥߞߡ
ߡ޿ࠆ‫ޕ‬
↢‛ߩㅴൻߩⷐ࿃ߣߥߞߡ޿ࠆ‫ߩߡోߒ߆ߒޕ‬ㆮવሶߪ
㧟㧕
ࠛࡇࠫࠚࡀ࠹ࠖ࠶ࠢߥ೙ᓮᯏ᭴ߩㅴൻߦਈ߃
ห᭽ߦ⥄ὼㆬᛯߩᓇ㗀ࠍฃߌࠆࠊߌߢߪߥߊ‫ޔ‬๟ㄝߩ㗔
ࠆᓇ㗀ߩ⸃᣿
ၞߩᨴ⦡૕᭴ㅧߩ㆑޿ߦࠃߞߡ⥄ὼㆬᛯߩ௛ߊᐲว޿ߪ
ࠛࡇࠫࠚࡀ࠹ࠖ࠶ࠢߥ೙ᓮᯏ᭴ߦࠃࠅㆮવሶ⊒⃻߿
⇣ߥߞߡߊࠆ‫ޕ‬න⚐ߥ߽ߩߢߪ‫ߺ⚵ޔ‬឵߃₸ߩ㆑޿߇ㅪ
ࠢࡠࡑ࠴ࡦ᭴ㅧߩᄌൻ߇⿠ߎࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ‫ޕ‬
㎮ߩᒝߐࠍ⇣ߥࠆߎߣߦߥࠅ‫⥄ޔ‬ὼㆬᛯߩലᨐ߇㗔ၞߦ
ࠛࡇࠫࠚࡀ࠹ࠖ࠶ࠢߥ೙ᓮߪ㈩೉ߩ㆑޿ߦࠃࠄߕ⴫⃻
ࠃߞߡᄢ߈ߊ⇣ߥࠆߎߣߦߥࠆ‫ޕ‬ᨴ⦡૕ࠍ᭴ᚑߔࠆⷐ⚛
ᒻߦᏅ⇣ࠍ߽ߚࠄߔߎߣ߇น⢻ߢ޽ࠆ߇‫ࡦ࠴ࡑࡠࠢޔ‬
ߢ޽ࠆേේ૕߿࠹ࡠࡔࠕߥߤ‫ࠍࡦ࠴ࡑࡠࠢࡠ࠹ࡋߚ߹ޔ‬
᭴ㅧߩᄌൻߦࠃࠅㅴൻࡄ࠲࡯ࡦߦᓇ㗀ࠍਈ߃ࠆߣᕁࠊ
᭴ᚑߔࠆォ⒖࿃ሶߥߤ‫࠴ࡑࡠࠢߥࠢ࠶ࠖ࠹ࡀࠚࠫࡇࠛޔ‬
ࠇࠆ‫ޕ‬᭽‫ࠢ࠶ࠖ࠹ࡀࠚࠫࡇࠛߥޘ‬೙ᓮᯏ᭴ߩ߁ߜ․ߦ
ࡦ᭴ㅧߩᄌൻߥߤ‫ߪޔ‬๟ㄝ㗔ၞߩㅴൻࡄ࠲࡯ࡦࠍ᳿ቯߔ
ࠥࡁࡓࠗࡦࡊ࡝ࡦ࠹ࠖࡦࠣߦᵈ⋡ߒߡ⎇ⓥࠍㅴ߼ߡ޿
ࠆ਄ߢ㕖Ᏹߦ㊀ⷐߥ߽ߩߢ޽ࠆ‫ޕ‬නߦ⴫⃻ᒻߩᄌൻࠍ߽
ࠆ‫ࠣࡦࠖ࠹ࡦ࡝ࡊࡦࠗޕ‬೙ᓮࡄ࠲࡯ࡦߩᄌൻ߿ࠗࡦࡊ
ߣߦ⥄ὼㆬᛯߩᬌ಴߿ㆡᔕㅴൻߩ੍ᗐࠍߔࠆߩߢߪߥߊ‫ޔ‬
࡝ࡦ࠹ࠖࡦࠣࠍฃߌࠆߎߣߦࠃࠆㅴൻ߳ߩᓇ㗀ߥߤࠍ
ߘ߽ߘ߽⥄ὼㆬᛯߩᓇ㗀߇ߤߩࠃ߁ߥⷐ࿃ߦࠃߞߡᄌൻ
⺞ᩏߒߡ޿ࠆ‫ޕ‬
ߔࠆߩ߆ࠍ᣿ࠄ߆ߦߔࠆߎߣߪ‫ޔ‬ㄭᐕߩࠥࡁࡓᖱႎࠍ߽
ߣߦߒߚ↢‛ቇߩ⊒ዷࠍ〯߹߃ߡᄙ᭽ᕈ⎇ⓥࠍߔࠆ߁߃
㧞㧚ᧄᐕᐲߩ⎇ⓥᚑᨐ
ߢߪᰳ߆ߖߥ޿߽ߩߩߥߞߡߊࠆߣᕁࠊࠇࠆ‫ޕ‬
ᧄᐕᐲߪᬀ‛᧚ᢱߩขᓧ࡮⢒ᚑࠍㅴ߼ࠆߣߣ߽ߦ․ߦ
ࠪࡠࠗ࠿࠽࠭࠽ߢォ⒖ᵴᕈߩ޽ࠆߎߣ߇᣿ࠄ߆ߦߥߞߚ
ᧄ⎇ⓥಽ㊁ߢߪౕ૕⊛ߦᰴߩ㧟ὐߦߟ޿ߡ⎇ⓥࠍㅴ߼
ォ⒖࿃ሶߩㄭ✼⒳ߢߩᝌ౉૏⟎ߩ․⇣ᕈߩ⸃ᨆࠍㅴ߼ߚ‫ޕ‬
ߡ޿ࠆ‫ޕ‬
ࠪࡠࠗ࠿࠽࠭࠽ߢᵴᕈ߇ೋ߼ߡႎ๔ߐࠇߚ %QRKC ࡈࠔ
ࡒ࡝࡯߇ㄭ✼⒳ߩ #TCDKFQRUKU N[TCVC ߢ㕖Ᏹߦᒝ޿േේ
㧝㧕
േේ૕㗔ၞߩㅴൻᯏ᭴
૕߳ߩᝌ౉․⇣ᕈࠍ␜ߔߎߣࠍ᣿ࠄ߆ߦߒߚ‫ޕ‬േේ૕๟
േේ૕ߪ⚦⢩ಽⵚߩ㓙ߦᨴ⦡૕ࠍᱜ⏕ߦᆷ⚦⢩ߦಽ
ㄝ㗔ၞߪォ⒖࿃ሶߩኒᐲ߇㜞޿㗔ၞߣߒߡ⍮ࠄࠇߡ޿ࠆ
㈩ߔࠆߚ߼ߦᔅ㗇ߩ߽ߩߢ޽ࠅ‫ޔ‬ㆮવᖱႎߩᱜ⏕ߥવ
߇‫ޔ‬േේ૕ߩᯏ⢻㗔ၞߦ․⇣⊛ߦᝌ౉․⇣ᕈࠍᜬߟォ⒖
㆐ߦߪਇนᰳߩ߽ߩߢ޽ࠆ‫ߩߘޔߒ߆ߒޕ‬㊀ⷐᕈߦ߽
࿃ሶߪߎࠇ߹ߢߦߪ⍮ࠄࠇߡ޿ߥ޿‫੹ޕ‬ᓟ‫ߩߘޔ‬ᝌ౉․
ࠃࠄߕേේ૕㈩೉ߪࠥࡁࡓਛߢᦨ߽ᣧߊㅴൻߔࠆߣ⸒
⇣ᕈᯏ᭴ߩ⸃᣿߿ߐࠄߥࠆㄭ✼⒳ߦ߅ߌࠆᝌ౉ࡄ࠲࡯ࡦ
ࠊࠇߡ޿ࠆ‫ߩ࠽࠭࠽࠿ࠗࡠࠪޕ‬ㄭ✼⒳ࠍ↪޿ߡേේ૕
ߩ⸃ᨆࠍ߅ߎߥ߁ߎߣߦࠃࠅ‫․ߩߎߦ߁ࠃߩߤߟ޿ޔ‬ᱶ
㈩೉߇ߤߩࠃ߁ߦ⟎឵ߒߡ޿ࠆߩ߆‫ޔ‬േේ૕㈩೉ߩ㆑
ߥォ⒖᭽ᑼࠍ₪ᓧߒߚߩ߆ߦߟ޿ߡ᣿ࠄ߆ߦߒߡ޿ߊ‫ޕ‬
޿߇ታ㓙ߦᨴ⦡૕ߩಽ㔌ߦᓇ㗀ࠍਈ߃ࠆߩ߆ࠍ⸃ᨆߒ
ߡ޿ࠆ‫ޕ‬
㧞㧕
ォ⒖࿃ሶߩㅴൻࡄ࠲࡯ࡦߩ⸃ᨆ
66
㧟㧚Research projects and annual reports
Ⴆේዊ⊖ว‫ޔ‬ዊᨋ໪ᕺ‫ޔ‬ᴡㆻᤘ‫⼱ⷺޔ‬ᔀੳ㧦Arabidopsis lyrata ߦ
߅ߌࠆ COPIA93 ࡟࠻ࡠ࠻࡜ࡦࠬࡐ࠱ࡦߩ࠮ࡦ࠻ࡠࡔࠕ․⇣⊛
We focused on the maintenance mechanisms of DNA
variation in Plant species. We are interested in the following
ಽᏓߩᒻᚑᯏ᭴‫ ╙ ޕ‬82 ࿁ᣣᧄㆮવቇળᄢળ‫ᧅޔ‬ᏻ‫ޔ‬
three topics.
2010.9.20-22
1) Evolutionary process of Centromere regions
㧤㧚ߘߩઁ․⸥੐㗄
Centromere is an important area for accurate chromosome
ቇᄖᵴേ
segregation but is also one of the fastest evolving regions in
the genome. By using Arabidopsis relatives, we are analyzing
replacement pattern of centromere sequences and effect of
different centromeric sequences on the segregation ratio.
2) Patterns of Transposable Element Evolution
In Arabidopsis thaliana, several transposable element
families were identified to have active transposability. We are
analyzing differences of sequences and integration patterns of
these transposon families in Arabidopsis and related taxa.
3) Effect of Epigenetic regulation on Evolution
Epigenetic regulation can affect evolution patterns through
change of chromatin structure. We focused on imprinting
genes to analyse divergence patterns. The differences between
epigenetically regulated and non-epigenetically regulated loci
will be studied.
㧠㧚⊒⴫⺰ᢥ
ߥߒ
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
ߥߒ
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
ᴡㆻᤘ㧦ࠪࡠࠗ࠿࠽࠭࠽ㄭ✼⒳ߩേේ૕߅ࠃ߮ߘߩ๟ㄝ㗔ၞߩ
ㅴൻ⊛⸃ᨆ ੩ㇺ↥ᬺᄢቇ✚ว↢๮⑼ቇㇱ╙ ࿁ࡃࠗࠝࡈࠜ
࡯࡜ࡓ‫ޔ‬੩ㇺᏒ‫ޔ‬2010.11.10
㧣㧚ቇળ⊒⴫
A. Kawabe, A. Forrest, and D. Charlesworth㧦ANALYSES OF DNA
VARIATION IN THE PHERES GENES OF ARABIDOPSIS
SPECIES. the 21st International Conference on Arabidopsis
Research (ICAR 2010), Yokohama (Japan) ,2010.6.6-10
S. Tsukahara, A. Kobayashi, A. Kawabe, O. Mathiu, A. Miura, and T.
Kakutani: BUSRTS OF RETROTRANSPOSITION
REPRODUCED IN ARABIDOPSIS.
the 21st International
Conference on Arabidopsis Research (ICAR 2010), Yokohama
(Japan) ,2010.6.6-10
ᴡㆻᤘ‫ޔ‬Ⴆේዊ⊖ว‫⼱ⷺޔ‬ᔀੳ㧦Arabidopsis ዻߦ߅ߌࠆ
Copia93/20 ࡈࠔࡒ࡝࡯ߩಽᏓߣᝌ౉૏⟎․⇣ᕈ‫ ╙ޕ‬82 ࿁ᣣᧄ
ㆮવቇળᄢળ‫ᧅޔ‬ᏻ‫ޔ‬2010.9.20-22
67
)GPGVKEC #UUQEKCVG 'FKVQT ᬀ‛ಽሶ⊒↢↢‛ቇ⎇ⓥቶ
ಎᢎ᝼
Laboratory f Plant Developmental Biology
ᧁ᧛
ᚑ੺
Associate Prof. Seisuke Kimura, Ph. D
㧝㧚⎇ⓥ᭎ⷐ
ᘒ䈱ᄌൻ䈲䇮⨍㗂䈍䉋䈶⪲ේၮ䈱ᒻᘒⷰኤ䈎䉌⪲䈱ᒻᘒ䈲⊒
↢‛䈏๟࿐䈱ⅣႺ䈮ᔕ䈛䈩䈠䈱⴫⃻ဳ䉕ᄌൻ䈘䈞䉎䈖䈫䉕
↢䈱ᣧ䈇ᤨᦼ䈪᳿ቯ䈘䉏䈩䈇䈢䇯
⴫⃻ဳน႟ᕈ䈫䈇䈇䇮↢‛䈱ⅣႺ䈻䈱ㆡᔕ䈮㊀ⷐ䈭ᓎഀ䉕
ⶄ⪲䉕ᜬ䈧ᄙ䈒䈱ᬀ‛䈪䈲䇮䊖䊜䉥䊗䉾䉪䉴ㆮવሶ䈪䈅䉎
ᨐ䈢䈚䈩䈇䉎䇯䉝䊑䊤䊅⑼䈮ዻ䈜䉎᳓↢ᬀ‛䈱ੑ䊠䊷䊔䉨䉝
㪢㪥㪦㪯ㆮવሶ䈏⪲ේၮ䈪ᒝ⊒⃻䈚䈩䈇䉎䈖䈫䈏⍮䉌䉏䈩䈇䉎䇯
㩿㪥㪼㫆㪹㪼㪺㫂㫀㪸 㪸㫈㫌㪸㫋㫀㪺㪸㪀䈲䇮↢⢒䈜䉎ⅣႺ䈮ଐሽ䈚䈩⪲䈱ᒻᘒ
⚵❱఺∉ᨴ⦡䈮䉋䉍䊆䊠䊷䊔䉨䉝䈱㪢㪥㪦㪯ㆮવሶ䈱⊒⃻䊌䉺䊷
䉕ᄌൻ䈘䈞䇮ⓨ᳇ਛ䈪䈲ᬦ౞ᒻ䈱න⪲䉕⊒↢䈜䉎৻ᣇ䇮᳓
䊮䉕⺞䈼䈢ᚲ䇮ⶄ⪲䉕⊒↢䈜䉎᧦ઙ䈮䈍䈇䈩䈲䇮ዊ⪲ේၮ䈭䈬
ਛ䈪䈲㊎⁁䈱ዊ⪲䈎䉌䈭䉎⠀⁁ⶄ⪲䋨৻ᨎ䈱⪲䈏ⶄᢙ䈱ዊ
䈪ᒝ䈇⊒⃻䈏ⷰኤ䈘䉏䈢䇯㪢㪥㪦㪯ㆮવሶ䈲㪞㪘㪉㪇㫆㫏ㆮવሶ䈭䈬
⪲䈮ಽ䈎䉏䈢⪲䋩䉕⊒↢䈜䉎䇯䈖䈱䉋䈉䈭⪲䈱ᒻᘒ䈱ᄌൻ䋨⴫
䈱⊒⃻䉕ᛥ೙䈜䉎੐䈪䇮䉳䊔䊧䊥䊮วᚑ㊂䉕ૐਅ䈘䈞䉎䈖䈫䈏⍮
⃻ဳน႟ᕈ䋩䈲䇮శ᧦ઙ䉇᳓䈱ᛶ᛫䈭䈬䈱ⅣႺ䈮ㆡᔕ䈜䉎
䉌䉏䈩䈇䉎䇯䈠䈖䈪䉳䊔䊧䊥䊮䈏䊆䊠䊷䊔䉨䉝䈱⪲䈱ᒻᘒ䈮ਈ䈋
䈢䉄䈮ᓎ䈮┙䈦䈩䈇䉎䈫⠨䈋䉌䉏䈩䈇䉎䈏䇮䈬䈱䉋䈉䈭઀⚵䉂
䉎ᓇ㗀䈮䈧䈇䈩⺞䈼䈢ᚲ䇮䉳䊔䊧䊥䊮䈱ᷝട䈮䉋䉍ૐ᷷᧦ઙ䈪
䈪⪲䈱ᒻ䉕ᄌൻ䈘䈞䈩䈇䉎䈱䈎䈮䈧䈇䈩䈲䈾䈫䉖䈬䉒䈎䈦䈩
䈅䈦䈩䉅න⪲䈏⊒↢䈚䇮ㅒ䈮䉳䊔䊧䊥䊮䈱↢วᚑ㒖ኂ೷䈪䈅䉎
䈇䈭䈇䇯⑳㆐䈲䇮䊆䊠䊷䊔䉨䉝䈏ⅣႺ䈮䈬䈱䉋䈉䈮ᔕ╵䈚䈩
䉡䊆䉮䉻䉹䊷䊦䈱ᷝട䈮䉋䉍㜞᷷᧦ઙ䈮䈍䈇䈩䉅ⶄ⪲䈏⊒↢䈚
⪲䈱ᒻ䉕ᄌൻ䈘
䈢䇯䈖䈱䈖䈫䈎䉌䇮䊆䊠䊷䊔䉨䉝䈱⪲䈱ᒻᘒᒻᚑ䈮䈍䈇䈩䉅
䈞䈩䈇䉎䈎䉕᣿
㪢㪥㪦㪯ㆮવሶ⚻〝䈏㊀ⷐ䈭௛䈐䉕䈚䈩䈇䉎䈫⠨䈋䉌䉏䈢䇯
䉌䈎䈮䈜䉎䈖䈫䉕
䊆䊠䊷䊔䉨䉝䈱⴫⃻ဳน႟ᕈ䈱⊒⃻䈲䇮⪲䈱⊒↢䉇䊜䊥䉴䊁
⋡ᜰ䈚䈩⎇ⓥ䉕
䊛䈱⛽ᜬ䈮㑐ਈ䈜䉎ㆮવሶ䈱⊒⃻ㇱ૏䉇㊂䈏ⅣႺ䈮ᔕ䈛䈩ᄌ
ㅴ䉄䈩䈇䉎䇯
ൻ䈜䉎䈖䈫䈪䈍䈖䉎䈫⠨䈋䉌䉏䉎䇯੹ᓟ䈲䇮䉲䊨䉟䊇䊅䉵䊅䈱䉭䊉
䊛䉕䊥䊐䉜䊧䊮䉴䈫䈚䈩ᰴ਎ઍ䉲䊷䉪䉣䊮䉴䈮䉋䉎✂⟜⊛ㆮવሶ
㧞㧚ᧄᐕᐲߩ⎇
⊒⃻⸃ᨆ䉕ⴕ䈭䈉䈖䈫䈪䇮䊆䊠䊷䊔䉨䉝䈱␜䈜⪲䈱ᒻᘒ䈱⴫⃻
ⓥᚑᨐ
ဳน႟ᕈ䈱䊜䉦䊆䉵䊛䉕ಽሶ䊧䊔䊦䈪᣿䉌䈎䈮䈜䉎䈖䈫䉕⋡ᜰ
䉝䊑䊤䊅⑼䈮 ዻ䈜 䉎ඨ᳓ ↢ ᬀ‛䈱 䊆䊠 䊷䊔䉨䉝㩿㪣㪸㫂㪼
䈚䈩䈇䈒䇯
㪺㫉㪼㫊㫊㪃 㪥㪼㫆㪹㪼㪺㫂㫀㪸 㪸㫈㫌㪸㫋㫀㪺㪸㪀䈲䇮↢⢒ⅣႺ䈮ᔕ╵䈚䈩⪲䈱ᒻᘒ
䉕᭽䇱䈮ᄌൻ䈘䈞䉎⴫⃻ဳน႟ᕈ䉕␜䈜㩿㪝㫀㪾㪅 㪈㪀䇯䊆䊠䊷䊔
㧟㧚Research projects and annual reports
䉨䉝䈲ർ☨䈱ḓ⇎䈭䈬䈱Ḩ࿾Ꮺ䈮↢⢒䈚䈩䈍䉍䇮⪲䈱ᒻᘒ
Plant can alter their development, physiology and life
䈱ᄌൻ䈲᳓ᴚ䈭䈬䈱ⅣႺᄌൻ䈮ㆡᔕ䈜䉎䈢䉄䈮ᓎ䈮┙䈦䈩
history
䈇䉎䈫⠨䈋䉌䉏䉎䇯䊆䊠䊷䊔䉨䉝䈲⪲䈱ᢿ 䈎䉌ౣ↢䈚䈩Ⴧ
fundamental property is called phenotypic plasticity. The
ᱺ䈚䇮ቢో䈭䉪䊨䊷䊮䈏◲න䈮ᓧ䉌䉏䉎䈢䉄⴫⃻ဳน႟ᕈ䈱
North American lake cress, Neobeckia aquatica is an
⎇ⓥ䉕䈜䉎䈱䈮ㇺว䈏⦟䈇䇯䈠䈖䈪ᧄ⎇ⓥ䈪䈲䇮䊆䊠䊷䊔䉨
herbaceous perennial aquatic mustard. Typical habitat of lake
䉝䉕↪䈇䈩ᬀ‛䈱⪲䈱ᒻᘒ䈱⴫⃻ဳน႟ᕈ䈮䈧䈇䈩䈱⎇
cress is at shores of ponds, slow-moving streams and other
ⓥ䉕ㅴ䉄䈢䇯
quiet waters in North America. The lake cress shows
depending
on
environmental
conditions.
This
䉁䈝䇮䊆䊠䊷䊔䉨䉝䈱♽⛔㑐ଥ䉕᣿䉌䈎䈮䈜䉎䈢䉄䇮㫉㪹㪺㪣
heterophylly, phenotypic plasticity on leaf shape. In nature,
㈩೉䈮ၮ䈨䈒ಽሶ♽⛔⸃ᨆ䉕ⴕ䈦䈢䇯䊆䊠䊷䊔䉨䉝䈲䉺䊈䉿
the leaf shape of this plant depends on whether the plant is
䉬䊋䊅ዻ㩿㪚㪸㫉㪻㪸㫄㫀㫅㪼㪀䇮䉥䊤䊮䉻䉧䊤䉲ዻ㩿㪥㪸㫊㫋㫌㫉㫋㫀㫌㫄㪀䇮䉟䊇䉧
submerged in or emergent from water. Submerged leaves are
䊤䉲ዻ䋨㪩㫆㫉㫀㫇㫇㪸㪀䈭䈬䈫Ყセ⊛ㄭ✼䈪䇮䉝䊑䊤䊅⑼䈱䉺䊈䉿䉬
usually deeply dissected and has needle-like blade, whereas
䊋䊅ㅪ䋨㪫㫉㫀㪹㪼 㪚㪸㫉㪻㪸㫄㫀㫅㪼㪸㪼䋩䈮ዻ䈜䉎䈖䈫䈏䉒䈎䈦䈢䇯
emergent leaves are generally entire with serrated or smooth
䈖䉏䉁䈪䊆䊠䊷䊔䉨䉝䈏᳓ᴚ䈮䉋䉍⪲䈱ᒻᘒ䉕ᄢ䈐䈒ᄌൻ䈘
margins. This phenotypic plasticity on leaf shape is thought to
䈞䉎䈖䈫䈏⍮䉌䉏䈩䈇䈢䈏䇮↢⢒᷷ᐲ䈮䉋䈦䈩䉅⪲䈱ᒻᘒ䈏ᄢ䈐
be adaptive response to submergence and increase the fitness
䈒ᄌൻ䈚䇮㪉㪌㷄䈪䈲න⪲䉕⊒↢䈜䉎䈱䈮ኻ䈚䈩䇮㪉㪇㷄䈪䈲ⶄ⪲
in water's edge environment where most of lake cress
䉕⊒↢䈜䉎䈖䈫䈏䉒䈎䈦䈢䇯䈘䉌䈮ૐ᷷䈱㪎㷄䈪↢⢒䈘䈞䉎䈫⪲
populations are found. Despite the significance of this plant to
り䈏᳓ਛ⪲䈱᭽䈮㊎⁁䈮䈭䉎䈖䈫䈎䉌䇮ૐ᷷᧦ઙ䈏᳓ᴚ᧦ઙ䉕
study fundamental mechanisms of phenotypic plasticity and
䈭䉖䉌䈎䈱ᒻ䈪ᮨ䈚䈩䈇䉎䈫⠨䈋䉌䉏䉎䇯䉁䈢䇮䈖䈱䉋䈉䈭⪲䈱ᒻ
environmental responses in plants, the underlying mechanism
68
hasn't been investigated. We investigate the mechanism of the
GA. In contrast, they produced submerged type leaf when they
heterophylly of Neobeckia aquatica.
were applied with uniconazole which is GA biosyntheiss
To determine the phylogenetic position of lake cress in
inhibitor.
Brassicaseae, a phylogenetic tree was constructed based on the
These results imply that GA has an important roles in
determination of leaf identity in lake cress.
nucleotide sequence of the chloroplast gene rbcL by UPGMA
This study would give a new insights into the adaptive
method. The molecular data indicated that Neobeckia is
nature of phenotypic plasticity, its underlying mechanisms and
closely related to Rorippa and Cardamine, and belonged to
its role in the ecological distribution and evolutionary
tribe Cardamineae.
diversification of plants.
The leaves of lake cress are extremely variable. It is
㧠㧚⊒⴫⺰ᢥ
known that the heterophyllous transition of Neobeckia
ߥߒ
aquatica occurs in response to changes in water level. We
investigated that the effect of various environmental
conditions on leaf shape and found that lake cress altered leaf
㧡㧚⪺ᦠ߅ࠃ߮✚⺑
shape according to the ambient temperature. Lake cress
N. Uchida, S. Kimura, D. Koenig and N. Sinha: Coordination of leaf
produced entire leaf with smooth margin when they were
development via regulation of KNOX1 genes. J. Plant Res. 123:
grown at 25 ͠. By contrast, in 20 ͠, they produced dissected
7-14 (2010)
leaf. At lower temperature, 7 ͠, they developed highly
dissected neeldle-like leaves which resembled the submerged
㧢㧚᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
leaves.
S. Kimura: Natural variation in leaf morphology results from
These results suggested that lake cress can sense the
growing temperature and response to it.
mutation of a novel KNOX gene. Japanese San Francisco Bay Area
The leaves of seeds plants can be classified as being either
Seminar Annual Meeting, Davis, CA, USA, 2010.3.18
simple or compound according to their degree of leaf complexity.
ᧁ᧛ᚑ੺䋺䉧䊤䊌䉯䉴⻉ፉ䈮࿕᦭䈱㊁↢䊃䊙䊃䈮ⷰኤ䈘䉏䉎⪲ᒻᘒ䈱
Simple leaf, which is similar to aerial leaf form of lake cress, is
⥄ὼᄌ⇣䈱⊒↢ᯏ᭴㪅 ੩ㇺ↥ᬺᄢቇ✚ว↢๮⑼ቇㇱ䊋䉟䉥䊐䉤
composed of a single blade and a petiole, while compound leaf,
䊷䊤䊛䇮੩ㇺᏒ䇮㪉㪇㪈㪇㪅㪈㪈㪅㪈㪇
which is similar to submerged leaf form, has multiple blade units,
termed leaflets, attached to a rachis. Leaf shapes are highly
㧣㧚ቇળ⊒⴫
correlated with expression patterns of KNOX1 genes in leaf
ᧁ᧛ᚑ੺䋺ⅣႺ䈮ᔕ䈛䈩⪲䈱ᒻ䉕ᄌൻ䈘䈞䉎ᬀ‛䊆䊠䊷䊔䉨䉝䉕↪
primordia. KNOX1 genes are downregurated in the incipient leaf
䈇䈢ᬀ‛䈱⴫⃻ဳน႟ᕈ䈱⎇ⓥ䇯╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛ቇળᐕ
primordia in both compound and simple leafed species. However,
ળ䇮␹ᚭᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
KNOX1 gene expression is re-established later in the developing
primordia of most plants with compound leaves. In addition,
㧤㧚ߘߩઁ․⸥੐㗄
overexpression of KNOX1 genes leads to excessive leaf
㪈㪅 ᄖㇱ⾗㊄ ᐔᚑ 㪉㪉 ᐕᐲ⑼ቇᛛⴚ⎇ⓥ⾌⵬ഥ㊄⎇ⓥᵴേ䉴䉺䊷
compounding.Therefore, KNOX1 is thought to be involved in
controlling leaf form. We examined spatial distribution of
KNOX1 protein in shoot apex by immunohistochemistry.
Expression of KNOX1 protein in leaf primordia was found in
lake cress developing submerged-type leaves, but not found in
leaf primordia of aerial-type leaves. These results indicated the
correlation of KNOX1 and leaf shape of lake cress.
One of the downstream targets of KNOX1 is GA20-ox,
gibberellin (GA) biosynthesis gene. KNOX1 suppresses the
expression of GA20-ox by binding to the first intron of the gene.
Thus gibberellin is involved in determination of leaf shape. To
test whether GA is also involved in leaf development in lake
cress, we performed application experiments. Lake cress were
shown to develop aerial type leaves when they were applied with
69
䊃ᡰេ
േ‛ಽሶ↢ᘒቇ⎇ⓥቶ
ಎᢎ᝼ 㜞ᯅ ⚐৻
Laboratory of Animal Molecular Ecology
Associate Prof. Jun-ichi Takahashi, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
䈇⒳ 䈪䈅䉎䇯ᧄ ⒳ 䈱଻ ో 䈲✕ ᕆ 䉕ⷐ 䈜䉎䈮䉅䈎䈎䉒䉌䈝䇮
␠ ળ ᕈ ᣸ ⯻ 䈪䈅䉎䊚䉿䊋䉼䇮䊙䊦䊊䊅䊋䉼䇮䉴䉵䊜䊋䉼
ၮ ␆ ⊛䈭↢ ᵴผ 䉇↢ ᘒ䈭䈬䈲䈾䈫䉖䈬䉒䈎䈦䈩䈇䈭䈎䈦
䈭䈬䉕⎇ ⓥ ᧚ ᢱ 䈫䈚䈩䇮േ ‛ ␠ ળ 䈮䈍䈔䉎␠ ળ ᕈ 䈏䈬䈱
䈢䈢䉄䇮㊁ ᄖ ⺞ ᩏ 䈫ಽ ሶ ↢ ᘒ ቇ ⊛ ⎇ ⓥ 䈮䉋䉍䇮↢ ᵴ ผ 䇮
䉋䈉䈮ㅴ ൻ 䈚⛽ ᜬ 䈘䉏䈩䈐䈢䈱䈎䇮䈠䈱䊜䉦䊆䉵䊛䈱⸃ ᣿
❥ ᱺ ↢ ᘒ 䇮ㆮ વ ⊛ ᄙ ᭽ ᐲ 䈭䈬䈱⺞ ᩏ ⎇ ⓥ 䉕ⴕ 䈦䈩䈇䉎䇯
䉕⋡ ⊛ 䈮ㆮ વ ሶ Ꮏ ቇ ⊛ ᚻ ᴺ 䉕↪ 䈇䈢ಽ ሶ ↢ ᘒ ቇ ⊛ ⎇
ᚒ䇱䈱⺞ᩏ䈮䉋䉍䇮ᧄ⒳䈲ㄭⷫ੤㈩䇮ᧂ੤የ୘૕䇮ਇᅧ
ⓥ 䉕ⴕ 䈦䈩䈇䉎䇯․ 䈮䊚䉿䊋䉼䈱㜞 ᐲ䈭㓸 ࿅ ⴕ േ 䈮⌕ ⋡
ൻ ୘ ૕ 䈏㜞 䈇⏕ ₸ 䈪⊒ ↢ 䈚 䈩䈇䉎䈖䈫䈏᣿ 䉌䈎䈮䈭䉍䇮
䈚䇮ᄙ᭽䈭␠ ળ ⴕ േ䈮㑐 ਈ䈜䉎ⴕേ ೙ ᓮ ㆮ વሶ 䈱න 㔌
↢ᕷᢙ䉅 㪉㪇㪇 ୘૕೨ᓟ䈮䉁䈪ỗᷫ䈚䈩䈇䉎䈢䉄䇮ᣧᕆ䈭
䈫ᯏ⢻⸃ᨆ䉕⹜䉂䈩䈇䉎䇯䊚䉿䊋䉼䈱ో䉭䊉䊛䈲䇮㪉㪇㪇㪍 ᐕ
଻ ⼔ ኻ ╷ 䉕ข 䉎ᔅ ⷐ 䈏䈅䉎䈢䉄଻ ో ⸘ ↹ 䈱╷ ቯ 䉕ㅴ 䉄
䈮⸃ ⺒ 䈘䉏䈩䈇䉎䈏䇮ㆮ વ ሶ ⊒ ⃻ 䉕೙ ᓮ 䈜䉎ᣇ ᴺ 䈲ቢ
䈩䈇䉎䇯
ో 䈮⏕ ┙ 䈘䉏䈩䈇䈭䈇䈢䉄䇮ㆮ વ ሶ ⚵ ឵ 䈋䊚䉿䊋䉼䈱૞
ᚑᚻᴺ䈱㐿⊒䉕⹜䉂䈩䈇䉎䇯
䊚䉿䊋䉼䈲䉁䈢ㄘ ᬺ 䉇Ⅳ Ⴚ ଻ ో ಽ ㊁ 䈮䈫䈦䈩䉅㊀ ⷐ 䈭
↢ ‛ ⾗ Ḯ 䈪䈅䉎䇯㙃 ⱎ ⒳ 䈫䈚䈩೑ ↪ 䈘䉏䈩䈇䉎䉶䉟䊣䉡䊚
䉿䊋䉼䈲䇮ㄭ ᐕ ਎ ⇇ ฦ ࿾ 䈪∛ ේ ᕈ ᓸ ↢ ‛ 䈱ᄙ ㊀ ነ ↢ 䊶
ᗵ ᨴ 䈏ਥ ේ ࿃ 䈫ᕁ 䉒䉏䉎䊚䉿䊋䉼⟲ ፣ უ ∝ ୥ ⟲ 䋨㪚㪚㪛䋩
䈮䉋䉎ᷫ ዋ䈏ႎ ๔䈘䉏䈩䈇䉎䇯ᣣ ᧄ䈪䉅⧎ ☳ ੤㈩ 䉇ⱎ Ᵽ
↢↥ ↪䈱䊚䉿䊋䉼ਇ⿷ 䈏ᄢ 䈐䈭໧㗴䈫䈭䈦䈩䈇䉎䇯䈠䈖䈪
౮ ⌀ 㪉㪅䊊䊮䉯䊮䉸䉡䋨Ꮐ䋩䈫䉿䊥䉧䊈䊆䊮䉳䊮䋨ฝ䋩䉕⸰ ⧎
䉶䉟䊣䉡䊚䉿䊋䉼䈱∛ ේ ᕈ ᓸ ↢ ‛ 䈮ኻ 䈜䉎ᛶ ᛫ ᕈ 䋨఺ ∉
䈜䉎Ꮧዋ⒳䊉䉰䉾䊒䊙䊦䊊䊅䊋䉼䋨ᩮቶඨፉ䋩
䈍䉋䈶ⴡ ↢ 䊶 㒐 ⴡ ⴕ േ 䋩䈮㑐 ਈ 䈜䉎ᒻ ⾰ 䈱㊂ ⊛ ㆮ વ ሶ
⸃ ᨆ 䉕ⴕ 䈉䈢䉄䇮⃻ ࿷ ㆮ વ 䊙䊷䉦䊷䈱㐿 ⊒ 䈫ਗ ⴕ 䈚䈩
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
㪛㪥㪘 ⢒⒳ᴺ䈮䉋䉎ㆬ ᛮ⢒⒳ 䉕ㅴ䉄䈩䈇䉎䇯䊚䉿䊋䉼䈪䈲
ᣣ ᧄ 䈮䈲࿷ ᧪ ⒳ 䈱䊆䊖䊮䊚䉿䊋䉼䈫㙃 ⱎ ຠ ⒳ 䈪ᄖ ᧪
♖ ሶ 䈱ಓ ⚿ ଻ ሽ ᛛ ⴚ 䈏㐿 ⊒ 䈘䉏䈩䈭䈇䈢䉄䇮䈠䈱ᣇ ᴺ
⒳䈪䈅䉎䉶䉟䊣䉡䊚䉿䊋䉼䈱 㪉 ⒳䈱䊚䉿䊋䉼䈏↢ᕷ䈚䈩䈇䉎䇯
䉕㐿 ⊒ 䈚䇮ಓ ⚿ ଻ ሽ ♖ ሶ 䈮䉋䉎ੱ Ꮏ ᝼ ♖ 䉕ㅴ 䉄䈩䈇䉎䇯
ㄭᐕ ᄖ᧪ ⒳䈮䉋䉎Ꮻൻ 䈮䉋䉍࿷᧪ ⒳䈫੤ 㔀䈮䉋䉎㔀 ⒳ ൻ
ㄭ䈇዁᧪䈱䈉䈤䈮䇮䊚䉿䊋䉼䈱ᣂຠ⒳૞⵾䈱䈢䉄䈱 㪛㪥㪘
䉇ㆮવ ሶᳪ ᨴ䈭䈬䈱❥ᱺ ᐓ ᷤ䈏໧ 㗴䈮䈭䈦䈩䈇䉎䇯䈠䈖
⢒ ⒳ ᴺ 䉕਎ ⇇ 䈮వ 㚟䈔䈩⏕ ┙ 䈚䇮∛ ේ ᕈ ᓸ ↢ ‛ 䈮ኻ 䈜
䈪䉶䉟䊣䉡䊚䉿䊋䉼䈏࿷ ᧪ ⒳ 䈱䊆䊖䊮䊚䉿䊋䉼䈫䈱㑆 䈪❥
䉎ᛶ᛫ᕈ♽⛔䈱ຠ⒳૞⵾䉕⹜䉂䈩䈇䉎䋨౮⌀ 㪈䋩䇯
ᱺ ᐓ ᷤ 䉕⿠ 䈖䈚䈩䈇䉎น ⢻ ᕈ 䈏䈅䉎䈢䉄䇮㊁ ᄖ 䈍䉋䈶ቶ
ౝ ታ 㛎䈮䉋䉍䈠䈱ᬌ ⸽ 䉕ⴕ 䈦䈢䇯ੱ Ꮏ᝼ ♖ ᴺ 䉕↪ 䈇䈩䉶
䉟䊣䉡䊚䉿䊋䉼䈫䊆䊖䊮䊚䉿䊋䉼䈱ᅚ ₺ ⱎ 䈮䈠䉏䈡䉏⇣ ⒳
䈱♖ ሶ 䉕ฃ ♖䈘䈞䈢䈫䈖䉐䇮৻ ㇱ 䈱⢦䈪⊒ ↢ 䈏ㅴ䉖䈪௛
䈐ⱎ 䈏↥ ಴ 䈘䉏䈢䇯䈠䈖䈪䈖䉏䉌䈱୘ ૕ 䈱ᒻ ᘒ ᒻ ⾰ 䈍䉋
䈶ㆮ વ ሶ ဳ ⸃ ᨆ 䉕ⴕ 䈦䈢䈫䈖䉐䇮㔀 ⒳ ୘ ૕ 䈪䈲䈭䈒㓽 ᕈ
න ὑ ↢ ᱺ 䈮䉋䉍↥ ಴ 䈘䉏䈩䈇䉎䈖䈫䈏␜ 䈘䉏䈢䇯䈠䈖䈪㊁
౮⌀䋱䋮䊚䉿䊋䉼䊓䉩䉟䉺䉻䊆䋨Ꮐ䋩䈫 㪛㪥㪘 䊙䊷䉦䊷⢒⒳
ᄖ䈪ណ㓸䈚䈢୘૕䉕૶䈦䈩䇮❥ᱺ᭴ㅧ䉕䊙䉟䉪䊨䉰䊁䊤䉟
ᴺ䈮䉋䉍㐿⊒ਛ䈱䉻䊆ᛶ᛫ᕈ䊚䉿䊋䉼䋨ฝ䋩
䊃 㪛㪥㪘 ⸃ᨆ䈮䉋䉍⺞ᩏ䈚䈢䈫䈖䉐䇮ᄖ᧪⒳䉶䉟䊣䉡䊚䉿䊋䉼
䈫䈱⒳ 㑆 ੤ 㔀 䈏㊁ ↢ 㓸 ࿅ 䈪䉅㜞 㗫 ᐲ 䈪⿠ 䈐䈩䈇䉎䈖䈫䈏
䉁䈢⃻࿷⛘Ṍ䈏ෂᗋ䈘䉏䈩䈇䉎᣸⯻䊶േ‛㘃䈱଻⼔䉕
᣿䉌䈎䈮䈭䈦䈢䈏䇮ቶౝ䈪䈱ታ㛎䈫ห᭽䈮㔀⒳୘૕䈲↥
⋡ ⊛ 䈫䈚䈢଻ ో ㆮ વ ቇ ⊛ ⎇ ⓥ 䉕ⴕ 䈦䈩䈇䉎䇯䊉䉰䉾䊒䊙
಴䈘䉏䈭䈎䈦䈢䇯䊚䉿䊋䉼䈪䈲੤㔀䉕⿠䈖䈜䈫ᅚ₺ⱎ䈱❥
䊦䊊䊅䊋䉼䈲ർ ᶏ ㆏ 䈱ᩮ ቶ 䊶⍮ ᐥ ඨ ፉ 䈮䈱䉂ಽ Ꮣ 䈜䉎
ᱺ ᭽ ᑼ 䈏ㅢ Ᏹ 䈱᦭ ᕈ ↢ ᱺ 䈎䉌㓽 ᕈ න ὑ ↢ ᱺ 䈻䈫ᄌ ൻ
Ꮧ ዋ ⒳ 䈪䈅䉎䇯ㄭ ᐕ 䈱Ⅳ Ⴚ 㐿 ⊒ 䉇᷷ ᥦ ൻ 䈮䉋䉎↢ ᘒ ♽
䈜䉎䈖䈫䉕᣿䉌䈎䈮䈚䈢䇯䈘䉌䈮ᣣᧄฦ࿾䈱䊆䊖䊮䊚䉿䊋䉼
᭴ㅧ 䈱ᄌ ൻ䉇ㄭ ✼ ᄖ᧪ ⒳䈱Ꮻൻ 䈮䉋䉎┹ว䇮⒳㑆 ੤ 㔀䇮
㓸࿅䈎䉌䊚䊃䉮䊮䊄䊥䉝 㪛㪥㪘 䈱Ⴎၮ㈩೉䉕⸃ᨆ䈚䈢䈫䈖䉐䇮
∛ ේ ᕈ ᓸ ↢ ‛ 䈱Ⴧ ട 䈭䈬䈮䉋䉍䇮⃻ ࿷ 䈪䈲䈠䈱୘ ૕ ᢙ
㓸࿅ౝ䊶㑆䈪䈱ㆮવ⊛ᄙ᭽ᐲ䈏ᭂ┵䈮ૐ䈇䈖䈫䈏᣿䉌䈎
䉇↢ ᕷ ࿾ 䈏ᕆ ỗ 䈮ᷫ ዋ 䈚䈩䈇䉎䈢䉄⛘ Ṍ 䈱ෂ 㒾 ᕈ 䈏㜞
䈮䈭䈦䈢䇯䊆䊖䊮䊚䉿䊋䉼䈪ᄖ ᧪⒳䈫䈱❥ ᱺᐓ ᷤ䈮䉋䉎න
70
ὑ ↢ ᱺ ᭽ ᑼ 䈱ᄌ ൻ 䈮䉋䉎ᓇ 㗀 䈏੹ ࿁ 䈲䈛䉄䈩␜ ໂ 䈘䉏
੗ਯ ญ ᢥ⩿ 䇮ጊፒ ๺ ਭ䇮࿯ ↰ᶈ ᴦ䇮㜞 ᯅ⚐ ৻䋺㔵 ᄙ ᏓḨ ේ ๟
䈢䋨ᧄ ⎇ ⓥ䈲ᐔ ᚑ 㪉㪈㪄㪉㪉 ᐕ ᐲ ⑼ ቇ ⎇ ⓥ ⾌ ⵬ ഥ ㊄ ⧯ ᚻ
ㄝ䈍䉋䈶㔵 ᄙ Ꮣጧ䈮䈍䈔䉎䉶䉟䊣䉡䉥䉥䊙䊦䊊䊅䊋䉼
⎇ⓥ 㪙 ⺖㗴⇟ภ 㪉㪈㪎㪎㪇㪇㪉㪈 䈮䉋䉎⎇ⓥഥᚑ䉕ฃ䈔䈢䋩䇯
㩿 㪙㫆㫄㪹㫌㫊 㫋㪼㫉㫉㪼㫊㫋㫉㫀㫊 㪣㪅㪀䈱ଚ ౉ ೋ ⸥㍳ 䇯 ଻ ో ↢ ᘒ ቇ ⎇ ⓥ 䇯ශ
೚ਛ 䇯
䋳䋮㪩㪼㫊㪼㪸㫉㪺㪿 㫇㫉㫆㫁㪼㪺㫋㫊 㪸㫅㪻 㪸㫅㫅㫌㪸㫃 㫉㪼㫇㫆㫉㫋㫊
㪠
㪸㫄
㪻㫉㫀㫍㪼㫅
㫋㫆
㫌㫅㪻㪼㫉㫊㫋㪸㫅㪻
㪿㫆㫎
㪫㪸㫂㪸㪿㪸㫊㪿㫀 㪡㪅㪃 㪤㪸㫉㫋㫀㫅 㪪㪡㪅㪃 㪦㫅㫆 㪤㪅㪃 㪪㪿㫀㫄㫀㫑㫌 㪠㪅㪑 㪤㪸㫃㪼 㫇㫉㫆㪻㫌㪺㫋㫀㫆㫅
㪼㫍㫆㫃㫌㫋㫀㫆㫅㪸㫉㫐
㪹㫐 㫅㫆㫅㪄㫅㪸㫋㪸㫃 㫎㫆㫉㫂㪼㫉㫊 㫀㫅 㫋㪿㪼 㪹㫌㫄㪹㫃㪼㪹㪼㪼㪃 㪙㫆㫄㪹㫌㫊
㫇㫉㫆㪺㪼㫊㫊㪼㫊 㪸㪽㪽㪼㪺㫋 㫊㫆㪺㫀㪸㫃 㫊㫐㫊㫋㪼㫄㫊 㪸㫅㪻 㪿㫆㫎 㫊㫆㪺㫀㪸㫃㫀㫋㫐㪃 㫀㫅
㪻㪼㫌㫋㪼㫉㫆㫅㫐㫄㫌㫊 㩿㪟㫐㫄㪼㫅㫆㫇㫋㪼㫉㪸㪑 㪘㫇㫀㪻㪸㪼㪀㪅 㪡㫆㫌㫉㫅㪸㫃 㫆㪽 㪜㫋㪿㫆㫃㫆㪾㫐 㪅
㫋㫌㫉㫅㪃 㪸㪽㪽㪼㪺㫋㫊 㫋㪿㪼 㪺㫆㫌㫉㫊㪼 㫆㪽 㪼㫍㫆㫃㫌㫋㫀㫆㫅㪅 㪤㫐 㫌㫃㫋㫀㫄㪸㫋㪼 㪾㫆㪸㫃
㪊㪋㪑㪋㪊㪄㪋㪐 㩿㪉㪇㪈㪇㪀
㫀㫊 㫋㫆 㫌㫅㪻㪼㫉㫊㫋㪸㫅㪻 㫋㪿㪼 㫌㫅㪻㪼㫉㫃㫐㫀㫅㪾 㫇㫉㫀㫅㪺㫀㫇㫃㪼㫊 㫋㪿㪸㫋 㪾㫆㫍㪼㫉㫅
㜞ᯅ ⚐ ৻䇮ጊ ፒ๺ ਭ 䇮శ ⇌ 㓷ብ 䇮㪤㪸㫉㫋㫀㫅 㪪㪡㪅㪃 ዊ ㊁ ᱜੱ 䇮ᬞቱ
㫋㪿㪼 㫊㫆㪺㫀㪸㫃 㪼㫍㫆㫃㫌㫋㫀㫆㫅 㫀㫅 㫋㪿㪼 㪸㫅㫀㫄㪸㫃 㫂㫀㫅㪾㪻㫆㫄 㪸㫋 㪸㫃㫃 㫊㪺㪸㫃㪼㫊
㜞䋺ᩮ ቶඨ ፉ䈱䊙䊦䊊䊅䊋䉼⋧䋺․䈮ർ ᶏ㆏䈱Ꮧዋ ⒳䊉䉰䉾
㪽㫉㫆㫄 㫀㫅㫊㪼㪺㫋㫊 㫋㫆㫆 㪿㫌㫄㪸㫅㫊㪅 㪠㫅 㪸㪻㪻㫀㫋㫀㫆㫅㪃 㪠 㪸㫄 㪽㪸㫊㪺㫀㫅㪸㫋㪼㪻 㪹㫐
䊒䊙䊦䊊䊅䊋䉼䈮ኻ䈜䉎ᄖ᧪ ⒳ 䉶䉟䊣䉡䉥䉥䊙䊦䊊䊅䊋䉼䈱
㫋㪿㪼 㪼㪺㫆㫃㫆㪾㫀㪺㪸㫃㪃 㪾㪼㫅㪼㫋㫀㪺 㪸㫅㪻 㪼㫍㫆㫃㫌㫋㫀㫆㫅㪸㫃 㪺㫆㫅㫊㪼㫈㫌㪼㫅㪺㪼㫊 㫆㪽
ᓇ㗀䈮䈧䈇䈩䇯 ଻ ో ↢ ᘒ ቇ ⎇ ⓥ 䇯㪈㪌㪑㪈㪇㪈㪄㪈㪈㪇 㩿㪉㪇㪈㪇㪀
㫊㫆㪺㫀㪸㫃㫀㫋㫐 㫆㫅 㫋㪿㪼 㫃㫀㪽㪼 㪿㫀㫊㫋㫆㫉㫐 㫊㫋㫉㪸㫋㪼㪾㫀㪼㫊 㫆㪽 㫊㫆㪺㫀㪸㫃 㫀㫅㫊㪼㪺㫋㫊㪅
ጊፒ ๺ ਭ䇮㜞 ᯅ⚐ ৻ 䇮ጟ ㇱ ⾆⟤ ሶ䇮’ ㊁ବ ৻ 䇮࿯ ↰ ᶈᴦ䋺䉮
㪫㫆 㪸㪺㪿㫀㪼㫍㪼 㫋㪿㪼㫊㪼 㪸㫀㫄㫊 㫄㫐 㫇㫉㪼㫊㪼㫅㫋 㫉㪼㫊㪼㪸㫉㪺㪿 㪽㫆㪺㫌㫊㪼㫊 㫆㫅
䉝䉲䊅䉧䊋䉼䈮ଢ ਸ਼䈜䉎䊄䊨䊋䉼䊟䊄䊥䉮䊅䉻䊆㘃䈱৻ ⒳
㫌㫅㪻㪼㫉㫊㫋㪸㫅㪻㫀㫅㪾 㫋㪿㪼 㫊㫆㪺㫀㪸㫃 㫊㫋㫉㫌㪺㫋㫌㫉㪼㪃 㫄㪸㫋㫀㫅㪾 㪹㫀㫆㫃㫆㪾㫐 㪸㫅㪻
㪪㫇㪿㪼㫏㫀㪺㫆㫑㪼㫃㪸 㫊㫇㪅䈱ೋ ⸥ ㍳䋮 ᣸ ⳗ 䇯㪈㪊㪑㪈㪉㪍㪄㪈㪉㪏䋨㪉㪇㪈㪇䋩
㫊㫆㪺㫀㪸㫃 㪹㪼㪿㪸㫍㫀㫆㫌㫉 㫆㪽 㫊㫆㪺㫀㪸㫃 㫀㫅㫊㪼㪺㫋㫊 㩿㫊㫆㪺㫀㪸㫃 㪹㪼㪼㫊㪃 㫊㫆㪺㫀㪸㫃
㫎㪸㫊㫇㫊
㪸㫅㪻
㪸㫅㫋㫊㪀㪅
㪹㪼㪿㪸㫍㫀㫆㫌㫉㪸㫃
㪠
㪺㫆㫄㪹㫀㫅㪼
㪼㪺㫆㫃㫆㪾㫐㪃
㫋㪿㪼
㫇㫆㫇㫌㫃㪸㫋㫀㫆㫅
㪻㫀㫊㪺㫀㫇㫃㫀㫅㪼㫊
㪾㪼㫅㪼㫋㫀㪺㫊
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
㫆㪽
㪸㫅㪻
ᧁ ᧛ Ẵ 䇮㜞 ᯅ ⚐ ৻ 䋺㙃 ⱎ 䊙䊆䊠䉝䊦䇯㪍㪇㫇㫇䋨⽷ 䋩ᣣ ᧄ 㙃 ⱎ 䈲䈤
㫊㫆㪺㫀㫆㪄㪾㪼㫅㫆㫄㫀㪺㫊 㫌㫊㫀㫅㪾 㪹㫆㫋㪿 㫋㪿㪼 㪽㫀㪼㫃㪻 㫉㪼㫊㪼㪸㫉㪺㪿㪃 㪛㪥㪘
䉂䈧ද ળ䋨㪉㪇㪈㪇䋩
㪾㪼㫅㫆㫋㫐㫇㫀㫅㪾㪃 㪺㫆㫅㫋㫉㫆㫃 㫆㪽 㪾㪼㫅㪼 㪼㫏㫇㫉㪼㫊㫊㫀㫆㫅 㪹㫐 㫋㪿㪼 㪾㪼㫉㫄㪄㫃㫀㫅㪼
㫋㫉㪸㫅㫊㪽㫆㫉㫄㪸㫋㫀㫆㫅
㪸㫅㪻
㪩㪥㪘㫀
㫀㫅
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
㫄㫆㫃㪼㪺㫌㫃㪸㫉㪄㪹㫀㫆㫃㫆㪾㫀㪺㪸㫃
㜞 ᯅ ⚐ ৻ 䋺䊚䉿䊋䉼䈱❥ ᱺ ↢ ᘒ 䈫ነ ↢ ᕈ 䉻䊆㘃 䈱▤ ℂ 䇯
㫋㪼㪺㪿㫅㫀㫈㫌㪼㫊㪅 㪠 㪸㫄 㪺㫌㫉㫉㪼㫅㫋㫃㫐 㪻㪼㫍㪼㫃㫆㫇㫀㫅㪾 㫋㫉㪸㫅㫊㪾㪼㫅㫀㪺 㫊㫆㪺㫀㪸㫃
੩ㇺᐭ㙃ⱎ⚵ว✚ળ䇮✍ㇱᏒ䇮㪉㪇㪈㪈㪅㪉㪅㪐㪅
㫀㫅㫊㪼㪺㫋㫊 㫌㫊㫀㫅㪾 㪿㫆㫅㪼㫐㪹㪼㪼㪄㪻㪼㫉㫀㫍㪼㪻 㪛㪥㪘 㫍㫀㫉㫌㫊㪼㫊 㪸㫅㪻
㫊㫋㫌㪻㫐㫀㫅㪾 㫋㪿㪼 㫉㪼㫍㪼㫉㫊㪼 㪾㪼㫅㪼㫋㫀㪺 㪽㫌㫅㪺㫋㫀㫆㫅㪸㫃 㪸㫅㪸㫃㫐㫊㫀㫊 㫆㪽
㜞 ᯅ ⚐ ৻ 䋺䉶䉟䊣䉡䊚䉿䊋䉼䈱ㆬ ᛮ ⢒ ⒳ 䈮䉋䉎ᛶ ᛫ ᕈ ຠ
㪾㪼㫅㪼㫊 㪺㫆㫅㪺㪼㫉㫅㫀㫅㪾 㫊㫆㪺㫀㪸㫃㫀㫋㫐 㫀㫅 㫊㫆㪺㫀㪸㫃 㫀㫅㫊㪼㪺㫋 㪹㫐 㪾㪼㫅㪼
⒳ 䈱૞ ᚑ 䇯䉂䈧䈳䈤ද ⼏ ળ 䊶ᣣ ᧄ 㙃 ⱎ ⚵ ว ᧲ ᶏ ࿾ ඙
㫊㫌㫇㫇㫉㪼㫊㫊㫀㫆㫅 㪺㫆㫅㫋㫉㫆㫃 㫋㪼㪺㪿㫅㫀㫈㫌㪼㫊㪅 㪠 㪿㪸㫍㪼 㪻㪼㫍㪼㫃㫆㫇㪼㪻 㪸
✚ળ䇮ฬฎደᏒ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪏㪅
㫄㪼㫋㪿㫆㪻 㪽㫆㫉 㫋㫉㪸㫅㫊㫀㪼㫅㫋 㪼㫏㫇㫉㪼㫊㫊㫀㫆㫅 㫆㪽 㪼㫏㫆㪾㪼㫅㫆㫌㫊 㪾㪼㫅㪼㫊 㫀㫅
㫋㪿㪼 㪿㫆㫅㪼㫐㪹㪼㪼 㪸㫅㪻 㪸㫅㫋 㪼㫄㪹㫉㫐㫆㫊 㫌㫊㫀㫅㪾 㪸 㫍㫀㫉㫌㫊 㫍㪼㪺㫋㫆㫉㪅 㪠㫅
䋷䋮ቇળ⊒⴫
㪸㪻㪻㫀㫋㫀㫆㫅㪃 㪠 㪿㪸㫍㪼 㫊㫌㪺㪺㪼㪼㪻㪼㪻 㫀㫅 㫋㪸㫉㪾㪼㫋 㪾㪼㫅㪼 㫊㫌㫇㫇㫉㪼㫊㫊㫀㫆㫅
ศ ↰ ᔘ ᥍ 䇮Ⴎ ේ 㚅 ❱ 䇮㜞 ᯅ ⚐ ৻ 䋺䊆䊖䊮䊚䉿䊋䉼ᅚ ₺ ⱎ
㪹㫐 㪩㪥㪘㫀 㫀㫅 㪿㫆㫅㪼㫐㪹㪼㪼㫊㪃 㪹㫌㫄㪹㫃㪼㪹㪼㪼㫊 㪸㫅㪻 㪸㫅㫋㫊㪅 㪫㪿㪼
䈫㓶ⱎ䈱੤የ ⴕ േ䋭ⷰ ኤႡ 䈪䈱੤የ䈱⏕ ⹺䋭䇯ᣣ ᧄ
㫊㫌㫇㫇㫉㪼㫊㫊㫀㫆㫅 㪼㪽㪽㪼㪺㫋 㫎㪸㫊 㫊㫌㪽㪽㫀㪺㫀㪼㫅㫋 㫋㫆 㫆㪹㫊㪼㫉㫍㪼 㫋㪿㪼
ᔕ↪േ‛᣸⯻ቇળ╙ 㪌㪌 ࿁ᄢળ䇮⑔ጟᏒ䇮㪉㪇㪈㪈㪅㪊㪅㪉㪉㪅
㫇㪿㪼㫅㫆㫋㫐㫇㪼㪃 㫊㫆 㫀㫋 㫄㪸㫐 㪹㪼 㪸㫇㫇㫃㫀㪺㪸㪹㫃㪼 㫋㫆 㫋㪿㪼 㪽㫌㫅㪺㫋㫀㫆㫅㪸㫃
ᄢᐸା਽䇮㜞ᯅ⚐৻䇮ᅏ↰᣹䋺㪤㫀㪺㫉㫆㫊㪸㫋㪼㫃㫃㫀㫋㪼 㪛㪥㪘 䊙䊷
㪸㫅㪸㫃㫐㫊㫀㫊 㫆㪽 㫅㫆㫋 㫆㫅㫃㫐 㪹㪼㪿㪸㫍㫀㫆㫉 㪾㪼㫅㪼㫊 㪹㫌㫋 㪸㫃㫊㫆 㫆㫋㪿㪼㫉 㪾㪼㫅㪼㫊㪃
䉦䊷䉕↪ 䈇䈢䉮䉥䉟䊛䉲⑼ ᣸ ⯻ 䈮䈍䈔䉎ῳ ♽ ⸃ ᨆ 䇯ᣣ
㫊㫌㪺㪿 㪸㫊 㪼㫏㫇㫉㪼㫊㫊㫀㫆㫅 㪾㪼㫅㪼㫊 㫀㫅 㪸 㪿㫆㫊㫋 㫆㪽 㫍㪸㫉㫀㫆㫌㫊 㫋㫀㫊㫊㫌㪼㫊㪅
ᧄ ᔕ ↪ േ ‛ ᣸ ⯻ ቇ ળ ╙ 㪌㪌 ࿁ ᄢ ળ 䇮 ⑔ ጟ Ꮢ 䇮
㪉㪇㪈㪈㪅㪊㪅㪉㪉㪅
ౝ ᶏ ବ ੺ 䇮቟ ᧲ ⟵ ਫ 䇮㪩㫆㫀㫅㫀㫅㪼㫅 㪟㪅䇮㜞 ᯅ ⚐ ৻ 䇮ᄢ ਠ 㓉
䋴䋮⊒⴫⺰ᢥ
ਯ 䋺 㑆 ធ ⋧ ੕ ૞ ↪ ✂ 䈮䈍䈔 䉎䇸⒳ ᄙ ᭽ ᕈ 䊶 ↢ ᘒ ⊛ ᯏ
㪢㫀㫐㫆㫊㪿㫀㪃 㪫㪅㪃 㪫㪸㫂㪸㪿㪸㫊㪿㫀㪃 㪡㪅㪃 㪰㪸㫄㪸㫅㪸㫂㪸㪃 㪫㪅㪃 㪫㪸㫅㪸㫂㪸㪃 㪢㪅㪃
㪟㪸㫄㪸㫊㪸㫂㫀㪃 㪢㪅㪃 㪫㫊㫌㪺㪿㫀㪻㪸㪃 㪢㪅 㪸㫅㪻 㪫㫊㫌㪹㪸㫂㫀㪃 㪰㪅㪑 㪫㪸㫏㫆㫅㫆㫄㫀㪺
⢻䊶ᒻ⾰ㅴ ൻ䇹䈱䈧䈭䈏䉍䇯ᣣᧄ↢ᘒ ቇળ ╙ 㪌㪏 ࿁ᄢ
㫌㫅㪺㪼㫉㫋㪸㫀㫅㫋㫐 㫆㪽 㪸 㪿㫀㪾㪿㫃㫐 㪼㫅㪻㪸㫅㪾㪼㫉㪼㪻 㪹㫉㫆㫆㫂 㪻㪸㫄㫊㪼㫃㪽㫃㫐㪃 㪚㫆㫇㪼㫉㪸
ળ䇮ᧅᏻᏒ䇮㪉㪇㪈㪈㪅㪊㪅㪈㪇㪅
㜞 ᯅ ⚐ ৻ 䇮੗ ਯ ญ ᢥ ⩿ 䋺㆏ ᧲ 䈮䈍䈔䉎䊉䉰䉾䊒䊙䊦䊊䊅
㫋㫆㫂㫐㫆㪼㫅㫊㫀㫊 㪘㫊㪸㪿㫀㫅㪸㪃 㪈㪐㪋㪏 㩿㪦㪻㫆㫅㪸㫋㪸㪑 㪧㫃㪸㫋㫐㪺㫅㪼㫄㫀㪻㫀㪻㪸㪼㪀㪃
㫉㪼㫍㪼㪸㫃㪼㪻 㪹㫐 㫋㪿㪼 㫄㫀㫋㫆㪺㪿㫆㫅㪻㫉㫀㪸㫃 㪾㪼㫅㪼 㪾㪼㫅㪼㪸㫃㫆㪾㫐㩹㪅
䊋䉼䈫䉶䉟䊣䉡䉥䉥䊙䊦䊊䊅䊋䉼䈱↢ ᕷ ⁁ ᴫ 䈮䈧䈇䈩䇯
㪚 㫆㫅㫊㪼㫉㫍㪸㫋㫀㫆㫅 㪞㪼㫅㪼㫋㫀㪺㫊㪅 㪠㫅 㫇㫉㪼㫊㫊㪅
ᣣ ᧄ ᣸ ⯻ ቇ ળ ㄭ ⇰ ᡰ ㇱ 㪉㪇㪈㪇 ᐕ ᐲ ᄢ ળ 䇮ਃ ↰ Ꮢ 䇮
㪻㫆㫀㪑㪈㪇㪅㪈㪇㪇㪎㪆㫊㪈㪇㪌㪐㪉㪄㪇㪈㪈㪄㪇㪈㪏㪐㪄㫏㪅
㪉㪇㪈㪇㪅㪈㪉㪅㪈㪈㪅
࿯ጊ ᖘ䇮㜞 ᯅ⚐ ৻䇮㊁ ᧛ື ㇢ 䋺䊅䊚䊁䊮䊃䉡䈫䉪䊥䉰䉨䊁䊮
㪰㪸㫄㪸㫊㪸㫂㫀 㪢㪅㪃 㪫㪸㫂㪸㪿㪸㫊㪿㫀 㪡㪅㪃 㪦㫅㫆 㪤㪅㪃 㪫㫊㫌㪺㪿㫀㪻㪸 㪢㪅㪑
㪩㪼㫇㫉㫆㪻㫌㪺㫋㫀㫍㫀㫋㫐 㫆㪽 㪼㪸㫉㫃㫐 㫄㪸㫃㪼㫊 㫆㪽 㫋㪿㪼 㫋㪼㫄㫇㪼㫉㪸㫋㪼 㫇㪸㫇㪼㫉 㫎㪸㫊㫇
䊃䉡䈱㓸 ࿅ ㆮ વ ᭴ ㅧ ⸃ ᨆ 䇯ᣣ ᧄ ᣸ ⯻ ቇ ળ ㄭ ⇰ ᡰ ㇱ
㪧㫆㫃㫀㫊㫋㪼㫊 㫉㫆㫋㪿㫅㪼㫐㫀 㫀㫎㪸㫋㪸㫀㪅 㪜 㫅㫋㫆㫄㫆㫃㫆㪾㫀㪺㪸㫃 㪪㪺㫀㪼㫅㪺㪼㪅 㪠㫅 㫇㫉㪼㫊㫊㪅
㪉㪇㪈㪇 ᐕᐲᄢળ䇮ਃ↰Ꮢ䇮㪉㪇㪈㪇㪅㪈㪉㪅㪈㪈㪅
71
࿯ጊ ᖘ䇮㜞 ᯅ ⚐৻䇮㊁᧛ ື ㇢ 䋺䊙䉟䉪䊨䉰䊁䊤䉟䊃䉕 䈇䈢
䉪䊥䉰䉨䊁䊮䊃䉡䈱㓸 ࿅ ᭴ ㅧ ⸃ ᨆ 䈮㑐 䈜䉎ᬌ ⸛ 䇯ᣣ ᧄ
േ‛ⴕേቇળ╙ 㪉㪐 ࿁ᄢળ䇮㇊ⷓᏒ䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉㪇㪅
䋸䋮䈠䈱ઁ․⸥੐㗄
␠ળᵴ േ䋺䉂䈧䈳䈤ද⼏ળ 㙃 ⱎ䊙䊆䊠䉝䊦૞ᚑᆔຬ䇮
ᐔᚑ 㪉㪉 ᐕᐲ䉴䊷䊌䊷䉰䉟䉣䊮䉴䊊䉟䉴䉪䊷䊦㜞ᄢㅪ៤
⻠ᐳ⻠Ꮷ䇮੩ㇺᐭ㙃ⱎ⚵ว㘈໧
72
ᬀ‛↢ℂቇ⎇ⓥቶ
ಎᢎ᝼ ᧄᯅ ஜ
Laboratory of Plant Physiology
Assoc. Prof. Ken Motohashi, Ph. D
ഥᢎ
᪖Ꮉ ෹ቄ
Assist. Prof. Yuki Okegawa, Ph. D
䋱䋮⎇ⓥ᭎ⷐ
ⷐ䈫䈭䉎ㆶరജ䉕䉴䊃䊨䊙䈎䉌વ㆐䈜䉎ಽሶ䊜䉦䊆䉵䊛䇮䈍
ᬀ‛↢ℂቇಽ㊁䈪䈲䇮ᬀ‛⪲✛૕䈮䈍䈔䉎ᯏ⢻೙ᓮ䈮⥝
䉋䈶䈠䈱↢ℂቇ⊛䈭ᗧ⟵䉕᣿䉌䈎䈮䈜䉎䇯
๧䉕ᜬ䈤䇮ᄢ䈐䈭䊁䊷䊙⸳ቯ䉕ⴕ䈦䈩䈇䉎䇯
ᬀ‛䈱ᄢ䈐䈭․ᓽ䈱䈵䈫䈧䈮శวᚑ䈏䈅䉎䇯㜞╬ᬀ‛䈱
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
శวᚑ䈲⪲✛૕䈫๭䈳䉏䉎ⶄᢙ䈱⤑♽䈎䉌䈭䉎ᒻᘒ⊛䈮䉅
䋱䋩⪲✛૕䉴䊃䊨䊙䈮䈍䈔䉎䉼䉥䊧䊄䉨䉲䊮䊐䉜䊚䊥䊷䉺䊮䊌䉪⾰
ⶄ㔀䈭䉥䊦䉧䊈䊤䈪ㅴⴕ䈚䇮㪚㪦㪉 ࿕ቯ䈏ⴕ䉒䉏䈩䈇䉎䇯ᬀ‛
䈱ᯏ⢻೙ᓮᯏ᭴䈱⸃᣿
䈮䈫䈦䈩శวᚑ䈲㕖Ᏹ䈮㊀ⷐ䈭ᯏ⢻䈪䈅䉎䈢䉄䇮᭽䇱䈭೙
㜞╬ᬀ‛䈱䊝䊂䊦ᬀ‛䈪䈅䉎 㪘㫉㪸㪹㫀㪻㫆㫇㫊㫀㫊 㫋㪿㪸㫃㫀㪸㫅㪸 䈪䈲䇮䋵
ᓮᯏ᭴䉕஻䈋䈩䈇䉎䇯⑳䈢䈤䈲䈖䈱ਛ䈪䉅㜞╬ᬀ‛⪲✛૕
䉫䊦䊷䊒 㪈㪇 ⒳㘃䈮䈍䉋䈹䉼䉥䊧䊄䉨䉲䊮䉝䉟䉸䊐䉤䊷䊛䈱ሽ
䈮䈍䈔䉎䊧䊄䉾䉪䉴೙ᓮᯏ᭴䈮䈧䈇䈩䇮䈠䈱↢ℂᯏ⢻䈫ಽሶ
࿷䈏᣿䉌䈎䈫䈭䈦䈩䈇䉎䇯䈖䉏䉌ᄙ䈒䈱䉝䉟䉸䊐䉤䊷䊛䈱ᯏ⢻
䊜䉦䊆䉵䊛䈱⸃᣿䉕⋡ᜰ䈚䇮⎇ⓥ䉕ⴕ䈦䈩䈇䉎䇯
ಽᜂ䈏䇮⪲✛૕ౝ䈪䈱ฦ⒳⚻〝䈻䈱ㆶరജଏ⛎䈱૶䈇ಽ
䈔䉕น⢻䈮䈚䈩䈇䉎䈫⠨䈋䈢䇯⃻࿷䇮㪈㪇 ⒳䈱䉝䉟䉸䊐䉤䊷䊛䈱
⪲✛૕䈱䊧䊄䉾䉪䉴೙ᓮᯏ᭴䈪䈲䇮䉼䉥䊧䊄䉨䉲䊮䈫๭䈳䉏
䉎䉺䊮䊌䉪⾰䈏䈠䈱೙ᓮ䈮ਛᔃ⊛䈭ᓎഀ䉕ᨐ䈢䈜䇯ᧄ⎇ⓥ
ᓎഀಽᜂ䉕᣿䉌䈎䈮䈜䉎䈢䉄䈱⎇ⓥ䉕㐿ᆎ䈚䈢䇯
ಽ㊁䈪䈲䇮䉼䉥䊧䊄䉨䉲䊮䊐䉜䊚䊥䊷䉺䊮䊌䉪⾰䉕ਛᔃ䈫䈚䈩䇮
䋲䋩⪲✛૕䉼䊤䉮䉟䊄⤑䉕੺䈚䈢ㆶరജવ㆐ᯏ᭴䈱⸃᣿
ㆶరജ䈱⫾Ⓧ䈱䈭䈇䉼䊤䉮䉟䊄ౝ⣧䈮ㆶరജ䉕ଏ⛎䈜䉎䉲
એਅ䈱ౕ૕⊛䈭⎇ⓥ㗄⋡䉕⸳ቯ䈚䇮⎇ⓥ䉕ㅴ䉄䈩䈇䉎䇯
䋱䋩⪲✛૕䉴䊃䊨䊙䈮䈍䈔䉎䉼䉥䊧䊄䉨䉲䊮䊐䉜䊚䊥䊷䉺䊮䊌䉪⾰
䉴䊁䊛䈱ሽ࿷䈏␜ໂ䈘䉏䈩䈇䉎䇯䈠䈖䈪䇮㪘㫉㪸㪹㫀㪻㫆㫇㫊㫀㫊 䈮ሽ࿷
䈱ᯏ⢻೙ᓮᯏ᭴䈱⸃᣿
䈜䉎୥⵬࿃ሶ 㪚㪺㪻㪘 䈮䈧䈇䈩䇮⪲✛૕ౝ䈪䈱ዪ࿷䇮䈍䉋䈶䉴
⪲✛૕䉴䊃䊨䊙䈪䈲䇮శวᚑ䈱ⴕ䉒䉏䉎ᤤ䈫ᄛ䈫䈪ᄢ䈐䈒
䊃䊨䊙䈎䉌䉼䊤䉮䉟䊄ౝ⣧஥䈻䈱ㆶరജવ㆐⢻ജ䉕↢ൻቇ⊛
䊧䊄䉾䉪䉴⁁ᘒ䈏ᄌൻ䈜䉎䇯శวᚑ䈱ⴕ䉒䉏䉎ᤤ䈮䈲䇮శ
ᚻᴺ䉕↪䈇䈩ᬌ⸛䈚䈢䇯ౕ૕⊛䈮䈲䇮න㔌䉼䊤䉮䉟䊄⤑䉕↪
วᚑ㔚ሶવ㆐⚻〝䈎䉌↢䈛䉎㔚ሶ䈪 㪥㪘㪛㪧㪟 䉕↥↢䈜䉎䈢
䈇䈢 㫀㫅 㫍㫀㫋㫉㫆 ታ㛎♽䈪⎇ⓥ䉕ⴕ䈦䈢䇯䈠䈱⚿ᨐ䈫䈚䈩䇮䉼䊤䉮
䉄ㆶర⊛䈭⁁ᘒ䈮䈅䉎䇯ᤤ䈱ㆶర⊛⁁ᘒ䈱䈫䈐䈮⪲✛૕䉴
䉟䊄ౝ⣧䈱䉼䉥䊧䊄䉨䉲䊮᭽䉺䊮䊌䉪⾰䈏ㆶర䈘䉏䉎᧦ઙ䈫ห
䊃䊨䊙䈮ዪ࿷䈜䉎䉼䉥䊧䊄䉨䉲䊮䈲䇮䉦䊦䊎䊮䉰䉟䉪䊦䈭䈬
䈛᧦ઙ䈪䇮䉼䊤䉮䉟䊄⤑䉺䊮䊌䉪⾰ 㪚㪺㪻㪘 䈲ㆶర䈘䉏䉎䈖䈫䈏
䈱㉂⚛䉕ㆶర䈚ᵴᕈൻ䈜䉎䇮䊕䊦䉥䉨䉲䊧䊄䉨䉲䊮䉕䈲䈛
䉒䈎䈦䈢䇯䈖䈱䈖䈫䈎䉌䇮䉼䊤䉮䉟䊄ౝ⣧䈮ዪ࿷䈜䉎䉼䉥䊧䊄䉨
䉄䈫䈜䉎ᵴᕈ㉄⚛⒳ᶖ෰♽㉂⚛䈻෻ᔕ䈮ᔅⷐ䈭㔚ሶ䉕ଏ
䉲䊮᭽䉺䊮䊌䉪⾰䈫䉼䊤䉮䉟䊄⤑䉺䊮䊌䉪⾰ 㪚㪺㪻㪘 䈏䇮ห৻⚻
⛎䈜䉎䇮䉼䊤䉮䉟䊄ౝ⣧䈻䈱ㆶరജଏ⛎⚻〝䈻㔚ሶ䉕ᷰ䈜䇮
〝਄䈪ᯏ⢻䈜䉎䈖䈫䈏⠨䈋䉌䉏䉎䇯
䈭䈬䈘䉁䈙䉁䈭႐㕙䈮䈍䈇䈩ᯏ⢻䈚䈩䈇䉎䇯䈖䉏䉌䈱᭴ㅧ䈱
⇣䈭䉎ᄙ䈒䈱ᮡ⊛䉺䊮䊌䉪⾰䉕䈬䈱䉋䈉䈮⷗ಽ䈔䇮⪲✛૕ౝ
㧟㧚Research projects and annual reports
䈪ᷙੂ䈜䉎䈖䈫䈭䈒䇮⋧ᚻ䉺䊮䊌䉪⾰䉕⹺⼂䈚䇮ᔅⷐ䈭ㆶర
We have been setting our research theme on the functional
ജ䉕ଏ⛎䈚䈩䈇䉎䈱䈎᣿䉌䈎䈮䈜䉎䇯
regulation of higher plant chloroplast.
䋲䋩⪲✛૕䉼䊤䉮䉟䊄⤑䉕੺䈚䈢ㆶరജવ㆐ᯏ᭴䈱⸃᣿
Plants have photosynthetic ability to convert carbon
⪲✛૕䈲䇮ᄖ൮⤑䇮ౝ൮⤑䈫䈇䈉ੑᨎ䈱⤑䈮ട䈋䈩䇮䉼
dioxide into organic compounds, especially sugars, as unique
䊤䉮䉟䊄⤑䉕ᜬ䈦䈩䈍䉍䇮ᒻᘒ਄䉅ⶄ㔀䈭䉥䊦䉧䊈䊤䈪䈅䉎䇯
feature. The photosynthesis in higher plants occurs in
ᤤ䈫ᄛ䈫䈪ᄢ䈐䈒䊧䊄䉾䉪䉴ⅣႺ䈏ᄌൻ䈜䉎⪲✛૕䉴䊃䊨䊙
chloroplasts which are comprised of multilayered membranes,
↹ಽ䈫䈲ኻᾖ⊛䈮䇮䉼䊤䉮䉟䊄⤑䉕㓒䈩䈢䉼䊤䉮䉟䊄䈱ౝ஥
and pushes forward carbon dioxide fixation. Chloroplasts have
䋨䉼䊤䉮䉟䊄ౝ⣧䋩䈱䊧䊄䉾䉪䉴⁁ᘒᄌൻ䈲䈾䈫䉖䈬⍮䉌䉏䈩
various regulation mechanisms of photosynthesis that is an
䈇䈭䈇䇯⑳䈢䈤䈲䇮䉼䊤䉮䉟䊄ౝ⣧䈮䉅䉼䉥䊧䊄䉨䉲䊮᭽䉺䊮
important function for plants. Particularly, we focus on redox
䊌䉪⾰䈏ዪ࿷䈜䉎䈖䈫䉕⸽᣿䈚䇮䈖䉏䈏䉼䊤䉮䉟䊄ౝ⣧䈪ᯏ
regulation in modulation system of higher plant chloroplast,
⢻䈚䈩䈇䉎䈖䈫䉅᣿䉌䈎䈮䈚䈢䇯ㆶరജ䈱⫾Ⓧ䈱䈭䈇䉼䊤䉮
and have major two research projects as follows:
䉟䊄ౝ⣧䈪䇮䉼䉥䊧䊄䉨䉲䊮䈱䉋䈉䈭㉄ൻㆶర䉺䊮䊌䉪⾰䈏
1: Functional analysis of stromal thioredoxin family proteins
ᯏ⢻䈜䉎䈢䉄䈮䈲ㆶరജ䈱ଏ⛎䈏ᔅⷐ䈪䈅䉎䇯ౝ⣧䈪ᔅ
in redox regulation system.
73
The redox state of higher plant chloroplasts fluctuates widely
㧠㧚⊒⴫⺰ᢥ
under light and dark conditions. In the light, reducing
K. Motohashi and T. Hisabori: CcdA is a thylakoid membrane protein
equivalents are produced from photosystem and used to
required for the transfer of reducing equivalents from stroma to
produce the reductant NADPH. NADPH is further used for the
thylakoid lumen in the higher plant chloroplast.
reduction of CO2 in the chloroplast stroma. A portion of the
Signal. 13: 1169-1176 (2010)
reducing equivalents is also utilized for reduction of stroma
Antioxid. Redox
Y. Okegawa, Y. Kobayashi and T. Shikanai: Physiological links
thioredoxins. Thioredoxins transfer reducing equivalents to
among alternative electron transport pathways reducing and oxidizing
regulation of thiol-enzymes, scavenging for reactive oxygen
plastoquinone in Arabidopsis. Plant J. 63: 458–468 (2010)
species, or reducing equivalents transfer system across
thylakoid membranes. How stroma thioredoxins recognize
H.S. Jung, Y. Okegawa, P.M. Shih, E. Kellogg, S.E. Abdel-Ghany, M.
various target proteins in stroma, without being confused?
Pilon, K. Sjölander, T. Shikanai and K.K. Niyogi: Arabidopsis
Arabidopsis
thaliana
have
five
groups of
stromal
thaliana PGR7 encodes a conserved chloroplast protein that is
thioredoxins. We made specific antibodies for 5 groups of
stromal thioredoxins, and have started the research project to
necessary for efficient photosynthetic electron transport. PLoS ONE
clarify the role of stromal thioredoxins.
5(7): e11688 (2010)
2: Physiological role and molecular mechanism of reducing
equivalent transfer system on thylakoid membranes in
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
chloroplasts.
ᧄᯅஜ䋺㜞╬ᬀ‛⪲✛૕䈮䈍䈔䉎䊧䊄䉾䉪䉴೙ᓮ䌾䉼䊤䉮䉟䊄ౝ⣧䈮
In contrast to redox state control in stroma side, knowledge
䈍䈔䉎䊧䊄䉾䉪䉴⺞▵ᯏ᭴䈮䈧䈇䈩䌾䇯శวᚑ⎇ⓥ 㪉㪇 Ꮞ 㪋㪄㪏
pertaining to redox regulation on the lumenal side of the
䋨㪉㪇㪈㪇䋩
thylakoid membrane remains very limited. We previously
demonstrated that a thioredoxin-like protein is located in the
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
thylakoid lumen and can function as a reducing equivalent
ᧄᯅஜ䋺㜞╬ᬀ‛⪲✛૕䈱䊧䊄䉾䉪䉴೙ᓮᯏ᭴㪅 ᬀ‛䊋䉟䊁䉪⺣⹤
carrier to protein targets located in the lumen. In order to
ળ․೎䉶䊚䊅䊷䇮੩ㇺᏒ䇮㪉㪇㪈㪇㪅㪎㪅㪈㪊
function as a carrier of reducing equivalents in the thylakoid
lumen, a thioredoxin-like protein in thylakoid lumen side in
䋷䋮ቇળ⊒⴫
turn must receive reducing equivalents. These results suggest
᪖Ꮉ෹ቄ䇮㣮ౝ೑ᴦ䋺శൻቇ♽ 㪠 䉰䉟䉪䊥䉾䉪㔚ሶવ㆐䈫 㪧㪫㪦㪯 䈱ⶄ
that higher plant chloroplasts possess a reducing equivalent
㔀䈭⋧੕૞↪䇮╙ 㪌㪈 ࿁ᣣᧄᬀ‛↢ℂቇળ䇮ᾢᧄᏒ䇮
transfer system which operates across the thylakoid membrane
㪉㪇㪈㪇㪅㪊㪅㪈㪏㪄㪉㪉
from the stroma to the lumenal side. We analyze the
᧖ᧄ๺ᒾ䇮᪖Ꮉ෹ቄ䇮㪫㪼㫉㫉㫀 㪘㪅 㪣㫆㫅㪾䇮㪪㪸㫉㪸㪿 㪝㪅 㪚㫆㫍㪼㫉㫋䇮ਭၳᔀ䇮㣮
physiological role and molecular mechanism of the reducing
ౝ೑ᴦ䋺㪧㪞㪩㪌 䈱䋱䉝䊚䊉㉄⟎឵䈲 㪧㪪㪠 䉰䉟䉪䊥䉾䉪㔚ሶવ㆐䈱䉝䊮
equivalent transfer system across the membrane.
䉼䊙䉟䉲䊮 㪘 ⠴ᕈ䉕ઃਈ䈜䉎䇮╙ 㪌㪈 ࿁ᣣᧄᬀ‛↢ℂቇળ䇮ᾢᧄ
CcdA, which is a candidate for this system, was examined
Ꮢ䇮㪉㪇㪈㪇㪅㪊㪅㪈㪏㪄㪉㪉
a contribution for reducing equivalent transfer assay in vitro,
᪖Ꮉ෹ቄ䇮㣮ౝ೑ᴦ䋺㪧㪫㪦㪯 䈫శൻቇ♽ 㪠 䉰䉟䉪䊥䉾䉪㔚ሶવ㆐䇮╙ 㪈
using isolated thylakoid membranes. If both a lumenal
࿁ᣣᧄశวᚑቇળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪍㪅㪋㪄㪌
thioredoxin-like protein and CcdA protein function in the
ᧄᯅஜ䇮ਭၳᔀ䋺⪲✛૕䉴䊃䊨䊙䉼䉥䊧䊄䉨䉲䊮䈮䉋䉎䉼䊤䉮䉟䊄⤑䉕
same reducing equivalent transfer pathway, reduction of a
੺䈚䈢ㆶరജવ㆐ᯏ᭴䇯╙ 㪈 ࿁ᣣᧄశวᚑቇળ౏㐿䉲䊮䊘䉳䉡䊛䇮
disulfide bond in the CcdA molecule should be promoted by
⋡㤥඙䇮㪉㪇㪈㪇㪅㪍㪅㪋㪄㪌
stromal thioredoxin. As expected, CcdA could be reduced, in
K. Sugimoto, Y. Okegawa, T.A. Long, A.F. Covert, T. Hisabori and T.
which a lumenal thioredoxin-like protein was reduced.
Shikanai㧦A mutation in PGR5 proteins confers antimycin A
resistance in PSI cyclic electron transport, 15th International
Congress of Photosynthesis, Beijing (China), 2010. 8. 22-27
ศ↰໪੫䇮ᧄᯅஜ䇮ਭၳᔀ䋺䊚䊃䉮䊮䊄䊥䉝䈱䉼䉥䊧䊄䉨䉲䊮ᮡ⊛䉺䊮
䊌䉪⾰䈱ត⚝䇮ᣣᧄᬀ‛ቇળ╙ 㪎㪋 ࿁ᄢળ䇮ᤐᣣ੗Ꮢ䇮
㪉㪇㪈㪇㪅㪐㪅㪐㪄㪈㪈
K. Motohashi and T. Hisabori㧦CcdA is a thylakoid membrane protein
74
for the transfer of reducing equivalents from stroma to thylakoid
lumen in the higher plant chloroplast. The 3rd International
Symposium on Protein Community‫ޔ‬Nara(Japan)‫ޔ‬2010.9.13-16
K. Motohashi and T. Hisabori㧦CcdA is a thylakoid membrane protein
for the transfer of reducing equivalents across the thylakoid
membrane in the higher plant chloroplast. ╙ 㪊㪊 ࿁ᣣᧄಽሶ↢‛
ቇળᐕળ䇮╙ 㪏㪊 ࿁ᣣᧄ↢ൻቇળᄢળวหᐕળ䇮␹ᚭᏒ䇮
㪉㪇㪈㪇㪅㪈㪉㪅㪎㪄㪈㪇
ศ↰໪੫䇮㊁ญ⥶䇮ᧄᯅஜ䇮ਭၳᔀ䋺䊒䊨䊁䉥䊚䉪䉴䉕↪䈇䈢䊚䊃䉮䊮
䊄䊥䉝䈱䉼䉥䊧䊄䉨䉲䊮ᮡ⊛䉺䊮䊌䉪⾰䈱ត⚝䇯╙ 㪌㪉 ࿁ᣣᧄᬀ‛
↢ℂቇળᐕળ䇮઄บᏒ䇮㪉㪇㪈㪈㪅㪊㪅㪉㪇㪄㪉㪉
ᧄᯅஜ䇮ਭၳᔀ䋺⪲✛૕䉼䊤䉮䉟䊄⤑ዪ࿷䉺䊮䊌䉪⾰ 㪚㪺㪻㪘 䈱ㆶరജ
વ㆐ᯏ᭴䇯╙ 㪌㪉 ࿁ᣣᧄᬀ‛↢ℂቇળᐕળ䇮઄บᏒ䇮
㪉㪇㪈㪈㪅㪊㪅㪉㪇㪄㪉㪉
䋸䋮䈠䈱ઁ․⸥੐㗄
䋱䋮ᄖㇱ⾗㊄
⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ၮ⋚⎇ⓥ 㪚
⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ․ቯ㗔ၞ⎇ⓥ
75
ኅ⇓ⴡ↢ቇ⎇ⓥቶ
ᢎ᝼
Laboratory of Animal Hygiene
Prof. Koichi Otsuki,Ph.D
1 ෸߮㧞㧚⎇ⓥ᭎ⷐ෸߮ᧄᐕᐲߩ⎇ⓥᚑᨐ
ᄢᮎ ౏৻
ߴߊ⎇ⓥࠍㅴዷߒߡ޿ࠆ‫ޕ‬
㠽㘃ߩᗵᨴᕈ∔∛ࠍᒁ߈⿠ߎߔ∛ේ૕ߦߪ᭽‫ߥޘ‬
㧝㧕
⷏ᣣᧄߦ㘧᧪ߒߡ⿧౻ߒߡ޿ࠆᷰࠅ㠽ߩ㠽ࠗࡦࡈ࡞
߽ߩ߇޽ࠆ‫ޔ⩶⌀ޔ⩶⚦ޔࠬ࡞ࠗ࠙ޔ߫߃ߣߚޕ‬ነ↢
ࠛࡦࠩ࠙ࠗ࡞ࠬ଻᦭⁁ᴫߩ⺞ᩏ
⯻ߥߤߢ޽ࠆ‫ޕ‬㠽㘃ߩ࠙ࠗ࡞ࠬᕈ∔∛ߩ߶ߣࠎߤߪ‫ޔ‬
㊁↢േ‛ᗵᨴ∝ቇಽ㊁ߩ㜞᪀ᒄ᮸ಎᢎ᝼‫ޔ‬
ᧄቇ㠽ࠗ
㠽㘃ߦ㒢ቯߒߡ޿ࠆ‫଀ޔߒ߆ߒޕ‬ᄖ߽޽ࠆ‫ޔ߫߃ߣߚޕ‬
ࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮ࡦ࠲࡯ᚲዻߩᏱ࿡⦟ᄥ⎇ⓥຬ‫ޔ‬
⮳
㠽ࠗࡦࡈ࡞ࠛࡦࠩߩࠃ߁ߦ‫∛ޔ‬ේ૕ߩ㠽ࠗࡦࡈ࡞ࠛࡦ
↰ᶻ੍᳁ࠄߣ౒ห⎇ⓥࠍታᣉߒߡ޿ࠆ‫ޕ‬
⃻࿷ߩߣߎࠈ‫ޔ‬
ࠩ࠙ࠗ࡞ࠬߪࡅ࠻ࠍ฽߻߶੃㘃ߦᗵᨴߒߡ⥃ᐥ∝⁁ࠍ
⺞ᩏࠍℚℛḓ᧲ጯߦ⊛ࠍ⛉ߞߡⴕߥߞߡ޿ࠆ‫ޕ‬
߅߅߻
⊒⃻ߔࠆ‫ੱޔߜࠊߥߔޕ‬₞౒ㅢᗵᨴ∝ߢ޽ࠆ‫ޕ‬
ߨ㧝㧝᦬߆ࠄ㧠᦬߹ߢᲤ᦬㧞࿁⒟ᐲណ᧚ࠍⴕߥߞߡ
ߣߎࠈߢ‫ޔ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩߣߪࠗࡦࡈ࡞ࠛࡦࠩ࠙
߈ߚ߇‫ޔ‬2010 ᐕ 11 ᦬એ㒠ฦ࿾ߢ㠽ࠗࡦࡈ࡞ࠛࡦࠩ߇
ࠗ࡞ࠬ߇ᗵᨴߔࠆߎߣߦࠃࠅᒁ߈⿠ߎߐࠇࠆኅ߈ࠎ㘃
ᄙ⊒ߒߚߚ߼Ფㅳណ᧚ࠍታᣉߒߚ‫ޔߚ߹ޕ‬౻ဳߩᷰࠅ
ࠍ฽߻㠽㘃ߩ∔∛ߩ✚⒓ߢ޽ࠆ‫∛ޕ‬൓߆ࠄᧄ∛ߪ㧞ဳ
㠽ߩᄙߊ߇⿧౻ߔࠆፉᩮ⋵቟᧪Ꮢ㇠ᄖߩ⢻⟵ᐔ㊁ߦ
ߦᄢ೎ߐࠇࠆ‫ߡߟ߆ޔߕ߹ޕ‬ኅ߈ࠎࡍࠬ࠻ߣ๭߫ࠇߚ
߅޿ߡ߽‫ࠍ♮ߩ࡚࠙࠴ࠢࡂࠦޔ‬ណ᧚ߒߡ޿ࠆ‫ޕ‬
㜞∛ේᕈ㠽ࠗࡦࡈ࡞ࠛࡦࠩߢ޽ࠆ‫ࠍ࡝࠻ࡢ࠾ޕ‬฽߻ᄙ
㧞㧕ࡌ࠻࠽ࡓർㇱࠍᳪᨴߒߡ޿ࠆ㠽ࠗࡦࡈ࡞ࠛࡦࠩ࠙
ߊߩ㠽㘃ߦỗὓߥ⥃ᐥ∝⁁ࠍ઻޿‫ޔ‬㕖Ᏹߦ㜞޿ᱫ੢₸
ࠗ࡞ࠬߩ↢ᘒ⺞ᩏ
ࠍ߽ߚࠄߔ↟ᕆᕈߩ∔∛ߢ޽ࠆ‫ޕ‬ኅ⇓વᨴ∛੍㒐ᴺߢ
ᧄ⎇ⓥߪ‫ޔ‬
㠽ขᄢቇߦ࿷☋ߒߡ޿ߚᤨ߆ࠄᆎ߹ߞߚ‫ޔ‬
ߪᴺቯવᨴ∛ߦᜰቯߐࠇߡ޿ࠆ‫৻߁߽ޕ‬ᣇߪ‫ޔ‬ᱫ੢₸
ᢥ⑼⋭ߩᣂ⥝ౣ⥝ᗵᨴ∝ߦଥࠆᶏᄖ⎇ⓥ᜚ὐᒻᚑࡊࡠ
ߩૐ޿‫⥃ޔ‬ᐥ∝⁁߽㜞∛ේᕈ㠽ࠗࡦࡈ࡞ࠛࡦࠩߦᲧセ
ࠫࠚࠢ࠻ߩ৻Ⅳߣߒߡ‫ޔ‬2005 ᐕᐲ߆ࠄ⛮⛯ߒߡታᣉߒ
ߔࠆߣ‫ߦ߆ࠆߪޔ‬シᓸߥ‫ޔ‬ᄙᓀߥ∛ᕈࠍ␜ߔ∔∛ߢ޽
ߡ޿ࠆ߽ߩߢ޽ࠆ‫⎇ᧄޕ‬ⓥߪ‫ޔ‬㜞᪀ᒄ᮸ಎᢎ᝼ߩઁ‫ޔ‬
ࠆ‫ߦࠬ࡞ࠗ࠙ޕ‬ᗵᨴߒߡ߽‫ߪ࡝࠻ࡢ࠾ޔ‬᣿ࠄ߆ߥ⥃ᐥ
ቇⴚ੤ᵹදቯࠍ⚿ࠎߢ޿ࠆ㠽ขᄢቇㄘቇㇱ㒝ዻ㠽↱᧪
∝⁁ࠍ␜ߐߕ‫ޔ‬ਇ㗼ᕈᗵᨴߦ⚳ᆎߔࠆ႐ว߽ዋߥߊߥ
ੱ₞౒ㅢᗵᨴ∝∉ቇ⎇ⓥ࠮ࡦ࠲࡯ߩદ⮮ᄈ໪ᢎ᝼‫ޔ‬ጊ
޿‫ߪ∛ᧄޕ‬ኅ⇓વᨴ∛੍㒐ᴺߢߪዯ಴વᨴ∛ߦᜰቯߐ
ญ೰჻ᢎ᝼‫᧛ޔ‬ἑᢅਯᢎ᝼‫ޔ‬દ⮮໪ผಎᢎ᝼‫็╍ޔ‬㆐
ࠇߡ޿ࠆ‫ޕ‬
ผ⻠Ꮷ‫ޔ‬የፒᒄ৻ഥᢎߘߩઁ਻Ꮊᄢቇකቇㇱታ㛎േ‛
1980 ᐕ㗃߹ߢ‫ޔߪࠩࡦࠛ࡞ࡈࡦࠗޔ‬㠽㘃ࠍ㒰ߌ߫‫ޔ‬
ቇᢎቶߩዊ㊁ᖝ㇢ᢎ᝼‫ޔ‬㐳ፒᄢቇᾲᏪකቇ⎇ⓥᚲ᫪↰
ੱ‫৻ߥ߁ࠃߩࡑ࠙ޔ࠲ࡉߪ޿ࠆ޽ޔ‬ㇱߩ߶੃㘃ߩߺ߇
౏৻ᢎ᝼‫ޔ‬
ጊၔ ືᢎ᝼ߣදജߒߥ߇ࠄታᣉߒߡ޿ࠆ‫ޕ‬
ᗵᨴߔࠆ∔∛ߢ޽ࠆߣ⠨߃ࠄࠇߡ޿ߚ߇‫⃻ޔ‬࿷ߢߪ‫ޔ‬
ߎࠇ߹ߢߩ⎇ⓥ߆ࠄ‫ߪࡓ࠽࠻ࡌޔ‬ᣣᧄߣ⇣ߥࠅ‫ޔ‬ኅ߈
᭽‫ߥޘ‬⒳㘃ߩ߶੃㘃‫ߩ⑼ࠦࡀ߫߃ߣߚޔ‬േ‛‫߽࠿ࠗޔ‬
ࠎ↥ᬺ⇇ߦ߅޿ߡᏱߦ㠽ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬଚ౉
⟕ᖚߔࠆ߇‫ߩ╬ࠪ࡜ࠩࠕޔ‬ᶏ₞㘃‫ߪ޿ࠆ޽ޔ࡜ࠫࠢޔ‬
ߩෂ㒾ߦߐࠄߐࠇߡ߅ࠅ‫ޔ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩᠡṌ߹ߢ
ࡈࠚ࡟࠶࠻‫ߩ╬ࠢࡦࡒޔ‬ർᣇ♽ߩ⡺㘩ູ੃㘃ߥߤ߽‫ޔ‬
㐳ᦼ㑆ᔅⷐߢ޽ࠆߎߣ߇᣿ࠄ߆ߦߥߞߡ߈ߚ‫ޕ‬ᚑᨐߩ
ᧄ࠙ࠗ࡞ࠬߦᗵᨴߒߡ⊒∛ߔࠆߎߣ߇ಽߞߡ޿ࠆ‫৻ޕ‬
৻ㇱߪኾ㐷㔀⹹ߦ㗅ᰴ౏⴫ߒߡ޿ࠆ‫᧲ޔߒ߆ߒޕ‬ධࠕ
ᣇ‫ޔ‬㜞∛ේᕈ㠽ࠗࡦࡈ࡞ࠛࡦࠩߩ∛ේ૕߇㧭ဳࠗࡦࡈ
ࠫࠕߢା㗬ߢ߈ࠆ࠺࡯࠲ࠍ಴ߔߩߪ࿎㔍ᕈ߇㜞޿‫ޕ‬ᔋ
࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߢ޽ࠆߎߣ߇ 1955 ᐕߦ್᣿ߒߡએ
⠴ᒝ޿࿾㆏ߥദജ߇ⷐ᳞ߐࠇࠆ‫੹ޕ‬ᓟ߽ᧄ⎇ⓥߪ⛮⛯
᧪‫࡝࠻ࡢ࠾ޔ‬એᄖߩᄖ⷗਄ஜᐽߥฦ⒳㠽㘃߇‫ߑ߹ߐޔ‬
ߐࠇࠆ੍ቯߢ޽ࠆ‫ޕ‬
߹ߥ⒳㘃ߩࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬࠍ‫ߩߘޔ‬૕ౝߦ࠾
㧟㧕
ડᬺ߇㐿⊒ߒߚ᛫ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬ⚛᧚ߩ⹏
ࡘ㧙ࠞ࠶ࠬ࡞∛(ND)࠙ࠗ࡞ࠬࠍ฽߻ฦ⒳ࡄ࡜ࡒࠢ࠰
ଔ
࠙ࠗ࡞ࠬห᭽‫߇ߣߎࠆ޿ߡߒ᦭଻ޔ‬⍮ࠄࠇࠆࠃ߁ߦߥ
㜞᪀ಎᢎ᝼‫ᧄޔ‬ቇ㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮ࡦ࠲࡯ᚲ
ߞߚ‫⃻ޕ‬࿷‫ޔ‬H5N1 ੝ဳ㠽ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬ߇
ዻߩ੗਄ℰᳯਥછ⎇ⓥຬ‫ޔ‬Ᏹ࿡⦟ᄥ⎇ⓥຬ‫↰⮳ޔ‬ᶻ੍
࡙࡯࡜ࠪࠕᄢ㒽‫ࠞ࡝ࡈࠕޔ‬ᄢ㒽ߦᐢߊಽᏓߒߡ⁴ᆭࠍ
․ቯ⎇ⓥຬࠄߣ౒ห⎇ⓥࠍታᣉߒߡ޿ࠆ‫ޕ‬ડᬺ߆ࠄឭ
ᝄࠆߞߡ޿ࠆ߇‫ޔ‬㠽㘃‫ߦ․ޔ‬᳓㠽߇଻᦭ߒߡ޿ࠆᄢㇱ
ଏߐࠇࠆ᭽‫ߥޘ‬⒳㘃ߩ⚛᧚ߩ᛫࠙ࠗ࡞ࠬ૞↪ߦߟ޿ߡ
ಽߩࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߪ‫ޔ‬㠽㘃ߦኻߒߡỗὓߥ
ᬌ⸛ࠍታᣉߒߡ޿ࠆ‫⎇ޕ‬ⓥᚑᨐߩ৻ㇱߪ‫ߦߢߔޔ‬ኾ㐷
∛ේᕈࠍ␜ߐߥ޿‫ޕ‬1970 ᐕઍ߆ࠄጊ㒶࿾ᣇߦ㘧᧪ߔࠆ
㔀⹹ߦ౏⴫ߒߚ‫ޔߚ߹ޕ‬ડᬺߣ౒หߢ․⸵಴㗿߽ⴕߥ
౻ဳߩᷰࠅ㠽ߩ㠽ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬ⁁ᴫߥࠄ߮
ߞߚ‫ޕ‬േ‛↢๮ක⑼ቇ⑼෸߮㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮
ߦಽ㔌㠽ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߩฦ⒳ᕈ⁁ࠍ⺞ᩏߒ
ࡦ࠲࡯ߪ‫ޔ‬ᢎ⢒߅ࠃ߮⎇ⓥߩਔ㕙ߦ߅޿ߡ␠ળߣߩ⚿
ߡ߈ߚ߇‫⎇ߩࠄࠇߘޔ‬ⓥᚑᨐࠍၮ␆ߦ‫⊒ߦࠄߐޔ‬ዷߔ
߮ߟ߈߇ᭂ߼ߡᒝߊ‫ޔ‬Ᏹߦᚑᨐߩ␠ળㆶర߇᳞߼ࠄࠇ
76
ࠆ․ᓽࠍ᦭ߔࠆ‫ߩߎޔߡߞ߇ߚߒޕ‬ᣇ㕙ߩ⎇ⓥࠍߐࠄ
Ono, E., Otsuki, K. Possible circulation of H5N1 avian influenza
ߦ⊒ዷߐߖߡࠁߊᔅⷐ߇޽ࠆ‫ޕ‬
viruses in healthy ducks on farms in northern Vietnam.
㧠㧕
ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬᗵᨴߦଥࠊࠆ↢૕஥ߩⷐ࿃
Microbiol. Immunol ., 54, 58-62, 2010.
ߩ⸃᣿
Tsunekuni, R., Ito, H., Otsuki, K., Kida, H., Ito, T. Genetic
ᧄ⎇ⓥߪ‫ޔ‬
ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬᗵᨴ෸߮⊒∛ߦ
comparisons between lentogenic Newcastle disease virus isolated
㑐ߔࠆ߶੃㘃ߣ㠽㘃ߩ㆑޿ࠍⓥ᣿ߔࠆ㠽ࠗࡦࡈ࡞ࠛࡦ
from waterfowl and velogenic variants. Virus Genes, 40,
ࠩ⎇ⓥߩᩮḮ⊛ߥⷐ⚛ࠍ฽ࠎߢ޿ࠆ‫↢ޔ߼ߚߩߘޕ‬૕
252-255, 2010.
஥ߩ࠙ࠗ࡞ࠬߦኻߔࠆ࡟࠮ࡊ࠲࡯ࠍൻቇ⊛ߦㅊ᳞ߔࠆ
Tsunekuni, R., Ito, H., Kida, H., Otsuki, K., and Ito, T. Increase in
⎇ⓥࠍ㐳ᐕታᣉߒߡ߈ߚᧄቇ㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮
the neuraminidase activity of a nonpathogenic Newcastle disease
ࡦ࠲࡯ᚲዻߩ੗਄ℰᳯਥછ⎇ⓥຬߣኒធߥදജ૕೙ࠍ
virus isolate during passaging in chickens. J. Vet. Med. Sci., 72,
⚵ߺߥ߇ࠄ⎇ⓥࠍㅴዷߐߖߡ޿ࠆ‫ޕ‬
ᚑᨐߩ৻ㇱߪ‫ޔ‬
2011
453-457, 2010.
ᐕᐲߦ౏⴫ߢ߈ࠆߣߎࠈ߹ߢ᧪ߡ޿ࠆ‫ޕ‬
Shivakoti, S., Itoh H., Otsuki, K., and Ito, T. Characterization of
H5N1 highly pathogenic avian influenza virus isolated from a
㧟㧚 Research projects and annual reports
mountain hawk eagle in Japan. J. Vet. Med. Sci., 72, 459-463,
Our research is focussed mainly epizootiology on avian
2010.
influenza (AI). We are analysing some properties of AI
Shivakoti, S., Itoh H., Murase, T., Ono, E., Takakuwa, H.,
viruses isolated from a few kinds of migratory waterfowls
Yamashiro, T., Otsuki, K., and Ito, T. Development of reverse
flying from Siberia or northern China and staying in the
transcription-loop-mediated isothermal amplification
Kansai region, particularly Lake Biwa during winter to
(RT-LAMP) assay for detection of avian influenza viruses in the
clarify these isolates from an ecological point of view.
field specimens. J. Vet. Med. Sci., 72, 519-523, 2010.
We are also collaborating with few companies to develop
Murata, H., and Otsuki, K. Swine influenza and cytokines: less of
anti-viral activity-having useful products, that is, we evaluate
a sorm, more of a breeze. Vet. J., 187, 16-17, 2010.
materials those were experimentally produced by them,
Fujimoto, Y., Ito, H., Shivakoti, S., Nakamori, J., Tsunekuni, R.,
analyse mechanisms of this activity and search their
Otsuki, K., and Ito, T. Avian influenza virus and paramyxovirus
applications.
isolation from migratory waterfowl and shorebirds in San-in
We are also collaborating with the Avian Zoonoses
district of western Japan from 2001 and 2008. J. Vet. Med.
Research Centre, Faculty of Agriculture, Tottori University
Sci., 72, 963-967, 2010.
to investigate AI incidence in Viet Nam. We are collecting
many foeces and throat swabs from few species of domestic
㧡㧚 ⪺ᦠ߅ࠃ߮✚⺑
fowls reared in that country to isolate AI viruses, and serum
ᄢᮎ౏৻㧚ࠗࡦࡈ࡞ࠛࡦࠩߩᦨᣂ⍮⼂㧽㧒㧭 2010㧦㧟㧚ࡉ
samples from them to calculate antibody titre to these viruses.
࠲ࠗࡦࡈ࡞ࠛࡦࠩߩᱧผߣߪ㧫㧠㧚ࡄࡦ࠺ࡒ࠶ࠢߣ㠽ࠗ
We expect to get some useful datum about not only
ࡦࡈ࡞ࠛࡦࠩߩ੹ᓟߩផ⒖ߪ㧫ߩ㧞㗄⋡ࠍၫ╩‫ޔ‬㋈ᧁ
ብ‫ᧄ᧻ޔ‬ᘮਃ✬‫ޔ‬ක⮎ࠫࡖ࡯࠽࡞␠‫ޔ‬ᄢ㒋㧚2010㧚
contaminating situation of AI virus in Vietnamese poultry
industry but also threatening level of human infection with
ᄢᮎ౏৻ ߎࠇߢࠊ߆ࠆ ࠗࡦࡈ࡞ࠛࡦࠩ⸻≮ߩࡐࠗࡦ࠻
this virus. Our research base is the overseas research station
ޯ⸻ᢿ࡮ᴦ≮࡮੍㒐߇ߔߞ߈ࠅࠊ߆ࠆޯ㧚ࠦ࡜ࡓ ࠻࡝
“Friendship Laboratory” opened by Nagasaki University in
ࠗࡦࡈ࡞ࠛࡦࠩߩ㗄⋡ࠍၫ╩‫↰⮮ޔ‬ᰴ㇢✬‫ޔ‬ධᳯၴ‫᧲ޔ‬
੩‫ޔ‬2010
the National Institute of Hygiene and Epidemiology in Ha
ᄢᮎ౏৻ ࿾⃿ⅣႺቇ੐ౖ㧚ᣂဳࠗࡦࡈ࡞ࠛࡦࠩߣ㠽ࠗࡦ
Noi.
ࡈ࡞ࠛࡦࠩߩ㗄⋡ࠍၫ╩‫ᧄ┙ޔ‬ᚑᢥ‫ޔ‬ᣣ㜞ᢅ㓉⋙ୃ‫ޔ‬ᒄ
㧠㧚 ⊒⴫⺰ᢥ
ᢥၴ‫᧲ޔ‬੩‫ޔ‬2010㧚
ᄢᮎ౏৻㧚㠽ࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬ̆ࠕࠫࠕߦ߅ߌࠆ
Takakuwa, H., Maruoka, T., Hata, T., Miyazawa, M., Hata, T.,
H5N1 ੝ဳ࠙ࠗ࡞ࠬߩ↢ᘒ—㧚⥃ᐥߣᓸ↢‛㧘37, 99-104,
Toshimori, T., and Otsuki, K. Development of a new d isinfect ant
2010.
with very strong anti-influenza-viral activity -a p reliminary report.
Environ. Health Prev. Med., 15, 121-123. 2010.
ᄢᮎ౏৻㧚㠽ࠗࡦࡈ࡞ࠛࡦࠩߣᣂဳ࠙ࠗ࡞ࠬߩ਎⇇⊛ᵹⴕ㧔ࡄ
Takakuwa, H., Yamashiro, T., Le, Q. M., Phuong, L. S.,
ࡦ࠺ࡒ࠶ࠢ㧕
㧚㒐
㒐⩶㒐㤻㧘38, 297-307, 2010.
ᄢᮎ౏৻‫ޔ‬㜞᪀ᒄ᮸‫ޔ‬Ᏹ࿡⦟ᄥ‫ޔ‬੗਄ℰᳯ‫↰⮐ޔ‬ᶻ੍‫ޔ‬
Ozaki, H., Tsunekuni, R., Usui, T., Ito, H., Yamaguchi, T., Ito, T.,
ਛ᧛଻♿‫᧻ޔ‬ਅ⟤♿‫ޔ‬ጊฬ⧷᣿㧚ࠗࡦࡈ࡞ࠛࡦࠩኻ╷‫ޔ‬
Murase, T.,
77
࡞ࠛࡦࠩ࠙ࠗ࡞ࠬᣣ┙ࠕࡊ࡜ࠗࠕࡦࠬਥ௅‫ޡ‬ᣣ┙
․ߦ㜞ᯏ⢻ઃടࡑࠬࠢߩ᦭↪ᕈ. ੩ㇺ↥ᬺᄢቇవ┵⑼
‫⷏ޟ‬ᣣᧄ․⚂࡮⽼ᄁᐫ᭽‫⽼ޠ‬ᄁળ⼏࠮ࡒ࠽࡯‫ ޢ‬ᄢ
ቇᛛⴚ⎇ⓥᚲႎ, No. 9, 103-117, 2010.
㒋Ꮢ ᐕ ᦬ ᣣ
ᄢᮎ౏৻㧚․㓸ࠗࡦࡈ࡞ࠛࡦࠩ㧚ࡉ࠲࡮࠻࡝ࠗࡦࡈ࡞ࠛࡦ
ᄢᮎ౏৻㧦ᣂဳࠗࡦࡈ࡞ࠛࡦࠩ
ߩ✚᜝ߣ੹ᐕ
ࠩߩ⃻⁁㧚ዊ
ዊఽౝ⑼㧘42㧘1536-1540, 2010㧚
ߩࠗࡦࡈ࡞ࠛࡦ੍ࠩ㒐ኻ╷㧚ࢃ࠙ࠗ࠭ਥ௅ක≮੺
ᄢᮎ౏৻‫ޔ‬㜞᪀ᒄ᮸‫ޔ‬Ᏹ࿡⦟ᄥ‫ޔ‬੗਄ℰᳯ‫↰⮳ޔ‬ᶻ੍㧚․
⼔㑐ଥ⠪ߩߚ߼ߩ౻ߩஜᐽ▤ℂߣࠗࡦࡈ࡞ࠛࡦࠩ
㓸㧛ᣂဳࠗࡦࡈ࡞ࠛࡦࠩ AH1N1 ߩᵹⴕࠍᝄࠅ㄰ߞߡ㧚
ീᒝળ ᄢ㒋Ꮢ ᐕ ᦬ ᣣ
࠻࡝ࠗࡦࡈ࡞ࠛࡦࠩߩᵹⴕ⁁ᴫ㧚⥃ᐥߣ⎇ⓥ㧘87,
ᄢᮎ౏৻㧦ᣂဳࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߣ㠽ࠗࡦࡈ
1718-1723, 2010
࡞ࠛࡦࠩጊญᄢቇㄘቇㇱਥ௅ ጊญᄢቇㄘቇㇱ
ᄢᮎ౏৻‫ޔ‬㜞∛ේᕈ㠽ࠗࡦࡈ࡞ࠛࡦࠩߩ⃻ᴫߣߎࠇ߆ࠄߩ
₞කቇ⑼․೎࠮ࡒ࠽࡯ ጊญᏒ ᐕ ᦬ ஻߃㧚ㄘᬺߣ⚻ᷣ㧘 77, 79-88, 2011.
ᣣ
ᄢᮎ౏৻‫ߣߒࠄߊޔ‬ᓸ↢‛ 㧡 ࡑࠬࠢ㧚㒐⩶㒐㤻㧘
ᄢᮎ౏৻㧦㠽ࠗࡦࡈ࡞ࠛࡦࠩ‫ޔ‬ญか∉ߞߡߤ߁޿߁
39,175-183, 2011.
㧢㧚 ᜗ᓙ⻠Ṷ‫╬ࡓ࠙ࠫࡐࡦࠪޔ‬
∛᳇㧚੩ㇺᐭㄘᨋ᳓↥ㇱ⇓↥⺖ਥ௅⍮ߞߡᓧ ߣ
Takakuwa, H., Yamashiro, T., Le, M. Q., Phuong, L. S.,
ࠅ࡮ߚ߹ߏߩ㓸޿ ੩ㇺᐭ✍ㇱᏒ ᐕ ᦬
ᣣ
Tsunekuni, T., Usui, T., Ozaki, H., Itoh, H., Yamaguchi, T., Ito,
T., Otsuki, K., Murase, T., and Ono, E. Molecular epidemiology
ᄢᮎ౏৻㧦ᦨㄭߩ㠽ࠗࡦࡈ࡞ࠛࡦࠩߩ⃻⁁㧚␠࿅ᴺ
of avian influenza viruses circulating among healthy poultry bred
ੱᄢ㒋ᐭ⇓↥ળਥ௅ ⥄ⴡ㒐∉⎇ୃળ ᄢ㒋Ꮢ
in farms in northern Vietnam. 4th Annual Meeting EPIZONE,
ᐕ ᦬ ᣣ
th
ᄢᮎ౏৻㧦㠽ࠗࡦࡈ࡞ࠛࡦࠩ‫ޔ‬ญか∉ߞߡߤ߁޿߁
th
St Malo, France, 7 -10 June 2010
∛᳇㧚੩ㇺᐭㄘᨋ᳓↥ㇱ⇓↥⺖ਥ௅⍮ߞߡᓧ ߣ
Takakuwa, H., Ito, T., Murase, M., Yamashiro, T., Ono E., and
Otsuki, K. Molecular epidemiology of avian influenza in northern
ࠅ࡮ߚ߹ߏߩ㓸޿ ੩ㇺᏒ ᐕ ᦬ ᣣ
Vietnam. Workshop on the Influenza Research of J-GRID: The
ᄢᮎ౏৻㧦ਛᶏߢ⿧౻ߔࠆᷰࠅ㠽ߣ㠽ࠗࡦࡈ࡞ࠛࡦ
Inaugural Meeting of the Influenza Consortium, Tokyo, Japan,
ࠩ࠙ࠗ࡞ࠬ㧚㠽ขᄢቇ↥ቇ࡮࿾ၞㅪ៤ផㅴᯏ᭴␠
16th July 2010
ળ⽸₂ቶਥ௅ ᄢጊ࡮ᣣ㊁Ꮉ࡮ਛᶏቇදળ࠮ࡒ࠽
࡯ ☨ሶᏒ ᐕ ᦬ ᣣ
st
Otsuki, K. Avian influenza occurred in Japan. BIT’s 1 World
ᄢᮎ౏৻㧦ፉᩮ⋵ߢߩ⊒↢⁁ᴫߥߤ㠽ࠗࡦࡈ࡞ࠛࡦ
Congress of Virus and Infections 2010, Busan, Republic of
ࠩߦߟ޿ߡ㧚੩ㇺᐭෂᯏ▤ℂ࡮㒐ἴ⺖ਥ௅ᐭ᳃߳
Korea, 31st July – 3rd August 2010
ߩ✕ᕆᖱႎવ㆐⎇ⓥળ㧔․೎✬㧕 ੩ㇺᏒ Takakuwa, H., Yamashiro, T., Le,M. Q., Phuong, L. S., Ono, E.,
ᐕ ᦬ ᣣ
Usui, T., Tsunekuni, R., Itoh, H., Ozaki, H., Yamaguchi, T., Ito,
T., Otsuki, K., and Murase, M. Asian-African Research Forum
ᄢᮎ౏৻㧦
‫ޟ‬㜞∛ේᕈ㠽㨼㩧㩖㩣㨾㩧㩅㩨ߩ಴⃻੍᷹߿ᵹⴕ੍
on Emerging and Reemerging Infections 2010, Hanoi, Vietnam,
᷹‫ޔ‬࿖ౝଚ౉⚻〝ߩ⸃᣿‫ޠ‬෸߮‫ޟ‬㜞∛ේᕈ㠽ࠗࡦ
11th -12th November 2010
ࡈ࡞ࠛࡦࠩߩ࿖ౝᄖߢߩ㒐∉૕೙‫ޠ‬
㧔␠㧕⟲㚍⋵⇓
↥දળਥ௅ 㜞∛ේᕈ㠽㨼㩧㩖㩣㨾㩧㩅㩨㒐∉⎇ୃળ⟲㚍
㧣㧚ቇળ⊒⴫
⋵೨ᯅᏒ ᐕ ᦬ ᣣ
੗਄ℰᳯ‫ޔ‬㜞᪀ᒄ᮸‫ޔ‬Ᏹ࿡⦟ᄥ‫↰⮳ޔ‬ᶻ੍‫ޔ‬દ⮮ᄈ
ᄢᮎ౏৻㧦㠽ࠗࡦࡈ࡞ࠛࡦࠩߩᵹⴕ⁁ᴫ㧚
㧔␠㧕ᣣᧄ
໪‫ޔ‬ᄢᮎ౏৻‫ޔ‬ਛ↰ ඳ㧦࠾ࡢ࠻࡝᳇㆏਄ߩ㠽ࠗ
ߒࠈ޽ࠅኻ╷දળ㑐⷏ᡰㇱਥ௅ ╙ ࿁㧔ᐔᚑ
ࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬ⚿วⰮ⊕ߩᬌ⚝㧚╙ 58 ࿁ᣣ
ᐕᐲ㧕ᡰㇱㅢᏱ✚ળ ᄢ㒋Ꮢ ᐕ ᦬ ᧄ࠙ࠗ࡞ࠬቇળቇⴚ㓸ળ‫ޔ‬ᓼፉᏒ‫ޔ‬2010.11.7-9
ᣣ
ၳ↰ߎߕ߃‫ޔ‬㜞᪀ᒄ᮸‫᧛ޔ‬ἑᢅਯ‫ޔ‬ዊ㊁ᖝ㇢‫ޔ‬દ⮮
ᄈ໪‫ޔ‬ᄢᮎ౏৻‫ޔ‬ጊၔ ື㧦ࡂࡁࠗᏒ㇠ᄖߢ㘺⢒
␠ળ⽸₂㧔ႎ㆏㑐ଥ⸥੐╬㧕
ߐࠇࠆࠕࡅ࡞߅ࠃ߮ࡉ࠲ࠃࠅಽ㔌ߐࠇߚ㧭ဳࠗࡦ
٤ᣂ⡞⸥੐
ࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߩㆮવሶ⸃ᨆ㧚╙ 58 ࿁ᣣᧄ࠙
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞ ญか∉㑐ㅪ㩄㩜㩧㩎
ࠗ࡞ࠬቇળቇⴚ㓸ળ‫ޔ‬ᓼፉᏒ‫ޔ‬2010.11.7-9
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ ญか∉ኻ╷ળ⼏㩄㩜㩧㩎
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞ ญか∉㑐ㅪ㩄㩜㩧㩎
㧤㧚ߘߩઁ․⸥੐㗄
ᐕ ᦬ ᣣ Ფᣣᣂ⡞ᄕೀ ญか∉㑐ㅪ㩄㩜㩧㩎
␠ળ⽸₂㧔⻠Ṷ㧕
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ 㢚ෆ㧼㧾ࠗࡌࡦ࠻
ᄢᮎ౏৻㧦ᣂဳࠗࡦࡈ࡞ࠛࡦࠩ࠙ࠗ࡞ࠬߣ㠽ࠗࡦࡈ
ᐕ ᦬ ᣣ ࡝ࡆࡦࠣ੩ㇺ 㢚ෆ㧼㧾㨼㩗㩨㩧㩎
78
ᐕ ᦬ ᣣ Ფᣣᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞ࠛࡦ
ࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ධᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞ࠛࡦ
㑐ㅪࠦࡔࡦ࠻
ࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞
㑐ㅪࠦࡔࡦ࠻
ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇
㑐ㅪࠦࡔࡦ࠻
ⓥ࠮ࡦ࠲࡯㧼㧟㐿⸳෸߮㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪ
ᐕ ᦬ ᣣ ↥⚻ᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ⓥ࠮ࡦ࠲࡯㧼㧟㐿⸳෸߮㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪ
㑐ㅪࠦࡔࡦ࠻
ࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ᧲੩ᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇
㑐ㅪࠦࡔࡦ࠻
ⓥ࠮ࡦ࠲࡯㧼㧟㐿⸳
ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞ᄕೀ
ฬฎደ ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࠩ⎇ⓥ࠮ࡦ࠲࡯㧼㧟㐿⸳
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞ࠛ
ᐕ ᦬ ᣣ Ფᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇
ࡦࠩ㑐ㅪࠦࡔࡦ࠻
ⓥ࠮ࡦ࠲࡯㧼㧟㐿⸳
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞ࠛ
ᐕ ᦬ ᣣ ጊ㒶ਛᄩᣂႎ 㠽ࠗࡦࡈ࡞ࠛࡦ
ࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞
ฬฎደ 㠽ࠗࡦ
ᐕ ᦬ ᣣ ᣂẟᣣႎ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ጊ㒶ਛᄩᣂႎ 㠽ࠗࡦࡈ࡞ࠛ
㑐ㅪࠦࡔࡦ࠻
ࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞
ർ㒽 㠽ࠗࡦࡈ
ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞
ർ㒽 㠽ࠗࡦࡈ
㑐ㅪࠦࡔࡦ࠻
࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ධᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞㧔⑔ጟ 㧕㠽ࠗࡦࡈ
㑐ㅪࠦࡔࡦ࠻
࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞㧔⑔ጟ 㧕㠽ࠗࡦࡈ
㑐ㅪࠦࡔࡦ࠻
࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ⷏ᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞㧔⑔ጟ 㧕㠽ࠗࡦࡈ
㑐ㅪࠦࡔࡦ࠻
࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ⷏ᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ⷏ᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦ
㑐ㅪࠦࡔࡦ࠻
ࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ධᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞ࠛࡦ
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ࠩ㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ Ფᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ੩ㇺᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ Ფᣣᣂ⡞
ਛㇱ 㠽ࠗࡦࡈ࡞
ᐕ ᦬ ᣣ ධᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
ᐕ ᦬ ᣣ ⷏ᣣᧄᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞ᄕೀ
ฬฎደ ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞
ᴒ✽ 㠽ࠗࡦ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
79
ᐕ ᦬ ᣣ Ფᣣᣂ⡞ᄕೀ 㠽ࠗࡦࡈ࡞ࠛࡦ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ࡈࠫ࠹࡟ࡆ‫ޠࡆ࡟࠹ߒ߹ߑ߼ޟ‬
ᐕ ᦬ ᣣ ਛᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ 㑐⷏࠹࡟ࡆ‫ࡀ࠳ߊߣޟ‬㧍‫ޠ‬
ᐕ ᦬ ᣣ ᦺᣣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛࡦࠩ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ Ფᣣ᡼ㅍ‫ޠ޿߲޿߲ࠎߜߜޟ‬
ᐕ ᦬ ᣣ ᣣᧄ⚻ᷣᣂ⡞ 㠽ࠗࡦࡈ࡞ࠛ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ 㑐⷏࠹࡟ࡆ‫ࠬ࡯ࡘ࠾࡯ࡄ࡯ࠬޟ‬
ᐕ ᦬ ᣣ ⺒ᄁᣂ⡞
๺᱌ጊ 㠽ࠗࡦࡈ
ࠕࡦࠞ࡯‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ᣣᧄ࠹࡟ࡆ‫࡝ࠠ࠶ࠬޟ‬㧍‫ޠ‬
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
٤࠹࡟ࡆ࡮㨃㧱㧮⇟⚵
ᐕ ᦬ ᣣ ࡈࠫ࠹࡟ࡆ‫ޟ‬⍮ࠅߚ߇ࠅ㧍‫ޠ‬
ᐕ ᦬ ᣣ 㧷㧮㧿੩ㇺ‫ޟ‬੩ࡊ࡜ࠬ‫ޠ‬
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮ࡦ࠲࡯㧼㧟౏㐿
ᐕ ᦬ ᣣ ᣣᧄ࠹࡟ࡆ‫ޟ‬0GYU GXGT[‫ޠ‬
ᐕ ᦬ ᣣ 㧺㧴㧷੩ㇺ‫ࠬ࡯ࡘ࠾ޟ‬㧢㧝㧜
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
੩޿ߜߦߜ‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮ࡦ࠲࡯
ᐕ ᦬ ᣣ 㧺㧴㧷੩ㇺ‫ࠬ࡯ࡘ࠾ޟ‬㧢㧝㧜
㧼㧟౏㐿
੩޿ߜߦߜ‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ ࠹࡟ࡆ᧲੩‫ޟ‬PGYU (+0'‫ޠ‬
ᐕ ᦬ ᣣ 㧺㧴㧷‫ޟ‬㧺㧴㧷࠾ࡘ࡯ࠬ㧣‫ޠ‬
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ 㧺㧴㧷੩ㇺ‫ࠬ࡯ࡘ࠾ޟ‬㧢㧝㧜
ᐕ ᦬ ᣣ 㧺㧴㧷੩ㇺ‫ࠬ࡯ࡘ࠾ޟ‬㧢㧝㧜
੩޿ߜߦߜ‫ ޠ‬ᣣ㖧ࠗࡦࡈ࡞ࠛࡦࠩ࠮ࡒ࠽࡯
੩޿ߜߦߜ‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ 㧺㧴㧷‫࠴࠶ࠝ࠙ࠬ࡯ࡘ࠾ޟ‬㧥‫ޠ‬
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
٤
ᐕ ᦬ ᣣ 㨃㧱㧮‫ޟ‬UEKGPEG PGYU‫ޠ‬
࡜ࠫࠝ
ᐕ ᦬ ᣣ 㧺㧴㧷‫⸒৻߽⑳ޟ‬㧍ᄕᣇ࠾ࡘ࡯
․㓸 㠽ࠗࡦࡈ࡞ࠛࡦࠩ⎇ⓥ࠮ࡦ࠲࡯ߦߟ޿ߡ
ࠬ‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪ⸃⺑
ᐕ ᦬ ᣣ 㑐⷏࠹࡟ࡆ‫ࡀ࠳ߊߣޟ‬㧍‫ޠ‬
ᐕ ᦬ ᣣ 㧺㧴㧷‫⸒৻߽⑳ޟ‬㧍ᄕᣇ࠾ࡘ࡯
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࠬ‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪ⸃⺑
ᐕ ᦬ ᣣ ࡈࠫ࠹࡟ࡆ‫ޟ‬⍮ࠅߚ߇ࠅ㧍‫ޠ‬
ᐕ ᦬ Նᣣ 㧺㧴㧷‫ޟ‬㧾㧿࠾ࡘ࡯ࠬ‫ޔ‬㠽ࠗࡦ
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࡈ࡞ࠛࡦࠩ㖧࿖ߢ᜛ᄢ ᔨ‫⺑⸃ ޠ‬
ᐕ ᦬ ᣣ ⺒ᄁ࠹࡟ࡆ‫޿ߐࠎ߆ޟ‬ᖱႎ
ᐕ ᦬ ᣣ 㧾㧷㧮Ფᣣ‫ޟ‬቟⮮⼾ߤࠎߤߎࠨ
ࡀ࠶࠻ VGP㧍‫ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
࠲࠺࡯‫ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ᐕ ᦬ ᣣ 㧺㧴㧷੩ㇺ‫ࠬ࡯ࡘ࠾ޟ‬㧢㧝㧜
੩޿ߜߦߜ‫ ޠ‬㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
٤
ᐕ ᦬ ᣣ 㧺㧴㧷‫ޟ‬㧺㧴㧷࠾ࡘ࡯ࠬ㧣‫ޠ‬
㔀⹹
ᐕ ᦬ภ‫ޟ‬ᣣ⚻ࡔ࠺ࠖࠞ࡞‫ޠ‬
㠽ࠗࡦࡈ࡞ࠛࡦࠩ㑐ㅪࠦࡔࡦ࠻
ࡄࡦ࠺ࡒ࠶ࠢ㧞㧜㧜㧥㧴㧝㧺㧝․㓸
ᐕ ᦬ ᣣ 㧺㧴㧷‫࠴࠶ࠝ࠙ࠬ࡯ࡘ࠾ޟ‬㧥‫ޠ‬
80
఺∉∛ℂቇ⎇ⓥቶ
ᢎ᝼ ┻ౝ ታ
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪠㫄㫄㫌㫅㫆㫇㪸㫋㪿㫆㫃㫆㪾㫐
㪧㫉㫆㪽㪅 㪤㫀㫅㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪧㪿㪅㪛㪃 㪛㪅㪭㪅㪤㪃 㪤㪅㪪㪺㫀㪅 㪛
䋱䋮⎇ⓥ䈱᭎ⷐ
䉫䊤䊛㒶ᕈ⩶↱᧪䈱 㪣㫀㫇㫆㫇㫆㫃㫐㫊㫊㪸㪺㪺㪿㪸㫉㫀㪻㪼㩿㪣㪧㪪㪀䈲䉺䊋䉮
ⅣႺಽ㊁䈪㊀ⷐ䈭໧㗴䈫䈚䈩ข䉍਄䈕䉌䉏䈩䈇䉎䉺䊋䉮༛
ᾍ䉇ⅣႺਛ䈮฽䉁䉏䈩䈍䉍䇮䈖䉏䉌䉕⢖䈮ๆ౉䈜䉎䈖䈫䈮
ᾍ䈮⌕⋡䈚䇮༛ᾍ䈱఺∉䇮≸Ⴧᱺ䊶ォ⒖䇮㪛㪥㪘 ៊்䈻䈱ᓇ
䉋䉎⢖఺∉⚦⢩䈻䈱ᓇ㗀䈮䈧䈇䈩⎇ⓥ䈚䈩䈇䉎䇯䉁䈢䇮䉝
㗀䈮䈧䈇䈩䇮䊙䉡䉴䉕↪䈇䈩⎇ⓥ䈚䈩䈇䉎䇯༛ᾍ䈫఺∉䈫≸
䊧䊦䉩䊷䉕⊒∝䈘䈞䉎䈖䈫䈪⍮䉌䉏䈩䈇䉎䉴䉩⧎☳䈱ๆ౉
䈲䇮䈠䉏䈡䉏ኒធ䈮㑐ଥ䈚䈩䈍䉍䇮䈖䉏䉌䈱㑐ଥ䉕⸃᣿䈜䉎
䈮䉋䉎⢖䈱ೋᦼ఺∉ᔕ╵෻ᔕ䈮䈧䈇䈩䉅⎇ⓥ䉕䈚䈩䈇䉎䇯
䈖䈫䈲ᄢᄌᗧ⟵䈏䈅䉎䇯䈠䈖䈪䇮⑳䈱⎇ⓥቶ䈪䈲䇮䈖䉏䉌䈱㑐
䋳䋩
ଥ䉕⚵❱䇮⚦⢩䇮
ᄤὼᚑಽ䈱఺∉૞↪䈫䈠䈱ᔕ↪䈮䈧䈇䈩
㽲 ⱎⱣ
ㆮવሶ䈱䊧䊔䊦
䉳䊞䊮䉫䊦䊊䊆䊷䈲䇮䉝䊐䊥䉦䊶䊅䉟䉳䉢䊥䉝䈱 㪜㫅㫌㪾㫌 Ꮊ
䈪⸃᣿䈚䇮䇸༛ᾍ
㪥㫊㫌㫂㫂㪸 ࿾ၞ䈱ᾲᏪ㔎ᨋ䈮↢ᕷ䈜䉎㊁↢䈱ⱎ䈏㐳ᦼ䈮䉒
䈫఺∉䈫≸䈫ᄤὼ
䈢䉍᮸ᧁ䉇⧎䈎䉌㓸䉄䈩䈪䈐䈢ⱎⱣ䈪䈅䉎䇯䊅䉟䉳䉢䊥䉝䈪
ᚑಽ䉕⑼ቇ䇹䈚䈩
䈲䇮䈖䈱ⱎⱣ䈏๡ⴚᏧ䈪䈅䉎䉲䊞䊷
䈇䉎䇯
䊙䊮䈮䉋䉍㘑㇎䇮⊹⤏Ἳ䇮Ἣ்䈱ᴦ
䈖䉏䉁䈪䈱⎇
≮⮎䇮∔ᖚ੍㒐⮎䈫䈚䈩વ⛔⊛䈭ක
ⓥ䈪䇮䉺䊋䉮༛ᾍ
≮䈮೑↪䈘䉏䈩䈐䈢䇯㘩↪䈪䈲䈭䈒䇮
䈮䉋䉍⢖⢩䊙䉪䊨
䉃䈚䉐ᴦ≮⮎䈫䈚䈩૶↪䈘䉏䈩䈇䉎䈖
䊐䉜䊷䉳䈱⽽㘩⢻䇮᛫ේឭ␜⢻䇮⚦⢩⴫㕙᛫ේ䇮䉰䉟䊃䉦䉟
䈫䈎䉌䇮↢૕䈻䈱૞↪䇮․䈮఺∉૞
䊮 㫄㪩㪥㪘 ⊒⃻䈭䈬䈱఺∉ᯏ⢻䈲ᛥ೙䈘䉏䈩䈇䉎䈏䇮ㅒ䈮ᵴ
↪䈮ኻ䈜䉎ലᨐ䈏⠨䈋䉌䉏䉎䇯䈠䈖䈪䇮䉳䊞䊮䉫䊦䊊䊆䊷
ᕈ㉄⚛䈱↥↢⢻䈲Ⴧട䈜䉎䇯䈠䈖䈪⃻࿷䈲䇮༛ᾍ䈮䉋䉍Ⴧട
䈱఺∉ᯏ⢻䈻䈱ᓇ㗀䈫䈠䈱૞↪ᯏ᭴䇮᛫⣲≌૞↪䈮䈧䈇
䈚䈢ᵴᕈ㉄⚛䈮䉋䉍䇮⢖⢩䊙䉪䊨䊐䉜䊷䉳䈍䉋䈶⢖⚵❱䈱
䈩⎇ⓥ䉕䈚䈩䈇䉎䇯
㪛㪥㪘 ៊்䈏⺃ዉ䈘䉏䇮䈠䈱⚿ᨐ⇣Ᏹ 㪛㪥㪘 䈏ᒻᚑ䈘䉏䇮⢖≸
㽳 䉝䉧䊥䉪䉴⨧
䈱⊒↢䈮䈖䉏䉌䈱ⷐ࿃䈫ૐਅ䈚䈢఺∉ᯏ᭴䈏㑐ଥ䈚䈩䈇䉎น
䉝䉧䊥䉪䉴䋨㪘㪾㪸㫉㫀㪺㫌㫊 㪹㫃㪸㫑㪼㫀 㪤㫌㫉㫀㫃㫃䋩䈲㘩↪䉨䊉䉮䈪䇮䊑䊤
⢻ᕈ䈮䈧䈇䈩⎇ⓥ䈚䈩䈇䉎䇯䉁䈢ᛥ೙䈘䉏䈢఺∉ᯏ⢻䉕࿁ᓳ
䉳䊦䇮䉰䊮䊌䉡䊨㇠ᄖ䈱䊏䉣䉻䊷䊁࿾ᣇ䈫๭䈳䉏䉎㜞࿾䈮
䈜䉎䈢䉄䈮䇮ᄤὼᚑಽ䋨䉝䉧䊥䉪䉴⨧䇮ⱎⱣ䋩䈱఺∉Ⴧᒝ૞↪
໑৻⥄↢䈚䈩䈇䉎䇯䊏䉣䉻䊷䊁࿾
䈮䈧䈇䈩䉅⎇ⓥ䈚䇮ᣂ⮎䈱㐿⊒䉕⋡ᜰ䈚䈩䈇䉎䇯
ᣇ䈱ේ૑᳃䈮䈲↢ᵴ⠌ᘠ∛䈱
ᧄ⎇ⓥቶ䈪䈲એਅ䈱⎇ⓥ䊁䊷䊙䈮䈧䈇䈩⎇ⓥ䉕ㅴ䉄䈩䈇
ᖚ⠪䈏ዋ䈭䈒㐳ኼ⠪䈏ᄙ䈇䈖䈫
䉎䇯
䋱䋩
䈎䉌⎇ⓥ䈏ㅴ䉄䉌䉏䇮䉝䉧䊥䉪䉴
䉺䊋䉮ᾍ䈮䉋䉎⢖⢩䊙䉪䊨䊐䉜䊷䉳䈻䈱ᓇ㗀䈫ㆮવሶ៊
䈮䈲఺∉ജ䉕㜞䉄䇮᛫⣲≌ᵴᕈ
்䈮䈧䈇䈩
䉇 㪥㪢 ⚦⢩䇮㪫 ⚦⢩䈭䈬䈱఺∉
䉺䊋䉮༛ᾍ䈮䉋䉍䇮䉺䊋䉮ᾍ䈲⋥ធ⢖䈮ๆ౉䈘䉏䉎䈢䉄䇮
ᵴᕈ䈏⍮䉌䉏䈩䈇䉎䇯䈚䈎䈚䇮䈖䉏䉌䈱૞↪ᯏ᭴䈮䈧䈇䈩
⢖䈮ሽ࿷䈜䉎఺∉⚦⢩䉇⢖⚵❱䈻䈱ᓇ㗀䈏䈅䉎䈫⠨䈋䉌
䈲චಽ䈮⸃᣿䈘䉏䈩䈇䈭䈇䈢䉄䇮䈠䈱఺∉૞↪䈱䊜䉦䊆
䉏䉎䇯․䈮⢖䈱఺∉♽䈪ਛᔃ⊛䈭ᓎഀ䉕ᜂ䈦䈩䈇䉎⢖⢩
䉵䊛䈮䈧䈇䈩⎇ⓥ䈚䈩䈇䉎䇯
䊙䉪䊨䊐䉜䊷䉳䈱ᯏ⢻䈮ኻ䈜䉎䉺䊋䉮༛ᾍ䈱ᓇ㗀䉕⺞䈼䉎
䈖䈫䈲䇮⢖䈱఺∉♽䇮䈵䈇䈩
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䈲↢૕㒐ᓮ䉕⠨䈋䉎਄䈪㊀
༛ᾍ䈱⢖఺∉♽䈻䈱ᓇ㗀䈮䈧䈇䈩䈲䇮⢖⢩䊙䉪䊨䊐䉜䊷
ⷐ䈪䈅䉎䇯䈠䈖䈪䇮⥄േ༛ᾍ
䉳䉕੺䈚䈢᛫ේ․⇣⊛䇮㕖․⇣⊛䈭䊥䊮䊌⃿෻ᔕ䈮ኻ䈚䈩䇮
ⵝ⟎䉕↪䈇䈩䇮䊙䉡䉴䈮৻ቯ
䉺䊋䉮ਥᵹᾍ䈮䉋䉍⢖⢩䊙䉪䊨䊐䉜䊷䉳䈱ᛥ೙䈏⹺䉄䉌䉏䇮․
㊂䇮৻ቯᦼ㑆䇮ဋ৻䈮䉺䊋䉮
䈮ᧂᾫ䈭 㪙 ⚦⢩䈱Ⴧᱺ෻ᔕ䈏ᛥ೙䈘䉏䉎䈖䈫䈏⸃᣿䈘䉏䈢䇯
ᾍ䉕༛ᾍ䈘䈞䈢ᓟ䇮᳇▤ᡰ
䉁䈢䇮䈠䈱ᛥ೙ᯏ᭴䈮䈲䇮༛ᾍ䈮䉋䉍⢖⢩䊙䉪䊨䊐䉜䊷䉳䈎䉌
⢖⢩ᵞᵺ䈮䉋䉍⢖⢩䊙䉪䊨䊐
↥↢䈘䉏䉎ㆊ೾䈭ᵴᕈ㉄⚛⒳㩿㪩㪦㪪㪀䈮䉋䉍ᛥ೙䈘䉏䉎䈖䈫䈏䇮
䉜䊷䉳䉕ណข䈚䇮⢖⢩䊙䉪䊨
ᵴᕈ㉄⚛㒰෰೷䉕↪䈇䈢ታ㛎䈮䉋䉍⸽᣿䈘䉏䈢䇯䉁䈢䇮༛ᾍ
䊐䉜䊷䉳䈱఺∉ᯏ⢻䈫ㆮવ
䈮䉋䉍⢖⢩䊙䉪䊨䊐䉜䊷䉳䈏 㪩㪦㪪 䈮䉋䉍 㪛㪥㪘 ៊்䉕ฃ䈔䈩䈇
ሶ䈻䈱ᓇ㗀䈮䈧䈇䈩⎇ⓥ䈚䈩䈇䉎㪅
䋲䋩
䉎䈖䈫䉅⏕⹺䈘䉏䈢䇯
㪣㪧㪪 䈍䉋䈶䉴䉩⧎☳䈱ೋᦼ఺∉ᔕ╵䈮䈧䈇䈩
ᄤὼᚑಽ䈮㑐䈚䈩䈲䇮䊅䉟䉳䉢䊥䉝䈪વ⛔⊛䈭ᴦ≮䈫䈚䈩
81
㪈㪑 㪪㫋㫌㪻㫐 㪽㫆㫉 㫋㫆㪹㪸㪺㪺㫆 㫊㫄㫆㫂㪼
㪚㫀㪾㪸㫉㪼㫋㫋㪼 㫊㫄㫆㫂㪼 㫀㫊 㪸 㫄㪸㫁㫆㫉 㫉㫀㫊㫂 㪽㪸㪺㫋㫆㫉 㪽㫆㫉 㫇㫌㫃㫄㫆㫅㪸㫉㫐
㪻㫀㫊㪼㪸㫊㪼㫊㪅
㪘㫃㫍㪼㫆㫃㪸㫉
㫄㪸㪺㫉㫆㫇㪿㪸㪾㪼㫊
㩿㪘㪤㪀
㫇㪿㪸㪾㫆㪺㫐㫋㫀㫑㪼
㫄㫀㪺㫉㫆㫆㫉㪾㪸㫅㫀㫊㫄㫊㪃 㫇㫉㫆㪻㫌㪺㪼 㫉㪼㪸㪺㫋㫀㫍㪼 㫆㫏㫐㪾㪼㫅 㫊㫇㪼㪺㫀㪼㫊 㩿㪩㪦㪪㪀
㪸㫅㪻 㫇㫃㪸㫐 㪸㫅 㫀㫄㫇㫆㫉㫋㪸㫅㫋 㫉㫆㫃㪼 㫀㫅 㫀㫄㫄㫌㫅㫆㫃㫆㪾㫀㪺㪸㫃 㫊㫌㫉㫍㪼㫀㫃㫃㪸㫅㪺㪼
㪽㫆㫉 㫋㪿㪼 㫃㫌㫅㪾㪅 㪠㫅 㫇㫉㪼㫍㫀㫆㫌㫊 㫊㫋㫌㪻㫀㪼㫊㪃 㫎㪼 㪻㪼㫄㫆㫅㫊㫋㫉㪸㫋㪼㪻
㫋㫆㪹㪸㪺㪺㫆 㫊㫄㫆㫂㫀㫅㪾 㫀㫅㪿㫀㪹㫀㫋㫊 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅㫊 㫀㫅 㪘㪤㪅
㪟㫆㫎㪼㫍㪼㫉㪃 㫋㪿㪼 㫄㪼㪺㪿㪸㫅㫀㫊㫄 㫆㪽 㫀㫅㪿㫀㪹㫀㫋㫀㫆㫅 㫆㪽 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅
㫀㫅 㪘㪤 㫀㫊 㫅㫆㫋 㫎㪼㫃㫃 㪻㪼㪽㫀㫅㪼㪻㪅 㪠㫅 㫋㪿㪼 㪸㫀㫄 㫆㪽 㫆㫌㫉 㫊㫋㫌㪻㫐㪃 㫎㪼 㪸㫉㪼
㫀㫅㫍㪼㫊㫋㫀㪾㪸㫋㫀㫅㪾 㫋㪿㪼 㫊㫌㫇㫇㫉㪼㫊㫊㫀㫍㪼 㫄㪼㪺㪿㪸㫅㫀㫊㫄 㫆㪽 㫀㫄㫄㫌㫅㪼
㪽㫌㫅㪺㫋㫀㫆㫅㫊 㫀㫅 㪘㪤 㪸㫊㫊㫆㪺㫀㪸㫋㪼㪻 㫎㫀㫋㪿 㪛㪥㪘 㪻㪸㫄㪸㪾㪼 㪹㫐 㪺㫀㪾㪸㫉㪼㫋㫋㪼
૶↪䈘䉏䈩䈇䉎ⱎⱣ䈱৻䈧䈪䈅䉎䉳䊞䊮䉫䊦䊊䊆䊷䈮ᅢਛ
㫊㫄㫆㫂㪼 㪼㫏㫇㫆㫊㫌㫉㪼㪅
⃿䈮ኻ䈜䉎⒖േᕈ䊶⿛ൻᵴᕈ䈏ᣂ䈚䈒⹺䉄䉌䉏䇮⒖േᣇะᕈ䇮
⒖േㅦᐲ䈫䉅䈮Ⴧᒝ䈜䉎䈖䈫䈏⸃᣿䈘䉏䈢䇯
㪉㪑 㪪㫋㫌㪻㫐 㪽㫆㫉 㪥㪸㫋㫌㫉㪸㫃 㫇㫉㫆㪻㫌㪺㫋㫊
㩿㪈㪀 㪡㫌㫅㪾㫃㪼 㪿㫆㫅㪼㫐
㪡㫌㫅㪾㫃㪼 㪿㫆㫅㪼㫐 㩿㪡㪟㪀 㫀㫊 㪺㫆㫃㫃㪼㪺㫋㪼㪻 㪽㫉㫆㫄 㫋㫀㫄㪹㪼㫉 㪸㫅㪻 㪹㫃㫆㫊㫊㫆㫄 㪹㫐
㫎㫀㫃㪻 㪿㫆㫅㪼㫐 㪹㪼㪼㫊 㫋㪿㪸㫋 㫃㫀㫍㪼 㫀㫅 㫋㪿㪼 㫋㫉㫆㫇㫀㪺㪸㫃 㪽㫆㫉㪼㫊㫋 㫆㪽 㪥㫀㪾㪼㫉㫀㪸㪅
㪫㪿㫀㫊 㫀㫊 㫌㫊㪼㪻 㪸㫊 㫋㫉㪸㪻㫀㫋㫀㫆㫅㪸㫃 㫄㪼㪻㫀㪺㫀㫅㪼 㪽㫆㫉 㪺㫆㫃㪻㪃 㫊㫂㫀㫅
㫀㫅㪽㫃㪸㫄㫄㪸㫋㫀㫆㫅 㪸㫅㪻 㪹㫌㫉㫅 㫎㫆㫌㫅㪻 㪹㫌㫋 㫅㫆㫋 㫆㫅㫃㫐 㪿㪼㪸㫃㫋㪿 㪺㪸㫉㪼㪅
㪟㫆㫎㪼㫍㪼㫉㪃
㫋㪿㪼
㪼㪽㪽㪼㪺㫋
㫆㪽
㪡㫌㫅㪾㫃㪼
㪿㫆㫅㪼㫐
㫆㫅
㫀㫄㫄㫌㫅㫆㫄㫆㪻㫌㫃㪸㫋㫆㫉㫐 㪸㪺㫋㫀㫍㫀㫋㫐 㫀㫊 㫅㫆㫋 㫐㪼㫋 㪽㫆㫌㫅㪻 㪺㫃㪼㪸㫉㫃㫐㪅 㪮㪼
㪿㪸㫍㪼 㫇㫉㪼㫍㫀㫆㫌㫊㫃㫐 㫉㪼㫇㫆㫉㫋㪼㪻 㫋㪿㪼 㪼㪽㪽㪼㪺㫋 㫆㪽 㫅㪸㫋㫌㫉㪸㫃 㪺㫆㫄㫇㫆㫅㪼㫅㫋㫊
㫆㫅 㫀㫄㫄㫌㫅㪼 㫊㫐㫊㫋㪼㫄㪅 㪫㪿㪼㫉㪼㪽㫆㫉㪼㪃 㫎㪼 㪸㫉㪼 㫀㫅㫍㪼㫊㫋㫀㪾㪸㫋㫀㫅㪾 㫋㪿㪼
㪼㪽㪽㪼㪺㫋 㫆㪽 㫁㫌㫅㪾㫃㪼 㪿㫆㫅㪼㫐 㫆㫅 㫀㫄㫄㫌㫅㪼 㫊㫐㫊㫋㪼㫄 㪸㫅㪻 㪸㫅㫋㫀㪄㫋㫌㫄㫆㫉
㪸㪺㫋㫀㫍㫀㫋㫐 㫌㫊㫀㫅㪾 㫄㫀㪺㪼㪅
㩿㪉㪀 㪘㪾㪸㫉㫀㪺㫌㫊 㪙㫃㪸㫑㪼㫀 㪤㫌㫉㫀㫃㫃
㪘㪾㪸㫉㫀㪺㫌㫊 㪹㫃㪸㫑㪼㫀 㪤㫌㫉㫀㫃㫃 㩿㪘㪙㪤㪀 㪿㪸㫊 㪹㪼㪼㫅 㫋㫉㪸㪻㫀㫋㫀㫆㫅㪸㫃㫃㫐 㫌㫊㪼㪻
㪸㫊 㫄㪼㪻㫀㪺㫀㫅㪼 㫀㫅 㪙㫉㪸㫑㫀㫃㪅 㪘㪙㪤 㪿㪸㫊 㪹㪼㪼㫅 㫉㪼㫇㫆㫉㫋㪼㪻 㪽㫆㫉
䋳䋮㪩㪼㫊㪼㪸㫉㪺㪿 㫇㫉㫆㫁㪼㪺㫋㫊 㪸㫅㪻 㪸㫅㫅㫌㪸㫃 㫉㪼㫇㫆㫉㫋㫊
㪸㫅㫋㫀㪄㫋㫌㫄㫆㫉 㪸㪺㫋㫀㫍㫀㫋㫐 㪸㫅㪻 㫀㫄㫄㫌㫅㪼 㪸㪺㫋㫀㫍㫀㫋㫐㪅 㪠㫋 㫀㫊 㫌㫅㪺㫃㪼㪸㫉 㪿㫆㫎
㪮㪼 㪸㫉㪼 㪽㫆㪺㫌㫊㫀㫅㪾 㫆㫅 㪺㫀㪾㪸㫉㪼㫋㫋㪼 㫊㫄㫆㫂㪼㪃 㫎㪿㫀㪺㪿 㫀㫊 㪺㫌㫉㫉㪼㫅㫋㫃㫐
㪘㪙㪤
㪸㫋㫋㫉㪸㪺㫋㫀㫅㪾 㪸㫋㫋㪼㫅㫋㫀㫆㫅㫊 㪸㫊 㪸㫅 㪼㫅㫍㫀㫉㫆㫅㫄㪼㫅㫋㪸㫃 㫇㫉㫆㪹㫃㪼㫄㪃 㪿㪼㫅㪺㪼 㪸㫉㪼
㪸㫅㫋㫀㪄㫋㫌㫄㫆㫉 㪸㪺㫋㫀㫍㫀㫋㫐㪅 㪮㪼 㪿㪸㫍㪼 㪻㪼㫄㫆㫅㫊㫋㫉㪸㫋㪼㪻 㫋㪿㪸㫋 㪼㫏㫋㫉㪸㪺㫋
㫀㫅㫍㪼㫊㫋㫀㪾㪸㫋㫀㫅㪾 㫋㫆 㪼㫃㫌㪺㫀㪻㪸㫋㪼 㫋㪿㪼 㪼㪽㪽㪼㪺㫋 㫆㪽 㫊㫄㫆㫂㫀㫅㪾 㫆㫅 㫋㪿㪼
㫆㪽 㪘㪾㪸㫉㫀㪺㫌㫊 㪹㫃㪸㫑㪼㫀 㪤㫌㫉㫀㫃㫃 㩿㪘㪙㪤㪀 㪸㪺㫋㫀㫍㪸㫋㪼㪻 㫀㫄㫄㫌㫅㪼
㫉㪼㫃㪸㫋㫀㫆㫅㫊㪿㫀㫇 㪹㪼㫋㫎㪼㪼㫅 㫊㫄㫆㫂㪼 㪸㫅㪻 㫇㫌㫃㫄㫆㫅㪸㫉㫐 㫀㫄㫄㫌㫅㪼 㪺㪼㫃㫃㫊㪃
㪽㫌㫅㪺㫋㫀㫆㫅㫊 㫀㫅 㫄㫀㪺㪼㪅 㪟㫆㫎㪼㫍㪼㫉㪃 㫋㪿㪼 㫄㪼㪺㪿㪸㫅㫀㫊㫄 㫆㪽 㫋㪿㪼 㪸㪺㫋㫀㫍㫀㫋㫐
㫇㪸㫉㫋㫀㪺㫌㫃㪸㫉㫐 㪸㫃㫍㪼㫆㫃㪸㫉 㫄㪸㪺㫉㫆㫇㪿㪸㪾㪼㫊㪃 㪸㫅㪻 㫇㫌㫃㫄㫆㫅㪸㫉㫐 㪼㫇㫀㫋㪿㪼㫃㫀㪸㫃
㫆㪽 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅㫊 㪸㫅㪻 㪸㫅㫋㪄㫋㫌㫄㫆㫉 㪸㪺㫋㫀㫍㫀㫋㫐 㪹㫐 㪘㪙㪤 㫀㫊
㪺㪼㫃㫃㫊㪅 㪪㫄㫆㫂㫀㫅㪾 㪿㪸㫊 㪹㪼㪼㫅 㫊㪿㫆㫎㫅 㫋㫆 㫋㫆 㫀㫅㪺㫉㪼㪸㫊㪼 㫇㫉㫆㪻㫌㪺㫋㫀㫆㫅 㫆㪽
㫅㫆㫋 㫎㪼㫃㫃 㪻㪼㪽㫀㫅㪼㪻㪅 㪫㪿㪼㫉㪼㪽㫆㫉㪼㪃 㫎㪼 㪸㫉㪼 㪽㫆㪺㫌㫊㫀㫅㪾 㫆㫅 㫀㫄㫄㫌㫅㪼
㪸㪺㫋㫀㫍㪼 㫆㫏㫐㪾㪼㫅 㪹㫐 㪸㫃㫍㪼㫆㫃㪸㫉 㫄㪸㪺㫉㫆㫇㪿㪸㪾㪼㫊㪃 㫎㪿㫀㪺㪿 㫀㫅㪻㫌㪺㪼 㪛㪥㪘
㪺㪼㫃㫃㫊 㪽㫌㫅㪺㫋㫀㫆㫅㫊 㪸㫊㫊㫆㪺㫀㪸㫋㪼㪻 㫎㫀㫋㪿 㪸㫅㫋㫀㪄㫋㫌㫄㫆㫉 㪸㪺㫋㫀㫍㫀㫋㫐 㪹㫐
㪻㪸㫄㪸㪾㪼 㫀㫅 㫋㪿㪼㫊㪼 㪺㪼㫃㫃㫊㪃 㪸㫅㪻 㫀㫋 㪿㪸㫊 㪸㫃㫊㫆 㪹㪼㪼㫅 㪻㪼㫄㫆㫅㫊㫋㫉㪸㫋㪼㪻 㫋㪿㪸㫋
㪘㪙㪤 㪿㫆㫋 㫎㪸㫋㪼㫉 㪼㫏㫋㫉㪸㪺㫋 㪸㫅㪻 㫀㫋㫊 㪺㪿㪸㫉㪸㪺㫋㪼㫉㫀㫑㪸㫋㫀㫆㫅 㫆㪽
㫋㪿㪼㫀㫉 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅㫊 㫊㫌㪺㪿 㪸㫊 㪸㫅㫋㫀㪾㪼㫅 㫇㫉㪼㫊㪼㫅㫋㪸㫋㫀㫆㫅 㪸㫅㪻
㪼㪽㪽㪼㪺㫋㫀㫍㪼 㪺㫆㫄㫇㫆㫅㪼㫅㫋㪅
㪺㫐㫋㫆㫂㫀㫅㪼 㫇㫉㫆㪻㫌㪺㫋㫀㫆㫅 㪸㫉㪼 㫀㫄㫇㪸㫀㫉㪼㪻㪅 㪠㫋 㪿㪸㫊 㪹㪼㪼㫅 㫊㫌㪾㪾㪼㫊㫋㪼㪻 㫋㪿㪸㫋
㫋㪿㪼㫊㪼 㫀㫅㪿㫀㪹㫀㫋㫀㫆㫅㫊 㫀㫅 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅㫊 㪸㫉㪼 㫉㪼㫃㪸㫋㪼㪻 㫋㫆 㫋㪿㪼
㫀㫅㪺㫀㪻㪼㫅㪺㪼 㫆㪽 㫊㫄㫆㫂㫀㫅㪾㪄㫉㪼㫃㪸㫋㪼㪻 㫇㫌㫃㫄㫆㫅㪸㫉㫐 㪼㫇㫀㫋㪿㪼㫃㫀㪸㫃 㪺㪸㫅㪺㪼㫉 㪸㫅㪻
㫋㫌㫄㫆㫉 㪺㪼㫃㫃 㫇㫉㫆㫃㫀㪽㪼㫉㪸㫋㫀㫆㫅㪃 㪸㫅㪻 㫎㪼 㪸㫉㪼 㫀㫅㫍㪼㫊㫋㫀㪾㪸㫋㫀㫅㪾 㫋㪿㫀㫊
㫉㪼㫃㪸㫋㫀㫆㫅㫊㪿㫀㫇 㪸㫅㪻 㵰㫄㪸㫂㫀㫅㪾 㪸 㫊㪺㫀㪼㫅㪺㪼 㪽㫆㫉 㫊㫄㫆㫂㫀㫅㪾㪅㵱 㪪㫀㫅㪺㪼 㫋㪿㪼
㪽㪸㪺㫋 㫋㪿㪸㫋 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅㫊 㪸㫉㪼 㫊㫌㫇㫇㫉㪼㫊㫊㪼㪻 㪹㫐 㫊㫄㫆㫂㫀㫅㪾 㪸㫅㪻
㫋㫌㫄㫆㫉 㪾㫉㫆㫎㫋㪿㪃 㫎㪼 㪸㫉㪼 㪸㫃㫊㫆 㫀㫅㫍㪼㫊㫋㫀㪾㪸㫋㫀㫅㪾 㫋㪿㪼 㫄㪼㪺㪿㪸㫅㫀㫊㫄㫊
㫎㪿㪼㫉㪼㪹㫐 㫀㫄㫄㫌㫅㫆㪼㫅㪿㪸㫅㪺㫀㫅㪾 㫊㫌㪹㫊㫋㪸㫅㪺㪼㫊 㫄㪸㫐 㪸㪺㫋 㫋㫆 㫉㪼㫊㫋㫆㫉㪼
㫊㫌㫇㫇㫉㪼㫊㫊㪼㪻 㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅㫊㪅
82
㪼㫏㫋㫉㪸㪺㫋
㪸㪺㫋㫀㫍㪸㫋㪼㫊
㫋㪿㪼
㫀㫄㫄㫌㫅㪼
㫊㫐㫊㫋㪼㫄
㪸㫅㪻
䋴䋮⊒⴫⺰ᢥ
㪟㪼㪸㫃㫋㪿 㪸㫅㪻 㪘㪾㫀㫅㪾㪃 㪙㪸㫉㪺㪼㫃㫆㫅㪸㩿㪪㫇㪸㫀㫅㪀㪃 㪉㪇㪈㪇㪅㪍㪅㪉㪋㪄㪉㪎
㪤㫀㫐㪸㪿㪸㫉㪸㪃 㪜㫄㫀㫂㫆㪒 㪥㫀㫊㪿㫀㪼㪃 㪤㪸㫂㫀㫂㫆㪒 㪫㪸㫂㫌㫄㫀㪃 㪪㪿㫆㫋㪸㪒 㪤㫀㫐㪸㫅㫆㪿㪸㫉㪸㪃
㪤㪸㫐㫌㫂㫆 㪤㫀㫐㪸㪾㪸㫎㪸 㪃 㪘㫐㪸㫂㪸 㪢㪸㫎㪸㫑㫆㪼 㪃 㪜㫉㫀 㪪㪿㫀㪾㪼㫐㫆㫊㫀 㪃 㪰㫌㫉㫀㫂㫆 㪟㫀㫉㫆㫅㫆㪃
㪟㫀㫉㫆㪸㫂㫀㪒 㪥㫀㫊㪿㫀㪃 㪡㫌㫅㫀㪺㪿㫀㫉㫆㪒 㪰㫆㫊㪿㫀㫀㪼㪃 㪢㫀㫐㫆㫋㪸㫂㪸㪒 㪦㪻㪸㪃 㪟㫀㫉㫆㫊㪿㫀㪒
㪪㪸㫂㫌㫉㪸 㪤㪸㫊㪸㪸㫂㫀 㪃㪫㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀 㪃 㪢㪅㪜㪅 㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪸㫅㪻 㪤㫀㫅㫆㫉㫌
㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪤㫀㫅㫆㫉㫌㪒 㪢㫆㫄㪸㫋㫊㫌㪃 㪤㪸㫊㪸㪿㪸㫉㫌㪒 㪘㫆㫐㪸㫄㪸㪃 㪢㫆㪿㫁㫀㪒 㪟㫆㫉㫀㫌㪺㪿㫀㪃
㪫㪸㫂㪼㫌㪺㪿㫀㪑 㪠㫅㪻㫌㪺㫋㫀㫆㫅 㫆㪽 㫅㪼㫌㫋㫉㫆㫇㪿㫀㫃㫊 㫀㫅 㪣㪣㪆㪉 㫋㫌㫄㫆㫉 㪹㪼㪸㫉㫀㫅㪾 㫄㫀㪺㪼㪅
㪤㪸㫊㪸㪿㫀㫊㪸㪒 㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪫㫆㫉㫌㪑 㪜㫅㫍㫀㫉㫆㫅㫄㪼㫅㫋㪸㫃 㫄㫌㫋㪸㪾㪼㫅㫊 㫄㪸㫐 㪹㪼
㪍㪐㫋㪿 㪘㫅㫅㫌㪸㫃 㪤㪼㪼㫋㫀㫅㪾 㫆㪽 㫋㪿㪼 㪡㪸㫇㪸㫅㪼㫊㪼 㪚㪸㫅㪺㪼㫉 㪘㫊㫊㫆㪺㫀㪸㫋㫀㫆㫅㪃 㪦㫊㪸㫂㪸㪃
㫀㫄㫇㫃㫀㪺㪸㫋㪼㪻 㫀㫅 㪼㫄㪼㫉㪾㪼㫅㪺㪼 㫆㪽 㪻㫉㫌㪾㪄㫉㪼㫊㫀㫊㫋㪸㫅㫋 㫄㫀㪺㫉㫆㪹㪼㫊㪅 㪝㪜㪤㪪
㪉㪇㪈㪇㪅㪐㪅㪉㪉㪄㪉㪋
㪤㫀㪺㫉㫆㪹㫀㫆㫃㫆㪾㫐 㪣㪼㫋㫋㪼㫉㫊㪅 㫀㫅 㫇㫉㪼㫊㫊㪅
㊀ศℭ㉿䇮Ꮉᷝᓀ㚅䇮ᑝ㊁↱㉿ሶ䇮ችᎹ⌀↱ሶ䇮૒ୖᱜ᣿䇮┻ౝ
㪢㫆㫀㪺㪿㫀㫉㫆 㪰㫆㫊㪿㫀㫄㫆㫋㫆㪃 㪫㫊㫌㫅㪸㫆 㪢㫀㫊㪿㫀㪻㪸㪃 㪟㫀㫉㫆㫊㪿㫀 㪥㪸㫂㪸㫅㫆㪃 㪤㪸㫊㪸㪿㫀㫉㫆
ታ䋺ⱎⱣ䈮䉋䉎᛫૕↥↢ᯏ⢻䈻䈱ᓇ㗀䇯╙ 㪍㪇 ࿁ᣣᧄ䉝䊧䊦䉩䊷
㪤㪸㫋㫊㫌㫀㪃 㪤㪸㫊㪸㪿㪸㫉㫌 㪪㪿㫀㫅㪄㪰㪸㪃 㪫㪸㫂㪼㫋㫆㫊㪿㫀 㪪㪿㫀㫄㪸㪻㪸㪃 㪪㪿㫀㪾㪼㫉㫌 㪥㪸㫂㪸㫀㪃 㪡㫀㫉㫆
ቇળ⑺ቄቇⴚᄢળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉㪌㪄㪉㪎
㪠㫄㪸㫅㫀㫊㪿㫀㪃 㪤㫀㫅㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪰㪸㫊㫌㫆 㪟㫀㫊㪸 㪸㫅㪻 㪦㫊㪸㫄 㪤㪸㫑㪻㪸㪑
ᑝ㊁↱㉿ሶ䇮ችᎹ⌀↱ሶ䇮૒ୖᱜ᣿䇮Ꮉᷝᓀ㚅䇮㊀ศℭ㉿䇮Ⓑ⾐䈜
㪠㫅㫋㪼㫉㫃㪼㫌㫂㫀㫅㪄㪉㪏㪙 㪸㪺㫋㫊 㫊㫐㫅㪼㫉㪾㫀㫊㫋㫀㪺㪸㫃㫃㫐 㫎㫀㫋㪿 㪺㫀㫊㫇㫃㪸㫋㫀㫅 㫋㫆 㫊㫌㫇㫇㫉㪼㫊㫊 㫋㪿㪼
䉂䉏䇮᧻↰ୃ䇮㐳੗⧞ሶ䇮┻ౝ੧䇮㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪢㪼㫅㫋䇮┻ౝታ䋺䉺䊋
㪾㫉㫆㫎㫋㪿 㫆㪽 㪿㪼㪸㪻 㪸㫅㪻 㫅㪼㪺㫂 㫊㫈㫌㪸㫄㫆㫌㫊 㪺㪼㫃㫃 㪺㪸㫉㪺㫀㫅㫆㫄㪸㪅 㪡㫆㫌㫉㫅㪸㫃 㫆㪽
䉮ਥᵹᾍ䈮䉋䉎⢖⢩䊙䉪䊨䊐䉜䊷䉳䈱 㪛㪥㪘 ៊்䈫䈠䈱ୃᓳ䇯╙ 㪍㪇
㪠㫄㫄㫌㫅㫆㫋㪿㪼㫉㪸㫇㫐㪅 㫀㫅 㫇㫉㪼㫊㫊
࿁ᣣᧄ䉝䊧䊦䉩䊷ቇળ⑺ቄቇⴚᄢળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉㪌㪄㪉㪎
㪝㫌㫂㫌㪻㪸 㪤㪃 㪢㫆㪹㪸㫐㪸㫊㪿㫀 㪢㪃 㪟㫀㫉㫆㫅㫆 㪰㪃 㪤㫀㫐㪸㪾㪸㫎㪸 㪤㪃 㪠㫊㪿㫀㪻㪸 㪫㪃 㪜㫁㫀㫆㪾㫌 㪜㪚㪃
Ꮉᷝᓀ㚅䇮㊀ศℭ㉿䇮૒ୖᱜ᣿䇮ᑝ㊁↱㉿ሶ䇮ችᎹ⌀↱ሶ䇮┻ౝ
㪪㪸㫎㪸㫀 㪤㪃 㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪢㪜㪃 㪫㪸㫂㪼㫌㪺㪿㫀 㪤㪅㪑 㪡㫌㫅㪾㫃㪼 㪿㫆㫅㪼㫐 㪼㫅㪿㪸㫅㪺㪼㫊
ታ䋺㪣㪧㪪 ⚻㥦ᛩਈ䈮䉋䉎⢖Ἳ∝䈱⺃ዉ䈫ᅢਛ⃿ᯏ⢻䈮䈧䈇䈩䇯╙
㫀㫄㫄㫌㫅㪼 㪽㫌㫅㪺㫋㫀㫆㫅 㪸㫅㪻 㪸㫅㫋㫀㫋㫌㫄㫆㫉 㪸㪺㫋㫀㫍㫀㫋㫐㪅 㪜㫍㫀㪻 㪙㪸㫊㪼㪻 㪚㫆㫄㫇㫃㪼㫄㪼㫅㫋
㪍㪇 ࿁ᣣᧄ䉝䊧䊦䉩䊷ቇળ⑺ቄቇⴚᄢળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉㪌㪄㪉㪎
㪘㫃㫋㪼㫉㫅㪸㫋 㪤㪼㪻㪅 㫀㫅 㫇㫉㪼㫊㫊
ችᎹ⌀↱ሶ䇮Ꮉᷝᓀ㚅䇮㊀ศℭ㉿䇮ᑝ㊁↱㉿ሶ䇮૒ୖᱜ᣿䇮┻ౝ੧䇮
ᑝ㊁↱㉿ሶ ┻ౝታ㪑 䉺䊋䉮ਥᵹᾍ䈮䉋䉎⢖⢩䊙䉪䊨䊐䉜䊷䉳䈱
㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪢㪼㫅㫋䇮┻ౝታ䋺䉝䉧䊥䉪䉴⨧ᾲ᳓᛽಴ᶧ䈮䉋䉎ᅢਛ⃿䈱
㪛㪥㪘 ៊்䈱⺃ዉ䈫䉝䊘䊃䊷䉲䉴䈱ᛥ೙ ੩ㇺ↥ᬺᄢቇ⺰㓸 ⥄ὼ
⿛ൻᵴᕈ䈫䈠䈱᦭ലᚑಽ䇯╙ 㪍㪇 ࿁ᣣᧄ䉝䊧䊦䉩䊷ቇળ⑺ቄቇⴚ
⑼ቇ♽೉ ╙ 㪊㪐 ภ㪃 㪍㪊㪄㪐㪊 㩿㪉㪇㪈㪇㪀
ᄢળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉㪌㪄㪉㪎
㪤㪸㫐㫌㫂㫆 㪤㫀㫐㪸㪾㪸㫎㪸㪃 㪤㫀㫂㫀 㪝㫌㫂㫌㪻㪸㪃 㪰㫌㫉㫀㫂㫆 㪟㫀㫉㫆㫅㫆㪃 㪘㫐㪸㫂㪸 㪢㪸㫎㪸㫑㫆㪼㪃 㪜㫉㫀
䋸䋮䈠䈱ઁ․⸥੐㗄
㪪㪿㫀㪾㪼㫐㫆㫊㪿㫀㪃 㪤㪸㫊㪸㪸㫂㫀 㪪㪸㫂㫌㫉㪸㪃 㪫㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪦㫊㪸㫄㫌 㪤㪸㫑㪻㪸㪃 㪢㪼㫅㫋
㪜㪅 㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪸㫅㪻 㪤㫀㫅㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀㪑 㪜㪽㪽㪼㪺㫋 㫆㪽 㪡㫌㫅㪾㫃㪼 㪿㫆㫅㪼㫐 㫆㫅
䋱䋮ᄖㇱ⾗㊄
㪺㪿㪼㫄㫆㫋㪸㪺㫋㫀㪺 㪸㪺㫋㫀㫍㫀㫋㫐 㫆㪽 㫅㪼㫌㫋㫉㫆㫇㪿㫀㫃㫊㪅 㪡㫆㫌㫉㫅㪸㫃 㫆㪽 㪘㫇㫀㪧㫉㫆㪻㫌㪺㫋 㪸㫅㪻
⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ၮ⋚⎇ⓥ䋨䌃䋩
㪘㫇㫀㪤㪼㪻㫀㪺㪸㫃 㪪㪺㫀㪼㫅㪺㪼㪅 㪉㩿㪋㪀㪑㪈㪋㪐㪄㪈㪌㪋 㩿㪉㪇㪈㪇㪀
ᚢ⇛⊛⎇ⓥၮ⋚ᒻᚑᡰេ੐ᬺ
䋲䋮⍮⽷ᮭ╬
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
䈭䈚
䋳䋮ቇᄖᵴേ
䈭䈚
੩ㇺᐭ₞කᏧળᡰㇱᓎຬ䇮㪡㪜㪛 䊧䉢䊥䊷䇮
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
੩ㇺ㜞╬ᢎ⢒⎇ⓥ䉶䊮䉺䊷೽ᚲ㐳䈭䈬
㪤㫀㫅㫆㫉㫌 㪫㪘㪢㪜㪬㪚㪟㪠㪑 㪜㪽㪽㪼㪺㫋㫊 㫆㪽 㫁㫌㫅㪾㫃㪼 㪿㫆㫅㪼㫐 㫆㫅 㫀㫄㫄㫌㫅㪼
䋴䋮ฃ⾨╬
㪽㫌㫅㪺㫋㫀㫆㫅㫊 㪸㫅㪻 㪸㫅㫋㫀㪄㫋㫌㫄㫆㫉 㪸㪺㫋㫀㫍㫀㫋㫐㪅 㪉㫅㪻 㪠㪚㪤㪬㪟㪃 㪢㫆㫋㪸 㪙㪿㪸㫉㫌
㪉㫅㪻 㪠㪚㪤㪬㪟 ᜗ᓙ⻠Ṷቇળ⾨
㩿㪤㪸㫃㪸㫐㫊㫀㪸㪀㪃 㪉㪇㪈㪇㪅㪈㪅㪈㪋
䋵䋮䈠䈱ઁ
┻ౝ⎇ⓥቶ䊒䊨䊂䊠䊷䉴
䋷䋮ቇળ⊒⴫
䉳䊞䊮䉫䊦䊊䊆䊷䊊䊮䊄䉪䊥䊷䊛
੩ㇺ↥ᬺᄢቇ䈪ᅢ⹏⊒ᄁਛ䋣
㪰㫌㫉㫀㫂㫆 㪟㫀㫉㫆㫅㫆㪃 㪪㪿㫀㫅㫀㪺㪿㫀 㪠㫅㫆㫌㪼㪃 㪤㪸㫐㫌㫂㫆 㪤㫀㫐㪸㪾㪸㫎㪸㪃 㪫㪸㫂㪸㪿㫀㫉㫆 㪠㫊㪿㫀㪻㪸㪃
㪤㪸㫊㪸㪸㫂㫀 㪪㪸㫂㫌㫉㪸㪃 㪪㫌㫄㫀㫉㪼 㪠㫅㪸㪾㪸㪃 㪦㫊㪸㫄㫌 㪤㪸㫑㪻㪸㪃 㪪㫆㫅㫆㫂㫆 㪥㪸㪾㪸㫀㪃 㪫㫆㫉㫌
㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪢㪅㪜㪅 㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪸㫅㪻 㪤㫀㫅㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀㪑 㪚㫀㪾㪸㫉㪼㫋㫋㪼 㪪㫄㫆㫂㪼
㪠㫅㪻㫌㪺㪼㫊
㪛㪥㪘
㪤㪸㪺㫉㫆㫇㪿㪸㪾㪼㫊㪅
㪛㪸㫄㪸㪾㪼
㪅㪘㪫㪪
㪹㫌㫋
㪉㪇㪈㪇
㫅㫆㫋
㪘㫇㫆㫇㫋㫆㫊㫀㫊
㪠㫅㫋㪼㫉㫅㪸㫋㫀㫆㫅㪸㫃
㫀㫅
㪘㫃㫍㪼㫆㫃㪸㫉
㪚㫆㫅㪽㪼㫉㪼㫅㪺㪼㪅
㪥㪼㫎
㪦㫉㫃㪼㪸㫅㫊㩿㪬㪅㪪㪅㪘㪅㪀 㪉㪇㪈㪇㪅㪌㪅㪈㪋㪄㪈㪐
㪤㪸㫐㫌㫂㫆 㪤㫀㫐㪸㪾㪸㫎㪸㪃 㪘㫐㪸㫂㪸 㪢㪸㫎㪸㫑㫆㪼㪃 㪜㫉㫀 㪪㪿㫀㪾㪼㫐㫆㫊㫀㪃 㪰㫌㫉㫀㫂㫆 㪟㫀㫉㫆㫅㫆㪃
㪪㪸㫂㫌㫉㪸 㪤㪸㫊㪸㪸㫂㫀 㪃㪫㫆㫉㫌 㪫㪸㫂㪼㫌㪺㪿㫀㪃 㪢㪅㪜㪅 㪧㫀㫅㫂㪼㫉㫋㫆㫅 㪸㫅㪻 㪤㫀㫅㫆㫉㫌
㪫㪸㫂㪼㫌㪺㪿㫀㪑 㪟㫆㫋 㫎㪸㫋㪼㫉 㪼㫏㫋㫉㪸㪺㫋 㫆㪽 㪘㪾㪸㫉㫀㪺㫌㫊 㪹㫃㪸㫑㪼㫀 㪤㫌㫉㫀㫃㫃 㩿㪘㪙㪤㪀
㫇㫉㪼㫍㪼㫅㫋㫊 㫋㪿㪼 㪸㪾㪼㫀㫅㪾 㫇㫉㫆㪺㪼㫊㫊 㪹㫐 㪸㪺㫋㫀㫍㪸㫋㫀㫆㫅 㫆㪽 㫅㪼㫌㫋㫉㫆㫇㪿㫀㫃 㪽㫌㫅㪺㫋㫀㫆㫅㫊㪅
䈍ᓙ䈤䈚䈩䈇䉁䈜䋣 ┻ౝ⎇ⓥቶ৻ห
㪫㪿㪼 㪈㫊㫋 㪠㫅㫋㪼㫉㫅㪸㫋㫀㫆㫅㪸㫃 㪚㫆㫅㪾㫉㪼㫊㫊 㫆㫅 㪚㫆㫅㫋㫉㫆㫍㪼㫉㫊㫀㪼㫊 㫀㫅 㪣㫆㫅㪾㪼㫍㫀㫋㫐㪃
83
േ‛␹⚻⸃೬ቇ⎇ⓥቶ
ᢎ᝼ ട⮮ ໪ሶ
Laboratory of Animal Anatomy and Neurobiology
Prof. Keiko Kato, D.V.M. Ph.D
䋱䋮⎇ⓥ᭎ⷐ
ࡏ࠷࡝࠿ࠬᲥ⚛ߦࠃࠆ㔍ᴦߡࠎ߆ࠎߩᴦ≮ലᨐࠍ
‫ߩ⚻␹ޟ‬น႟⊛ᄌൻ‫ߪߣޠ‬㧘ᜬ⛯⊛ߥೝỗߦࠃࠅ㧘
ᬌ⸛ߒߚߣߎࠈ㧘ߡࠎ߆ࠎ⊒૞ࠍ␜ߔࡑ࠙ࠬߩ 㧑߇
␹⚻࿁〝ࠍߟߥߋ␹⚻⓭⿠㧔ゲ⚝߿᮸⁁⓭⿠㧕ߩಽጘ
ᄢ⊒૞ࠍቢోߦᶖᄬߒߚ‫ࠬ࠿࡝࠷ࡏޕ‬Ქ⚛߇߽ߚࠄߔ㧘
߿⢈ᄢ㧘ߐࠄߦߪᣂߚߥធ⛯߇↢ߓࠆߎߣߢ㧘␹⚻વ
⇣Ᏹߥ␹⚻น႟ᕈߩᛥ೙߇ߤߩࠃ߁ߥࡔࠞ࠾࠭ࡓߢ↢
㆐‛⾰ߩ⾰෸߮㊂߇ᄌൻߔࠆ‫⚦ࠕ࡝ࠣߚ߹ޕ‬⢩ߩᵴᕈ
ߓࠆߩ߆ࠍ᣿ࠄ߆ߦߒ㧘ߐࠄߦߪࡅ࠻㔍ᴦߡࠎ߆ࠎᴦ
ൻ╬߽⍮ࠄࠇߡ޿ࠆ‫ࠄ߇ߥߒ߆ߒޕ‬㧘޿߹ߛಽሶ࡟ࡌ
≮ߦߟߥߋߎߣߩߢ߈ࠆ᦭ജߥᴦ≮⮎ߢ޽ࠆߎߣߩ⸽
࡞ߩⵣઃߌߦၮߠߊࡔࠞ࠾࠭ࡓߩోኈࠍ⍮ࠆߚ߼ߩ⎇
᣿ߦߟߥߍࠆ‫ޕ‬
ⓥ⺖㗴ߪጊⓍߢ޽ࠅ㧘⃻࿷ߩ⎇ⓥ࡟ࡌ࡞ߪࠬ࠲࡯࠻࿾
ὐ߆ࠄዋߒ೨ߦㅴࠎߛ⁁ᴫߢ޽ࠆ‫ޕ‬ᚒ‫ߪޘ‬㧘ᶏ㚍̆ᚳ
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
᩶૕ࠍਛᔃߣߔࠆᖱേ⸥ᙘ߇ߤߩࠃ߁ߦ↢ߓࠆߩ߆ࠍ
㔍ᴦߡࠎ߆ࠎ⊒∝ᯏ᭴ߩ⸃᣿
ਛᔃߦ㧘ㄝ✼♽ߦ߅ߌࠆ␹⚻น႟ᕈߩ₪ᓧㆊ⒟ࠍ⍮ࠆ
ᚑ㐳ࡎ࡞ࡕࡦߣฃኈ૕ᜟ᛫⮎ࠍᶏ㚍ߦᛩਈߔࠆߎ
ߎߣࠍ⋡⊛ߦ⎇ⓥࠍㅴ߼ߡ޿ࠆ‫ߪߦࠄߐޕ‬㧘ࡔࠞ࠾࠭
ߣߢ㧘ᣂߚߥㆮવሶ⊒⃻ᄌേߦ઻߁ߘ߁᭽࡮߁ߟ᭽∝
ࡓߩ⸃᣿ࠍ߽ߣߦ㧘ߡࠎ߆ࠎ㨪߁ߟ∛࡮ਇ቟㓚ኂߦ⥋
⁁ࠍ⺃ዉߔࠆߎߣ߇ࠊ߆ߞߚ‫ߩߎޕ‬⍮⷗ߪ㧘ߎࠇ߹ߢ
ࠆ␹⚻♖␹∔ᖚߩ⸻ᢿᴺ߿ᴦ≮⮎ߩ㐿⊒ߦߟߥߍߡ޿
⍮ࠄࠇߡ޿ߚᧃ᪳♽ߢߩ૞↪ߦട߃㧘ᚑ㐳ࡎ࡞ࡕࡦߪ
ߊߎߣࠍ⋡ᜰߒߡ޿ࠆ‫ޕ‬
⣖ౝߦ߅޿ߡ߽⊒⃻ߒᚑ㐳ࡎ࡞ࡕࡦࠪࠣ࠽࡞♽ࠍ⊒േ
ᧄ⎇ⓥಽ㊁ߢߪౕ૕⊛ߦᰴߩ⻉ὐߦߟ޿ߡ⎇ⓥࠍዷ
ߒ㧘ߡࠎ߆ࠎ࡮ば⁁ᘒߣࠬ࠻࡟ࠬᕈᖱേ♽㓚ኂߩࡃ࡜
㐿ߒߡ޿ࠆ‫ޕ‬
ࡦࠬࠍ೙ᓮߒߡ޿ࠆߎߣࠍ␜ߔ߽ߩߢ޽ࠆ‫⃻ޕ‬࿷⺰ᢥ
㔍ᴦߡࠎ߆ࠎ⊒∝ᯏ᭴ߩ⸃᣿
ࠍ߹ߣ߼ߡ޿ࠆ‫ޕ‬
㔍ᴦߡࠎ߆ࠎߩ 㧑ࠍභ߼ࠆ஥㗡⪲ߡࠎ߆ࠎߩ
ࠪࠕ࡞㉄ୃ㘼߇೙ᓮߔࠆᖱേ♽␹⚻࿁〝ߩᔕ╵ᯏ᭴
ࡕ࠺࡞ࡑ࠙ࠬߢ޽ࠆᚳ᩶૕ࠠࡦ࡝ࡦࠣࡑ࠙ࠬࠍ↪޿ࠆ
ߩ⸃᣿
ߎߣߢ㧘㧞ߟߩߡࠎ߆ࠎේ࿃ಽሶࠍ⷗ߟߌߚ‫৻ߩߘޕ‬
ࠪࠕ࡞㉄ォ⒖㉂⚛㧔56)CN +8㧕ࠍᰳ៊ߒߚࡑ࠙ࠬ
ߟߢ޽ࠆᚑ㐳ࡎ࡞ࡕࡦߪ㧘ਅု૕ߢ⊒⃻ߒߚᓟోりߦ
⣖߆ࠄ㧘ࠬ࠻࡟ࠬᕈᖱേ♽㓚ኂߦ㑐ࠊࠆ㧘ࠪࠕ࡞㉄ୃ
ㆇ߫ࠇ㧘ᚑ㐳ଦㅴ૞↪ߦട߃ߡ㧘ߚࠎ߬ߊ⾰㧘⢽⾰㧘
㘼ࠍฃߌࠆၮ⾰ࠍត⚝ߒߡ߈ߚ‫ޕ‬⣖ౝߦ߅ߌࠆ࠽࠻࡝
♧㧘᳓㔚⸃⾰ߩઍ⻢૞↪߇޽ࠆߎߣ߇⍮ࠄࠇߡ޿ࠆ߇㧘
࠙ࡓ࠴ࡖࡀ࡞ߩ㊂ߣ⾰ߩᄌൻࠍⷰኤߒߚ‫ޕ‬
⣖ౝߢߩ⋥ធ⊛ߥ૞↪ߪ⍮ࠄࠇߡ޿ߥ߆ߞߚ‫ޕ‬ᚒ‫ߪޘ‬㧘
ࠬ࠻࡟ࠬᕈᖱേ♽㓚ኂ߳ߩ㘺ᢱ៨ขലᨐߩᬌ⸛
ߎߩᚑ㐳ࡎ࡞ࡕࡦ߇ߡࠎ߆ࠎ⊒∝ߩ㑣୯ࠍ᳿ቯߔࠆߎ
ᐔᚑ ᐕᐲ # UVGR ࠪ࡯࠭㗼࿷ൻ‫ޟ‬ᴤ⢽㘺ᢱ៨ข
ߣࠍ⊒⷗ߒߚ‫ߩߎޕ‬ᚑ㐳ࡎ࡞ࡕࡦࠍ੺ߒߚ⣖ౝࠪࠣ࠽
ߦࠃࠆࠬ࠻࡟ࠬᕈᖱേ♽㓚ኂ߳ߩലᨐ‫ߩޠ‬ណᛯࠍᓧߚ‫ޕ‬
࡞ᯏ᭴ߩో⽩ࠍ⸃᣿ߔࠆ‫ޕ‬
⎇ⓥࠍ㐿ᆎߔࠆߚ߼ߦ㧘േ‛ታ㛎ࡉ࡯ࠬࠍ⸳⟎ᓟ৻ㅪ
ࠪࠕ࡞㉄ୃ㘼߇೙ᓮߔࠆᖱേ♽␹⚻࿁〝ߩᔕ╵ᯏ᭴
ߩേ‛ታ㛎ࠍታ〣ߒ㧘┙ߜ਄ߍࠍቢੌߒߚ‫ޕ‬
ߩ⸃᣿
ࡏ࠷࡝࠿ࠬᲥ⚛ߦࠃࠆߡࠎ߆ࠎ⊒૞ᛥ೙ᯏ᭴ߩ⸃
߽߁߭ߣߟߩߡࠎ߆ࠎේ࿃ಽሶߢ޽ࠆࠪࠕ࡞㉄ォ
᣿
⒖㉂⚛㧔56)CN +8㧕ࠍᰳ៊ߒߚࡑ࠙ࠬࠍ૞಴ߒߚߣߎ
Ქ⚛ᚑಽߩߺ߆ࠄߥࠆ #06: ࠍᶏ㚍ᵈ౉ߔࠆߎߣ
ࠈ㧘ߎߩࡑ࠙ࠬߪ㧘߁ߟ࡮ਇ቟㓚ኂ㧘ⅣႺㆡᔕਇో㧘
ߢ㧘ߡࠎ߆ࠎ⊒૞ࠍ␜ߔࡑ࠙ࠬߩ 㧑߇㧘ቢోߦ⊒૞
⌧⌁㓚ኂ㧘ߐࠄߦߪ㧘ࡎ࡞ࡕࡦᕡᏱᕈ㓚ኂ㧔ᚑ㐳㒖ኂ
ࠍᶖᄬߔࠆߎߣࠍ㧘ᐔᚑ㧞㧝ᐕᐲߦ᣿ࠄ߆ߦߒߚ‫ߘޕ‬
߿ᕈⴕേਇో㧕ࠍ⊒∝ߔࠆࠬ࠻࡟ࠬᕈᖱേ♽㓚ኂࡕ࠺
ߎߢᐔᚑ ᐕᐲߪ㧘ήᲥᚑಽࠍ฽߻ $QVQZ㧔#06: ߣ
࡞ߢ޽ߞߚ‫ୃ㉄࡞ࠕࠪޕ‬㘼ࠍฃߌࠆၮ⾰ࠍត⚝ߒ㧘ࠪ
ήᲥᚑಽᷙวᏒ⽼⵾೷㧕ߩߡࠎ߆ࠎ⊒૞ᛥ೙ലᨐࠍᲧ
ࠕ࡞㉄ൻ߇ߤߩࠃ߁ߦߡࠎ߆ࠎ߿ࠬ࠻࡟ࠬᕈᖱേ♽㓚
セᬌ⸛ߒߚ‫⚿ߩߘޕ‬ᨐ㧘ήᲥᚑಽ߇ᷙ౉ߔࠆߣ㧘ߡࠎ
ኂߦ㑐ࠊࠆߩ߆ߦߟ޿ߡ⎇ⓥࠍㅴ߼ࠆ‫ޕ‬
߆ࠎᛥ೙ലᨐ߇⪺ߒߊᷫᒙߔࠆߎߣ߇ࠊ߆ߞߚ‫ޕ‬
ࠬ࠻࡟ࠬᕈᖱേ♽㓚ኂ߳ߩ㘺ᢱ៨ขലᨐߩᬌ⸛
ࠪࠕ࡞㉄ୃ㘼㉂⚛ㆮવሶᰳ៊ߦࠃࠆ㧘ࠬ࠻࡟ࠬᕈ
㧟㧚Research projects and annual reports
ᖱേ♽㓚ኂࡕ࠺࡞ߪ㧘ᚑ㐳㒖ኂࠍ␜ߔ‫ࠬ࡟࠻ࠬޕ‬ᕈᖱ
We investigate the mechanisms of developing
േ♽㓚ኂ߳ߩ㘩ຠ៨ขലᨐࠍᬌ⸛ߔࠆ⎇ⓥࠍ㐿ᆎߒߚ‫ޕ‬
emotional
㘩ຠ៨ข߇ਈ߃ࠆ⣖ઍ⻢߳ߩᓇ㗀ࠍ⸃᣿ߔࠆ‫ޕ‬
connections and the acquisition of neural plasticity in the
memory
limbic system.
ࡏ࠷࡝࠿ࠬᲥ⚛ߦࠃࠆߡࠎ߆ࠎ⊒૞ᛥ೙ᯏ᭴ߩ⸃
in
the
hippocampus-amygdala
Furthermore, we aim to develop of
diagnostic methods and therapeutic drugs for the relief of
᣿
84
epilepsy, anxiety, and mood disorders based on the
㧠㧚⊒⴫⺰ᢥ
clarification of the mechanism.
Okada T., Omoto-Kitao M., Mukamoto M., Nakamura J., Mino M.,
Epileptic model mice and stress-sensitive model mice
Kondo T., Takeshita A., Kusakabe K T., Kato K. Compensatory
showing anxiety, sleep disorder, and hormonal homeostatic
Renal
change were used.
Proliferative Activity and Epidermal Growth Factor. J Vet Med
Our approach was to check the
symptoms of the models by behavioral and physiological
in
Uninephrectomized
Immature
Rats:
Sci. 72:975-80 (2010)
analyses and to clarify causal molecules by histological and
biochemical analyses.
Growth
Kusakabe K T., Abe H., Kondo T., Kato K., Okada T., Otsuki Y.
The topics of research and the
DNA microarray analysis in a mouse model for endometriosis
content were as follows.
and validation of candidate factors with human tissues. J
1: Clarification of mechanism of epilepsy progression.
Reproductive Immunol. 85:149-60 (2010)
Amygdala-kindling model mice is is analogous to
secondarily generalized complex partial seizures and a
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
model of temporal lobe epilepsy in humans, showing
Kato K. (2011) Introduction of a novel molecular mechanism on
abnormal neural plasticity.
Using kindled mice, we have
epilepsy progression: roles of growth hormone signaling in a
found two molecules responsible for epileptogenesis, a
mouse model of temporal lobe epilepsy.
growth hormone and a sialyltransferase.
Book (in press)
We found there
InTech - Epilepsy /
is also a growth hormone signal system in the brain, and
this signal system is deeply related to the development of
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
neuropsychiatric disorders other than epilepsy.
ട⮮໪ሶ ╙24࿁․ቯ㕖༡೑ᵴേᴺੱ
We aim to
ㄭ⇰ࡃࠗࠝࠗࡦ࠳ࠬ
clarify the whole mechanism of growth hormone signaling
࠻࡝࡯ᝄ⥝ળ⼏ ᛛⴚࠪ࡯࠭౏㐿ળ ‫ࠍࠬ࠙ࡑ࡞࠺ࡕޟ‬೑↪
in the brain.
ߒߚᴦ≮⮎ࠬࠢ࡝࡯࠾ࡦࠣ‫ޠ‬㧔⽷㧕ᄢ㒋⑼ቇᛛⴚ࠮ࡦ࠲࡯
2: Clarification of the neural network function based on
2010.8.27
emotions that sialylation controls.
Kato K, Koda T, Kozaki K Application of A2NTX in the
We made a model mouse deficient in alpha 2,
treatment of refractory epilepsy.
87th Annual Meeting of the
3-sialyltransferase, which is the other molecule responsible
Physiological Society of Japan,
Iwate Prefecture Citizen’s
for epilepsy progression.
Cultural Exchange Center, 2010. 5. 20
The alpha 2,3-sialyltransferase
gene-deficient mice showed emotional symptoms including
䋷䋮ቇળ⊒⴫
an anxiety disorder, an environmental adjustment disorder,
sleep disturbance, and hormonal homeostatic disorder.
ട⮮໪ሶ‫ޟ‬੩ㇺ⊒ᧂ᧪ഃㅧဳ↥ᬺഃ಴ㅪ៤᜚ὐ‫ ޠ‬ᄢቇࠪ࡯
We aim to find the acceptor substrate of alpha
࠭⺑᣿⊒⴫ળ ࠬ࠻࡟ࠬ㓚ኂࠍ✭๺ߔࠆ㘩ຠ࡮ᴦ≮⮎ߩ
2,3-sialyltransferase and
㐿⊒ ੩ㇺ࡝ࠨ࡯࠴ࡄ࡯ࠢ 2011.2.23
to investigate the effects of
ട⮮໪ሶ ࠪࠕ࡞㉄ォ⒖㉂⚛ㆮવሶᰳ៊ߦၮߠߊࠬ࠻࡟ࠬ
sialylation on the development of epileptogenesis and
ᕈᖱേ♽㓚ኂࡕ࠺࡞ࡑ࠙ࠬߩ⏕┙ ╙ 108 ࿁㑐⷏ታ㛎
emotional symptoms.
േ‛⎇ⓥળ
3: Effect of food intake on stress-sensitive model mice.
The stress-sensitive model mice showed growth
੩ㇺᏒ൘ᬺ㙚‫ޠߖߞ߼ߎ߿ߺޟ‬2010.12.10
Keiko Kato, Kanno Hiroki, Yoshio Hirabayashi. Progression of
inhibition according with decreases of growth hormone and
epilepsy
IGF1 within the plasma.
We started research to examine
signaling.( ߡࠎ߆ࠎ߅ࠃ߮ਇ቟㓚ኂ⺃ዉ߳ߩ⣖ᚑ㐳ࡎ
the effect of food intake on the behavior of mice in
࡞ࡕࡦࠪࠣ࠽࡞♽ߩ㑐ਈ) Neuro2010 ␹ᚭࠦࡦࡌࡦࠪ
November, 2010.
࡚ࡦ࠮ࡦ࠲࡯
4: Clarification of inhibitory mechanism of epileptic
investigated
the
delivery
via
brain
growth
hormone
2010.9.4
abnormality of alpha 2,3-sialyltransferase (ST3Gal IV)
of
gene-deficient mice ╙ 25 ࿁࿖㓙♧⾰ࠪࡦࡐࠫ࠙ࡓ
botulinum
᐀
ᒛࡔ࠶࠮ 2010.8.5
neurotoxins directly into the seizure focus of the brain to
ട⮮໪ሶ㧘⩲㊁
prevent epileptic seizures using a model of temporal lobe
epilepsy.
anxiety
K. Kato, Y. Kobayashi, S. Okuma, Y. Hirabayashi. Perinatal
seizures with botulinum neurotoxin.
We
and
ᜏ㧘ᐔᨋ⟵㓶 ஥㗡⪲ߡࠎ߆ࠎࡕ࠺࡞㧔ᚳ
᩶૕ࠠࡦ࠼࡝ࡦࠣ㧕ࡑ࠙ࠬߣᚑ㐳ࡎ࡞ࡕࡦ࡮ᶏ㚍ᵈ౉
As a result, administration of the neurotoxin
into the hippocampus make seizures disappear in 50% of
ࡑ࠙ࠬߦ߅ߌࠆㆮવሶ⊒⃻Ყセߣⴕേቇ⊛⸃ᨆ
mice with kindled seizures.
࿁ᣣᧄታ㛎േ‛ቇળ✚ળ ੩ㇺ࠹࡞ࠨ
We aim to investigate the
mechanisms about how the neurotoxin abolishes the
䋸䋮䈠䈱ઁ․⸥੐㗄
abnormal neural plasticity of epilepsy.
㪈㪅
85
ᄖㇱ⾗㊄
2010.5.13
╙ 57
# UVGR ⎇ⓥᚑᨐᦨㆡዷ㐿ᡰេ੐ᬺࡈࠖ࡯ࠫࡆ࡝࠹ࠖࠬ࠲
࠺ࠖน⢻ᕈ⊒ជ࠲ࠗࡊ
ࠪ࡯࠭㗼࿷ൻ
#5'
ࠬ࠻࡟ࠬ㓚ኂࠍ⸃ᶖߔࠆᴤ⢽㘩ຠߩ㐿⊒
㪉㪅
⍮᧚ᮭ╬
࿖ 㓙 ․ ⸵ ಴ 㗿 㧦 2%6,2 ‫ ޟ‬%QORQUKVKQP HQT
UETGGPKPI QH VJGTCRGWVKE FTWI HQT RTGXGPVKPI QH
GRKNGRU[ YKVJ UKIPCNKPI U[UVGO QH ITQYVJ JQTOQPG ߡ
ࠎ߆ࠎᴦ≮⮎ߩࠬࠢ࡝࡯࠾ࡦࠣᣇᴺ‫ޠ‬
㪊㪅
ቇᄖᵴേ
ᣣᧄ♧⾰ቇળ࡮ᣣᧄ␹⚻ൻቇળ⹏⼏ຬ
㪋㪅
ฃ⾨╬
ߥߒ‫ޕ‬
㪌㪅
䈠䈱ઁ
᎑ᧄિ㓶‫ޔ‬ਛ᧛ᥰብ‫ޔ‬ᵤਅ⧷᣿‫ޔ‬ട⮮໪ሶ, ᄢቇ㒮㑆ද
ቯߩߚ߼ߩ╙৻ᰴ⸰࠲ࠗ࿅: Faculty of Science, Mahidol
University, Chulabhorn Research Institute, Faculty of
Veterinary Science, Mahidol University, Faculty of Science,
Kasesart University Faculty
of
Science, 2011, 2.28-3.5
86
േ‛↢ℂቇ⎇ⓥቶ
ᢎ᝼
Laboratory of Animal Physiology and Neurobiology
Prof. Toshiyuki Saito, DVM, Ph.D
㥲⮮
ᢅਯ
.
㧝㧚⎇ⓥ᭎ⷐ
୘૕䊧䊔䊦䈪䈱⣖䈱ᯏ⢻ᄌൻ䉕⹏ଔ䈜䉎䈢䉄䈮䈲䇮㕖᜔
േ‛↢૕ᯏ⢻ቇಽ㊁䊶↢ℂቇ䈪䈲䇮䉴䊃䊧䉴䈏⣖䈮ਈ䈋
᧤䈪䈪䈐䉎䈣䈔㕖ଚⷅ䈱᷹ቯ♽䈏ᦸ䉁䈚䈇䇯䈖䈱䈢䉄䈮
䉎ฃ䈔䉎ᓇ㗀䈫㓚ኂ䉕ฃ䈔䈢⣖䈱␹⚻ᯏ⢻࿁ᓳ䈮ὶὐ䉕
ᔅⷐ䈭᷹ቯ䊶⹏ଔ♽䈱㐿⊒䉕ㅴ䉄䈩䈇䉎䇯
䈅䈩䈢⎇ⓥ䉕ዷ㐿䈚䈩䈇䉎䇯
ᓥ᧪䈎䉌⥄↱ⴕേਅ䈪䈱␹⚻ᵴേᄌൻ䉕⸘᷹䈜䉎ᛛⴚ
ੱ䉇േ‛䈏ህ䈭ೝỗ䉕ฃ䈔䈢ᤨ䈮䈲䇮⣖䈎䉌䈱ᜰ઎䈮䉋
䉕㐿⊒䈚䈩䈐䈢䈏䇮䈖䉏䉌䈱ၮ⋚ᛛⴚ䉕䉅䈫䈮᳢↪ᕈ䈱㜞
䈦䈩䈇䉒䉉䉎䉴䊃䊧䉴෻ᔕ䈏↢䈛䉎䇯䈖䈱ᤨ䇮૕ౝ䈪䈲੤ᗵ
䈇ᣂ䈢䈭᷹ቯ♽䉕᭴▽䈜䉎䈖䈫䉕⋡ᜰ䈚䈩䈇䉎䇯
␹⚻♽䈱ᵴേ䈏ᵴ⊒䈮䈭䉎䈫䈫䉅䈮䇮೽⣢䈎䉌䉫䊦䉮䉮䊦䉼
䋲䋩 ⣖ౝ䈱䉴䊃䊧䉴෻ᔕ䈮㑐ਈ䈜䉎ᣂ䈢䈭ᖱႎવ㆐‛⾰䈱
䉮䉟䊄䇮䉦䊁䉮䊷䊦䉝䊚䊮╬䈱䊖䊦䊝䊮ಽᴲ䈏Ⴧട䈜䉎䇯䉴䊃
ត⚝䈫⸃ᨆ
䊧䉴෻ᔕ⥄૕䈲૕䉕቞䉎෻ᔕ䈪䈅䉎䈏䇮㐳ᦼ䈮䉒䈢䉍䉴䊃䊧
⣖䈏䉴䊃䊧䉴䉕ฃ䈔䈩䈇䉎ᤨ䈱ⴊᵹ⺞▵䇮䊝䊉䉝䊚䊮♽
䉴෻ᔕ䈏⛯䈒䈫䇮⣖䈱ᚳ᩶૕䈏ᄢ䈐䈒䈭䉎৻ᣇ䈪䇮೨㗡೨㊁
䉕ਛᔃ䈫䈜䉎ᖱႎવ㆐♽䈱ᵴേ⺞▵䇮䈅䉎䈇䈲䈠䉏䉌䈱
䉇ᶏ㚍䈏ዊ䈘䈒䈭䉎䈖䈫䉇␹⚻⚦⢩䈏ᄌᕈ䈜䉎╬䈱ᄌൻ䈏
㓚ኂ䉕䉅䈢䉌䈜↢ℂᵴᕈ‛⾰䈏䉁䈣䉒䈎䈦䈩䈇䈭䈇䇯⃻
↢䈛䉎䇯䈖䉏䉌䈱⍮⷗䈲䇮㐳ᦼ䈱䉴䊃䊧䉴෻ᔕ䈲૕䈱ᯏ⢻䉕
࿷䇮䈠䈱୥⵬䈫䈭䉎⣖ౝ↢ℂᵴᕈ‛⾰䈱ត⚝䈫⣖ౝಽᏓ䇮
⛔ᓮ䈜䉎਄䈪㊀ⷐ䈭⣖䈮㓚ኂ䉕ਈ䈋䉎䈖䈫䉕␜ໂ䈚䈩䈇䉎䇯
ฃኈ૕䈱䉝䊚䊉㉄㈩೉╬䈱⸃ᨆ䉕ㅴ䉄䈩䈇䉎䇯
⎇ⓥ䈱ਛ䈪䈲䇮䉴䊃䊧䉴䉕ฃ䈔⛯䈔䈩䈇䉎⣖䈱ਛ䈪↢䈛䉎␹
⚻ᄌᕈ䈱ේ࿃䉕᣿䉌䈎䈮䈜䉎䈢䉄䇮⣖䈱ⴊᵹ⺞▵䇮䊝䊉䉝
㧞㧚 ᧄᐕᐲߩ⎇ⓥᚑᨐ
䊚䊮␹⚻♽䈱ᯏ⢻ᄌൻ䈍䉋䈶೽⣢⊹⾰䊖䊦䊝䊮䈱⣖䈮ਈ
䋱䋩 㕖᜔᧤⁁ᘒ䈪⣖䈱␹⚻ᯏ⢻ᄌൻ䉕⸘᷹䈜䉎䈢䉄䈮䇮
䈋䉎ᓇ㗀╬䉕⸃ᨆ䈜䉎䈖䈫䉕ᩇ䈫䈚䈩䈇䉎䇯䉁䈢䇮䈖䉏䉌䈱⎇
ή✢䉕↪䈇䈢⸘᷹♽䈱㐿⊒䈫䈠䈱⹏ଔ䉕ⴕ䈦䈢䇯䈖䉏䉁䈪
ⓥ䈪ᓧ䉌䉏䈢ᚑᨐ䉕䉅䈫䈮䇮䉴䊃䊧䉴䈪㓚ኂ䉕ฃ䈔䈢⣖␹⚻
䈱䈫䈖䉐䇮FM (frequency modulation) 䉕↪䈇䈢␹⚻ᵴേ⸘
♽䈱ౣ↢䈫ᯏ⢻࿁ᓳᴺ䉕㐿⊒䈚䈢䈇䈫⠨䈋䈩䈇䉎䇯
᷹♽䈱ା㗬ᕈ䈏⏕⹺䈘䉏䈢䇯䉁䈢䇮⣖ౝ␹⚻ᩭ䈮䈍䈔䉎․
ቯ䈱␹⚻વ㆐‛⾰䈱ᄌൻ䉕ᝒ䈋䉎䈢䉄䇮ᢙ⊖ 㪤㪟㫑 䈱ㅍା
๟ᵄᢙ䉕೑↪䈚䈢቟ଔ䈪᳢↪ᕈ䈱㜞䈇䊃䊤䊮䉴䊚䉾䉺䊷䈱઀
᭽䉕࿕䉄䇮䈠䈱㔇ဳ䉕⹜૞䈚䈢䇯৻ᣇ䇮䊑䉺䈱⣖䉕↪䈇䈢䊝
䊂䊦⎇ⓥ䉕┙䈤਄䈕䉎䈢䉄䇮ᒻᘒቇ⊛䇮␹⚻↢ℂቇ⊛䈭
ၮ⋚䊂䊷䉺䈱ᢛ஻䇮䈖䉏䈮ၮ䈨䈒⸘᷹䊂䊋䉟䉴䈱㐿⊒䈮⌕
ᚻ䈚䈢䇯
䋲䋩 ᚳ᩶૕䈱␹⚻ᵴേ䉇⣖ౝ䉴䊃䊧䉴෻ᔕ䉕ᄢ䈐䈒Ꮐฝ䈜
䉎୥⵬࿃ሶ䈫䈚䈩䇮⣖䈮⼾ን䈮ሽ࿷䈜䉎䉝䊤䉨䊄䊮㉄⺃ዉ
૕䈮ᵈ⋡䈚䈢䇯䈖䈱⺃ዉ૕䈮ኻ䈜䉎ฃኈ૕䈱ዪ࿷䉕᣿䉌䈎
䈮䈜䈼䈒䇮ฃኈ૕䈱⚦⢩ᄖ䊄䊜䉟䊮䈱䉝䊚䊉㉄㈩೉䈫䈠䈱Ⴎ
ၮ㈩೉䉕․ቯ䈜䉎૞ᬺ䉕ⴕ䈦䈢䇯䈇䈒䈧䈎䈱⇣䈭䉎䊒䊤䉟䊙
࿑ 㪈䋮ᧄ⎇ⓥ䈱᭎⇛
䊷䉕૞ᚑ䈚䈢ᓟ䇮䊑䉺䈱⣖䈎䉌䈱 RNA ᛽಴䇮cDNA 䉕㍌ဳ
ᧄಽ㊁䈪䈲ਥ䈮એਅ䈮ㅀ䈼䉎⎇ⓥ䉕ⴕ䈦䈩䈇䉎䇯
䈫䈚䈢 㪧㪚㪩䇮㔚᳇ᵒേ╬䉕ㅢ䈚䈩䇮⋡⊛䈫䈜䉎䈢䉖䈴䈒⾰䉕
䋱䋩 䉴䊃䊧䉴෻ᔕ䈮઻䈉⣖␹⚻ᯏ⢻ᄌൻ䈱⸘᷹䊶⹏ଔᴺ䈱
㐿⊒
87
⏕⹺䈚䈢䇯⃻࿷䇮චಽ䈭㊂䈱᛫ේ䉕ᓧ䉎䈢䉄䈱ᣇᴺ䈮䈧䈇
with scale factors and the cabled data. Reproducibility of
䈩ᬌ⸛䉕ㅴ䉄䈩䈇䉎䇯
the measurements was found between two measurements.
㧟㧚Research projects and annual reports
Background and purpose of research:
2) Amino acid and nucleotide sequences of the receptor
The physiological reaction to stressors involves activation
for arachidonic acid derivatives in the pig brain
of the hypothalamic pituitary adrenal (HPA) axis and the
To investigate regulatory roles of arachidonic acid
sympathetic nervous system. Chronic activation of both
derivatives in the stress response of the pig brain, we
systems may increase a risk for anxiety and stress disorders.
analyzed amino acid and nucleotide sequences of those
Dysregulation of functional coupling especially between the
receptors. After total RNA was extracted, a polymerase
amygdala and other brain regions is considered to underlie
chain reaction was performed. The final PCR product was,
the production of pathological states of anxiety and stress
then,
disorders. In the laboratory, the neural signaling which is
identified.
electrophoresed.
Targeted
protein
was
finally
sensitive to acute and chronic stress has been surveyed in
the central nuclei, and how damaged neurons by stress can
㧠㧚 ⊒⴫⺰ᢥ
be regenerated using experimental animals.
T. Saito, S-E. Fujiwara, K. Hisakura, N. Ohkohchi, T. Akema, S.
Sasamori, K. Konno, E. Kobayashi and T. Yamaguchi: Telemetry
system for recording neural activities in pigs – comparison with
Research topics:
cable system. Brain Res. Bull. in press
1) Development of the wireless system for measuring neural
K. Hisakura, S. Murata, K. Fukunaga, A. Myronovych, S. Tadano,
signals from the brain in freely moving animals,
T. Kawasaki, K. Kohno, O. Ikeda, Y. Shibasaki, S. Paku, N. Ikeda,
2) Neuromodulators to dysregulate neural communication
Y. Nakano, R. Matsuo, K. Konno, E. Kobayashi, T. Saito, H.
by exposure to stressors, and to promote regeneration of the
Yasue, M. Tsutsui, T. Takeshita and N. Ohkohchi: Platelets
damaged neurons in the brain.
prevent acute liver damage after extended hepatectomy in pigs. J.
Hepatobiliary- Pancreat. Sci. 17: 855㵧864 (2010)
Annual reports:
1) Feasibility of telemetry system
㧡㧚 ቇળ⊒⴫
The best way is to record from fully intact, freely moving
㥲⮮ᢅਯ䇮ᄢᾢஜม䇮ਭୖൎᴦ䇮ᄢᴡౝାᒄ䋺Timm ᨴ⦡䈮䉋䉎
animals to understand the neural basis of behavior. We have
䊑䉺䊶ᶏ㚍䈱੝㋦฽᦭␹⚻䈱⸃ᨆ䇯╙ 149 ࿁ᣣᧄ₞කቇળቇⴚ
recently developed the telemetry system for detecting neural
㓸ળ䇮ᣣᧄ₞ක↢๮⑼ቇᄢቇ䇮ᱞ⬿㊁Ꮢ䇮2010.3.26-28
signals from the freely moving animals. To demonstrate the
દ⮮౏৻䇮⋧㚍㚅ቄ䇮ዊፉ↱♿ሶ䇮㥲⮮ᢅਯ䇮᪀ේᱜ⾆䇮ዪඳ
fidelity of the telemetry system, we compared local field
৻䋺䊑䉺ᔃቶ╭䈮䈍䈔䉎ㆃᑧᢛᵹᕈ䉦䊥䉡䊛䉼䊞䊈䊦䉰䊑䊡䊆䉾䊃
potentials by simultaneous recording with a cabled system
䈱ಽᏓ䇯╙ 150 ࿁ᣣᧄ₞කቇળቇⴚ㓸ળ䇮Ꮺᐢ⇓↥ᄢቇ䇮Ꮺᐢ
in the hippocampus. By analysis of recorded data, the high
Ꮢ䇮2010.9.16-18
square of the correlation values were obtained, and more
than 95% of amplitude difference were within 95% of
㧢㧚 ߘߩઁߩ․⸥੐㗄
confidence intervals between the calculated telemetered
䋳䋩 ቇᄖᵴേ ⥄ᴦක⑼ᄢቇ䊶㕖Ᏹൕ⻠Ꮷ
88
ⅣႺⴡ↢ቇ⎇ⓥቶ
ᢎ᝼ ೨↰ ⑺ᒾ
Prof. Akihiko Maeda, D.V.M., Ph.D.
Laboratory of Environmental Hygiene
㪈㪅 ⎇ⓥ䈱᭎ⷐ
䋨㪩㫇㫉㪙㪟㪢㪉㪞㪉 ⚦⢩䋩䉕᮸┙䈚䇮ᧄ⚦⢩䈮᭴ㅧⰮ⊕⾰
⑳䈢䈤䈱り䈱๟䉍䈮䈲䇮ᢙ䈋ಾ䉏䈭䈇⒟䈱᭽䇱䈭
⊒⃻䊔䉪䉺䊷䉕ዉ౉䈜䉎 㪈 䉴䊁䉾䊒ᴺ䋨࿑ 㪈䋩䉕㐿⊒䈚
ᓸ↢‛䈏ሽ࿷䈜䉎䇯䈠䈱ਛ䈮䈲䇮䈇䉐䈇䉐䈭േᬀ‛䉇
䈢䇯
䊍䊃䈮ᗵᨴ䈚䈩∛᳇䉕ᒁ䈐⿠䈖䈜䉅䈱䉅䈅䉏䈳䇮䈠䈉䈪
ỸỶἽἋನᡯᖨႉឋ
ႆྵἫἁἑὊ
䈭䈇䉅䈱䉅䈅䉎䇯䉁䈢䇮⣺ౝ⚦⩶䈱䉋䈉䈮േ‛䈱⣺ౝ䈪
㘩‛䈱ᶖൻ䉕ഥ䈔䉎䉅䈱䉇䇮ᕟ䉌䈒䈲േᬀ‛䈱ㅴൻ䈱
ㆊ⒟䈪㊀ⷐ䈭ᓎഀ䉕ᜂ䈦䈩䈇䉎䈪䈅䉐䈉䉅䈱䉁䈪ሽ࿷
䈜䉎䇯䈖䈱᭽䈮䇮⑳䈢䈤䈱๟䉍䈮ሽ࿷䈜䉎ᓸ↢‛䈲േ
‛䉇ᬀ‛䈫⋧੕䈮ᓇ㗀䈚ว䈦䈩䇮䊚䉪䊨䉮䉴䊝䉴䉇䊙䉪
ᵰᶎᶐᵠᵦᵩᵐᵥᵐ ኬᏘỆ‫ݰ‬λ
䊨䉮䉴䊝䉴䉕ᒻᚑ䈚䈩䈇䉎䇯
ᧄ⎇ⓥಽ㊁䈪䈲䇮ᓸ↢‛䈱ਛ䈪䉅․䈮䇸േ‛䈎䉌䊍
䊃䇹䈅䉎䈇䈲䇸䊍䊃䈎䉌േ‛䇹䈮ᗵᨴ䈜䉎ੱ₞౒ㅢᗵᨴ∝
䋨ੱ⇓౒ㅢᗵᨴ∝䇮േ‛↱᧪ᗵᨴ∝䉁䈢䈲 㪱㫆㫆㫅㫆㫊㫀㫊䋩
䉕ᒁ䈐⿠䈖䈜∛ේᓸ↢‛䈮䈧䈇䈩䇮∛ේᕈ䈱⊒⃻䊜䉦
䊆䉵䊛䈱⸃᣿䉇⥄ὼⅣႺਛ䈪䈱ሽ࿷᭽ᑼ䈱⸃᣿䇮౏
ⴐⴡ↢਄䈱ኻ╷䈱䈢䉄䈱ၮ␆⊛⎇ⓥ䉕ⴕ䈦䈩䈇䉎䇯
ᧄ⎇ⓥಽ㊁䈱⃻࿷䈱ౕ૕⊛䈭⎇ⓥኻ⽎䈲䇮䇸Ⰶ䇹䈏ᇦ
࿑ 㪈 㩿㪝㫀㪾㪅 㪈㪀㪅 䊐䊤䊎䉡䉟䊦䉴䈱 㪭㪣㪧 ૞⵾䈱◲ᤃᴺ
੺䈜䉎േ‛䈫䊍䊃䈱౒ㅢᗵᨴ∝䇮․䈮䊐䊤䊎䉡䉟䊦䉴ᗵ
㩿㪉㪀㪭㪣㪧 䉕↪䈇䈢䊐䊤䊎䉡䉟䊦䉴䈱⸻ᢿᴺ䈱㐿⊒
ᨴ∝䋨ᣣᧄ⣖Ἳ䉇䉡䉣䉴䊃䊅䉟䊦ᾲ䇮䊂䊮䉫ᾲ╬䋩䈪䈅
䊐䊤䊎䉡䉟䊦䉴䈱⸻ᢿ䈮 㪭㪣㪧 䉕૶↪䈜䉎೑ὐ䈲䇮↢
䉎䇯ㄭᐕ䈱࿾⃿᷷ᥦൻ䈮䉋䉎ᇦ੺Ⰶ䈱↢ᕷ▸࿐䈱᜛
ᄢ䈫䇮䈠䉏䈮઻䈉䊐䊤䊎䉡䉟䊦䉴ᗵᨴ∝䈱ᵹⴕၞ䈱᜛
䉡䉟䊦䉴䉕૶↪䈜䉎႐ว䈱ᾘ㔀䈘䉇ᗵᨴ੐᡿䈱⊒↢
ᄢ䈏ෂᗋ䈘䉏䈩䈇䉎䇯ᣣᧄ䈮䈍䈇䈩䉅䇮䈖䉏䉌䈱䉡䉟䊦
䉕⠨ᘦ䈚䈭䈒䈩䉅⦟䈇䈖䈫䈪䈅䉎䇯ฦ⒳䈱䊐䊤䊎䉡䉟䊦䉴
䉴䈱ଚ౉䈫ᵹⴕ䈻䈱ኻ╷䈱⏕┙䈏ᕆോ䈪䈅䉎䇯䈠䈖䈪䇮
䈱ᗵᨴ㐓೎ᴺ䈪䈲↢䉡䉟䊦䉴䈱ᗵᨴਛ๺ᴺ䈏䉯䊷䊦
䊐䊤䊎䉡䉟䊦䉴䈱䊥䊋䊷䉴䉳䉢䊈䊁䉞䉾䉪䉴䋨䉡䉟䊦䉴䈱
䊄䉴䉺䊮䉻䊷䊄ᴺ䈪䈅䉎䇯䈠䈖䈪䇮੹࿁䈲↢䉡䉟䊦䉴䈱
ᩭ㉄䈎䉌䉡䉟䊦䉴䉕૞⵾䈜䉎䋩䉕⏕┙䈚䇮䈖䉏䉕↪䈇䈩
ઍᦧ䈫䈚䈩 㪭㪣㪧 ਛ๺ᴺ䈮䉋䉎ᗵᨴ⸻ᢿᴺ䉕㐿⊒䈚䈢䇯
቟ో䈪᦭ല䈭ᬌᩏᴺ䉕㐿⊒䈜䉎䈫䈫䉅䈮䇮቟ో䈪ലᨐ
࿑ 㪉 䈮䈲䉡䉣䉴䊃䊅䉟䊦䉡䉟䊦䉴䋨㪮㪥㪭㪃 ࿑ 㪉㪘䋩䈫ᣣᧄ
⊛䈭䊪䉪䉼䊮୥⵬ᩣ䈱૞⵾䉕⋡ᜰ䈚䈩䈇䉎䇯
⣖Ἳ䉡䉟䊦䉴䋨㪡㪜㪭㪃 ࿑ 㪉㪙䋩䈱↢䉡䉟䊦䉴䈫 㪭㪣㪧 䈱ਛ๺
⹜㛎䈱⋧㑐䉕⸃ᨆ䈚䈢⚿ᨐ䉕␜䈜䇯䈖䈱⚿ᨐ䉋䉍䇮੹
࿁૞⵾䈚䈢 㪭㪣㪧 ਛ๺⹜㛎䈱᦭ലᕈ䈏␜䈘䉏䈢䇯
″
ᧄ ᐕ ᐲ 䈲 䇮 㩿㪈㪀 䊐 䊤 䊎 䉡 䉟 䊦 䉴 䈱 䉡 䉟 䊦 䉴 ᭽ ☸ ሶ
⁉⁀⁈‡‸⁄⁈⁀⁆‪•
䋨㪭㪣㪧䋩૞⵾䈱◲ଢᴺ䉕㐿⊒䈜䉎䈫䈫䉅䈮䇮㩿㪉㪀㪭㪣㪧 䉕↪
䈇䈢䊐䊤䊎䉡䉟䊦䉴䈱㐓೎⸻ᢿᴺ䉕㐿⊒䈚䈢䇯
㩿㪈㪀䊐䊤䊎䉡䉟䊦䉴䈱䉡䉟䊦䉴᭽☸ሶ䋨㪭㪣㪧䋩૞⵾䈱◲ଢ
‴
‣•••••
‣••••
‼‷⁈‡‸⁄⁈⁀⁆‪•
㪉㪅 ੹ᐕᐲ䈱ㅴዷ䊶ᚑᨐ
‣•••
‣••••
‣•••
‣••
‣••
ᴺ䈱㐿⊒
‣•
㪭㪣㪧 䈫䈲䇮䉡䉟䊦䉴䈱䉭䊉䊛 㪩㪥㪘 䈎䉌䉡䉟䊦䉴䈱Ზ
‣•
‣
‣
䋨᭴ㅧⰮ⊕⾰䋩䉕䈧䈒䉎ㆮવሶ㈩೉䉕㒰෰䈚䈢 㪩㪥㪘䋨䊧
‣•
‣••
‣••• ‣•••• ‣•••••
⁉⁀⁈‡⁂⁄⁀⁆‪•
‣•
‣••
‣•••
‣••••
‼‷⁈‡⁂⁄⁀⁆‪•
䊒䊥䉮䊮䋩䉕䉡䉟䊦䉴䈱Ზ䈪൮䉖䈣☸ሶ䈪䈅䉎䇯ㅢᏱ䈱
㪭㪣㪧 ૞⵾ᴺ䈲䇮㫀㫅 㫍㫀㫋㫉㫆 䈪ォ౮䈚䈢䊧䊒䊥䉮䊮䉕䇮䈖䉏䉕
࿑ 㪉 㩿㪝㫀㪾㪅㪉㪀㪅䉡䉟䊦䉴ਛ๺⹜㛎ᴺ䈫 㪭㪣㪧 ਛ๺⹜㛎ᴺ䈱Ყセ
೎䈮૞⵾䈚䈢᭴ㅧⰮ⊕⾰⊒⃻䊔䉪䉺䊷䈫⚦⢩䈮౒⊒
㪮㪥㪭㩿㪘㪀䈫 㪡㪜㪭㩿㪙㪀䇮䈠䉏䈡䉏䈱↢䉡䉟䊦䉴䉕↪䈇䈢䉡䉟䊦䉴
⃻䈜䉎 㪉 䈧䈱䉴䊁䉾䊒䈪 㪭㪣㪧 䉕૞⵾䈜䉎䇯੹ᐕᐲ䈲䇮
ਛ๺⹜㛎ᴺ䋨ᮮゲ䇮㪧㪩㪥㪫㪏㪇 䋩䈫 㪭㪣㪧 ਛ๺⹜㛎ᴺ䋨❑ゲ䇮
◲ᤃൻ䈜䉎⋡⊛䈪੍䉄䊧䊒䊥䉮䊮ᜬ⛯ⶄ⵾⚦⢩
㪝㪧㪩㪥㪫㪏㪇䋩䉕␜䈜䇯
89
3. Research projects and annual reports
differential sero-diagnosis for flavivirus infections, is a
Many micro-organisms are surrounding of our
virus-neutralizing test. I developed new protocol, a
living environment. Some of them infect with plants
VLP-neutralizing test, and compared the efficiency on
and animals including human, and cause their unique
sero-differentiation to a virus-neutralization test using
diseases to their host, but the others do not. Some
sera obtained from West Nile virus- and Japanese
microbes live in animal intestine and help host
encephalitis virus-infected animals as test samples (Fig.
food-digestion. Some have a role for host plants or
2). My results clearly showed the usefulness of a
animals
microbes
VLP-neutralizing test as similar to a standard
surrounding our environment interact with their host
virus-neutralizing test. Therefore, my new diagnostic
plants
protocol can be use for a differential sero-diagnosis for
evolution.
and
As
animals,
these
and
aspects,
make
micro-
and
macro-cosmos in nature.
flavivirus infections as alternative of a standard
I am studying the pathology, ecology, and other
virus-neutralizing test.
basic researches on zoonses. I, especially, focus on
mosquito-borne flaviviral diseases; Japanese hepatitis,
West Nile fever, and dengue. Recently, mosquito
㪋㪅 ⊒⴫⺰ᢥ
vectors are spreading their living places due to global
Murata, R., Eshita, Y., Maeda, A., Maeda, J., Sakai, A., Tanaka,
warming. And these are becoming great threat on
T., Yoshii, K., Kariwa, H., Umemura, T., and Takashima, I.
public health of all over the world. In Japan, it is urgent
Glycosylation of West Nile virus envelope protein increases
to establish the detection and prevention system for the
In vivo and In vitro viral multiplication in birds. Am. J. Trop.
diseases. To do these, I established a reverse-genetic
Med. Hyg., 82; 696-704 (2010)
system of flaviviruses to develop safe and effective
diagnostic protocols, vaccine candidates, and control
Hasebe, R., Suzuki, T., Makinno, Y., Igarashi, M., Yamanouchi,
and prevention strategies for mosquito-borne flaviviral
S., Maeda, A., Horiuchi, M., Sawa, H., and Kimura, T.
diseases.
Transcellular transport of West nile virus-like particles
across human endothelial cells depends on residues 156 and
(1) Development of simple protocol for making
159 of envelope protein. BMC Microbiol., 10; 165-164.
flavivirus Virus-Like Particle (VLP): VLP is a
(2010)
particle, which is consisted of viral envelope proteins as
particle shell and viral replicon within the particle shell.
Moritoh, K., Maeda, A., Sasaki, N., and Agui, T.
Because replicon is defect of viral structural protein
Deveropement and application of West Nile virus
genes within its genome RNA, therefore VLP can infect
subgenomic replicon RNA expressing secreted alkarine
with its susceptible cells, but not produce new virus
phosphatase. J.Vet. Med. Sci., in press
particles and/or new VLPs. As a standard protocol for
making VLPs, we should prepare in vitro-transcribed
replicons at first, and then, co-transfect with replicons
㪌䋮⪺ᦠ䈍䉋䈶✚⺑
and the expression vectors of virral structural proteins
Ma, H., Ke, C.-W, Maeda, J., Takashima, I., Kurane, I., and
(2-step protocol). Here, I developed more simple
Maeda, A. Epidemiological study of flaviviruses, in
protocol for making VLPs (called as 1-step protocol).
Guangdong province, China, 2005-2007. In “Animal
Briefly, at first, I established the replicon-replicating
viruses” Ed. Maeda, A., pp. 89-102. Trans Research
cell line (RprBHK 2G2 cells). To make VLPs, we just
Network, Kerala, India (2010)
transfect the expression vectors of viral structural
proteins into RprBHK 2G2 cells (Fig. 1).
Maeda, A., Maeda, J., Murata, R., Akiyama, M., Kariea, H.,
Takashima, I., and Kurane, I. Differential sero-diagnosis of
(2) Development of a differential sero-diagnosis for
flaviviruses using subviral particles and virus-like particles.
flavivirus infections: The advantages of diagnosis
In “Animal viruses” Ed. Maeda, A., pp. 103-116. Trans
using VLPs as test materials, not live-viruses, are safety
Research Network, Kerala, India (2010)
and easiness to do that. As a gold-standard of
90
㪌㪀 䈠䈱ઁ
೨↰⑺ᒾ ੱ₞౒ㅢᗵᨴ∝ߩ⸻ᢿ߅ࠃ߮ߘߩᗧ⟵‫⸻ޔ‬ᢿ
ߩᚻᴺ‫ޔ‬RŘ₞ක౏ⴐⴡ↢ቇታ⠌̍₞ක౏ⴐⴡ
੩ㇺ↥ᬺᄢቇ䉥䊷䊒䊮䊶䉨䊞䊮䊌䉴
↢ቇᢎ⢒⎇ୃද⼏ળ✬ ᄢ㒋ᐭ┙ᄢቇ䈫䈱ᄢቇ㑆දቯ
㠽ขᄢቇ䇮ጘ㒂ᄢቇ䈫䈱ᄢቇ㑆දቯ
੩ㇺᏒⅣႺⴡ↢⎇ⓥᚲ䈫䈱౒ห⎇ⓥදቯ
㪍㪅 ᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
Maeda, A., and Ke, Chang-Wen. Epidemiological study of
mosquito-borne diseases in Guangdong province, China.
The Workshop of Network Laboratories on Emergency
Response and Surveillunce of Infectious Diseases in Pan
Pearl River Delta Region (Guangzhou, China), 2010.12.12
㪎㪅 ቇળ⊒⴫
᫪⮮นධሶ䇮೨↰⑺ᒾ䇮૒䇱ᧁት຦䇮቟ዬ㒮㜞ᔒ㪅 䊙䉡䉴
㪦㪸㫊㪈㪹 䈮䉋䉎䊐䊤䊎䉡䉟䊦䉴䉭䊉䊛ⶄ⵾䈱ᛥ೙㪅 ╙ 㪈㪌㪇 ࿁
ᣣᧄ₞කቇ⇇ 㩿Ꮺᐢ㪀㪃 㪉㪇㪈㪇㪅㪐㪅㪈㪎
೨↰⑺ᒾ䇮ᨴ⼱ᪧ䇮⷏㊁૫એ䇮᧛↰⧷㓶䇮ୖᩮ৻㇢㪅 䉡䉣䉴
䊃䊅䉟䊦䉡䉟䊦䉴䊶䊧䊒䊥䉮䊮䈱ᜬ⛯⊛ⶄ⵾⚦⢩ᩣ䈱᮸┙㪅
䊃䉧䊶䊐䊤䊎䊶䈽䉴䉼䉡䉟䊦䉴⎇ⓥળ 㩿᧲੩㪀㪃 㪉㪇㪈㪇㪅㪈㪉㪅㪈㪇
㪏㪅 䈠䈱ઁ
㪈㪀 ᄖㇱ⾗㊄
ᢥㇱ⑼ቇ⋭⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ၮ⋚⎇ⓥ㩿㪙㪀䇸ਛ࿖ᐢ᧲⋭
䈮䈍䈔䉎Ⰶᇦ੺ᕈ䊐䊤䊎䉡䉟䊦䉴ᗵᨴ∝䈱∉ቇ⺞ᩏ䇹
ෘ↢ഭ௛⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ᣂဳ䉟䊮䊐䊦䉣䊮䉱╬ᣂ⥝䊶
ౣ⥝ᗵᨴ∝⎇ⓥ੐ᬺ䇸࿾⃿᷷ᥦൻ䈮઻䈇ᄌൻ䈜䉎ᗵᨴ
∝䈮ኻ䈜䉎ᣧᦼ㒐ᓮᴺ⏕┙䈮㑐䈜䉎⎇ⓥ䇹
ෘ↢ഭ௛⑼ቇ⎇ⓥ⾌⵬ഥ㊄ ᣂဳ䉟䊮䊐䊦䉣䊮䉱╬ᣂ⥝䊶
ౣ⥝ᗵᨴ∝⎇ⓥ੐ᬺ㪄ᄖ࿖䈻䈱⎇ⓥᆔ⸤੐ᬺ 䇸࿾⃿᷷
ᥦൻ䈮઻䈇䉝䉳䉝䈪䈱ᗵᨴ᜛ᄢ䈏ෂᗋ䈘䉏䉎䊐䊤䊎䉡䉟䊦
䉴ᗵᨴ∝䈱∉ቇ⊛⸃ᨆ䈮㑐䈜䉎⎇ⓥ㵪․䈮ਛ࿖䊶ᐢ᧲⋭
䉕ਛᔃ䈮䇹
㪉㪀 ⍮⽷ᮭ╬
․䈮䈭䈚䇯
㪊㪀 ቇᄖᵴേ
Journal 䈱 reviewer
㪋㪀 ฃ⾨ᥲ
․䈮䈭䈚䇯
91
ታ㛎ක⑼ㆮવቇ⎇ⓥቶ
ᢎ᝼ ᧻ᄭ ⠹ਃ
Laboratory of . Genetics in Experimental Medicine
Prof. Kozo Matsumoto, DVM, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
ḩ䈫㑐ଥ䈚䈩䈇䉎䈱䈎䇮䉁䈝䈠䈱ὐ䈎䉌䈱⸃᣿䉕ᆎ䉄䈰䈳䈭
ㄭᐕ䇮⢈ḩ䈱Ⴧᄢ䈮઻䈇䋲ဳ♧ዩ∛䉅䈾䈿Ყ଀䈚䈩Ⴧᄢ䈚
䉌䈭䈇䈱䈪䈅䉎䇯䈠䈱䈢䉄 㪈㪋 䉦ᚲ䈱ㆮવሶ㗔ၞ䈱৻䈧৻䈧
䈩䈇䉎䇯ᚒ࿖䈪⚂䋱ජਁੱㄭ䈇♧ዩ∛ᖚ⠪䈏䈇䉎䈫ផቯ䈘䉏
䉕୘೎䈮䇮ᱜᏱ䊤䉾䊃䈪䈅䉎 㪝㪊㪋㪋 䈻ዉ౉䈚䈢♽⛔䋨䈖䈖䈱䉋䈉
䈩䈍䉍䇮␠ળ਄㕖Ᏹ䈮ᄢ䈐䈭໧㗴䈫䈭䈦䈩䈇䉎䇯⢈ḩ䉕㒐䈕
䈭♽⛔䉕䉮䊮䉳䉢䊆䉾䉪♽⛔䈫๭䈹䋩䉕૞ᚑ䈜䉎ᔅⷐ䈏䈅䉎䇯
䉏䈳䉋䈇䈏䇮⃻ઍ␠ળ䈲ㅒ䈮⢈ḩ䉕↢䉃␠ળ᭴ㅧ䈫䈭䈦䈩
หᤨ䈮 㪝㪊㪋㪋 䊤䉾䊃䉅⢈ḩ䊔䊷䉴䈱 㪝㪊㪋㪋 䊤䉾䊃䈫䈜䉎䈢䉄䇮⢈
䈍䉍䇮⢈ḩჇᄢ䉕᛼䈘䈋䉎䈱䈲䈎䈭䉍࿎㔍䈭⁁ᴫ䈮䈅䉎䇯䈠䈱
ḩㆮવሶ䉕ዉ౉䈚䈢䉮䊮䉳䉢䊆䉾䉪♽⛔䉕૞ᚑ䈜䉎䇯䈖䉏䈪
䉋䈉䈭⁁ᴫ䈮㐓䉂䇮䈭䈟⢈ḩ䈏䋲ဳ♧ዩ∛䉕⺃⊒䈜䉎䈎䉕᣿
Ḱ஻䈲ᢛ䈦䈢䈖䈫䈮䈭䉎䇯
䉌䈎䈫䈚䇮⢈ḩ䈮䈭䈦䈩䉅䋲ဳ♧ዩ∛䉕㒐䈕䉎䉋䈉䈭੍㒐⮎䇮
ᧄ⎇ⓥ䈮䈍䈇䈩䈲䇮♧ዩ∛䉮䊮䉳䉢䊆䉾䉪♽⛔䈫⢈ḩ䉮䊮䉳
ᴦ≮⮎䈱㐿⊒䈏䉋䉍ᔅⷐ䈭⁁ᴫ䈮䈅䉎䈫⠨䈋䉌䉏䉎䇯ὼ䉎䈮
䉢䊆䉾䉪♽⛔䈫䉕੤㈩䈚䈢䉻䊑䊦䉮䊮䉳䉢䊆䉾䉪♽⛔䉕૞ᚑ䈜
⢈ḩ䈮઻䈇䈭䈟䋲ဳ♧ዩ∛䉕⊒∝䈜䉎䈱䈎䇮䈠䈱⊒∝䊜䉦䊆
䉎䇯䈠䉏䈮䉋䉍䇮୘䇱䈱♧ዩ∛ේ࿃ㆮવሶ䈱⢈ḩਅ䈮䈍䈔䉎
䉵䊛䈮㑐䈚䈩䈲䈾䈫䉖䈬ಽ䈎䈦䈩䈇䈭䈇䇯ഃ⮎䈱䈢䉄䈮䈲䈠
േ૞䉕⎇ⓥ䈜䉎䈖䈫䈏ೋ䉄䈩น⢻䈫䈭䉎䈎䉌䈪䈅䉎䇯
䈱⢈ḩ䈮઻䈇 㪉 ဳ♧ዩ∛䉕⊒∝䈞䈚䉄䉎䇮⌀䈱ේ࿃ㆮવሶ
䈱․ቯ䈏ᔅ㗇䈪䈅䉎䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䈚䈎䈚䊍䊃䈲ㆮવ⊛䈮ᄢ䈇䈭䉎䊓䊁䊨㓸࿅䈪䈅䉍䇮ⅣႺⷐ࿃
䉻䊑䊦䉮䊮䉳䉢䊆䉾䉪♽⛔䈱㐿⊒
䉅᭽䇱䈪䇮ఱᒉ䈫䈇䈋䈬䉅ᚑੱᓟ䈱↢ᵴ⠌ᘠ䈲ో䈒⇣䈭䈦䈩
੹ᐕᐲ䈲 㪥㫀㪻㪻㪉㪃 㪥㫀㪻㪻㪋㪃 㪥㫀㪻㪻㪍 䈱ฦ♧ዩ∛ේ࿃ㆮવሶᐳዉ
౉䉮䊮䉳䉢䊆䉾䉪♽⛔䈫⢈ḩ䉮䊮䉳䉢䊆䉾䉪♽⛔䈫䈱 㪝㪈 䉕૞ᚑ
⢈ḩ䈲㪉ဳ♧ዩ∛䉕⺃⊒䈜䉎䇮䈠䈱⊒∝ᯏ᭴䈲䋿!
䈚䈢䇯ᰴ䈇䈪 㪝㪈 หᔒ䉕੤㈩䈚䈩 㪝㪉 䉕૞ᚑㅜ਄䈪䈅䉎䇯↢䉁
䉏䈩䈒䉎ሶଏ䈲䈜䈼䈩♧ዩ∛ㆮવሶ㗔ၞ䈱ㆮવሶ䊙䊷䉦䊷䇮
700 !
䈭䉌䈶䈮⢈ḩㆮવሶ䊙䊷䉦䊷䉕೑↪䈚䈩䇮ㆮવሶဳ䉕᳿ቯ
600!
㕖♧ዩ∛䊤䉾䊃!
OLETF!
!!
૕
㊀
䋨 䋩
LETO!
㪉ဳ♧ዩ∛䊤䉾䊃
500!
䈚䇮䈠䈱ㆮવሶᐳ㗔ၞౝ䈪䈱⚵឵䈋䈱↢䈛䈩䈇䈭䈇䈖䈫䉕⏕
400!
⹺䈚䈢䇯ታ㓙䈮૞ᚑ䍂೑↪䈜䉎䉻䊑䊦䉮䊮䉳䉢䊆䉾䉪♽⛔䈲੍
300!
ቯ䈱♧ዩ∛ㆮવሶᐳో㗔ၞ䈏౉䈦䈩䈍䉍䇮䈎䈧⢈ḩㆮવሶ
200!
䈏ഠᕈ䊖䊝䈮䈭䈦䈩䈇䉎ᔅⷐ䈏䈅䉎䇯䈠䈱䉋䈉䈭䊤䉾䊃䈲ℂ⺰
100!
⊛䈮 㪈㪆㪋 䈚䈎↢䉁䉏䈩䈖䈭䈇䈱䈫䇮ታ㓙䈮೑↪䈜䉎䈱䈲㓶䈱
ㆇേ䉇䉻䉟䉣䉾䊃䈪⢈ḩ䉕ᛥ䈋䉎
䈫OLETF䊤䉾䊃䈲♧ዩ∛䉕⊒∝䈚
䈭䈇䇯⊒∝䈚䈢႐ว䈪䉅૕㊀䉕ᛥ
䈋䉎䈖䈫䈮䉋䉍ᡷༀ䈜䉎䇯!
!
৻ᣇ䇮䉮䊮䊃䊨䊷䊦䈱LETO䈮ㆊ೾
㘩䉕ਈ䈋䇮OLETF䈫ห䈛૕㊀䈮Ⴧ
㊂䈘䈞䈩䉅♧ዩ∛䈲⊒∝䈚䈭䈇䇯!
䉂䈭䈱䈪䇮ታ㓙䈲↢䉁䉏䈢ሶଏ䈱 㪈㪆㪏 ඘䈚䈎೑↪಴᧪䈭䈇䇯
䈠䈱䈢䉄䇮േ‛䈱㐿⊒䇮૞ᚑ䈮ᤨ㑆䈏ᔅⷐ䈪䈅䉎䇯
䋳䋮Research projects and annual reports
䈇䉎䈖䈫䈏ᄙ䈇䇯ᓥ䈦䈩䇮䊍䊃䈪䈱⋥ធ⊛䈭ㆮવ⸃ᨆ䈏ᦸ䉁䈚
Diabetes mellitus is considered one of the main threats to
䈇䈱䈪䈅䉎䈏䇮੹࿁䈱䊁䊷䊙䈱䉋䈉䈭䇮⢈ḩ䈮઻䈉 㪉 ဳ♧ዩ∛
human health in both developed and developing world.
䈱⊒∝ᯏ᭴䈫䈇䈉䇮ㆮવ䈫ⅣႺ䈱ⶄ㔀䈮౉䉍੤䈛䈦䈢⎇ⓥ䉕
Common diseases such as type 2 diabetes mellitus result
ⴕ䈉䈮䈲䇮䉋䉍න⚐ൻ䈚䈢ታ㛎♽䇮ㆮવ⊛䈮ဋ৻䈭㓸࿅䉕ᜬ
from complex interplay among multiple genes, signaling
䈦䈢ታ㛎േ‛䉕೑↪䈜䉎䈚䈎ᣇ╷䈏䈭䈇䇯䉁䈢䇮ታ㛎േ‛䈪
䈅䉏䈳䇮ⅣႺ᧦ઙ䉅⋧ᒰ䈭⒟ᐲ䇮ဋ৻䈫䈜䉎䈖䈫䈏น⢻䈫䈭䉍䇮
䉁䈘䈮ㆮવ䈫ⅣႺⷐ࿃䈱ⶄ㔀♽䉕⸃ᨆ䈜䉎䈮䈲䈉䈦䈩䈧䈔䈭
pathways and environmental factors. Numerous diabetes
animal models have been developed using gene knockout
techniques, which have revealed the critical molecular
䈱䈪䈅䉎䇯䉁䈢⢈ḩ䈮઻䈇 㪉 ဳ♧ዩ∛䉕⊒∝䈜䉎 㪦㪣㪜㪫㪝 䊤
events involved in glucose metabolism and the development
䉾䊃䈏㐿⊒䈘䉏䈩䇮䈠䈱⎇ⓥ䈏น⢻䈫䈭䈦䈢䇯
of complications. However, it is believed that in common
䈚䈎䈚䇮㪦㪣㪜㪫㪝 䊤䉾䊃䈱䉋䈉䈭䇮䈢䈫䈋ဋ৻䈭ㆮવሶ⢛᥊䉕
diseases complete deficiency of a given gene activity is
ᜬ䈧ታ㛎േ‛䉕೑↪䈚䈩䉅䇮䈖䈫䈲䈠䈉න⚐䈪䈲ή䈇䈱䈪䈅
unlikely the causative mutation, but rather the effect of each
䉎䇯䈭䈟䈭䉌䈖䉏䉁䈪䈱ㆮવ⸃ᨆ䈱⚿ᨐ䇮㪦㪣㪜㪫㪝 䊤䉾䊃䈱ⴊ
allele induces small changes of gene activity. There are
♧୯䉕਄᣹䈘䈞䉎♧ዩ∛ේ࿃ㆮવሶᐳ䈲ታ䈮 㪈㪋 䉦ᚲ䉅ᨴ
genetic analyses in human on genes extrapolated from the
⦡૕਄䈮䊙䉾䊒䈘䉏䈢䈱䈪䈅䉎䇯ᓥ䈦䈩䇮䈬䈱ㆮવሶᐳ䈏⢈
functional studies in vitro or in rodents in order to confirm
92
the significance in the development of human diseases. Yet
causative polymorphisms were still largely elusive. An
alternative to the gene knockout model is the use of
spontaneous animal models. The OLETF rat is such a
model of obesity-based type 2 diabetes. Subsequently
produced congenic strains showed that most of the loci
examined were shown to contribute to the increased glucose
levels in 30 week-old males. Interestingly, the phenotypic
features observed in single congenic strain, low fat weight
and low leptin levels for Nidd1/of and high fat weight for
Nidd2/of, were masked in the double congenic, yet
hyperglycemia were further aggravated than either single
congenic strain. In order to investigate an affect of obesity
to these loci, we have also generated a congenic strain
introgressed obesity gene (lpr deficiency). We could
produce a double congenic line with a hyperglycemic gene
(Nidd4, and Nidd6) under obesity condition by crossing
both strains, so that it would be possible to define a gene
specifically
affecting
hyperglycemia
under
obesity
condition.
䋴䋮⊒⴫⺰ᢥ㩿㪉㪇㪈㪇 ᐕᐲಽ㪀
ή䈚
䋵䋮⪺ᦠ䈍䉋䈶✚⺑㩿㪉㪇㪈㪇 ᐕᐲಽ㪀
ή䈚
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬㩿㪉㪇㪈㪇 ᐕᐲಽ㪀
ή䈚
䋷䋮ቇળ⊒⴫㩿㪉㪇㪈㪇ᐕᐲಽ㪀
ዊἑඳਯ䇮㜞ᧁਜ਼䇮㜞↰᪸૫䇮ጟㇱᱜ㓉䇮᧻ᧄ⠹ਃ䇮ᐢᶏ
ஜ䋺ォ౮࿃ሶ 㪪㫍㫇 䈮䉋䉎♖ේ⚦⢩Ⴧᱺ䊶ಽൻ䊒䊨䉫䊤䊛ಾ䉍
ᦧ䈋ᯏ᭴䈱น⢻ᕈ䇮╙ 㪍㪉 ࿁ᣣᧄേ‛ቇળ㑐᧲ᡰㇱᄢળ䇮
䈧䈒䈳Ꮢ䇮㪉㪇㪈㪇㪅㪊㪅㪈㪊
ዊἑඳਯ䇮⪭ว๺ᒾ䇮ጊ↰ት᳗䇮᧻ᧄ⠹ਃ䋺ᄙ࿃ሶᕈ∔ᖚ
ㆮવ⸃ᨆ䈮䈍䈔䉎䇸䋲ᰴ∔ᖚ䊝䊂䊦േ‛䇹䈫䈚䈩䈱䉲䊢䉡䉳䊢
䉡䊋䉣䈱น⢻ᕈ䇮╙ 㪌㪎 ࿁ᣣᧄታ㛎േ‛ቇળ䇮੩ㇺᏒ䇮
㪉㪇㪈㪇㪅㪌㪅㪈㪌
䋸䋮䈠䈱ઁ․⸥੐㗄
ή䈚
93
ᩕ㙃ⴡ↢ቇ⎇ⓥቶ
ᢎ᝼
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪥㫌㫋㫉㫀㫋㫀㫆㫅㪄㫉㪼㫃㪸㫋㪼㪻 㪟㫐㪾㫀㪼㫅㪼
㪧㫉㫆㪽㪅 㪟㫀㪻㪼㫆 㪤㫌㫉㪸㫋㪸㪃 㪛㪅㪭㪅㪤㪅㪃 㪧㪿㪅㪛
䋱䋮⎇ⓥ᭎ⷐ
same right to acquire safe aliment to maintain their healthy
᧛↰ ⧷㓶
቟ో䈭㘩‛䋨േ‛䈪䈲㘺ᢱ䋩䉕ᓧ䉌䉏䉎↢ᵴⅣႺ䈏䇮ஜᐽ
conditions, thereby contributing to humans. As researchers in
䉕⛽ᜬ䈜䉎䈢䉄䈱ᦨૐ㒢ਇนᰳ䈭ⷐ⚛䈪䈅䉎䈖䈫䈲ੱ䉅േ‛
veterinary medical science, we have been interested in
䉅ห䈛䈪䈅䉎䇯䈠䈖䈪䇮േ‛ක⑼ቇ䈱┙႐䈎䉌䇮㘺ᢱ䈱ౝኈ
detecting and reducing feed contaminants that could harm
䉇ਈ䈋ᣇ䇮䈜䈭䉒䈤ᩕ㙃▤ℂ䈏ᅤ૗䈮േ‛䈢䈤䈱ஜᐽ䉕቞
animal health. Our present research purpose is to (1) elucidate
䉍䇮䉁䈢๮䉕቞䉎䋨䈜䈭䉒䈤ⴡ↢䋩઀⚵䉂䈮ኻ䈚䈩䈬䈱䉋䈉䈮
the adverse effects of melamine, a toxic chemical that could
ᓇ㗀䈜䉎䈎䈮䈧䈇䈩䇮↢૕⺞▵ᯏ᭴䋨ઍ⻢䉇఺∉䋩䈱േ䈐䉕
cause kidney stones and kidney failure when ingested, in
⋡ශ䈫䈚䈩⑼ቇ⊛䈮ⵣઃ䈔䉎䈖䈫䉕⎇ⓥ⋡⊛䈫䈜䉎䇯
experimental animals, and (2) establish a rapid, easy and
਄⸥䈱৻Ⅳ䈫䈚䈩䇮ᚒ䇱䈲䇮ㆊ෰ᢙᐕ㑆䈮ਗ਼䉍䇮㘺ᢱ䈮ᷙ
cheap melamine screening method.
౉䈜䉎䉦䊎Ქ䈱ᓇ㗀䉇㒰෰ᴺ䈮䈧䈇䈩⎇ⓥ䈚䇮ᚑᨐ䉕⺰ᢥ
The results obtained this year are summarized as follows:
╬䈪ㆡቱ౏㐿䈚䈩䈐䈢䇯⃻࿷䈲䈠䈱⎇ⓥᣇะ䉕⊒ዷ䈘䈞䇮ᣂ
1: The possible mechanism of melamine cyanurate formation
䈢䈮㘩䊶㘺ᢱਛ䈱䊜䊤䊚䊮ᳪᨴ䈱ᓇ㗀䈮䈧䈇䈩⎇ⓥ䉕ㅴ䉄䈩
We confirmed two different forms, i.e. the needle-shaped
䈇䉎䇯ౕ૕⊛䈮䈲䇮ㄭᐕ䇮੃⵾ຠ䉇䊕䉾䊃䊐䊷䊄䈻䈱ᷙ౉ᳪ
and granular-shaped, of melamine cyanurate, a causative
ᨴ䈮䉋䈦䈩ᄢ䈐䈭␠ળ⊛ᓇ㗀䉇ਇ቟䉕ਈ䈋䈢䊜䊤䊚䊮㘃䉕ኻ
substance of the kidney failure. We also found that the latter
⽎䈮䈚䈩䇮ᰴ䈱⻉ὐ䈮䈧䈇䈩⎇ⓥ䉕ዷ㐿䈜䉎䇯
form is produced under the presence of serum proteins. The
䋱䋩䊜䊤䊚䊮㓚ኂ૞↪䈱઀⚵䉂䈱⸃᣿
detailed mechanism is yet to be clarified but the present
ታ㛎േ‛䉕ㅢ䈚䈩䇮䊜䊤䊚䊮⛎ਈ䈅䉎䈇䈲ᛩਈ䈮䉋䉎⢄
findings seem an
⣢ᯏ⢻䉕ਥኻ⽎䈮䈚䈢ᯏ⢻㓚ኂᯏᐨ䉕⸃᣿䈜䉎䇯
pathogenesis of the melamine-induced urolithiasis.
䋲䋩◲න㪆቟ଔ㪆ㄦㅦ䈭䊜䊤䊚䊮㪄䉴䉪䊥䊷䊆䊮䉫ᴺ䈱⏕┙
important
clue to understand the
2: Development of a melamine screening method
↢↥䊶ᵹㅢ䈅䉎䈇䈲ᶖ⾌⃻႐䈪䉅◲න䊶቟ଔ䈎䈧⚛ᣧ
We developed a tentative melamine screening method in
䈒ⴕ䈋䉎䉴䉪䊥䊷䊆䊮䉫ᬌ಴ᴺ䈱⏕┙䉕⋡ᜰ䈜䇯
artificially tainted milk. The method, making use of melamine
cyanurate formation, can detect the contaminant at a level as
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
low as 5 ȝg/ml, thus indicating the presence of 1mg of
䋱䋩䊜䊤䊚䊮㓚ኂ૞↪䈱઀⚵䉂
melamine in 200ml of milk (equivalent to a tolerable daily
䊜䊤䊚䊮䈏䇮㘃ૃ᭴ㅧ૕䈱৻䈧䈪䈅䉎䉲䉝䊇䊦㉄䈫෻ᔕ䈚䈩
melamine intake (WHO 2008) for a child weighing 5 kg).
⣢⤳䈪⚿⍹ൻ䈚䇮⣢㓚ኂ䉕䉅䈢䉌䈜䈖䈫䈏ᣢ䈮ႎ๔䈘䉏䈩䈇
䉎䇯ᧄᐕᐲ䇮䈠䈱෻ᔕ↢ᚑ‛䊜䊤䊚䊮䉲䉝䊇䊧䊷䊃䈮䈲㊎⁁䈫
䋴䋮⊒⴫⺰ᢥ
㗰☸⁁䈱 㪉 ⒳㘃䈏ሽ࿷䈜䉎䈖䈫䉕⏕⹺䈚䇮䈘䉌䈮䇮㗰☸⁁‛
H. Murata, D. Yamaguchi, A. Nagai and N. Shimada: Reduction of
䈱↢ᚑ䈮䈲ⴊẏ䉺䊮䊌䉪⾰䈏㑐ਈ䈜䉎䈖䈫䉕⷗಴䈚䈢䇯䈠䈱
deoxynivalenol contaminating corn silage by short-term ultraviolet
ᓎഀ䈲ਇ᣿䈣䈏䇮ႎ๔䈘䉏䈩䈇䉎⣢⚿⍹䈲㗰☸⁁䈱ᒻ⁁䉕
irradiation: A pilot study. J. Vet. Med. Sci., in press, 2011
␜䈜䈱䈪䇮⚿⍹ᒻᚑ䈱ᯏᐨ䉕⸃᣿䈜䉎਄䈪⥝๧ᷓ䈇⍮⷗䈫
O. Mikami, M. Kubo, H. Murata, Y. Muneta, Y. Nakajima,
⠨䈋䉎䇯
S.Miyazaki, N. Tanimura and K. Katsuda.: The effects of acute
䋲䋩䊜䊤䊚䊮㪄䉴䉪䊥䊷䊆䊮䉫ᴺ
exposure to deoxynivalenol on some inflammatory parameters in
⹜ᢱ䈫䈚䈩䇮ᣢ⍮Ớᐲ䈱䊜䊤䊚䊮䉕฽䉃‐੃䉕↪䈇䇮శቇ㗼
miniature pigs: J. Vet. Med. Sci., in press, 2011
ᓸ㏜䈅䉎䈇䈲ಽశశᐲ⸘䈮䉋䉎䊜䊤䊚䊮䉲䉝䊇䊧䊷䊃↢ᚑ‛䉕
O. Mikami, H. Yamaguchi, H. Murata, Y. Nakajima and S. Miyazaki.:
ቯᕈᬌ಴䈜䉎◲ᤃᴺ䉕⹜૞䈚䈢䇯䈖䈱ᣇᴺ䈪䈲‐੃ 㪈㫄㫃 ᒰ
Induction of apoptotic lesions in liver and lymphoid tissues and
䈢䉍 㪌㱘㪾 ⒟ᐲ䈱䊜䊤䊚䊮䈱ᷙ౉䉕ᬌ಴䈪䈐䈢䇯䈖䉏䈲䇮㪉㪇㪇㫄㫃
modulation of cytokine mRNA expression by acute exposure to
䋨⃻࿷䈱ᣣᧄ䈱ᦨዋᏒ⽼න૏䋩䈱‐੃ਛ䈮฽䉁䉏䉎 㪈㫄㪾 䈱䊜
deoxynivalenol in piglets. J. Vet. Sci. 11:107-113 (2010)
䊤䊚䊮䈱ሽ࿷䋨૕㊀ 㪌㫂㪾 䈱ੱ䈱⸵ኈ৻ᣣ៨ข㊂㪃 㪮㪟㪦 㪉㪇㪇㪏䋩
䉕ᛠី䈪䈐䉎䈖䈫䈮䈭䉎䇯
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
㧟㧚Research projects and annual reports
H. Murata and K. Otsuki㧦Swine influenza and cytokines: Less of a
As well as humans, all human-associated animals, including
storm, more of a breeze. Vet. J., in press, 2011
livestock, companion and experimental animals, have the
94
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
䈭䈚
䋷䋮ቇળ⊒⴫
䈭䈚
䋸䋮䈠䈱ઁ․⸥੐㗄
㪊㪅ቇᄖᵴേ ㄘᬺ⾗᧚ክ⼏ળኾ㐷ᆔຬ
95
ᗵᨴ∝ቇ⎇ⓥቶ
ಎᢎ᝼ 㜞᪀ ᒄ᮸
Laboratory of Infectious Disease
Assoc. Prof. Hiroki Takakuwa, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
in healthy ducks on farms in northern Vietnam. Microbiol Immunol
⃻࿷䇮਎⇇ਛ䈪㠽䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴䈭䈬䈱ᣂ⥝䊶ౣ⥝
54(1):58-62 (2010)
ᗵᨴ∝䈱⊒↢䈏ᄙᢙႎ๔䈘䉏䈩䈍䉍䇮േ‛䈫䊍䊃䈮ⵍኂ䉕䉅
Y. Fujimoto, H. Ito, K. Shinya, T. Yamaguchi, T. Usui, T. Murase, H.
䈢䉌䈚䈩䈍䉍䇮ᗵᨴ∝䉕䉮䊮䊃䊨䊷䊦䈜䉎䈖䈫䈲㊀ⷐ䈭⺖㗴䈪
Ozaki, E. Ono, H. Takakuwa, K. Otsuki, and T. Ito: Susceptibility
䈅䉎䇯
of two species of wild terrestrial birds to infection with a highly
䋱䋩⥄ὼ⇇䈮䈍䈔䉎㠽䉟䊮䊐䊦䉣䊮䉱䉡䉟䊦䉴䈭䈬䈱∛ේ૕䈱
pathogenic avian influenza virus of H5N1 subtype. Avian Pathol
ㅴൻ䈫વ᠞ᯏ᭴䉕⸃᣿䈜䉎䇯
39(2):95-98 (2010)
䋲䋩ኋਥ䈫∛ේ૕䈱⋧੕૞↪䉕⸃ᨆ䈚䇮∛ේ૕䈱ኋਥၞ䉕᳿
S. Shivakoti, H. Ito, T. Murase, E. Ono, H. Takakuwa, T. Yamashiro,
ቯ䈜䉎࿃ሶ䇮∛ේᕈ䈱⊒⃻ᯏ᭴䇮ኋਥ䈱఺∉ᔕ╵䈱⸃᣿䉕
K. Otsuki, and T. Ito: Development of reverse
ⴕ䈉䇯
transcription-loop-mediated isothermal amplification (RT-LAMP)
䋳䋩ᗵᨴ∝䈱⸻ᢿ䇮੍㒐䈫ᴦ≮ᴺ䈱㐿⊒䉕ⴕ䈇䇮േ‛䈫䊍䊃䈱
assay for detection of avian influenza viruses in field specimens. J
ᗵᨴ∝䉕੍㒐䊶೙࿶䈜䉎䇯
Vet Med Sci 72(4):519-523 (2010)
H. Takakuwa, T. Maruoka, T. Hata, M. Miyazawa, H. Toshimori, and
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
K. Otsuki: Development of a new disinfectant with very strong
㜞∛ේᕈ㠽䉟䊮䊐䊦䉣䊮䉱䈱⊒↢࿾ၞ䈪䈅䉎䊔䊃䊅䊛䈮䈍
anti-influenza viral activity: a preliminary report. Environ Health
䈇䈩䇮ᵹⴕ䈏ႎ๔䈘䉏䈩䈇䈭䈇ᤨᦼ䈮䇮ஜᐽ䈭ኅ㡞䈍䈇䈩䉡
Prev Med 15(2):121-123 (2010)
䉟䊦䉴ಽ㔌䇮䈍䉋䈶ⴊᷡ⺞ᩏ䉕ⴕ䈦䈢䇯䈠䈱⚿ᨐ䇮⺞ᩏ䈚䈢
Y. Sakoda, S. Sugar, D. Batchluun, T. O. Erdene-Ochir, M. Okamatsu,
ኅ㡞䈎䉌 㪟㪌㪥㪈 ੝ဳ䉡䉟䊦䉴䈏ಽ㔌䈘䉏䇮䉁䈢䉡䉟䊦䉴㒶ᕈ䈱
N. Isoda, K. Soda, H. Takakuwa, Y. Tsuda, N. Yamamoto, N.
୘૕䈮䈍䈇䈩䉅 㪟㪌㪥㪈 ੝ဳ䈍䉋䈶 㪥㪪 䈮ኻ䈜䉎᛫૕䈏ᬌ಴䈘
Kishida, K. Matsuno, E. Nakayama, M. Kajihara, A. Yokoyama, A.
䉏䈢䇯䈖䈱䈖䈫䈲䇮ᵹⴕ⊒↢䈏䈭䈇ᤨᦼ䈮䈍䈇䈩䉅䇮㪟㪌㪥㪈 ੝
Takada, R. Sodnomdarjaa, and H. Kida: Characterization of H5N1
ဳ䉡䉟䊦䉴䈏ኅ㡞䈮ᗵᨴ䈚䇮䉡䉟䊦䉴䈏ᓴⅣ䈚䇮ᰴ䈱ᵹⴕ䉕
highly pathogenic avian influenza virus strains isolated from
ᒁ䈐⿠䈖䈚䈢น⢻ᕈ䈏㜞䈇䈖䈫䉕␜䈚䈩䈇䉎䇯
migratory waterfowl in Mongolia on the way back from the
㧟㧚Research projects and annual reports
(2010)
southern Asia to their northern territory. Virology 406(1):88-94
Currently, outbreaks of highly pathogenic avian influenza and
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
other emerging and re-emerging diseases have caused serious
䈭䈚
economical and social disturbances worldwide. To control
these infections is the most important. Our research is focused
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
on:
䈭䈚
1: The evolution and spread mechanism of pathogens such as
avian influenza virus in nature.
2: Studies on the host range determinant in pathogens,
䋷䋮ቇળ⊒⴫
mechanisms of pathogenesis and immune response of the hosts
H. Takakuwa, T. Yamashiro, M. Q. Le, L. S. Phuong, R. Tsunekuni, T.
through in vivo and in vitro analyses of the host-parasite
Usui, H. Ozaki, H. Ito, T. Yamaguchi, T. Ito, K. Otsuki, T. Murase,
interactions.
and E.
3: Development of strategies for the prevention and control of
circulating among healthy poultry bred in farms in northern
the infections.
Vietnam. 4th Annual Meeting EPIZONE, St Malo (France),
Ono: Molecular epidemiology of avian influenza viruses
2010.6.7-10
䋴䋮⊒⴫⺰ᢥ
H. Takakuwa, T. Ito, T. Murase, T. Yamashiro, E. Ono and K. Otsuki:
Molecular epidemiology of avian influenza in northern Vietnam.
H. Takakuwa, T. Yamashiro, M. Q. Le, L. S. Phuong, H. Ozaki, R.
Tsunekuni, T. Usui, H. Ito, T. Yamaguchi, T. Ito, T. Murase, E. Ono,
Workshop on the Influenza Research of J-GRID. The Inaugural
and K. Otsuki: Possible circulation of H5N1 avian influenza viruses
Meeting of the Influenza Consortium, Tokyo (Japan), 2010.7.16
96
H. Takakuwa, T. Yamashiro, M. Q. Le, L. S. Phuong, E. Ono, T. Usui,
R. Tsunekuni, H. Ito, H. Ozaki, T. Yamaguchi, T. Ito, K. Otsuki,
and T. Murase: Molecular epidemiology of avian influenza viruses
in wild birds in northern Vietnam. Asian-African Research Forum
on Emerging and Reemerging Infections 2010, Hanoi (Vietnam)
2010.11.11-12
䋸䋮䈠䈱ઁ․⸥੐㗄
䈭䈚
97
∛ේᓸ↢‛ቇ⎇ⓥቶ
ಎᢎ᝼ ⷏㊁ ૫એ
Laboratory of Virology
Associate Prof. Yoshii Nishino, DVM, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
㪫 ⚦⢩ᰳ៊䊇䊷䊄䊤䉾䊃䈮 㪙㪛㪭 䉕ᗵᨴ䈚䇮ታ㓙䈮 㪫 ⚦⢩ᕈ
⑳㆐䈲ᄙ䈒䈱ᓸ↢‛䈮࿐䉁䉏䈩↢䈐䈩䈇䉎䇯䉡䉟䊦䉴䈲
఺∉ᔕ╵䈏䊗䊦䊅∛䈱⊒∝䉕⺃ዉ䈚䈩䈇䉎䈱䈎䈮䈧䈇䈩⺞
ᓸ↢‛䈱৻ຬ䈪䈅䉎䈏䇮⥄Ꮖⶄ⵾䈱䈢䉄䈮ᔅⷐ䈭ᦨዊ㒢ᐲ
䈼䈢䇯䉁䈢䇮䉡䉟䊦䉴ᩣ䈮䉋䉎∛ේᕈ䈱㆑䈇䈮䈧䈇䈩䉅⺞䈼
䈱ㆮવሶ䈚䈎ᜬ䈢䈭䈇䈢䉄䇮േ‛䉇ᬀ‛䈮ነ↢䈚䇮ኋਥ⚦
䈢䇯䈘䉌䈮ណ᧚䈚䈢⣖䉕ᄢ⣖⊹⾰ㇱ䇮⣖ᐙㇱ䈍䉋䈶ዊ⣖䈮ਃ
⢩ౝ䈱ዊེቭ䉕᜙୫䈚䈩Ⴧᱺ䈜䉎䇯䈠䈱⚿ᨐ䇮ነ↢䈚䈢⚦⢩
ಽഀ䈚䇮⣖䈱ฦㇱ૏䈮䈍䈔䉎䉡䉟䊦䉴ജଔ䉕⺞䈼䈢䇯
䈱⎕უ䇮⚦⢩ᯏ⢻䈱㓚ኂ䈫䈇䈦䈢⋥ធ⊛䈭㓚ኂ䇮䈅䉎䈇䈲䉡
䈠䈱⚿ᨐ䇮㪏 ㅳ㑆䈱ⷰኤᦼ㑆䈮䈍䈇䈩 㪙㪛㪭㪄㪚㪩㪧㪊 ᩣᗵᨴ
䉟䊦䉴᛫ේ䉕⊒⃻䈚䈢ᗵᨴ⚦⢩䈏ኋਥ఺∉ᔕ╵䈎䉌䇸⇣‛䇹
⟲䈪䈲シᐲ䈱∝⁁䇮㪙㪛㪭㪄㪚㪩㪥㪧㪌 ᩣᗵᨴ⟲䈪䈲ᗵᨴ 㪋 ㅳ⋡
䈫⹺⼂䈘䉏䈩ឃ㒰䈘䉏䉰䉟䊃䉦䉟䊮╬䈱ᶧᕈ࿃ሶ䈱↥↢䈏⺃
೨ᓟ䈪⥌ᱫ⊛䈭㊀ᐲ␹⚻∝⁁䉕␜䈚䈢䇯ᗵᨴ 㪉䇮㪋 䈍䉋䈶 㪏
ዉ䈘䉏䉎䈫䈇䈦䈢㑆ធ⊛䈭㓚ኂ䉕ᒁ䈐⿠䈖䈜䇯䈖䈱䉋䈉䈭ᗵᨴ
ㅳ⋡䈱⣖ౝ䉡䉟䊦䉴ജଔ䉕⸃ᨆ䈚䈢䇯ਔᗵᨴ⟲䈮䈍䈇䈩䇮ో
୘૕䈮䈍䈔䉎᭽䇱䈭ᓇ㗀䇮䈇䉒䉉䉎∛᳇䉕⿠䈖䈜䈱䈪䈅䉎䇯
૕䉕ㅢ䈚䈩ᄢ⣖⊹⾰ㇱ䈍䉋䈶⣖ᐙㇱ䈱䉡䉟䊦䉴ജଔ䈲ዊ⣖
⑳㆐䈱⎇ⓥቶ䈪䈲䇮േ‛䈅䉎䈇䈲ੱ₞౒ㅢ䈱䉡䉟䊦䉴ᗵᨴ
䉋䉍᦭ᗧ䈮㜞䈎䈦䈢䇯㪚㪩㪧㪊 ᩣᗵᨴ⟲䈱ᗵᨴ 㪉 䈍䉋䈶 㪏 ㅳ⋡䇮
∝䇮․䈮␹⚻䉡䉟䊦䉴∝䈮⥝๧䈏䈅䉎䇯䈭䈟䈭䉌䇮ਛᨔ␹⚻
䈅䉎䈇䈲 㪚㪩㪥㪧㪌 ᩣᗵᨴ⟲䈱ᗵᨴ 㪉 ㅳ⋡䈮䈍䈇䈩䇮ᄢ⣖⊹⾰
♽䉕ᅢ䉃䉡䉟䊦䉴䈲఺∉ᔕ╵䉕⺃ዉ䈚䈮䈒䈒䇮䉁䈢ⴊᶧ⣖㑐
ㇱ䈫⣖ᐙㇱ䈱㑆䈱䉡䉟䊦䉴ജଔ䈮᦭ᗧᏅ䈲䈭䈎䈦䈢䈏䇮ᗵᨴ
㐷䈱ሽ࿷䈮䉋䉍ઁ䈱⤳ེ䈮Ყ䈼ലᨐ⊛䈭ൻቇ≮ᴺ೷䈏㒢䉌
㪋 ㅳ⋡䈪䈲䇮㪚㪩㪧㪊 ᩣᗵᨴ⟲䈱䉡䉟䊦䉴ജଔ䈲ᄢ⣖⊹⾰ㇱ䈏
䉏䉎䈖䈫䈎䉌ᴦ≮ᴺ䈏࿎㔍䈭႐ว䈏ᄙ䈒䇮␠ળ⊛䈮䈠䈱⸃᳿
⣖ᐙㇱ䉋䉍᦭ᗧ䈮㜞䈎䈦䈢䈱䈮ኻ䈚䇮㪚㪩㪥㪧㪌 ᩣᗵᨴ⟲䈲⣖
䈏ᦸ䉁䉏䈩䈇䉎䈎䉌䈪䈅䉎䇯
ᐙㇱ䈏ᄢ⣖⊹⾰ㇱ䉋䉍᦭ᗧ䈮㜞䈎䈦䈢䇯
⑳㆐䈲䇮䈖䉏䉁䈪䈮䇸䉡䉟䊦䉴ᕈ␹⚻䊶♖␹␹⚻∔ᖚ䈮㑐
ᰴ䈮䇮ㇱ૏Ფ䈱⛮ᤨ⊛䈭䉡䉟䊦䉴ജଔ䈱ᄌൻ䈪䈲䇮ਔ⟲䈫
䈜䉎⎇ⓥ䇹䉕ⴕ䈉䈢䉄䈮䇮䊗䊦䊅∛䉡䉟䊦䉴䋨㪙㪛㪭䋩ᗵᨴ䈮䉋䉍
䉅ᗵᨴ 㪉 䈎䉌 㪋 ㅳ⋡䈮䈎䈔䈩䇮䉡䉟䊦䉴ജଔ䈏⣖䈱ㇱ૏ో䈩
ᒁ䈐⿠䈖䈘䉏䉎䊗䊦䊅∛䈮ὶὐ䉕⛉䉍⎇ⓥ䉕ⴕ䈦䈩䈐䈢䇯䊗
䈪Ⴧട䈚䈢䈏䇮ᗵᨴ 㪋 䈎䉌 㪏 ㅳ⋡䈮䈎䈔䈩䈲䈅䈐䉌䈎䈭䉡䉟䊦
䊦䊅∛䈲䉡䊙䉇䊍䉿䉳䈮ᜬ⛯⊛䈮ᗵᨴ䈚䇮ᤨ䈮⥌ᱫ⊛䈭␹
䉴ജଔ䈱Ⴧട䈲⹺䉄䉌䉏䈭䈎䈦䈢䈚䈭䈎䈦䈢䋨㪚㪩㪧㪊 ᩣᗵᨴ
⚻∔ᖚ䉕ᒁ䈐⿠䈖䈜∛᳇䈫䈚䈩 㪈㪇㪇 ᐕએ਄೨䈎䉌⍮䉌䉏䈩䈇
⟲䋩䇯
䈢䇯ᦨㄭ䈪䈲䇮䊈䉮䇮䉟䊇䇮䉝䊤䉟䉫䊙䇮㠽㘃䇮䊆䊖䊮䉱䊦䇮䈘䉌
䈘䉌䈮䇮ਔ⟲㑆䈱䉡䉟䊦䉴ജଔ䈱Ყセ䉕䈜䉎䈫䇮ᗵᨴ 㪉 䈍䉋
䈮䊍䊃䉕฽䉃᏷ᐢ䈇᷷ⴊേ‛䈮ᗵᨴ䈏⹺䉄䉌䉏䉎ᣂ⥝ᗵᨴ
䈶 㪋 ㅳ⋡䈱ᄢ⣖⊹⾰ㇱ䈍䉋䈶ዊ⣖䈪ਔ䉡䉟䊦䉴⟲䈱㑆䈮᦭
∝䈫䈚䈩⹺⼂䈘䉏䈩䈇䉎䇯䈚䈎䈚䈭䈏䉌䇮䈇䉁䈣∛᳇䈱⊒∝䊜
ᗧᏅ䈏䈭䈇䈱䈮ኻ䈚䇮⣖ᐙㇱ䈲 㪚㪩㪥㪧㪌 ᩣᗵᨴ⟲䈱ᣇ䈏
䉦䊆䉵䊛䈲లಽ䈮⸃᣿䈘䉏䈩䈍䉌䈝䇮䊍䊃䈮䈍䈔䉎વ᠞⚻〝
㪚㪩㪧㪊 ᩣᗵᨴ⟲䉋䉍᦭ᗧ䈮㜞䈎䈦䈢䇯
䉇∛ේᕈ䉅䊑䊤䉾䉪䊗䉾䉪䉴䈱ਛ䈮䈅䉎䇯⑳㆐䈲䇮㪙㪛㪭 䈱ᜬ⛯
∛ℂ⚵❱ቇ⊛䈮䈲䇮䈇䈝䉏䈱䊤䉾䊃䉅⣖Ἳ䈲๒䈘䈭䈎䈦䈢䇯
ᗵᨴᕈ䈫∛ේᕈ䉕ᄙⷺ⊛䈮⺞䈼䉎⋡⊛䈪䇮䊤䉾䊃䉇䊙䉡䉴╬
㊀ᐲ⊒∝䉕⿠䈖䈚䈢 㪚㪩㪥㪧㪌 ᩣᗵᨴ䊤䉾䊃䈲 㪚㪩㪧㪊 ᩣᗵᨴ䊤䉾
䈱ᗵᨴ䊝䊂䊦േ‛䈮䈍䈔䉎∛ᘒ䋨ㆇേ㓚ኂ䈫ⴕേ⇣Ᏹ䋩䈱⸃
䊃䈮Ყ䈼⣖⚵❱䈱⍹Ἧൻ䇮␹⚻⚦⢩䈱ᶖᄬ䉇㓚ኂ䇮䉫䊥䉥
ᨆ䉕ਛᔃ䈮એਅ䈱䉋䈉䈭ὐ䈮䈧䈇䈩⎇ⓥ䉕ⴕ䈦䈩䈇䉎䇯
䊷䉲䉴䇮ᄢ⣖⊹⾰䈱䈵⭯ൻ䈏㗼⪺䈮⹺䉄䉌䉏䇮∛ℂቇ⊛䈮
㪈䋩䉡䉟䊦䉴䉭䊉䊛䈮䈍䈔䉎∛ේᕈ㑐ㅪㆮવሶ䈱หቯ䈫䇮䊤䉾䊃
᳓㗡∝䈫⸻ᢿ䈘䉏䈢䇯
䈍䉋䈶䊙䉡䉴䈮䈍䈔䉎∛ᘒ䈱䉡䉟䊦䉴ቇ⊛䇮∛ℂቇ⊛䇮ⴕേ
ᧄ⎇ⓥ䈮䈍䈇䈩䇮㪚㪩㪧㪊 ᩣ䈍䉋䈶 㪚㪩㪥㪧㪌 ᩣ䉕ᗵᨴ䈚䈢䊇䊷䊄
ቇ⊛⸃ᨆ
䊤䉾䊃䈲䇮㜞䈇⣖ౝ䉡䉟䊦䉴ജଔ䉕␜䈚䇮䉡䉟䊦䉴ᩣ䈮䉋䈦䈩䈲
㪉䋩⣖䈮䈍䈔䉎 㪫㪞㪝㪄㱎㑐ㅪㆮવሶ䈱⊒⃻䈫䉡䉟䊦䉴∛ේᕈ䈫
䊗䊦䊅∛䉅⊒∝䈚䈢䇯䈖䈱䈖䈫䈎䉌䇮㪙㪛㪭 ᗵᨴ䈮䉋䉎䊗䊦䊅∛
䈱㑐ㅪᕈ䈮䈧䈇䈩
䈱⊒∝䈮䈲 㪫 ⚦⢩ᕈ఺∉ᔕ╵䈮䉋䉎⣖Ἳ㩿Ἳ∝ᕈ෻ᔕ㪀䈱㑐
㪊䋩䉡䉟䊦䉴䈏ኋਥേ‛䈮㚔ൻ䈜䉎㓙䈱䉡䉟䊦䉴䉭䊉䊛䈱ᄌ⇣
ਈ䈚䈭䈇ᯏᐨ䈏ሽ࿷䈜䉎䈖䈫䈏᣿䉌䈎䈮䈘䉏䈢䇯䉁䈢䇮∛ේᕈ
ᯏ᭴䈮䈧䈇䈩
䈱㜞䈇 㪚㪩㪥㪧㪌 ᩣᗵᨴ⟲䈲 㪚㪩㪧㪊 ᩣᗵᨴ⟲䈮Ყセ䈚䈩䇮ᄢ⣖
㪋䋩䊗䊦䊅∛⊒∝䈮䈍䈔䉎ኋਥ࿃ሶ䈱㑐ਈ䈮䈧䈇䈩
⊹⾰ㇱ䉋䉍䉅⣖ᐙㇱ䈱䉡䉟䊦䉴ജଔ䈏㜞䈎䈦䈢䈖䈫䈎䉌䇮䉡䉟
㪌䋩䉡䉟䊦䉴Ⱞ⊕⾰䈱⚦⢩ౝዪ࿷ᯏ᭴䈫∛ේᕈ䈫䈱㑐ㅪᕈ䈮
䊦䉴䈱⚵❱ᜰะᕈ䈱㆑䈇䈏∛ේᕈ䈱㆑䈇䈮䈭䈦䈩䈇䉎น⢻
䈧䈇䈩
ᕈ䈏␜ໂ䈘䉏䈢䇯
㪚㪩㪧㪊 ᩣ䈫 㪚㪩㪥㪧㪌 ᩣ䈮䈲䇮䉒䈝䈎䋴䈧䈱Ⴎၮ㈩೉䈱㆑
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
䈇䈚䈎⹺䉄䉌䉏䈩䈇䈭䈇䈏䇮䈠䈱Ꮕ⇣䈏∛ේᕈ䈱ᄢ䈐䈭㆑䈇
䊗䊦䊅∛䉡䉟䊦䉴ᗵᨴ䊇䊷䊄䊤䉾䊃䈱⸃ᨆ
䉕ᒁ䈐಴䈜䈖䈫䇮䈘䉌䈮ᱜᏱ䈭఺∉ᔕ╵䉕␜䈜 㪣㪼㫎㫀㫊 䊤䉾䊃䇮
㪝㪊㪋㪋 䊤䉾䊃䈫ห᭽䈮䊇䊷䊄䊤䉾䊃䈪䉅᣿䉌䈎䈮⊒∛ᕈ䈱Ꮕ⇣䈏
98
⹺䉄䉌䉏䈢䈖䈫䈲䇮఺∉ᔕ╵ଐሽᕈ∔ᖚ䈫⠨䈋䉌䉏䈩䈐䈢䊗
䋴䋮⊒⴫⺰ᢥ
䊦䊅∛䉕ᩮᐩ䈎䉌⠨䈋䈭䈍䈜⚿ᨐ䈪䈅䉍䇮ᭂ䉄䈩⥝๧ᷓ䈇䇯
K. Sugiyama, R. Ooishi, Y. Nishino, M. Funaba, and M.
Murakami: Nucleotide sequence of canine Smad3. Biochem.
Genet. 48: 202-207 (2010)
M. Murakami, M. Suzuki, Y. Nishino, and M. Funaba:
Regulatory expression of genes related to metastasis by
TGF-E and activin A in B16 murine melanoma cells. Mol.
Biol. Rep. 37: 1279-1286 (2010)
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
⷏㊁૫એ䋨౒⪺䋩䇸േ‛䈱ᗵᨴ∝ ╙ 㪊 䋨㪠㪠㪅 ฦ⺰ 㚍䇮㪈㪊㪅䊗䊦䊅
∛䉡䉟䊦䉴ᗵᨴ∝䋩䇹ㄭઍ಴ 䇮䋨ශ೚ਛ䇮㪉㪇㪈㪈䋩
䋶㪅᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
⷏㊁૫એ䋺ታ㛎േ‛䈮䈍䈔䉎䊗䊦䊅∛㪅 ╙䋴࿁ᣣᧄ䊗䊦䊅䉡䉟䊦䉴
⎇ⓥળ౏㐿䉲䊮䊘䉳䉡䊛䇮ᏪᐢᏒ䇮㪉㪇㪈㪇 㪅㪐㪅 㪈㪏
䋷䋮ቇળ⊒⴫
⷏㊁૫એ䇮ጟጊᥓผ䇮᧛਄ ⾫䇮੗਄⌀♿䇮᢬⋡ᐢ㇢䇮⥱႐ᱜᐘ䋺
㤗Ꮣᄢቇ䈮䈍䈔䉎䊗䊦䊅∛䉡䉟䊦䉴䋨㪙㪛㪭䋩⎇ⓥ䈱✚᜝䈫੹ᓟ䈱
ዷᦸ䇯╙ 㪊 ࿁ᣣᧄ䊗䊦䊅䉡䉟䊦䉴⎇ⓥળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪈㪅㪉㪉
ੑችᤩ㇢䇮⮮㊁ኡ䇮ዊፉ䈘䉇䇮⑔ේ⵨ม䇮੉ጟ┨৻㇢䇮╣Ꮉℙሶ䇮
᢬⋡ᐢ㇢䇮⷏㊁૫એ䋺㪙㪛㪭 ᗵᨴ䊇䊷䊄䊤䉾䊃䈱ਛᨔ␹⚻♽䈮䈍䈔
䉎䉡䉟䊦䉴 㪩㪥㪘 䈱ቯ㊂䇯╙ 㪈㪌㪇 ࿁ᣣᧄ₞කቇળ䇮ᏪᐢᏒ䇮㪉㪇㪈㪇㪅
㧟㧚Research projects and annual reports
㪐㪅㪈㪍㪄㪈㪏㪅
We are surrounded by a lot of microbes. Virus is
one of microbes and causes disease on animal and
plant. Our laboratory is focused to veterinary and
zoonotic viral disease, especially neurovirology.
We are interested in Borna disease virus (BDV)
that is etiological agent of Borna disease. Borna
disease has been known over 100 years as a fatal
neurological disease of horses and sheep. At
present, it is recognized as an emerging disease in
cats, dog, birds, and a broad host range in
warm-blooded animals, including humans.
However, the definite mechanism underlying
disease outcome is not fully clarified yet. To study
disturbances of movement and behavior in
BDV-infected animals, we examined the following
points: 1) comparing pathogenesis in rats infected
with two viral strains, 2) contribution of gene
expression of TGF-E family and viral pathogenesis,
and 3) mechanism of changes in virus genome with
adaptation to host.
೨↰⑺ᒾ䇮ᨴ⼱ᪧ䇮⷏㊁૫એ䇮᧛↰⧷㓶䇮ୖᩮ৻㇢䋺䉡䉣䉴䊃䊅䉟䊦
䉡䉟䊦䉴䊶䊧䊒䊥䉮䊮䈱ᜬ⛯⊛ⶄ⵾⚦⢩ᩣ䈱᮸┙䇯╙ 㪈㪎 ࿁䊃䉧䊶䊐䊤
䊎䊶䊕䉴䉼䉡䉟䊦䉴⎇ⓥળ䇮᧲੩䇮㪉㪇㪈㪇㪅㪈㪉㪅㪈㪇㪅
䋸䋮䈠䈱ઁ․⸥੐㗄
䋸㪄䋱 ᄖㇱ⾗㊄
䈭䈚
䋸㪄䋲 ⍮⽷ᮭ╬
䈭䈚
䋸㪄䋳䋮ቇᄖᵴേ
㤗Ꮣᄢቇ㒝⟎↢‛⑼ቇ✚ว⎇ⓥᚲ දജ⎇ⓥຬ
ᣣᧄ䊗䊦䊅䉡䉟䊦䉴⎇ⓥળ ೽ળ㐳
䋸㪄䋴 ฃ⾨╬
䈭䈚
䋸㪄䋵 䈠䈱ઁ
੩ㇺ↥ᬺᄢቇ 㪛㪘㪰 㪉㪇㪈㪇 㫀㫅 ጊญ䋨ጊญᏒ䇮㪉㪇㪈㪇㪅㪈㪈㪅㪍㪅䋩䈮䈍䈇
䈩䇮䇸䉡䉟䊦䉴ᗵᨴ∝䈫ญか∉䇹䈮䈧䈇䈩⻠Ṷ䇯
99
ታ㛎േ‛කቇ⎇ⓥቶ
ഥᢎ ੹㊁ ౗ᰴ㇢
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㫆㪽 㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㪘㫅㫀㫄㪸㫃 㪤㪼㪻㫀㪺㪸㫃 㪪㪺㫀㪼㫅㪺㪼
㪘㫊㫊㫀㫊㫋㪸㫅㫋 㪧㫉㫆㪽㪼㫊㫊㫆㫉 㪢㪼㫅㫁㫀㫉㫆 㪢㫆㫅㫅㫆㪃㪛㪅㪭㪅㪤㪅㪃㪧㪿㪅㪛㪅㪃㪛㪡㪚㪣㪘㪤
䋱䋮⎇ⓥ᭎ⷐ
⎇ⓥ᭎ⷐ䈪䉅ㅀ䈼䈢ㅢ䉍䇮⑳䈲ᦨㄭ㪈㪇ᐕ㑆એ਄䇮ታ㛎േ
ᧄ⎇ⓥቶ䈲ᧄቇㇱ⸳┙䈫౒䈮┙䈤਄䈏䈦䈢䈢䉄䇮⃻࿷䇮
‛䈫䈚䈩䈱䊚䊆䊑䉺䉕↪䈇䈢㪫㪩䈮៤䉒䈦䈩䈐䉁䈚䈢䇯䈠䈱ਛ䈪
࿷☋⠪䈲ഥᢎ䈪䈅䉎੹㊁౗ᰴ㇢䋨䈖䉖䈱䈔䉖䈛䉐䈉䋩䈵䈫䉍䈪
䉅․䈮䇮⣂▤♽䈱⎇ⓥ䈮៤䉒䈦䈩䈐䉁䈚䈢䇯䊚䊆䊑䉺⣖᪪Ⴇ䊝
䈜䇯
䊂䊦䉕ゲ䈮ዷ㐿䈚䈢⎇ⓥ䈪䈲⣖ⴊ▤䈮䇮⤳ེ⒖ᬀ䉇ౣ↢ක
⑳䈲ታ㛎േ‛ቇ䉕ኾ㐷䈫䈜䉎₞කᏧ䈪䈅䉍䇮ᣣᧄታ㛎േ‛
≮䈱⎇ⓥ䈪䈲䇮䈠䉏䈡䉏䈱⒖ᬀ⤳ེ䈱ⴊ▤䈮䇮䈠䈚䈩䇮ⴊ▤
කቇኾ㐷ක䋨㪛㫀㫇㫃㫆㫄㪸㫋㪼 㫆㪽 㫋㪿㪼 㪡㪸㫇㪸㫅㪼㫊㪼 㪚㫆㫃㫃㪼㪾㪼 㫆㪽
ౝ䉴䊁䊮䊃䈱㐿⊒䈪䈲䈠䉏䉌䉕⇐⟎䈜䉎ᔃ⤳䉇⣉䈱േ⣂䈮
㪣㪸㪹㫆㫉㪸㫋㫆㫉㫐 㪘㫅㫀㫄㪸㫃 㪤㪼㪻㫀㪺㫀㫅㪼䋩䈪䈜䇯ᦨㄭ㪈㪇ᐕએ਄䇮කቇㇱ
ᵈ⋡䈚䈩䈐䉁䈚䈢䇯䈠䈱ᵹ䉏䉕᳹䉂䇮ቇᄖ䈮䈍䈇䈩䈲䇮࿖┙
䈮䈍䈇䈩䊑䉺䇮․䈮ታ㛎േ‛䈫䈚䈩䈱䊚䊆䊑䉺䉕↪䈇䈢ត⚝
ᓴⅣེ∛⎇ⓥ䉶䊮䉺䊷⎇ⓥᚲ䈮䈍䈇䈩䇮㪚㪫䉇㪤㪩㪠䈭䈬䈱ක
ක≮䋨㪫㫉㪸㫅㫊㫃㪸㫋㫀㫆㫅㪸㫃 㪩㪼㫊㪼㪸㫉㪺㪿䋺㪫㪩䋩䈮៤䉒䈦䈩䈐䉁䈚䈢䇯㪫㪩䈫
≮↪䉟䊜䊷䉳䊮䉫ᯏེ䈫䊚䊆䊑䉺䉕↪䈇䈢⎇ⓥ䈮ෳട䈚䈩䈇䉁
䈲䇮ၮ␆⎇ⓥ䈱ᚑᨐ䉕⥃ᐥᔕ↪䈜䉎੐䉕⋡⊛䈫䈚䈢⎇ⓥ䈪䇮
䈜䇯
⑳䈲කᏧ䉇ℂᎿቇ䊶⮎ቇ♽䈱⎇ⓥ⠪䉇ડᬺ䈫౒䈮䇮䊚䊆䊑䉺
䉁䈢䇮ቇౝ䈮䈍䈇䈩䈲䇮䊍䉝䊦䊨䊮㉄䈱ኾ㐷ኅ䈪⣂▤♽䈱
䉕↪䈇䈢∔ᖚ䊝䊂䊦䈱૞⵾䉇⤳ེ⒖ᬀ䇮ౣ↢ක≮䇮ක≮䊂
⎇ⓥ䉕ዷ㐿䈚䈩䈇䉌䈦䈚䉆䉎᧼㊁⋥᮸ᢎ᝼䈮䈗ᜰዉ㗂䈐䇮ㆮ
䊋䉟䉴䈱㐿⊒䉕ⴕ䈦䈩䈐䉁䈚䈢䇯
વሶᡷᄌ䊙䉡䉴䉕↪䈇䈢⣂▤♽䈱⎇ⓥ䈮䉅៤䉒䉍ᆎ䉄䉁䈚
䉁䈢䇮ቇ↢ᤨઍ䈲ᗵᨴ∝䈱⎇ⓥ䈮៤䉒䈦䈩䈍䉍䇮ඳ჻ภ䈱
䈢䇯
⎇ⓥ䊁䊷䊙䈲ነ↢⯻ቇ䈪䈚䈢䇯
એ਄䈱ㅢ䉍䇮੹ᓟ䈱⎇ⓥ䉕ዷ㐿䈜䉎䈢䉄䈮㊀ⷐ䈭⎇ⓥၮ
੹ᓟ䈲䇮ታ㛎േ‛ቇ䉕⎇ⓥ䈱ゲ䈫䈚䈩ዷ㐿䈚䈩䈇䈐䈢䈇䈫
⠨䈋䈩䈇䉁䈜䈏䇮ነ↢⯻䉕ㅢ䈚䈩੩ㇺ䉕⷗䈩䉂䈢䈇䈫䉅⠨䈋
⋚䈱ᢛ஻䉕ᢛ䈋䉎੐䈏಴᧪䈢䇯᧪ᐕએ㒠䈲䈖䉏䉌䈱⎇ⓥⅣ
Ⴚ䉕ᵴ䈎䈚䈩ᚑᨐ䉕᜼䈕䈩䈇䈐䈢䈇䈫⠨䈋䈩䈇䉁䈜䇯
䈩䈇䉁䈜䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
㧟㧚Research projects and annual reports
In this year, I transferred to this university, and spent much
time to start up new environments for research and education
so I was not able to leave a lot of research results.
However, new joint researches can be started up in the inside
and outside of the university, and the research infrastructures
are gradually being set.
䋴䋮⊒⴫⺰ᢥ
੹ᐕᐲ䈲䇮ᧄቇ䈻⒖☋䈚䈢੐䉅䈅䉍䇮ᱷᔨ䈭䈏䉌䇮ᄢ䈐䈭ᚑ
ᨐ䈲᜼䈕䉌䉏䉁䈞䉖䈪䈚䈢䇯䈚䈎䈚䈭䈏䉌䇮ቇౝᄖ䈪ᣂ䈢䈭
౒ห⎇ⓥ䉕┙䈤਄䈕䉎੐䈏಴᧪䇮ᓢ䇱䈮⎇ⓥၮ⋚ᢛ஻䈏ᢛ
䈇䈧䈧䈅䉍䉁䈜䇯
S. Hishikawa, M. Kawano, H. Tanaka, K. Konno,
Yasuda, R. Kawano,
E. Kobayashi,
Y.
A. T Lefor :
Mannequin simulation improves the confidence of medical
students performing tube thoracostomy: a prospective,
controlled trial.
100
#O 5WTI. 76(1):73-78 (2010)
K. Hisakura, S. Murata, K. Fukunaga,
Tadano,
A. Myronovych, S.
T. Kawasaki, K. Kohno, O. Ikeda,
S. Pak, N.
Ikeda, Y. Nakano, R. Matsuo, K. Konno, E. Kobayashi, T.
Saito, H. Yasue, N. Ookochi : Platelets prevent acute liver
damage after extended hepatectomy in pigs.
,
*GRCVQDKNKCT[ 2CPETGCV 5EK 17(6):855-864 (2010)
T. Saito, S. Fujiwara, K. Hisakura, N. Ohkochi, T. Akema, S.
Sasamori,
K. Konno, E. Kobayashi, T. Yamaguchi :
Telemetry system for recording neural activities in
pigs-comparison with cable system.
$TCKP 4GU $WNN
84(1):103-109 (2010)
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
䈭䈚
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
੹㊁౗ᰴ㇢䋺ౣ↢ක≮䈮⽸₂䈜䉎䊚䊆䊑䉺䈱ᔕ↪䈫⺖㗴䇮ᐔᚑ㪉㪉ᐕ
ᐲ╙㪊࿁ᣣᧄᄢቇേ‛ක⑼ቇ⎇ⓥ䉶䊮䉺䊷䉶䊚䊅䊷䇮␹ᄹᎹ⋵⮮
ᴛᏒ䇮㪉㪇㪈㪇㪅㪍㪅㪏
੹㊁౗ᰴ㇢䋺䊚䊆䊑䉺䉕↪䈇䈢೨⥃ᐥ⎇ⓥ䇮䉟䊉䊔䊷䉲䊢䊮䊶䉳䊞䊌䊮
㪉㪇㪈㪇 䌾ᄢቇ⷗ᧄᏒ䌾䇮᧲੩࿖㓙䊐䉤䊷䊤䊛䇮㪉㪇㪈㪇㪅㪐㪅㪉㪐䌾㪈㪇㪅㪈
䋷䋮ቇળ⊒⴫
ᐔየ᷷ม䇮ᴡේፒ㆐㓶䇮੹㊁౗ᰴ㇢䇮ዊᨋ⧷ม䇮㊁↰ᵏሶ䋺㪞㪝㪧䊃
䊤䊮䉴䉳䉢䊆䉾䉪䊑䉺䈱⣖䈮䈍䈔䉎㪞㪝㪧㓁ᕈ⚦⢩⊒⃻ㇱ૏䈫㪙㫉㪻㪬䈫
䈱౒⊒⃻䈮䈧䈇䈩䇮ᣣᧄ⸃೬ቇળ✚ળ䇮⋓ጟᏒ䇮㪉㪇㪈㪇㪅㪊㪅㪉㪏㪄㪊㪇
䋸䋮䈠䈱ઁ․⸥੐㗄
䈭䈚
101
⚦⩶ቇ⎇ⓥቶ
ഥᢎ
Laboratory of Bacteriology
Assist. Prof. Azusa Someya, Ph. D
䋱䋮⎇ⓥ᭎ⷐ
ᨴ⼱
ᪧ
Archaeopsylla erinacei, in Germany. Therefore, the possibility of the
ᓸ↢‛䈲䈅䉌䉉䉎䈫䈖䉐䈮ሽ࿷䈚䈩䈍䉍䇮ᤨ䈮േ‛䉇ੱ䈱
hedgehogs as a reservoir for R. felis or closely related stains was
ஜᐽ䉕⢿䈎䈜䈖䈫䉅䈅䉎䇯䈭䈎䈪䉅േ‛䈫ੱ䈱෺ᣇ䈮ᗵᨴ䈜
investigated using molecular techniques. Blood samples, fleas and
䉎ᓸ↢‛䈲䇮ੱ䈫േ‛䈫䈱㑐䉒䉍ᣇ䈏ᄙ᭽ൻ䈜䉎⃻ઍ␠ળ䈮
ticks were collected on 34 hedgehogs from region of Ils de France and
䈍䈇䈩䇮ੱ₞౒ㅢᗵᨴ∝䉇㘩ຠⴡ↢਄䈱໧㗴䉕ᒁ䈐⿠䈖䈜
Picardie in France. These Samples were investigated for the presence
น⢻ᕈ䈏䈅䉎䈢䉄䇮ᄢ䈐䈭ᵈ⋡䉕㓸䉄䈩䈇䉎䇯ห䈛∛ේ૕䈏
of the rickettsial gltA, ompB, and 16S rRNA genes using PCR method.
ᒁ䈐⿠䈖䈜∔∛䈪䈅䈦䈩䉅䇮ੱ䈫േ‛䈪䈲䈠䈱∝⁁䈏⇣䈭䉎
Most hedgehog fleas were infected by R. felis-like organisms although
䈖䈫䈏䈅䉎䇯ᧄ⎇ⓥቶ䈪䈲ኋਥ䈮䉋䉎∛ේᕈ䈱⋧㆑䈮ᵈ⋡䈚䇮
their host animals were not appeared PCR positive for rickettsial
䉰䊦䊝䊈䊤䇮ᄢ⣺⩶䇮䊋䊦䊃䊈䊤䇮䊥䉬䉾䉼䉝䈭䈬䈱⚦⩶䈱ᗵ
DNA.
ᨴ䈍䉋䈶∛ේᕈ䈱⊒⃻䈮㑐ਈ䈜䉎࿃ሶ䈱⸃᣿䈮ข䉍⚵䉖䈪
䈇䉎䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
㪩㫀㪺㫂㪼㫋㫋㫊㫀㪸 㪽㪼㫃㫀㫊 䈲 䇮 ੱ 䈮 䈍 䈔 䉎 ᣂ ⥝ ᗵ ᨴ ∝ 䈪 䈅 䉎
㪝㫃㪼㪸㪄㪹㫆㫉㫅㪼 㫊㫇㫆㫋㫋㪼㪻 㪽㪼㫍㪼㫉㩿䊉䊚ᇦ੺ᕈ⚃᢬ᾲ㪀䈱∛ේ૕䈪䈅䉎䇯
䊈䉮䊉䊚䈏㊀ⷐ䈭ᗵᨴḮ䈫⠨䈋䉌䉏䈩䈇䉎䈖䈫䈎䉌䇮䊈䉮䉕䈲䈛
䉄䈫䈜䉎઻ଛേ‛䈏ኋਥ䈫䈭䉎น⢻ᕈ䈏␜ໂ䈘䉏䉎䈏䇮ᗵᨴ
⚻〝䉇∛ේᕈ䈮䈍䈇䈩ਇ᣿䈱ὐ䈏ᄙ䈒ᱷ䈘䉏䈩䈇䉎䋨࿑ 㪈䋩䇯
ㄭᐕ䇮䊄䉟䉿䈮䈍䈇䈩䇮䊊䊥䊈䉵䊚䈮ነ↢䈜䉎䊉䊚
㪘㫉㪺㪿㪸㪼㫆㫇㫊㫐㫃㫃㪸 㪼㫉㫀㫅㪸㪺㪼㫀 䈎䉌㜞㗫ᐲ䈮 㪩㪅㪽㪼㫃㫀㫊 䈏ᬌ಴䈘䉏䈢䇯䈠
䈖䈪䇮䊊䊥䊈䉵䊚䈏ᧄ⩶䈱ᗵᨴḮ䈫䈭䉎น⢻ᕈ䉕᣿䉌䈎䈮䈜䉎
䈢䉄䈮䇮䊐䊤䊮䉴䈱䊊䊥䊈䉵䊚䈱ⴊᶧ䈍䉋䈶䊉䊚䉕ઍ⴫䈫䈜䉎ᄖ
ㇱነ↢⯻䉕ណ㓸䈚䈢䇯䈖䉏䉌䈱ᬌ૕䈎䉌 㪛㪥㪘 䉕᛽಴䈚䇮
㪩㫀㪺㫂㪼㫋㫋㫊㫀㪸 ዻ⩶䈱 㪾㫃㫋㪘 ㆮવሶ䉁䈢䈲 㪈㪍㫊㪩㪥㪘 ㆮવሶ䉕Ⴧ᏷
䋴䋮⊒⴫⺰ᢥ
H. Ozaki, H. Esaki, K. Takemoto, A. Ikeda, Y. Nakatani, A. Someya,
䈜䉎䊒䊤䉟䊙䊷䉕↪䈇䈩䇮䈖䉏䉌䈱ᄖㇱነ↢⯻䈱 㪩㫀㪺㫂㪼㫋㫋㫊㫀㪸
N. Hirayama and T. Murase. Antimicrobial resistance in fecal
ዻ⩶䈱଻᦭⁁ᴫ䉕⺞ᩏ䈚䈢䇯䉁䈢䇮ᣣᧄ࿖ౝ䈮䈍䈔䉎 㪩㪅 㪽㪼㫃㫀㫊
Escherichia coli isolated from growing chickens on commercial
䈱ಽᏓ⁁ᴫ䉕⺞ᩏ䈜䉎䈢䉄䇮䊈䉮䉕䈲䈛䉄䈫䈜䉎઻ଛേ‛䈎
broiler farms. Vet. Microbiol. in press.
䉌 䇮 ห ᭽ 䈮 ⹜ ᢱ 䈱 ណ ข 䉕 ⹜ 䉂 䈩 䈇 䉎 䇯 ৻ ᣇ 䇮 㪙㪸㫉㫋㫆㫅㪼㫃㫃㪸
㪿㪼㫅㫊㪼㫃㪸㪼 䈲⚦⢩ౝነ↢ᕈ⚦⩶䈪䇮₀䈵䈦䈎䈐∛䈭䈬䈱ੱ₞
౒ㅢᗵᨴ∝䈱ේ࿃⩶䈪䈅䉎䇯㪙㪸㫉㫋㫆㫅㪼㫃㫃㪸 䈮䈧䈇䈩䉅ห᭽䈮䇮
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
䈭䈚
䊈䉮䈭䈬䈱઻ଛേ‛䈱ᧄ⩶䈱଻᦭⁁ᴫ䉕⏕⹺䈚䈩䈇䉎䇯
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
ᨴ⼱ᪧ䋺㪩㫀㪺㫂㪼㫋㫋㫊㫀㪸 㪽㪼㫃㫀㫊䈱䊊䊥䊈䉵䊚䈮䈍䈔䉎ಽᏓ⁁ᴫ䋮䊜䊥䉝䊦䉳䊞
䋳䋮Research projects and annual reports
The microorganism exists in all places, and might threaten health of
䊌䊮䇮᧲੩䇮2010.6.1
humans and animals at time. Zoonotic and food poisoning
microorganism which can infect both animals and humans is greatly
paid to attention in the contemporary society where relationships
between humans and animals are various. These pathogens do not
䋷䋮ቇળ⊒⴫
೨↰⑺ᒾ䇮ᨴ⼱ᪧ䇮⷏㊁૫એ䇮᧛↰⧷㓶䇮ୖᩮ৻㇢䋺䉡䉣䉴䊃䊅䉟䊦
䉡䉟䊦䉴䊶䊧䊒䊥䉮䊮䈱ᜬ⛯⊛ⶄ⵾⚦⢩ᩣ䈱᮸┙䇯䊃䉧䊶䊐䊤䊎䊶䊕䉴
䉼䉡䉟䊦䉴⎇ⓥળ䇮᧲੩䇮2010.12.10
always cause same symptoms in animals and humans.
Rickettsia felis is an emerging pathogen which causes flea-borne
spotted fever in human. Recently, high prevalence rate of R.
felis-related
stains
have
been
reported
in
hedgehog
fleas,
102
䋸䋮䈠䈱ઁ․⸥੐㗄
䈭䈚
⮎ℂቇ⎇ⓥቶ
ഥᢎ ᫜ᯅ 㕏ⴕ
Laboratory of Pharmacology
Assist. Prof. Yasuyuki Tanahashi, Ph.D
䋱䋮⎇ⓥ᭎ⷐ
䈍䉌䈝䇮น⢻ᕈ䈱৻䈧䈫䈚䈩䇮䉮䊥䊮૞േᕈ␹⚻䉇ᐔṖ╭䈱
⣺▤䈱ㆇേ䈲䉮䊥䊮૞േᕈ␹⚻䈎䉌᡼಴䈘䉏䉎䉝䉶䉼䊦䉮
ㆊᵴേ䈏ឭ໒䈘䉏䈩䈇䉎䇯ᧄ⎇ⓥ䈮䉋䉍䇮⣺▤䈱ㆇേ⺞▵ᯏ
䊥䊮䈫䈠䈱ฃኈ૕䈪䈅䉎䊛䉴䉦䊥䊮ฃኈ૕䈮䉋䈦䈩⥝ᅗᕈ䈮⺞
᭴䈱ోኈ䈏᣿
▵䈘䉏䈩䈇䉎䇯䊛䉴䉦䊥䊮ฃኈ૕䈮䈲䇮䈖䉏䉁䈪䈮䌍䋱 䈎䉌䌍䋵
䉌䈎䈫䈭䉏䈳䇮
䉁䈪䈱䋵䈧䈱䉰䊑䉺䉟䊒䈏หቯ䈘䉏䈩䈍䉍䇮䈖䈱䈉䈤䇮⣺▤ᐔ
䈖䈱∛᳇䈱∛
Ṗ╭⚦⢩䈮䈲䌍䋲䈫䌍䋳䉰䊑䉺䉟䊒䈏ሽ࿷䈚䈩䈇䉎䇯䉮䊥䊮૞േ
ᘒ⸃᣿䉇ᴦ
ᕈ␹⚻䈎䉌᡼಴䈘䉏䈢䉝䉶䉼䊦䉮䊥䊮䈏䈖䉏䉌䈱䊛䉴䉦䊥䊮ฃ
≮⮎䈱㐿⊒䈮
ኈ૕䉕ೝỗ䈜䉎䈫䇮ᐔṖ╭⚦⢩ౝ䈱 㪚㪸㪉㪂Ớᐲ䈏Ⴧട䈚䇮ᦨ
䈍䈇䈩ᄙ 䈒䈱
⚳⊛䈮╭䈲෼❗䈜䉎䇯䉁䈢䇮ㄭᐕ䇮⣺▤䈱␹⚻ฌ䈮ሽ࿷䈜䉎
ၮ␆ᖱႎ䉕ឭ
䉦䊊䊷䊦⚦⢩䋨㪠㪚㪚䋩䈫๭䈳䉏䉎㑆⾰⚦⢩䈮䉅䊛䉴䉦䊥䊮ฃኈ
ଏ䈜䉎䈖䈫䈏
૕䈏ሽ࿷䈚䈩䈍䉍䇮⣺▤䈱ㆇേ⺞▵䈮㊀ⷐ䈭ᓎഀ䉕ᨐ䈢䈚䈩
䈪䈐䉎䇯
䋲䋮ᧄᐕᐲ䈱⎇ⓥᚑᨐ
੹ᐕᐲ䈲䇮䊛䉴䉦䊥䊮ฃኈ૕䉕੺䈚䈢ዊ⣺❑⿛╭䈱෼❗⺞
▵䈮䈍䈔䉎䉦䊊䊷䊦⚦⢩䈱ᓎഀ䈮ὶὐ䉕䈅䈩䈩⎇ⓥ䉕ⴕ䈦
䈢䇯ታ㛎䈮䈲䇮䉦䊊䊷䊦⚦⢩ᰳ៊䊙䉡䉴䈎䉌૞⵾䈚䈢ዊ⣺❑
⿛╭ᮡᧄ䉕↪䈇䇮㔚᳇ೝỗ䈮䉋䉍䉮䊥䊮૞േᕈ␹⚻䉕ೝỗ䈚
䈢䈫䈐䈮↢䈝䉎❑⿛╭䈱෼❗ᒛജ䉕᷹ቯ䈚䇮ᱜᏱ䊙䉡䉴䈱䉅
䈱䈫Ყセ䊶⸃ᨆ䈚䈢䇯䈠䈱⚿ᨐ䇮ᱜᏱ䊙䉡䉴䈱ᮡᧄ䈪䈲䇮㔚᳇
ೝỗ䈮䉋䉍䊛䉴䉦䊥䊮૞േᕈ෼❗䈏⊒↢䈚䈢䈏䇮䉦䊊䊷䊦⚦
⢩ᰳ៊䊙䉡䉴䈱ᮡᧄ䈪䈲䇮䈾䈫䉖䈬ᬌ಴䈘䉏䈭䈎䈦䈢䇯䈖䈱
⚿ᨐ䈎䉌䇮䉦䊊䊷䊦⚦⢩䈏䊛䉴䉦䊥䊮ฃኈ૕䉕੺䈚䈢❑⿛╭
䈱෼❗⺞▵䈮㊀ⷐ䈭ᓎഀ䉕ᨐ䈢䈚䈩䈇䉎䈖䈫䈏ᣂ䈢䈮᣿䉌䈎
䈫䈭䈦䈢䇯એ਄䈱⎇ⓥᚑᨐ䈮䈧䈇䈩䈲䇮╙ 㪈㪌㪇 ࿁ᣣᧄ₞කቇ
䈇䉎䈖䈫䈏␜ໂ䈘䉏䈩䈇䉎䋨࿑䋱䋩䇯䈚䈎䈚䇮䉮䊥䊮૞േᕈ␹⚻
ળ䈮䈍䈇䈩⊒⴫䈚䇮ኾ㐷⹹䈻䈱ᛩⓂ䉕Ḱ஻䈚䈩䈇䉎䇯䉁䈢䇮
䈮䉋䉎⣺▤䈱ㆇേ⺞▵䈮䈍䈇䈩䇮䌍䋲䇮䌍䋳 䉰䊑䉺䉟䊒䉇䉦䊊
ጘ㒂ᄢቇ₞ක⮎ℂቇ⎇ⓥቶ䈫䈱౒ห⎇ⓥ䈪䈅䉎⣺▤ᐔṖ
䊷䊦⚦⢩䈏䈠䉏䈡䉏䈬䈱䉋䈉䈭ᓎഀ䉕ᨐ䈢䈚䈩䈇䉎䈎╬䈱⹦
╭䈮䈍䈔䉎䊛䉴䉦䊥䊮૞േᕈ㓁䉟䉥䊮䉼䊞䊈䊦ᵴᕈൻᯏ᭴䈮
⚦䈭䊜䉦䊆䉵䊛䈲᣿䉌䈎䈫䈭䈦䈩䈇䈭䈇䇯䈠䈖䈪䇮ᧄ⎇ⓥ䈪䈲䇮
䈧䈇䈩䈲╙ 㪈㪌㪇 ࿁ᣣᧄ₞කቇળ䈮䇮䊛䉴䉦䊥䊮૞േᕈ 㪚㪸㪉㪂
ㄭᐕ㐿⊒䈘䉏䈢䌍䋲䉁䈢䈲䌍䋳 䉰䊑䉺䉟䊒䉕ᰳ៊䈚䈢䊙䉡䉴䉇
ᗵฃᕈჇᄢᯏ᭴䈮䈧䈇䈩䈲䋱✬䈱ቇⴚ⺰ᢥ䈫䈚䈩䈠䉏䈡䉏
䉦䊊䊷䊦⚦⢩䉕ᰳ
౏⴫䈚䈢䇯
៊䈚䈢䊙䉡䉴䋨࿑䋲䋩
䉕↪䈇䈩䇮਄⸥䈱
䋳䋮Research projects and annual reports
ᧂ⸃᳿໧㗴䈮ข䉍
It is well known that the motility of gastrointestinal tract is
⚵䉖䈪䈇䉎䇯
regulated by acetylcholine (ACh) released from cholinergic
ㄭᐕ䇮䊍䊃䉇઻ଛ
nerves, which act on the muscarinic receptors. The receptors
േ‛䈮䈍䈇䈩䇮⣺
have been classified into five subtypes including M1, M2, M3,
▤䈱ㆇേ䈏⇣Ᏹ䈮
M4 and M5. In gastrointestinal smooth muscles, two subtypes
䈭䉎䈖䈫䈮䉋䈦䈩⿠
of muscarinic receptor, M2 and M3, are found with no
䈖䉎ㆊᢅᕈ⣺∝୥
measurable quantities of other subtypes. As shown in Figure 1,
⟲䋨㪠㪙㪪䋩䈫䉋䈳䉏䉎
stimulation of M2 and M3 receptors by ACh increases in the
∛᳇䈏໧㗴䈫䈭䈦
intracellular concentration of Ca2+, resulting in the smooth
䈩䈐䈩䈇䉎䋨࿑䋳䋩䇯ᖚ⠪䈲⣻∩䇮ਅ∯䉁䈢䈲ଢ⒁䈭䈬䈱∝⁁
muscle contractions. Recently, it has been suggested that
䉕๒䈜䉎䇯䈚䈎䈚䇮䈖䈱∛᳇䈱ේ࿃䈲ᧂ䈣䈮᣿䉌䈎䈮䈘䉏䈩
interstitial cells of Cajal (ICC), which exist in the myenteric
103
and submucosal plexus and express muscarinic receptors, are
䋶䋮᜗ᓙ⻠Ṷ䇮䉲䊮䊘䉳䉡䊛╬
involved in the regulation of gut motility. However, roles of
᫜ᯅ㕏ⴕ䋺ዊ⣺ᐔṖ╭⚦⢩䈮䈍䈔䉎䊛䉴䉦䊥䊮ฃኈ૕ೝỗ䈮䉋䉎㔚
M2 and M3 receptors and ICC in regulating the contractions by
૏ଐሽᕈ 㪚㪸㪉㪂䉼䊞䊈䊦䈱ᛥ೙ᯏ᭴䈮㑐䈜䉎⎇ⓥ䋮ᄢ㒋ᐭ┙ᄢቇ䊶
ACh remain to be elucidated in detail. Therefore, we are
੩ㇺ↥ᬺᄢቇᢎ⢒ㅪ៤䉶䊚䊅䊷䋨╙䋱࿁䋩䇮ᴰ૒㊁Ꮢ䇮㪉㪇㪈㪇㪅㪏㪅㪋
addressing the above issue using the M2 and/or M3 muscarinic
᫜ᯅ㕏ⴕ䋺೽੤ᗵ␹⚻䈮䉋䉎⣺▤䈱෼❗⺞▵䊜䉦䊆䉵䊛䋮੩ㇺ↥ቇ
receptor knockout (KO) mice and ICC deficient mice (Figure
౏ㅪ៤䊐䉤䊷䊤䊛 㪉㪇㪈㪇䋭੩ㇺ⊒䇯ᣂ↥ᬺ䊶ᣂᛛⴚ䈱ഃ಴䉕䉄䈙䈚
2).
䈩䋭䇮੩ㇺᏒ䇮㪉㪇㪈㪇㪅㪈㪈㪅㪉
Recently, patients of functional gastrointestinal disorders,
including irritable bowel syndrome (IBS) are increasing in
䋷䋮ቇળ⊒⴫
Japan. IBS causes the patients abdominal pain, diarrhea and
ᶏ㊁ᐕᒄ䇮Ⓑፒ୶ሶ䇮᧻ጊാੱ䇮᫜ᯅ㕏ⴕ䇮ർỈᄙ༑㓶䇮ጊ↰⌀ਭ䇮
constipation (Figure 3). Yet, the causes of IBS have not been
㪡㫌㫉㪾㪼㫅 㪮㪼㫊㫊䇮ዊ᫪ᚑ৻䋺䊙䉡䉴࿁⣺ᐔṖ╭⚦⢩䈱䊛䉴䉦䊥䊮૞േ
identified, but it has been suggested that IBS may be caused
ᕈ㓁䉟䉥䊮䉼䊞䊈䊦䈱ᵴᕈൻ䈮䈍䈔䉎 㪤㪊 ฃኈ૕䉰䊑䉺䉟䊒䈮ㅪ
by overactivity of cholinergic nerves and/or gastrointestinal
㑐䈚䈢ᖱႎવ㆐ಽሶ䈱ᓎഀ䇮╙ 㪈㪌㪇 ࿁ᣣᧄ₞කቇળቇⴚ㓸ળ䇮
smooth muscle cells. Thus, our studies may provide useful
ᏪᐢᏒ䇮㪉㪇㪈㪇㪅㪐㪅㪈㪍㪄㪈㪏
information to elucidate the pathophysiological conditions of
᫜ᯅ㕏ⴕ䇮᧻ጊാੱ䇮Ꮢ᧛ཅ㇢䇮ᧁ᧛૫❱䇮ᶏ㊁ᐕᒄ䇮㘵㊁ື䇮ዊ
IBS, leading to development of a novel effective medicine for
᫪ᚑ৻䋺䊙䉡䉴ዊ⣺❑⿛╭䈱䉮䊥䊮૞േᕈ␹⚻䋭ᐔṖ╭㑆䈱ᖱႎ
the disease.
વ㆐䈮䈍䈔䉎䉦䊊䊷䊦⚦⢩䈱ᓎഀ䇮╙ 㪈㪌㪇 ࿁ᣣᧄ₞කቇળቇⴚ
In 2010, we focused on roles of ICC in the muscarinic
㓸ળ䇮ᏪᐢᏒ䇮㪉㪇㪈㪇㪅㪐㪅㪈㪍㪄㪈㪏
regulation of longitudinal smooth muscle contractions in small
intestine. Contractile responses to stimulation of cholinergic
nerves due to transmural electrical (TE) stimulation were
studied in longitudinal smooth muscle from ICC deficient
䋸䋮䈠䈱ઁ․⸥੐㗄
䋱䋮ᄖㇱ⾗㊄䋺
ᣣᧄ⑼ቇᛛⴚᝄ⥝ળ 㪟㪉㪉 ᐕᐲၮ⋚⎇ⓥ 㪙䋨⎇ⓥಽᜂ⠪䋩
mice and its control mice. TE stimulation induced muscarinic
䋲䋮⍮⽷ᮭ╬䋺䈭䈚
contractions in preparations from the control mice, but not in
䋳䋮ቇᄖᵴേ䋺䈭䈚
ICC deficient ones. These results suggest that ICC play a
䋴䋮ฃ⾨╬䋺䈭䈚
crucial
䋵䋮䈠䈱ઁ䋺䈭䈚
role in
regulating muscarinic contractions of
longitudinal smooth muscles. We presented these findings in
the 150th Meeting of the Japanese Society of Veterinary
Science and are preparing to submit a paper. In addition, we
collaborated in studies about mechanisms of muscarinic
activation
of
cationic
channels
and
muscarinic
Ca2+
sensitization in small intestine with Laboratory of Veterinary
pharmacology in Gifu University. The former studies were
presented in the 150th Meeting of the Japanese Society of
Veterinary Science and the 84th Annual Meeting of the
Japanese Pharmacological Society. The latter ones were
published in the Journal of Veterinary Medical Sciences.
䋴䋮⊒⴫⺰ᢥ
Suguro M, Matsuyama H, Tanahashi Y, Unno T, Kitazawa T, Yamada
M, Komori S (2010). Muscarinic Receptor Subtypes Mediating Ca2+
Sensitization of Intestinal Smooth Muscle Contraction: Studies with
Receptor Knockout Mice. 㪡㪅 㪭㪼㫋㪅 㪤㪼㪻㪅 㪪㪺㫀㪅 㪎㪉(4): 443-451
䋵䋮⪺ᦠ䈍䉋䈶✚⺑
䈭䈚
104
ᐕႎ⊒ೀߦ޽ߚߞߡ㨪✚ว↢๮⑼ቇㇱ੐ോቶ߆ࠄ㨪
✚ว↢๮⑼ቇㇱ㐳⵬૒
੗
਄
᦮
ᐢ
ᧄቇߢ㧥⇟⋡ߣߥࠆ✚ว↢๮⑼ቇㇱߪ‫ޔ‬ᐔᚑరᐕ㧠᦬ߦ㐿⸳ߒߚᎿቇㇱ↢‛Ꮏቇ⑼ࠍᡷ⚵ߒ‫ޔ‬ᐔᚑ
㧞㧞ᐕ㧠᦬ߦ㐿⸳޿ߚߒ߹ߒߚ‫↢ޟޕ‬๮ࠪࠬ࠹ࡓቇ⑼‫↢ޟޠ‬๮⾗ḮⅣႺቇ⑼‫ޟޠ‬േ‛↢๮ක⑼ቇ⑼‫ޠ‬
߆ࠄߥࠆ✚ว↢๮⑼ቇㇱߪ‫⥄ޔ‬ὼߣੱ㑆߇⺞๺ߒ⊒ዷߔࠆߎߣࠍ⋡ᜰߒߚ⑼ቇߣᛛⴚࠍഃㅧߔࠆᢎ⢒
⎇ⓥⅣႺߩ߽ߣߢ‫ޔ‬㜞ᐲߥኾ㐷⍮⼂ߣᛛⴚ‫ޔ‬ᔕ↪ജࠍ஻߃ߚੱ᧚ࠍ⢒ߡ‫␠ޔ‬ળߦ⽸₂ߔࠆߎߣࠍ⋡⊛
ߣߒߡ޿߹ߔ‫ޕ‬
ᄢቇ⸳⟎ၮḰߩᄢ✁ൻ‫ޔ‬㧝㧤ᱦੱญߩᷫዋ߿࿖౏┙ᄢቇߩᴺੱൻ╬‫ߩߢ߹ࠇߎޔ‬ᚑ㐳ၮ⺞ߩਛߢ⚻
㛎ߩߥ޿⚻༡ࠍขࠅᏎߊၮ⋚ߩᄌൻߦኻᔕߔࠆߚ߼ߦ‫ޔ‬ᄙߊߩ⑳ቇ߇‫ޔ‬⍴ᦼᄢቇ߆ࠄᄢቇ߳ߩォ឵‫ޔ‬
ቇㇱ࡮ቇ⑼ߩჇ⸳࡮ౣ✬ࠍਥߣߔࠆ޿ࠊࠁࠆ̌ᡷ㕟̍ߦขࠅ⚵ࠎߢ޿ࠆߎߣߪ‫ޔ‬ᡷ߼ߡ⺑᣿ߔࠆᔅⷐ
ߪߥ޿ߢߒࠂ߁‫ޕ‬
߹ߚ‫ᤨޔ‬ઍߩⷐ⺧ߢ޽ࠆ੐೨ⷙ೙߆ࠄ੐ᓟ࠴ࠚ࠶ࠢ߳ߩᄌㆫߦ๭ᔕߔߴߊ‫ޔ‬ᖱႎ౏㐿‫⥄ޔ‬Ꮖὐᬌ࡮
⹏ଔ‫ޔ‬ᄢቇ⹺⸽⹏ଔ╬ߦࠃߞߡ‫ޔ‬ᢎ⢒ᯏ㑐ߣߒߡ‫ߥ⊛౒౏ޔ‬ᯏ㑐ߣߒߡ‫ޔ‬ᄢቇߩ⾰ߩ଻⸽ࠍᜂ଻ߔࠆ
ᣇ╷ࠍ⻠ߓࠆߎߣ߽⟵ോൻߐࠇߡ޿߹ߔ‫ޕ‬
⑳ቇߪ‫౉ޔ‬ቇߒߚቇ↢߇තᬺ߹ߢߩ㧠ᐕ㑆‫ޔ‬቟ᔃߒߡቇߴࠆⅣႺࠍ߹ߕߪឭଏߒߥߌࠇ߫ߥࠅ߹ߖ
ࠎ‫ޟߣࠆߔ⃻⴫ߦ⊛┵ޕ‬቟ቯߒߚ⚻༡ߩᜬ⛯‫ޕ߁ࠂߒߢࠆߥߣޠ‬
ߒ߆ߒ‫ޟޔ‬቟ቯ‫ߪޠ‬቟ᔃࠍ↢ߺ಴ߔ৻ᣇߢ‫ޟޔ‬ਇ቟ቯ‫ߺ↢ࠍޠ‬಴ߔᡷ㕟߿ᡷༀࠍᜎ⛘ߔࠆ৻࿃ߦ߽
ߥࠅ߃߹ߔ‫ޕ‬వߦㅀߴߚᡷ㕟߿⾰଻⸽ߦ⌀ߦኻᔕߔࠆߦߪ‫ޟߪߕ߹ޔ‬቟ቯ‫߁޿ߣࠆ޿ߡߒޠ‬ᐛᗐ߆ࠄ
⣕ළߔࠆߎߣ߇ᔅ㗇ߣߥࠅ߹ߔ‫ޕ‬
✚ว↢๮⑼ቇㇱߪ‫ޔ‬㐿⸳㑆߽ߥ޿ᣂߒ޿ቇㇱߢ޽ࠅ‫ߩߘޔ‬ㆇ༡ߪ‫ޟ‬቟ቯ‫ޟޕࠎߖ߹޿ߡߒޠ‬ਇ቟ቯ‫ޠ‬
ߢ޽ࠆ⃻⁁ߦߎߘ‫ޟޔ‬቟ቯ‫⋡ࠍޠ‬ᜰߔߦᔅⷐߥᣇ╷ࠍⓍᭂ⊛ߦขࠅ⚵߻ߎߣ߇ߢ߈ࠆ߽ߩߣ⏕ାߒߡ
߅ࠅ߹ߔ‫✚ޔߚ߹ޕ‬ว↢๮⑼ቇㇱߩ‫ޟ‬ਇ቟ቯ‫ᧄޔࠍޠ‬ቇߩ‫ޟ‬቟ቯ‫ߦޠ‬ขࠅㄟ߻ߎߣ߇ߢ߈ࠇ߫‫ߦᦝޔ‬
ᒝ࿕ߢᜬ⛯ߔࠆ‫ޟ‬቟ቯ‫߇ޠ‬ታ⃻ߢ߈ࠆ߽ߩߣ߽⠨߃ߡ߅ࠅ߹ߔ‫ޕ‬
ታ㛎߇ਥ૕ߣߥࠆ✚ว↢๮⑼ቇㇱㆇ༡ߩ੐ോ⊛ߥ஥㕙ߢߪ‫ޔ‬੐ോಣℂ㊂ߩჇടߩߺߥࠄߕ‫ޔ‬ታ㛎╬
ࠍㆡᱜߦታᣉߔߔࠆߚ߼ߩᴺ઎╬߳ߩኻᔕ╬‫ޔ‬ᣂߚߥᬺോ߳ߩኻᔕ߿੐ോಣℂߩല₸ൻ߿ኾ㐷ൻ╬‫ޔ‬
ߎࠇ߹ߢߩᬺോಣℂᣇᴺࠍ⷗⋥ߒ‫ޔ‬ᡷༀߔࠆᄾᯏߣߥߞߡ޿߹ߔ‫ޕ‬
ߎࠇߪ‫ޟޔ‬ਇ቟ቯ‫ࠍޠ‬ᛂ⎕ߒ‫ޟ‬቟ቯ‫⋡ࠍޠ‬ᜰߔ⛘ᅢߩᯏળߢ޽ࠅ‫✚ޔ‬ว↢๮⑼ቇㇱߦ߅ߌࠆᢎ⢒࡮
⎇ⓥᵴേߩలታ࡮⊒ዷ߇‫ᧄޔ‬ቇߩలታ࡮⊒ዷߦነਈߔࠆ߽ߩߣ⏕ାߒߡ߅ࠅ߹ߔ‫ޕ‬
ᐔᚑ㧞㧞ᐕ
✚ว↢๮⑼ቇㇱ੐ോቶߩਥߥขࠅ⚵ߺ
⎇ⓥ⾌੍▚ߩၫⴕᣇᴺߩᄌᦝ
ᢎ⢒࡮⎇ⓥᵴേߦⷐߔࠆᶖ⠻ຠߩ⾼౉ᚻ⛯߈ࠍ‫ޔ‬ቇᩞᴺੱ੩ㇺ↥ᬺᄢቇ࿕ቯ⾗↥෸߮‛ຠ⺞
㆐ⷙ⒟ߦၮߠ߈‫⽷▤ޔ‬ㇱ߆ࠄᆔ⸤ࠍฃߌߡಣℂࠍ㐿ᆎߔࠆ‫ޕ‬
‛ຠ⺞㆐ߦ߆߆ࠆ੐ോಣℂᬺോߩᄢ᏷ߥシᷫ‫ޔ‬ല₸ൻࠍ࿑ࠆߎߣ߇น⢻ߣߥߞߚ‫ޕ‬
ታ㛎േ‛㧝⚖ᛛⴚ⠪⹺ቯ⹜㛎ฃ㛎․଀⹺ቯᩞߣߒߡ⹺ቯ
േ‛↢๮ක⑼ቇ⑼߇‫ޔ‬ᐔᚑ㧞㧞ᐕ㧝㧜᦬㧝ᣣઃߌߢ‫ޔ‬ታ㛎േ‛㧝⚖ᛛⴚ⠪⹺ቯ⹜㛎ฃ㛎․଀
⹺ቯᩞߣߒߡ⹺ቯࠍฃߌࠆ‫ޕ‬
૶↪ᣉ⸳ߩᡷୃ࡮⵬ୃᎿ੐ߩታᣉ
✚ว↢๮⑼ቇㇱ߇૶↪ߔࠆ╙㧝ታ㛎ቶ᫟‫ޔ‬㧥ภ㙚‫ޔ‬㧝㧡ภ㙚ࠍ‫↪૶ޔ‬ታᘒߦวࠊߖߡ‫ޔ‬ᡷୃ࡮
⵬ୃᎿ੐ࠍታᣉߒ‫ޔ‬ᢎ⢒࡮⎇ⓥᵴേߩⅣႺᢛ஻ࠍⴕ߁‫ޕ‬
✚ว↢๮⑼ቇㇱ੐ോቶࠬ࠲࠶ࡈ
ᓟ೉㧔Ꮐ߆ࠄ㧕
੗਄
㋈ᧁ
ખ᧛
೨೉㧔Ꮐ߆ࠄ㧕
ะ੗
ട⮮
ᐔర
105
ዮӳဃԡᅹ‫ܖ‬ᢿɼ͵ǷȳȝǸǦȠሁɟᚁ
Ƃ ᧏ ᚨ ᚡࣞ Ƿ ȳȝ Ǹ ǦȠƃ
ᣣ
ᤨ 㧦 ᐔᚑ ᐕ ᦬ ᣣ 㧔ᧁ 㧕 㨪 ႐
ᚲ 㧦 ␹ጊ ࡎ ࡯࡞╙ 㧝 ࠮ ࡒ࠽ ࡯ ቶ
⻠ Ꮷ ࡮ Ṷ㗴 㧦દ
દ
⮮
⛽
ᤘ
ᢎ ᝼ 㧔✚ ว ↢๮ ⑼ቇ ㇱ ↢ ๮ࠪ ࠬ ࠹ࡓ ቇ ⑼㧕
‫ ߩ ↢⺀ ⾰ ࠢࡄ ࡦ ࠲ ޟ‬ೋᦼߦ ߅ ߌ ࠆ಴ ᧪ ੐‫ޠ‬
ศ
↰
⾫
ฝ
ᢎ ᝼ 㧔✚ ว ↢ ๮⑼ ቇ ㇱ↢ ๮ ࠪࠬ࠹ ࡓ ቇ ⑼㧕
‫ߩ ⾰ ࠢࡄ ࡦ ࠲ ޟ‬᭴ ㅧ ߩ⒖ࠅ ᄌ ࠊ ࠅࠍ ᡰ ㈩ߔ ࠆ ࠲ࡦࡄ ࠢ ⾰ 㧦ಽ ሶ ࠪࡖ ࡍ ࡠࡦ‫ޠ‬
ਃ
ේ
ൎ
⧐
ඳ ჻ 㧔਻ Ꮊ ᄢ ቇක ቇ ⎇ⓥ 㒮 ฬ⹷ᢎ ᝼ 㧕
‫ Ⲣ ࠕ࡝ ࠼ ࡦࠦ ࠻ ࡒ ޟ‬ว࡮ಽ ⵚ ߩ ಽሶ ᯏ ᭴ߣ ↢ ℂ⊛ᗧ ⟵ ‫ޠ‬
⮮
ᧁ
ᐘ
ᄦ
ᢎ ᝼ 㧔਻ Ꮊ ᄢ ቇᄢ ቇ 㒮ℂ ቇ ⎇ⓥ㒮 ↢ ‛ ⑼ቇ ㇱ 㐷㧕
‫ߩ ࡓ ࡯࠰ ࠪ ࠠࠝ ࡞ ࡍ ޟ‬ᒻᚑ ೙ ᓮ ࡮㜞 ᰴ ↢๮ ᯏ ⢻ߣߘ ߩ 㓚 ኂ‫ޠ‬
↰
ਛ
໪
ੑ
ඳ ჻ 㧔᧲ ੩ ㇺ ⥃ᐥ ක ቇ✚ ว ⎇ⓥᚲ ࡮ ᚲ 㐳ઍ ⴕ 㧕
‫⾰ ࠢ ࡄ ࡦ࠲ࠆ ࠃ ߦࡓ ࠹ ࠬࠪ ࡓ ࡯ ࠰ࠕ࠹ ࡠ ࡊ࡮ ࡦ ࠴ࠠ ࡆ ࡙ ޟ‬ಽ ⸃ ‫ޠ‬
ᄢ
㓈
⦟
ౖ
ඳ ჻ 㧔᧲ ੩ Ꮏ ᬺᄢ ቇ ․છ ᢎ ᝼㧕
‫ ޟ‬㉂ Უ ߆ࠄ ⷗ ߃ߡ ߈ ߚࠝ࡯ ࠻ ࡈ ࠔࠫ ࡯ ߩ਎ ⇇ ‫ޠ‬
਎
⹤
ੱ 㧦 ᳗↰ ᢎ ᝼
Ƃ ‫ ׎‬ᨥ ȯȸ ǯ Ƿȧ ȃ ȗƃ
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ᳓ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦,, WPI*[G 4QG
ᢎ ᝼ 㧔࠰ ࠙ ࡞ᄢ ቇ ↢๮ ⑼ቇ ㇱ 㧕
/C[WTGG (WCPIVJQPI
ඳ ჻ 㧔࠴ࡘ࡜ࡏ࡯ࡦ⎇ⓥᚲ⎇ⓥຬ࡮࠴ࡘ࡜ࡏ࡯ࡦᄢቇ㒮ᄢቇᢎቭ㧕
᳗
↰
๺
ብ
ᢎ ᝼ 㧔✚ ว ↢ ๮⑼ ቇ ㇱ↢ ๮ ࠪࠬ࠹ ࡓ ቇ ⑼㧕
᎑
ᧄ
િ
㓶
ᢎ ᝼ 㧔✚ ว ↢ ๮⑼ ቇ ㇱ↢ ๮ ࠪࠬ࠹ ࡓ ቇ ⑼㧕
࠹ ࡯ ࡑ 㧦‫ ޟ‬ᄢ ቇ㒮 ࠍ ࠕࠫࠕ ߦ ะ ߆ߞ ߡ 㐿ߊ ߦ ߪ㧫‫ޠ‬
“'ZRQUWTG QH QWT ITCFWCVG UEJQQNU VQ #UKCP EQWPVTKGU”
਎ ⹤ ੱ 㧦᎑ ᧄ ᢎ᝼
106
Ƃ Ȑ Ǥ Ǫȕ ǩ ȸȩ Ƞ ᲬᲪᲫ Ც ƃ
࿁ᢙ
╙㧝࿁
㐿
௅
᭎
ⷐ
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ㊄ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦// CVVJKCU 4QGIPGT
Ṷ
㗴 㧦 $CUKEU QH E[CPQDCEVGTKCN RJQVQU[PVJGUKU HQT HWVWTG J[FTQIGP
ᢎ ᝼ 㧔 ࡞࡯ ࡞ ᄢቇ ᬀ ‛ ᢎ ቶ㧕
RTQFWEVKQP HTQO YCVGT
਎ ⹤ ੱ 㧦ἑ የ ᢎ᝼ ࡮ ศ↰ᢎ ᝼
╙㧞࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ᦬ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦᳗
᳗
Ṷ
㗴 㧦⚦ ⢩ ౝ࠲ ࡦ ࡄࠢ⾰ ຠ ⾰ ▤ℂ ᯏ ᭴
↰
๺
ብ
ᢎ ᝼ 㧔✚ ว ↢๮ ⑼ ቇㇱ↢ ๮ ࠪ ࠬ࠹ ࡓ ቇ⑼ 㧕
਎ ⹤ ੱ 㧦ἑ የ ᢎ᝼
╙㧟࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ᧁ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦ዊ
ዊ
Ṷ
㗴 㧦ࡓࠬࠞ࡝ࡦᕈࠕ࠮࠴࡞ࠦ࡝ࡦฃኈ૕ߩᶖൻ▤ㆇേ⺞▵㨪ࡁ࠶ࠢࠕ࠙࠻ࡑ࠙ࠬࠍᱞེߣߒߚㅊ᳞㨪
᫪
ᚑ
৻
ᢎ ᝼ 㧔ጘ㒂ᄢቇᔕ↪↢‛⑼ቇㇱᔕ↪↢‛⑼ቇ⑼₞ක⮎ℂቇಽ㊁㧕
਎ ⹤ ੱ 㧦㜞 ᪀ ಎᢎ ᝼ ࡮᫜ᯅ ഥ ᢎ
╙㧠࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ㊄ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦ㄭ
ㄭ
Ṷ
㗴 㧦ࠪࡑ࠙ࡑߪߥߗ❋ࠍᜬߞߡ޿ࠆߩ߆㧫
⮮
ṑ
ᢎ ᝼ 㧔ᄢ㒋ᄢቇᄢቇ㒮↢๮ᯏ⢻⎇ⓥ⑼ࡄ࠲࡯ࡦᒻᚑ⎇ⓥቶ㧕
਎ ⹤ ੱ 㧦ᵤ ਅ ᢎ᝼ ࡮ ᴡㆻಎ ᢎ ᝼
╙㧡࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᳓ 㨪 ႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ㧦⧯
⩿
⨃
᥍
᳁㧔ℂൻቇ⎇ⓥᚲࡃࠗࠝ࡝࠰࡯ࠬ࠮ࡦ࠲࡯ࡑ࠙ࠬ⴫⃻ဳ⸃
ᨆ 㐿 ⊒ ࠴࡯ ࡓ ࠴࡯ ࡓ ࡝࡯࠳ ࡯ 㧕
Ṷ
㗴 㧦ࡑ ࠙ ࠬ⴫ ⃻ ဳ⸃ᨆ ᮡ Ḱ ൻߣ ᣣ ᧄࡑ ࠙ ࠬࠢ࡝ ࠾ ࠶ ࠢ
਎ ⹤ ੱ 㧦㥲 ⮮ ᢎ᝼ ࡮ 㜞᪀ಎ ᢎ ᝼
╙㧢࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᳓ 㧕 㨪 ႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦ᴰ
ᴰ
੗
᩵
᳁
㧔ㄭ⇰ᄢቇవ┵ᛛⴚ✚ว⎇ⓥᚲቴຬᢎ᝼࡮੩ㇺᄢቇฬ⹷ᢎ᝼࡮ℂൻቇ⎇ⓥᚲቴຬਥ▤⎇ⓥຬ㧕
Ṷ
㗴 㧦ㆮ વ ሶዉ ౉ ߦࠃࠆ ᬀ ‛ ߩઍ ⻢ Ꮏቇ
਎ ⹤ ੱ 㧦ᴡ ㆻ ಎᢎ ᝼
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᳓ 㧕 㨪 ႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
ᴡ
Ꮷ 㧦ᴡ
ㆻ
ᧁ
᧛
╙㧣࿁
Ṷ
ᚑ
ᤘ
ಎ ᢎ ᝼ 㧔✚ ว ↢๮ ⑼ ቇㇱ ↢ ๮ ⾗Ḯ Ⅳ Ⴚቇ ⑼ 㧕
੺
ಎ ᢎ ᝼ 㧔 ✚ ว ↢๮ ⑼ ቇㇱ ↢ ๮⾗Ḯ Ⅳ Ⴚ ቇ⑼ 㧕
㗴 㧦ࠪ ࡠ ࠗ࠿ ࠽ ࠭࠽ㄭ ✼ ⒳ ߩേ ේ ૕߅ ࠃ ߮ߘߩ ๟ ㄝ 㗔ၞ ߩ ㅴൻ ⊛ ⸃ᨆ
ࠟ࡜ࡄࠧࠬ⻉ፉߦ࿕᦭ߩ㊁↢࠻ࡑ࠻ߦⷰኤߐࠇࠆ⪲ᒻᘒߩ⥄ὼᄌ⇣ߩ⊒↢ᯏ᭴
਎ ⹤ ੱ 㧦ᴡ ㆻ ಎᢎ ᝼
107
࿁ᢙ
╙㧤࿁
㐿
௅
᭎
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᳓ 㧕 㨪 ႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦᎑
᎑
Ṷ
㗴 㧦ォ ౮ ߩ࠽ ࡁ ࡃࠗࠝ ࡠ ࠫ ࡯
ᧄ
િ
㓶
ⷐ
ᢎ ᝼ 㧔✚ ว ↢๮ ⑼ ቇㇱ↢ ๮ ࠪ ࠬ࠹ ࡓ ቇ⑼ 㧕
਎ ⹤ ੱ 㧦ἑ የ ᢎ᝼
․
೎
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᳓ 㧕 㨪 ႐
ᚲ 㧦࿑ ᦠ 㙚࿑ ᦠ 㙚ࡎ࡯ ࡞
⻠
Ꮷ 㧦## FC ' ;QPCVJ ඳ ჻ 㧔 ࠗࠬ ࡜ ࠛ࡞
Ṷ
㗴 㧦 6JG XQ[CIG QH PCUEGPV RTQVGKPU VJTQWIJ VJG TKDQUQOG㧔࡝ࡏ࠰࡯ࡓߦ߅ߌࠆᣂ↢࠲ࡦࡄࠢ⾰ߩᣏ㧕
ࡢࠗ࠷ ࡑ ࡦ ⎇ⓥ ᚲ 㧕
਎ ⹤ ੱ 㧦દ ⮮ ᢎ᝼
╙㧥࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ㊄ 㧕 㨪 ႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦㜞
㜞
Ṷ
㗴 㧦 #/2-ߦࠃ ࠆ ⚦⢩ᭂ ᕈ ᒻ ᚑߩ ಽ ሶᯏ ᭴
ፉ
ᚑ
ੑ
ಎ ᢎ ᝼ 㧔ᄢ㒋ᄢቇᄢቇ㒮කቇ♽⎇ⓥ⑼ᓴⅣེౝ⑼ቇಽሶᔃⴊ▤කቇ㧕
਎ ⹤ ੱ 㧦ἑ የ ᢎ᝼
╙ ࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ Ἣ 㧕 㨪 ႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦ᵿ
ᵿ
Ṷ
㗴 㧦ࠪ ࡚ ࠙ࠫ ࡚ ࠙ࡃࠛ ༦ ⷡ ␹⚻ ࿁ 〝ߩ ᒻ ᚑᯏ᭴
ජ
዆
ᢎ ᝼ 㧔✚ ว ↢๮ ⑼ ቇㇱ↢ ๮ ࠪ ࠬ࠹ ࡓ ቇ⑼ 㧕
਎ ⹤ ੱ 㧦ἑ የ ᢎ᝼
╙ ࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ㊄ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦ේ
ේ
Ṷ
㗴 㧦㊀ ㊄ ዻ㓸 Ⓧ ᬀ‛ߩ ᯏ ᭴ ⸃᣿ ߣ ᔕ↪
↰
⧷⟤ሶ
ಎ ᢎ ᝼ 㧔ṑ ⾐ ⋵┙ ᄢ ቇⅣ Ⴚ ⑼ ቇㇱ ↢ ‛⾗ Ḯ ▤ℂቇ ⑼ 㧕
਎ ⹤ ੱ 㧦ᴡ ㆻ ಎᢎ ᝼
╙ ࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ᳓ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦᧻
᧻
Ṷ
㗴 㧦ࠨ ࠗ ࠻ࠞ ࠗ ࡦߦࠃ ࠆ KP XKXQ఺ ∉ᔕ ╵ ೙ᓮ
↰
ୃ
ᢎ ᝼ 㧔੩ㇺᐭ┙ක⑼ᄢቇᄢቇ㒮කቇ⎇ⓥ⑼఺∉࡮ᓸ↢‛ቇ㧕
਎ ⹤ ੱ 㧦┻ ౝ ᢎ᝼ ࡮ ᴡㆻಎ ᢎ ᝼
╙ ࿁
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ 㧔 ㊄ 㧕 㨪
႐
ᚲ 㧦㧝 㧡 ภ㙚 㧝 㧡㧝㧜 㧞 ࠮ ࡒ࠽ ࡯ ቶ
⻠
Ꮷ 㧦ේ
ේ
Ṷ
㗴 㧦ࡕ ࠺ ࡞ࡑ ࠙ ࠬࠍ↪ ޿ ߚ ‫ ⚦ޔ‬⢩ ߩᭂ ᕈ ߩᒻᚑ ⛽ ᜬ ࠍม ࠆ ㆮવ ሶ ߩᯏ⢻ ⸃ ᨆ
↰
ᓆ
ብ
ᢎ ᝼ 㧔ᄢ 㒋 ᄢቇ ක ቇ♽⎇ ⓥ ⑼ ⚦⢩ ↢ ‛ቇ ⻠ ᐳ㧕
਎ ⹤ ੱ 㧦ਛ ᧛ ᢎ᝼ ࡮ ᴡㆻಎ ᢎ ᝼
108
Ƃ ᅶ ᇌ ‫ ܖٻ‬৆ ဦႎ ᄂ ᆮؕႴ ࢟ ঺ ૅੲ ʙ ಅǻ ȟ Ȋȸƃ
㐿
௅
᭎
ⷐ
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ Ἣ 㨪 ႐
ᚲ 㧦㧥 ภ 㙚㧥 㧜 㧞ᄢቇ 㒮 ⻠ ⟵ቶ
⻠
Ꮷ 㧦⻉
⻉
Ṷ
㗴 㧦ࠪ ࡠ ࠗ࠿ ࠽ ࠭࠽࠻ ࡜ ࠗ ࠦ࡯ ࡓ ᒻᚑ ߦ 㑐ࠊࠆ ォ ౮ ೙ᓮ ࡀ ࠶࠻ ࡢ ࡯ࠢߩ ⸃ ᨆ
ᯅ
⾫
๋
ඳ ჻ 㧔ࠝ ࡂ ࠗࠝ Ꮊ ┙ᄢቇ 㧕
਎ ⹤ ੱ 㧦ኹ ࿾ ᢎ᝼ ࡮ ᧁ᧛ಎ ᢎ ᝼
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ㊄ 㨪 ႐
ᚲ 㧦㧝 㧢 ภ㙚 㧞 㓏ળ⼏ ቶ
⻠
Ꮷ 㧦᦭
᦭
Ṷ
㗴 㧦࡜ ࠗ ࡉࠗ ࡔ ࡯ࠫࡦ ࠣ ࠍ ↪޿ ߚ ᬀ‛ ࡒ ࠻ࠦࡦ ࠼ ࡝ ࠕߩ ಽ ⵚ࡮ Ⲣ ว࡮⛽ ᜬ ᯏ ᭴ߩ ⸃ ᨆ
᧛
ᘕ
৻
ಎ ᢎ ᝼ 㧔 ᧲੩ᄢቇᄢቇ㒮ㄘቇ↢๮⑼ቇ⎇ⓥ⑼ᬀ‛ಽሶㆮવቇ⎇ⓥቶ㧕
਎ ⹤ ੱ 㧦ኹ ࿾ ᢎ᝼
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᦬ 㨪 ႐
ᚲ 㧦㧝 㧢 ภ㙚 㧞 㓏ળ⼏ ቶ
⻠
Ꮷ 㧦ਛ
ਛ
Ṷ
㗴 㧦㕖 ࡕ ࠺࡞ ᬀ ‛ࠕࠬ ࡄ ࡜ ࠟࠬ ࠍ ↪޿ ߚ ‫ ޟޔ ⨍ߥ ߁ ࠃ ߩ⪲ޔ‬ᡆ⪲ ‫ߩ ޠ‬ㅴ ൻ ⊒ ↢ቇ
ጊ
ർ
᢯
ඳ ჻ 㧔᧲ ੩ ᄢቇ ᄢ ቇ㒮ℂ ቇ ♽ ⎇ⓥ ⑼ ↢‛ ⑼ ቇኾ᡹ 㧕
਎ ⹤ ੱ 㧦ኹ ࿾ ᢎ᝼ ࡮ ᧁ᧛ಎ ᢎ ᝼
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᦬ 㨪 ႐
ᚲ 㧦㧝 㧢 ภ㙚 㧞 㓏ળ⼏ ቶ
⻠
Ꮷ 㧦ศ
ศ
Ṷ
㗴 㧦ౖ ဳ ⊛ࡄ ࠗ ࠝ࠾ࠕ ⒳ ࠞ ࡜ࠬ ࠩ ࡦࠪ ࡚ ࠙ߩಽ ሶ 㓸 ࿅ㆮ વ ቇ⊛ ⎇ ⓥ
↰
⾆
ᓼ
ඳ ჻ 㧔਻ Ꮊ ᄢቇ ࠪ ࠬ࠹ࡓ ↢ ๮ ⑼ቇ ᐭ ࠪࠬ ࠹ ࡓ↢๮ ⑼ ቇ ኾ᡹ 㧕
਎ ⹤ ੱ 㧦ኹ ࿾ ᢎ᝼ ࡮ ᴡㆻಎ ᢎ ᝼
ᣣ
ᤨ 㧦ᐔ ᚑ ᐕ ᦬ ᣣ ᳓ 㨪 ႐
ᚲ 㧦㧝 㧢 ภ㙚 㧞 㓏ળ⼏ ቶ
⻠
Ꮷ 㧦቟
቟
Ṷ
㗴 㧦ነ ↢ ࡃ࠴ ߦ ߅ߌࠆ ᭂ ┵ ߦ㓽 ߦ ஍ߞ ߚ ᕈᲧߩ ㅴ ൻ
ㇱ
ᷕ
ඳ ჻ 㧔㕒ጟᄢቇㄘቇㇱ౒↢ࡃࠗࠝࠨࠗࠛࡦࠬቇ⑼ᔕ↪᣸⯻ቇ⎇ⓥቶ㧕
਎ ⹤ ੱ 㧦ኹ ࿾ ᢎ᝼ ࡮ ᴡㆻಎ ᢎ ᝼
109
110
111
112
113
114
115
116
117
118
119
120
121
123
124
125
127
128
Წ Ც Ძ ᲪᲢ ᳂ ᲬᲬ ᲣᲨ ᲳᲨ Წ Ძ
Წ Ც Ძ ᲪᲢ ᳂ ᲬᲬ ᲣᲨ ᲫᲫ Შ Ჭ Ც
ʮ ᣃ ૼᎥ
൑ ଐૼ ‫ ٲ‬Б
129
京都産業大学総合生命科学部 年報
ࠠࡖࡦࡄࠬࡑ࠶ࡊ
✚ว↢๮⑼ቇㇱ㑐ㅪᩞ⥢╬
⒓
㈩
第一号
ฬ
⟎
╙ 㧝 ታ 㛎 ቶ ᫟ ↢ ๮ ⾗ ḮⅣ Ⴚ ቇ⑼
㧢
㧥
㧝
ภ
ภ
㧡
㙚
✚ ว ↢ ๮⑼ ቇ ㇱ੐ ോ ቶ㧔㧝 㧲 㧕
േ ‛ ↢ ๮ක ⑼ ቇ⑼ 㧔 㧮㧝㧲 㧕
㧝
㙚 ↢ ๮ ⾗ ḮⅣ Ⴚ ቇ⑼ 㧔 㧞㧲࡮ 㧟 㧲 㧕
ภ
㙚 ↢ ๮ ࠪ ࠬ࠹ ࡓ ቇ⑼ ࡮ േ‛↢ ๮ ක ⑼ቇ ⑼
ᇹᲫӭ
࠰‫إ‬
ᲬᲪᲫᲪᲢ࠯঺ᲬᲬ࠰Უ
⊒
ⴕ
ᣣ
㧞㧜 㧝 㧝㧔ᐔ ᚑ 㧞 㧟㧕 ᐕ 㧝㧜 ᦬ 㧝ᣣ
⊒
ⴕ
⠪
੩ㇺ ↥ ᬺᄢቇ ✚ ว ↢๮ ⑼ ቇㇱ
‫ ޥ‬
੩ㇺ Ꮢ ർ඙਄ ⾐ ⨃ ᧄጊ
6'. (#: JVVRYYYM[QVQUWCELRFGRCTVOGPVPNU
二〇一〇(平成二十二年)
ʮᣃငಅ‫ܖٻ‬ዮӳဃԡᅹ‫ܖ‬ᢿ
Fly UP