...

023052030009

by user

on
Category: Documents
18

views

Report

Comments

Transcript

023052030009
THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 52, NO. 3 October 2011
Effect of Kumaizasa (Sasa senanensis Rehder) on the Inhibition of Advanced
Glycation End Product (AGEs) Formation
Mio HORI, Masayuki YAGI, Keitaro NOMOTO, Takahiro KITANO, Ryo MIYAZAKI, Yoshikazu YONEI
(Received July 14, 2011)
Non-enzymatic reaction between glucose and protein leads to the formation of advanced glycation end products (AGEs), and
its accumulation has been linked to the development of diabetic complications, as well as to the progression of age-related diseases.
In recent years, attention has been paid to the effect of inhibiting AGE formation in the body for the purposes of anti-aging, health
promotion, and lifestyle-disease prevention. In the present study, we evaluated the anti-glycation effects of Kumaizasa (Sasa
senanensis Rehder) and the potential of its use as an anti-glycation product. Using an in vitromethod with glucose and human serum
albumin (HSA), we analyzed the inhibition of the formation of AGEs; specifically fluorescent AGEs, 3-deoxyglucosone (3DG),
Pentosidine (Pent), and Nİ-(carboxymethyl)lysine(CML) by Kumaizasa utilizing fluorescence spectroscopy, HPLC, and enzyme
linked immunoassay (ELISA). We analyzed its anti-glycation effects by comparing the 50% inhibitory concentration (IC50) against
these glycated products with aminoguanidine, a known inhibitor of glycation. IC50 of fluorescent AGEs by Kumaizasa(powder form)
and aminoguanidine were almost equal concentrations, while IC50 against 3DG, Pent, and CML were significantly lower for
Kumaizasa (powder form) than that of aminoguanidine. IC50 of 3DG by Kumaizasa (hot water extraction) and aminoguanidine were
almost equal concentrations, while IC50 against fluorescent AGEs, Pent, and CML were significantly lower for Kumaizasa(hot water
extraction) than that of aminoguanidine. These results suggest that Kumaizasa strongly inhibits glycation and may be useful for
anti-glycation products, including health foods and cosmetics.
-G[YQTFUglycation, advanced glycation end products (AGEs), Kumaizasa (Sasa senanensis Rehder)
ࠠ࡯ࡢ࡯࠼㧦♧ൻ㧘Ⱞ⊕♧ൻᦨ⚳↢ᚑ‛
AGEs㧘ࠢࡑࠗࠩࠨ
Sasa senanensis Rehder
ࠢࡑࠗࠩࠨ
Sasa senanensis RehderߩⰮ⊕♧ൻᦨ⚳↢ᚑ‛
AGEs
↢ᚑᛥ೙૞↪ߩ⎇ⓥ
ၳᧂᄩ㧘౎ᧁ㓷ਯ㧘ၛᧄᘮᄥ㇢㧘ർ㊁⾆ᄢ㧘ችፒ੫㧘☨੗ཅ৻
ߦߟ޿ߡߩ⎇ⓥ߇ㅴࠎߢ޿ࠆ 1)㧚
ߪߓ߼ߦ
ࠣ࡞ࠦ࡯ࠬߪ↢૕ߦ߅޿ߡ㊀ⷐߥࠛࡀ࡞ࠡ࡯Ḯߢ
ࠣ࡞ࠦ࡯ࠬߪⰮ⊕⾰ߣ౒ሽߔࠆߣ㕖㉂⚛⊛ߦ෻ᔕ
޽ࠅ㧘↢๮ࠍ⛽ᜬߔࠆ਄ߢਇนᰳߥ‛⾰ߢ޽ࠆ㧚৻
ߒ㧘ਇนㅒ⊛ߥᄌᕈࠍ⿠ߎߔ㧚ߎߩ෻ᔕߪ♧ൻ෻ᔕ
ᣇߢࠣ࡞ࠦ࡯ࠬߪ♧ዩ∛ߩ᦭ήߦ߆߆ࠊࠄߕోߡߩ
ߣ๭߫ࠇ㧘Ⱞ⊕⾰ߣࠣ࡞ࠦ࡯ࠬ߇⚿วߒ㧘ࠕࡑ࠼࡝
ੱߦ⠧ൻߩෂ㒾࿃ሶߣߒߡ㑐ਈߔࠆน⢻ᕈ߇޽ࠆ㧚
ൻ ว ‛ ࠍ ⚻ ߡ Ⱞ ⊕ ♧ ൻ ᦨ ⚳ ↢ ᚑ ‛ advanced
ㄭᐕ㧘ࠣ࡞ࠦ࡯ࠬ߅ࠃ߮♧ઍ⻢⇣Ᏹߩ⠧ൻ߳ߩᓇ㗀
glycation end products: AGEs㧕ࠍ↢ᚑߔࠆ㧚AGEs ߦ
Graduate School of Life and Medical Sciences, Doshisha University, Kyoto
Telephone/Fax: +81-774-65-6394, E-mail: [email protected]
61 )
( 堀 未央・八木雅之・埜本慶太郎・北野貴大・宮崎 亮・米井嘉一
224
ߪߘߩ↢ᚑਛ㑆૕ߢ޽ࠆ ࠺ࠝࠠࠪࠣ࡞ࠦ࠰ࡦ
ࠢࡑࠗࠩࠨ☳ᧃ߅ࠃ߮ AG ࠍ⫳⇐᳓ߢṁ߆ߒ 1%
㧔3DG㧕㧘ࠣ࡝ࠝࠠࠨ࡯࡞㧘ࡔ࠴࡞ࠣ࡝ࠝࠠࠨ࡯࡞ࠍ
ߦ⺞⵾ߒߚ㧚ࠢࡑࠗࠩࠨ☳ᧃߪቢోߦṁ⸃ߒߥ߆ߞ
ߪߓ߼㧘ࡇ࡜࡝ࡦ㧘ࡍࡦ࠻ࠪࠫࡦ㧔Pent㧕㧘ࠞ࡞ࡏࠠ
ߚߚ߼ Ộᶧߣߒߡ૶↪ߒ㧘ᾲ᳓᛽಴‛ߪᶧ૕㊀㊂
ࠪࡔ࠴࡞࡝ࠫࡦ㧔CML㧕ߥߤ㧘ᢙ 100 ⒳㘃ߩ‛⾰߇
ߢ 1%ߦ⺞⵾ߒߚᓟ㧘⺞⵾ᶧ 5mL ࠍ 120±10͠㧘3 ᤨ
หቯߐࠇߡ޿ࠆ㧚ߎࠇࠄ AGEs ߩ↢૕ౝ⫾Ⓧߪ㧘♧
㑆ടᾲߒߚᤨߩ೨ᓟߩ㊀㊂Ꮕ߆ࠄࠛࠠࠬ࿕ᒻಽỚᐲ
ዩ∛ว૬∝ߩ✂⤑∝࡮⣢∝࡮␹⚻∝㧘േ⣂⎬ൻ∝㧘
ࠍ▚಴ߒߚ㧚
㛽☻㝃∝㧘ࠕ࡞࠷ࡂࠗࡑ࡯∛㧘⊹⤏⎬ൻ㧘ട㦂㤛⃰
ᄌᚑ∝ߦ㑐ਈߔࠆ
1,2)
㧚
#)'U ↢ᚑ
એ਄ߩࠃ߁ߦ㧘♧ൻ෻ᔕ߅ࠃ߮ AGEs ߩ↢ᚑ࡮⫾
AGEs ↱᧪Ⱟశࠍᣢႎߩᅤߊએਅߩࠃ߁ߦ᷹ቯߒ
Ⓧ߇ஜᐽ㐳ኼ㧘↢ᵴߩ⾰㧔Quality of Life:QOL㧕ߩ⛽
ߚ 6)㧚0.lmo1/L ࡝ࡦ㉄✭ⴣᶧ
PBS
pH7.4500ȝL㧘
ᜬ࡮ะ਄ߦኻߒᄢ߈ߥෂ㒾࿃ሶߣߥߞߡ޿ࠆ㧚ஜᐽ
⫳⇐᳓ 100ȝL㧘40mg/mL ࡅ࠻ⴊᷡࠕ࡞ࡉࡒࡦ㧔HSA,
㐳ኼ㧘QOL ߩ⛽ᜬ࡮ะ਄ࠍ㆐ᚑߔࠆߚ߼ߦߪ↢ᵴᜰ
Sigma Chemical Co.Ltd, MO, USA㧕200ȝL㧘2mo1/L ࠣ
ዉߣߒߡឭ᩺ߢ߈ࠆᛥ೙࿃ሶߩតⓥ߇੍㒐කቇ࡮ஜ
࡞ࠦ࡯ࠬ᳓ṁᶧ 100ȝL ߦ㧘
ฦỚᐲߩࠢࡑࠗࠩࠨ☳ᧃ㧘
ᐽჇㅴߦ៤ࠊࠆᯏ㑐ߩᕆോߣ޿߃ࠆ㧚
ࠢࡑࠗࠩࠨᾲ᳓᛽಴‛㧘߹ߚߪ AG ᳓ṁᶧࠍ 100ȝL
੹࿁ߩ⎇ⓥߢᵈ⋡ߒߚ‫ࠨࠩࠗࡑࠢޟ‬㧔ࠢࡑࠩࠨ㧕
3,4)
㧔Sasa senanensis Rehder㧕‫ߪޠ‬ଢ⒁ߩᡷༀ
㧘᛫࠙ࠗ
5)
ᷝടߒ㧘⫳⇐᳓ࠍᷝടߒߡ✚㊂ࠍ 1mL ߣߒߚᓟ㧘
60͠㧘40 ᤨ㑆ࠗࡦࠠࡘࡌ࡯࡚ࠪࡦߒߚ
A㧚หᤨߦ
࡞ࠬ૞↪ ࠍᦼᓙߒߡ↪޿ࠄࠇߡ߈ߚ㘩⚻㛎⼾߆ߥ
ฦ෻ᔕࡉ࡜ࡦࠢߣߒߡ㧘ࠣ࡞ࠦ࡯ࠬ᳓ṁᶧߩઍࠊࠅ
⚛᧚ߢ޽ࠆ㧚⪲ߦߪ㧘㋕㧘ࠞ࡝࠙ࡓ㧘ࡑࠣࡀࠪ࠙ࡓ㧘
ߦ⫳⇐᳓ࠍᷝടߒߚ߽ߩࠍࠗࡦࠠࡘࡌ࡯࡚ࠪࡦߒߚ
ࠞ࡞ࠪ࠙ࡓߥߤߩࡒࡀ࡜࡞߿㧘ࡆ࠲ࡒࡦC㧘K㧘B1㧘
B㧚㓁ᕈࠦࡦ࠻ࡠ࡯࡞ߣߒߡ㧘ࠢࡑࠗࠩࠨ☳ᧃ㧘
B2ߥߤ߇ᄙߊ฽߹ࠇߡ޿ࠆ㧚ߒ߆ߒߥ߇ࠄߘߩ↢૕
ࠢࡑࠗࠩࠨᾲ᳓᛽಴‛߹ߚߪ AG ࠍᷝടߒߥ޿⹜ᢱ
૞↪ߦߟ޿ߡߪ㧘ߎࠇ߹ߢߦᄙߊߩ⎇ⓥ߇ߥߐࠇߡ
ࠍ⺞⵾ߒߡࠗࡦࠠࡘࡌ࡯࡚ࠪࡦߒߚ
C㧚หᤨߦ㓁
߈ߚࠊߌߢߪߥ޿㧚ߘߎߢ㧘ᧄ⎇ⓥߢߪ‫ࠩࠗࡑࠢޟ‬
ᕈࠦࡦ࠻ࡠ࡯࡞ߦኻߔࠆࡉ࡜ࡦࠢߣߒߡࠣ࡞ࠦ࡯ࠬ
ࠨ‫ߡ޿ߟߦޠ‬in vitro ታ㛎♽ߦ߅ߌࠆAGEs↢ᚑᛥ೙
᳓ṁᶧߩઍࠊࠅߦ⫳⇐᳓ࠍᷝടߒߚ߽ߩࠍࠗࡦࠠࡘ
૞↪ߩ᦭ήࠍᬌ⸽ߒ‫ޟ‬᛫♧ൻ‫ߚߒߣ࠼࡯ࡢ࡯ࠠࠍޠ‬
ࡌ࡯࡚ࠪࡦߒߚ
D㧚ࡔࠗ࡜࡯࠼෻ᔕ㒖ኂᵴᕈߩ⹏
ஜᐽ㘩ຠ࡮ൻ♆ຠ⚛᧚ߒߡߩน⢻ᕈࠍᮨ⚝ߔࠆߎߣ
ଔߪ㧘ฦ⹜ᢱ෻ᔕᶧ
A㧘B㧘C㧘Dਛߩࡔࠗ࡜࡯࠼
ࠍ⋡⊛ߣߒߚ㧚ታ㛎ࡕ࠺࡞ߣߒߡࡅ࠻ⴊᷡࠕ࡞ࡉࡒ
෻ᔕ↢ᚑ‛㊂ࠍ᷹ቯߒߚ㧚ࡑࠗࠢࡠࡊ࡟࡯࠻࡝࡯࠳
ࡦ㧔human serum albumin; HSA㧕ߣࠣ࡞ࠦ࡯ࠬߣߩ♧
࡯ARVO MX 1420 ARVO series Multilabel Counter
ൻ෻ᔕ♽ࠍ↪޿ߚ㧚
Perkin-Elmer Japan Corp.ࠍ↪޿㧘ബ⿠ᵄ㐳 370nm㧘
Ⱟశᵄ㐳㧦440nm ߢ AGEs ↱᧪Ⱟశࠍ᷹ቯߒߚ㧚ਅ
ᣇᴺ
ᑼࠍ↪޿ߡ㓁ᕈࠦࡦ࠻ࡠ࡯࡞ߦኻߔࠆ AGEs ߩ↢ᚑ
ᛥ೙₸ࠍ▚಴ߒ㧘᛫♧ൻᵴᕈߣߒߡ IC50㧔50%↢ᚑ
ࠨࡦࡊ࡞
ࠨࡦࡊ࡞ߪᩣᑼળ␠࡙࠾ࠕ࡞㧔᧲੩ㇺ᧼ᯅ඙㧕ࠃ
㒖ኂỚᐲ㧕ࠍ▚಴ߒߚ㧚
ࠅឭଏߐࠇߚࠢࡑࠗࠩࠨࠍ↪޿ߚ㧚☳ᧃߪࠢࡑࠗࠩ
Ⱟశᕈ AGEs ↢ᚑᛥ೙₸
%{1-(A - B)/(C - D)} ×
ࠨේᢱࠍੇ῎ᓟ㧘Ვ⩶࡮☳⎈ߒ㧘ᓧࠄࠇߚ߽ߩ㧔⚂
100
Ⱟశᕈ AGEs ↢ᚑᛥ೙₸ߪ Fig. 1 ߦ␜ߔࠃ߁ߦ㧘
120 ࡔ࠶ࠪࡘ㧕ߣߒߚ㧚ᾲ᳓᛽಴‛ߪේᢱ߆ࠄ 80͠㧘
2 ᤨ㑆ߢ᛽಴ߒ૞⵾ߒߚ㧚㓁ᕈኻᾖߣߒߡႮ㉄ࠕࡒ
ฦࠨࡦࡊ࡞ࠍ 3 Ớᐲ㧔0.1%㧘0.01%㧘0.001%㧕ߢ෻
ࡁࠣࠕ࠾ࠫࡦ㧔એਅ AG㧕
㧔๺శ⚐⮎Ꮏᬺ㧘ᄢ㒋Ꮢਛ
ᔕᶧߦᷝടߒ㧘෻ᔕᓟߩ AGEs ↢ᚑᛥ೙₸߆ࠄᬌ㊂
ᄩ඙㧕ࠍ↪޿ߚ㧚
✢ࠍ૞ᚑߒߚ㧚IC50 ߪ↢ᚑᛥ೙₸ 50%ߦ⋧ᒰߔࠆࠨ
ࡦࡊ࡞Ớᐲߣߒߚ㧚
ࠨࡦࡊ࡞⺞⵾
62 )
( クマイザサ
(Sasa senanensis Rehder)の蛋白糖化最終生成物
(AGEs)生成抑制作用の研究
225
ᶧߦ㧘ࡊࡠ࠽࡯࠯ṁᶧ 20ȝL ߣ࠻࡝ࠬႮ㉄✭ⴣᶧ
Percent inhibition of the formation
of flourescent AGEs (%)
120.0
80ȝL ࠍട߃㧘ߘࠇࠄߩᷙวᶧ 55ȝL ࠍ 90 ಽࠗࡦࠠ
100.0
ࡘࡌ࡯࡚ࠪࡦߒߚᓟ㧘ᴣ㛛᳓ਛߢ 15 ಽടᾲߒࡊࡠ࠽
IC50 = 0.008%
80.0
࡯࠯ࠍਇᵴൻߒߚ㧚ฦࠨࡦࡊ࡞ߪ㧘ࡑࠗࠢࡠࡊ࡟࡯
60.0
࠻࡝࡯࠳࡯਄ߩ࠙ࠚ࡞ߦᵈ౉ߒ㧘37͠㧘60 ಽࠗࡦࠠ
40.0
ࡘࡌ࡯࡚ࠪࡦߒߚ㧚ࠠ࠶࠻ߦᷝઃߩ᛫ࡍࡦ࠻ࠪࠫࡦ
20.0
ࡕࡁࠢࡠ࡯࠽࡞᛫૕ṁᶧ 50ȝL ߣࠨࡦࡊ࡞߹ߚߪࡍ
0.0
ࡦ࠻ࠪࠫࡦᮡḰᶧࠍട߃㧘37͠㧘60 ಽࠗࡦࠠࡘࡌ࡯
-20.0
0.1
0.01
࡚ࠪࡦߒߚ㧚ߘߩᓟ 3,3',5,5'-tetramethylbenzidine
0.001
(TMB) 0.5mg/mL ࠍ฽߻⊒⦡೷ࠍฦ࠙ࠚ࡞ߦᷝടᓟ㧘
Sample Concentration (%)
10 ಽ㑆෻ᔕߐߖߚᓟ㧘TMB ෻ᔕ஗ᱛ✭ⴣᶧ 100ȝL
ࠍട߃෻ᔕ஗ᱛߐߖߚ㧚ᓧࠄࠇߚ෻ᔕᶧߪ෻ᔕᶧᷝ
Fig. 1.The method of calculation of inhibitory concentration
ടᓟ஗ᱛᓟ 10 ಽએౝߦ 450nm㧔ਥᵄ㐳㧕630nm㧔ෳ
IC50 (50% inhibitory concentration㧕
ᾖᵄ㐳㧕ߦ߅ߌࠆๆశᐲࠍ᷹ቯߒߚ㧚ࠨࡦࡊ࡞ਛߩ
(Sample: Aminoguanidine)
ࡍࡦ࠻ࠪࠫࡦỚᐲߪࡍࡦ࠻ࠪࠫࡦᮡḰᶧߢ૞ᚑߒߚ
*2.%
ᬌ㊂✢߆ࠄ▚಴ߒߚ㧚᛫ Pent ᵴᕈߪ IC50 ࠍ▚಴ߒ㧘
3DG ߪᣢႎߩᅤߊ HPLC ᴺߦߡ᷹ቯߒߚ 7)㧚3DG
ዊᢙὐએਅ 3 ᩴ߹ߢ⴫␜ߒߚ㧚
CML㧔Nİ-(carboxymethyl)lysine㧕ߪ㧘Ꮢ⽼ߩࠠ࠶࠻
᷹ቯ↪ࠨࡦࡊ࡞ߪ㧘ฦࠨࡦࡊ࡞ 200ȝL ߦ⫳⇐᳓
300ȝL㧘ౝㇱᮡḰ‛⾰ߣߒߡ 20mg/mL
㧔CycLex CML /Nİ-(carboxymethylLysine ELISA
2,3-pentanedione㧔๺శ⚐⮎Ꮏᬺ㧕25ȝL ࠍᷝടߒᠣᜈ
Kit㧦CycLex Co., Ltd.㧕ࠍ↪޿ߡ ELISA ᴺߦߡ᷹ቯ
ᷙวߒߚ㧚ᰴ޿ߢ 6.0 %ㆊႮ⚛㉄㧔๺శ⚐⮎Ꮏᬺ㧕
ߒߚ 7)㧚߹ߕ᷹ቯࠠ࠶࠻ߦᷝઃߩỚ❗ᵞᵺᶧ 50mL
500ȝL ࠍട߃ᠣᜈᓟ㧘12,000rpm㧘10 ಽ㑆㆙ᔃಽ㔌ߒ
ߦ♖⵾᳓ 450mL ࠍട߃㧔10 ୚Ꮧ㉼㧕㧘500mL ߩᵞᵺ
ߚ㧚㆙ᔃಽ㔌ᓟߪ㧘਄ᷡ 800ȝL ࠍಽᵈߒ㧘㘻๺὇㉄
ᶧࠍ⺞⵾ߒߚ㧚ߐࠄߦᷝઃߩ᛫ CML ࡕࡁࠢࡠ࡯࠽
᳓⚛࠽࠻࡝࠙ࡓ᳓ṁᶧ㧔๺శ⚐⮎Ꮏᬺ㧕1,000ȝL ࠍ
࡞᛫૕㧔৻ᰴ᛫૕㧕ߦ♖⵾᳓ 3mL ࠍട߃㧘ࠃߊᡬᜈ
ട߃ᠣᜈߒߚ㧚࡜ࡌ࡞ൻ೷ߣߒߡ 1.0 mg/mL 2.3-
ߒ㧘10 ಽ㑆㕒⟎ߒߚ㧚ߎߩ߁ߜ 600ȝL ࠍขࠅ಴ߒ㧘
diaminonaphthalene㧔หੳൻቇ⎇ⓥᚲ㧕100ȝL ࠍട߃㧘
♖⵾᳓ 5.4mL ࠍട߃㧔10 ୚Ꮧ㉼㧕㧘⸘ 6mL ߩ৻ᰴ᛫
ᠣᜈߒቶ᷷ߢ 1 ᣣ㕕⟎ߒ㧘એਅߩ᧦ઙߢ HPLC ߳ዉ
૕෻ᔕᶧࠍ૞ᚑߒߚ㧚CML-HSA ᮡḰᶧ㧔standard㧕
౉ߒ㧘3DG ࠍ᷹ቯߒߚ㧚
ߦ♖⵾᳓ 500ȝL ࠍട߃㧘CML-HSA Master standard
㧔20
ࠞ࡜ࡓߪ YMC-Pack CN150 x 4.6 mm I.D.㧔ࡢࠗ
ng/mL㧕ࠍ⺞⵾ߒߚ㧚ߎࠇࠄࠍ↪޿ߡᬌ㊂✢ࠍ૞ᚑ
ࠛࡓࠪࠖ㧘੩ㇺ㧕ࠍ૶↪ߒߚ㧚ṁ㔌ᶧߪ 50mM ࡝ࡦ
ߒ㧘Ớᐲࠍ▚಴ߒߚ㧚ฦࠨࡦࡊ࡞ߩ㆙ᔃ਄ᷡ 30ȝL
㉄㧦ࠕ࠮࠻࠾࠻࡝࡞㧦ࡔ࠲ࡁ࡯࡞70㧦17㧦13 ࠍ⺞
ߦࠨࡦࡊ࡞Ꮧ㉼↪✭ⴣᶧ 90ȝL ࠍട߃㧘ߐࠄߦ৻ᰴ
⵾ߒߚ㧚ᵹㅦߪ 1.0mL/min㧘ᬌ಴ᵄ㐳 UV 268 nm ߣ
᛫૕෻ᔕᶧ 120ȝL ࠍട߃シߊᡬᜈߒߚ㧚ᰴߦ㧘ࠨࡦ
ߒߚ㧚᛫ 3DG ᵴᕈߣߒߡ IC50 ࠍ▚಴ߒ㧘ዊᢙὐએਅ
ࡊ࡞ࠍ 100ȝL ߕߟࡑࠗࠢࡠࡊ࡟࡯࠻਄ߩ࠙ࠚ࡞ߦᵈ
3 ᩴ߹ߢ⴫␜ߒߚ㧚
౉ߒ㧘ቶ᷷ߢᡬᜈߒߥ߇ࠄ෻ᔕߐߖߚ㧚ߘߩᓟ㧘ฦ
࠙ࠚ࡞ߩ෻ᔕᶧࠍᝥߡ 200ȝL ߕߟߩᵞᵺᶧߢ 4 ࿁ᵞ
ᵺߒߚ㧚ߐࠄߦ HRP ᮡ⼂ੑᰴ᛫૕ࠍ 100ȝL ߕߟฦ
'.+5#
ࡍࡦ࠻ࠪࠫࡦߪᏒ⽼ߩࠠ࠶࠻㧔FSK ࡍࡦ࠻ࠪࠫ
࠙ࠚ࡞ߦᵈ౉ߒ㧘ቶ᷷ߢ 60 ಽᡬᜈߒߥ߇ࠄ෻ᔕߐߖ
ࡦ㧦ફ⷗⵾⮎ᚲ㧘㚅Ꮉ㧕ࠍ↪޿ߡ ELISA ᴺߦߡ᷹ቯ
ߚ㧚෻ᔕ⚳ੌᓟ㧘਄⸥ߣห᭽ߩᵞᵺᠲ૞ࠍⴕߞߚ㧚
ߒߚ 7)㧚ฦ 50ȝL ߩࠨࡦࡊ࡞߹ߚߪࡍࡦ࠻ࠪࠫࡦᮡḰ
ฦ࠙ࠚ࡞ߦ෻ᔕၮ⾰ᶧ㧔substrate reagent㧕100ȝL ࠍ
ᵈ౉ߒߡ 1 ಽᡬᜈߒߚᓟ㧘ࠕ࡞ࡒࡎࠗ࡞ߢࡊ࡟࡯࠻
63 )
( 堀 未央・八木雅之・埜本慶太郎・北野貴大・宮崎 亮・米井嘉一
226
ࠍ൮ߺㆤశߒ㧘10 ಽ㑆㕒⟎ߒߚ㧚ߘߩᓟฦ࠙ࠚ࡞ߦ
⎇ⓥႎ๔߇޽ࠅ㧘ࠝ࠙ࠡߦ฽߹ࠇࠆ astragaloside ߇
෻ᔕ஗ᱛᶧ 100ȝL ࠍಽᵈߒ㧘1 ಽᡬᜈߒ㧘⋥ߜߦࡑ
CML ߅ࠃ߮ Pent ↢ᚑࠍ᦭ᗧߦᛥ೙ߔࠆߎߣ߇␜ߐ
ࠗࠢࡠࡊ࡟࡯࠻࡝࡯࠳࡯ߢ 450nm㧔ਥᵄ㐳㧕540nm
ࠇߡ޿ࠆ 8)㧚੹࿁ߣห᭽ߦ HSA ࠣ࡞ࠦ࡯ࠬ෻ᔕࡕ࠺
㧔ෳᾖᵄ㐳㧕ߢ᷹ቯߒߚ㧚ࠨࡦࡊ࡞ਛߩ CML Ớᐲ
࡞ࠍ↪޿ߚ⪺⠪ࠄߩᬌ⸛ߢߪ㧘ࠞࡕࡒ࡯࡞
ߪ CML-HSA Standard ߢᬌ㊂✢ࠍ૞ᚑߒߡ▚಴ߒߚ㧚
Chamomile: Anthemisnobilis㧘࠮࡛ࠗ࠙ࠨࡦࠩࠪ
᛫ CML ᵴᕈߪ IC50 ࠍ▚಴ߒ㧘ዊᢙὐએਅ 3 ᩴ߹ߢ
Hawthorn: Crataeguslaevigata(C.oxyacantha)㧘࠼ࠢ
⴫␜ߒߚ㧚
࠳ࡒ
Doku-dami: Houttuyniacordata㧘ࡉ࠼࠙⪲
Grape: Vitisviniferaߩᷙวࡂ࡯ࡉࠛࠠࠬ 6㧕㧘߅ࠃ߮
⚿ᨐ
㘩↪⚡⩵⧎᛽಴‛ 7)ߦᒝ޿᛫♧ൻᵴᕈ߇⏕⹺ߒߡ߅
ฦࠨࡦࡊ࡞ṁᶧߩ♧ൻ‛↢ᚑᛥ೙૞↪ࠍ IC50 ߣߒ
ࠅ㧘ࠢࡑࠗࠩࠨ᛽಴‛߽ߘࠇࠄߣห╬ߩᵴᕈࠍ᦭ߔ
ߡ Table 1 ߦ␜ߒߚ㧚ࠢࡑࠗࠩࠨ㧔☳ᧃ㧕ߩ᛫♧ൻᵴ
ࠆߎߣ߇␜ߐࠇߚ㧚
ᕈߩ IC50 ߪᛥ೙₸
%ߣߒߡ Fig. 2㨪4 ߦ AG ߣห╬
ࠢࡑࠗࠩࠨ㧔ࠢࡑࠩࠨ㧕ߪࠗࡀ⑼ߩᬀ‛ߢ㧘ߘߩ
ߢ޽ߞߚ㧚ࠢࡑࠗࠩࠨ㧔ᾲ᳓᛽಴‛㧕ߩ᛫♧ൻᵴᕈ
߶ߣࠎߤ߇ᣣᧄߦಽᏓߒ㧘ਛ࿖᧲ർㇱ㨪ᦺ㞲ඨፉ㧘
ߩ IC50 ߪ AG ߣᲧߴᭂ߼ߡዊߐ߆ߞߚ㧚
᮹ᄥ㧘ජፉ೉ፉߥߤߦ߽ಽᏓ߇⏕⹺ߐࠇߡ޿ࠆ㧚ࠢ
3DG ↢ᚑ㒖ኂᵴᕈߦ㑐ߒߡ㧘ࠢࡑࠗࠩࠨ㧔ᾲ᳓᛽
ࡑࠗࠩࠨߪ㧘Ვ⩶૞↪߇ᒝߊ᭽‫଻ߥޘ‬ሽ㘩ߦ೑↪ߐ
಴‛㧕ߩ IC50 ߪࠕࡒࡁࠣࠕ࠾ࠫࡦߣห╬ߢ޽ߞߚ㧚
ࠇ㧘᳃㑆વᛚߥࠄ߮ߦฎౖ⮎‛ᦠߩ㧝ߟߢ޽ࠆ‫ᧄޟ‬
ࠢࡑࠗࠩࠨ㧔☳ᧃ㧕ߩ IC50 ߪ AG ࠃࠅ߽ᭂ߼ߡዊߐ
⨲✁⋡‫߽ߦޠ‬෼߼ࠄࠇߡ޿ࠆ㘩⚻㛎⼾ንߥ⚛᧚ߢ޽
߆ߞߚ㧚
ࠆ㧚ࠨࠨᄙ♧૕㧘ࠕࡒࡁ㉄㧘ࡆ࠲ࡒࡦ㧘ࡒࡀ࡜࡞ࠍ
Pent ↢ᚑ㒖ኂᵴᕈߦ㑐ߒߡ㧘AG ߣᲧセߒߡࠢࡑ
⼾ንߦ฽᦭ߔࠆ㧚
ታ㛎⊛ߦ߽᛫Ἳ∝૞↪ 10,11)㧘᛫㉄ൻ૞↪ 12)㧘఺∉
ࠗࠩࠨ㧔☳ᧃ㧕߅ࠃ߮㧔ᾲ᳓᛽಴‛㧕ߩ IC50 ߪᭂ߼
ೝỗ૞↪ 13)㧘᛫࠙ࠗ࡞ࠬ࡮᛫⩶૞↪ 5,14)㧘⢗☼⤑଻
ߡዊߐ߆ߞߚ㧚
CML ↢ᚑ㒖ኂ₸ߦ㑐ߒߡ㧘AG ߣᲧセߒߡࠢࡑࠗ
⼔૞↪ 15)߇ႎ๔ߐࠇߡ޿ࠆ㧚ࠨࠨߦ฽߹ࠇࠆ‛⾰ߩ
ࠩࠨ㧔☳ᧃ㧕߅ࠃ߮㧔ᾲ᳓᛽಴‛㧕ߩ IC50 ߪᭂ߼ߡ
ਛߢ᛫㉄ൻᵴᕈ߇ᒝ޿ᚑಽߣߒߡ Absolutely
ዊߐ߆ߞߚ㧚
Hemicellulose Senanensis㧔AHSS㧕߇ᓧࠄࠇߡ߅ࠅ㧘
⠨ኤ
AHSS ߦߪࠬ࡯ࡄ࡯ࠝࠠࠪ࠼㒰෰૞↪ߥࠄ߮ߦ࡜࠶
ᧄ⎇ⓥߢߪ㧘HSA ߣࠣ࡞ࠦ࡯ࠬࠍ෻ᔕߐߖߚ in
࠻ዊ⣺ߩ⯯ⴊౣㆶᵹ㓚ኂߦኻߒᛥ೙૞↪߇⏕⹺ߐࠇ
vitro ታ㛎♽ߦ߅޿ߡ㧘ࠢࡑࠗࠩࠨ᛽಴‛ߩ᛫♧ൻ૞
ߡ޿ࠆ 12)㧚AGEs ↢ᚑ⚻〝ߦ߅޿ߡߪ㧘CML ↥↢ㆊ
↪ࠍᬌ⸛ߒߚ⚿ᨐ㧘AG ߣห╬એ਄ߩ AGEs ↢ᚑᛥ
⒟ߦߪ㉄ൻ෻ᔕ߇ᷓߊ㑐ਈߒߡ޿ࠆ 16)㧚੹࿁ߩ⹜㛎
೙૞↪߇⏕⹺ߐࠇߚ‫ޕ‬
⚿ᨐߦ߅޿ߡ߽ CML ↢ᚑᛥ೙૞↪߇ᒝߊ⷗ࠄࠇߡ
AG ߪ AGEs ↢ᚑ⚻〝ਛߩ 3DG ಽሶౝߩࠞ࡞ࡏ࠾
࡞ၮࠍኽ㎮ߒએ㒠ߩ෻ᔕࠍᱛ߼ࠆࠃ߁ߦ࠺ࠩࠗࡦߐ
߅ࠅ㧘ࠨࠨ᛽಴‛ߩ᛫♧ൻ૞↪ߦട߃㧘AHSS ߩ᛫
㉄ൻ૞↪߇㑐ਈߒߡ޿ࠆน⢻ᕈ߇޽ࠆ㧚
ࠢࡑࠩࠨߩࡅ࠻ߦ߅ߌࠆ૞↪ߣߒߡߪ㧘ⵍᬌ⠪ 20
ࠇߚ‛⾰ߢ޽ࠅ㧘వⴕ⎇ⓥߦ߅޿ߡ߽㓁ᕈኻᾖߣߒ
ߡ↪޿ߡ޿ࠆ
6,7)
㧚AGEs ߣߒߡ⹏ଔߒߚ㗄⋡ߪⰯశ
ᕈ AGEs㧘CML㧘Pent㧘3DG ߢవⴕ⎇ⓥ
6,7)
ߣห᭽ߢ
޽ࠆ㧚CML㧘Pent ߩ ELISA ᴺ᷹ቯ୯ߪ HPLC ߦࠃ
଀ࠍኻ⽎ߦ 6 ㅳ㑆ࠢࡑࠩࠨ᛽಴‛ࠍ⚻ญᛩਈߒߚႎ
๔߇޽ࠅ㧘ଢ⒁ߩᡷༀߥࠄ߮ߦ቟ోᕈ߇⏕⹺ߐࠇߡ
޿ࠆ 4)㧚
ࠆ᷹ቯ୯ߣ⋧㑐ᕈ߇޽ࠆߎߣ߇⏕⹺ߐࠇߡ޿ࠆ 8)㧚
੹࿁㧘HSA ߣࠣ࡞ࠦ࡯ࠬࠍ෻ᔕߐߖߚ in vitro ታ
CML ߩ ELISA ᴺߦࠃࠆ᷹ቯߩ㓙ߦߪടᾲಣℂߦࠃ
㛎♽ߦ߅޿ߡ㧘ࠢࡑࠗࠩࠨ᛽಴‛ߩ᛫♧ൻ૞↪ࠍᬌ
ࠅ㕖․⇣⊛ CML ߇↢ᚑߐࠇࠆߎߣ߇ᜰ៰ߐࠇߡ߅
⸛ߒߚ㧚ࠢࡑࠗࠩࠨߦߟ޿ߡߪೋ߼ߡ♧ൻ‛↢ᚑᛥ
ࠅ 9)㧘੹࿁ߪᾲಣℂࠍട߃ߥ޿ᣇᴺߢ᷹ቯߒߚ㧚
೙૞↪߇⏕⹺ߐࠇ㧘ߘߩᵴᕈߪࠕࡒࡁࠣࠕ࠾ࠫࡦߣ
ߎࠇ߹ߢࡂ࡯ࡉ߿㘩↪ᬀ‛ߩ᛫♧ൻᵴᕈߦߟ޿ߡ
ห╬એ਄ߢ޽ߞߚ㧚ࠢࡑࠗࠩࠨߪฎ᧪ࠃࠅ᳃㑆⮎ߥ
64 )
( クマイザサ
(Sasa senanensis Rehder)の蛋白糖化最終生成物
(AGEs)生成抑制作用の研究
227
Table 1. Inhibitory activity of the formation of each glycated product
Anti-glycation
Sample
Anti-3DG activity
Anti-Pent activity
Anti-CML activity
activity
AG
0.008
0.003
>0.1
0.071
Kumaizasa (powder㧕
0.008
<0.001
<0.001
<0.001
Kumaizasa㧔Hot water extraction㧕
<0.001
0.002
<0.001
<0.001
unit: %
Anti-glycation activity㧦50% inhibitory concentration against fluorescent AGEs
Anti-3DG activity㧦50% inhibitory concentration against 3DG
Anti-Pent activity㧦50% inhibitory concentration against Pent
Anti-CML activity㧦50% inhibitory concentration against CML
AG: aminoguanidine
Aminoguanidine
100
80
60
40
20
Percent inhibition (%)
120
0
-20
Fluorescent
1
AGEs
3DG
2
0.1%
(1mg/mL)
Pent
3
0.01%
(0.1mg/mL)
CML
4
0.001%
(0.01mg/mL) Fig.
2. Glycation inhibitory activity of aminoguanidine
Kumaizasa (Hot water extraction)
120
100
100
Percent inhibition (%)
Percent inhibition (%)
Kumaizasa (Powder)
120
80
60
40
20
0
60
40
20
0
Fluorescent
1
AGEs
80
0.1%
2
3DG
3
Pent
0.01%
Fluorescent
1
AGEs
4
CML
0.05%
0.001%
Fig. 3. Glycation inhibitory activity of Kumaizasa (powder)
3DG
2
0.005%
Pent
3
CML
4
0.0005%
Fig. 4. Glycation inhibitory activity of Kumaizasa (hot water extraction)
65 )
( 堀 未央・八木雅之・埜本慶太郎・北野貴大・宮崎 亮・米井嘉一
228
ߤߦ೑↪ߐࠇߡ߈ߚ㘩⚻㛎⼾ንߥ⚛᧚ߢ޽ࠅ㜞޿቟
ోᕈ߇ᦼᓙߐࠇࠆ㧚ߎࠇ߹ߢ߽ in vitro ታ㛎♽ߢ᛫♧
ൻᵴᕈࠍ␜ߒߚᚑಽ߇㧘ታ㓙ߦࡅ࠻ߦ߅޿ߡ᛫♧ൻ
9)
ᵴᕈࠍ⊒ើߔࠆ଀߇޽ࠆߎߣ߆ࠄ 17)㧘ࠢࡑࠗࠩࠨ᛽
಴‛ߦ߅޿ߡ߽㧘ࡅ࠻⥃ᐥ⹜㛎ࠍⴕ߁ߎߣߢ↢૕ߢ
ߩലᨐ߇⏕⹺ߢ߈ࠆߩߢߪߥ޿߆ߣᦼᓙߐࠇࠆ㧚
⻢ㄉ㧘ᧄ⎇ⓥߩㆀⴕߦ޽ߚࠅℂᎿቇ⎇ⓥᚲ⎇ⓥഥ
10)
ᚑࠍฃߌߚߎߣࠍᗵ⻢ߔࠆ㧚
ෳ⠨ᢥ₂
1) Nagai R, Mori T, Yamamoto Y, Kaji Y, Yonei Y.
Significance of advanced glycation end products in
aging-related disease. Anti-Aging Medicine 7:
112-119, 2010.
2) Kaji Y, Oshika T, Takazawa Y, Fukayama M, Fujii N.
Pathological role of D-amino acid-containing
proteins and advanced glycation end products in the
development of age-related macular degeneration.
Anti-Aging Medicine 7: 107-111, 2010.
3) ዊᳰ↰ፏผ‫ޔ‬ᢪ⮮቟ᒄ‫ᧁ౎ޔ‬ാਃ‫ޔ‬ේ㜞᣿‫ޕ‬ଢ
⒁௑ะ⠪ߩឃଢ⁁ᴫ‫ޔ‬⣺ౝ⩶ฌ߅ࠃ߮ NK ⚦⢩
ᵴᕈߦኻߔࠆ‫ޟ‬SanSTAGE ࠰ࡈ࠻ࠞࡊ࠮࡞‫ޠ‬៨
ขߩലᨐ‫ޕ‬ᣂ⮎ߣ⥃ᐥ 56: 163-170, 2007.
4) ᩑ㊁⾫৻‫ޔ‬㜞⦟Პ‫ޔ‬㋈ᧁ⋥ሶ‫ޔ‬ጊᧄ๺㓶‫᧪ޔ‬ᶏ
⧐ਭ‫ޕ‬⢈ḩ‫ޔ‬ଢ⒁߅ࠃ߮⠧ൻ⃻⽎ߦኻߔࠆ‫ޟ‬಴
㔕ࠢࡑࠩࠨ(ࠃߐߐ)ࠛࠠࠬ‫ޠ‬៨ขߩലᨐߣ቟ోᕈ‫ޕ‬
ᣂ⮎ߣ⥃ᐥ 59: 477-487, 2010.
5) 㒙ਭỈ๺ᒾ‫ޔ‬ጊ↰ℂᕺ‫⇙ޔ‬㐳ᥙ‫ޔ‬ቯᚑ⑲⾆‫᧻ޔ‬
ේ੩ሶ‫ޔ‬࿯↰⵨ਃ‫ޔ‬ᷰㆻ㇌෹‫ޔ‬ੑࡁች⌀ਯ‫➚ޔ‬
➓቞‫᧛ޔ‬ጊᰴ຦‫ࠨࠩࡑࠢޕ‬฽᦭ᚑಽߦࠃࠆࡅ࠻
ࠨࠗ࠻ࡔࠟࡠ࠙ࠗ࡞ࠬߩჇᱺᛥ೙ലᨐ‫ޕ‬ᣣᧄ⵬
ቢઍᦧක≮ቇળ⹹ 7: 25-33, 2010.
6) Yonei Y, Yagi M, Hibino S, Matsuura. Herbal
extracts inhibit Maillard reaction, and reduce chronic
diabetic complications risk in streptozotocin-induced
diabetic rats. Anti-Aging Medicine 5: 93-98, 2008.
7) ർ㊁⾆ᄢ‫ᧁ౎ޔ‬㓷ਯ‫ޔ‬ၛᧄᘮᄥ㇢‫ޔ‬ၳᧂᄩ‫ޔ‬ᐣ
㊁❥৻‫☨ޔ‬੗ཅ৻‫ޔ‬ේ⧷㇢‫ޔ‬ጊ〝᣿ବ‫ޕ‬㘩↪⚡
⩵⧎ߩⰮ⊕♧ൻᦨ⚳↢ᚑ‛㧔AGEs㧕↢ᚑᛥ೙૞
↪ߩ⎇ⓥ‫ޕ‬New Food Industry 53: 1-10, 2011㧚
8) Motomura K, Fujiwara Y, Kiyota N, Tsurushima K,
Takeya M, Nohara T, Nagai R, Ikeda T.
Astragalosides isolated from the root of Astragalus
radix inhibits the formation of advanced glycation
11)
12)
13)
14)
15)
16)
17)
66 )
( end-products. J Agric Food Chem 57: 7666-7672,
2009.
Hayashi CM, Nagai R, Miyazaki K, Hayase F, Araki
T, Ono T, Horiuchi S. Conversion of Amadori
products of the Maillard reaction to
Nİ-(carboxymethyl)lysine by short-term heating:
possible detection of artifacts by
immunohistochemistry. Lab Invest 82: 795-807,
2002.
Okazaki M, Tsuji M, Yamazaki Y, Kanda Y, Iwai S,
Oguchi K. Inhibitory effects of
SasasenanensisRehder extract (SE) on
calcium-ionophore A23187-induced histamine
release from rat peritoneal exudate cells. Jpn J
Pharmacol 79: 489-492, 1999.
Zhou L, Hashimoto K, Satoh K, Yokote Y, Kitajima
M, Oizumi T, Oizumi H, Sakagami H. Effect of
SasasenanensisRehder extract on NO and PGE2
production by activated mouse macrophage-like
RAW264.7 cells. In Vivo 23: 773-777, 2009.
Kurokawa T, Itagaki S, Yamaji T, Nakata C, Noda T,
Hirano T, Iseki K. Antioxidant activity of a novel
extract from bamboo grass (AHSS) against
ischemia-reperfusion injury in rat small intestine.
BiolPharm Bull 29: 2301-2303, 2006.
Seki T, Kida K, Maeda H.
Immunostimulation-mediated anti-tumor activity of
bamboo (Sasasenanensis) leaf extracts obtained
under 'vigorous' condition. Evid Based Complement
Alternat Med 2008 May 7. [Epub ahead of print]
Sakagami H, Amano S, Kikuchi H, Nakamura Y,
Kuroshita R, Watanabe S, Satoh K, Hasegawa H,
Nomura A, Kanamoto T, Terakubo S, Nakashima H,
Taniguchi S, Oizumi T. Antiviral, antibacterial and
vitamin C-synergized radical-scavenging activity of
SasasenanensisRehder extract. In Vivo 22: 471-476,
2008.
Ohizumi T, Nakayama S, Oguchi K. Effects of
SasaSenanensisRehder (SE) on stress or ethanol
induced gastric mucosal lesions in rats. The Showa
University Journal of Medical Sciences 3: 133-141,
1991.
Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes
JW, Thorpe SR. The advanced glycation end product,
Nİ-(carboxymethyl)lysine, is a product of both lipid
peroxidation and glycoxidation reactions. J
BiolChem 271: 9982-9986, 1996.
Yonei Y, Miyazaki R, Takahashi Y, Takahashi H,
クマイザサ
(Sasa senanensis Rehder)の蛋白糖化最終生成物
(AGEs)生成抑制作用の研究
Nomoto K, Yagi M, Kawai H, Kubo M, Matsuura N.
Anti-glycation effect of mixed herbal extract in
individuals with pre-diabetes mellitus: a
double-blind, placebo-controlled, parallel group
study. Anti-Aging Medicine 7: 26-35, 2010.
67 )
( 229
Fly UP