...

高速及び低速化学反応

by user

on
Category: Documents
7

views

Report

Comments

Transcript

高速及び低速化学反応
໭኱㐃ᦠ఍㆟㻌 2012.10.16/17
J-PARC䛻䛚䛡䜛䝭䝳䜸䞁฼⏝䛾⌧≧䛸ᑗ᮶
㛛㔝Ⰻ඾
㧗䜶䝛ᶵᵓ≀ᵓ◊
⥲◊኱
≀㉁୰䛾䝭䝳䜸䞁䠄μ+䠅
䝭䝳䜸䞁
Muon
㔜䛥䠖㝧Ꮚ䛾䠕ศ䛾䠍
㻌 㻌 㻌 䠄㟁Ꮚ䛾200ಸ䠅
㟁Ⲵ䠖+e, e
䝇䝢䞁䠖1/2
ᖹᆒᑑ࿨䠖 2.2 μs
䈈㝧Ꮚ䠋Ỉ⣲ཎᏊ䛾㍍䛔䜰䜲䝋䝖䞊䝥㻌
㻭㼠㼛㼙㻌
䝭䝳䜸䝙䜴䝮㻌㻔㻹㼡㻕㻌 Ỉ⣲ཎᏊ㻌㻔㻴㻕㻌
᥮⟬㉁㔞㻌㻔㼙㼑㻕㻌
㻜㻚㻥㻥㻡㻝㻤㻣㻌
㻜㻚㻥㻥㻥㻠㻡㻢㻌
䝪䞊䜰༙ᚄ㻌㻔㽐㻕㻌
㻜㻚㻡㻟㻝㻣㻟㻢㻌
㻜㻚㻡㻞㻥㻠㻢㻡㻌
ᇶᗏ≧ែ㻌㻔㼑㼂㻕㻌
㻙㻝㻟㻚㻡㻠㻜㻟㻌
㻙㻝㻟㻚㻡㻥㻤㻠㻌
↑㟁Ꮚ≧ែ䛾㐪䛔䛿䜟䛪䛛䛻ࠥ0.4%
Қ䝭䝳䜸䞁䛿ᚤ㔞Ỉ⣲䛾≧ែ䜢䝅䝭䝳䝺䞊䝖䟿
☢Ẽ䝰䞊䝯䞁䝖
㝧Ꮚ䛾2.7ಸ䟿
µ+
e
䝭䝳䜸䞁䛿ཎᏊ䝃䜲䝈
䛾㧗ឤᗘ䝁䞁䝟䝇䟿
p+
e
• ᖹᆒᑑ࿨(2.2μs)䛷Ỵ䜎䜛䝴䝙䞊䜽䛺ほ ᫬㛫❆䠖
㻌 ᨺᑕග䞉୰ᛶᏊ䛸NMR䛾୰㛫㡿ᇦ䠄10-9-10-4 s)䜢䜹䝞䞊
Muon Spin Rotation/Relaxation/Resonance=μSR
㼍㻕㻌⏕ᡂᶆⓗ䛛䜙䜋䜌䠍䠌䠌䠂䝇䝢䞁䛾䛭䜝䛳
䛯䝭䝳䜸䞁䜢ྲྀ䜚ฟ䛧䚸஧ḟ䝡䞊䝮䝷䜲䞁䛷
㍺㏦䛧䛶ヨᩱ୰䛻ὀධ䚸㟼Ṇ䛥䛫䜛䚹㻌
㼎㻕㻌ὀධ䛥䜜䛯䝭䝳䜸䞁䛿ཎᏊ䛸ཎᏊ
䛾㛫䛻Ṇ䜎䜚䚸䛭䛣䛷䛾ᒁᡤ☢ሙ䜢
ឤ䛨䛶ṓᕪ㐠ື䛩䜛䚹㻌
㼏㻕㻌䝭䝳䜸䞁䛿ᔂቯ䛩䜛▐㛫䛻ྥ䛔䛶䛔䛯䝇
䝢䞁䛾᪉ྥ䛻㝧㟁Ꮚ䜢ᨺฟ䛩䜛䛾䛷䚸䛭䜜
䜢᳨ฟჾ䛷ᤊ䛘䜛䚹㻌
䊻䝇䝢䞁䛾ᅇ㌿䛻క䛔᳨ฟჾ䛾ಙྕ䛜᫬
㛫ⓗ䛻⬦ື䛩䜛䚹㻌
Muons (μ+’s) in Matter
μ+
“Range”
Solid
~101nm
Energy loss due to
ionization of atoms along
the path (~101eV)
Energy loss due to quasielastic scattering
(101eV~halt)
• It takes 1012~109s for muons to stop in solids, during which the spin
polarization is preserved.
• In non-metallic materials, there is a certain possibility for a muon to capture
an electron to form a state analogous to neutral hydrogen atom=“muonium”
Muonium: A muonic analogue of H atom where proton is substituted by μ+.
Generation of muons
Spallation reaction by irradiation of high
energy protons on a nuclear target
Mass of π㼼~140 MeV/c2 means that initial
proton energy must be considerably greater
than 140 MeV (typically 500 MeV or
higher).㻌
π㼼’s ejected
from target
Decay-in-flight
muon beam
Target
(Momentum~102MeV/c ~ 60% of the velocity of light)
π㼼oμ㼼+νμ (mean lifetime=26 ns)
π㼼 distance of flight ~ 26[ns] x 0.3[m/ns] x 0.6 ~ 4.5[m]
(~29 MeV/c
Protons㻌 ~ 4 MeV)
π+’s stopped near the surface
decay into μ+
Surface muon beam
Muon beam energy vs stopping range
㉸ప㏿μ+
0.2mm 0.02-1.8cm
0.5nm-200nm
R 10-9
E
10-8
10-7
10-6
10-5
10-4
10-3
㧗䝇䝢䞁೫ᴟ䠖㻌 μ
μ+
< 1mm
⾲㠃䚸⏺㠃䛾◊✲
10-1
100 㖡䛷䛾㣕⛬
㻌 㻌 㻌 [m]
䠄䠍䠌䠌MeV-䠎GeV䠅
䠇䠍䠌䠌䠂㻌
μ+
䠍nm
10-2
䠑䠉䠑䠌MeV
4 MeV
0-30keV
㉸ప㏿㻌
μ+
୰㧗㏿䠄ᔂቯ䠅μ+/ μ
ప㏿䠄⾲㠃䠅μ+
μ+SR 䚸MuSR:㻌
≀ᛶ◊✲䚸໬Ꮫ཯ᛂ
μ
μ+
μ
1-1.5cm Cu
㏱㐣ᆺ
㧗ᅽ≀ᛶᐇ㦂μ㼼SR
䝭䝳䜸䞁ゐ፹᰾⼥ྜ
䝭䝳䜸䞁X⥺ඖ⣲ศᯒ
䝭䝳䜸䞁䝷䝆䜸䜾䝷䝣䜱
Zero-field μSR: simple and powerful magnetic probe
t2g
Hg2Ru2O7
ᖏ☢⋡
䠄䝞䝹䜽≀ᛶ䠅
0
100
200
T(K)
μSR
䠄䝭䜽䝻≀ᛶ䠅
300
Tl2Ru2O7
t2g
ᨺᑕග䜔୰ᛶᏊ䛸䛾㐪䛔
౛䠖☢Ẽ⛛ᗎ䠄ᙉ☢ᛶ䠅≧ែ䛾ほ 㻌
䝭䝳䜸䞁䠄ὀධ䠅
୰ᛶᏊ䞉ᨺᑕග䠄ᩓ஘䠅
᭱㞄᥋䛾☢Ẽ㻌
䝰䞊䝯䞁䝖䛛㻌
䜙䛾཮ᴟᏊ☢㻌
ሙ䛻䛾䜏ᩄឤ㻌
ᒁᡤⓗ䛺᝟ሗ䜢཯ᫎ
䛩䜉䛶䛾
ཎᏊ䛛䜙
䛾ᩓ஘ᙉ
ᗘ䛾࿴䜢
ほ ᕧどⓗ䛺㛗䛥䛷䛾ᖹᆒᵓ㐀䜢ぢ䜛
┦⿵ⓗ
䠍䛴䠍䛴䛾ཎ
Ꮚ䛾☢Ẽ
䝰䞊䝯䞁䝖䛾
኱䛝䛥䜢ほ
㻌
ෆ㒊☢ሙ䛻䜘䜛䝭䝳䜸䞁䝇䝢䞁䛾ᅇ
㌿䠄᣺ືᩘ䛿☢Ẽ䝰䞊䝯䞁䝖䛻ẚ౛䠅㻌
య✚ᖹᆒ䛧
䛯☢Ẽ䝰䞊
䝯䞁䝖䛾኱䛝
䛥䜢ほ 㻌
211
110
210
10㼻
20㼻
θ
30㼻
☢Ẽᩓ஘䛻䜘䜛ᅇᢡᙉᗘ䛾ቑ኱㻌
8
ᐇ✵㛫䛷┦ศ㞳䛜䛒䜛ሙྜ䠖
Muon takes random sampling of
internal field
㻺㼛㼚㻙㼙㼍㼓㻚㻌
1
㻹㼍㼓㻚㻌
Powder sample
μ+
Non-magetic phase
Magnetic phase
cf. multiple sites in the unit cell
1/3
☢ᛶ䛾␗䛺䜛」ᩘ䛾┦䜢
ศ㞳䛧䛶ほᐹྍ⬟䠖
ᐇ✵㛫䛷┦ศ㞳䛜䛒䜛ሙྜ䠖
Neutron/X-ray takes volume
averaging of order parameters
㻺㼛㼚㻙㼙㼍㼓㻚㻌
㻹㼍㼓㻚㻌
O=1.07Å㻌
㻝㻝㻜㻌
㻞㻝㻝㻌
㻝㻝㻜㻌
㻞㻝㻝㻌
㻞㻝㻜㻌
㻞㻝㻜㻌
㻝㻜
㼻㻌
㻞㻜
㼻㻌䃗㻌
㻟㻜
㼻㻌
㻝㻜
㼻㻌
㻞㻜㼻㻌
䃗㻌
䃗㻌
㻞㻝㻝㻌
㻝㻝㻜㻌
㻞㻝㻜㻌
Non-magetic phase
Magnetic phase
㻝㻜㼻㻌
㻞㻜㼻㻌
䃗㻌
㻟㻜㼻㻌
…difficult to distinguish two phases
㻟㻜㼻㻌
J-PARC MUSE Facility
MUSE=“Muon Science Establishment”
Muon
Facility
(MUSE)
Neutron Facility
(JSNS)
← 7~8 beam lines may be
available upon the full
completion
Materials and Life Science Experiment Facility
᪋タᩚഛ䛾඲యィ⏬
S䝷䜲䞁
ప㏿䠄4 MeV䠅
ṇ䝭䝳䜸䞁
㉸ప 䠋ᙉ☢
ሙ䠋䝟䝹䝇ບ
㉳μSR≀ᛶ◊✲.
U䝷䜲䞁
㉸ప㏿䠄0.1ࠥ30
keV䠅ṇ䝭䝳䜸䞁
䝘䝜䝯䞊䝖䝹῝䛥ศ
ゎ⬟/⾲㠃䞉⏺㠃
≀ᛶ◊✲.
H䝷䜲䞁
ప㏿䠄4 MeV䠅ࠥ
㧗㏿䠄50 MeV䠅
ṇ䞉㈇䝭䝳䜸䞁
኱ᙉᗘ䞉ཎᏊ≀
⌮/⣲⢏Ꮚᐇ㦂.
D䝷䜲䞁
ప㏿䠄4 MeV䠅ࠥ
㧗㏿䠄50 MeV䠅
ṇ䞉㈇䝭䝳䜸䞁
ỗ⏝䝡䞊䝮䝷䜲
䞁.
⌧ᅾ䛾ᩚഛ≧ἣ
D䝷䜲䞁䠄ప㏿䞉㧗㏿䝭䝳䜸䞁䠅
䞉኱Ꮫඹྠ฼⏝䛻౪䛥䜜䛶䛔䜛၏୍
䛾䝡䞊䝮䝷䜲䞁䠄2008ᖺ12᭶ࠥ䠅䠊
䞉μSRศගჾ䛿D1䜶䝸䜰䛻1ྎ䠄୰
ྂ䠅䛾䜏䠊
䞉䝡䞊䝮䜻䝑䜹䞊䜢ᩚഛ୰䠄D1䚸D2䜶
䝸䜰䛷ྠ᫬䛻ᐇ㦂ྍ⬟䛻䠅䠊
䝭䝳䜸䞁⏕ᡂᶆⓗ
Exp. Hall 1
㼁䝷䜲䞁㻌
䠄኱ᙉᗘప㏿
䝭䝳䜸䞁䠅㻌
U䝷䜲䞁䠄㉸ప㏿䝭䝳䜸䞁䠅
䞉኱ᙉᗘ⾲㠃䝭䝳䜸䞁䝡䞊䝮䝷䜲䞁䜢
ᘓタ୰䠄2010ᖺᗘࠥ䠅䠊
䞉㉸ప㏿䝭䝳䜸䞁Ⓨ⏕⿦⨨䚸䛚䜘䜃ᐇ㦂
⿦⨨䛻䛴䛔䛶䛿⛉◊㈝᪂Ꮫ⾡㡿ᇦ䠄௦
⾲䠖㫽㣴ᫎᏊ䠅䛾㈨㔠䛻䛶ᘓタ୰䠄2011
ᖺᗘࠥ䠅䠊
䞉᭱ึ䛾䝡䞊䝮ᐇ㦂䜢2012ᖺᗘᮎ䛻ண
ᐃ䠊
U䝷䜲䞁
㻰䝷䜲䞁㻌
D䝷䜲䞁
Generation of muons
Ultra-slow muon beam
0.2eV~30keV
π+’s stopped near the
surface decay into μ+
Protons㻌
LASER (pulse width~ns)
Re-acceleration
(~29 MeV/c
~ 4 MeV)
Hot tungsten foil
(~2000 K~0.2eV)
Muonimu
Ionization
㻗
Sample㻌
H.V.
H.V.
µ+
e
Thermal muonium is emitted from hot
tungsten surface, which is ionized by
LASER for post-acceleration.
䛂㉸ప㏿䝭䝳䜸䞁㢧ᚤ㙾䛷ᣅ䛟≀㉁䞉⏕࿨䞉⣲⢏Ꮚ⛉Ꮫ䛾䝣䝻䞁䝔䜱䜰䛃
ᖺḟ◊✲ィ⏬
῝䛥ศゎ⬟
A01:䝭䝳䜸䞁㢧ᚤ㙾
ప㏿䠄⾲㠃䠅䝭䝳䜸䞁
䜶䝛䝹䜼䞊ࠥ4 MeV
䠄ᚑ᮶ᚓ䜙䜜䜛䝭䝳䜸䞁䠅
䠄2013ᖺᗘ䠅
䠄2012ᖺᗘ䠅
㟼㟁ຍ㏿䛻䜘䜛㟼Ṇ఩⨨䛾
nm䜸䞊䝎䞊䛷䛾ㄪᩚ
RFຍ㏿䛻䜘䜛
䝡䞊䝮཰᮰㻌 䠄䡚ᩘ༑μm䠅
nm䜸䞊䝎䞊
⏺㠃
⾲㠃
⾲㠃㏆ഐ䛛䜙⏺㠃䚸
⾲
䝞䝹䜽䜎䛷ほ ఩⨨
䜢㐃⥆ⓗ䛻ྍኚ
nm䝇䜿䞊䝹䛷ไᚚ
A02:⏺㠃䛾䝇䝢䞁ఏᑟ䛸཯ᛂ
A03:⾲㠃㏆ഐ䜈䝔䝻㟁Ꮚ┦㛵
ෆ㒊(䝞䝹䜽䠅
㒊( 䝹䜽
䜽䠅
μm䜸䞊䝎䞊
A04:㉸෭༷䛸ඛ㗦
໬
෌ຍ㏿
䠄2014ᖺᗘ䠅
㠃ෆศゎ⬟
⾲㠃
䝬䜲䜽䝻䝇䜿䞊䝹
䝹
䝭䝳䜸䞁㢧ᚤ㙾
≀㉁ෆ㒊䛾୕ḟ
ඖ䝬䝑䝢䞁䜾
᭱ᑠᩘ༑μm䛾
ศゎ⬟䜢ᐇ⌧
⌧ᅾ䛾ᩚഛ≧ἣ
U䝷䜲䞁
D䝷䜲䞁
MLF➨䠎ᐇ㦂䝩䞊䝹㻌 㻌 㻌 (May. 2012)
ୡ⏺䛻䛚䛡䜛MUSE
ୡ⏺᭱㧗ࣃࣝࢫ࣑ࣗ࢜ࣥᙉᗘࢆ㐩ᡂ
㝧Ꮚࣅ࣮࣒ฟຊ㻝㻞㻜㻌㼗㼃࡛ୡ⏺᭱㧗ᙉᗘࡢࣃࣝࢫ≧
࣑ࣗ࢜ࣥⓎ⏕࣭౪⤥㛤ጞ㻌㻔㼟㼕㼚㼏㼑㻌㻺㼛㼢㼑㼙㼑㼎㼞㻌㻞㻜㻜㻥㻕㻚㻌
Muon source
Number of μ+/pulse
J-PARC MUSE
72,000@120kW
180,000@300kW
RAL ISIS (U.K.)
30,000@160kW
࣑ࣗ࢜ࣥDࣛ࢖ࣥ
ୡ⏺䛻䛚䛡䜛MUSE
RAL (UK)
䠩䠳
0.16䠩
PSI(Swiss)
1.1MW
⫋ဨᩘ䠖 21 ே
㐠㌿᫬㛫䠖180᪥
䝴䞊䝄䞊ᩘ䠖⣙ 400ே
⏦ㄳㄢ㢟ᩘ䠖⣙䠐䠌
㐃⥆≧䝭䝳䜸䞁
䝡䞊䝮
㐃⥆≧䝭䝳䜸䞁
䝡䞊䝮
䝟䝹䝇䝭䝳䜸䞁䝡䞊䝮
䝟䝹䝇䝭䝳䜸䞁䝡䞊䝮
ISIS(U.K.)
0.16MW
⫋ဨᩘ䠖 16 ே
㐠㌿᫬㛫䠖
120᪥
䝴䞊䝄䞊ᩘ䠖⣙ 300ே
⏦ㄳㄢ㢟ᩘ䠖⣙20䠇
30
TRIUMF(Canada)
0.1MW
GPS
A
Area
rea 16 ே
⫋ဨᩘ䠖
㐠㌿᫬㛫䠖
180᪥
䝴䞊䝄䞊ᩘ䠖⣙ 300
ே
⏦ㄳㄢ㢟ᩘ䠖⣙䠏䠌
*ᐇ㦂⿵ຓ䛜䝯䜲䞁
J-PARC MUSE
1MW
⫋ဨᩘ䠖 12 ே†
㐠㌿᫬㛫䠖 1䠍8᪥
䝴䞊䝄䞊ᩘ䠖 120ே
⏦ㄳㄢ㢟ᩘ䠖⣙䠏䠌
†䠍ḟ䝡䞊䝮䝷䜲䞁/
ᶆⓗ䜢䜅䛟䜐䠄䚸䠎ḟ
䝡䞊䝮䝷䜲䞁ࠥ2ே䠅
ୡ⏺䛻䛚䛡䜛MUSE
䠦-䠬䠝䠮䠟(1MW) 䛸ᾏእ䛾䝭䝳䜸䞁※᪋タ䛸䛾ẚ㍑
ᅜྡ
᪥ᮏ
ⱥᅜ
䝇䜲䝇
䜹䝘䝎
᪋タྡ
J-PARC
RAL ISIS
PSI
TRIUMF
㝧Ꮚ䜶䝛䝹䜼䞊 [GeV]
3.0
0.8
0.59
0.5
㝧Ꮚ䝡䞊䝮ฟຊ [MW]
1.0
0.16
1.1
0.1
ṇ䝭䝳䜸䞁ᙉᗘ [1/s]
3×107
6×105
3×1007
2×106
1800Mev
100Mev
40Mev
Mev
40Mev
1×107
7×104
2×10
107
1×106
㛤Ⓨ୰
8×10
×10
3
1᫬㛫ᙜ䛯䜚䛾PSR䝕䞊䝍
㈇䝭䝳䜸䞁ᙉᗘ [1/s]
㉸ప㏿䝭䝳䜸䞁ᙉᗘ [1/s]
/s]
6×10
5
2000
1500
1000
↓䛧
DC䠋䝟䝹䝇ᵓ㐀
䝟䝹䝇 (25Hz)
䝟䝹䝇 䠄50Hz)
┤ὶ
ὶ (DC)
┤ὶ (DC)
ᐇ㦂䝫䞊䝖ᩘ
䠄2䠅஺஫䛻฼⏝
5
6
4
✌ാ≧ែ
PSR䝕䞊䝍ྲྀᚓ㏿ᗘ䛿௚䛾᪋タ䛾
ᩘ༑ಸ䟿䠄䠍䠩䠳᫬䠅
500
2008ᖺ䜘䜚✌ാ୰ 1986ᖺ䜘䜚✌ാ୰ 1974ᖺ䜘䜚✌ാ୰
ᖺ䜘䜚✌ാ୰ 1975ᖺ䜘䜚✌ാ୰
0
㻞㻜㻜㻥ᖺ䚸ୡ⏺᭱㧗ᙉᗘ䛾㻌
䝟䝹䝇䝭䝳䜸䞁䝡䞊䝮䜢㐩ᡂ䚹㻌
㻶㻙㻼㻭㻾㻯䛾ᩘ್䛿㻌 䠍䠩䠳᫬㻌
zDC䝭䝳䜸䞁䛿䚸106௨ୖ䛾ᙉ
ᗘ䛿ィ ୖ䛾ཎ⌮ⓗ䛺ไ㝈
䛒䜚
z䝟䝹䝇䝭䝳䜸䞁䛷䛿↓ไ㝈
༢఩䛿
100୓䜲䝧䞁䝖/h
◊✲ᡂᯝ@D䝷䜲䞁
㕲⣔㉸ఏᑟయࡢᓥ≧㉸ఏᑟࢆⓎぢ
1.2
ZF 100K
Ca(Fe1-xCox)AsF
x = 0.150
0.8
LF 5mT, 2K
0.6
0.4 TF 2K
0.2
ZF 2K
0.0
0
2
6
8
J-PARC䛛䜙䛾᭱ึ䛾ฟ∧䝕䞊䝍
Ca(Fe1-xCox)AsF
1.0
0.8
0.6
0.4
Mag. phase
4
t / µs
Supercond.
Gz(t), Gx(t)
1.0
SC-phase
Mag.
㉸ఏᑟ䜢ᢸ䛖FeAs㠃䛾Fe䜢
Co䛷⨨᥮䛩䜛䛸䚸㏻ᖖ䛿㉸
ఏᑟ䛜㜼ᐖ䛥䜜䜛䛸ண᝿䛥
䜜䜛䛜䚸㕲◉⣲⣔䛷䛿㉸ఏ
ᑟ䛜Ⓨ⌧䟿
→䝭䝳䜸䞁䝇䝢䞁ᅇ㌿䛷ྠ⣔
≀㉁CaFe1xCoxAsF䛻䛴䛔䛶
ㄪ䜉䚸㉸ఏᑟ䛜ᓥ≧䛻Ⓨ㐩
LaFeAsO䛾
䛧䚸☢ᛶ┦䛸ඹᏑ䛧䛶䛔䜛䛣
⤖ᬗᵓ㐀
䛸䜢Ⓨぢ䚹
Inside the matter
…can be
inferred only
by μSR.
KEK≀ᵓ◊-ᮾᕤ኱ᛂ⏝ࢭ࣑ࣛࢵࢡࢫ◊
0.2
ZF-μSR
☢ᛶᡂศ
w1 (para)
w2 (mag)
㉸ఏᑟᡂศ
0.0
S. Takeshita et al., Phys. Rev. Lett. 103, 027002 (2009)
0.00
0.04
0.08
0.12
Co concentration x
0.16
◊✲ᡂᯝ@D䝷䜲䞁
㟁ụ㟁ᴟᮦᩱ୰ࡢLiᣑᩓࡢほ ࡟ᡂຌ
ᾮ⣔㟁ụ㻌
Ᏻ඲ᛶྥୖ ඲ᅛయ㟁ụ㻌
య✚ᐦᗘୖ᪼
㇏⏣୰◊-KEK≀ᵓ◊
ཎ⌮䠖㻸㼕ᣑᩓ䛻䜘䜛ṇᴟ୰䛾ᚤᑠ䛺☢ሙ
ኚື䜢P㻿㻾䛷᳨ฟ䛩䜛䚹㻌
ṇᴟ㻌
䝉䝟
䝺䞊䝍㻌
ᅛయ㻌
㟁ゎ㉁㻌
㈇ᴟ㻌
㈇ᴟ㻌
ṇᴟ㻌
㟁ゎ㉁㻌
㻸㼕㻯㼛㻻㻞㻌
㻸㼕㻺㼕㻻㻞㻌
㻸㼕㻹㼚㻞㻻㻠㻌
㻸㼕㻲㼑㻼㻻㻠㻌㻚㻚㻚㻌
䜾䝷䝣䜯䜲䝖㻌
㻸㼕㻼㻲㻢㻌
㻸㼕㻠㻛㻟㼀㼕㻡㻛㻟㻻㻠㻌
㻸㼕㻣㻼㻟㻿㻝㻝㻌
㻚㻚㻚㻌
㻸㼕㻡㻸㼍㻟㻮㼕㻞㻻㻝㻞㻌 㻌
㻚㻚㻚㻌
඲ᅛయ㟁ụ䛾㛤Ⓨ䛾䛯䜑䛻䛿䚸ṇᴟ䞉ᅛయ
㟁ゎ㉁䞉㈇ᴟ䛾⏺㠃䜒ྵ䜑䛶䚸㐃⥆ⓗ䛻㻸㼕
ᣑᩓ䜢 ᐃ䛩䜛ᡭἲ䛜ᚲせ䚹㻺㻹㻾䜔㟁Ẽ
໬Ꮫ ᐃ䛷䛿ᅔ㞴䛰䛜䚸P㻿㻾䛺䜙ྍ⬟䚹㻌
J. Sugiyama et al.㸦㇏⏣୰◊㸧 Phys. Rev. B 82,
224412 (2010㸧
ᅗ䠍㻔ᕥ㻕㻌㻸㼕㻯㼛㻻㻞䛾⤖ᬗᵓ㐀䛸䠄ྑ䠅P㻿㻾䛷ぢ✚
䜒䛳䛯㻸㼕㼤㻯㼛㻻㻞䛾㻸㼕ᣑᩓಀᩘ䜢㻺㻹㻾⤖ᯝ䛸ẚ㍑䚹㻌
㻼㼔㼥㼟㻚㻌㻾㼑㼢㻚㻌㻸㼑㼠㼠㻚㻌㻝㻝㻜㻟㻘㻌㻝㻠㻣㻢㻜㻝㻌㻔㻞㻜㻜㻥䠅㻚㻌
㻶㻙㻼㻭㻾㻯䛷 ᐃ㻌
ᅗ䠎㻌㻸㼕㻺㼕㻻㻞䛸㻸㼕㻯㼞㻻㻞䛾᰾☢ሙኚື㏿ᗘ䛾 ᗘ౫
Ꮡᛶ䚹䛣䜜䛛䜙㻸㼕䛾ᣑᩓಀᩘ䜢ồ䜑䛯䚹㻌
◊✲ᡂᯝ@D䝷䜲䞁
≀ᮦᶵᵓ-㟷ᒣᏛ㝔኱-KEK≀ᵓ◊
≀
ᮦᶵᵓ-㟷
㟷ᒣᏛ㝔኱-K
KEK≀ᵓ◊
15
F (10-4 emu/mol)
㖡㓟໬≀࡜㢮ఝࡢ᪂໬ྜ≀ࢆⓎぢ
Ba2IrO4䛿௦⾲ⓗ䛺㖡㓟໬≀㉸ఏᑟయ䛸ྠ䛨䝨䝻䝤
䝇䜹䜲䝖ᵓ㐀䜢ᣢ䛴䛜䚸ᕧどⓗ䛺≀ᛶ㔞䛻ఱ䜒␗ᖖ
䛜ぢ䛴䛛䜙䛺䛔䚹←ᇶᗏ≧ែ䛿ఱ䛛䠛
10
䠄䜲䝸䝆䜴䝮䛿୰ᛶᏊ䛾྾཰య䠖୰ᛶᏊᩓ஘䛜౑䛘䛺䛔䟿䠅
Fig. 1 Ba2IrO4䛜♧䛩୍ᵝᖏ☢⋡䛾 ᗘ
౫Ꮡᛶ䠄ᯟෆ䛾ᅗ䛿⤖ᬗᵓ㐀䠅 .
108 K
0.1
54 K
0
0
1
2
Time (Ps)
3
181 K
200
T (K)
( )
300
400
108 K
54 K
25 K
2
3
Frequency (MHz)
4
Fig. 2 ࢮࣟ☢ሙ࣑ࣗ࢜ࣥࢫࣆࣥᅇ㌿ಙྕ㸦ᕥ㸧࡜
ࡑࡢࣇ࣮࢚ࣜኚ᥮㸦ྑ㸧
300
4
150 K
1
100
㖡㓟໬≀࡜ྠࡌ཯ᙉ☢ᛶࣔࢵࢺ⤯⦕య࡛
࠶ࡿࡇ࡜ࢆ♧၀ࠋ
209 K
0
0
f1
f2
3
200
BP (G)
242 K
f (MHz))
Corrected Asymmetry
0.2
0
䝭䝳䜸䞁䝇䝢䞁ᅇ㌿䛷ྠ≀㉁䛻䛴䛔䛶ㄪ䜉䚸
㖡㓟໬≀ྠᵝ䛻ẚ㍑ⓗ㧗 䠄ࠥ䠎䠐䠌K䠅䛛䜙
㖡
཯
཯ᙉ☢ᛶ⛛ᗎ䜢♧䛩䛣䛸䜢Ⓨぢ䚹
Real amplitude
ude of the fast Fourier transform
258 K
5
2
100
1
5
0
0
100
T (K)
200
0
300
Fig. 3 ࢮࣟ☢ሙ࣑ࣗ࢜ࣥࢫࣆࣥᅇ㌿࿘Ἴᩘfi (i=1,2).
H. Okabe et al., Phys. Rev. B 83 (2011) 155118䠄Editors’ Suggestion䠅
䝭䝳䜸䞁䛷ぢ䛘䜛䛣䛸㻌
≀㉁୰䛾Ỉ⣲䠜᱁Ꮚ㛫䛾㟁Ꮚ≧ែ䜢䝅䝭䝳䝺䞊䝖㻌
༙ᑟయ୰䛾Ỉ⣲䛿㼗㼑㼥㻌㼜㼘㼍㼥㼑㼞㻦㻌䛤䛟ᚤ㔞䛾Ỉ⣲䛷㟁Ẽⓗάᛶ䛜⃭ኚ㻚㻌
mᏙ❧Ỉ⣲䠄ᕼⷧᴟ㝈䛾⃰ᗘ䠅䛾㟁Ꮚ≧ែ䜢ㄪ䜉䜛䛾䛿⮳㞴䛾ᴗ㻚㻌
䝭䝳䜸䞁䜢ὀධ䛧䛶䛭䛾㟁Ꮚ≧ែ䜢ㄪ䜉䜜䜀䜘䛔䟿㻌
౛㻝㻦㻌㻳㼍㻺୰䛾Ỉ⣲ྠ఩య㻌
Mu0
Mu0oµ++e
Mu㼼
Small activation energy Ea = shallow
doner stateoGaN may exhibit ntype conductivity by H doping
conduction band
Band
gap
Mu0
Ea
valence band
Shimomura, Kadono et al. PRL 92 (2004) 135505
䝭䝳䜸䞁䛷ぢ䛘䜛䛣䛸㻌
౛䠎䠖Ỉ⣲྾ⶶ≀㉁NaAlH4୰䛾䝭䝳䜸䞁
Ti-doping
Behavior of µ+ in NaAlH4
changes drastically by Ti
doping.othe same must be
true for H.
µ+ in NaAlH4 demonstrated the formation of a dialanate
complex [AlH4-µ+-AlH4] by hydrogen bonding.
Kadono, Shimomura et al. PRL 100 (2008) 026401
ゎỴ䛩䜉䛝ㄢ㢟
䠍䠅䝡䞊䝮䝍䜲䝮䛾⤯ᑐⓗ୙㊊䠜D䝷䜲䞁
㻌 • ฼⏝ྍ⬟䛺䝡䞊䝮䝍䜲䝮Ҹ80᪥/༙ᮇ
㻌 • せồ䛥䜜䜛䝡䞊䝮䝍䜲䝮
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
㻌
䞉୍⯡ㄢ㢟Ҹ25௳/༙ᮇ䚸ᚲせ䝡䞊䝮䝍䜲䝮Ҹ4᪥/ㄢ㢟
㻌 㻌 㻌 㻌 㻌 㻌 →඲䝡䞊䝮䝍䜲䝮
Ҹ100᪥/༙ᮇ
䞉⿦⨨Gㄢ㢟䠄ㄪᩚ䞉㧗ᗘ໬䠅 Ҹ10᪥/༙ᮇ
䞉䝥䝻䝆䜵䜽䝖ᆺㄢ㢟
Ҹ20᪥/༙ᮇ
㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 ᑠィ 130᪥/༙ᮇ㻌 㻌
• ₯ᅾⓗ䛺㟂せ
㻌
㻌
㻌
㻌
㻌
䞉᪥ᮏே◊✲⪅䛾ᅜእ᪋タ฼⏝ Ҹ80᪥/༙ᮇ
䞉⌮◊-RAL䛷䛾༠ྠ◊✲
Ҹ80᪥/༙ᮇ
㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 ᑠィ 160᪥/༙ᮇ㻌 㻌
㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 ⥲ィ㻌 270᪥/༙ᮇ
…⌧ᅾ䛾ᅜෆ䝭䝳䜸䞁฼⏝⪅䛾㟂せ䛿౪⤥ຊ䛾3ࠥ䠐ಸ
䠎䠅ᑓ⏝⿦⨨䜢ᚲせ䛸䛩䜛ᴟ㝈ヨᩱ⎔ቃ䜈䛾せồ
㻌 㻌 ←ỗ⏝⿦⨨䛸䛧䛶䛾D䝷䜲䞁䛷䛿ᑐᛂᅔ㞴
䝭䝳䜸䞁ᩚഛィ⏬䠄➨Iᮇ䠅
⥲㢠㻌 24.7 ൨෇
S䝷䜲䞁ᇶᖿタഛᩚഛ
13.8൨෇
䝡䞊䝮䝷䜲䞁
㻌
1.9൨෇
S䠍ᐇ㦂䜶䝸䜰
4.1൨෇
S2-4䝡䞊䝮䝷䜲䞁䞉ᐇ㦂䜶䝸䜰
7.8൨෇
ᑠィ㻌 㻌 13.8൨෇
H䝷䜲䞁ᇶᖿ㒊ᩚഛ
䝭䝳䜸䞁㍺㏦⿦⨨䠄BL୺㒊䠅㻌
ᐇ㦂䜶䝸䜰䚸㟁※䝲䞊䝗㻌
㐽ⶸయ㻌
෭༷Ỉ䚸㟁Ẽ䜲䞁䝣䝷㻌
ᑠィ㻌
10.9൨෇
6.0൨෇
2.4൨෇
1.5൨෇
1.0൨෇
10.9൨෇
ᑗ᮶ィ⏬
S䝷䜲䞁䠖኱ᙉᗘ䝭䝳䜸䞁䛾䜲䞁䝟䜽䝖䜢᭱኱໬
•
㻌
㻌
㻌
㻌
㻌
㻌
㻌
•
㻌
㻌
μSR≀ᛶ◊✲䛾㧗ᗘ໬䠄䛂䝢䞊䜽䜢ฟ䛩䛃䠅
㉸ప㏿䝭䝳䜸䞁䝡䞊䝮䛾ᐇ⌧(U-line)→㫽㣴䚸୕Ꮿ
㻌 μSR䛾᪂ศ㔝㛤ᣅ䠖⾲㠃㏆ഐ䞉⏺㠃䛾ᙉ┦㛵㟁Ꮚ≀ᛶ䚸
㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 Ỉ⣲㛵㐃≀ᛶ䚸௚
≉Ṧ⿦⨨ᑓ⏝BL䛻䜘䜛㧗ᗘ฼⏝䛾ᐇ⌧(S-line)
㻌 μSRᐇ㦂䛾㧗ᗘ໬䠖ᴟప 䚸㧗᫬㛫ศゎ⬟䚸䝟䝹䝇≧ᴟ㝈
㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 ⎔ቃ䠄㉸㧗☢ሙ䚸䝺䞊䝄䞊ບ㉳䚸etc.䠅
㈇䝭䝳䜸䞁μSR䠄䠙㉸㧗ឤᗘ䛂Z-1䛃᰾NMR䠅䛾ᐇ⏝໬(D-line)
μSR䛂฼⏝◊✲䛾ᣑ኱䛃
㧗㏿ỗ⏝⿦⨨䛂μPMS䛃䛻䜘䜛μSR㐺⏝⠊ᅖ䛾ᣑ኱(S-line)
㻌 䠍ㄢ㢟䠋᪥䠄ࠥᖺ㛫200ㄢ㢟䠅㽢μPMS䛾ྎᩘ
ᑗ᮶ィ⏬
S䝷䜲䞁䠖≉Ṧ⿦⨨ᑓ⏝BL䛻䜘䜛㧗ᗘ฼⏝䛾ᐇ⌧
S1:ᴟ
ప μSR
S3:㧗᫬㛫
ศ
ศゎ⬟
μSR
ศゎ⬟μSR
S4:μPMS
S4:
:μP
μPM
MS
μPMS
μP
PMS
PM
MS
S䝷䜲䞁
S2:䝟䝹䝇
S2 䝟䝹䝇
S2:
䝟 䝇
䝟䝹
ບ㉳μSR
ᴟప 䚸㧗᫬㛫ศゎ⬟䚸䝟䝹䝇≧
ᴟ㝈⎔ቃ䠄㉸㧗☢ሙ䚸䝺䞊䝄䞊ບ㉳䚸
etc.䠅
኱Ꮫ㐃ᦠ䛾ୗ䛷䛾㧗ᗘ฼⏝
FIN
Fly UP