Comments
Description
Transcript
Cycling
Chapter 43 Cycling ASKER E. JEUKENDRUP Introduction Without doubt, cycling is the sport most intensively studied by exercise physiologists and sport nutritionists. Christensen and Hansen (1939) were among the first to report the effect of different diets on cycling performance. These early reports already demonstrated the importance of carbohydrates (CHO) for improving or maintaining exercise performance. Since then, many studies have investigated the effect of CHO feedings during cycling, and the role of CHO after exercise to replenish glycogen stores and improve recovery (see Chapters 5–8). This chapter will review some of the nutritional habits of cyclists and will define some recommendations for nutrition during bicycling races or intensive training. Although cycling obviously has many disciplines (including road racing, time trialing, track cycling, mountain biking, BMX), this chapter will focus on road racing and time trialling. Energy cost of cycling Cycling, triathlon and cross-country skiing are among the sports with the highest reported energy turnovers. The levels of energy expenditure in these endurance sports have been measured in the field by using doubly labelled water, an accurate technique which allows measurements over longer periods (days) in the field (Westerterp et al. 1986). Of particular interest are the data obtained during the most demanding 562 cycling race in the world: the Tour de France (Saris et al. 1989). This race has 20 stages and lasts about 3 weeks in which the riders cover almost 4000 km. During these 3 weeks, energy expenditures of up to 35 MJ · day-1 (8300 kcal · day-1) have been reported during the long (300 km) stages (Saris et al. 1989). Recently, we performed measurements of power output during the stages of the Tour de France using a power-measuring system (SRM Training System, Germany) which is claimed to be accurate to ± 1%, and to record and store power data at 1-s intervals (G. Leinders & A.E. Jeukendrup, unpublished findings). These data show that average power output during a 6-h stage may be over 240 W, which indicates a very high energy turnover. With an estimated average efficiency of 22%, this represents an energy expenditure of about 24 MJ (5700 kcal) during the race itself. In order to maintain energy balance, a similar amount of energy has to be consumed on a daily basis. Most of the energy intake is derived from CHO (Saris et al. 1989), which is less energy-dense than lipid, and many CHO-rich foods are bulky and rich in fibre. A high-CHO/high-energy diet entails a large food volume and considerable eating time. Since cyclists in the Tour de France are usually on the bike for 4–6 h · day–1 and they avoid eating 1–3 h before the start, there is barely time left to eat the large meals. Besides this, appetite is usually depressed after strenuous exercise. These factors make it very hard to maintain energy balance on a daily basis. Studies on energy balance have usually cycling employed indirect calorimetry or doubly labelled water as techniques to measure energy expenditure, while energy intake is usually estimated by the reported food intakes of athletes. The reported energy intakes, however, display large variation and are susceptible to a number of methodological errors. Besides that, there are only a few studies available in the literature which systematically looked at the food intake of cyclists. Nevertheless, the few available studies report mean energy intakes which are similar to those of other groups of endurance athletes and which range from 15 to 25 MJ · day-1 (3500– 6000 kcal · day-1) for male athletes (Erp van-Baart et al. 1989), cyclists in the Tour de France and 563 Tour de l’Avenir having the highest energy intakes (Table 43.1). During the Tour de France, mean food intake was 24.3 MJ · day-1 (5800 kcal · day-1) while the highest recorded values reached 32.4 MJ (7600 kcal) on the days of the long (300 km) stages (Saris et al. 1989). This indicates that the athletes in the Tour de France match their energy expenditures quite well with their food intake (Fig. 43.1), and they remain weight stable (i.e. maintain energy balance) during the entire race. Only during the long stages with extremely high energy expenditures could food intake not completely compensate for the energy expended. In general, riders in the Tour de France remain Fig. 43.1 Daily energy expenditure (䊉) and energy intake (䊊) as measured in a cyclist during the Tour de France. The profile of the race as well as the length of the stages are indicated at the bottom of this figure. r, days of rest. From Saris et al. (1989). 35 35 30 30 25 25 20 20 15 15 Alps 12.5 Day 1 2 3 4 6 r 7 r 8 9 10 11 12 13 14 15 16 17 18 19 20 21 r 500 km Table 43.1 Daily energy expenditures (EE) and energy intakes (EI) in cyclists. NR, not recorded. 12.5 Race/category EE EI (MJ) Reference 24-h race Race across America Tour de France (peak) Tour de France (mean) Tour de France Tour de l’Avenir Amateur cyclists NR NR 32.7 MJ 25.4 MJ NR NR NR 43.4 35.4 32.4 24.7 24.3 23.3 18.3 Lindeman et al. 1991 Lindeman et al. 1991 Saris et al. 1989 Saris et al. 1989 Van Erp-Baart et al. 1989 Van Erp-Baart et al. 1989 Van Erp-Baart et al. 1989 Energy intake (MJ) Energy expenditure (MJ) 40 564 sport-specific nutrition remarkably weight stable (Saris et al. 1989; A.E. Jeukendrup & G. Leinders, unpublished findings). Anecdotal evidence suggests that racers who lose weight may not be able to finish the race. Brouns and colleagues (Brouns et al. 1989b–d) performed a simulation study in the laboratory in which the effect of diet manipulation was studied in athletes expending 26 MJ · day-1 (6200 kcal · day-1) by exercising for 5 h in a respiration chamber. Subjects received ad libitum a conventional solid diet with a high carbohydrate content (62.5% CHO diet) supplemented with water or the same diet supplemented with a 20% CHO solution (80% CHO diet). Although food intake was allowed ad libitum in both trials, the CHO supplement enabled the subjects to maintain their daily energy balance, which they could not when supplemented with water. As a consequence, exercise performance was improved. These data show that during stage races or multiple days of intensive training, energy expenditure is very high and CHO-containing drinks may be required to maintain energy balance in cyclists involved in such rigorous programmes, since digestion and absorption of solid meals will be impaired and hunger feelings are suppressed during intensive physical exercise (Brouns 1986). Other reports in the literature regarding energy intake of cyclists include those of the Race Across America, a race from the West coast to the East coast of the United States (Lindeman 1991). Energy intake in one individual taking part in this race was 35.4 MJ (8429 kcal) daily of which 78% was derived from CHO. During the preparation, this individual rode a 24-h race where his energy intake was as much as 43.4 MJ · day-1 (10 343 kcal · day-1) with 75% of the energy from CHO. Eating behaviour of cyclists An important observation from several of the investigations which have reported very high energy intakes in athletes is that a significant amount of the day’s nutrient intake may be con- sumed while the individual is exercising. For example, CHO-rich foods and drinks consumed while riding provided nearly 50% of the total energy, and 60% of the daily CHO intake of cyclists competing in the Tour de France stages (Saris et al. 1989). Only by adopting such a nutritional regimen do these cyclists maintain energy balance over the 20 days of the Tour de France. Suitable food choices to attain such goals include concentrated sports drinks and portable CHOrich foods such as fruit, confectionery, bread, cakes and sports bars. It has also been reported that a large part of the carbohydrates is from snacks. These snacks usually contain simple carbohydrates, a fair amount of fat and little or no micronutrients, and therefore it has often been recommended that riders should replace these snacks by fruit and snacks that contain less fat and more micronutrients (Brouns 1986). Preparing for a race Athletes involved in prolonged moderate- to high (> 70% of maximal oxygen uptake) intensity exercise not only have unusually high energy requirements but they also have greatly increased CHO needs. The extra CHO is necessary to optimize fuel availability during training sessions used, and to promote postexercise muscle glycogen resynthesis. A well-known method to restore glycogen levels to the preexercise level or even above that is known as glycogen loading or glycogen supercompensation. Glycogen loading Muscle glycogen depletion and low blood glucose levels have been shown to be major factors in the development of fatigue during endurance exercise. It is therefore important to ensure optimal glycogen storage prior to exercise and optimal delivery of CHO during exercise. These aspects have been discussed in detail in Chapter 7. Supercompensation protocols as described by Bergström and Hultman (Bergström et al. 1967) and later adapted by cycling 565 Fig. 43.2 Pre-exercise feedings will top up liver glycogen. Photo © Cor Vos. Sherman et al. (1981) do not usually apply to cycling at the highest level. Professional cyclists and top-level amateurs have too many races in a short time period and a week of nutritional preparation is usually not possible. For this group of cyclists, it is often recommended that they eat high-CHO diets which are often expressed in percentages of CHO in daily energy intake. However, the absolute amounts may be more important. In a 70-kg subject, the body CHO stores are believed to amount to about 600–700 g (about 10 g · kg–1 body weight). It is believed that ingesting more than 600–700 g (10 g · kg–1 body weight) of CHO to replenish these stores will not further improve glycogen storage (Rauch et al. 1995). This is especially important for sports with repeated days of exercise with very high energy expenditures, such as in the Tour de France (Saris et al. 1989). If these athletes would consume a 70% CHO diet (as often recommended), they would consume more than a kilo of CHO, assuming an energy intake of 25 MJ (6000 kcal). Recently, however, we observed increased glycogen storage after ingestion of 12–13 g · kg-1 body weight · day-1 compared to 9 g· kg-1 · day-1 when athletes trained on a daily basis (A.E. Jeukendrup et al., unpublished observations). Prerace feedings It is often recommended that CHO ingestion should be avoided in the hours preceding the race in order to prevent rebound hypoglycaemia. CHO ingestion 30–120 min prior to exercise raises plasma glucose and insulin levels, which stimulates glucose uptake and inhibits fat mobilization and oxidation during exercise. Early studies showed that CHO ingestion in the fasted state, about 45–60 min prior to an acute bout of exercise, may result in a drop in the blood glucose concentration as soon as exercise begins (Foster et al. 1979; Koivisto et al. 1981). During intense exercise, this was shown in one study to result in hypoglycaemia and decreased performance (Foster et al. 1979). However, more recent studies, in the fasted state (Gleeson et al. 1986) as well as in the non-fasted state, as is usual in athletes going into competition, have not shown these detrimental effects (Brouns et al. 1991). Due to strong individual differences in response, however, it is always possible that an individual is prone to an exercise-induced insulin rebound response after a CHO-rich solid or liquid meal. In addition, pre-exercise CHO feedings 2–4 h before the race may inhibit lipolysis, decrease the availability of plasma fatty acids and thereby deprive 566 sport-specific nutrition the muscle of substrate. This, in turn, may accelerate glycogenolysis and increase whole-body CHO oxidation. Large pre-exercise CHO feedings may compensate for the excess oxidized CHO by providing sufficient glucose through the blood, whereas small CHO feedings may not provide sufficient substrate and result in premature glycogen depletion and fatigue. So, preexercise CHO feedings should be large enough (> 200 g) to provide substrate to the muscle to compensate for the accelerated glycogen breakdown and increased CHO oxidation. Recommendations for precompetition nutrition 1 Ensure a CHO intake of 10 g · kg–1 body weight · day–1 during the 3 days before the race. This amount of CHO should maximize glycogen storage. 2 Drink plenty of fluids during the days before the race, to ensure euhydration at the start. If large sweat losses are to be expected, add a little sodium (a pinch of salt) to the drinks. 3 Avoid food with a high dietary fibre content during the days before the competition to prevent gastrointestinal problems. 4 Eat a CHO-rich meal 2–4 h before the race to replenish the liver glycogen stores: before short races, light digestible CHO foods or energy drinks; before long races, semisolid or solid food such as energy bars and bread. Too much protein and fat should be avoided since this may slow gastric emptying and may cause gastrointestinal discomfort. This meal should contain a fair amount of CHO (> 200 g) to compensate for the increased glycogen breakdown and CHO oxidation. 5 Although in general the intake of CHO in the hours before a race does not have adverse effects on performance, some individuals may develop rebound hypoglycaemia when ingesting a highCHO meal or drinks before the race. These individuals should delay eating CHO until the warming up or 5 min before the race. An oral glucose tolerance test can be used to determine which individuals are prone to develop rebound hypoglycaemia. Nutrition during exercise Nutrition during exercise longer than 90 min CHO ingestion during exercise has been shown to improve exercise performance in events of 90 min duration and longer by maintaining high plasma glucose levels and high levels of CHO oxidation. The increased availability of plasma glucose enables the athlete to postpone fatigue or to develop a higher power output in a final sprint following endurance exercise (Hargreaves et al. 1984; Coggan & Coyle 1987, 1988, 1989; Mitchell et al. 1988; Goodpaster et al. 1996). From numerous studies, we know that most of the soluble CHO (glucose, maltose, sucrose, glucose polymers, soluble starch) are oxidized at similar rates, as reviewed by Hawley et al. (1992), and similar improvements in cycling performance have been observed when ingesting glucose, maltodextrins or soluble starch (Goodpaster et al. 1996). Exceptions are fructose, galactose and insoluble starch, which are oxidized at slightly lower rates (Saris et al. 1993; Leijssen et al. 1995) and do not seem to have the same positive effect on performance (Goodpaster et al. 1996). Therefore, glucose, maltose, sucrose, glucose polymers and soluble starch are all good CHO types to ingest during exercise. Ingested CHO may be oxidized at rates up to 1 g · min–1, which appears to be the maximal exogenous CHO oxidation rate (for review, see Hawley et al. 1992). Recently, we reported that the oxidation rate of ingested CHO was similar in well-trained cyclists and untrained individuals when they are exercising at the same relative intensity and same rates of total CHO oxidation (Jeukendrup et al. 1997b). The oxidation of exogenous CHO seems related to the amount ingested (up to a certain limit) and the exercise intensity and active muscle mass rather than any other variables. Its maximal oxidation rate may be determined by the absorption rate or by liver metabolism (Jeukendrup 1997; Jeukendrup et al. 1999). However, additional research is required to study the factors limiting exogenous CHO oxidation. In order to maximize the contribution of oral CHO to total energy expenditure, it may be advised that 1–1.2 g CHO · min–1 (60–70 g · h–1) cycling should be ingested during exercise while slightly higher rates of ingestion during the first hour may speed up the achievement of these high levels of oxidation. However, ingesting more than 1.5 g · min–1 during exercise may not result in increased exogenous CHO oxidation (Wagenmakers et al. 1993) and increases the risk of gastrointestinal problems. Most studies of cyclists have shown that CHO ingestion does not alter the rate of muscle glycogen breakdown during exercise, although during intermittent exercise glycogen may be resynthesized during the low-intensity cycles (Hargreaves et al. 1984; Kuipers et al. 1986). So the mechanism by which CHO ingestion during cycling improves performance in road races may not only be maintaining the plasma glucose concentration, but also the resynthesis of muscle glycogen during periods of low intensity. Nutrition during high-intensity exercise of about 1 h Although previous studies suggested that CHO feedings can improve exercise performance during exercise of longer than 90 min duration, recent evidence shows that CHO feedings can also be effective during high-intensity exercise of shorter duration (60 min) (Anantaraman et al. 1995; Below et al. 1995; Jeukendrup et al. 1997a). 567 We recently found improved time-trial performance (comparable to a 40-km time trial) in well-trained cyclists when they ingested a carbohydrate–electrolyte solution during exercise (75 g of CHO) compared with placebo (Fig. 43.3) (Jeukendrup et al. 1997a). Seventeen out of 19 subjects showed improved time-trial performance, while two athletes displayed a decreased performance with the carbohydrate–electrolyte solution. The average power output during the time trial when the carbohydrate–electrolyte solution was ingested was 298 ± 10 W vs. 291 ± 10 W with placebo. Although the beneficial effect of the CHO ingestion during high intensity exercise of about 1 h duration has now been confirmed by several studies, the mechanism behind this performance effect remains unclear and central effects of glucose on the brain cannot be excluded at this point (Jeukendrup et al. 1997a). Optimally, athletes should ingest a carbohydrate–electrolyte solution throughout exercise in order to maintain a certain volume of fluid in the stomach which will enhance gastric emptying (Rehrer et al. 1990). It has recently been shown that ingestion of CHO throughout exercise improves performance more than ingestion of an identical amount of CHO late in exercise (McConell et al. 1996). Again, these results suggest that CHO ingestion improves performance through mechanisms other than, or in 68 Time to complete work (min) Fig. 43.3 Ingestion of a carbohydrate–electrolyte (CE) drink reduces time to complete a set amount of work (analogues to completion of a 40-km time trial). (a) Individual data of 17 male (䊉) and 2 female athletes (䊊); (b) the means. Time to complete work (min) 61 65 62 60 58 55 Placebo (a) CE 60 59 58 57 (b) Placebo CE 568 sport-specific nutrition addition to, an increased CHO availability to the contracting muscles. Medium-chain triacylglycerol ingestion during exercise Recently it has been suggested that mediumchain triacylglycerol (MCT) ingestion during cycling exercise may provide an additional fuel, thereby possibly sparing endogenous CHO stores and improving exercise capacity. MCT is derived from coconut oil and contains mediumchain fatty acids which are rapidly absorbed and oxidized (Massicotte et al. 1992; Jeukendrup et al. 1995, 1996a). However, despite its rapid metabolism, several studies show that ingestion of small amounts of MCT (25–45 g of MCT over the course of 1–3 h) may not be sufficient to alter fat oxidation, glycogen breakdown or cycling performance (Ivy et al. 1980; Jeukendrup et al. 1995, 1996a, 1996b, 1998). Larger amounts generally cause gastrointestinal problems and can therefore not be recommended. Fluid intake during exercise Besides CHO, cyclists need to maintain their water balance. Exercise-induced dehydration may augment hyperthermia and multiple studies show that prevention of dehydration by fluid ingestion improves performance (see Chapter 16). Dependent on the weather conditions, fluid losses may vary from 0.5 to up to almost 3 l · h–1. Individual fluid loss can be estimated from weight loss although this also includes a small amount of weight loss due to glycogen and fat oxidation. During 90 min of exercise, 100–300 g of glycogen and fat may be oxidized. By regularly monitoring body weight before and after training sessions and competitions, it is possible to predict the fluid loss in a certain race. However, since the main limitation seems to be the amount of beverage that can be tolerated in the gastrointestinal tract, in most conditions it is advisable to drink as much as possible. Completely compensating for sweat loss by fluid consumption may not always be pos- sible because sweat losses may exceed 2 l · h–1 and ingestion of such amounts cannot be tolerated by the gastrointestinal tract. Observations in professional cyclists during the Mediterranean Tour in France and the Ruta del Sol in Spain show that riders lose about 2.1–4.5 kg during a 4–5-h stage, indicating that even cyclists who are well aware of the importance of drinking cannot drink sufficiently during a race (G. Leinders & A.E. Jeukendrup, unpublished findings). Therefore, fluid and CHO consumption is usually limited by the practical situation and by the amount of drink that can be tolerated after ingestion. This highlights the importance of making ‘drinking during exercise’ a part of the regular training programme. Also during high-intensity exercise of about 1 h duration, water seems to be beneficial to performance. Below et al. (1995) showed that water ingestion, independently of CHO, improved time-trial performance (time trial of about 10 min . duration after 50 min at 80% Vo2max.), while the CHO and water had an additive effect on performance. Palatability of drinks and food is a very important aspect because it will stimulate consumption and with it increase the intake of fluid and CHO. In addition, taste and flavour perception may also influence the rate of gastric emptying. Disliked flavour or aroma may slow gastric emptying and may even cause nausea. Nutrition during exercise: some observations in professional cyclists In general, professional cyclists tend to eat solid food during the first hours of their stages, usually consisting of chunks of banana, apple, white bread with jamor rice cakes. The pace during the first hours is usually slow and there is plenty of time to digest the solid food. As soon as the speed increases, the cyclists switch to fluid ingestion and solid food will only be eaten when the speed drastically drops or their stomachs feel empty. Since they have only two bottles on their bike, usually containing 0.5 l each, they have to get new bottles regularly during the race. Profes- cycling 569 Fig. 43.4 Feeding zone where bags with solid and liquid food are given to the riders. Photo © Cor Vos. sional cyclists often receive their new bottles from the team director in the car behind the pack. One or two riders of the team will go to the car and bring bottles for the whole team. Also they usually have the opportunity to get additional bottles at the feeding zone (2–4 h into the race). At these feeding zones the athletes will receive a little bag containing one or two bottles of fluid and some solid food in case they get hungry or get an empty feeling in their stomach (Fig. 43.4). Often riders will take the bottles and throw away the solid food. Recommendations for nutrition during exercise 1 During intense exercise lasting 45 min or more, a CHO solution should be ingested. This may improve performance by reducing/delaying fatigue. 2 Consume 60–70 g CHO · h–1 of exercise. This can be optimally combined with fluid in quantities related to needs determined by environmental conditions, individual sweat rate and gastrointestinal tolerance. 3 During exercise of up to 30–45 min duration, there appears to be little need to consume CHO. 4 The type of soluble CHO (glucose, sucrose, glucose polymer, etc.) does not make much dif- ference when ingested in low to moderate quantities. Fructose and galactose are less effective. 5 Athletes should consume CHO beverages throughout exercise, rather than only water early in exercise followed by a CHO beverage late in exercise. 6 Avoid drinks extremely high in CHO and/ or osmolality (> 15–20% CHO) because fluid delivery will be hampered and gastrointestinal problems may occur. 7 Try to predict the fluid loss during endurance events of more than 90 min. The amount of fluid to be ingested should in principle equal the predicted fluid loss. In warm weather conditions with low humidity, athletes have to drink more and the drinks can be more dilute. In cold weather conditions, athletes will drink only small amounts and drinks have to be more concentrated. 8 Large drink volumes stimulate gastric emptying more than small volumes. Therefore, it is recommended to ingest a fluid volume of 6– 8 ml · kg–1 body weight 3–5 min prior to the start to ‘prime’ the stomach, followed by smaller volumes (2–3 ml · kg–1 body weight) every 15–20 min. 9 The volume of fluid that athletes can ingest is usually limited. Athletes should ‘learn’ to drink during exercise. This aspect can be trained. 570 sport-specific nutrition 10 After drinking a lot, the stomach may feel empty and uncomfortable. In this case it may be wise to eat some light digestible solid food (CHO). During long, low-intensity races, solid food can be eaten also in the first phase of the race. 11 Factors such as fibre content, protein content, high osmolality and high CHO concentrations have been associated with the development of gastrointestinal symptoms during exercise, and thus should be avoided during exercise. Nutrition after exercise Quick recovery is an extremely important aspect of training and frequent competitions. Especially during repeated days of training or in stage races, it is important to recover as quickly as possible. Dietary measures have been shown to influence recovery significantly. The restoration of muscle glycogen stores and fluid balance after heavy training or competition is probably the most important factor determining the time needed to recover. The rate at which glycogen can be formed (synthesized) is dependent on several factors: 1 The quantitative CHO ingestion. 2 The type of CHO. 3 The timing of CHO ingestion after exercise. 4 Coingestion of other nutrients. Amount of CHO ingestion The quantity of CHO is by far the most important factor determining the rate of glycogen resynthesis. In studies, it appeared that the muscle glycogen resynthesis rate of 50 g CHO ingested every 2 h was double that of 25 g CHO ingested every 2 h (Blom et al. 1987; Ivy et al. 1988b). When more than 50 g was ingested (100–225 g), muscle glycogen storage did not further increase (Blom et al. 1987; Ivy et al. 1988b). Thus, 50 g in 2 h (or 25 g · h–1) appears to result in a maximum rate of postexercise muscle glycogen resynthesis. Frequent small meals do not appear to have an advantage over a few large meals. Type of CHO To optimally restore glycogen levels after exercise, a source of CHO which is easily digested and absorbed is needed. The rate of absorption of a certain CHO is reflected by the glycaemic index. Foods with a moderate to high glycaemic Fig. 43.5 Rehydration and carbohydrate loading start immediately after the race. Photo © Cor Vos. cycling index enter the bloodstream relatively rapidly, resulting in a high rate of glycogen storage. Foods with a low glycaemic index enter the bloodstream slowly and result in a lower rate of glycogen resynthesis. Therefore it is recommended that low glycaemic index foods should not comprise the bulk of CHO after exercise when a quick recovery is required. Timing of CHO intake During the first hours following exercise, glycogen resynthesis proceeds at a somewhat higher rate than later on (Ivy et al. 1988a). Therefore, in cases of short recovery times, CHO intake should take place immediately after exercise. Although this can maximize the rate of glycogen resynthesis in the early phase, the full process of glycogen storage still takes considerable time. Depending on the degree of glycogen depletion and the type of meals consumed, it may take 10–36 h to refill the glycogen stores to pre-exercise values. Therefore, it is impossible to perform two or more workouts per day without affecting the initial glycogen stores. Even when CHO intake between training bouts or competitions is very high, the muscle glycogen levels will be suboptimal when the next activity is started within 8–16 h. The rate at which fluid balance can be restored depends on (i) the quantity of fluid consumed and (ii) the composition of the fluid, especially the sodium content. Recent studies show that the postexercise fluid retention approximates 50% when the fluid that is consumed is low in sodium. This is the case with most tap and mineral waters as well as fruit juices. After the consumption of carbohydrate–electrolyte solutions containing 25–100 mmol · l–1 sodium, the water retention may be as high as 70–80% (Maughan & Leiper 1995; Shirreffs et al. 1996). From these findings, it can also be concluded that, in order to restore fluid balance, the postexercise fluid consumption must be considerably higher (150–200%) than the amount of fluid lost as sweat. 571 Practical considerations Usually, appetite is suppressed after exercise and there is a preference for drinking fluids rather than eating a meal. Therefore, beverages which contain high-glycaemic-index CHO sources in sufficient quantity (6 g · 100 ml–1 or more) should be made available. If preferred, the athlete may also ingest easily digestible solid CHO-rich food such as ripe banana, rice cake and sweets. When the desire for normal meals returns, approximately 10 g CHO · kg–1 body weight of moderate- to high-glycaemic-index CHO sources should be eaten within 24 h. This can easily be realized by consuming foods that are low in fat. For practical reasons, a certain amount of low-glycaemic CHO cannot be excluded from the diet. Sleeping hours interrupt the feeding possibilities. Therefore, it is recommended to ingest an amount of CHO prior to sleeping which is sufficient to supply the required 25 g · h–1 (e.g. 250 g for a 10-h period). Guidelines for postexercise nutrition 1 To maximize glycogen storage, it is recommended to ingest 100 g CHO during the first 2 h after exercise in the form of liquids or easily digestible solid or semisolid meals. In total, about 10 g CHO · kg–1 body weight should be eaten within 24 h, with two thirds of this preferably as high glycaemic index foods. 2 It is recommended to consume CHO sources with moderate to high glycaemic index to hasten recovery. 3 Addition of 25–100 mmol · l–1 sodium to postexercise rehydration beverages improves fluid retention and the recovery of fluid balance. Acknowledgements The author would like to thank Dr G. Leinders and the Rabobank professional cycling team for their friendly co-operation. 572 sport-specific nutrition References Anantaraman, R., Carmines, A.A., Gaesser, G.A. & Weltman, A. (1995) Effects of carbohydrate supplementation on performance during 1 h of high intensity exercise. International Journal of Sports Medicine 16, 461–465. Below, P.R., Mora-Rodríguez, R., Gonzáles Alonso, J. & Coyle, E.F. (1995) Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Medicine and Science in Sports and Exercise 27, 200–210. Bergström, J., Hermansen, L., Hultman, E. & Saltin, B. (1967) Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71, 140–150. Blom, P.C.S., Høstmark, A.T., Vaage, O., Kardel, K.R. & Maehlum, S. (1987) Effect of different post-exercise sugar diets on the rate of muscle glycogen resynthesis. Medicine and Science in Sports and Exercise 19, 491–496. Brouns, F. (1986) Dietary problems in the case of strenuous exertion. Journal of Sports Medicine and Physical Fitness 26, 306–319. Brouns, F., Rehrer, N.J., Saris, W.H.M., Beckers, E., Menheere, P. & ten Hoor, F. (1989a) Effect of carbohydrate intake during warming up on the regulation of blood glucose during exercise. International Journal of Sports Medicine 10, S68–S75. Brouns, F., Saris, W.H.M., Beckers, E. et al. (1989b) Metabolic changes induced by sustained exhaustive cycling and diet manipulation. International Journal of Sports Medicine 10, S49–S62. Brouns, F., Saris, W.H.M., Stroecken, J. et al. (1989c) Eating, drinking, and cycling: a controlled Tour de France simulation study. Part I. International Journal of Sports Medicine 10, S32–S40. Brouns, F., Saris, W.H.M., Stroecken, J. et al. (1989d) Eating, drinking, and cycling: a controlled Tour de France simulation study. Part II. Effect of diet manipulation. International Journal of Sports Medicine 10, S41–S48. Brouns, F., Rehrer, N.J., Beckers, E., Saris, W.H.M., Menheere, P. & ten Hoor, F. (1991) Reaktive hypoglykamie. Deutsche Zeitschrift fuer Sportmedizin 42, 188–200. Christensen, E.H. & Hansen, O. (1939) Arbeitsfahigkeit und ernahrung. Scandinavian Archives of Physiology 81, 160–171. Coggan, A.R. & Coyle, E.F. (1987) Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology 63, 2388–2395. Coggan, A.R. & Coyle, E.F. (1988) Effect of carbohydrate feedings during high-intensity exercise. Journal of Applied Physiology 65, 1703–1709. Coggan, A.R. & Coyle, E.F. (1989) Metabolism and performance following carbohydrate ingestion late in exercise. Medicine and Science in Sports and Exercise 21, 59–65. Coyle, E.F. & Coggan, A.R. (1984) Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Medicine 1, 446–458. Erp van-Baart, A.M.J., Saris, W.H.M., Binkhorst, R.A., Vos, J.A. & Elvers, J.W.H. (1989) Nationwide survey on nutritional habits in elite athletes. Part I. Energy carbohydrate, protein. International Journal of Sports Medicine 10, S3–S10. Foster, C., Costill, D.L. & Fink, W.J. (1979) Effects of preexercise feedings on endurance performance. Medicine and Science in Sports and Exercise 11, 1–5. Gleeson, M., Maughan, R.J. & Greenhaff, P.L. (1986) Comparison of the effects of pre-exercise feeding of glucose, glycerol and placebo on endurance and fuel homeostasis in man. European Journal of Applied Physiology 55, 645–653. Goodpaster, B.H., Costill, D.L., Fink, W.J. et al. (1996) The effects of pre-exercise starch ingestion on endurance performance. International Journal of Sports Medicine 17, 366–372. Hargreaves, M., Costill, D.L., Coggan, A., Fink, W.J. & Nishibata, I. (1984) Effect of carbohydrate feedings on muscle glycogen utilisation and exercise performance. Medicine and Science in Sports and Exercise 16, 219–222. Hawley, J.A., Dennis, S.C. & Noakes, T.D. (1992) Oxidation of carbohydrate ingested during prolonged endurance exercise. Sports Medicine 14, 27– 42. Ivy, J.L., Costill, D.L., Fink, W.J. & Maglischo, E. (1980) Contribution of medium and long chain triglyceride intake to energy metabolism during prolonged exercise. International Journal of Sports Medicine 1, 15–20. Ivy, J.L., Katz, A.L., Cutler, C.L., Sherman, W.M. & Coyle, E.F. (1988a) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. Journal of Applied Physiology 64, 1480–1485. Ivy, J.L., Lee, M.C., Brozinick, J.T. & Reed, M.J. (1988b) Muscle glycogen storage after different amounts of carbohydrate ingestion. Journal of Applied Physiology 65, 2018–2023. Jeukendrup, A. (1997) Aspects of Carbohydrate and Fat Metabolism during Exercise. De Vrieseborch, Haarlem. Jeukendrup, A.E., Saris, W.H.M., Schrauwen, P., Brouns, F. & Wagenmakers, A.J.M. (1995) Metabolic availability of medium chain triglycerides coingested with carbohydrates during prolonged exercise. Journal of Applied Physiology 79, 756–762. Jeukendrup, A.E., Saris, W.H.M., Van Diesen, R., Brouns, F. & Wagenmakers, A.J.M. (1996a) Effect of endogenous carbohydrate availability on oral medium-chain triglyceride oxidation during pro- cycling longed exercise. Journal of Applied Physiology 80, 949–954. Jeukendrup, A.E., Wagenmakers, A.J.M., Brouns, F., Halliday, D. & Saris, W.H.M. (1996b) Effects of carbohydrate (CHO) and fat supplementation on CHO metabolism during prolonged exercise. Metabolism 45, 915–921. Jeukendrup, A.E., Brouns, F., Wagenmakers, A.J.M. & Saris, W.H.M. (1997a) Carbohydrate feedings improve 1 H time trial cycling performance. International Journal of Sports Medicine 18, 125–129. Jeukendrup, A.E., Mensink, M., Saris, W.H.M. & Wagenmakers, A.J.M. (1997b) Exogenous glucose oxidation during exercise in trained and untrained subjects. Journal of Applied Physiology 82, 835–840. Jeukendrup, A.E., Thielen, J.J.H.C., Wagenmakers, A.J.M., Brouns, F. & Saris, W.H.M. (1998) Effect of MCT and carbohydrate ingestion on substrate utilization and cycling performance. American Journal of Clinical Nutrition 67, 397–404. Jeukendrup, A.E., Raben, A., Gijsen, A. et al. (1999) Glucose kinetics during prolonged exercise following glucose ingestion: a comparison of tracers. Journal of Physiology 515, 579–589. Koivisto, V.A., Karonen, S.-L. & Nikkila, E.A. (1981) Carbohydrate ingestion before exercise: comparison of glucose, fructose and placebo. Journal of Applied Physiology 51, 783–787. Kuipers, H., Costill, D.L., Porter, D.A., Fink, W.J. & Morse, W.M. (1986) Glucose feeding and exercise in trained rats: mechanisms for glycogen sparing. Journal of Applied Physiology 61, 859–863. Leijssen, D.P.C., Saris, W.H.M., Jeukendrup, A.E. & Wagenmakers, A.J.M. (1995) Oxidation of orally ingested [13C]-glucose and [13C]-galactose during exercise. Journal of Applied Physiology 79, 720–725. Lindeman, A.K. (1991) Nutrient intake in an ultraendurance cyclist. International Journal of Sport Nutrition 1, 79–85. McConell, G., Kloot, K. & Hargreaves, M. (1996) Effect of timing of carbohydrate ingestion on endurance exercise performance. Medicine and Science in Sports and Exercise 28, 1300–1304. Massicotte, D., Peronnet, F., Brisson, G.R. & HillaireMarcel, C. (1992) Oxidation of exogenous mediumchain free fatty acids during prolonged exercise: 573 comparison with glucose. Journal of Applied Physiology 73, 1334–1339. Maughan, R.J. & Leiper, J.B. (1995) Sodium intake and post-exercise rehydration in man. European Journal of Applied Physiology and Occupational Physiology 71, 311–319. Mitchell, J.B., Costill, D.L., Houmard, J.A., Flynn, M.G., Fink, W.J. & Beltz, J.D. (1988) Effects of carbohydrate ingestion on gastric emptying and exercise performance. Medicine and Science in Sports and Exercise 20, 110–115. Rauch, L.H.G., Rodger, I., Wilson, G.R. et al. (1995) The effect of carbohydrate loading on muscle glycogen content and cycling performance. International Journal of Sport Nutrition 5, 25–36. Rehrer, N.J., Brouns, F., Beckers, E.J., ten Hoor, F. & Saris, W.H.M. (1990) Gastric emptying with repeated drinking during running and bicycling. International Journal of Sports Medicine 11, 238–243. Saris, W.H.M., van Erp-Baart, M.A., Brouns, F., Westerterp, K.R. & ten Hoor, F. (1989) Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. International Journal of Sports Medicine 10, S26–S31. Saris, W.H.M., Goodpaster, B.H., Jeukendrup, A.E., Brouns, F., Halliday, D. & Wagenmakers, A.J.M. (1993) Exogenous carbohydrate oxidation from different carbohydrate sources during exercise. Journal of Applied Physiology 75, 2168–2172. Sherman, W.M., Costill, D.L., Fink, W.J. & Miller, J.M. (1981) The effect of exercise and diet manipulation on muscle glycogen and its subsequent utilization during performance. International Journal of Sports Medicine 2, 114–118. Shirreffs, S.M., Taylor, A.J., Leiper, J.B. & Maughan, R.J. (1996) Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Medicine and Science in Sports and Exercise 28, 1260–1271. Wagenmakers, A.J.M., Brouns, F., Saris, W.H.M. & Halliday, D. (1993) Oxidation rates of orally ingested carbohydrates during prolonged exercise in man. Journal of Applied Physiology 75, 2774–2780. Westerterp, K.R., Saris, W.H.M., van Es, M. & ten Hoor, F. (1986) Use of doubly labeled water technique in man during heavy sustained exercise. Journal of Applied Physiology 61, 2162–2167.