Comments
Description
Transcript
Swimming
Chapter 46 Swimming RICK L. SHARP Introduction Competitive swimming is a sport practised worldwide and includes swimming events of varied distances (50–1500 m, 22 s to 16 min) and stroke styles (freestyle or crawl stroke, backstroke, breaststroke and butterfly). Competitive swimming meets are held year-round and the age range of the swimmers is between 6 and 80 years. In the United States alone there are between 1.0 and 1.5 million competitive swimmers affiliated with community club teams, high school teams, college teams, and masters swimming teams (M.L. Unger, personal communication). Each swimming practice session can last up to about 3 h and may include a total swimming volume of 10 000 metres or yards. During this time, swimmers are engaged in various types of training that include long-distance endurance training, interval training, sprint training, and stroke instruction. The specific stroke styles swum during training depend on the athlete’s specialty, but most swimmers swim at least 75% of their total training volume in freestyle. This training is frequently done twice per day and 6 days per week. In addition to this, many swimmers also participate in dry land training such as strength training or supplemental endurance running or cycling. Thus, the nutritional demands of training in this sport can be quite extraordinary. Energy demands of swimming training The large volume of intensive training of these athletes imposes a tremendous demand on energy supply. Sherman and Maglischo (1992) have estimated the energy requirement of swimming training at approximately 16.8– 22.6 MJ · day–1 (4000–5400 kcal · day–1) for males working 4 h · day–1 and between 14.2 and 16.8 MJ · day–1 (3400–4000 kcal · day–1) for females working 4 h · day–1. Certainly, these values will vary considerably according to such factors as the intensity of the exercises used, the swimmer’s body mass, and mechanical efficiency. Nevertheless, these high energy needs can be difficult for swimmers to meet. Several studies have examined the daily diets of competitive swimmers to determine if energy needs are being met. Van Handel et al. (1984) used diet records to examine the energy intakes of 14 female and 13 male competitive swimmers who had competed in the US National Championhips and were preparing for the Olympic Trials. Their findings indicate that the energy intake of the men averaged 18.2 MJ · day–1 (4350 kcal · day–1), with a range between 12.6 and 28.6 MJ · day–1 (3010–6830 kcal · day–1). Expressed relative to body weight, these men were consuming an average of 0.22 MJ · kg–1 (50 kcal · kg–1). The women had energy intakes averaging 9.6 MJ · day–1 (2300 kcal · day–1), with a range between 6.3 and 13.8 MJ · day–1 (1500–3300 kcal · day–1). Relative to body weight, these women consumed 609 610 sport-specific nutrition an average of 0.15 MJ · kg–1 (36 kcal · kg–1). Distribution of energy for these athletes was 49% of energy from carbohydrate and 34% of energy from fat for the men, while the women reported 53% of energy from carbohydrate and 30% of energy from fat. Berning et al. (1991) reported energy intakes of adolescent developmental level swimmers attending a training camp. Males consumed an average of 21.9 MJ · day–1 (5230 kcal · day–1) while females reported 15.0 MJ · day–1 (3580 kcal · day–1). Distribution of energy among the energy macronutrients was not different from the general population, prompting the authors to conclude that these swimmers consumed too much fat and inadequate carbohydrate. In an attempt to determine the influence of training volume on the energy intake of competitive swimmers, Barr and Costill (1992) examined diet records of 24 males during a period of ‘low volume’ training (22 km · week–1) and during ‘high volume’ training (44 km · week–1). Energy intake averaged 15.3 MJ · day–1 (3650 kcal · day–1) during the lower volume training and increased significantly to 17.7 MJ · day–1 (4230 kcal · day–1) during the 6 weeks of high-volume training. It was noted that this increase in energy intake did not fully compensate for the higher energy demand of the longer training, since the swimmers maintained their body weight while they lost subcutaneous fat. Costill et al. (1988a) examined male collegiate swimmers before, during and after 10 days of increasing training. Their training distance was increased from 4266 to 8970 m · day–1 while average intensity was maintained at 94% of their maximum oxygen uptake. This resulted in an average energy cost during training of 9.6 MJ · day–1 (2300 kcal · day–1). It was noted that four of the 12 swimmers could not tolerate the higher training volume and were forced to swim their training bouts at slower speeds. In addition, these swimmers had reduced muscle glycogen concentration as a consequence of the combined effect of the intensified training and their low carbohydrate intakes. These findings led the authors to conclude that some swimmers have difficulty in meeting the energy demands of high-volume training and experience chronic muscle fatigue as a result of their failure to ingest sufficient carbohydrate to match the energy demands. The studies reviewed above suggest that male competitive swimmers in the age range of 16–23 years typically ingest approximately 18.0 MJ · day–1 (4300 kcal · day–1), while females consume only about 10.9 MJ · day–1 (2600 kcal · day–1) despite the fact that female and male swimmers perform similar training volume and intensity. When these data are compared with the estimated energy requirements of swimming training proposed by Sherman and Maglischo (1992), males tend to remain in energy balance (18.0 MJ · day–1 average intake vs. 16.8–22.6 MJ · day–1 (4300 vs. 5400 kcal · day–1) estimated requirement) while female swimmers tend to maintain a negative energy balance (10.9 MJ · day–1 average intake vs. 14.2–16.8 MJ · day–1 (2600 vs. 3400–4000 kcal · day–1) estimated requirement). These data illustrate the nutritional dilemma facing competitive swimmers, especially females, and their coaches. The tremendous training demands imposed on these athletes require careful consideration of the swimmer’s diet to make sure that adequate amounts of food are eaten to provide the energy, macronutrients and micronutrients necessary to support the enormous training loads. Body composition With such high energy demands of daily training in competitive swimming, one might wonder why body fat percentages of swimmers are not lower than they are. Typically, male competitive swimmers have body fat percentages in the range of 8–15% and females at 15–22%. Indeed, studies have confirmed that body composition of competitive swimmers is usually about 4–6% greater than age- and ability-matched endurance runners (Novak et al. 1977; Thorland et al. 1983). There are a number of possible explanations for the tendency of swimmers to carry more fat than runners despite similar training loads. One swimming explanation is that although running tends to have a somewhat anorexic effect, especially in the few hours after exercise, swimming may have an opposite effect by stimulating appetite (Harri & Kuusela 1986). This would imply that swimmers tend to increase their energy consumption in parallel with their training where runners may not. To this author’s knowledge, there have been no published studies comparing the effects of running and swimming on the postexercise appetite. Under this assumption of increased appetite in swimmers, swimmers would not be expected to lose a great deal of body fat during their training. A study by Johnson et al. (1989) with female university swimmers supports this argument since no changes in body composition were observed over a 25-week season of training. In contrast, however, Barr et al. (1991) reported decreased body fat, increased lean body mass, and no change in body weight in male college swimmers training 22 000 m · week–1 during a 25-week season. In agreement with this study showing changing body composition in males during swim training is a study by Meleski and Malina (1985) showing decreased body weight, decreased absolute and relative fat mass, and increased lean body mass in a group of female college swimmers during the first 2 months of a training season. Fig. 46.1 Swimmers favour high training volumes. This means that a high energy intake is essential, but opportunities for eating may be limited when long training sessions must be combined with work or study. Photo © Allsport. 611 Another explanation that has been proposed for the higher body fat percentages in competitive swimmers is a possible difference in fuel utilization both during and following the exercise that promotes fat storage in swimmers. As support for this argument, some have pointed to studies of cold exposure which is known to stimulate fat storage both in animal models and in humans. To determine if swimming training alters fuel utilization and the hormonal milieu differently from running, Flynn et al. (1990) monitored energy expenditure and fuel utilization of eight male swimmers and runners while exercising at 75% of maximum oxygen uptake and during 2 h of recovery. Although the energy cost of recovery was similar between the two exercise modes, the respiratory exchange ratio results suggested increased fat oxidation after swimming compared with running. In contrast, serum glycerol concentration was elevated to a greater extent after running than after swimming, suggesting enhanced mobilization of triglycerides with running. Whether this different response can account for the differences in body composition between runners and swimmers remains to be studied. Carbohydrate needs in training The high volume and intensity of swimming sport-specific nutrition training places a great demand not only on dietary energy, but also on the carbohydrate needs of these athletes. Maglischo (1993) has estimated that dietary carbohydrate needs of swimmers range between 500 and 800 g · day–1. Thus, a swimmer who consumes a diet providing 16.8 MJ · day–1 (4300 kcal · day–1) with 50% of the energy from carbohydrate will be consuming approximately 500 g · day–1 of carbohydrate and therefore may not meet the carbohydrate demand of the daily training. Clearly, these athletes should make carbohydrate intake a priority in their daily diet. To determine the amount of muscle glycogen depletion that can occur during typical swim training bouts, Costill et al. (1988b) examined muscle glycogen levels of male collegiate swimmers before and after swimming either 2743 or 5486 m. Each swimmer performed the 5486 m of training twice; once by doing 60 ¥ 91.4 m swims and once by performing 12 ¥ 457.2 m swims. Biopsies were taken from the anterior deltoid before, at the half-way point of the training session (2743 m), and at the end of each training session and analysed for glycogen concentration. Additional biopsies were taken after 8 h of recovery and ingestion of 112 g carbohydrate to assess the amount of glycogen repletion that might occur in this amount of time. When the training sessions were performed with repeated 91.4-m swims, muscle glycogen concentration declined by 68% at 2743 m, and by 87% at 5486 m (Fig. 46.2). Using repeated 457.2-m swims, muscle glycogen declined by 54% at 2743 m, and by 63% at 5486 m. The greater amount of glycogen depletion with 91.4-m repeats than with 457.2-m repeats was accounted for by a significantly faster swimming speed during the 91.4-m repeats (ª 7% faster than during the 457.2-m repeats). In recovery, glycogen repletion was 52% complete after 8 h and ingestion of 112 g of carbohydrate. These findings show the large loss of muscle glycogen that can occur during a single training session among competitive swimmers. When one considers that many swimmers perform this kind of training on a daily basis, and in many 140 120 100 Muscle glycogen (mmol.kg–1) 612 80 60 40 20 0 Pre-exercise 2743 5486 Distance per interval set (m) Fig. 46.2 Muscle glycogen utilization during 2743- and 5486-m interval swim training using repeated 91.4-m ( ) or 457-m ( ) swims. Adapted from Costill et al. (1988b). instances twice per day, the probability of chronic glycogen depletion is great, especially considering the incomplete glycogen repletion in the 8 h of recovery. Chronic glycogen depletion may then result in poor performances in subsequent training sessions and in competitions that may follow a period of such training. An obvious solution to this problem is to train only once per day and consume a diet containing at least 500 g · day–1 of carbohydrate. Less frequent training would likely not deplete glycogen from working muscles as much as twice per day training, and the higher intake of dietary carbohydrate would tend to accelerate glycogen repletion in the 24 h between training sessions, especially if a large quantity of carbohydrate is ingested during the first 2 h after the training is finished (MacDougall et al. 1977; Ivy et al. 1988). swimming Lamb et al. (1990) tested whether a diet in which 80% of calories came from carbohydrate was superior to a 43% carbohydrate diet in supporting the daily training of collegiate swimmers. Both diets provided 19.6 MJ · day–1 (4680 kcal · day–1) and were maintained for 9 days. During the last 5 days of each diet, swimmers performed intervals of various distances ranging from 50 m up to 3000 m and mean swim velocities were recorded. These authors found no significant differences between the two diets in performance of the interval sets. However, they did note that the swimmers who regularly consumed a high carbohydrate diet tended to perform better than those who generally consumed a low carbohydrate diet. A possible reason for the lack of difference in performance between the high and moderate carbohydrate diets could be that even in the moderate carbohydrate diet, enough carbohydrate was supplied to support the demands of their training. At 19.6 MJ · day–1 (4680 kcal · day–1) and 43% carbohydrate, these subjects were consuming an average of 503 g carbohydrate · day–1. Costill and Miller (1980) reported that muscle glycogen repletion is proportional to the mass of carbohydrate consumed until carbohydrate intake reaches approximately 600 g · day–1. Therefore, it is possible that the 935 g of carbohydrate that were provided in the 80% carbohydrate diet did not stimulate any greater rate of glycogen repletion than the 503 g of carbohydrate provided in the 43% carbohydrate diet. In light of the observations of Costill et al. (1988a), wherein four of the 12 swimmers studied failed to eat enough carbohydrate to prevent chronic muscle glycogen depletion during 8970 m · day–1 training, it would seem prudent to recommend that swimmers consume a diet that (i) meets the energy requirements of training and (ii) provides at least 600 g carbohydrate · day–1. Carbohydrate ingestion during training sessions A number of studies have shown improved endurance performance when carbohydrate is 613 ingested at frequent intervals during the exercise (Coyle et al. 1983, 1986; Coggan & Coyle 1987; Davis et al. 1988; Tsintzas et al. 1993). Typically, the exercise modes studied in these investigations have been either cycling or running. The hypothesized benefit of carbohydrate ingestion is improved maintenance of blood glucose throughout the duration of the activity and/or muscle glycogen sparing leading to increased carbohydrate availability at a time when the low endogenous carbohydrate supplies generally limit muscular performance. To determine if carbohydrate ingestion during exercise would have similar beneficial effects on the performance of swimming training bouts, O’Sullivan et al. (1994) measured swimming performances during a standardized training session once while ingesting a placebo and once while ingesting a liquid carbohydrate supplement. In each of these trials, the nine male collegiate swimmers performed a 5944-m training session composed of a mixture of low- and highintensity interval training bouts. The final 914 m of the training session was 10 ¥ 91.4 m swims with 20 s rest between each as a performance trial. Performance was measured as each swimmer’s average velocity during the first 5, second 5, and for the whole set of 10 ¥ 91.4 m. During the carbohydrate supplementation trial, the swimmers were given 1 g · kg–1 of glucose polymers in 50% solution 10 min into the training session, and 0.6 g · kg–1 of glucose polymers in 20% solution every 20 min thereafter according to the feeding schedule of Coggan and Coyle (1988). The placebo trial was the same as the carbohydrate trial, but an artificially sweetened placebo drink was substituted for the carbohydrate drink. The trials were conducted 7 days apart in a randomized, double-blind manner. Blood samples were taken before the training session, immediately before each feeding, and at the conclusion of the 10 ¥ 91.4 m performance trial. During the placebo trial, blood glucose concentration remained fairly stable throughout the first 100 min of the training but rose significantly during the 10 ¥ 91.4 m performance test to a final level of 6.3 mmol · l–1 (Fig. 46.3). In the carbohy- 614 sport-specific nutrition drate feeding trial, blood glucose concentration was slightly elevated over the placebo trial at all time points, but no significant differences were observed. Performance times for the 10 ¥ 91.4 m training set at the end of training averaged 59.1 s in the placebo trial and 59.9 s during the carbohydrate trial. The authors concluded that carbohydrate supplementation was not effective in improving performance late in a swimming practice because blood glucose remains stable even without supplemental carbohydrate. However, individual differences in their responses were presented. Two of the subjects did Blood glucose (mM) 7 6 5 4 4846 m swim Perf. 3 0 20 40 60 80 100 120 Time (min) Fig. 46.3 Blood glucose concentration throughout a 5486-m swim training session when fed placebo (䊊) or carbohydrate (䊉) every 20 min. Perf., performance trial of 10 ¥ 91.4-m swims. Adapted from O’Sullivan et al. (1994). experience a substantial decline in blood glucose concentration during the training in the placebo trial. During his placebo trial, one swimmer’s blood glucose concentration dropped from 4.3 mmol · l–1 before the training to a low of 2.6 mmol · l–1 immediately before the 10 ¥ 91.4 m performance trial (Table 46.1). The ingestion of carbohydrate completely prevented this decline and his performance time improved by 1.3 s from 64.3 s in the placebo trial to 63.0 s in the carbohydrate trial. Another subject experienced a drop in blood glucose concentration from 5.6 mmol · l–1 pre-exercise to 3.7 mmol · l–1 immediately before the performance trial. Again, the carbohydrate supplementation prevented this decline and performance improved by 1.1 s from 58.4 to 57.3 s. Thus, it seems that the carbohydrate supplementation protocol used in this study is effective in improving late-practice performance but only for those individuals who normally experience declining blood glucose concentration during the training. Because it would be impossible for swimmers to know if they normally experience declining blood glucose concentration during training without taking blood samples, coaches may want to recommend carbohydrate supplementation for the entire team. In those individuals who are able to maintain their blood glucose concentrations without supplemental carbohydrate, there is little, if any, risk in consuming the carbohydrate. Therefore, supplementing the entire team would be one way of assuring that those swimmers who need the extra carbohydrate would get it. Alternatively, coaches could watch their swimmers for signs of excessive muscle Table 46.1 Responses of two subjects who had declining blood glucose concentration during placebo and carbohydrate trials. Adapted from O’Sullivan et al. (1994). Trial Pre-exercise (mmol · l-1) Preperformance (mmol · l-1) Time/91.4 m (s) Subject 1 Placebo Carbohydrate 4.3 4.5 2.6 4.3 64.3 63.0 Subject 2 Placebo Carbohydrate 5.6 5.7 3.7 7.2 58.4 57.3 swimming fatigue during the latter part of training sessions and prescribe a carbohydrate supplement only to those who consistently seem to have difficulty maintaining their work output. There is a more fundamental question than whether or not carbohydrate supplementation is effective in improving training performance. By preventing the decline in blood glucose concentration during training, we effectively eliminate one of the physiological/metabolic stresses imposed by the training. Since training is a careful dosage of physical stress to create longterm adaptations that will ultimately improve competitive performance potential, elimination of these stresses may lessen the degree of adaptation experienced by the athlete. Whether or not one adapts in a performance-enhancing way to low carbohydrate availability is not currently known, but this may be part of the stimulus that improves glycogen storage in endurance athletes (Gollnick et al. 1973; Piehl et al. 1974; Costill et al. 1985a). Carbohydrate ingestion after training Studies have shown that muscle glycogen resynthesis is accelerated when carbohydrate is ingested within 1–2 h after the exercise is stopped (Ivy et al. 1988). In this immediate postexercise period, evidence suggests that high glycaemic index sugars may be the preferred carbohydrate source since insulin is known to be a potent activator of muscle glycogen synthase. A recent study also suggests including some protein in the postexercise meal because the protein will augment the insulin response to the carbohydrate and thereby stimulate an even greater rate of muscle glycogen storage (Zawadzki et al. 1992). Since competitive swimmers likely experience large decrements in muscle glycogen concentration during single training sessions, it seems wise to provide a carbohydrate source soon after the training session ends. This strategy may be helpful in preventing the chronic muscle glycogen depletion that undoubtedly occurs in many swimmers, especially those training twice per day. 615 Chronic muscle glycogen depletion and overtraining With all the training competitive swimmers do, it is not surprising that overtraining has become almost an epidemic in swimming. The frequent, high-volume, and high-intensity training these athletes perform often results in a chronic muscle fatigue that, if unchecked, may lead to the development of an overtraining state. Chronic muscle fatigue has been linked to failure to adequately replace the muscle glycogen stores between training sessions due to the combination of heavy training and inadequate dietary carbohydrate intake. Since a competitive swimming season may last as long as 25 weeks before a break from training is taken, swimmers can suffer from chronic depletion for up to 6 months. At the end of most swimming seasons, swimmers gradually reduce both the volume and intensity of training in preparation for their season-ending competition. This ‘taper period’ has not been studied extensively, but the few studies that have been done indicate that improved strength or power and increased muscle glycogen stores may be partly responsible for the enhanced performance that typically occurs with the taper. Protein requirements during swimming training The prior discussion concerning carbohydrate needs of competitive swimmers suggests that many swimmers may experience chronic muscle glycogen depletion during their daily training. Lemon and Mullin (1980) have shown that protein catabolism is accelerated when exercising while glycogen depleted. Therefore, competitive swimming training may often result in increased protein catabolism that needs to be compensated for with extra dietary protein intake. Furthermore, the relatively low energy intake that has been reported for some swimmers may also trigger an increase in protein catabolism. Lean body mass has been shown to signifi- 616 sport-specific nutrition cantly correlate with swimmers’ performance in a 91.4-m freestyle (Stager et al. 1984). In addition, numerous studies have shown the importance of muscle strength and power in performance of competitive swimming (Sharp et al. 1982; Costill et al. 1985b, 1986; Sharp 1986; Cavanaugh & Musch 1989). Thus, development and maintenance of lean mass to preserve muscle strength and power should be a priority for competitive swimmers. Unfortunately, this seems to be a difficult task during the heavy training phase of their season as studies have shown decrements in muscle power despite continued resistance training during midseason (Sharp 1986; Cavanaugh & Musch 1989) followed by increased power during the taper phase of training (Costill et al. 1985b). Whether these changes in muscle power are related to a chronic increase in muscle protein catabolism followed by an attenuation of muscle wasting during the taper phase has not been studied. There are other studies which provide indirect evidence of an enhanced protein need during swimming training. Kirwan et al. (1988) and Morgan et al. (1988) showed evidence of muscle damage with a twofold increase in serum creatine kinase activity and increased muscle soreness in male college swimmers when training volume was increased from 4266 m · day–1 to 8970 m · day–1. In another study on the effects of swimming training on protein catabolism, Lemon et al. (1989) observed an increase in serum urea concentration and urinary urea excretion after a 4572-m training session in competitive swimmers. Conversely, Mussini et al. (1985) found no evidence of increased muscle proteolysis using postexercise urinary 3-methyl-histidine excretion in a group of 16–20-year-old males performing a 2000-m competitive swimming training session. It should be noted, however, that the training volume used in this study was considerably less than that used in the previous studies and less than that typically used by most competitive swimmers. Although the United States recommended daily allowance (RDA) for protein is set at 0.8 g · kg–1 for adults, Friedman and Lemon (1989) suggest that a protein intake of approximately 1.5 g · kg–1 may be more appropriate to support endurance exercise training. In addition, Marable et al. (1979) recommend a protein intake up to 2–3 g · kg–1 to support the muscle building requirements of resistance training. Since competitive swimming training employs considerable involvement in both endurance and resistance training, their protein needs may lie somewhere within this range of about 1.5–2 g · kg–1 · day–1. The typical young-adult female competitive swimmer in the Netherlands consumes approximately 50–60 g protein · day–1, translating to about a protein intake of 0.9– 1.2 g · kg–1 · day–1 (van Erp-Baart et al. 1989). These authors also report the typical protein intake of male swimmers in the range of 80– 100 g · day–1, or a protein intake of about 1.1– 1.3 g · kg–1 · day–1. Perhaps if swimmers maintained a higher protein intake and a higher carbohydrate intake, and consumed enough calories to match the energy demands of their training, responses such as loss of muscle power in the middle of the season, chronic muscle fatigue, overtraining, and recovery of power and performance ability during taper would be lessened. Elimination of these responses might be expected to result in improved performance of these athletes throughout their competitive season, instead of only at the end of a taper period. However, many coaches worry that the large performance improvement usually observed with the seasonending taper would no longer occur if the swimmers were not pushed to the edge of overtraining throughout the early and midseason phases. In addition, they often fear that physiological capacities such as aerobic endurance and anaerobic power will not be fully developed in their athletes if training volume is reduced. Consequently, training for competitive swimming will likely continue to place extraordinary demands on the young athletes who choose this as their sport. swimming Micronutrient requirements in competitive swimming The only vitamin or mineral that has received much attention in the literature on dietary habits of competitive swimmers is iron. Perhaps the reason for this is that swimmers tend to consume a large amount of food and typically exceed the RDA for most of the nutrients. However, there is evidence of iron deficiency, particularly among female swimmers, even when RDA is met. Brigham et al. (1993) determined iron status in 25 female college swimmers on a biweekly basis throughout a 25-week competitive season. In addition, they examined the effectiveness of iron supplementation during this season. Before breaking the swimmers into an experimental (iron supplement) and placebo group, these authors observed that 17 of the swimmers had depleted iron stores (defined as serum ferritin concentration < 12 mg · l–1) while five of the swimmers were defined as anaemic (haemoglobin < 12 g · dl–1). During the 5 weeks in which the experimental group received 39 mg elemental iron as an iron supplement per day, haemoglobin concentration increased in 24% of the subjects and plasma ferritin concentration increased in 68% of the subjects. In the control group who did not ingest an iron supplement, haemoglobin concentration decreased despite consuming a diet containing 16.3 mg iron · day–1. These authors concluded that moderate iron supplementation is effective in preventing a decline in iron status during swimming training but a higher dose may be needed to reverse a pre-existing iron deficiency. Ganzit et al. (1993; cited in Burke 1993) tested the effectiveness of 80 mg iron supplementation per day in male and female swimmers. Swimmers in the experimental group maintained their plasma ferritin levels while those swimmers in the placebo group experienced a decrease in plasma ferritin concentration. These authors also noted an improvement in anaerobic capacity and reduced lactic acid response to submaximal exercise that was more marked in the experimental group than in the placebo group. In the 617 females, these improvements were confined only to the group that received the dietary iron supplement. Since haemoglobin concentrations did not change in either of the groups, these authors concluded that performance gains were made at the level of iron-associated muscle enzymes. Walsh and McNaughton (1989) studied the effects of 150 mg iron supplementation per day . on the haematology and Vo2max. of competitive female swimmers training at least 2 h · day–1 and 7 days a week. During this period, the experimental group had an increase in haemoglobin concentration from 12.5 g · dl–1 before supplementation to 13.6 g · dl–1 after supplementation with no change in the placebo group. Plasma ferritin concentration dropped in the placebo group from 28 to 16 mg · l–1 while no signficant change was observed in the experimental group (26 to 21 mg · l–1). By the end of the study, 40% of the subjects in the placebo group were classified as iron deficient (serum ferritin £ 12 mg · l–1, haemoglobin ≥ 12 g · dl–1) and 10% of the subjects were classified as anaemic (serum ferritin £ 12 mg · l–1, haemoglobin £ 12 g · dl–1). These data are shown in Fig. 46.4. None of the swimmers who received the iron supplement was classified as either iron deficient or anaemic. These authors concluded that young female swimmers should be routinely tested for iron status and that iron supplementation undertaken when deemed necessary. Conclusion The nutritional problems that have been summarized in this chapter may all be linked to the volume, frequency and intensity of training these athletes perform. Thus, the difficulties in trying to meet the energy demands, supply adequate carbohydrate to fuel the exercise and aid recovery, minimize muscle proteolysis, and prevent iron depletion and the associated negative effects on haematology could be avoided most simply by reducing training. At the very least, swimming coaches should design training programmes that lessen the risk of developing the 618 sport-specific nutrition Serum iron (µg.dl–1) 95 educating swimmers and their parents about general nutritional principles and specific nutritional problems of their sport are all ways swimming coaches can help assure that nutrition supports the efforts of these dedicated athletes instead of limiting their performance. 90 85 80 75 70 65 (a) 0 12 Ferritin (µg.l–1) 28 24 20 16 (b) 0 12 0 12 RBC (103.ml–1) 4800 4600 4400 (c) Haemoglobin (g.dl–1) 14 13 12 (d) 0 12 Time (weeks) Fig. 46.4 Iron status and haematology of female competitive swimmers taking either placebo (䊊) or 150 mg iron supplement (䊉) daily during 12 weeks of swim training. Adapted from Walsh and McNaughton (1989). nutritional problems outlined in this chapter. Alternating between high and lower volume training days, allowing adequate time between intense practices for muscle glycogen recovery, References Barr, S.I. & Costill, D.L. (1992) Effect of increased training volume on nutrient intake of male collegiate swimmers. International Journal of Sports Medicine 13, 47–51. Barr, S.I., Costill, D.L., Fink, W.J. & Thomas, R. (1991) Effect of increased training volume on blood lipids and lipoproteins in male collegiate swimmers. Medicine and Science in Sports and Exercise 23, 795–800. Berning, J.R., Troup, J.P., Van Handel, P.J., Daniels, J. & Daniels, N. (1991) The nutritional habits of young adolescent swimmers. International Journal of Sport Nutrition 1, 240–248. Brigham, D.E., Beard, J.L., Krimmel, R.S. & Kenney, W.L. (1993) Changes in iron status during competitive season in female collegiate swimmers. Nutrition 9, 418–422. Burke, L.M. & Read, R.S.D. (1993) Dietary supplements in sport. Sports Medicine 15, 43–65. Cavanaugh, D.J. & Musch, K.I. (1989) Arm and leg power of elite swimmers increase after taper as measured by Biokinetic variable resistance machines. Journal of Swimming Research 5, 7–10. Coggan, A.R. & Coyle, E.F. (1987) Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology 63, 2388–2395. Coggan, A.R. & Coyle, E.F. (1988) Effect of carbohydrate feedings during high-intensity exercise. Journal of Applied Physiology 65, 1703–1709. Costill, D.L. & Miller, J.M. (1980) Nutrition for endurance sport: carbohydrate and fluid balance. International Journal of Sports Medicine 1, 2–14. Costill, D.L., Fink, W.J., Hargreaves, M., King, D.S. & Thomas, R. (1985a) Metabolic characteristics of skeletal muscle during detraining from competitive swimming. Medicine and Science in Sports and Exercise 17, 339–343. Costill, D.L., King, D.S., Thomas, R. & Hargreaves, M. (1985b) Effects of reduced training on muscular power in swimmers. Physician and Sportsmedicine 13, 94–101. Costill, D.L., Rayfield, R., Kirwan, J. & Thomas, R. (1986) A computer based system for the measurement of force and power during front crawl swimming. Journal of Swimming Research 2, 16–19. swimming Costill, D.L., Flynn, M.G., Kirwan, J.P. et al. (1988a) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Medicine and Science in Sports and Exercise 20, 249–254. Costill, D.L., Hinrichs, D., Fink, W.J. & Hoopes, D. (1988b) Muscle glycogen depletion during swimming interval training. Journal of Swimming Research 4, 15–18. Coyle, E.F., Hagberg, J.M., Hurley, B.F., Martin, W.H., Ehsani, A.A. & Hollszy, J.O. (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. Journal of Applied Physiology 55, 230–235. Coyle, E.F., Coggan, A.R., Hemmert, M.K. & Ivy, J.L. (1986) Muscle glycogen utilization during prolonged exercise when fed carbohydrate. Journal of Applied Physiology 61, 165–172. Davis, J.M., Lamb, D.R., Pate, R.R., Slentz, C.A., Burgess, W.A. & Bartoli, W.P. (1988) Carbohydrate– electrolyte drinks: effects on endurance cycling in the heat. American Journal of Clinical Nutrition 48, 1023–1030. Flynn, M.G., Costill, D.L., Kirwan, J.P. et al. (1990) Fat storage in athletes: metabolic and hormonal responses to swimming and running. International Journal of Sports Medicine 11, 433–440. Friedman, J.E. & Lemon, P.W. (1989) Effect of chronic endurance exercise on retention of dietary protein. International Journal of Sports Medicine 10, 118–123. Ganzit, G.P., Giribaudo, C.G. & Biancotti, P.P. (1989) Effetti della somministrazione di supplemento di ferro ferritinico sull’ adaltamento funzionale aerobico e anaerobico all’ alienamento, in nuotatori maschi e femmine. Medicina dello Sport 42, 7–15. Gollnick, P.D., Armstrong, R.B., Saltin, B., Saubert, C.W., Sembrowich, W.L. & Shepherd, R.J. (1973) Effects of training on enzyme activity and fiber composition of human skeletal muscle. Journal of Applied Physiology 34, 107–111. Harri, M. & Kuusela, P. (1986) Is swimming exercise or cold exposure for rats? Acta Physiologica Scandinavica 126, 189–197. Ivy, J.L., Katz, A., Cutler, C.L., Sherman, W.M. & Coyle, E.F. (1988) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. Journal of Applied Physiology 64, 1480–1485. Johnson, G.O., Nebelsick-Gullett, L.J., Thorland, W.G. & Housh, T.J. (1989) The effect of a competitive season on the body composition of university female athletes. Journal of Sports Medicine and Physical Fitness 29, 314–320. Kirwan, J.P., Costill, D.L., Flynn, M.G. et al. (1988) Physiological responses to successive days of intense training in competitive swimmers. Medicine and Science in Sports and Exercise 3, 255–259. Lamb, D.R., Rinehardt, K.F., Bartels, R.L., Sherman, 619 W.M. & Snook, J.T. (1990) Dietary carbohydrate and intensity of interval swim training. American Journal of Clinical Nutrition 52, 1058–1063. Lemon, P.W. & Mullin, J.P. (1980) Effect of initial muscle glycogen levels on protein catabolism during exercise. Journal of Applied Physiology 48, 624–629. Lemon, P.W., Deutsch, D.T. & Payne, W.R. (1989) Urea production during prolonged swimming. Journal of Sports Science 7, 241–246. MacDougall, J.D., Ward, G.R., Sale, D.G. & Sutton, J.R. (1977) Muscle glycogen repletion after high-intensity intermittent exercise. Journal of Applied Physiology 42, 129–132. Maglischo, E.W. (1993) Swimming Even Faster. Mayfield Publishing, Mountain View, CA. Marable, N.L., Hickson, J.F., Korslund, M.K., Herbert, W.G., Desjardins, R.F. & Thye, F.W. (1979) Urinary nitrogen excretion as influenced by a musclebuilding exercise program and protein intake variation. Nutrition Reports International 19, 795–805. Meleski, B.W. & Malina, R.M. (1985) Changes in body composition and physique of elite university-level female swimmers during a competitive season. Journal of Sports Science 3, 33–40. Morgan, W.P., Costill, D.L., Flynn, M.G., Raglin, J.S. & O’Connor, P.J. (1988) Mood disturbance following increased training in swimmers. Medicine and Science in Sports and Exercise 4, 408–414. Mussini, E., Colombo, L., De Ponte, G., Calzi, M. & Marcucci, F. (1985) Effect of swimming on protein degradation: 3-methylhistidine and creatinine excretion. Biochemical Medicine 34, 373–375. Novak, L.P., Woodward, W.A., Bestit, C. & Mellerowicz, H. (1977) Working capacity, body composition and anthropometry of olympic female athletes. Journal of Sports Medicine 17, 275–283. O’Sullivan, S., Sharp, R.L. & King, D.S. (1994) Carbohydrate ingestion during competitive swim training. Journal of Swimming Research 10, 35–40. Piehl, K., Adolfsson, S. & Nazar, K. (1974) Glycogen storage and glycogen synthase activity in trained and untrained muscle of man. Acta Physiologica Scandinavica 90, 779–788. Sharp, R.L. (1986) Muscle strength and power as related to competitive swimming. Journal of Swimming Research 2, 5–10. Sharp, R.L., Troup, J.P. & Costill, D.L. (1982) Relationship between power and sprint freestyle swimming. Medicine and Science in Sports and Exercise 14, 53– 56. Sherman, W.M. & Maglischo, E.W. (1992) Minimizing athletic fatigue among swimmers: special emphasis on nutrition. In Sports Science Exchange, Gatorade Sports Science Institute. 4, 35. Stager, J.M., Cordain, L. & Becker, T.J. (1984) Relationship of body composition to swimming performance 620 sport-specific nutrition in female swimmers. Journal of Swimming Research 1, 21–26. Thorland, W.G., Johnson, G.O., Housh, T.J. & Refsell, M.J. (1983) Anthropometric characteristics of elite adolescent competitive swimmers. Human Biology 55, 735–748. Tsintzas, K., Liu, R., Williams, C., Campbell, I. & Gaitanos, G. (1993) The effect of carbohydrate ingestion on performance during a 30 km race. International Journal of Sport Nutrition 3, 127–129. Van Erp-Baart, A.M.J., Saris, W.H.M., Binkhorst, R.A., Vos, J.A. & Elvers, J.W.H. (1989) Nationwide survey on nutritional habits in elite athletes. Part I. Energy, carbohydrate, protein, and fat intake. International Journal of Sports Medicine 10 (Suppl. 1), 3–10. Van Handel, P.J., Cells, K.A., Bradley, P.W. & Troup, J.P. (1984) Nutritional status of elite swimmers. Journal of Swimming Research 1, 27–31. Walsh, R. & McNaughton, L. (1989) Effects of iron supplementation on iron status of young female swimmers during the pre-season phase of competition. Journal of Swimming Research 5, 13–18. Zawadzki, K.M., Yaspelkis, B.B. & Ivy, J.L. (1992) Carbohydrate–protein complex increases the rate of muscle glycogen storage after exercise. Journal of Applied Physiology 72, 1854–1859.